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Abstract
Modular curves X1(N ) parametrize elliptic curves with a point of order N . They can
be identified with connected components of projectivized strata PH(a,−a) of mero-
morphic differentials. As strata of meromorphic differentials, they have a canonical
walls-and-chambers structure defined by the topological changes in the flat structure
defined by the meromorphic differentials. We provide formulas for the number of
chambers and an effective means for drawing the incidence graph of the chamber
structure of any modular curve X1(N ). This defines a family of graphs with specific
combinatorial properties. This approach provides a geometrico-combinatorial compu-
tation of the genus and the number of punctures of modular curves X1(N ). Although
the dimension of a stratumofmeromorphic differentials depends only on the genus and
the numbers of the singularities, the topological complexity of the stratum crucially
depends on the order of the singularities.

Keywords Translation surface · Walls-and-chambers structure · Flat structure ·
Modular curves
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460 G. Tahar

1 Introduction

Very little is known about the topology of strata of holomorphic differentials on
compact Riemann surfaces. The conjecture of Kontsevich and Zorich that strata are
K (π, 1)-spaces is wide open, see (Kontsevich and Zorich 1997). There are some
partial results for hyperelliptic components or low genus strata, see (Looijenga and
Mondello 2014). Contrary to the situation of holomorphic differentials where there
are a finite number of strata of given genus, there are infinitely many strata of mero-
morphic differentials. In genus zero, projectivized strata are configuration spaces of
points on the sphere so the topology is well understood. In this paper, we focus on
the first interesting case, the family of strata H(a,−a) where a ≥ 2. Such strata are
moduli spaces of pairs (X , φ) up to biholomorphism where X is a Riemann surface
of genus one and φ is a meromorphic 1-form with exactly one zero of order a and a
pole of order a. Assuming genus is nonzero, strata H(a,−a) are the only strata of
meromorphic differentials whose complex dimension is two. Therefore, projectivized
strata PH(a,−a) are complex curves whose genus and number of punctures can be
computed. Just like the modular curve X1(1) is identified with the space of flat tori
with a marked point (the case a = 0), modular curves X1(a) are identified with con-
nected components of projectivized strata PH(a,−a) for a ≥ 2. Projectivized strata
are the quotients of the strata by the action of C∗.

Since strata of meromorphic differentials have a natural walls-and-chambers
structure (see Tahar 2016), their topology may be grasped through a topologico-
combinatorial study. Strata H(a,−a) are simple enough to allow complete deter-
mination of their topological features. For every value of a, we can draw the incidence
graph of the chambers. This provides the first step of a systematic cartography of
strata of meromorphic differentials. Incidentally, we get a new way to compute the
genus and the number of punctures of modular curves X1(a) that does not make use
of number theory or algebraic geometry.

In our context, chambers of projectivized strata are topological disks (with, in some
cases, a puncture inside) and walls are real codimension one submanifolds which are
affine in the period coordinates. In other words, walls are straight lines. They meet
each other at the punctures of the algebraic complex curve.

Many quantities associated to strata only depends on the genus and the number
of singularities rather than on their orders. For example, the complex dimension of
a stratum H(a1, . . . , an,−b1, . . . ,−bp) of meromorphic differentials with zeroes of
order a1, . . . , an and poles of order b1, . . . , bp on a surface of genus g is 2g+n+ p−2,
see (Bridgeland and Smith 2015). The same quantity is the lower bound on the number
of saddle connections for surfaces of this stratum, see (Tahar 2016). On the contrary, in
this paper, we show that the genus of PH(a,−a) grows quadratically in a. Therefore,
the topological complexity takes into account the order of the singularities.

It should be noted that the dimension of a stratum of meromorphic differentials is
2g + n + p − 2 whereas the dimension of a stratum of holomorphic differentials is
2g+n−1. Indeed, the sum of the residues at the poles is zero so there is automatically
an additional relations between the periods of the differential.
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Chamber Structure of Modular Curves X1(N) 461

2 Statement of Main Results

Connected components of strata of meromorphic differentials were classified by
Boissy in Boissy (2015). Two flat surfaces of H(a,−a) belong to the same con-
nected component if and only if they have the same rotation number. The rotation
number is defined in terms of indices of loops in the surface.

Definition 2.1 Let γ be a simple closed curve in a translation surface with (or without)
poles. γ is parametrized by arc-length and passes only through regular points. We set
γ ′(t) = eiθ(t).

We have
1

2π

∫ T
0 θ ′(t)dt ∈ Z. This number is the topological index ind(γ ) of γ .

In particular, the topological index of a simple closed curve around a singularity of
order k is 1 + k.

The rotation number of a flat surface X of H(a,−a) is rot(X) = gcd(a, ind(β),

ind(γ )) where β and γ are simple loops forming an homology basis (X is a torus).
The rotation number is a topological invariant of connected components of strata.
Boissy proved in Theorem 1.1 of Boissy (2015) that the rotation number completely
classifies connected components ofH(a,−a). There is a connected component Cad for
every integer divisor d of a except a itself. We denote by principal component of the
stratum the component where the rotation number of the flat surfaces is 1.

In the following theorem, we prove that the isomorphism type of connected compo-
nents depends only on the ratio between the order of the singularities and the rotation
number of the component. Therefore, we will be allowed to focus on the principal
connected component of each stratum, that is the connected component where the
rotation number is equal to one.

For any N ≥ 2, modular curves X1(N ) are compactifications of the quotient of the

upper half-planeH by the congruence groups�1(N ) =
{(a b

c d

) ∈ SL2(Z) : a ≡ d ≡ 1

mod N , c ≡ 0 mod N
}
, see (Diamond and Shurman 2005) for more details.

Theorem 2.2 For any a ≥ 2, every connected component Cad of PH(a,−a) is biholo-
morphic to the modular curve X1

( a
d

)
.

This theorem provides a conceptual reason for the nonexistence of a component
whose rotation number is equal to a. Indeed, this component would have been iso-
morphic to X1(1) which is empty.

It should also be noted that the isomorphism between connected components does
not preserve the action of GL+(2,R) since the number of open orbits may vary.

Theorem 2.2 is proved in Sect. 3.
We already know that the topology of connected components is given by modular

curves.Connected components of different stratamaybe isomorphic if they correspond
to the same modular curve. That is not all. Their walls-and-chambers structure will
also be conjugated. This means that the topological pairs formed by the connected
components and their discriminant (the union of the walls) are homeomorphic.

Theorem 2.3 Walls-and-chambers structures of connected components Cad and Ck.ak.d
are conjugated.
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462 G. Tahar

Fig. 1 The first elements of the
family of graphs Ga . Black and
white vertices correspond to
different types of chambers

To a certain extent, we can say the walls-and-chambers structure exists directly
on the modular curve X1

( a
d

)
. For any modular curve, we get a graph of chambers

describing the adjacency relations between them. We get a family of graphs Ga where
a ≥ 2, see Fig. 1 for the first graphs of the family.

