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Abstract
Generic (canonical) decomposition of dimension vector for a quiver was introduced by
Victor Kac as characterizing the generic module indecomposable summands dimen-
sions, hence, the generic orbit. Derksen and Weyman proposed an elegant algorithm
to compute that decomposition, extensively using Schofield’s results. We consider
generic semi-simple decomposition, which corresponds to generic closed orbit and
provide a simple and fast algorithm to compute this decomposition. Generic semi-
simple decomposition has two useful application. First, it reduces the computation of
generic decomposition to the case of quiver without oriented cycles in a geometric
way. Second, it provides a nice novel presentation of the algebra of invariants of quiver
representations as a tensor product of similar algebras for the summands.
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Mathematics Subject Classification 14L30 · 16G20

1 Introduction

Let Q be a quiver, that is an oriented graph with the sets Q0 of vertices and Q1 of
arrows together with two maps, t, h : Q1 → Q0 such that tϕ and hϕ are the tail and
the head of an arrow ϕ ∈ Q1. We consider representations of Q over an algebraically
closed field k of characteristic 0 and let dim V ∈ Z|Q0|+ denote the dimension vector of
a representation, V . Let R(Q, α) denote the affine space of all representations of a fixed
dimension vector α. The affine space R(Q, α) is naturally acted upon by the group
GL(α) = ∏

i∈Q0
GLα(i) and the orbits of this action are the isomorphism classes of
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70 D. A. Shmelkin

representations. In spirit of this correspondence the concept of generic orbit natural for
algebraic group theory can be translated into quiver representation language. Namely,
Victor Kac introduced in Kac (1982) the concept of canonical decomposition of
dimension vector α = ∑k

i=1 βi such that there is an open dense subset R0 ⊂ R(Q, α)

such that the summands of the decomposition into indecomposables for every V ∈ R0

have the dimensionsβ1, . . . , βk up to permutation.Moreover, the summands of generic
decomposition are Schur roots, which means that the generic representation of this
dimension is Schur, having no endomorphisms besides scalar operators.

From our perspective and also following other authors we believe that the term
generic is more suitable for this decomposition, because it reflects the feature and
also because the term canonical decomposition was used before Kac for a different
concept in quiver representations. Kac himself tried to approach the algorithm of
finding generic decomposition using his observation that the Euler–Ringel form takes
non-negative values on different summands βi , β j of this decomposition, 〈βi , β j 〉 ≥ 0
andconjectured that a decomposition into a sumofSchur rootswith the abovepositivity
property is the generic one. For quivers without oriented cycles Schofield gave in
Schofield (1992) a counter-example to the above conjecture and proposed an algorithm
for the generic decomposition, but his algorithmwas not efficient numerically because
needed to have similar decompositions for all smaller dimension vectors, as the input.
Derksen and Weyman proposed in Derksen and Weyman (2002) an elegant algorithm
for quivers without oriented cycles, which incrementally updates a decomposition
trying to get the positivity of Euler form on different summands, and stops when
reaches this positivity. As the starting point Derksen–Weyman algorithm uses any
decomposition of dimension vector into a sum of Schur roots, which constitute an
orthogonal sequence, and such an initial decomposition can easily be provided for
quivers without oriented cycles. Actually, the summands of this decomposition are
simple roots corresponding to the quiver vertices. For quivers with oriented cycles
this decomposition is not an orthogonal sequence anymore. However, in Derksen and
Weyman (2002) generic decomposition for arbitrary quiver was reduced to that for an
extended quiver without oriented cycles having twice more vertices and additionally
|Q0| more arrows compared with Q. This trick is easily applied but leads to a boost of
complexity. It would be natural to get the generic decomposition for arbitrary quivers
in terms of equivariant geometry of R(Q, α) itself and using the geometrical approach
to Invariant theory in the spirit of Popov andVinberg (1994). In this paper we complete
this task. We introduce the following definition:

Definition 1.1 A decomposition α = ∑k
i=1 βi is called semi-simple if each summand

βi , i = 1, . . . , k is a dimension vector of a simple representation.

