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Abstract Weshow that the cyclohedron (Bott–Taubes polytope)Wn arises as the polar
dual of a Kantorovich–Rubinstein polytope K R(ρ), where ρ is an explicitly described
quasi-metric (asymmetric distance function) satisfying strict triangle inequality. From
a broader perspective, this phenomenon illustrates the relationship between a nestohe-
dron �

̂F (associated to a building set ̂F) and its non-simple deformation �F , where
F is an irredundant or tight basis of ̂F (Definition 21). Among the consequences are
a new proof of a recent result of Gordon and Petrov (Arnold Math. J. 3(2):205–218,
2017) about f -vectors of generic Kantorovich–Rubinstein polytopes and an exten-
sion of a theorem of Gelfand, Graev, and Postnikov, about triangulations of the type
A, positive root polytopes.

Keywords Kantorovich-Rubinstein polytopes · Lipschitz polytope · Cyclohedron ·
Nestohedron · Unimodular triangulations · Metric spaces

1 Introduction

Motivated by the classic Kantorovich–Rubinstein theorem, Vershik (2015) described
a canonical correspondence between finite metric spaces (X, ρ) and convex polytopes
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in the vector space V0(X) ⊂ R
X of all signed measures on X with total mass equal to

0.More explicitly, each finitemetric space (X, ρ) is associated a fundamental polytope
K R(ρ) (Kantorovich–Rubinstein polytope) spanned by ex,y = ex −ey

ρ(x,y)
where {ex }x∈X

is the canonical basis in R
X .

Kantorovich–Rubinstein polytope K R(ρ) can be also described as the dual of the
Lipschitz polytope Lip(ρ) where,

Lip(ρ) =
{

f ∈ R
X | (∀x, y ∈ X) f (x) − f (y) � ρ(x, y)

}

, (1)

and two functions f, g ∈ R
X are considered equal if they differ by a constant.

Vershik (2015) raised a general problem of studying (classifying) finite metric
spaces according to the combinatorics of their fundamental polytopes.

Gordon and Petrov (2017) in a recent paper proved a very interesting result that the
f -vector of the Kantorovich–Rubinstein polytope K R(ρ) is one and the same for all
sufficiently generic metrics on X . They obtained this result as a byproduct of a careful
combinatorial analysis of face posets of Lipschitz polytopes. The invariance of the
f -vector of K R(ρ) can be also deduced from the fact that the type A root polytope
Rootn := Conv(An), where An = {ei − e j | 1 � i �= j � n}, is unimodular in the
sense of De Loera et al. (2010, Definition 6.2.10) (see also the outline in Sect. 2.3).

Our point of departurewas an experimentally observed fact that thegeneric f -vector
of Gordon and Petrov coincides with the f -vector of (the dual of) the cyclohedron
(Bott–Taubes polytope) Wn . At first sight this is an unexpected phenomenon since
W ◦

n itself is not centrally symmetric and therefore cannot arise as a Kantorovich–
Rubinstein polytope K R(ρ) (unless ρ is allowed to be a quasi-metric!).

The symmetry of a metric is a standard assumption in the usual formulations of
the Kantorovich–Rubinstein theorem, see for example Villani (2003, Section 1.2).
However this condition is not necessary. (The proof of this fact is implicit in Villani
(2009, Section 5), see Particular Case 5.4. on page 68). More importantly the ‘radial
vertex perturbation’ (Sect. 2.2) of a metric may affect its symmetry, so the extension
of K R(ρ) to quasi-metrics may be justified both by the ‘optimal transport’ and the
‘convex polytopes’ point of view.

We prove two closely related results which both provide explanations why the
cyclohedron Wn (and its dual polytope W ◦

n ) appear in the context of generic
Kantorovich–Rubinstein polytopes and triangulations of the type A root polytope.

In the first result (Theorem 14), we construct a map φn : W ◦
n → Rootn which

is simplicial on the boundary ∂(W ◦
n ) and maps bijectively ∂(W ◦

n ) to the boundary
∂(Rootn) of the root polytope. (In particular we obtain a triangulation of ∂(Rootn)

parameterized by faces of Wn .)
This construction is purely combinatorial and diagrammatic in nature. It relies on

a combinatorial description of Wn as a graph associahedron (Devadoss 2003) and
describes simplices in ∂(W ◦

n ) as admissible families of intervals (arcs) in the cycle
graph Cn .

Theorem 14 can also be seen as an extension of a result of Gelfand et al. (1996,
Theorem 6.3) who described a coherent triangulation of the type A, positive root
polytope Root+n = Conv{ei − e j | 1 � i � j � n}. For illustration, the standard
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Cyclohedron and Kantorovich–Rubinstein Polytopes 89

trees depicted in Gelfand et al. (1996, Figure 6.1) may be interpreted as our admissible
families of arcs (as exemplified in Fig. 3) where all arcs are oriented from left to right.

In the second result (Theorem 31 and Proposition 34) we prove the existence
and than explicitly construct a canonical quasi-metric ρ such that the associated
Kantorovich–Rubinstein polytope K R(ρ) is a geometric realization of the polytope
W ◦

n .
This result has a more geometric flavor since it relies on a nestohedron repre-

sentation (Postnikov 2009; Feichtner and Sturmfels 2005) of the cyclohedron as the
Minkowski sum Wn = �

̂F = ∑

F∈ ̂F �F of simplices. In this approach the rela-
tionship between the cyclohedron Wn and the dual (Rootn)◦ of the root polytope is
seen as a special case of a more general construction linking a nestohedron �

̂F and
its Minkowski summand �F , where ̂F is a building set and F its irredundant basis
(Definition 21).

In Sect. 6 we briefly outline a different plan (suggested by a referee) for construct-
ing quasi-metrics of “cyclohedral type”. This approach relies on the analysis of the
combinatorial structure of Lipschitz polytopes for generic measures, as developed in
Gordon and Petrov (2017).

In ‘Concluding remarks’ (Sect. 7) we discuss the significance of Theorems 14 and
31. For example we demonstrate (Sect. 7.1) how the motivating result of Gordon
and Petrov (2017, Theorem 1) can be deduced from the known results about the
f -vectors of cyclohedra. We also offer a glimpse into potentially interesting future
developments including the study of ‘tight pairs’ (̂F,F) of hypergraphs (Sect. 7.2)
and the ‘canonical quasitoric manifolds’ associated to combinatorial quasitoric pairs
(Wn, φn) (Sect. 7.3).

2 Preliminaries

2.1 Kantorovich–Rubinstein Polytopes

Let (X, ρ), |X | = n, be a finite metric space and let V (X) := R
X ∼= R

n be the associ-
ated vector space of real valued functions (weight distributions, signed measures) on
X . In particular, V0(X) := {μ ∈ V (X) | μ(X) = 0} is the vector subspace of mea-
sures with total mass equal to zero, while �X := {μ ∈ V (X) | μ(X) = 1 and (∀x ∈
X) μ({x}) � 0} is the simplex of probability measures.

Let Tρ(μ, ν) be the cost of optimal transportation ofmeasureμ tomeasure ν, where
the cost of transporting the unit mass from x to y is ρ(x, y). Then, cf. Vershik (2013)
and Villani (2003), there exists a norm ‖ · ‖K R on V0(X) (called the Kantorovich–
Rubinstein norm), such that,

Tρ(μ, ν) = ‖μ − ν‖K R,

for each pair of probability measures μ, ν ∈ �X . By definition, the Kantorovich–
Rubinstein polytope K R(ρ), or the fundamental polytope (Vershik 2015), associated
to (X, ρ), is the corresponding unit ball in V0(X),

K R(ρ) = {x ∈ V0(X) | ‖x‖K R � 1} . (2)
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The following explicit description for K R(ρ) can be deduced from the Kantorovich–
Rubinstein theorem (Theorem 1.14 in Villani 2003),

K R(ρ) = Conv

{

ex − ey

ρ(x, y)
| x ∈ X

}

, (3)

where {ex }x∈X is the canonical basis in R
X .