Theorem 2.3 is proved in Sect. 4.
Theorem 2.4 computes the genus and the number of punctures of modular curves

X1(N ). This is a well known result of number theory. What is new is that while usual
proofs are algebro-geometric (see Diamond and Shurman 2005 for a complete study),
our proof involves only flat geometry.

In the following, φ is Euler’s totient function.

Theorem 2.4 For any N ≥ 5, X1(N ) is a complex curve of genus g with l cusps where

we have g= 1+ N2

24

∏
p|N (1− 1

p2
)− 1

4

∑
d|N φ(d)φ(N/d) and l = 1

2

∑
d|N φ(d)

φ(N/d).
There are three exceptional cases: X1(4) is a complex curve of genus zero with three
cusps, X1(3) is a complex curve of genus zero with two cusps and an orbifold point
of order three whereas X1(2) is a complex curve of genus zero with two cusps and an
orbifold point of order two.

These formula simplify if we consider prime numbers.

Corollary 2.5 For a given prime number p, we have X1(p) � PH(p,−p). As a com-

plex algebraic curve, this modular curve is of genus (p−5)(p−7)
24 with p− 1 punctures.

Finally, we also confirm that the modular curves X1(N ) (and the connected com-
ponents of strata that are isomorphic to them) are topological spheres with punctures
when 2 ≤ N ≤ 10 and N = 12.

Theorem 2.4 and Corollary 2.5 are proved in Sect. 5.
The structure of the paper is the following:

• In Sect. 3, we recall the background and tools useful to study translation sur-
faces with poles: flat metric, saddle connections, the moduli space, the core of a
surface and its associated wall-and-chambers structure, the action of GL+(2,R),
description of connected components in terms of divisors.
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Chamber Structure of Modular Curves X1(N) 463

• In Sect. 4, we prove general geometric results about chambers and combinato-
rial relations between them, drawing their graph of chambers. We also describe
projectivized strata PH(2,−2), PH(3,−3) and PH(4,−4).

• In Sect. 5, we establish formula to count chambers, connected components of the
discriminant and to compute the topological invariants of the connected compo-
nents of strata.

3 Definitions and Tools

3.1 Flat Structures

Let X be an elliptic curve and letφ be ameromorphic 1-formwith a unique zero of order
a and a unique pole of order a with a ≥ 2. Outside these two singularities, integration
of φ gives local coordinates whose transition maps are of the type z 	→ z+c. The pair
(X , φ) seen as a smooth surface with such a translation atlas is called a translation
surface with poles.

In a neighborhood of the zero of the differential, the metric induced by φ admits
a conical singularity of angle (2a + 2) π . The neighborhood of the pole of order a
is obtained by taking an infinite cone of angle (2a − 2)π and removing a compact
neighborhood of the conical singularity.

3.2 Moduli Space

If (X , φ) and (X ′, φ′) are flat surfaces such that there is a biholomorphism f from
X to X ′ such that φ is the pullback of φ′, then f is an isometry for the flat metrics
defined by φ and φ′.

As in the case of Abelian differentials, we define the moduli space of meromorphic
differentials as the space of equivalence classes of flat surfaces with poles of higher
order (X , φ) up to biholomorphism preserving the differential.

Wedenote byH(a,−a) the stratum ofmeromorphic differentialswith a unique zero
and a unique pole that have both the same degree a. When we consider differentials
up to multiplication by a nonzero complex number, we get the projectivized stratum
PH(a,−a).

On each stratum, GL+(2,R) acts by composition with coordinate functions, see
(Zorich 2006). Since neighborhoods of poles have infinite area, we cannot normalize
the area of the surface and thus must consider the full action of GL+(2,R).

3.3 Saddle Connections

Definition 3.1 A saddle connection is a geodesic segment joining two conical singu-
larities of the flat surface such that all interior points are not conical singularities.

Every saddle connection represents a class in the relative homology group H1(X \
{P}, {N }) where P and N are respectively the pole and the zero of the meromorphic
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464 G. Tahar

1-form. Strata are complex-analytic orbifolds with local coordinates given by the
period map of maximal system of saddle connections, see (Zorich 2006).

3.4 Connected Components

In addition to a classification of connected components, elementary algebraic geometry
allows a complete description of the topology of these components. Components of
projectivized strata are modular curves.

Proof of Theorem 2.2 We consider stratum H(a,−a) with a ≥ 2. An element of
H(a,−a) is given, up to a constant multiple, by a pair (X , D) where X = C/�

is a complex torus and D = −aP + aQ is a divisor on X . We have � = Zu + Zv.
Without loss of generality, we assume P = 0. As a consequence of Abel’s theorem
characterizing divisors coming frommeromorphic differentials, we have aQ ∈ �, see

Chapter 3 in Diamond and Shurman (2005). Therefore, Q is of the form
m

a
u + n

a
v

where m and n are integers. Since we can deform continuously the lattice that defines
the torus, different coordinates of Q that are image of each other by basis change oper-
ations belong to the same connected component. In other words, we can deform Q into
a divisor whose coordinates are m

a and n
a v in a basis (u, u + v) or (u + v, v). There-

fore, divisors of the form m+kn
a u+ n+k′m

a v with k, k′ ∈ Z correspond to meromorphic
differentials in the same connected component. Every basis change is generated by
these two operations so there is exactly one connected component for each value l of
gcd(m, n, a). Then, k = a

l is the smaller integer such that kQ ∈ �. In other words, Q
is a point of k-torsion and l may be any integer divisor of a different from a (because
Q /∈ �). In the following, l is the algebraic invariant of the component. There is exactly
one connected component of H(a,−a) for each arithmetic divisor d of a different
from a.

Following (Diamond and Shurman 2005), modular curves X1(N ) are the moduli
spaces of elliptic curves with a point of N -torsion. In other words, X1(N ) parametrizes
isomorphism classes of pairs (X , P) where X is an elliptic curve and P is a point of
X such that N · P = 0 and k · P �= 0 for any 1 ≤ k ≤ n − 1. Therefore, projectivized
strata PH(a,−a) are disjoint unions of modular curves. For any integer divisor d of a
different from a, there is a unique connected component of meromorphic differentials
where the pole is a point of a

d -torsion. Such component is biholomorphic to X1
( a
d

)
.

There is a geometric interpretation of this number: it is the greatest common divisor
of the topological degrees of loops in every flat surface of the connected component.
This number is the flat invariant of the connected component. A direct construction
show that every integer divisor d of a different from a is realized in the stratum (see
Boissy 2015 for systematic constructions of connected components). In the following,
we prove that the flat invariant is equal to the algebraic invariant.

