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Abstract
We consider a complete Riemannian manifold M whose boundary is a disjoint union
of finitely many complete connected Riemannian manifolds. We compute the index of
a local boundary value problem for a strongly Callias-type operator on M . Our result
extends an index theorem of D. Freed to non-compact manifolds, thus providing a
new insight on the Hořava–Witten anomaly.
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1 Introduction

A mathematical description of many anomalies in quantum field theory is given by
index theorems for boundary value problems, cf. (Atiyah and Singer 1984; Bär and
Strohmaier 2016; Freed 1986; Witten 1985) (see Bertlmann 2001, Ch. 11) for more
details). A new type of anomalies, related to index computation on an odd dimensional
space R

10 × [0, 1], was discovered by Hořava and Witten in (1996). Freed (1998),
replaced R

10 with a compact manifold, and proved a new index theorem for a local
boundary value problem on a compact manifold with boundary, which explains the
Hořava-Witten anomaly, but only for this compact case. It is desirable to give a math-
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ematically rigorous construction of such an index on non-compact manifolds with
non-compact boundary.

A systematic treatment of boundary value problems for strongly Callias-type oper-
ators on non-compact manifolds with non-compact boundary was given in Braverman
and Shi (2017b), where we extended the approach of Bär and Ballmann (2012) to non-
compact setting. In particular, we defined elliptic boundary conditions and proved that
the corresponding boundary value problem is Fredholm. We emphasize that these
results are valid for so called strongly Callias-type operators — Dirac operators cou-
pled with an electric potential satisfying certain growth conditions at infinity.

One advantage of the approach to boundary value problems in Bär and Ballmann
(2012), Braverman and Shi (2017b) is that it unifies local and non-local (eg. Atiyah–
Patodi–Singer) boundary conditions. In Braverman and Shi (2017a, b) we studied the
index defined by (generalized) Atiyah–Patodi–Singer boundary conditions on mani-
foldswith non-compact boundary. InShi (2018) the second author studied theCalderón
projection in the non-compact situation and obtained an expression of the index of
an elliptic boundary value problem in terms of the relative index of the Calderón
projection and the projection onto the boundary conditions. In the current paper we
study local boundary conditions for Callias-type operators and prove a non-compact
analogue of Freed’s index theorem (Freed 1998, Theorem B).

We now give a brief description of our results.
Let M be a complete Riemannian manifold with non-compact boundary ∂M . We

assume that ∂M = ⊔k
j=1 N j is a disjoint union of finitely many connected compo-

nents. Then each N j is a complete manifold without boundary. Let E be an (ungraded)
Dirac bundle over M and let D denote the Dirac operator on E . Let D = D + � be a
formally self-adjoint Callias-type operator on M . We impose slightly stronger condi-
tions on the growth of the potential� and call the operators satisfying these conditions
strongly Callias-type. On manifolds without boundary these conditions guarantee that
D has a discrete spectrum.

The restriction A j ( j = 0, . . . , k) of D to the boundary component N j is a self-
adjoint strongly Callias-type operator on N j and, hence, has discrete spectrum. In
particular, it is Fredholm. Moreover, the Clifford multiplication by the unit normal
vector to the boundary defines a grading on EN j := E |N j and A j is odd with respect
to this grading. We denote by indA j its index.

Set B±
j := L2(N j , E

±
N j

). Let ε := (ε1, . . . , εk) where ε j = ± and set Bε :=
⊕k

j=1 B
ε j
j . Then Bε ⊂ L2(∂M, E∂M ), where E∂M := E |∂M . We use the result in

Sect. 3 to show that Bε defines an elliptic boundary condition forD. Hence the operator

DBε : {
u ∈ L2(M, E) : u|∂M ∈ Bε

} → L2(M, E). (1.1)

is Fredholm.
Our main result in this paper (cf. Theorem 5.4) is the following generalization of

of (Freed 1998, Theorem B):

indDBε =
∑

{ j : ε j=+}
indA j = −

∑

{ j : ε j=−}
indA j . (1.2)
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Index of a Local Boundary Value Problem 81

If all ε j have the same sign, then (1.2) becomes

indDBε =
k∑

j=1

indA j = 0.

This gives a new proof of the cobordism invariance of the index of Callias-type oper-
ators, cf. (Braverman and Shi 2016).

Freed (1998), only considers the case when the dimension of M is odd. This is
because the index of an elliptic differential operator on a compact odd-dimensional
manifold without boundary vanishes and the compact analogue of (1.2) is trivial when
dim M = even. This is not the case for the index of Callias-type operators on non-
compact manifolds. In fact, the odd-dimensional case is very interesting and is the
subject of the celebrated Callias-type index theorem (Anghel 1993; Bunke 1995).
That is why we don’t assume that the dimension of M is odd.