Problem 1 (Vershik 2015) Study and classify metric spaces according to combinato-
rial properties of their Kantorovich–Rubinstein polytopes.

2.2 Root Polytopes

The convex hull of the roots of a classical root system is called a root polytope. In
particular the type A root polytope, associated to the root system of type An−1, is the
following polytope (Fig. 1),

Rootn = Conv{ei − e j | 1 � i �= j � n}. (4)

It immediately follows from (4) that the root polytope admits the followingMinkowski
sum decomposition,

Rootn = � + ∇ = � + (−�) = � − �, (5)

where � = �n = Conv{ei }n
i=1 and ∇ = −� = Conv{−ei }n

i=1.
By definition, Rootn is the Kantorovich–Rubinstein polytope associated to the

metric ρ where ρ(x, y) = 1 for each x �= y. Conversely, in light of (3), each
Kantorovich–Rubinstein polytope can be seen as a radial, vertex perturbation of the
root polytope Rootn .

Fig. 1 The boundary
triangulation of Root4 described
in Theorem 14
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[3, 4)

[3, 2)

[1, 2)

[4, 3)

[2, 3)
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Cyclohedron and Kantorovich–Rubinstein Polytopes 91

2.3 Unimodular Triangulations and Equidecomposable Polytopes

A triangulation of a convex polytope Q is tacitly assumed to be without new vertices.
A triangulation of the boundary sphere ∂(Q) of Q is referred to as a boundary trian-
gulation. Each triangulation of Q produces the associated boundary triangulation (but
not the other way around).

The f -vector of a triangulation is the f -vector of the associated simplicial com-
plex. Different triangulations of either the polytope Q or its boundary ∂(Q) may have
different face numbers, so in general the f -vector of a triangulation is not uniquely
determined by the polytope Q. The simplest examples illustrating this phenomenon
are the bipiramid over a triangle and the 3-dimensional cube (the latter admits trian-
gulations with both 5 and 6, three dimensional simplices).

The polytopes, all of whose triangulations have the same face numbers ( f -vectors),
are called equidecomposable, seeBayer (1993) orDeLoera et al. (2010, Section 8.5.3).
A notable class of equidecomposable polytopes are lattice polytopes which are uni-
modular in the sense that each full dimensional simplex spanned by its vertices has
the same volume, see Definition 6.2.10 and Section 9.3 in De Loera et al. (2010). Uni-
modularity of a polytope immediately implies that the top dimensional face numbers
are independent of a triangulation. In light of Theorem 8.5.19. from De Loera et al.
(2010), this condition guarantees that the polytope is equidecomposable, i.e. that the
f -vector is the same for all triangulations.
A notable example of an equidecomposable polytope is the product of two sim-

plices, see De Loera et al. (2010, Section 6.2). As a consequence of (5), each face
of the root polytope Rootn is a product of two simplices. From here we immediately
deduce that all boundary triangulations of Rootn have the same f -vector.

Gordon and Petrov (2017) observed that each Kantorovich–Rubinstein polytope
K R(ρ), for a sufficiently generic metric ρ, induces a regular boundary triangulation
of the root polytope Rootn . This observation allowed them to determine the f -vector
of a generic K–R polytope, and to obtain some other qualitative and quantitative
information about these polytopes.

Our Theorem 31 identifies this f -vector as the f -vector of the polytope W ◦
n , dual

to the f -vector of an (n − 1)-dimensional cyclohedron.

2.4 Kantorovich–Rubinstein Polytopes for Quasi-Metrics

Each Kantorovich–Rubinstein polytope associated to a metric ρ is centrally sym-
metric (as a consequence of the symmetry ρ(x, y) = ρ(y, x) of the metric ρ).
The cyclohedron Wn is not centrally symmetric, so it is certainly not one of the
Kantorovich–Rubinstein polytopes. However, as a consequence of Theorem 31, it
arises as a generalized K–R polytope associated to a not necessarily symmetric dis-
tance function (quasi-metric).

Definition 2 Anon-negative functionρ : X×X → R
+ is a quasi-metric (asymmetric

distance function) if,

1. (∀x, y ∈ X) (ρ(x, y) = 0 ⇔ x = y);
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2. (∀x, y, z ∈ X) ρ(x, z) � ρ(x, y) + ρ(y, z).

The Kantorovich–Rubinstein polytope K R(ρ), associated to a quasi-metric ρ, is
defined by the same formula (3) as its symmetric counterpart.

Many basic facts remain true for generalized K–R polytopes. For illustration, here
is a result which extends (with the same proof) a result of Melleray et al. (2014,
Lemma 1).

Proposition 3 Let X be a finite set. Assume that ρ : X × X → R�0 is a non-negative
function such that ρ(x, y) = 0 if and only if x = y. Let K R(ρ) be the polytope
defined by the Eq. (3). Then ρ is a quasi-metric on X if and only if none of the points
ex,y = ex −ey

ρ(x,y)
(for x �= y) is in the interior of K R(ρ).

3 Preliminaries on the Cyclohedron Wn

3.1 Face Lattice of the Cyclohedron Wn

The face lattice F(Wn) of the (n − 1)-dimensional cyclohedron Wn (Bott–Taubes
polytope) admits two closely related combinatorial description.

In the first description Stasheff (1997), similar to the description of the (n − 1)-
dimensional associahedron Kn (Stasheff polytope), the lattice F(Wn) arises as the
collection of all partial cyclic bracketing of a word x1x2 · · · xn .

Carr and Devadoss (2006), in a more general approach, view both polytopes Kn

and Wn as instances of the so called graph associahedra. In this approach, Wn is
described as the graph associahedron P� corresponding to the graph � = Cn (cycle
on n vertices), where F(Wn) is the collection of all valid tubings on �, see Carr and
Devadoss (2006), Devadoss (2003) for details.

The equivalence of the ‘bracketing’ and ‘tubing’ description is easily established,
see for example Carr and Devadoss (2006, Lemma 2.3) or Markl (1999, Lemma 1.4).
Recall that ‘graph associahedra’ are a specialization of nestohedra, see Feichtner and
Sturmfels (2005), Postnikov (2009), or Buchstaber and Panov (2015, Section 1.5). In
this more general setting, the ‘valid tubings’ appear under the name of ‘nested sets’
associated to a chosen ‘building set’. A related class of polytopes was studied from a
somewhat different perspective by Došen and Petrić (2011).

Fig. 2 Admissible family of
oriented arcs

1 2 3 4 5 6

We use in this paper a slightly modified description of the poset F(Wn) which
allows us to use pictorial description of ‘valid tubings’ (partial bracketings), see
Fig. 2. A similar description was used by Gelfand et al. (1996), where these pictorial
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1 2 3 4 1 2 3 4

(a) (b)
Fig. 3 Two facets of W ◦

4 (vertices of W4): a T1 = {[3, 2), [4, 2), [4, 1)} b T2 = {[3, 2), [3, 1), [4, 1)}

representations appeared in the form of the so called ‘standard trees’, see Gelfand et al.
(1996, Section 6).

The vertex set of the cycle graphCn is the setV (Cn) = [n] := {1, 2, . . . , n−1, n} of
vertices of a regular n-gon, inscribed in a unit circle S1.We adopt a (counterclockwise)
circular order ≺ (respectively 
) on the circle S1, so in particular [x, y] = {z ∈ S1 |
x 
 z 
 y} is a closed arc (interval) in S1 (similarly [x, y) = {z ∈ S1 | x 
 z ≺ y},
etc.). (By convention, [x, x] = {x} and [x, x) = ∅.)

