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Abstract In a recent work of Davis et al. (2016), the authors consider geodesics on
regular polyhedra which begin and end at vertices (and do not touch other vertices).
The cases of regular tetrahedra and cubes are considered. The authors prove that (in
these cases) a geodesic as above never begins at ends at the same vertex and compute
the probabilities with which a geodesic emanating from a given vertex ends at every
other vertex. The main observation of the present article is that there exists a close
relation between the problem considered in Davis et al. (2016) and the problem of
classification of closed geodesics on regular polyhedra considered in articles (Fuchs
and Fuchs, Mosc Math J 7:265-279, 2007; Fuchs, Geom Dedic 170:319-333, 2014).
This approach yields different proofs of result of Davis et al. (2016) and permits
to obtain similar results for regular octahedra and icosahedra (in particular, such a
geodesic never ends where it begins).

Keywords Regular polyhedra - Geodesic segments - Endpoints

1 Introduction

A geodesic on a surface of a polyhedron is, by definition, a locally shortest curve which
may transversally intersect edges, but does not contain vertices besides, possibly, the
endpoints. A geodesic is straight within the faces and at every intersection with an edge,
the opposite angles formed by the geodesic and the edge (in the two faces attached to
this edge) are equal. If a geodesic has two endpoints at vertices, we call it a simple
geodesic segment. (A simple geodesic segment is allowed to have self-intersections.)
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Fig. 1 The planar development of a regular tetrahedron

All the results of Davis et al. (2016) mentioned below are given with proofs, which,
at least in the case of the cube, are not the same as in Davis et al. (2016).

2 Tetrahedon

Theorem 2.1 (Davis et al. 2016, Corollary 3.8) A simple geodesic segment starting
at some vertex of a regular tetrahedron never ends at the same vertex and ends at the
three other vertices with equal probabilities."

Proof Consider the planar development of the regular tetrahedron with vertices
a,b,c,d (see Fig. 1). A line segment in this plane starting at the leftmost point
marked a and ending at one of the vertices within the angle shown in Fig. 1 has
the form pu + g v where p and g are non-negative integers. Namely, it ends at a
vertex marked a, if p and g are both even, at a vertex marked b, if p is odd and ¢ is
even, at a vertex marked c, if p is even and ¢ is odd, and at a vertex marked d, if p
and ¢ are both odd. It corresponds to a simple geodesic segment if and only if p and
q are relatively prime; in particular, if it ends at a, then it does not correspond to any
simple geodesic segment. Theorem follows.

3 Octahedron

Theorem 3.1 A simple geodesic segment starting at some vertex of a regular octahe-
dron never ends at the same vertex. It ends at the opposite vertex with the probability

1
7 and at the each of the other vertices with the probability 6

Proof Figure 2 shows a regular octrahedron (left) and its planar development. The
latter is multivalued in the sense that every vertex a, b, c is, actually, two vertices (a

! Here and below, speaking of the probability with which a geodesic segment with a given starting point
ends at some vertex, I mean the asymptotic probability for the set of geodesics of bounded length.
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Fig. 3 The segment pu + g v covered by the triangles of the tiling

represents a and a’, etc.), every edge represents four edges (ab represents ab, a’b, ab’,
and a’b’, etc.), and every triangular face represents eight triangular faces. Thus every
line in the plane emanating, say, from the leftmost vertex a and not following the edges
represents a (polygonal) line on the surface of the octahedron, but following this line
we may need to replace a by a’, b by b’, and/or ¢ by ¢’.

For positive relatively prime p, g, a vector p u + g v represents a simple geodesic
segment on the surface ending at a or d’, if p — ¢ = 0 mod 3, ending at b or ', if
p —¢q = 1 mod 3 and ending at ¢ or ¢/, if p — ¢ = —1 mod 3. The most importrant
thing we need to prove is that it never ends at a.