2 Boundary Value Problems for Manifolds with Non-compact
Boundary

In the beginning of this section we briefly recall the notion of strongly Callias-type
operator and define the scale of Sobolev spaces defined by such an operator. We then
recall the definition of an elliptic boundary value problem for a strongly Callias-type
operator (Braverman and Shi 2017b) and define its index.

2.1 Strongly Callias-Type Operator

Let M be a complete Riemannian manifold (possibly with boundary) and let E → M
be a Dirac bundle over M , cf. (Lawson and Michelsohn 1989, Definition II.5.2). In
particular, E is a Hermitian vector bundle endowed with a Clifford multiplication c :
T ∗M → End(E) and a compatible Hermitian connection∇E . Let D : C∞(M, E) →
C∞(M, E) be the Dirac operator defined by the connection ∇E . Let � ∈ End(E) be
a self-adjoint bundle map (called a Callias potential). Then

D := D + �

is a formally self-adjoint Dirac-type operator on E and

D2 = D2 + �2 + [D, �]+, (2.1)

where [D, �]+ := D ◦ � + � ◦ D is the anticommutator of the operators D and �.

Definition 2.1 We call D a self-adjoint strongly Callias-type operator if

(1) [D, �]+ is a zeroth order differential operator, i.e. a bundle map;
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(2) for any R > 0, there exists a compact subset KR ⊂ M such that

�2(x) − ∣
∣[D, �]+(x)

∣
∣ ≥ R (2.2)

for all x ∈ M\KR . In this case, the compact set KR is called an R-essential
support of D.

2.2 Restriction to the Boundary

Assume that the Riemannian metric gM is product near the boundary, that is, there
exists a neighborhood U ⊂ M of the boundary which is isometric to the cylinder

Zr := [0, r) × ∂M . (2.3)

In the following we identify U with Zr and denote by t the coordinate along the axis
of [0, r). Then the inward unit conormal to the boundary is given by τ = dt .

Furthermore, we assume that the Dirac bundle E is product near the boundary.
This means that the Clifford multiplication c : T ∗M → End(E) and the connection
∇E have product structure on Zr , cf. (Braverman and Shi 2017b, §3.7). Then the
restriction of D to Zr takes the form

D = c(τ )(∂t + A), (2.4)

where A : C∞(∂M, E∂M ) → C∞(∂M, E∂M ) is a self-adjoint Dirac-type operator
which anticommutes with c(τ ):

c(τ ) ◦ A = − A ◦ c(τ ). (2.5)

Let D = D + � be a self-adjoint strongly Callias-type operator. Suppose � does
not depend on t on Zr . Then the restriction of D to Zr is given by

D = c(τ )(∂t + A), (2.6)

where A := A − c(τ )� : C∞(∂M, E∂M ) → C∞(∂M, E∂M ) is the restriction of
D to the boundary.

Condition (1) of Definition 2.1 is equivalent to the condition that � anticommutes
with the Clifford multiplication:

[
c(ξ),�

]
+ = 0, for all ξ ∈ T ∗M . It follows that

c(τ )� ∈ End(E∂M ) is a self-adjoint bundle map which anticommutes with c(τ ).
Hence, using (2.5), we obtain

c(τ ) ◦ A = −A ◦ c(τ ). (2.7)

In addition, A is a strongly Callias-type operator, cf. Lemma 3.12 of Braverman and
Shi (2017b). In particular, it has discrete spectrum.
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Index of a Local Boundary Value Problem 83

Definition 2.2 We say that a self-adjoint strongly Callias-type operator D is product
near the boundary if theDirac bundle E is product near the boundary and the restriction
of the Callias potential� to Zr does not depend on t . The operatorA of (2.6) is called
the restriction of D to the boundary.

Throughout the paper we assume that D is product near the boundary.

Remark 2.3 The index theory of a boundary value problem on a compact manifold
with boundary can be extended to the non-product case, (Braverman and Maschler
2017; Gilkey 1993). In this case there is a correction to the index formula given by
the integral of a transgression form over the boundary. Though in certain situations
one can slightly release the product condition even in the non-compact setting, cf.
[7], in general an elliptic boundary value problem non-compact manifold with non-
product structure near the boundary is not Fredholm. This is because the integral of the
transgression formmight diverge. It would be very interesting to find a general enough
condition on the shape of the manifold near the boundary, which would guarantee the
Fredholmness.

2.3 The Grading on the Boundary

Let E±
∂M ⊂ E∂M denote the span of the eigenvectors of c(τ ) associatedwith eigenvalue

±i . Then E∂M = E+
∂M ⊕ E−

∂M . By (2.7), with respect to this decomposition

A =
(

0 A−
A+ 0

)

, (2.8)

where A± := A|E±
∂M

.

2.4 Sobolev Spaces

We recall the definition of Sobolev spaces Hs
A(∂M, E∂M ) of sections over ∂M which

depend on the boundary operator A, cf. (Braverman and Shi 2017b, §3.13).