Since there is exactly one connected component for each divisor of a different from
a, we just have to prove that one invariant divides the other to prove that they are equal.
We prove that the algebraic invariant divides the flat invariant.
We consider the connected component Cad of H(a,−a) whose algebraic invariant is

d. The pole is a point of
a

d
-torsion. Therefore, there exists a meromorphic differential
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Chamber Structure of Modular Curves X1(N) 465

in Cad that is of the form f d(z)dz where f (z)dz is a meromorphic differential of

Cd ′
1 where d ′ = a

d
. We denote by b the flat invariant of Cd ′

1 . We consider a loop γ

passing only through the regular points of the torus. Since we have arg( f d(γ (t))) =
d ·arg( f (γ (t))), the flat invariant of f d(z)dz in Cad is bd. Thus, the algebraic invariant
divides the flat invariant in every connected component. Consequently, these two
invariants coincide. �

3.5 Core of a Translation Surface with Poles

The core of a flat surface of infinite area was introduced in Haiden et al. (2015) and
systematically used in Tahar (2016). It is the convex hull of the conical singularities of
a flat surface. Since all saddle connections belong to it, the core encompasses most of
the qualitative (see walls-and chambers structure in Sect. 3.6) and quantitative (periods
of the homology) information about the geometry of the flat surface.

Definition 3.2 A subset E of a flat surface is convex if and only if every element of
any geodesic segment between two points of E belongs to E .

The core of a flat surface (X , φ) is the convex hull core(X) of its conical singular-
ities.

IC(X) is the interior of core(X) in X and ∂C(X) = core(X)\IC(X) is its bound-
ary.

The core is said to be degenerated when IC(X) = ∅ that is when core(X) is just
the graph ∂C(X).

Lemma 3.3 Let X be a flat surface of H(a,−a), then X \ core(X) is a topological
disk that contains the unique pole. We refer to this disk as the domain of the pole.

Proof Following Proposition 2.3 in Haiden et al. (2015), core(X) is a deformation
retract of X\{P} where P is the unique pole. �
Lemma 3.4 For any translation surface with poles X, ∂C(X) is a finite union of saddle
connections.

Proof See Proposition 2.2 in Haiden et al. (2015). �
An ideal triangulation in a topological surface is a maximal collection of pairwise

disjoint non-homotopic topological arcs. Connected components of such a decompo-
sition are called ideal triangles. They are topological disks bounded by three arcs.
Vertices of an ideal triangle may coincide.

There is a formula that relates the maximal number of noncrossing saddle connec-
tions of a translation surface with poles with the number of ideal triangles in any ideal
triangulation of the core of the surface.

Lemma 3.5 Let |A| be the maximal number of noncrossing saddle connections of a
flat surface that belongs toH(a,−a), then we have |A| = 2+ t where t is the number
of ideal triangles in any ideal triangulation of core(X). Furthermore, |A| ≤ 4.

Proof See Lemma 4.10 in Tahar (2016). �
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466 G. Tahar

Fig. 2 A surface of the chamber
of “cylinder” type in H(2, −2)

3.6 Discriminant andWalls-and-Chambers Structure

Strata of translation surfaceswith poles decompose into chamberswhere the qualitative
shape of the core is the same. This means that the topological pair (X , ∂C(X)) is
the same up to homeomorphism. The discriminant is the locus that separates these
chambers from each other.

Definition 3.6 A translation surface with poles X belongs to the discriminant of the
stratum if and only if there two consecutive saddle connections in the boundary of the
domain of the pole (which is a topological disk, see Lemma 3.4) share an angle of π .
Chambers are the connected components of the complementary to the discriminant in
the strata.

The following lemma is proved as Proposition 4.12 in Tahar (2016).

Lemma 3.7 The discriminant is a GL+(2,R)-invariant hypersurface of real codimen-
sion one in the stratum.

The topological structure on a translation surface with poles (X , φ) defined by the
embedded graph ∂C(X) is invariant along the chambers. In particular the number of
saddle connections of its boundary depend only on the chamber (see Proposition 4.13
in Tahar (2016) for details).

4 Chambers

In strataH(a,−a), types of topological shapes of the core are very restricted.

Proposition 4.1 Every chamber of PH(a,−a) belongs to one of the following three
types:

(i) Chambers of “cylinder” type where core(X) is a cylinder bounded by a pair of
saddle connections (see Fig. 2).

(ii) Chambers of “degenerate” type where core(X) is a pair of saddle connections
(see Fig. 3).

(iii) Chambers of “triangle” type where core(X) is an ideal triangle (see Fig. 4).

Proof Following Lemma 3.5, we already know that for any flat surface in a chamber
of H(a,−a), the maximal number of noncrossing saddle connections is 2 + t where
t is the number of ideal triangles in any triangulation of the core. Besides, we have
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Chamber Structure of Modular Curves X1(N) 467

Fig. 3 A surface of the chamber
of “degenerate” type in
H(2, −2)

Fig. 4 A surface of the chamber
of “triangle” type in H(3,−3).
The pole of order three is
denoted by B. Magnitudes of

angles are α = π

3
and θ = 7π

3

0 ≤ t ≤ 2. Number t is constant in every chamber. If t = 0, the chamber is of
“degenerate type”. If t = 1, there are exactly three noncrossing saddle connections
and they bound the unique ideal triangle. The chamber is of “triangle” type. Finally, if
t = 2, there are four noncrossing saddle connections. Therefore, the two ideal triangles
are necessarily connected by exactly two of their sides (otherwise, there would be at
least five or six noncrossing saddle connections). Thus, we have a cylinder formed by
two ideal triangles and bounded by a pair of parallel saddle connections. The chamber
is of “cylinder” type. �

4.1 Description of the Chambers

Since the walls-and-chambers structure is GL+(2,R)-invariant, we will work with
projectivized strata PH(a,−a) which are the quotients of strata H(a,−a) by the
action of C∗. For each type of chamber we will choose a suitable normalization.
Building from that, we will be able to provide a parametrization of each chamber and
to figure out their shape. Finally, chambers of the same type will be distinguished by
a system of combinatorial invariants.

Proposition 4.2 In chambers of “cylinder” type of PH(a,−a), we normalize the
length and the direction of the two saddle connections that bound the core. Flat
surfaces are characterized by two invariants:
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468 G. Tahar

(i) A bipartition of a as a sum of two nonzero integers. It corresponds to the repartition
of a total angle of 2aπ between the two sectors of the domain of the pole. This
discrete invariant distinguish the different chambers of the same type in the stratum.

(ii) The shape of the cylinder. The flat surfaces in the chamber are parametrized
by H/Z. Consequently, every such chamber is the image of GL+(2,R) under
projection.

In the boundary of such chambers, the cylinder degenerates and the core becomes a
pair of saddle connections. Flat surfaces of the boundary are parametrized by the real
ratio between their lengths.

These chambers are topological disks with a unique boundary component. They
have a cusp in their interior (corresponding to the case of an infinitely thin cylinder)
and a cusp in their boundary (if one saddle connection in the core shrinks).