By definition [x, y]0 := [x, y]∩[n] (similarly, [x, y)0 := [x, y)∩[n]) are intervals
restricted to the set [n] of vertices of the n-gon. If i �= j are two distinct vertices
(elements of V (Cn) = [n] ), then [i, j − 1]0 is precisely the tube (in the sense of Carr
and Devadoss 2006) associated to the interval [i, j). Conversely, each tube [u, v]0
(a proper connected component in the graph Cn) is associated a half-open interval
[u, v + 1) in the circle S1. A moment’s reflection reveals that each valid tubing (in the
sense of Carr and Devadoss 2006) corresponds to an admissible family of half-open
intervals, in the sense of the following definition.

Definition 4 A collection T = {I1, I2, . . . , Ik} of half-open intervals I j = [a j , b j )

(where {a j , b j } ⊂ [n] and a j �= b j for each j) is admissible if for each 1 � i < j � k,
exactly one of the following two alternatives is true,

1. If Ii ∩ I j �= ∅ then either Ii � I j or I j � Ii ;
2. Ii ∩ I j = ∅ and Ii ∪ I j is not an interval (meaning that neither b j = ai nor bi = a j ).

Proposition 5 The face lattice F(Wn) of the (n − 1)-dimensional cyclohedron Wn

is isomorphic to the poset of all admissible collections T = {I j }k
j=1 of half-open

intervals in S1 with endpoints in [n]. Individual arcs (half-open intervals) correspond
to facets of Wn while the empty set is associated to the polytope Wn itself.

Remark 6 The dual W ◦
n of the cyclohedron is a simplicial polytope. It follows from

Proposition 5 that the face poset of the boundary ∂(W ◦
n ) of W ◦

n is isomorphic to the
simplicial complex with vertices V = {[i, j) | 1 � i �= j � n} (all half-open intervals
with endpoints in [n]) where T ⊂ V is a simplex if and only if T is an admissible
family of half-open intervals (Definition 4).

The following proposition shows that admissible families (in the sense of Defini-
tion 4) can be naturally interpreted as directed trees (directed forests)

Proposition 7 Each admissible family T = {[iν, jν)}k
ν=1 of arcs can be interpreted

as a digraph, where [iν, jν) ∈ T defines an oriented edge from iν to jν (as in Figs. 2,
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94 F. D. Jevtić et al.

3). If the orientation of arcs is neglected, than we obtain an ordinary graph �T . We
claim that for each admissible family T , the associated graph �T has no cycles.

Proof Indeed, suppose that [u1, v1), (v1, u2], [u2, v2), . . . , [us, vs), (vs, u1] is a min-
imal cycle in �T . We may assume without loss of generality that u1 ≺ v1 ≺ u2 (in the
counterclockwise circular order on S1). From here we deduce that remaining indices
also follow the circular order,

u1 ≺ v1 ≺ u2 ≺ v2 ≺ · · · ≺ us ≺ vs ≺ u1, (6)

otherwise two different arcs would cross (which would violate the assumption that T
is admissible).Moreover, for the same reason, the sequence (6) winds around the circle
S1 only once. This however leads to a contradiction since the intervals I = (v1, u2]
and J = (v2, u3] would have a non-empty intersection, while neither I ⊂ J nor
J ⊂ I (a contradiction with Definition 4). ��

Definition 8 Let a = [i, j) be a half-open circle interval. By definition s(a) = i is
the source of a and t (a) = j is the sink or the terminal point of a. For an admissible
family T = {[iν, jν) | ν ∈ [k]} of intervals (arcs), the associated source and sink sets
are,

s(T ) = {iν | ν ∈ [k]} and t (T ) = { jν | ν ∈ [k]} .

Note that, as a consequence of Definition 4, s(T ) ∩ t (T ) = ∅ for each admissible
family T of intervals.

3.2 Automorphism Group of the Cyclohedron

Each automorphism of a graph � induces an automorphism of the associated graph
associahedronP� . The groupof all automorphismsof the cycle graphCn is the dihedral
group D2n of order 2n. It immediately follows that both the (n − 1)-dimensional
cyclohedronWn and its polar polytopeW ◦

n are invariant under the action of the dihedral
group D2n .

Let D2n ∼= 〈α, β| αn = β2 = e, βαβ = αn−1〉 be a standard presentation of the
group D2n where α is the cyclic permutation of Cn (corresponding to the rotation of
the regular polygon through the angle 2π/n) and β is the involution (reflection) which
keeps the vertex n fixed.

Then the action of D2n on Wn and W ◦
n can be described as follows.

Proposition 9 Suppose that Cn is the cycle graph, realized as a regular polygon
inscribed in the unit circle. Let [i, j) be a half-open interval representing a vertex
(face) of the polytope W ◦

n (respectively polytope Wn). Then α([i, j)) := [i + 1, j + 1)
and β([i, j)) := [n − j + 1, n − i + 1).
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3.3 Canonical Map φn

The associahedron Kn may be described as the secondary polytope Gelfand et al.
(1994), associated to all subdivisions of a convex (n + 2)-gon by configurations of
non-crossing diagonals. It was shown by Simion (2003) that a similar description
exists for Wn , provided we deal only with centrally symmetric configurations. The
polytopes Kn and Wn are sometimes referred to as the type A and type B associahedra.
This classification emphasizes a connection with type A or B root systems, the corre-
sponding hyperplane arrangements etc. In this section we relate Wn to the root system
of type An−1, in other words Wn may also be interpreted as a ‘type A associahedron’.

Let {ei }n
i=1 be the standard basis in R

n and let An = {ei − e j }1�i �= j�n be the
associated root systemof type An−1. The typeA root polytope is introduced in Sect. 2.2
as the convex hull Rootn = conv{ei − e j | 1 ≤ i �= j ≤ n} of the set An of all roots.
(We warn the reader that this terminology may not be uniform, for example the root
polytopes introduced in Gelfand et al. (1996), Postnikov (2009) deal only with the set
A+

n = {ei − e j }1�i< j�n of positive roots.)
The following definition introduces a canonical map which links the (dual of the)

cyclohedron Wn to the root system of type An−1, via the root polytope Rootn . Recall
(Proposition 5) that the boundary ∂(W ◦

n ) of the polytope dual to the cyclohedron is the
simplicial complex of all admissible half-open intervals in S1 with endpoints in [n].
Definition 10 The map,

φn : ∂(W ◦
n ) −→ ∂(Rootn) (7)

is defined as the simplicial (affine) extension of the map which sends the interval [i, j)
(vertex of W ◦

n ) to φn([i, j)) := ei − e j ∈ R
n .

Proposition 11 The map φn : ∂(W ◦
n ) → ∂(Rootn), introduced in Definition 10, is

one-to-one on faces, i.e. it sends simplices of ∂(W ◦
n ) to non-degenerate simplices in

the boundary ∂(Rootn) of the root polytope.

Proof A face of ∂(W ◦
n ) corresponds to an admissible family T = {[iν, jν)}k

ν=1. The
associated digraph (also denoted by T ) is a directed forest (by Proposition 7). The
associated unoriented graph �T is a bipartite graph with the shores P = {i1, . . . , ik}
and Q = { j1, . . . , jk} which has no cycles, i.e. �T is a forest. The elements of the
corresponding set φn(T ) = {eiν − e jν }k

j=1 of vectors may be interpreted as some of
the vertices of the product of simplices �P × �Q . By Lemma 6.2.8 from De Loera
et al. (2010, Section 6.2) these vertices are affinely independent. This implies that φn

must be one-to-one on T . ��
Proposition 11 is a very special case of Proposition 15, which claims global injec-

tivity of the canonical map φn . The following example illustrates one of the main
reasons why the φn-images of different simplices have disjoint interiors.