Semi-simple decompositions stand in a clear relationship with semi-simple
representations. Indeed, the dimensions of simple summands of a semi-simple repre-
sentations constitute a semi-simple decomposition of dimension vector. For each α,
there is a generic semi-simple decomposition of α, as follows:

Theorem 1.2 There is a generic semi-simple decomposition of α such that the semi-
simple representations having simple summands corresponding to this decomposition
constitute an open dense subset in the closure of the set of all semi-simple represen-
tations of dimension α.
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Theorem 1.3 A semi-simple decomposition α = ∑k
i=1 miβi with βi �= β j for i �= j

is generic if and only if after some reordering (β1, . . . , βk) is an orthogonal sequence
and mi = 1 for 〈βi , βi 〉 < 0.

ByTheorem1.3 the generic semi-simple decomposition can serve as initial point for
the Derksen–Weyman algorithm. Therefore, to have a complete algorithm of generic
decomposition for any quiver we only need a one for generic semi-simple decomposi-
tion and we do it in this note. Moreover, this decomposition and the Luna-Richardson
Theorem Luna and Richardson (1979) allow for a nice description of invariants:

Theorem 1.4 Let α = ∑k
i=1 miβi be the generic semi-simple decomposition such that

βi �= β j for i �= j . Choose a vector subspace L = ⊕k
i=1 R(Q,miβi ) ⊆ R(Q, α).

Then restricting GL(α)-invariants to L gives rise to an algebra isomorphism:

Res|L : k[R(Q, α)]GL(α) ∼→
⊗

1≤i≤k:〈βi ,βi 〉≤0

k[R(Q,miβi )]GL(miβi ). (1)

Moreover, if 〈βi , βi 〉 < 0, then mi = 1. If 〈βi , βi 〉 = 0, then k[R(Q,miβi )]GL(miβi )

is a polynomial algebra in mi variables.

The rest of the paper is organized as follows. In Sect. 2 we prove Theorems 1.2, 1.3,
and 1.4 in Sect. 3 we introduce our Algorithm 3.4 for generic semi-simple decompo-
sition and prove it.

2 Semi-simple Decompositions

A representation V of quiver Q is an assignment of a (finite dimensional) vector space
V (i) over k for every vertex, i ∈ Q0, and of a linear map V (ϕ) : V (tϕ) → V (hϕ),
for every arrow ϕ ∈ Q1. A morphism of representations f : V → W is a linear map
f (i) : V (i) → W (i) defined for every i ∈ Q0 such that for every ϕ ∈ Q1 holds a
commutative property: f (hϕ)V (ϕ) = W (ϕ) f (tϕ). A direct sum of two representa-
tions is defined in the natural way and a representation is called indecomposable if
not isomorphic to a non-trivial direct sum of representations. Krull–Remak–Schmidt
theorem states that every representation V has a unique decomposition V = ∑k

i=1 Ri

into indecomposable summands up to permutation of summands. By dimension vector
of a representation V , we mean the vector (dim V (i), i ∈ Q0) ∈ Zn+, where n = |Q0|
is the number of vertices in Q. For such a vector, α ∈ Zn+, let R(Q, α) denote the affine
space of all representations supported by fixed vector spaces V (i) = kα(i), i ∈ Q0.

Recall that the Euler form 〈α, β〉 = ∑
i∈Q0

α(i)β(i) − ∑
ϕ∈Q1

α(tϕ)β(hϕ) was
introduced by Ringel and the important equality holds

〈dim V , dimW 〉 = dimHom(V ,W ) − dim Ext1(V ,W ), (2)

where Ext1(V ,W ) denotes the k-module of extensions of W by V modulo isomor-
phism (a reader can find the notion and statements e.g. in Assem et al. 2006, A.5).
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72 D. A. Shmelkin

In particular, Ext1(V ,W ) vanishes if and only if any extension splits. The main idea
of Derksen and Weyman (2002) is an extensive usage of the concept of orthogonal
sequence:

Definition 2.1 Dimension vectors β, γ ∈ Zn are called orthogonal, β ⊥ γ , if for
generic representations V ∈ R(Q, β) and W ∈ R(Q, γ ) holds Hom(V ,W ) = 0,
Ext1(V ,W ) = 0, hence, 〈β, γ 〉 = 0 by formula (2). A sequence β1, β2, . . . , βk is
called orthogonal if for any i < j holds βi ⊥ β j .