Let p > g > 0, GCD(p,q) = 1, p = g mod 3. Figure 3 shows a parallelogram
spanned by pu and ¢ v (on the picture, p = 13, ¢ = 7). We consider the diagonal
segment covered by triangles of the tiling. The vertices are labeled according to the
following rules. The left lower triangle is abc; if two triangles share a side, then the
two vertices not on this side are labeled by the same letter, one with prime, one without
prime, like @ and a’, a’ and a, etc. We are interested in vertices labeled by a or a’.
The form a sequence a, a’, a, a’, ... where the neighbors are vertices of the triangles
sharing a side not containing these vertices. These sides are marked (encircled) on
the picture. We need to show that the number of marked sides is odd. It is 13 on the

picture. Let us consider the general case.

Letr = L. The following segments are marked (coordinates are given in the

) P—4q
basis {u, v}):
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0,1)—(1,0)
1,2) -2, D

(rl. r1+ D = (r + 11, [rD

(r1+2,IrD) = Ar1+ 2,71+ D = (1 + 3, [r] + D
(212,120 = (2] 42, 2] 4+ 1)

(2r1+3,[2r1+ 1) — ([2r] + 4, [2r])

([4r1+3,[4r]1+ 1) — ([4r] + 4, [4r])

([Ar]1+5,14r]D) — ((Ar]1+ 5. [4r + 1D ... (ISr1+ 5, [57]D) — ([5r1+ 5, [5r1+ 1)

(p—gq—Hrl+p—q—-3,[(p—g—Hrl+ -
(p—q—Br+p—q—2,[(p—q—Dr)
(p—qg—2rl+p—q—3,1(p—qg—2r]+1)—
p—q—=Drl+p—q—=2,[(p—q—2r])

p—gq—rl+p—q+3,(pt+tqg—2)D)—---
—-[(p—q—Drl+p—gq—1,[(p+q—Drl+1D

(p—g—Drl+p—q.l(p—qg—Drl+1—
((p—q—Drl+p—q,[(p—q—Drl)

(p=—rl+p—qg—-—11(p—q)rD—Up—qrl+p—q.[(p —q@)r]—1)

[the last segment is, actually, (p — 1, g) — (p, g — 1)]. In this listing of segments, we
see the alternating of groups of parallel segments and stair-like chains. The groups of
parallel segments contain, respectively, [r]+ 1, [4r]+[2r]+1, ..., [(p—qg—2)r]—
(p—q—drl+1, g —[(p—q — Dr]items; the stair-like chains contain, respectively,
2(2r]—=[rD+ 1, 2([5r]1 —4rD+1, ..., 2((p+g —Drl—[(p+q —2)r]+ litems.
The total is

[+ 25 = 4]+ (57T = [(p =g = 2Pl +[(p =g = Drl+ g+ 14 +1

P q‘ A simple computation shows that this sum is

where the number of 1°s is

2 ([g] + [%]) + 1, which is certainly odd.
We arrive at the following result. No simple geodesic segment emanating from a

ends at a. If this segment is determined by relatively prime p, ¢, then it ends at a’
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Fig. 4 The cube and a planar development of the segment p -u+¢ - vwith p =3,g =2

1
if and only if p = g mod 3; asymptotically, the probability of this event is T The

3
remaining 1 is equally (because of the symmetry) distributed between b, b’, ¢, and ¢’.

4 Cube

We begin this section with formulating some results from Fuchs and Fuchs (2007) and
Fuchs (2014).

We label the vertices of the cube as shown in Fig. 4, left. An arbitrary curve on the
surface of the cube not passing through the vertices may be presented as a curve in
the plane furnished with the standard square lattice, and there arises a labeling of the
vertices along this curve. Important remark: vertices of the lattice whose coordinates
have the same parity get the labels from the set {a, b’, ¢, d’}, and vertices whose
coordinates have different parities get the labels from the set {a’, b, ¢, d} (marked in
Fig. 4).

Straight segments in the planar development correspond to geodesics on the surface
of the cube. A segment [(a, b), (a + p, b + g)] with integer a, b and relatively prime
P, q corresponds to a simple geodesic segment on the cube joining two vertices of the
cube, and all such geodesic segments can be obtained in this way.