There is a chamber of “cylinder type” for every integer unordered bipartition a =
k+k′ where k, k′ > 0. The chamber corresponding to the bipartitiona = k+k′ belongs
to the connected component where the rotation number of surfaces is gcd(k, a).

Proof Theholonomyvector of the twoparallel saddle connections that form the bound-
ary of the core is normalized. The geometry of the flat surface is determined by the
shape of the cylinder and the two angles of the domain of the pole. These two angles are
non zero integer multiples of 2π and these multiples appear as the topological indices
of loops passing through the cylinder. These numbers are discrete invariants and are
thus constant in a given chamber. Since the total angle is (2a + 2)π and there are two
ideal triangles in the cylinder, the two angles sum to 2aπ . They can be encompassed
in an integer unordered bipartition of a. Topological indices of the loops determine to
which connected component a chamber belongs to.

The shape of the cylinders depends on the choice of a holonomy vector between
the two ends of the cylinder. Two such holonomy vectors whose difference is an
integer multiple of the period of the closed geodesics of the cylinder represent the
same cylinder (Dehn twist). If we choose the periods of the closed geodesics of the
cylinder to be equal to 1, the periods of the holonomy vectors from one end to the
other end are complex numbers with positive imaginary part. The difference between
two such periods is an integer real number (one for each Dehn twist). Therefore, the
chamber is parametrized byH/Z. Since the action ofGL+(2,R) is transitive on bases
of R2, it is immediate that two flat surfaces of the same chamber belong to the same
GL+(2,R)-orbit. A cusp corresponds to an infinitely long holonomy vector.

There is a unique boundary component for a chamber of “cylinder” type whose
characteristic bipartition is k + (a − k). It is formed by flat surfaces with degenerate
core whose four angles are π, 2kπ, π, (a − k)2π . A way to parametrize surfaces of
the boundary is to use the real ratio between the lengths of the two saddle connections.
Since we do not distinguish between the two saddle connections, we have a unique
cusp in the wall of the chamber (corresponding to the case where one of the two saddle
connections becomes infinitely longer than the other). �

The description of chambers of “triangle” type needs the introduction of a specific
combinatorial structure.Wewould like to have partitions of an integer a into three parts
that would be cyclically ordered. This structure should be sufficiently well-behaved
to be acted upon by some linear operators.
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Chamber Structure of Modular Curves X1(N) 469

Definition 4.3 For any a ≥ 3, we define Ea ⊂ (Z/aZ)3 such that (x, y, z) ∈ Ea
if and only if x, y, z �= 0 and x + y + z = 0. We also define Ek

a = {(x, y, z ∈
Ea | gcd(x, y, z) = k}.

We consider the linear applications S : (x, y, z) → (−x,−y,−z) and T :
(x, y, z) → (y, z, x). The group Gr(S, T ) generated by S and T acts on Ea while
preserving the stratification Ea = ⋃

k|a Ek
a .

We denote by Bk
a = Ek

a /Gr(S, T ) the set of cyclic tripartitions of a with k as
greatest common factor.

In chambers of “triangle” type, the discrete invariant is more complicated. There
are three saddle connections and six angular sectors (three that belong to the triangle
and three that belong to the domain of the pole). For every external angle, there is an
internal angle such that the difference between their magnitudes is an integer multiple
of 2π . These three numbers corresponding to the three sides of a cylinder form a cyclic
tripartition of a.

Proposition 4.4 In chambers of “triangle” type of PH(a,−a), we normalize the area
of the ideal triangle to one. Flat surfaces are characterized by two invariants:

(i) A cyclic tripartition of a, that is an element of Ba. This discrete invariant distin-
guishes the different chambers of the same type in the stratum.

(ii) The shape of the triangle (angles and side lengths). Consequently, every such
chamber is the image of GL+(2,R) under projection.

In the boundary of such chambers, the ideal triangle degenerates and the core
becomes a pair of saddle connections. Flat surfaces of the boundary are parametrized
by the real ratio between their lengths.

These chambers are topological disks with three boundary components drawn
between cusps.

There is a chamber of “triangle” type for every cyclic tripartition of a. The chamber
corresponding to a tripartition a = k + k′ + k′′ belongs to the connected component
where the rotation number of surfaces is gcd(k, k′, k′′, a).

If a is of the form 3b, the cyclic tripartition a = b+ b+ b provides a chamber with
an additional symmetry of order three. Such a chamber is a topological disk with a
unique boundary component. There is a unique cusp in the boundary and an orbifold
point of order three in the interior of the chamber (corresponding to an equilateral
triangle).

Proof The geometry of the flat surface is determined by the three angles of the triangle
and the three angles of the domain of the pole. For each internal angle, there is an
external angle that is formed by the same pair of saddle connections. Their magnitudes
differ by a nonzero integer multiple of 2π (nonzero because the magnitude of an angle
of a domain of a pole is at least π ). Besides, this number is the topological index of a
loop getting around these two angles. These numbers are discrete invariants and are
thus constant in a given chamber.

These three numbers form a tripartition x + y + z = a. For practical purposes, we
represent them as triplets (x, y, z) of elements of Z/aZ such that x + y+ z = 0. If we
consider them up to cyclic permutation and global inversion, every such equivalence
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470 G. Tahar

class appears from a tripartition of a. Indeed, if we have x + y + z = 2a, then we
have (a − x) + (a − y) + (a − z) = a.

Since elements of the discrete invariant are topological degrees of loops, their
greatest common divisor decides which connected component the chamber belongs
to.

Two nondegenerate triangles are always equivalent under the action of GL+(2,R).
Therefore, the interior of a chamber of “triangle” type is an open GL+(2,R)-orbit.

In the boundary of the chamber, the triangle degenerates and we get a surface
with only two saddle connections. We assume the discrete invariant of the chamber is
(x, y, z). We get a flat surface with degenerate core whose four angles are π, 2xπ, π +
2yπ, 2zπ . By permuting cyclically the numbers x, y, z, we get three types of flat
surfaces with degenerate core. Therefore, there are three boundary components in a
chamber. In each of these boundary components we parametrize surfaces using the real
ratio between the lengths of the two saddle connections. The chamber is a topological
disk bounded by three segments separated by cusps.

In the case a = 3b, there is a chamber corresponding to the cyclic tripartition
(b, b, b). Such a chamber exhibits an exceptional symmetry. The flat surface of the
chamber whose triangle is equilateral is an orbifold point of order three and there is
a unique boundary component (the topological disk has been quotiented by the group
of rotation of order three). �

We end the description of chambers with the case of chambers of “degenerate”
type. In such chambers, flat surfaces are characterized by four angles and the length
of the two saddle connections forming the core. One of the main differences with the
other types of chambers is that they can be formed by several open GL+(2,R)-orbits.