Example 12 By inspection of Fig. 1 (which illustrates the case n = 4 of Proposi-
tion 15), we observe that the images of different triangles (admissible triples) T1 and
T2, have disjoint interiors. For example let, as in Fig. 3,

T1 = {[3, 2), [4, 2), [4, 1)} and T2 = {[3, 2), [3, 1), [4, 1)}.
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96 F. D. Jevtić et al.

Fig. 4 Admissible triangles
with a common edge

n
n− 1

j i

Suppose that the interiors of their images have a non-empty intersection, i.e. assume
that there is a solution of the equation,

α3,2(e3 − e2) + α4,2(e4 − e2) + α4,1(e4 − e1)

= β3,2(e3 − e2) + β3,1(e3 − e1) + β4,1(e4 − e1)

By rearranging the terms we obtain,

α′(e4 − e3) + α′′(e3 − e2) + α′′′(e2 − e1)

= β ′(e4 − e3) + β ′′(e3 − e2) + β ′′′(e2 − e1)

However, this is impossible since α’s and β’s are positive and α′′ > α′ > α′′′ > 0
while β ′′ > β ′′′ > β ′ > 0.

Remark 13 The argument used in the previous example is sufficiently general to cover
the case of triangles (admissible triples) T1 and T2, which share a common edge (as in
Fig. 4). Indeed, by setting i = 1, j = 2 and n = 4 this case is reduced to Example 12.

4 Cyclohedron and the Root Polytope I

The following theorem is together with Theorem 31 one of the central results of the
paper. Informally speaking, it says that there exists a triangulation of the boundary of
the (n − 1)-dimensional type A root polytope Rootn parameterized by proper faces
of the (n − 1)-dimensional cyclohedron.

Theorem 14 The map φn : ∂(W ◦
n ) → ∂(Rootn), introduced in Definition 10, is a

piecewise linear homeomorphism of boundary spheres of polytopes W ◦
n and Rootn.
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Cyclohedron and Kantorovich–Rubinstein Polytopes 97

The map φn sends bijectively vertices of ∂(W ◦
n ) to vertices of the polytope Rootn,

while higher dimensional faces of Rootn are triangulated by images of simplices from
∂(W ◦

n ).

The proof of Theorem 14 is given in the following two sections. Its main part is the
proof of the injectivity of the canonical map φn .

4.1 Injectivity of the Map φn

Proposition 11 can be interpreted as a result claiming local injectivity of the map
φn : ∂(W ◦

n ) → ∂(Rootn). Our central result in this section is Proposition 15, which
establishes global injectivity of this map and provides a key step in the proof of
Theorem 14.

Recall that φn : ∂(W ◦
n ) → ∂(Rootn) is defined as the simplicial map such that

φn ([i, j)) = ei − e j for each pair i �= j . More explicitly, if x ∈ ∂W ◦
n is a convex

combination of arcs (intervals),

x =
∑

[i, j)∈T
λi, j [i, j) (8)

(where T is the associated admissible family) then,

φn(x) =
∑

[i, j)∈T
λi, j (ei − e j ). (9)

We will usually assume that the representation (8) is minimal (x ∈ int (T ))
which means that the weights {λi, j } satisfy the conditions

∑

[i, j)∈T λi, j = 1 and
(∀i, j) λi, j > 0.

Proposition 15 The map φn : ∂(W ◦
n ) → ∂(Rootn) is injective.

Proof Suppose that T1 and T2 are two admissible families of intervals (representing
two faces of ∂W ◦

n ). We want to show that T1 and T2 must be equal if,

φn(int (T1)) ∩ φn(int (T2)) �= ∅. (10)

(Note that this observation immediately reduces Proposition 15 to Proposition 11.)
Condition (10) says that there exist

{

αi j | [i, j) ∈ T1
}

,
{

βi j | [i, j) ∈ T2
}

such that,

(∀ [i, j) ∈ T1) αi j > 0 (11)

(∀ [i, j) ∈ T2) βi j > 0 (12)
∑

[i, j)∈T1
αi j = 1 =

∑

[i, j)∈T2
βi j (13)

∑

[i, j)∈T1
αi j

(

ei − e j
) =

∑

[i, j)∈T2
βi j

(

ei − e j
)

(14)
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Our objective is to show that conditions (11)–(14) imply T1 = T2 and αi, j = βi, j for
each interval [i, j) ∈ T1 = T2.

We begin with the observation that Proposition 15 is trivially true for n = 3. (In
this case both ∂((W3)

◦) and ∂(Root3) are boundaries of a hexagon.) This is sufficient
to start an inductive proof. However note that we already know (Fig. 1, Example 12,
and Remark 13) that Proposition 15 is also true in the case n = 4.

The proof is continued by induction on the parameter ν := |T1| + |T2| + n. More
precisely, we show that if there is a counterexample (T1, T2) on [n] then there is a
counterexample (T ′

1 , T ′
2 ) on [n′] such that ν′ = |T ′

1 |+|T ′
2 |+n′ < |T1|+|T2|+n = ν.

Step 1: Without loss of generality we are allowed to assume that,

s(T1) = s(T2) = I and t (T1) = t (T2) = J. (15)

Indeed, it follows from Eq. (14) that I (respectively J ) collects the indices i (respec-
tively the indices j) where ei appears with a positive coefficient (e j appears with a
negative coefficient).

Moreover, we assume that,
I ∪ J = [n]. (16)

Otherwise, there exists an element i ∈ [n] which is neither source nor terminal point
of an interval in T1 ∪ T2. In this case the vertex i can be deleted and n can be replaced
by a smaller number n′.
Step 2:Let us assume that either I or J contains two consecutive elements, for example
let {i, i + 1} ⊂ I for some i ∈ [n]. The proof in the case {i, i + 1} ⊂ J is similar
(alternatively we can apply the automorphism β from Proposition 9 which reverses
the orientation of arcs).

By cyclic relabelling, in other words by applying repeatedly the automorphism α

from Proposition 9, we may assume that i = n − 1 and i + 1 = n.
Let Ln : R

n → R
n−1 be the linear map such that Ln(e j ) = e j for j = 1, . . . , n −1

and Ln(en) = en−1. On applying the map Ln to both sides of the equality (14) we
obtain a new relation,

∑

[i, j)∈T ′
1

α′
i j

(

ei − e j
) =

∑

[i, j)∈T ′
2

β ′
i j

(

ei − e j
)

. (17)

For better combinatorial understandingof the relation (17),wenote that a combinatorial-
geometric counterpart of the map Ln is the operation of collapsing the interval
[n − 1, n] (in the circle S1) to the point n − 1.

It is not difficult to describe the effect of the collapsing operation (C O) on the
admissible families T1 and T2 satisfying the condition {n − 1, n} ⊂ s(T1) = s(T2).

Lemma 16 The collapsing operation C O sends each admissible family T with the
property {n − 1, n} ⊂ s(T ) to an admissible family T ′ on the vertex set [n − 1] =
{1, . . . , n − 1}. Moreover, under this condition, C O([i, j)) = [i, j) if i �= n, while
C O([n, j)) = [n − 1, j).
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Fig. 5 Admissible family of
arcs before the collapse of the
interval [n − 1, n]

n
n− 1

B

A

Each admissible family T , satisfying the condition {n−1, n} ⊂ s(T ), has a decom-
position T = T a � T b � T c where,

T a = {[i, j) ∈ T | i = n}, T b = {[i, j) ∈ T | i = n − 1}, T c = T \(T a ∪ T b).