If we shift the segment to a parallel segment starting at the point (g, 0) with a small
e > 0, then we get a geodesic on the cube, which may be (and, actually, always is)
not closed: the segment in Fig. 4, right, shifted a little bit to the right, corresponds to
a geodesic starting near a and ending near a’. To get a closed geodesic, we need to
repeat the segment on the plane a certain (minimal) number n¢(p, g) of times.

Theorem 4.1 (Fuchs and Fuchs 2007, Theorem 4.4)

(1) Forall p,q, nc(p,q) =2,3, or4;
(2) if p and q are both odd, then nc(p, q) = 3;
) ifone of p, q is even, then nc(p, q) = 2 or 4.

To formulate a necessary result from Fuchs (2014), we need some notation. Let S
be the set of pairs (p, ¢) of integers such that p is even, ¢ is odd, and p, ¢ do not
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Fig. 5 The function V(p, q)
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have common divisors > 1 [thus, for example, (0, 1), (2, 1) € S, but (0, 3) ¢ S]. The
group I'; of integer 2 x 2 matrices congruent to the identity modulo 2 acts transitively

01 21
H C T’ be the subgroup generated by A%, B>, ABA and BAB. It is proved in Fuchs
(2014) that H has index 3 in I, and not normal.

in S; it is known that I'; is a free group with generators A = |: 12 ] B = [ 1o j| Let

Theorem 4.2 [Fuchs 2014, Theorem 2.2, Part (3)] The group H has two orbits in S,
and these orbits are {nc(p, q) = 2} and {nc(p, q) = 4}. The asymptotic size of the
second of these orbits is twice the asymptotic size of the first one.

We will need here some additional facts. For every pair (p, g) of relatively prime
integers the segment p u+-¢g v determines a simple geodesic segment on the surface of
the cube starting at a. Denote by V (p, ¢) the endpoint of this geodesic. For example,
Fig. 4 shows that V (3, 2) = a’. A small table of values of the function V is shown in
Fig. 5.

The function V has a lot of symmetries, both visible and hidden. First of all, if,
for a given (p, q), the pair (p', ¢') is one of (—p, q), (p, —q), (g, p) or (—=q, —p),
then V(p’, ¢’) is easily related to V(p, ¢). For example, if ¢ > 0, then V(—p, q) is

obtained from V (p, ¢) by the transformation a’ <> b, ¢ <> d’ (indeed, all we need

dc ¢

ab
is important that all these transformations preserve a (and ¢”).
To describe some other symmetries, consider the following two matrices from H:

10 34
— Rp2 _ — _ —14 —
C—B_|:41i|,D_ AB A_|:23i|.

for this transition, is the replacement of the square

by the square Z d

a/

) etc. It
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Fig. 6 To proof of Lemma 4.3

Lemma4.3 (1) V(C(p,q)) V(p,q). 2) The transformation V(p,q) +>
V(D(p, q)) acts in the following way: a +— a, ' +— d+—> b+> d' b’ — d' + c —
b, .

Proof Essentially, this theorem is proved in Fuchs (2014). The proof is contained in
Fig. 6 [borrowed from Fuchs (2014)].

We can replace the standard fundamental square of the lattice by one of the par-
allelograms (0, 0), (1,4), (1, 5), (0, 1) or (0,0), (3, 2), (7,5), (4, 3). The labeling of
vertices shown in Fig. 6 provides labels for the vertices of these two parallelogram.
In the left diagram, it is again abcd, and this proves Part (1). In the right diagram, it
is aa’b’b which means that the whole labeling is transformed by the rotation of the
cube which maps the face abcd into the face aa’b’b. This is the rotation of the cube
by 120° around the diagonal ¢’a, as described in Part (2).

Now we formulate the main result of this section.

Theorem 4.4 Consider a simple geodesic segment on the cube emanating from the
vertex a; suppose that it corresponds to some relatively prime p, q.