Definition 2.4 Set

C∞
A (∂M, E∂M )

:=
{
u ∈ C∞(∂M, E∂M ) : ∥

∥(id+A2)s/2u
∥
∥2
L2(∂M,E∂M )

< +∞ for all s ∈ R

}
.

For all s ∈ R we define the Sobolev Hs
A-norm on C∞

A (∂M, E∂M ) by

‖u‖2Hs
A(∂M,E∂M ) := ∥

∥(id+A2)s/2u
∥
∥2
L2(∂M,E∂M )

. (2.9)

The Sobolev space Hs
A(∂M, E∂M ) is defined to be the completion of C∞

A (∂M, E∂M )

with respect to this norm.
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2.5 The Hybrid Soblev Spaces

For I ⊂ R, let PA
I : L2(∂M, E∂M ) → L2(∂M, E∂M ) be the spectral projection onto

the span of the eigenvectors ofAwith eigenvalues in I . It’s easy to see that PI extends
to a continuous projection on Hs

A(∂M, E∂M ) for all s ∈ R. We set

Hs
I (A) := PA

I (Hs
A(∂M, E∂M )) ⊂ Hs

A(∂M, E∂M ).

Definition 2.5 For a ∈ R, we define the hybrid Sobolev space

Ȟ(A) := H1/2
(−∞,a)(A) ⊕ H−1/2

[a,∞)(A) ⊂ H−1/2
A (∂M, E∂M ),

Ĥ(A) := H−1/2
(−∞,a)(A) ⊕ H1/2

[a,∞)(A) ⊂ H−1/2
A (∂M, E∂M )

(2.10)

with Ȟ -norm or Ĥ -norm

‖u‖2
Ȟ(A)

:= ∥
∥PA

(−∞,a)u
∥
∥2
H1/2
A (∂M,E∂M )

+ ∥
∥PA

[a,∞)u
∥
∥2
H−1/2
A (∂M,E∂M )

,

‖u‖2
Ĥ(A)

:= ∥
∥PA

(−∞,a)u
∥
∥2
H−1/2
A (∂M,E∂M )

+ ∥
∥PA

[a,∞)u
∥
∥2
H1/2
A (∂M,E∂M )

.

The space Ȟ(A) or Ĥ(A) is independent of the choice of a. They are dual to each
other. Note from (2.7) that c(τ ) induces an isomorphism between Ȟ(A) and Ĥ(A).
By Theorem 3.39 of Braverman and Shi (2017b), the hybrid space Ȟ(A) coincides
with the space of restrictions to the boundary of sections of E which lie in the maximal
domain of D.

2.6 Elliptic Boundary Value Problems

We are now ready to define elliptic boundary conditions for D.

Definition 2.6 An elliptic boundary condition for D is a closed subspace B ⊂ Ȟ(A)

such that both B and its adjoint boundary value space

Bad := {
v ∈ Ȟ(A) : (

u, c(τ )v
) = 0 for all u ∈ B

}
(2.11)

are subspaces of H1/2
A (∂M, E∂M ).

We have shown in Braverman and Shi (2017b) that, ifD is product near the bound-
ary, then an elliptic boundary value problem DB is Fredholm. Its index is defined
by

indDB := dim kerDB − dim kerDBad ∈ Z.

3 Elliptic Boundary Conditions and Fredholm Pairs

In Shi (2018), the second author studied the relationship between Atiyah–Patodi–
Singer index and the Cauchy data spaces using the method of Fredholm pairs. In
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Index of a Local Boundary Value Problem 85

this section, we provide a new description of elliptic boundary conditions from the
perspective of Fredholm pairs. The main result is similar in spirit to Definition 7.5 of
Bär and Ballmann (2012).

3.1 Fredholm Pair of Subspaces

We recall the notion of a Fredholm pair of subspaces. Let Z be a Hilbert space. A pair
(X ,Y ) of closed subspaces of Z is called a Fredholm pair if

(i) dim(X ∩ Y ) < ∞;
(ii) X + Y is a closed subspace of Z ;
(iii) codim(X + Y ) := dim Z/(X + Y ) < ∞.

The index of a Fredholm pair (X ,Y ) is defined to be

ind(X ,Y ) := dim(X ∩ Y ) − codim(X + Y ) ∈ Z.

3.2 Fredholm Pairs Associated to an Elliptic Boundary Condition

LetD : C∞(M, E) → C∞(M, E)be a self-adjoint stronglyCallias-typeoperator on a
manifold with non-compact boundary. LetA : C∞(∂M, E∂M ) → C∞(∂M, E∂M ) be
the restriction ofD to ∂M . Recall that byDefinition 2.6 a closed subspace B of Ȟ(A) is
an elliptic boundary condition if B ⊂ H1/2

A (∂M, E∂M ) and Bad ⊂ H1/2
A (∂M, E∂M ).