Recall that Kac proved inKac (1980) that the dimensions of indecomposable represen-
tations form a root system corresponding to the quadratic Tits form qQ(α) = 〈α, α〉.
Simple roots are the vectors εi ( j) = δij , i ∈ Q0. Real roots are those roots α such
that 〈α, α〉 = 1 and for real root R(Q, α) contains precisely one isomorphism class of
indecomposable representations. In particular, real Schur roots have this isomorphism
class open dense in R(Q, α). The roots, which are not real are called imaginary and
then either 〈α, α〉 = 0 (such roots are called isotropic) or 〈α, α〉 < 0.

Throughout the algorithmofDerksen andWeyman (2002) different decompositions
α = ∑k

i=1 miβi are considered such that:

(i) each βi is a Schur root
(ii) βi ⊥ β j holds for i < j
(iii) mi > 0 for each i and mi = 1 if 〈βi , βi 〉 < 0.

Notice that the conditions (i–iii) “almost imply” that the summands are distinct. Indeed,
assume βi = β j , i < j . Then by (i i) βi is an isotropic root, so we might reduce the
decomposition by replacing the term miβi + m jβ j with (mi + m j )βi and this new
decomposition fullfils (i–iii) because the original one does. The algorithm starts with
an initial decomposition built out of simple roots corresponding to the vertices of
Q, that is α = ∑

i∈Q0
α(i)εi . The condition (i) obviously holds and the condition

(ii) holds for the ordering of vertices such that all arrows go from smaller indices to
bigger ones. Indeed, such an order exists if and only if the quiver has no oriented
cycles. Moreover, the condition (iii) holds because the quiver has no loops. From this
initial decomposition the algorithm derives new ones with summands of bigger total
dimension and keeps the above conditions (i–iii) hold true. In particular, the summands
of the generic decomposition constitute an orthogonal sequence of Schur roots and
the multiplicities of non-isotropic imaginary roots are equal to 1.

Passing to the general case of a quiver with oriented cycles and loops, we can not use
the above decomposition of a dimension vector into simple roots as initial, because the
condition (ii) fails for oriented cycles and the condition (iii) for loops. The following
fact is well-known:

Theorem 2.2 A representation V of Q of dimension α has a closed GL(α)-orbit if
and only if it is semi-simple.

This fact is so obvious for experts that it is not clear, which reference to provide,
so we will sketch the proof. The main observation is that for any exact sequence 0 →
R1 → V → R2 → 0 of quiver representation morphisms there is a 1-dimensional
torus T ⊆ GL(α) such that limt→0 tV = R1 + R2. Indeed, define the action of t on
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V (i) = R1(i)⊕ R2(i) as multiplication by t and t−1 on R1(i) and R2(i), respectively.
From this observation one can easily deduce that the sum of Jordan–Hölder factors of
V belongs to the orbit closure of V , so the part “only if” of the Theorem. Conversely,
let V be a semi-simple representation and the closure of GL(α)V contains a unique
closed orbit GL(α)W ,W ∈ R(Q, α). By (Popov and Vinberg 1994, Theorem 6.9),
there is a 1-dimensional torus T ⊆ GL(α) such thatW = limt→0 tV . Let Vm, V>m ⊆
⊕i∈Q0V (i) be the eigenspace of T with theminimal weight and the direct sum of other
eigenspaces, respectively. We therefore have a vector space decomposition W (i) =
V (i) = Vm(i) ⊕ V>m(i) for any i ∈ Q0. Then we claim that Vm is a submodule in
V . Indeed, for any ϕ ∈ Q1 the image V (ϕ)Vm(tϕ) must belong to Vm(hϕ) otherwise
the limit limt→0 tV does not exist. Also Vm is a submodule in each tV , so in W
by continuity. By the “only if” part, W is also semi-simple, so we have semi-simple
modules V+,W+ such that holds V = Vm ⊕ V+, W = Vm ⊕ W+ and W+ belongs
to the closure of the V+-orbit, hence, we are done by induction on the number of
irreducible summands. ��

As a Corollary of the above Theorem we get Theorem 1.2, because the existence
of generic closed orbit with respect to the action of reductive groups is well-known,
see e.g. (Popov and Vinberg 1994, 7.4,7.5). ��

For a dimension vector α of a quiver Q we denote by S(α) ⊆ Q the support of α,
S(α)0 = {a ∈ Q0 : α(a) > 0}, S(α)1 = {ϕ ∈ Q1 : tϕ, hϕ ∈ S(α)0} .
Corollary 2.3 Let V be a simple representation of a quiver Q, α = dim V .