(1) (Davis et al. 2016, Corollary 5.15, Theorem 5.17) The vertex V (p, q) cannot be

the same as a, it is one of a’, b, d with the probability ﬁfor each; one of b', ¢, d’

1 2
with the probabtlity — for eacn and it 1S ¢" witn the probaollity —.
jth the p bb'l'9 h and it is ¢’ with the p bb'l'y9

(2) The vertex V(p,q) is one of @', b,d, if nc(p,q) = 4, is one of V', c,d’, if
ne(p,q) =3, andis ¢, ifnc(p, q) = 2.

Proof As in the proof of Theorem 3.1, the main thing we need to prove is that a simple
geodesic segment beginning at a vertex of the cube never ends at the same vertex. It
is clear from the remark in the beginning of the section that if it the endpoint of the
simple geodesic segment coincides with the beginning, then this segment corresponds
to the pair (p, g) with p, g being both odd.
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Fig.7 Vertices of the
icosahedron

Return to Theorem 4.4. Notice that for arbitrary relatively prime odd p, g there
exists a sequence of transformations described before and in Lemma 4.3 which reduce
the pair (p, g) to (1, 1). Indeed, combining the transformation C with sign changes
and swapping of coordinates, we can reduce the general case to the case of positive
p,q with p < g < 2p [besides the case (p,q) = (1, 1)]; and this transformation
does not increase the minimum of absolute values |p|, |¢|. Then we apply D; (p, q)
becomes (4p — 3¢,3p —2g),and 2p < 2q < 4p = —p < 3p —2q < g, or
3p — 2¢q| < p; thus the minimum of |p|, |g| decreases. Repeating this procedure
sufficiently many times, we arrive at (p, g) = (1, 1). Thus an arbitrary (p, g) can be
obtained from (1, 1) by a chain of inverse transformation, and, since V (1, 1) = c and
no one of our transformations connects a with anything else, we can conclude that
V(p.q) #a.

Finally, consider an arbitrary simple geodesic segment o starting at a; let its planar
development is pu + g v. Take the geodesic segment ¢’ parallel to o and starting at
a point of the edge ab close to a. If o ends at b, d, or a’ then repeat ¢’ 4 times; if o
ends at ¢, b’, or d’, then repeat o’ 3 times; and if o ends at ¢/, then repeat ¢’ 2 times.
Obviously, we get a geodesic on the cube ending at a point of one of the edges ab, ad,
or aa’. But in the last two cases, to get a closed geodesic, we need to repeat already
repeated 4, or 3, or 2 times ¢’ 3 more times, which would mean that n¢ (p, ¢) = 12 or
9, or 6, in contradiction to Part (3) of Theorem 4.1. Thus, the geodesic o’ repeated 4, or
3, or 2 times is closed and we conclude thatif V(p, q) is b, d,ora’,thennc(p, q) = 4,
if V(p,q)isc,b ord, then nc(p,q) = 3 and if V(p, q) is ¢, then n¢(p, q) = 2.
Theorem 4.4 follows.

5 Icosahedron
We label the 12 vertices of the regular icosahedron as shown in Fig. 7. Notice that,

here prime means “opposite”: the vertex a’ is opposite to a, the vertex b’ is opposite
to b, etc.
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Fig. 8 To proof of Lemma 5.3

As in the cases of the tetrahedron and the octahedron, geodesics on the surface of
the icosahedron (not passing through the vertices) are presented by straight lines in the
plane furnished by the standard triangular tiling. A non-self-repeating closed geodesic
corresponds to the segment pu + g v with relatively prime integer p, g repeated a
certain number n; (p, g) of times.

Theorem 5.1 (Fuchs and Fuchs 2007, Theorem 6.1) The number ny(p, q) takes val-
ues 2,3, and 5.

The following informations of the function n; are contained in Fuchs (2014).
Let S = {(p,q) € Z x Z | GCD(p,q) = 1}/(p,q) ~ (—p,—q). The group
PSL(12,Z) = SL(2,Z)/{%lI} transitively acts in S. Let H be the subgroup of

0-1 —41 4-3
PSL(2,7Z) generated by K = |:1 l:|’L = |:_1 0:| ;and M = |:3 _2:|'

Theorem 5.2 (Fuchs 2014, Theorem 3.1)

(1) The group H has index 10 in PSL(2,7Z).