(18)
Let A = A(T ) := { j ∈ [n] | [n, j) ∈ T } and B = B(T ) := { j ∈ [n] | [n − 1, j) ∈
T }. Note that the sets A(T ) and B(T ) are either disjoint or have exactly one point in
common. (Figure 5 shows how the common point arises as the end-point of one of the
dotted arcs.)

It follows from Lemma 16 that the admissible family T ′ := C O(T ) admits the
decomposition,

T ′ = C O(T ) = T c � T ab (19)

where T ab := {[n − 1, j) | j ∈ A(T ) ∪ B(T )}. This analysis and a comparison of
equalities (14) and (17) lead to the following observations.

1. By the induction hypothesis, the equality (17) leads to the conclusion that T ′
1 = T ′

2
and α′

i, j = β ′
i, j for each pair (i, j) such that [i, j) ∈ T ′

1 = T ′
2 ;

2. T ′
1 = T ′

2 together with (19) implies T c
1 = T c

2 and α′
i, j = αi, j = βi, j = β ′

i, j for
each pair (i, j) such that [i, j) ∈ T c

1 = T c
2 . By canceling these terms in (14) we

obtain the following equality,

∑

[i, j)∈T a
1 ∪T b

1

αi j
(

ei − e j
) =

∑

[i, j)∈T a
2 ∪T b

2

βi j
(

ei − e j
)

(20)

3. This cancelation in (20) can be continued. The only indices, end-points of oriented
arcs, that remain unaffected by the cancelation belong to the set W := (A(T1) ∩
B(T1)) ∪ (A(T2) ∩ B(T2)).

4. The only case that requires further analysis is the case when W = {i, j} has
precisely two elements (Fig. 5). In this case we obtain a contradiction by the
argument used in Example 12 (Remark 13 and Fig. 4).
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n
n− 1

A

n
n− 1

B

(a) (b)

Fig. 6 Two cases of the Step 3 collapsing operation

Step 3 In this step we handle the only remaining case where neither s(T1) = s(T2) = I
nor t (T1) = t (T2) = J have consecutive elements. In this case there must exist two
consecutive indices {i − 1, i} such that i − 1 ∈ I and i ∈ J . Again, by the cyclic
re-enumeration, we can assume that i = n (Fig. 6, cases a, b).

For an admissible family T , satisfying these conditions, there is a decomposition,
T = T a ∪T b ∪T c, similar to (18), where T a = {[i, j) ∈ T | j = n}, T b = {[i, j) ∈
T | i = n − 1}, and T c = T \(T a ∪ T b). Note that T a ∩ T b is either empty or
T a ∩ T b = {[n − 1, n)}. It follows that T \{[n − 1, n)} = T̂ a � T̂ b � T c, where
T̂ a := T a\{[n − 1, n)} and T̂ b := T b\{[n − 1, n)}.

The key observation is that if J1 = [n − 1, j1) ∈ T̂ a and I1 = [i1, n) ∈ T̂ b, then
intervals I1 and J1 intersect but cannot be compatible in the sense of Definition 4. It
immediately follows that either T̂ a = ∅ or T̂ b = ∅.
Lemma 17 If T1 and T2 are (Step 3) admissible families satisfying conditions (11)–
(14) then either,

(A) T̂ a
1 = T̂ a

2 = ∅ and T b
i = T̂ b

i ∪ {[n − 1, n)} for i = 1, 2 , or

(B) T̂ b
1 = T̂ b

2 = ∅ and T a
i = T̂ a

i ∪ {[n − 1, n)} for i = 1, 2.

For illustration, the case T̂ a
1 = T̂ b

2 = ∅ is ruled out by the following reasoning. The
only way to satisfy the condition (14) is to have [n − 1, n) ∈ T b

1 ∩ T a
2 (and αn−1,n �=

0 �= βn−1,n). This is not possible, however, since by comparing the coefficients near
en−1 and en we obtain the following contradictory equalities,

αn−1,n +
∑

[n−1, j)∈T b
1

αn−1, j = βn−1,n αn−1,n = βn−1,n +
∑

[i,n)∈T a
2

βi,n . (21)

The proof (Step 3) is continued by observing that in both cases of Lemma 17 the
coefficients αn−1,n and βn−1,n must be equal, and the corresponding terms in (14) can
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be cancelled out. The proof (Step 3) is finished by applying the collapsing operatorC O ,
which collapses the interval [n−1, n] either to the left end-point (n−1) (corresponding
to the case A of Lemma 17) or to the right end-point n (corresponding to the case B
of Lemma 17). The analysis is similar to the collapsing procedure described in Step 2
so we omit the details.

This completes the proof of Proposition 15. ��

4.2 Surjectivity of the Map φn

We already know (Proposition 15) that φn is injective. Let us show that it is surjective
as well.

By Proposition 15 the map φn induces an isomorphism in homology, i.e. the degree
deg(φn) is either +1 or −1. Therefore it must be an epimorphism since otherwise it
would be homotopic to a constant map. ��

5 Cyclohedron and the Root Polytope II

In this section we give a geometric interpretation of the map φn : ∂(W ◦
n ) → ∂(Rootn),

introduced in Definition 10. The key observation is that the dual (Rootn)◦ of the root
polytope belongs to the irredundant part of the face deformation cone (Postnikov
et al. 2008, Section 15) of the cyclohedron Wn . A more precise statement says that the
pair (Wn, (Rootn)◦) may be interpreted as a couple of polytopes (�

̂F ,�F ), where
̂F is a building set and F its irredundant basis in the sense of Definition 21. For an
introduction into the theory of nestohedra, building sets, etc., the reader is referred to
Buchstaber and Panov (2015), Postnikov (2009) and Feichtner and Sturmfels (2005).

5.1 Building Set of the Cyclohedron Wn

It is well-known, see Feichtner and Sturmfels (2005, Section 3), Postnikov (2009),
Devadoss (2003), or Buchstaber and Panov (2015, Section 1.5), that the cyclohedron
Wn is a nestohedron (graph associahedron), so it has aMinkowski sum decomposition,

Wn = �
̂F :=

∑

F∈ ̂F
�F , (22)

where ̂F ⊂ 2[n]\{∅} is the associated building set (Feichtner and Sturmfels 2005;
Postnikov 2009) and,

�F ⊂ �[n] := Conv{ei }n
i=1 ⊂ R

n,

is the simplex spanned by F ⊂ [n]. The family ̂F is in the case of Wn identified
as the collection ̂F = Con(Cn) of all connected subsets in the cycle graph Cn with
n-vertices. Note that a set Z ⊂ [n] is connected if Z is either a cyclic interval or
Z = [n].
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The Minkowski sum �F := ∑

F∈F �F is defined for any family (hypergraph)
F ⊂ 2[n]\{∅}, however it is not necessarily a simple polytope, unless F is a building
set. For this reason it is interesting to compare �F and �

̂F where ̂F is the building
closure of F .

Definition 18 A family ̂F ⊃ F is the building closure of a hypergraph F if ̂F is the
unique minimal building set which contains F . In this case we also say that F is a
building basis of the building set ̂F .

Definition 19 If F ⊂ 2[n]\{∅} is a hypergraph and X ⊂ [n] then,

FX := {F ∈ F | F ⊂ X} and F X := {F\X | F ∈ F , F\X �= ∅}.

The family FX is referred to as the restriction of F to X , while F X is obtained from
F by deletion of the set X .

For each X ⊂ [n] let φX : R
n → R be the linear form φX (x) = ∑

i∈X xi (for
example φ[n](x) = x1 + x2 · · ·+ xn). The cardinality of a family F is denoted by |F |.

The following proposition, see Postnikov (2009, Proposition 7.5) or Feichtner and
Sturmfels (2005, Proposition 3.12), provides a description of �F in terms of linear
(in)equalities.