Since the H1/2
A -norm is stronger than the Ȟ -norm, in this case B is also closed in

H1/2
A (∂M, E∂M ). Generally, if B is a closed subspace of H1/2

A (∂M, E∂M ), then we
define

B∗ := B0 ∩ H1/2
A (∂M, E∂M ), (3.1)

where B0 ⊂ H−1/2
A (∂M, E∂M ) is the annihilator of B. The main result of this section

is the following equivalent definition of elliptic boundary conditions.

Theorem 3.1 A subspace B ⊂ H1/2
A (∂M, E∂M ) is an elliptic boundary condition for

D if and only if

(1) B is closed in H1/2
A (∂M, E∂M ),

(2) (H1/2
[0,∞)(A), B), (H1/2

(−∞,0)(A), B∗) are Fredholm pairs in H1/2
A (∂M, E∂M ), and

(3) ind(H1/2
[0,∞)(A), B) = − ind(H1/2

(−∞,0)(A), B∗).

If B satisfies (1), (2) and (3), then Bad = c(τ )B∗.

A very typical elliptic boundary condition is the (generalized) Atiyah–Patodi–
Singer boundary condition B = H1/2

(−∞,a)(A) for some a ∈ R. In this case

B∗ = H1/2
[a,∞)(A). One immediately sees that both (H1/2

[0,∞)(A), H1/2
(−∞,a)(A)) and

(H1/2
(−∞,0)(A), H1/2

[a,∞)(A)) are Fredholm pairs in H1/2
A (∂M, E∂M ), and
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ind(H1/2
[0,∞)(A), H1/2

(−∞,a)(A)) = − dim L2
[a,0)(A)

= − ind(H1/2
(−∞,0)(A), H1/2

[a,∞)(A)) for a < 0
or

ind(H1/2
[0,∞)(A), H1/2

(−∞,a)(A)) = dim L2
[0,a)(A)

= − ind(H1/2
(−∞,0)(A), H1/2

[a,∞)(A)) for a ≥ 0.

We break the proof of Theorem 3.1 into several steps which occupy the next two
subsections.

3.3 Proof of the“if” Direction

We apply the arguments of (Shi 2018, Subsection 3.3). Suppose (H1/2
[0,∞)(A), B) is a

Fredholm pair in H1/2
A (∂M, E∂M ). Write B in the following direct sum of the pair of

transversal subspaces

B =
(
H1/2

[0,∞)(A) ∩ B
)

+̇ V ,

where V is some closed subspace of H1/2
A (∂M, E∂M ). Letπ< (resp.π≥) be the projec-

tion of V onto H1/2
(−∞,0)(A) (resp. H1/2

[0,∞)(A)) along H1/2
[0,∞)(A) (resp. H1/2

(−∞,0)(A)).
Then π< is injective and

rangeπ< =
(
H1/2

[0,∞)(A) + B
)

∩ H1/2
(−∞,0)(A)

is closed (in both H1/2
A (∂M, E∂M ) and Ȟ(A)). By closed graph theorem, π< has a

bounded inverse ι< : rangeπ< → V . One then has a bounded operator φ := π≥ ◦ ι< :
rangeπ< → rangeπ≥. Then V = graph(φ), and, hence,

B =
(
H1/2

[0,∞)(A) ∩ B
)

+̇ graph(φ).

Let φ̌ be the composition

rangeπ<
φ−→ rangeπ≥ ↪→ H−1/2

[0,∞)(A).

Viewed as a map from a closed subspace of Ȟ(A) to Ȟ(A), φ̌ is a bounded operator.
Note that B can also be written as

B =
(
H1/2

[0,∞)(A) ∩ B
)

+̇ graph(φ̌) ⊂ Ȟ(A). (3.2)

Since the first summand is finite-dimensional, B is closed in Ȟ(A).
It now remains to show that Bad ⊂ H1/2

A (∂M, E∂M ).We need the following lemma.
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Lemma 3.2 (H−1/2
[0,∞)(A), B) is a Fredholm pair in Ȟ(A) and

ind
(
H−1/2

[0,∞)(A), B
)

= ind
(
H1/2

[0,∞)(A), B
)

.

Proof Let �< denote the projection from Ȟ(A) onto H1/2
(−∞,0)(A) along H1/2

[0,∞)(A).

Then �< is an orthogonal projection with respect to the scalar product on Ȟ(A). Its
restriction to H1/2

A (∂M, E∂M ) is also the orthogonal projection (with respect to the

scalar product on H1/2
A (∂M, E∂M )) from H1/2

A (∂M, E∂M ) onto H1/2
(−∞,0)(A). Since

(H1/2
[0,∞)(A), B) is a Fredholm pair in H1/2

A (∂M, E∂M ), by (Shi 2018, Proposition

3.5), �<|B : B → H1/2
(−∞,0)(A) is a Fredholm operator and

ind
(
H1/2

[0,∞)(A), B
)

= ind�<|B .