1. If 〈α, α〉 = 1, then S(α) has a single vertex and no edges (loops).
2. If 〈α, α〉 = 0, then S(α) is an oriented cycle quiver Ãn and α(i) ≤ 1, i ∈ Q0.

Proof 1. Since V is simple, then the GL(α)-orbit of V is closed by Theorem 2.2.
Since α is a Schur root, this orbit is open in R(Q, α), so we have R(Q, α) is a point,
which is equivalent to α being a simple root corresponding to a vertex without loops.
2. By (Le Bruyn and Procesi 1990, Theorem 4) S(α) is strongly connected and the
inequalities 〈α, εi 〉 ≤ 0 and 〈εi , α〉 ≤ 0 hold for every i ∈ Q0. Taking into account
the equality 〈α, α〉 = ∑

i∈Q0
α(i)〈α, εi 〉 = 0, we get 〈α, εi 〉 = 0 for every i ∈ Q0

and analogously 〈εi , α〉 = 0 for every i ∈ Q0. In other words for every j ∈ S(α)0 the
equalities hold:

∑

ϕ∈Q1,hϕ= j

α(tϕ) = α( j) =
∑

ψ∈Q1,tψ= j

α(hψ). (3)

Then for every ϕ ∈ S(α)1 the inequality α(tϕ) < α(hϕ) contradicts (3) for j = tϕ
and analogously α(tϕ) > α(hϕ) is a contradiction. Since S(α) is connected, α(i) is
constant over S(α)0. Then (3) implies that every i ∈ S(α)0 is incident to exactly one
ϕ ∈ S(α)1 with tϕ = i and exactly one ψ ∈ S(α)1 with hψ = i . Therefore S(α)

is the cyclic quiver Ãn for some n, and for this case (Le Bruyn and Procesi 1990,
Theorem 4) yields that α(i) = 1 for every i ∈ S(α)0. ��

Now we pass to the proof of Theorem 1.3 and recall the concept of étale slice
introduced in Luna (1973). For any reductive group G acting on an affine variety Z
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74 D. A. Shmelkin

and for any z ∈ Z having a closedG-orbit in Z there is aGz-stable affine locally closed
subvariety Sz ⊆ Z , z ∈ Sz such that the natural map ϕz : G ∗Gz Sz → Z , [g, s] → gs
is étale, hence, the action of G in the neighborhood of z can be studied via that
of Gz on Sz . For the case of quiver representations it was remarked in Le Bruyn
and Procesi (1990) that the slice at a semi-simple representation V = ∑k

i=1 mi Si is
Aut(V)-isomorphic to Ext1(V , V ). By formula (2) and since V is semi-simple, we
have Aut(V ) ∼= ∏k

i=1 GL(kmi ),

Ext1(V , V ) = ⊕1≤i, j≤k ei jHomk(kmi ,km j ), ei j = δi j − 〈dim Si , dim S j 〉. (4)

So following Le Bruyn and Procesi (1990) we introduce a quiver QV with k vertices
and ei j arrows from vertex i to vertex j , in particular, eii loops at vertex i . Moreover
γ = (mi , i = 1, . . . , k) is a dimension vector for QV so that we have an equivariant
isomorphism: (Aut(V ),Ext1(V , V )) ∼= (GL(γ ), R(QV , γ )).

Proposition 2.4 V is generic semi-simple if and only if mi = 1 for those i such that
〈dim Si , dim Si 〉 ≤ 0 and QV has no oriented cycles besides loops.

Proof By (Luna 1973, Corollaire 6), V is generic semi-simple if and only if the only
regular invariants for the action of GL(γ ) on R(QV , γ )/R(QV , γ )GL(γ ) are constant
functions. The invariant subspace R(QV , γ )GL(γ ) is clearly generated by loops at
vertices with dimension equal to 1. On the other hand, any loop at a vertex with
dimension bigger than 1 and every oriented cycle on more than one vertex yield a
regular non-constant GL(γ )-invariant function. By formula (4), the number of loops
in QV at a vertex i is equal to 1 − 〈dim Si , dim Si 〉 so the claim follows. ��

Now we can prove Theorem 1.3. Assume that a decomposition α = ∑k
i=1 miβi

is semi-simple generic such that βi �= β j for i �= j and let V = ∑k
i=1

∑mi
t=1 S

t
i

be the sum of generic representations in every summand of this decomposition. If
〈βi , βi 〉 = 1, then all simple representations of dimension βi are isomorphic to each
other, so