For reasons of convenience, we draw a distinction between two classes of chambers
of “degenerate” type. If there is a pair of opposed angles with exactly the same magni-
tude, we refer to the chamber as a chamber of “balanced degenerate” type. Otherwise,
we refer to the chamber as a chamber of “unbalanced degenerate” type. The following
proposition proves the consistency of the distinction.

Proposition 4.5 The difference of magnitude between each pair of opposed angles in
flat surfaces that belong to chambers of “degenerate” is a discrete invariant.

Proof The geometry of the flat surface is determined by the four angles of the domain
of the pole and the length of the two saddle connections. Just like in a parallelogram,
the difference between the magnitudes of two opposite angles is 2kπ where k is an
integer. The angles vary continuously inside the chamber so this number is a discrete
invariant of the chamber. �

We begin with a description of the chambers of “balanced degenerate” type. They
may feature additional symmetries and include an orbifold point.

Proposition 4.6 In strata PH(a,−a), chambers of “balanced degenerate” type are
distinguished by a bipartition k + k′ of a. For any such bipartition where k, k′ ≥ 1,
there is a unique chamber of “balanced degenerate” type. The chamber belongs to
the connected components where the rotation number of the flat surfaces is gcd(k, a).
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If a is an even number, the chamber associated to the bipartition
a

2
+ a

2
has an

exceptional symmetry. The chamber is a topological disk with a unique cusp in the
boundary and unique boundary component. Besides, there is an orbifold point of order
two inside the chamber (corresponding to a surface where the two saddle connections
have same length and the four angles are equal).

Any other chamber of “balanced degenerate” is a topological disk with two bound-
ary components separated by two cusps.

In the boundary of such chambers, the saddle connections share the same direction
and at least one angle has magnitude equal to π . Such flat surfaces are parametrized
by the real ratio between the lengths of the saddle connections.

Proof In a chamber of “degenerate” type, there are four corners in the boundary of the
core (see Fig. 3). They are cyclically ordered around the unique conical singularity.
There is a pair of opposite angles with the same magnitude. Besides, the sum of
the magnitudes of consecutive angles is an invariant of such chambers because it is
given by the topological index of a loop. Therefore, the four angles are of the form
α, π − α + 2kπ, α, π − α + 2k′π where α > π , k and k′ are topological indices
of loops forming a homology basis of the torus and k + k′ = a. Bipartition k + k′
of a is a discrete invariant of the chamber and the chamber belongs to the connected
component where flat surfaces have a rotation number of gcd(k, a).

A flat surface surface that belongs to such a chamber is characterized by the lengths
of its two saddle connections and its angles α, π − α + 2kπ, α, π − α + 2k′π . We
consider two such surfaces X0 and Y . For any pair of such surfaces X0 and Y , we
can consider the path Xt formed by surfaces whose saddle connections have the same
length as that of X0 and such that αt = α + t .(β − α) where two angles of Y have
magnitude β. The angles stay clearly above π all along the path so for every t ∈ [0; 1],
Xt belongs to the same chamber. Since they have the same angles, X1 and Y belong to
the same GL+(2,R)-orbit and thus to the same chamber. Therefore, two flat surfaces
with the same discrete invariant belong to the same invariant. This construction also
ensures that the chamber is contractible.

If a is an even number, we can consider the chamber whose discrete invariant

is
a

2
+ a

2
. In the chamber, opposite angles are equal and the flat surfaces of the

chamber have a symmetry of order two. Besides, there is flat surface whose four
angles are equal and whose saddle connections have the same length. This surface is
exceptionaly symmetric (order four) and corresponds to an orbifold point of order two.
The boundary of the chamber is formed by surfaces whose angles are π, aπ, π, aπ .
Therefore, there is a unique boundary component.

For any other discrete invariant, there are two boundary components. Indeed, for
a flat surface in the boundary, there is an angle equal to π . Depending on the pair of
opposite angles this angle belongs to, the flat surface belongs to a boundary component
or the other. These pairs are combinatorially different because by hypothesis there is
one where the angles are equal and another where they are different. The case where
the two pairs displays equal angles has been dealt with. �

Chambers of “unbalanced degenerate” type are more common and do not feature
additional symmetries.
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Proposition 4.7 In strata PH(a,−a), chambers of “unbalanced” type are distin-
guished by a combinatorial invariant that is an ordered tripartition x + y + z of
a. For every such triplet, there is another triplet that corresponds to the same cham-
ber. If z > x, then (x + y) + (z − x) + x represents the same chamber as x + y + z.
If x > z, then it is z + (x − z) + (y + z) that represents the same chamber. For every
such pair of ordered tripartitions of a, there is a unique chamber of “unbalanced”
type. The chamber belongs to the connected component where the rotation number of
the flat surfaces is gcd(x, y, z).

These chambers are topological disks with two boundary components separated
by two cusps. In the boundary of such chambers, the saddle connections share the
same direction and at least one angle has magnitude equal to π . Such flat surfaces
are parametrized by the real ratio between the lengths of the saddle connections.

Proof The sum of the magnitudes of consecutive angles and the difference of the
magnitudes of opposite angles are discrete invariants of such chambers. We assume
the magnitude of an angle is equal to π and define the other angles (in the cyclic
order) as 2xπ , (2y + 1)π and 2zπ . Therefore, x + y + z is a tripartition of a. Since
the difference of magnitudes between opposite angles encompasses the whole discrete
invariant (defined by topological indices of loops), another triplet may represent the
same discrete invariant. If z > x , then the other triplet is (x + y), (z − x), x . If x > z,
then it is z, x − z, z + y. The idea is than we reduce the angles of a pair of opposite
angles to increase the angles of the other pair. The two tripartitions describe the two
ends of this process (and therefore the two boundary components of the chamber).
Since the sums of magnitudes of consecutive angles is given by the topological index
of loops of a basis of the homology of the torus, the chamber belongs to the connected
component where the rotation number of the flat surfaces is gcd(x, y, z).

Just like in the proof of Proposition 4.6, existence of a linear path relating the angles
of any two flat surfaces with the same discrete invariants implies that there is a unique
(and contractible) chamber for a given discrete invariant.

If the difference of magnitude of the two pairs of opposite angles are not the same,
then it is clear that there are two different boundary components in the chamber. The
other case is when the differences are the same. In this case, there are also two different
boundary components and they are distinguished by the orientation. For example, if
a = 6, the chamber corresponding to 3 + 1 + 2 (which corresponds to the same
chamber as 2 + 1 + 3) has two boundary components where angles are respectively
π, 6π, 3π, 4π and π, 4π, 3π, 6π . Such chambers thus are topological disks bounded
by two segments related by two cusps. �

4.2 Adjacency Relations Between Chambers

Every chamber of every type is characterized by a discrete combinatorial invariant. In
this subsection, we provide combinatorial criteria to decide which pair of chambers
share a boundary component.