Note that B is also closed in Ȟ(A). It then follows that (H−1/2
[0,∞)(A), B) is a Fredholm

pair in Ȟ(A) and

ind
(
H−1/2

[0,∞)(A), B
)

= ind�<|B = ind(H1/2
[0,∞)(A), B).

�
Now we use the hypothesis that (H1/2

(−∞,0)(A), B∗) is a Fredholm pair in

H1/2
A (∂M, E∂M ). Applying the above discussions similarly, one concludes that B∗

is a closed subspace of Ĥ(A). Moreover, (H−1/2
(−∞,0)(A), B∗) is a Fredholm pair in

Ĥ(A) satisfying

ind
(
H−1/2

(−∞,0)(A), B∗) = ind
(
H1/2

(−∞,0)(A), B∗) . (3.3)

Recall that B is closed in Ȟ(A). As a subspace of Ȟ(A), we denote its annhilator to
be

B̂0 := B0 ∩ Ĥ(A). (3.4)

Clearly, B∗ ⊂ B̂0. From Lemma 3.2 and (Shi 2018, Proposition 3.5), we obtain that
(H−1/2

(−∞,0)(A), B̂0) is a Fredholm pair in Ĥ(A) and

ind
(
H−1/2

(−∞,0)(A), B̂0
)

= − ind
(
H−1/2

[0,∞)(A), B
)

= − ind
(
H1/2

[0,∞)(A), B
)

.

(3.5)

Combining (3.3), (3.5) and Theorem 3.1 (3) yields that

ind
(
H−1/2

(−∞,0)(A), B∗) = ind
(
H−1/2

(−∞,0)(A), B̂0
)

.
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Now using (Shi 2018, Lemma 4.1), we finally obtain B∗ = B̂0. Since Bad = c(τ )B̂0,
one deduces that Bad ⊂ H1/2

A (∂M, E∂M ). Therefore B is an elliptic boundary condi-
tion for D.

3.4 Proof of the“Only if” Direction

Let B ⊂ Ȟ(A) be an elliptic boundary condition. Then condition (1) of Theorem3.1 is
automatically true and the Ȟ -norm is equivalent to the H1/2

A -norm on B. Let�< (resp.

�≥) denote the orthogonal projection from Ȟ (A) onto H1/2
(−∞,0)(A) (resp. H−1/2

[0,∞)(A)).
For any u ∈ B, there exists a constant C > 0 such that

‖u‖
H1/2
A

≤ C‖u‖Ȟ(A)
= C

(‖�<u‖
H1/2
A

+ ‖�≥u‖
H−1/2
A

)
.

By (Braverman and Shi 2017b, Theorem 3.19), the map

�≥ : B ⊂ H1/2
A (∂M, E∂M ) → H1/2

[0,∞)(A) ↪→ H−1/2
[0,∞)(A)

is compact. Using (Bär and Ballmann 2012, Proposition A.3), one concludes that
�< : B → H1/2

(−∞,0)(A) has finite-dimensional kernel and closed image. In other

words, H1/2
[0,∞)(A)∩B is finite-dimensional and H1/2

[0,∞)(A)+B (resp. H−1/2
[0,∞)(A)+B)

is a closed subspace of H1/2
A (∂M, E∂M ) (resp. Ȟ(A)). By the fact that B is an elliptic

boundary condition,

Bad = c(τ )B̂0 ⊂ H1/2
A (∂M, E∂M ),

where B̂0 is defined in (3.4). Viewed as a subspace of Ȟ(A), the annihilator of
H−1/2

[0,∞)(A) + B is

H−1/2
(−∞,0)(A) ∩ B̂0 ∼= H−1/2

(0,∞)(A) ∩ Bad = H1/2
(0,∞)(A) ∩ Bad.

By the same reason as above,

+∞ > dim
(
H1/2

(0,∞)(A) ∩ Bad
)

= codim
(
H−1/2

[0,∞)(A) + B
)

.

Therefore (H−1/2
[0,∞)(A), B) is a Fredholm pair in Ȟ(A).

Using the same argument as in the proof of Lemma 3.2, we can prove the following

Lemma 3.3 (H1/2
[0,∞)(A), B) is a Fredholm pair in H1/2

A (∂M, E∂M ) and

ind
(
H1/2

[0,∞)(A), B
)

= ind
(
H−1/2

[0,∞)(A), B
)

. (3.6)
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Since B is an elliptic boundary condition, from the discussion above, B̂0 ⊂
H1/2
A (∂M, E∂M ). Thus

B∗ = B̂0 ∩ H1/2
A (∂M, E∂M ) = B̂0.