∑mi
t=1 S

t
i = mi Si . Otherwise, if 〈βi , βi 〉 < 0, then mi ≥ 2 implies that

there are at least 2 arrows of both directions between any 2 vertices out of mi in QV ,
hence, an oriented cycle in contradiction to 2.4. Only if βi is an isotropic root, then the
term miβi yields mi different vertices in QV . Anyway, by Proposition 2.4 QV has no
oriented cycles, hence, after some reordering of the summands holds 〈βi , β j 〉 = 0 for
i < j . Since Si and S j are simple and not isomorphic, then Hom(Si , S j ) = 0 holds,
hence we conclude βi ⊥ β j . Conversely, if (β1, . . . , βk) is an orthogonal sequence,
mi = 1 for 〈βi , βi 〉 < 0, and V is a generic semi-simple representation corresponding
to the decomposition α = ∑k

i=1 miβi , then all arrows of QV go from vertices with
bigger indices to thosewith smaller ones and loops only exist at vertices corresponding
to isotropic summands, which guarantees that V is generic by Proposition 2.4. ��
Remark 2.1 In Shmelkin (2007) we introduced the concept of locally semi-simple rep-
resentation and decomposition for quivers. This concept is similar butmore subtle than
semi-simple representations because it reflects semi-invariants of quivers in similar
way as semi-simple ones reflect the regular invariants: the latter have closed orbits with
respect to the action ofGL(α)whereas the former have closed orbitswith respect to the
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commutator subgroup SL(α) = (GL(α),GL(α)) of GL(α). We proved in Shmelkin
(2007) the existence of generic locally semi-simple representation and decomposi-
tion and in Shmelkin (2009) proposed an algorithm for finding this decomposition.
Moreover, Theorem 4.3 from Shmelkin (2009) is similar to 1.3.

Now we prove Theorem 1.4:

Proof By Proposition 2.4 a generic semi-simple representation V has the following
decomposition:

V =
∑

i :〈βi ,βi 〉=1

miVi +
∑

i :〈βi ,βi 〉=0

V 1
i + · · · + Vmi

i +
∑

i :〈βi ,βi 〉<0

Vi . (5)

In other words, the imaginary Schur roots such that 〈βi , βi 〉 < 0 have multiplicity
1 in the decomposition. The real roots such that 〈βi , βi 〉 = 1 may have arbitrary
multiplicity and the generic representation in dimension miβi is the sum of isomor-
phic indecomposable representations of dimension βi . The isotropic roots such that
〈βi , βi 〉 = 0 can also have arbitrary multiplicity but a generic representation is a
sum of non-isomorphic indecomposable representations of dimension βi . Then the
automorphism group has the following form:

Aut(V ) =
∏

i :〈βi ,βi 〉=1

GL(mi ) ×
∏

i :〈βi ,βi 〉=0

(k∗)mi ×
∏

i :〈βi ,βi 〉<0

k∗. (6)

Since V has a generic closedGL(α)-orbit, Theoremof Luna andRichardson (1979)
claims that restricting GL(α)-invariant functions to invariant points, R(Q, α)Aut(V ),
gives rise to an isomorphism:

k[R(Q, α)]GL(α) ∼= k
[
R(Q, α)Aut(V )

]NGL(α)(Aut(V ))

. (7)

Recall that by L we denote a selected vector subspace L = ⊕k
i=1 R(Q,miβi ) ⊆

R(Q, α). Given the direct sum and product decompositions in (5) and (6), respectively,
it is clear that the invariant subspace R(Q, α)Aut(V ) belongs to L up to GL(α)-
conjugate. By Corollary 2.3.1 the direct summand R(Q,miβi ) of L with 〈βi , βi 〉 = 1
is just zero as a vector space. For other direct summands of L the corresponding fac-
tor of Aut(V ) is a mi -dimensional torus, so that R(Q,miβi )

Aut(V ) is the whole of
R(Q, βi ) if 〈βi , βi 〉 < 0 and the direct sum of mi copies of R(Q, βi ) if 〈βi , βi 〉 = 0.
The centralizer ZGL(α)(Aut(V )) is in this case the direct product of mi copies of
GL(βi ). The normalizer NGL(α)(Aut(V )) is a finite extension of ZGL(α)(Aut(V ))

acting on the above components of LAut(V ) by permutation of those direct summands
R(Q, βi ) of LAut(V ) such that the corresponding subgroups GL(βi ) are GL(α)-
conjugate. Because of condition βi �= β j for i �= j we get the presentation as follows:

NGL(α)(Aut(V )) ∼= ZGL(α)(Aut(V )) �

∏

i :〈βi ,βi 〉=0

Smi , (8)
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76 D. A. Shmelkin

where Smi is the symmetric group of mi symbols. Hence, formulae (8) and (7) imply
the isomorphism (1). Also the fact that k[R(Q,miβi )]GL(miβi ) for 〈βi , βi 〉 = 0 is a
polynomial algebra in mi variables follows from Corollary 2.3.2. Indeed, by (7) and
(8) the algebra of invariants for a cyclic quiver in dimension vector (m,m, . . . ,m)

is isomorphic to that of symmetric polynomes in m variables, which is known to be
polynomial algebra in m variables. ��

3 Algorithm for Generic Semi-simple Decomposition

Recall that a quiver Q is called strongly connected if for any i, j ∈ Q0 there is an
oriented path from i to j in Q. A subquiver J ⊆ Q is called full if it contains every
arrow in Q1 with the tail and head in J0. In general, every quiver Q can be decomposed
uniquely into maximal strongly connected components Qi , i = 1, . . . ,m such that
Q0 = Q1

0 � . . . � Qm
0 holds and every Qi

0 is a full strongly connected subquiver.

Q0 = Q1
0 � . . . � Qm

0 , Qi
1 = {ϕ ∈ Q1 : tϕ ∈ Qi

0, hϕ ∈ Qi
0}, i = 1, . . . ,m. (9)

Notice that if Q has no oriented cycles, then the strongly connected components of Q
are just single vertex subquivers corresponding to all vertices. In general, the strongly
connected components can be thought of as vertices of a quiver SC(Q). For two
components, Qi and Q j the direction of all arrows between vertices in Qi

0 and Q j
0 is

the same by maximality condition, hence, all these arrows yield one arrow in SC(Q)1.
Remark that for Q connected SC(Q) is a connected quiver without oriented cycles.

Proposition 3.1 Let αi be a restriction of dimension vector α to Qi
0 and let αi =

∑ki
t=1m

i
tβ

i
t be the generic semi-simple decompositionofα

i as dimension vector for Qi ,

i = 1, . . . ,m. Then α = ∑m
i=1

∑ki
t=1m

i
tβ

i
t is the generic semi-simple decomposition

of α.

Proof By Theorem 1.3 the components (β i
1, . . . , β

i
ki

) constitute an orthogonal
sequence and multiplicities of non-isotropic imaginary roots are equal to 1. Then
the union of these components over all vertices of SC(Q) constitutes an orthogonal
sequence, because SC(Q) has no oriented cycles. Hence, the total decomposition is
generic semi-simple by Theorem 1.3. ��

The above proposition reduces the computation of generic semi-simple decompo-
sition to the case of strongly connected quivers.

Proposition 3.2 Let Q be a strongly connected quiver, α a dimension vector for Q,
m = min{α(i), i ∈ Q0}. For p ∈ N let γ

p
Q denote the dimension vector such that

γ
p
Q(i) = p for any i ∈ Q0. Let εi be the simple root such that εi ( j) = δij , i ∈ Q0. If

m > 0, then holds:

(i) If Q is an oriented cycle quiver Ãn, then γ 1
Q is dimension of simple representation

and the decomposition α = mγ 1
Q + ∑

i∈Q0,α(i)>m(α(i) −m)εi is generic semi-
simple.
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(ii) If Q is not isomorphic to Ãn, then γm
Q is dimension of simple representation and

the decomposition α = γm
Q + ∑

i∈Q0,α(i)>m(α(i) − m)εi is semi-simple.

Proof That γ 1
Q and γm

Q are dimensions of simple representations in cases (i) and (i i)
respectively is proven in Le Bruyn and Procesi (1990). Other components are simple
as well. In case (i) the quiver QV corresponding to the given decomposition is a union
of a full subquiver in Ãn corresponding to those i ∈ Q0 such that α(i) > m and m
additional vertices corresponding tom simple components of dimension γ 1

Q . Since γ 1
Q

is isotropic, those vertices have no arrows between each other and also have no arrows
to and from a vertex corresponding to i ∈ Q0 because 〈γ 1

Q, εi 〉 = 〈εi , γ 1
Q〉 = 0.