Proposition 20 Suppose that ̂F is the building closure of a family F ⊂ 2[n]\{∅}.
Then,

�F = {

x ∈ R
n | φ[n](x) = |F | and for each X ∈ ̂F, φX (x) � |FX |} . (23)

Moreover, the face of �F where φX attains its minimum is isomorphic to the Minkowski
sum,

�FX + �F X . (24)

Definition 21 We say that a hypergraph F ⊂ 2[n]\{∅} is tight if all inequalities in
(23) are essential (irredundant), where ̂F is the building closure ofF . We also say that
F is a tight or irredundant basis of the building set ̂F .

The following criterion for tightness of F is easily deduced from Proposition 20.

Proposition 22 Let F ⊂ 2[n]\{∅} be a hypergraph and let ̂F be its building closure.
Then F is tight if and only for each X ∈ ̂F ,

1. FX is connected as a hypergraph on X and,
2. F X is connected as a hypergraph on [n]\X.

Actually, the first condition is automatically satisfied, as a consequence of the fact that
̂F is the building closure of F .

Proof By Proposition 20 [relation (24)] F is tight if and only if for each X ∈ ̂F ,

dim(�FX + �F X ) = dim(�F ) − 1 = n − 2.
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It is well known, see Buchstaber and Panov (2015, Proposition 1.5.2) or Feichtner
and Sturmfels (2005, Remark 3.11), that for each hypergraphH ⊂ 2S\{∅} the dimen-
sion of the polytope�H = ∑

H∈H �H is |S|−cwhere c is the number of components
of the hypergraph H. (Recall that x, y ∈ S are in the same connected component in
the hypergraphH if there is a sequence of elements x = z1, z2, . . . , zk = y in S such
that each {zi , zi+1} is contained in some ‘edge’ of the hypergraph H.)

Since ̂F is the building closure of F , dim(�FX ) = |X | − 1. Indeed, by the proof
of Feichtner and Sturmfels (2005, Lemma 3.10) X ∈ ̂F if and only if X is a singleton
or FX is a connected hypergraph on X .

It follows that,

dim(�FX + �F X ) = dim(�FX ) + dim(�F X )

= n − 2 = (|X | − 1) + (n − |X | − 1)

if and only if dim(�F X ) = n − |X | − 1. This equality is equivalent to the condition
(2) in Proposition 22. ��

As a consequence of Proposition 22 we obtain the following result.

Proposition 23 Let Cn be the cycle graph on n vertices and let (22) be the associated
graph associahedron representation of the cyclohedron Wn, where ̂F = Con(Cn) is
the building set of all Cn-connected subsets in [n]. Then,

F := {{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}} (25)

is a tight hypergraph on [n], which is a tight (irredundant) basis of ̂F in the sense of
Definition 21. As a consequence all inequalities (23), in the corresponding description
of the polytope,

�F =
n

∑

i=1

[ei , ei+1] (26)

are essential (irredundant).

Proof If X = [i, j]0 = {i, i + 1, . . . , j} ⊂ [n] = Vert(Cn) is an element in ̂F =
Con(Cn) then,

F X = {{i − 1}, { j + 1}} ∪
{

[ j + 1, j + 2]0, [ j + 2, j + 3]0, . . . , [i − 2, i − 1]0
}

.

This hypergraph is clearly connected on its set of vertices which verifies the condition
(2) in Proposition 22 and completes the proof of Proposition 23. ��

5.2 Polar Dual of the Root Polytope

Definition 24 Let� = �A = Conv(A) = Conv{a0, a1, . . . , am}be anon-degenerate
simplex with vertices in A ⊂ R

n . The associated�-zonotope Zono(�) = Zono(�A)

is the Minkowski sum,
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Fig. 7 �-zonotope Zono(�n)

as a generalized rhombic
dodecahedron

Zono(�A) = [a, a0] + [a, a1] + · · · + [a, am], (27)

where a := 1
m+1 (a0 + · · · + am). If �n = �[n] = Conv({e1, . . . , en}) is the simplex

spanned by the orthonormal basis inR
n , then the associated�-zonotope Zono(�n) =

Zono(�[n]) is referred to as the standard, (n − 1)-dimensional �-zonotope.

Example 25 Figure 7 depicts the standard (n − 1)-dimensional �-zonotope. In the
special case n = 4 one obtains the rhombic dodecahedron.

Definition 26 The generalized root polytope associated to a simplex �A =
Conv(A) = Conv{a1, . . . , an} is the polytope,

Root (�A) = Conv{ai − a j | 1 � i �= j � n}. (28)

If W is an affine map such that ai = W (ei ) for each i ∈ [n] then,

Root (W (�n)) = W (Root (�n)) = W (Rootn). (29)

The root polytope Rootn is a subset of the hyperplane H0 = {x ∈ R
n |

x1 + · · · + xn = 0} while Zono(�n) ⊂ Hn = {x ∈ R
n | x1 + · · · + xn = n}.

In the following proposition we claim that the �-zonotope Zono(�0
n), obtained by

translating Zono(�n) to H0, is precisely the polar dual of the polytope Rootn .

Proposition 27 The root polytope Rootn = Conv{ei − e j | 1 � i �= j � n} ⊂ H0 is
the dual (inside H0) of the �-zonotope Zono(�0

n) where �0
n = �n − 1

n (e1+· · ·+en),

(Rootn)◦ = Zono(�0
n). (30)

Proof The proof is an elementary exercise in the concept of duality (see Živaljević
2015, Proposition 7). Let êi = ei − 1

n (e1 + · · · + en) ∈ H0. It is sufficient to observe
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that the dual of the root polytope is,

(Rootn)◦ = {

x ∈ H0 | |xi − x j | � 1, for 1 � i � n)
}

, (31)

while the two supporting hyperplanes of Zono(�0
n), parallel to Li, j = span{êk | i �=

k �= j} (Fig. 7) have equations,

xi − x j = 1 and x j − xi = 1.

��
Lemma 28 Suppose that K ◦ is the polar dual of a convex body K . If A : R

d → R
d

is a non-singular linear map then,

(A(K ))◦ = B(K ◦) (32)

where B = (A∗)−1. In particular if A = (A∗)−1 is an orthogonal transformation and
μ �= 0 then, (A(K ))◦ = A(K ◦) and (μK )◦ = (1/μ)K ◦.

Proof If y ∈ (A(K ))◦ then by definition,

〈y, Ax〉 = 〈A∗y, x〉 � 1 for each x ∈ K . (33)

��
The following extension of Proposition 27 is recorded for the future reference.

Proposition 29 Let H0 ⊂ R
n be the subspace spanned by êi = ei − 1

n (e1 +· · ·+ en)

and let �0
n = Conv{ê1, . . . , ên}. Let A : H0 → H0 be a non-singular linear map and

let B := (A∗)−1. Then,

(Root (A(�0
n)))◦ = Zono(B(�0

n)) (34)

Proof By definition Root (A(�0
n)) = A(Root (�0

n)) and Zono(B(�0
n)) =

B(Zono(�0
n)). It follows from Proposition 27 and Lemma 28 that,

(Root (A(�0
n)))◦ = (A(Root (�0

n)))◦

= B((Root (�0
n))◦) = B(Zono(�0

n)) = Zono(B(�0
n)).

��

5.3 W◦
n as a Kantorovich–Rubinstein Polytope

There is a canonical isomorphism of vector spaces Hν = {x ∈ R
n | x1+· · ·+xn = ν}

and the quotient spaceR
n/Re, where e = 1

n (e1+· · ·+en), which induces a canonical
isomorphism between H0 and Hν = {x ∈ R

n | x1 + · · · + xn = ν} for each ν ∈ R.