By the fact that (H−1/2
[0,∞)(A), B) is a Fredholm pair in Ȟ(A), one concludes that

(H−1/2
(−∞,0)(A), B∗) is a Fredholm pair in Ĥ(A). It then follows from Lemma 3.3 that

(H1/2
(−∞,0)(A), B∗) is a Fredholm pair in H1/2

A (∂M, E∂M ) and

ind
(
H1/2

(−∞,0)(A), B∗)

= ind
(
H−1/2

(−∞,0)(A), B∗) = − ind
(
H−1/2

[0,∞)(A), B
)

= − ind
(
H1/2

[0,∞)(A), B
)

,

so conditions (2) and (3) of Theorem 3.1 are verified. We thus complete the proof of
Theorem 3.1. �

3.5 An Index Formula Regarding Fredholm Pairs

Let B1 and B2 be two elliptic boundary conditions forD. ThenDB1 andDB2 are Fred-
holm operators. By Theorem 3.1, (H1/2

[0,∞)(A), B1) and (H1/2
[0,∞)(A), B2) are Fredholm

pairs in H1/2
A (∂M, E∂M ). The following theorem, which generalizes (Braverman and

Shi 2017b, Proposition 5.8) and can be compared with (Bär and Ballmann 2012, Theo-
rem 8.15) (where the boundary is compact), computes the difference of the two elliptic
boundary value problems in terms of the indexes of Fredholm pairs.

Theorem 3.4 Suppose D is a strongly Callias-type operator on M which is product
near the boundary. Let B1, B2 ⊂ H1/2

A (∂M, E∂M ) be elliptic boundary conditions for
D. Then

indDB1 − indDB2 = ind
(
H1/2

[0,∞)(A), B1

)
− ind

(
H1/2

[0,∞)(A), B2

)
. (3.7)

Let B⊥
2 be the orthogonal complement of B2 in H1/2

A (∂M, E∂M ). If (B⊥
2 , B1) is a

Fredholm pair in H1/2
A (∂M, E∂M ), then

indDB1 − indDB2 = ind(B⊥
2 , B1). (3.8)

Remark 3.5 Note that the hypothesis that (B⊥
2 , B1) is a Fredholm pair is essential. In

Sect. 4 (cf. Remark 4.5), we will provide an example that the hypothesis does not hold.

123



90 M. Braverman, P. Shi

Proof We first show that (3.7) can be implied by (3.8). Since both (H1/2
[0,∞)(A), B1)

and (H1/2
[0,∞)(A), B2) are Fredholm pairs in H1/2

A (∂M, E∂M ), by (3.8),

indDB1 − indDAPS = ind(H1/2
[0,∞)(A), B1),

indDB2 − indDAPS = ind(H1/2
[0,∞)(A), B2),

where DAPS denotes the APS boundary value problem for D. Then (3.7) is verified
by taking the difference of the two equations.

We now prove (3.8). Since (B⊥
2 , B1) is a Fredholm pair in H1/2

A (∂M, E∂M ), we
can adapt the idea of Sect. 3.3 to write B1 in the following form

B1 = (B⊥
2 ∩ B1) +̇ graph(φ),

where φ is a bounded operator from (B⊥
2 + B1) ∩ B2 to B⊥

2 . For 0 ≤ s ≤ 1, let

B1,s = (B⊥
2 ∩ B1) +̇ graph(sφ).

Then B1,1 = B1 and B1,s is an elliptic boundary condition for each s. Moreover,
(B⊥

2 , B1,s) is a Fredholm pair in H1/2
A (∂M, E∂M ) and

ind(B⊥
2 , B1,s) = ind(B⊥

2 , B1), for any s ∈ [0, 1].
Consider the family of Fredholm operatorsDB1,s . Applying the arguments of (Bär and
Ballmann 2012, Theorem 8.12) indicates that

indDB1,s = indDB1 , for any s ∈ [0, 1].
Thus without loss of generality, one can assume that

B1 = B1,0 = (B⊥
2 ∩ B1) ⊕ ((B⊥

2 + B1) ∩ B2).

Let X be the orthogonal complement of B⊥
2 + B1 in H1/2

A (∂M, E∂M ). Note that X
is a finite-dimensional space, so B1 ⊕ X is still an elliptic boundary condition for D.
Since B1, B2 ⊂ B1 ⊕ X , using the idea of (Bär and Ballmann 2012, Corollary 8.8),
we have

indDB1 − indDB1⊕X = − dim X = − codim(B⊥
2 + B1),

indDB2 − indDB1⊕X = − dim(B⊥
2 ∩ B1).

Taking the difference of the two equations yields (3.8). �

4 A Local Boundary Value Problem for Strongly Callias-Type
Operators

In this sectionwe introduce a local boundary condition forD and show that it is elliptic.
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4.1 Splitting of the Vector Bundle on the Boundary

From now on we assume that there is given an orthogonal decomposition

E∂M = Ẽ+
∂M ⊕ Ẽ−

∂M (4.1)

such that

A =
(

0 A−
A+ 0

)

(4.2)

with respect to the grading (4.1). Here A− = (A+)∗.
The grading (4.1) might ormight not be induced by the Cliffordmultiplication c(τ ).