Because α(i) = m for at least one vertex i ∈ Q0, the connected components of
QV are equioriented Dynkin quivers Ak and single vertex single loop quivers. By
Proposition 2.4 the decomposition is generic semi-simple. ��

We generalize Proposition 2.4 as follows:

Proposition 3.3 Let V = ∑k
i=1 mi Si be a decomposition of a semi-simple represen-

tation into simple summands. Let AV be the k × n matrix such that i th row contains
the vector dim Si , γ = (m1, . . . ,mk) a dimension vector for QV . If γ = ∑l

j=1 p jρ j

is the generic semi-simple decomposition, then α = γ AV = ∑l
j=1 p j [ρ j AV ] is the

generic semi-simple decomposition.

Proof From Luna (1973) follows that the generic closed orbit in the slice (GL(γ ),

R(QV , γ )) yields the generic closed orbit in the whole R(Q, α), which is equivalent
to the statement. ��

The strongly connected components of a quiver can be computed by Tarjan’s
algorithm Tarjan (1972), that we refer to as Tarjan. Tarjan has linear computational
complexity O(|Q0| + |Q1|). Based on Tarjan we propose our algorithm of generic
semi-simple decomposition. The algorithm is recursive and uses notation introduced
before and in Proposition 3.3:

Algorithm 3.4 Generic semi-simple decomposition, GSSD(Q, α):
Input: Quiver Q, dimension vector α. Output: α = ∑k

i=1 miβi

1: Q = Qα : Qα
0 = {i ∈ Q0 : αi > 0}, Qα

1 = {ϕ ∈ Q1 : α(tϕ) > 0, α(hϕ) > 0}.
2: Tarjan: Q1, · · · , Ql maximal strongly connected components of Q.
3: α = α1 + · · · + αl , αi is dimension vector of Qi

4: If l > 1
5: return GSSD(Q1, α1) + · · · + GSSD(Ql , αl)

6: else if Q = Ãn

7: return α = mγ 1
Q + ∑

i∈Q0,α(i)>m(α(i) − m)εi , m = min{α(i), i ∈ Q0}.
8: else
9: m = min{α(i), i ∈ Q0},
10: V is semi-simple corresponding to α = γm

Q + ∑
i∈Q0,α(i)>m(α(i) − m)εi

11: return GSSD(QV , γ )AV

Proposition 3.5 Algorithm 3.4 returns the generic semi-simple decomposition and
finishes after finitely many steps
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Proof That Algorithm computes the generic semi-simple decomposition follows from
Propositions 3.1, 3.2, and 3.3. Notice that recursive calls in the Algorithm apply to
quivers with number of vertices strongly less than |Q0| in line 5 and less than or
equal to |Q0| in line 11. It is obvious for line 5 and for line 11 the vertices of QV

are those of Q such that α(i) > m (so at most |Q0| − 1 of such vertices) and an
additional one corresponding to γm

Q . In this case, if α(i) = m for just 1 vertex, then
the number of vertices for QV is equal to that for Q but the average total dimension
of the components strictly increases, which inductively guarantees a finite number of
steps in the Algorithm. ��
Remark 3.1 Both our algorithm and the one fromDerksen andWeyman (2002) reduce
computation of generic decomposition to a quiver without oriented cycles. We believe
that, although the reduction from Derksen and Weyman (2002) is quite straightfor-
ward, our method is computationally more efficient and it also clarifies the relations
between generic and generic semi-simple decompositions in the way the generic and
generic closed orbits are related in the framework of geometrical approach to Invari-
ant Theory in the spirit of Popov and Vinberg (1994). To compare the algorithms
complexity, we remark that the method from Derksen and Weyman (2002) increases
the number of vertices in two times and starts with a decomposition consisting of
2|α| summands (with multiplicities) of dimension 1, where |α| = ∑

a∈Q0
α(a). In

our method the Derksen–Weyman algorithm for orthogonal sequences typically starts
from less than |α| summands of larger dimension because imaginary simple summands
consolidate much of dimension. As for our Algorithm 3.4, it uses Tarjan’s one with
linear computational complexity, and very straightforward computations in lines 7,
10.
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