Proposition 4.8 For a connected component of a stratum PH(a,−a), every boundary
component of the walls-and-chambers structure separates a chamber of “degenerate”
type and a chamber of one of the two other types.
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The chamber of “balanced degenerate” type corresponding to the bipartition
k + k′ = a is connected with the chamber of “cylinder” type corresponding to the
bipartition k + k′ = a. If there is another boundary component, it is shared with the
chamber of “triangle type” corresponding to the tripartition k + k + (k′ − k) (with
k′ > k).

The chamber of “unbalanced degenerate” type corresponding to two tripartitions
of a (see Proposition 4.7) connects the two chambers of “triangle” type corresponding
to these tripartitions.

Proof In flat surfaces that belong to the boundary of chambers, there is at least an angle
whose magnitude is π between two distinct saddle connections. These two saddle
connections generate the homology of the torus. Since they share the same direction,
such surfaces have a core whose area is zero (and thus is degenerate). The angles of
these surfaces verify the relations (modulo 2π ) of parallelograms. Therefore, the only
angle whose magnitude could fall below π as we leave the boundary component is the
opposite angle of the angle of magnitude π . However, these angles grow and decrease
together. Therefore, there is always a chamber on a side of the boundary component
where the four angles stay above π . This chamber is of “degenerate” type.

In the boundary of a chamber of “cylinder” type corresponding to the bipartition
k + k′, the four angles of the flat surfaces are π, 2kπ, π, 2k′π . By transporting the
magnitudes of the angles for a pair of opposite angles to the other, we get another
boundary component where the four angles are 2kπ, π, 2kπ, (2k′ − 2k + 1)π . Such a
boundary component is shared with the chamber of “triangle” type corresponding to
the tripartition k + k + (k′ − k). Indeed, there is a unique angle whose magnitude is
π . Therefore, a perturbation can only produce a unique ideal triangle.

In the boundary of a chamber of “unbalanced” type, the four angles of the flat
surfaces include only one angle of magnitude π . Therefore, the two chambers that
share a boundarywith a chamber of “unbalanced” type are chambers of “triangle” type.
The two boundaries correspond to each pair of opposite angles. For each boundary
component, there is a unique angle equal to π and the repartition of a total angle of
(2a+1)π provide a tripartition characteristic of a chamber of “triangle” type. The two
triplets corresponding to the chamber of “unbalanced” type correspond to a choice of
a pair of opposite angles. Therefore, a chamber of “unbalanced” type is connected
with the two chambers of “triangle” type having cyclic tripartitions corresponding to
the two triplets. �

Nowwe have a full description of chambers and their relations, we are able to prove
that the topology and walls-and-chambers structure of connected components of the
strata only depend on the ratio between the degree a of the stratum and the rotation
number of the connected component.

Proof of Theorem 2.3 We consider the stratum PH(d.a,−d.a) and its connected com-
ponent Ca.d

d where the rotation number of the surfaces is d with a ≥ 2 and d ≥ 1. It

is already proved in Theorem 2.2 that Ca.d
d is biholomorphic to modular curve X1(

a

d
)

and therefore to connected component Ca1 .
Since the rotation number of the connected component a chamber belongs to is

a greatest common divisor of numbers forming the combinatorial invariant of the
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chamber (cyclic tripartitions or bipartitions), invariants of the chambers of Ca.d
d are of

the form d.Awhere A is a cyclic tripartition or a bipartition. The condition underwhich
such a combinatorial data corresponds to a chamber is also homogeneous. Therefore,
A is the combinatorial invariant of a chamber of stratum PH(a,−a). Such a chamber
belongs to the connected component Ca1 where the rotation number is 1.

Similarly, the combinatorial relations that describe adjacentness relations between
chambers are also homogenous of degree one. Therefore, the graph of adjacentness
relations between chambers is the same in Cad and Ca1 .

Chambers are topological disks so there is a very natural CW-complex structure
associated with the walls-and-chambers structure of a connected component. Since
there is a correspondance between chambers of the two components and isomorphism
between their graph of adjacentness, Cd.a

d and Ca1 are isomorphic as CW-complexes.
This ends the proof. �

4.3 Description of the Exceptional Components Isomorphic to X1(2), X1(3) and
X1(4)

In projectivized strata of the form 2b or 3b, the connected component corresponding
the rotation number b displays special features. Indeed, they have orbifold special
points that no not appear for example in principal components of strata PH(a,−a)

when a ≥ 4. We provide a complete topological description of these exceptional
components in order to simplify the further investigation. Since these components are
isomorphic to either PH(2,−2) or PH(3,−3), we describe them directly.

The principal connected component of PH(4,−4) (which is isomorphic to X1(4))
also displays a small deviation from the general formula we prove in Theorem 2.4.

Proposition 4.9 PH(2,−2) is a topological spherewith two punctures and an orbifold
point of order two. The discriminant is formed by a unique arc connecting one puncture
with itself and cutting out two chambers. These chambers are a chamber of “cylinder”
type (with a puncture in its interior) and a chamber of “degenerate” type (with the
orbifold point in its interior).

Proof Following Proposition 4.4, there is no chamber of “triangle” type because there
is no tripartition of 2. For the same reason, there is no chamber of “unbalanced degen-
erate” type (Proposition 4.7). Since 1+ 1 is the unique partition of 2, there is a unique
chamber of “cylinder” type and a unique chamber of “balanced degenerate” type
(Propositions 4.2, 4.6). These two chambers both have a unique boundary component.
Thus, there are two chambers in PH(2,−2). These two chambers are separated by an
arc connecting a puncture to itself. The chamber of “cylinder” type is a topological disk
with one puncture inside (corresponding to an infinitely stretched cylinder). Besides,
there is an orbifold point in the chamber of “degenerate” type (Proposition 4.6).

To sum up, if we forget the puncture inside the chamber of “cylinder” type and the
orbifold point, the projectivized chamber can be decomposed into two faces, one edge
and one vertex. Therefore, the Euler characteristic of the surface is 2 and the genus of
the surface is zero. �
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Proposition 4.10 PH(3,−3) is a topological sphere with two punctures and an orb-
ifold point of order three. The discriminant is formed by two arcs connecting one
puncture to itself, cutting out three chambers in a linear order. These chambers are
(following the order) a chamber of “cylinder” type, a chamber of “degenerate” type
and a chamber of “triangle” type. The chamber of “cylinder” type contains the other
puncture (corresponding to an infinitely stretched cylinder) whereas the chamber of
“triangle” type contains the orbifold point (corresponding to an equilateral triangle).

Proof There is a unique chamber of “cylinder” type and its characteristic partition is
1 + 2 (Proposition 4.2). There is a unique chamber of “triangle” type and its cyclic
tripartition is 1+1+1 (Proposition 4.4). A chamber of “triangle” type can have three
boundary components (one for each way for the triangle to degenerate). However, this
chamber has a cyclic symmetry of order three. Therefore, it has a unique boundary
component and an orbifold point of order three (corresponding to the equilateral tri-
angle). Since chambers of “degenerate” type are adjacent to chambers of “cylinder”
and “triangle” type only, these two chambers are connected by a unique chamber of
“degenerate” type.