123



106 F. D. Jevtić et al.

The canonical isomorphismbetween H1 and H0 sends ei to êi = ei − 1
n (e1+· · ·+en)

and �n = Conv{e1, . . . , en} to �0
n = Conv{ê1, . . . , ên}.

The canonical isomorphism between Hn and H0 identifies the polytope �F , intro-
duced in Sect. 5.1 [Eq. (26)], with the polytope,

�F =
n

∑

i=1

[êi , êi+1] =
n

∑

i=1

(êi +[0, êi+1−êi ]) =
n

∑

i=1

[0, êi+1−êi ] = Zono(B(�0
n))

(35)
where en+1 := e1 and B : H0 → H0 is the linear map defined by B(êi ) = bi =
êi+1 − êi . In other words the polytope �F (associated to the irredundant basis (25) of
the building set ̂F = Con(Cn)) is a �-zonotope (generalized rhombic dodecahedron)
Zono(B(�0

n)).
The dual of Zono(B(�0

n)) is by Proposition 29 a root polytope,

Roota
n := Conv{ai − a j | 1 � i �= j � n} = Root (A(�0

n)) (36)

where the vectors {ai }n
i=1 ⊂ H0 are defined by ai = A(êi ) and A : H0 → H0 is the

linear map such that B = (A∗)−1 (A = (B∗)−1 ).
Summarizing, we record for the future reference the following proposition,

Proposition 30 There exist vectors {ai }n
i=1 ⊂ H0, such that a1 + · · · + an = 0 and

Span({ai }n
i=1) = H0, which have the property that the dual of the root polytope Roota

n
[defined by (36)] is the polytope �F [defined by (35)].

The following theorem is the main result of Sect. 5.

Theorem 31 There exists a quasi-metric (asymmetric distance function) ρ on the set
[n] such that the associated Kantorovich–Rubinstein polytope,

K R(ρ) = Conv

{

ei − e j

ρ(i, j)
| 1 � i �= j � n

}

(37)

is affinely isomorphic to the dual W ◦
n of the cyclohedron Wn. Moreover the distance

function ρ satisfies a strict triangle inequality in the sense that,

ρ(i, k) < ρ(i, j) + ρ( j, k) if i �= j �= k �= i.

Proof Let {ai }n
i=1 ⊂ H0 be the collection of vectors described in Proposition 30 and

let ai, j = ai − a j (for 1 � i �= j � n) be the corresponding roots. In light of
Proposition 30 the polytope �F has the following description,

�F = {

x ∈ H0 | 〈ai, j , x〉 � 1 for each pair i �= j
}

. (38)

All inequalities in (38) are irredundant. Moreover, the analysis from Sect. 5.1 guaran-
tees that there exist positive real numbers {αi, j | 1 � i �= j � n} such that,

Wn = �
̂F = {

x ∈ H0 | 〈ai, j , x〉 � αi, j for each pair i �= j
}

. (39)
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From here it immediately follows that,

W ◦
n = Conv

{

ai, j

αi, j
| 1 � i �= j � n

}

.

Let us show that ρ(i, j) := αi, j is a strict quasi-metric on [n]. Assume that there
exist three, pairwise distinct, indices i. j.k ∈ [n] such that ρ(i, k) � ρ(i, j)+ ρ( j, k).
Then,

ai,k

ρ(i, k)
∈ [

0, ai,k/(ρ(i, j) + ρ( j, k))
]

and
ai,k

αi,k
∈ [

0, ai,k/(αi, j + α j,k))
]

.

In light of the obvious equality,

ai,k

αi, j + α j,k
= αi, j

αi, j + α j,k

(

ai, j

αi, j

)

+ α j,k

αi, j + α j,k

(

a j,k

α j,k

)

we observe that if both inequalities,

〈ai, j , x〉 � αi, j and 〈a j,k, x〉 � α j,k

are satisfied then 〈ai,k, x〉 � αi,k . This is however in contradiction with non-
redundancy of the last inequality in the representation (39). ��

5.4 An Explicit Quasi-Metric Associated to a Cyclohedron

Definition 32 Let ̂F be the building closure of a hypergraph F ⊂ 2[n]\{∅}. The
associated ‘height function’ hF : ̂F → R is defined by,

hF (X) = |F |
n

− |FX |
|X | ,

so in particular hF ([n]) = 0 for each hypergraph F .

The inequalities (23), describing �F as a subset of H|F | = {x ∈ R
n | φ[n](x) =

|F |} can be, with the help of the height function, rewritten as follows,

�F =
{

x ∈ H|F | | For each X ∈ ̂F\{[n]}, φ[n](x)

n
− φX (x)

|X | � hF (X)

}

. (40)

In particular, if F = ̂F we obtain the representation,

�
̂F =

{

x ∈ H| ̂F | | For each X ∈ ̂F\{[n]}, φ[n](x)

n
− φX (x)

|X | � h
̂F (X)

}

. (41)
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Assuming that hF (X) �= 0 for each X ∈ ̂F\{[n]}, let AX ∈ H0 be the vector defined
by,

AX := 1

hF (X)

(

e

n
− eX

|X |
)

, (42)

where eX := ∑

i∈X ei and e = e[n] = e1 + · · · + en . It follows that (40) and (41) can
be rewritten as,

�F = {

x ∈ H0 | For each X ∈ ̂F\{[n]}, 〈AX , x〉 � 1
}

, (43)

�
̂F =

{

x ∈ H0 | For each X ∈ ̂F\{[n]}, 〈AX , x〉 �
h

̂F (X)

hF (X)

}

. (44)

Now we specialize to the case F := {{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}}, so the
associated building closure ̂F = Con(Cn) is, as in Proposition 23, the building set of
allCn-connected subsets (circular intervals) in the circle graphCn . The corresponding
height functions are shown in the following lemma.

Lemma 33 If X = [n] then hF (X) = h
̂F (X) = 0. If X �= [n] then,

hF (X) = 1

|X | and h
̂F (X) = n2 − n + 1

n
− |X | + 1

2
.

Recall (Sect. 3.1) that for i, j ∈ Vert(Cn) = [n], the associated (discrete) circular
interval is [i, j]0 := [i, j] ∩ [n]. Similarly (for i �= j) [i, j)0 := [i, j) ∩ [n], so
[i, j)0 = [i, j − 1]0 if i �= j and [i, i)0 = ∅ . Define the “clock quasi-metric” on
Vert(Cn) by,

d(i, j) := |[i, j)0| = |[i, j]0| − 1. (45)

Proposition 34 Let ρ be the quasi-metric on [n] = Vert(Cn) defined by,

ρ(i, j) = d(i, j)
n2 − n + 1

n
− d(i, j)(d(i, j) + 1)

2
(46)

where d is the clock quasi-metric on [n]. Than the associated Kantorovich–Rubinstein
polytope K R(ρ) is affinely isomorphic to a polytope dual to the standard cyclohedron.

Proof By definition ρ(i, j) = h
̂F ([i, j)0)/hF ([i, j)0). Recall that Eqs. (43) and (44)

are nothing but a more explicit form of Eqs. (38) and (39). It immediately follows that
ρ(i, j) = αi, j which by Theorem 31 implies that ρ is indeed a quasi-metric on [n]
such that the associated Lipschitz polytope Lip(ρ) is a cyclohedron. �

Remark 35 By a similar argument we already know that vectors {AX | X ∈ ̂F\{[n]}},
described by Eq. (42), form a type A root system if F := {{1, 2}, {2, 3}, . . . , {n, 1}}.
This can be seen directly as follows. For 2 ≤ i ≤ n, let Xi := [1, i)0 and Ai := AXi .
Then there is a disjoint union,

{AX | X ∈ ̂F\{[n]}} = {Ai }n
i=2 � {−Ai }n

i=2 � {Ai − A j | 2 ≤ i �= j ≤ n}.
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This observation and a comparison of (35) and (43) provide an alternative proof of
Proposition 27.