One of the main and most natural examples of such grading is the grading defined in
Sect. 2.3. This is the grading considered by Freed in (1998).

4.2 Boundary Value Space Induced by a Graded Bundle

By the decomposition (4.1), each u ∈ H1/2
A (∂M, E∂M ) has the form u = (u+,u−).

Consider closed subspaces

B+ =
{
(u+, 0) ∈ H1/2

A (∂M, E∂M )
}

, B− =
{
(0,u−) ∈ H1/2

A (∂M, E∂M )
}

(4.3)

of H1/2
A (∂M, E∂M ). Then H1/2

A (∂M, E∂M ) = B+ ⊕ B−.

Proposition 4.1 (H1/2
[0,∞)(A), B+) is a Fredholm pair in H1/2

A (∂M, E∂M ) and

ind
(
H1/2

[0,∞)(A), B+)
= dim kerA+. (4.4)

Similarly, (H1/2
[0,∞)(A), B−) is a Fredholm pair and

ind
(
H1/2

[0,∞)(A), B−)
= dim kerA−. (4.5)

The proof of the proposition is based on the following

Lemma 4.2 We have

H1/2
[0,∞)(A) ∩ B+ = {

(u+, 0) : u+ ∈ kerA+ }
. (4.6)

In particular, H1/2
[0,∞)(A) ∩ B+ ∼= kerA+.
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Proof Since A is anti-diagonal with respect to the grading E∂M = Ẽ+
∂M ⊕ Ẽ−

∂M , one
readily sees that if v = (v+, v−) is an eigenvector ofA associated with eigenvalue λ,
then ṽ := (v+,−v−) is an eigenvector of A associated with eigenvalue −λ.

Each u = (u+, 0) ∈ H1/2
[0,∞)(A) ∩ B+ has an expansion into a sum of eigenvectors

u = ∑
a jv j , where a j ∈ C and v j = (v+

j , v−
j ) is an eigenvector of A associated

with eigenvalue λ j ≥ 0. Then u+ = ∑
a jv

+
j and 0 = ∑

a jv
−
j . It follows that

u = ∑
a j ṽ j , where as above ṽ j = (v+

j ,−v−
j ). Since ṽ j ’s are eigenvectors associated

with non-positive eigenvalues we conclude that u ∈ H1/2
(−∞,0](A). Since

H1/2
(−∞,0](A) ∩ H1/2

[0,∞)(A) = kerA,

weobtainu = (u+, 0) ∈ kerA. Thusu+ ∈ kerA+. It follows that H1/2
[0,∞)(A) ∩ B+ ⊂

{
(u+, 0) : u+ ∈ kerA+ }

. The opposite inclusion is obvious. �
Proof of Proposition 4.1 We only prove (4.4). The proof of the other equality is anal-
ogous.

In view of Lemma 4.2, we only need to show that

H1/2
[0,∞)(A) + B+ = H1/2

A (∂M, E∂M ). (4.7)

Choose an arbitrary u = (u+,u−) ∈ H1/2
(−∞,0)(A). Then v1 := (u+,−u−) ∈

H1/2
[0,∞)(A). Now let v2 = (2u+, 0) ∈ B+. Then −v1 + v2 = u. So

H1/2
(−∞,0)(A) ⊂ H1/2

[0,∞)(A) + B+.

Therefore (4.7) is true. This completes the proof of the proposition. �
Since H1/2

[0,∞)(A) and H1/2
(−∞,0)(A), B± and B∓ are orthogonal to each other as

subspaces of H1/2
A (∂M, E∂M ), it follows from Proposition 4.1 that

Corollary 4.3 (H1/2
(−∞,0)(A), B±) are Fredholm pairs in H1/2

A (∂M, E∂M ) and

ind
(
H1/2

(−∞,0)(A), B±)
= − dim kerA∓. (4.8)

From Proposition 4.1 and Corollary 4.3, one readily sees that B± satisfies Theo-
rem 3.1. Therefore we get

Theorem 4.4 B± is an elliptic boundary condition for D, whose adjoint boundary
condition is c(τ )B∓.

Wecall B± theboundary condition subject to the grading (4.1). It is a local boundary
condition for D.
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Remark 4.5 If in this situation we let B+ and B− be the B1 and B2 as in Theorem 3.4,
then (B⊥

2 , B1) = (B+, B+) is not a Fredholm pair (cf. Remark 3.5).

Corollary 4.6 DB+ (resp. DB− ) is a Fredholm operator, whose adjoint operator is
Dc(τ )B− (resp. Dc(τ )B+).