The discriminant is formed by two arcs whose ends correspond to limit cases where
some saddle connections shrink. Since the boundaries of the chambers of “cylinder”
and “triangle” type are closed segments, there is only one such puncture. If we forget
the puncture inside the chamber of “cylinder” type and the orbifold point inside the
chamber of “triangle” type, the discriminant provides a decomposition of the stratum
into three faces, two edges and one vertex. Therefore, the Euler characteristic of the
surface is 2 and the genus of the surface is zero. �
Proposition 4.11 There are two connected components in PH(4,−4). The component
where the rotation number is 2 is isomorphic to PH(2,−2). On the contrary, the
principal connected component (where the rotationnumber is1) is a topological sphere
with three punctures. There are four chambers : two that belong to the “degenerate”
type and one of the other other types, see G4 in Fig. 1 for its graph of adjacentness.

Proof Following Theorem 2.2, there are two connected components in PH(4,−4)
that correspond respectively to the rotation numbers 1 and 2. Following Theorem 2.3,
connected component C42 is isomorphic to PH(2,−2). In particular, their walls-and-
chambers structures are isomorphic.

Next, we focus on the connected component C41 . Following Proposition 4.2, there
is a unique chamber of “cylinder” type because there is a unique bipartition 1+ 3 = 4
that satisfies the coprimality condition. Likewise, following Proposition 4.4, there is a
unique tripartition 1+1+2 = 4 so there is a unique chamber of “triangle” type. There-
fore, there is a chamber of “degenerate” type that connects the two latter chambers.
There is also another chamber of “degenerate” type that connects the two remaining
boundaries of the chamber of “triangle” type. Indeed, two chambers of “degenerate”
type cannot be directly adjacent. We get G4 in Fig. 1 as graph of adjacentness of the
chambers.

Since there is a unique puncture in the boundary of the chamber of “cylinder” type,
it is also the same puncture in the boundary of the next chamber of “degenerate”
type and one of the two vertices in the boundary of the chamber of “triangle” type.
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However, the remaining vertex of the boundary of the chamber of “triangle” type is
not identified with the others. We add the puncture that belong to the interior of the
chamber of “cylinder” type and get three distinct punctures. There are 4 chambers, 2
punctures (one of the three is not used in the cell decomposition) and 4 arc components
of the discriminant. Therefore, the Euler characteristic is 2 and the component is a
topological sphere. �

4.4 Graph of Chambers in Connected Components of Strata

Just like in the previous subsection, we consider only principal connected components
of strata. Other components are isomorphic to such components for a different stratum
(see Theorem 2.3).

Since adjacency relations have been reduced to purely combinatorial issues, there
is a systematic process to draw the graph of adjacency of chambers of a connected
component of PH(a,−a).

Most of the form of the graph is provided by the relations between chambers of
“triangle” type. Hopefully, this graph is easy to handle.

Definition 4.12 We denote by Ta the graph such that:

– the vertices are the chambers of “triangle” type of the principal connected com-
ponent of PH(a,−a).

– the edges are the chambers of “unbalanced degenerate” type that relate two cham-
bers of “triangle” type.

The graphs Ta are very regular, see Fig. 5. They are Schreier coset graphs. In other
words, they are given by the quotient of a finite group by a subgroup.
It should be recalled that E1

a is the set of triplets (x, y, z) of elements of Z/aZ such
that we have:

(i) x, y, z �= 0,
(ii) x + y + z = 0,
(iii) gcd(x, y, z) = 1.

In addition of the operators S : (x, y, z) → (−x,−y,−z) and T : (x, y, z) →
(y, z, x) (see Definition 4.3), we also define linear application U : (x, y, z) → (x +
z, y, x − z).

Proposition 4.13 For any a ≥ 3, graph Ta is isomorphic to the graph defined by:

(i) B1
a = E1

a /Gr(S, T ) as set of vertices,
(ii) an edge between two classes α and β of B1

a such that there are representatives α

and β in E1
a with β = U (α).

Gr(S, T ,U ) acts transitively on E1
a . Therefore, Ta is a Schreier coset graph.

Proof It has been proven in Proposition 4.4 that chambers of “triangle” type in
the principal connected component are in correspondence with elements of B1

a =
E1
a /Gr(S, T ). These chambers are connected by a chamber of “unbalanced degener-

ate” type if and only if the invariant of one chamber is represented by (x, y, z) and the
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Fig. 5 The first elements of the
family of graphs Ta

Fig. 6 T7 and G7. Small black
disks correspond to chambers of
“degenerate” type and the white
circle corresponds to a chamber
of “cylinder” type

other by ((x + y), y, (z− x)) or (z, (x − z), (y+ z) depending on the sign of x − z. In
other words, a representative (up to cyclic permutation and inversion) of the discrete
invariant of each chamber should be related by the linear map U .

The action of Gr(S, T ,U ) acts transitively on E1
a because otherwise, there

would be several connected components with rotation number equal to one [the
classification of connected components has been established by other means in
Boissy (2015)]. �

While the graph defined by the chambers of “triangle” type is very regular, the
actual graph of chambers of the connected components is a little more complicated,
see Fig. 6. For the picture of the graphs of chambers for small values of a, see Fig. 1.

Theorem 4.14 The graph of chambers Ga of the principal connected component of
PH(a,−a) is given by the two following operations:
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(i) adding a leaf (a vertex and an edge) on every vertex of Ta of the form (a−2θ, θ, θ

(corresponding to chambers of “cylinder” type).
(ii) inserting a vertex (corresponding to chambers of “degenerate” type) on every

edge to get Ga.

Proof Following Proposition 4.8, chambers of “cylinder” type corresponding to bipar-
titions k + k′ are connected by a chamber of “balanced degenerate” type to a chamber
of “triangle” type whose discrete invariant is k + k + (k′ − k). Adding a leaf on every
vertex corresponding to tripartitions of the form (a − 2θ) + θ + θ) provides a graph
where chambers of “cylinder” and “triangle” type are represented. Inserting a vertex
on every edge provides a graph where the vertices correspond to chambers and edges
correspond to boundary components. �

5 Counting Cells in the Connected Components

In the following, we give formulas to provide combinatorial information on strata. We
denote by Sa the number of connected components of the discriminant in PH(a,−a).
We also denote by Fa the number of connected components of the discriminant in the
connected component of PH(a,−a) whose rotation number is one. Since H(1,−1)
is empty, we set F1 = S1 = 0

Proposition 5.1 For any a ≥ 2, we have Sa = � a
2 � + (a − 1)(a − 2)

2
and Fa =

∑
d|a μ(a/d) · Sd where μ is the classical Möbius function.