6 Alternative Approaches and Proofs

An elegant and versatile analysis of the combinatorial structure of Lipschitz polytopes,
conducted byGordon andPetrov (2017), canbewith little care (butwithout introducing
any new ideas) extended to the case of quasi-metrics.

This fact, as kindly pointed by an anonymous referee, provides amethod for describ-
ing a large class of quasi-metrics which are combinatorially of “cyclohedral type”.

Here we give an outline of this method. [This whole section can be seen as a short
addendum to the paper (Gordon and Petrov 2017).]

A combinatorial structure on the (dual) pair of polytopes Lip(ρ) and K R(ρ) is,
following Gordon and Petrov (2017, Definition 2), the collection of directed graphs
D(ρ) = {D(α) | α is a face of K R(ρ)}, where for each face α of K R(ρ),

(i, j) ∈ D(α) ⇔ e j − ei

ρ(i, j)
∈ α.

Following Gordon and Petrov (2017, Definition 1), a quasi-metric is generic if the
triangle inequality is strict (x �= y �= z ⇒ ρ(x, z) < ρ(x, y) + ρ(y, z)) and the
polytope K R(ρ) is simplicial (Lip(ρ) is simple).

In the case of a generic quasi-metric, the combinatorial structureD(ρ) is a simplicial
complex whose face poset is isomorphic to the face poset of the polytope K R(ρ) (see
Corollary 1 and Theorem 4 in Gordon and Petrov 2017). Moreover, in this case D(α)

is a directed forest (such that either the in-degree or the out-degree of each vertex is
zero), and in particular if α is a facet then D(α) is a directed tree.

FollowingGordon and Petrov (2017, Theorem3) (see alsoGordon and Petrov 2017,
Theorem 4) a directed tree (forest) T is in D(ρ) if and only if it satisfies a “cyclic
monotonicity” condition [inequality (1) in Gordon and Petrov 2017, Theorem 3],
indicating that T can be thought of as an ‘optimal transference plan’ for the transport
of the corresponding measures.

It was shown in Sect. 3 (Proposition 7) that the face poset of a cyclohedron can be
also described as a poset of directed trees (corresponding to the diagrams of oriented
arcs, as exemplified by Figs. 2 and 3).

From these observations arises a general plan for finding a generic quasi-metric ρ

such that the associated combinatorial structureD(ρ) is precisely the collection of trees
associated to a cyclohedron. Moreover, this approach allows us (at least in principle)
to characterize all generic quasi-metrics of “combinatorial cyclohedral type”.

Indeed, if ρ = (ρ(i, j))1≤i, j≤n is an unknown quasi-metric (ranging over the space
of all quasi-metric matrices), then one can characterize quasi-metrics of cyclohedral
type by writing all inequalities of the type (1) in Gordon and Petrov (2017, Theorem 3)
(see also the simplification provided by Gordon and Petrov (2017, Theorem 4).

Remark 36 Guided by the form of the metric ρ, described by the formula (46) (Propo-
sition 34), the referee observed that the quasi-metric ρε := d − ε · d2 (where d is the
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clock quasi-metric and ε > 0 a sufficiently small number), is a good candidate for a
cyclohedral quasi-metric. (The details of related calculations will appear elsewhere.)

Remark 37 The quasi-metric ρ introduced in Proposition 34 is somewhat exceptional
since in this case we guarantee that K R(ρ) is geometrically (affinely) and not only
combinatorially (via face posets) isomorphic to a dual of a standard cyclohedron. This
has some interesting consequences, for example this metric has the property that the
associated Lipschitz polytope Lip(ρ) is a Delzant polytope.

7 Concluding Remarks

7.1 The Result of Gordon and Petrov

The motivating result of Gordon and Petrov (2017, Theorem 1) says that for a generic
metric ρ on a set of size n+1, the number of (n−i)-dimensional faces of the associated
Lipschitz polytope [the dual of K R(ρ), see the Eq. (1)] is equal to,

fn−i (Lip(ρ)) =
(

n + i

i, i, n − i

)

= (n + i)!
i !i !(n − i)! .

The link with the combinatorics of cyclohedra, established by Theorems 14 and 31,
allows us to deduce this result from the known calculations of f -vectors of these
polytopes. For example Simion (2003, Proposition 1) proved that,

fi−1(Wn) =
(

n

i

)(

n + i

i

)

= (n + i)!
i !i !(n − i)! .

Moreover, in light of Theorems 14 and 31, the generating series for these numbers
have a new interpretation as a solution of a concrete partial differential equation, see
for example Buchstaber and Panov (2015, Sections 1.7. and 1.8).

7.2 Tight Hypergraphs

The relationship between the cyclohedron and the (dual of the) root polytope is
explained in Sect. 5 as a special case of the relationship between tight hypergraphs F
and their building closures ̂F . For this reason it may be interesting to search for other
examples of ‘tight pairs’ (̂F,F) of hypergraphs.

Example 38 Let Cn be the cycle graph on n vertices (identified with their labels [n])
and let ≺ be the associated (counterclockwise) cyclic order on [n]. For each ordered
pair (i, j) of indices let [i, j]0 := {i, i + 1, . . . , j} be the associated ‘cyclic interval’.
For each 2 ≤ k ≤ n − 1 let BCk

n ⊂ 2[n]\{∅} be the hypergraph defined by,

BCk
n :=

{

[1, k]0, [2, k + 1]0, . . . , [n, k − 1]0
}

. (47)
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Then BCk
n is a tight hypergraphon [n].Moreover, if ̂Fn,k := ̂BC

k
n is its building closure

and Qn,k := �
̂Fn,k

the associated simple polytope than for k �= k′ the associated
polytopes Qn,k and Qn,k′ are combinatorially non-isomorphic.

Note that for k = 2 we recover the tight hypergraph described in Proposition 23
[Eq. (25)] and in this case Qn,2 = Wn . Moreover observe that,

Nn,2 � Nn,3 � · · · � Nn,n−1,

whereNn,k is the poset of nested sets in ̂Fn,k , which immediately implies that Qn,k �

Qn,k′ for k �= k′.

7.3 Canonical Quasitoric Manifold Over a Cyclohedron

The cyclohedron Wn , together with the associated canonical map φn , restricted to the
set of vertices of W ◦

n (↔ the set of facets of Wn), defines a combinatorial quasitoric
pair (Wn, φn) in the sense of Buchstaber and Panov (2015, Definition 7.3.10). Indeed,
if F1, . . . , Fn−1 are distinct facets ofWn such that∩n−1

i=1 Fi �= ∅, then the corresponding
dual vertices v1, . . . , vn−1 of W ◦

n span a simplex and the vectors φ(v1), . . . , φ(vn−1)

form a basis of the associated type A root lattice 
n ∼= Z
n−1 (spanned by the vertices

of the root polytope Rootn).
We refer to the associated quasitoric manifold M = M(Wn ,φn) as the canonical

quasitoric manifold over a cyclohedron Wn .

7.4 The Cyclohedron and the Self-Linking Knot Invariants

It may be expected that the combinatorics of the map φ : W ◦
n → Rootn , as illustrated

by Theorems 14 and 31 (and their proofs), may be of some relevance for other applica-
tions where the cyclohedron Wn played an important role. Perhaps themost interesting
is the role of the cyclohedron in the combinatorics of the self-linking knot invariants
(Bott and Taubes 1994; Volić 2013). Other potentially interesting applications include
some problems of discrete geometry, as exemplified by the ‘polygonal pegs problem’
(Vrećica and Živaljević 2011) and its relatives.
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