4.3 An Index Theorem

Substituting B1 = B+ and B2 = B− in Theorem 3.4 and using Proposition 4.1, we
get the following index formula for the local boundary value problem:

Theorem 4.7 Let B± be as in Sect. 4.2. Then

indDB+ − indDB− = indA. (4.9)

5 Index of the Local Boundary Problem Subject to Natural Gradings

In this section we formulate our main result—the index theorem for a local boundary
value problemsimilar to the one considered inFreed (1998). Firstweobtain a vanishing
result for the index subject to the grading E∂M = E+

∂M ⊕ E−
∂M given by the action of

c(τ ), cf. Sect. 2.3. As an applicationwe obtain a new proof of the cobordism invariance
of the index of a Callias-type operator. Then we assume that the boundary has multiple
components ∂M = ⊔

N j with the local boundary condition u|N j ∈ E±
∂M |N j and

obtain an extension of the index theoremof Freed (1998), to our non-compact situation.

5.1 AVanishing Result

Choose the grading (4.1) so that c(τ )|E±
∂M

= ±i (this is, for example, the case for
the spinor bundle on the boundary of an odd-dimensional manifold). Then near the
boundary D has the form

D =
(
i 0
0 −i

) (

∂t +
(

0 A−
A+ 0

))

. (5.1)

In this case c(τ )B± = B±, thus DB+ and DB− are adjoint operator to each other by
Corollary 4.6.

Proposition 5.1 Under the above assumption, indDB± = 0.

Proof A verbatim repetition of the arguments in the proof of (Bavnbek and Woj-
ciechowski 1993, Theorem 21.5) shows that kerDB± = {0}. Since (DB+)ad = DB− ,
the index of DB± vanishes. �

Combining this proposition with Theorem 4.7, we obtain the following cobordism
invariance of the index of strongly Callias-type operators (cf. Braverman and Shi
2016 where this result is proven by a different method. Yet another proof is given in
(Braverman and Cecchini 2018, §2.7)):
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Corollary 5.2 Let A : C∞(N , E±) → C∞(N , E∓) be a graded strongly Callias-
type operator on a non-compact manifold N. Suppose there exist a non-compact
manifold M, a Dirac bundle Ê → M and a self-adjoint strongly Callias-type operator
D : C∞(M, Ê) → C∞(M, Ê) such that ∂M = N, Ê |∂M = E+ ⊕ E− and D takes
the form (5.1) near ∂M. Then indA = 0.

5.2 The Case of Multiple Boundary Components

Assume that ∂M = ⊔k
j=1 N j is a disjoint union of finitely many connected compo-

nents. The restriction EN j of E to each connected component N j inherits the grading
(4.1):

EN j = E+
N j

⊕ E−
N j

.

We denote the restriction of D to E±
N j

by A±
j . Then E±

∂M = ⊕k
j=1 E

±
N j

and A± =
⊕k

j=1A±
j . Let ε = (ε1, . . . , εk) with ε j = + or −.

Definition 5.3 We call Bε := ⊕k
j=1 B

ε j
j the mixed boundary condition subject to the

grading (4.1), where B
ε j
j is the local boundary condition (4.3) on each component

(N j , EN j ) of the boundary.

Using the same arguments as in Sect. 4, one can show that Bε is an elliptic boundary
condition forD, whose adjoint boundary condition is B ε̄ , where ε̄ j = −ε j . Applying
Theorem 4.7 to this situation we obtain the following generalization of (Freed 1998,
Theorem B):

Theorem 5.4 Let M be a complete manifold with boundary and let E → M be a
Dirac bundle over M. LetD = D+� be a formally self-adjoint strongly Callias-type
operator on E. Assume that the boundary ∂M of M is a disjoint union of finitely many
connected components ∂M = ⊔k

j=1 N j . Fix ε := (ε1, . . . , εk) with ε j = ± and set

Bε = ⊕k
j=1 B

ε j
j . Then

indDBε =
∑

{ j : ε j=+}
indA j = −

∑

{ j : ε j=−}
indA j . (5.2)

Proof The second equlity of (5.2) follows from Corollary 5.2.
We can apply Proposition 4.1 to each boundary component to conclude that

(H1/2
[0,∞)(A j ), B

ε j
j ) is a Fredholm pair in H1/2

A j
(N j , EN j ) and

ind
(
H1/2

[0,∞)(A j ), B
ε j
j

)
= dim kerAε j

j .
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As in the proof of Theorem 4.7, using (3.7) we obtain

indDBε − indDAPS =
k∑

j=1

ind(H1/2
[0,∞)(A j ), B

ε j
j ) =

k∑

j=1

dim kerAε j
j

and

indDB− − indDAPS =
k∑

j=1

ind
(
H1/2

[0,∞)(A j ), B
−
j

)
=

k∑

j=1

dim kerA−
j .

By Proposition 5.1, indDB− = 0. Hence,

indDBε = (indDBε − indDAPS) − (indDB− − indDAPS)

=
k∑

j=1

(dim kerAε j
j − dim kerA−

j ) =
∑

{ j : ε j=+}
indA j .

This completes the proof. �
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