In particular, when a is equal to a prime number p ≥ 5, there are (p−1)2

2 connected
components in the discriminant of the stratum (which is connected).

Proof Flat surfaces that belong to the discriminant have a degenerate core and one
of the four angles of the domain of the pole is π . Connected components of the dis-
criminant are parametrized by the lengths of the saddle connections and correspond
to choices of angles. In some surfaces, there is a pair of opposite angles whose mag-
nitude is equal to π . There is a connected component for every choice of angles that
are multiple of 2π for the other pair of opposite angles. Such connected components

are in bijection with bipartitions of a into two integers. There are �a
2
� of them. For

connected components where the opposite angle is not equal to π , there is a con-
nected component for every ordered partition of a into three parts. Therefore, there

are
∑a−2

k=1(a− k−1) = (a−1)(a−2)− (a − 1)(a − 2)

2
= (a − 1)(a − 2)

2
of them.

By definition, Sa = ∑
d|a Fd . By the Möbius inversion formula, we get Fa =∑

d|a μ(a/d) · Sd . �
We compute the number of chambers of each type in the principal connected com-

ponent:

(i) CTa is the number of chambers of “triangle” type.
(ii) DTa is the number of chambers of “degenerated” type.
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(iii) CCa is the number of chambers of “cylinder” type.

We denote by Ca the number of chambers in the principal connected component. It
should be recalled that φ is Euler’s totient function

Proposition 5.2 For any a ≥ 4, we have:

(i) DTa = 1

2
Fa.

(ii) CCa = 1
2φ(a).

(iii) CTa = 1

3
Fa − 1

6φ(a).

(iv) Ca = 5

6
Fa + 1

3φ(a).

In particular, when a is equal to a prime number p ≥ 5, there are
(p − 1)(5p − 1)

12
chambers in the stratum (which is connected).

Proof Since we excluded the case a = 2, every chamber of “degenerate” type has

exactly two boundary components. Therefore, we have DTa = 1

2
Fa .

InPH(a,−a), there is a chamber of “cylinder” type for every bipartition of a. Since
the rotation number of flat surfaces where the bipartition is k+(a−k) is gcd(k, a) and
Euler’s totient function counts coprime numbers, there are exactly 1

2φ(a) chambers
of “cylinder” type.

Finally, every chamber of “triangle” type has three boundary components (since
we excluded the case a = 3) so 3CTa = Fa − CCa . Therefore, we have CTa =
1

3
Fa − 1

6φ(a). Finally, we have Ca = CTa + CCa + DTa . This ends the proof. �
Having the number of chambers and the number of connected components of the

discriminant, the computation of the number of punctures leads directly to the Euler
characteristic of the complex curve and the computation of its genus.

Proof of Theorem 2.4 The cases 2 ≤ a ≤ 4 are already settled in Propositions 4.9–4.11
so we assume a ≥ 5.

We first draw a distinction among the cusps of the principal connected component
of PH(a,−a). Some belong to the interior of chambers of “cylinder” type and the
others separate the connected components of the discriminant. They belong to the
boundary of the chambers. There is exactly one cusp in each of the 1

2φ(a) chambers
of “cylinder” type. We put them aside as of now.

For every cusp that separates the connected components of the discriminant, there
is a small closed loop around it that passes through several chambers. This loop defines
a closed path in the graph Ta of chambers of “triangle” type. Indeed, the cusp that
belongs to the boundary of a chamber of “cylinder” type of invariant k + k′ also
belongs to the boundary of the chamber of “triangle” type of invariant k+k+ (k′ −k).
Therefore, we focus on the chambers of “triangle” type.

For every cusp in the boundary of a chamber of “triangle” type, there are two
vertices of the triangle that merge and one that remains alone. For a chamber of
invariant (x, y, z), we get a limit-surface of genus zero with a conical singularity of
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order y − 1 and one other of degree x + z − 1. A loop around a cusp means a path
among chambers of “triangle” type where one of the three degrees of the invariant is
constant. Therefore, this loop is a finite orbit in E1

a under the action of U .
In each of these orbits, the middle element y of the triplet remains constant. Let

d(y) = gcd(y, a). The number d(y) may be any divisor of a different from a. For
every such divisor, we compute the number of loops. That way, we will be able to
compute the total number of cusps.

There are φ(a/d) numbers y such that d(y) = d. Besides, the length of the orbit
under U is a/d. The different orbits sweep the triplets whose gcd is one. Therefore,
there is a total of φ(d) different orbits for such an y. Since triplets are considered up to
global inversion, we have to divide the total numbers of orbits by a factor 2 to get the
total number of cusps that belong to the discriminant. This procedure does not work
when a = 4 and therefore this case had to be settled separately.

Finally, the number of cusps that belong to the discriminant is − 1
2φ(a) +

1

2

∑
d|a φ(d)φ(a/d). Consequently, there are a total of l = 1

2

∑
d|a φ(d)φ(a/d) punc-

tures in the complex curve.
Weuse thewalls-and-chambers structure of the connected component to compute its

genus. The chambers are the cells of dimension two, the connected components of the
discriminant are the cells of dimension one and the cusps that separates the connected
components of the discriminant are the vertices of a polyhedral decomposition.

The Euler characteristic of this polyhedral decomposition is:

χ = Ca − Fa + 1

2

∑

d|a
φ(d)φ(a/d) − 1

2
φ(a).

Therefore, we have χ = 1

2

∑
d|a φ(d)φ(a/d) − 1

6
Fa − 1

6φ(a).

Since χ = 2 − 2g for an orientable surface, we get g = 1 + 1

12
(Fa + φ(a)) −

1

4

∑
d|a φ(d)φ(a/d).

Following Proposition 5.1, we have Fa = ∑
d|a μ(a/d) ·Sd whereμ is the classical

Möbius function and Sa = � a
2 � + (a − 1)(a − 2)

2
.

Sowehave Fa+φ(a) = ∑
d|a μ(a/d).� d

2 �+∑
d|a μ(a/d).

(d − 1)(d − 2)

2
+φ(a).

It is well known that φ(a) = ∑
d|a μ(a/d) · d. Therefore, we have:

Fa + φ(a) =
∑

d|a
μ(a/d) ·

(⌊
d

2

⌋

+ (d − 1)(d − 2)

2
+ d

)

.

We define function parity ρ such that ρ(d) = 0 if d is even and ρ(d) = 1 if d is odd.
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Thus, we get:

Fa + φ(a) =
∑

d|a
μ(a/d) · d

2

2
+

∑

d|a
μ(a/d) · (1 − ρ(d))

Finally, we have Fa + φ(a) = ∑
d|a μ(a/d) · d

2

2
= 1

2

∏
p|a(1 − 1

p2
).

Consequently, we have g = 1 + a2

24

∏
p|a(1 − 1

p2
) − 1

4

∑
d|a φ(d)φ(a/d). �
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