(2) The group H has three orbits in S, and these orbits are {n;(p,q) =
2}, {n1(p.q) =3}, and {n;(p, q) = 5}

(3) The asymptotic sizes of these three orbits are related as 2:3:5.

Asinthe case of the cube, we need some enhancement of Theorem 5.2. For relatively
prime p, g, let V(p, g) be the vertex of the icosahedron, which is the endpoint of the
simple geodesic segment beginning at @ and corresponding to the planar segment
pu+gqyv.

Lemma 5.3 (1) V(M(p,q)) = V(p,q).

(2) The transformation V(p,q) — V(K (p, q)) is the rotation of the icosahedron
b—>cr—d—er— frobb—d—d—d— f—1.

(3) The transformation V(p,q) — V(L(p,q)) is the rotation of the icosahedron
inverse to the rotationin 2): b+ fr>er>d—cr— b, b — e >
dw— b
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Proof As in the proof of Lemma 4.3, the transformations consist in replacements of
the fundamental triangle of the tiling as shown in Fig. 8 [mostly borrowed from Fuchs
(2014)]. We see that the transformations in Parts (1)—(3) of lemma correspond to the
replacement of the fundamental triangle abc (shadowed in Fig. 8) by, respectively,
triangles abc, acd, and afb (drawn in boldface lines in Fig. 8). Lemma follows.

The following statement is the main result of this section.

Theorem 5.4 Consider a simple geodesic segment on the icosahedron emanating
from the vertex a and ending at some vertex h; suppose that it corresponds to some
relatively prime p, q.

(1) The vertex h cannot be a.

1
(2) The vertex h is one of the vertices b, c,d, e, f with the probabilitiy Efor each;
it is one of the vertices b', ¢’ , d’, €', f' with the same probability %for each; and

1
it is a’ with the probability 3
(3) The vertex h is one of b, c,d, e, f, ifn;(p,q) =5, itisone of b',c',d’, e, f, if
ni(p,q) =3, anditisa’, ifni(p,q) = 2.

Proof AddtoLemma 5.3 that V(—p, —¢q) is also obtained from V (p, ¢) by arotation,
thistme b~ e+ cr— fr>dw— b b ¢ = ff—dw—D.
Consider the group H C SL(2; Z) generated by the matrices —1, K, L, M. The
action of the group H in S has three orbits, the inverse images the orbits of H in
S with resopect to the projection S — S. Lemma 5.3, supplemented by the last
remark, shows that the sets T4 = {(p,q) | V(p,q) € A with A being one of the
four sets {a}, {b,c,d,e, f}, {b',c',d', €, f'}, {a’} are invariant with respect to H.
Since the three orbits are represented by the pairs (1, 1), (1,2), (1,4) and V(1, 1) =
¢, V(1,2) =d’, V1,4) = d, We conclude that T, is empty, while the three other
sets Tx are the three orbits of H, and Theorem 5.2 yields identifications Tip ¢ d.e, /) =
n '), T o ar e g1y =17 (3), oy = ny ' (2). Theorem follows.

6 Dodecahedron

I cannot say much about this case. Still it seems very likely that on the surface of the

dodecahedron there exist simple geodesic segments which begin and end at the same

vertex. By means of computer experiments, I have found a variety of likely examples of

this. The shortest one is shown in Fig. 9. It is a 22-gonal geodesic emanating from the
313 —

-1 3V3-9 ~ 86.5° with the side (¢ = 1.618...
57¢ — 90

is the golden ratio). According to the computer, the distance between the 22nd edge

and A does not exceed 10~'# (we assume that the length of the side is 1). In the same

vertex A under the angle o = tan
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Fig. 9 A simple geodesic segment AA on the dodecahedron

time, the distances between the other edges and other vertices are never less than 0.02.
This means that in the unlikely event that the 22nd edge does not hit A, we can make
it ending at A by a small perturbation of «.
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