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NEIGHBORHOODS OF RATIONAL CURVES
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Abstract. Suppose that F is a smooth and connected complex surface (not

necessarily compact) containing a smooth rational curve with positive self-
intersection. We prove that if there exists a non-constant meromorphic func-

tion on F , then the field of meromorphic functions on F is isomorphic to the
field of rational functions in one or two variables over C.

1. Introduction

It is well known (see Proposition 5.1 below for references) that the field of mero-
morphic functions on a 2-dimensional neighborhood of the Riemann sphere with
positive self-intersection is a finitely generated extension of C, of transcendence
degree at most 2. In recent papers [5, 6, 8] examples of such neighborhoods were
constructed for which this transcendence degree assumes all values from 0 through 2
(in particular, examples of non-algebraizable neighborhoods with transcendence de-
gree 2 were found).

Now it seems natural to ask what fields may occur as such fields of meromorphic
functions (in the case of transcendence degree 1 or 2, of course). It turns out that
the answer to this question is simple and somehow disappointing. To wit, the main
results of the paper are as follows.

Proposition 1.1. Suppose that F is a non-singular connected complex surface and
that there exists a curve C ⊂ F , C ∼= P1, such that (C ·C) > 0. Let M be the field
of meromorphic functions on F .

If the transcendence degree of M over C is at least 2, then M ∼= C(T1, T2) (the
field of rational functions).

Proposition 1.2. Suppose that F is a non-singular connected complex surface and
that there exists a curve C ⊂ F , C ∼= P1, such that (C ·C) > 0. Let M be the field
of meromorphic functions on F .

If the transcendence degree of M over C is 1, then M ∼= C(T ) (the field of
rational functions).

Summing up, if F is a smooth and connected complex surface contaning a copy
of the Riemann sphere with positive self-intersetion, then the field of meromorphic
functions on F is isomorphic to either C or C(T ) or C(T1, T2).
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Thus, the field of meromorphic functions without any additional structure cannot
serve as an invariant that would help to classify neighborhoods of rational curves
with positive self-intersection.

Proposition 1.2 agrees with the example from [6, Section 3.2].
The proof of Propositions 1.1 and 1.2 are based on the study of (embedded)

deformations of the curve C ⊂ F . Properties of such deformations are well known
in the algebraic context; the classical paper [7] implies a complete description of
deformations of rational curves on arbitrary smooth complex surfaces, but this
paper does not contain a description of deformations of rational curves passing
through given points; I prove the necessary facts (Propositions 3.1 and 3.2) in the
ad hoc manner, using a result of Savelyev [11].

The paper is organized as follows. In Section 2 we recall, following Douady [4],
general facts on deformations of compact analytic subspaces in a given analytic
space. In Section 3 we prove some pretty natural results on deformations of smooth
rational curves in smooth (and not necessarily compact) complex surfaces; the
results of this section do not claim much novelty. In Section 4 we establish some
more specific properties of deformations of rational curves on surfaces. Finally, in
Section 5 (resp. 6) we prove Proposition 1.1 (resp. 1.2).

Acknowledgements. I am grateful to Ekaterina Amerik for discussions and to
the anonymous referee for numerous useful suggestions.

Notation and conventions

All topological terms refer to the classical topology unless specified otherwise.
By coherent sheaves we mean analytic coherent sheaves.

If X is a connected complex manifold, then M(X) is the field of meromorphic
functions on X.

If Y is a complex submanifold of a complex manifold X, then the normal bundle
to Y in X is denoted by NY |X .

Our notation for the n-dimensional complex projective space is Pn.
The projectivization P(E) of a linear space E is the set of lines in E, not of

hyperplanes.
If C1 and C2 are compact Riemann surfaces embedded in a smooth complex

surface F , then their intersection index is denoted by (C1 · C2).
If C is a Riemann surface isomorphic to P1 and n ∈ Z, then OC(n) stands for

the line bundle aka invertible sheaf of degree n on C.
By Veronese curve Cd ⊂ Pd we mean the image of the mapping P1 → Pd defined

by the formula (z0 : z1) 7→ (zd0 : zd−1
0 z1 : · · · : zd1).

Analytic spaces are allowed to have nilpotents in their structure sheaves (how-
ever, analytic spaces with nilpotents will be acting mostly behind the scenes). If X
is an analytic space, then the analytic space obtained from X by quotienting out
the nilpotents is denoted by Xred.

If X is an analytic space and x ∈ X, then TxX is the Zariski tangent space to X
at x (i.e., TxX = (mx/m

2
x)

∗, where mx is the maximal ideal of the local ring OX,x).
In the last two sections we use meromorphic mappings (which will be denoted by

dashed arrows). For the general definition we refer the reader to [2, page 75] (one
caveat: a meromorphic function on a smooth complex manifold X is not, in general,
a meromorphic mapping from X to C); for our purposes it suffices to keep in mind
two facts concerning them. First, if F : X 99K Y is a meromorphic mapping, where
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X is a complex manifold, then the indeterminacy locus of F is an analytic subset
in X of codimension at least 2. Second, if X is a connected complex manifold and
f0, . . . , fn are meromorphic functions on X of which not all are identically zero,
then the formula x 7→ (f0(x) : . . . fn(x)) defines a meromorphic mapping from X
to Pn.

2. Deformations: generalities

In this section we recall (briefly and without proofs) the general theory (see [4] for
details). Suppose that F is an analytic space (in the applications we have in mind F
will be a smooth complex surface). Then there exists theDouady space D(F ), which
parametrizes all the compact analytic subspaces of F . This means the following.

For any analytic space B, a family of compact analytic subspaces of F with the
base B is a closed analytic subspace H ⊂ B × F that is proper and flat over B.
Now the Douady space D(F ) comes equipped with the universal family H(F ) ⊂
D(F )×F of subspaces of F over D(F ), which satisfies the following property: for
any family over an analytic space B there exists a unique morphism B → D(F )
such that the family over B is induced, via this morphism, from the universal family
over D(F ). Applying this definition to the case in which B is a point (hence, a
family over B is just an individual compact analytic subspace of F ), one sees that
there is a 1–1 correspondence between compact analytic subspaces of F and fibers
of the projection H(F ) → D(F ).

At this point one has to say that the Douady space is not an analytic space: it
is a more general object, which Douady calls a Banach analytic space. However,
every point a ∈ D(F ) has a neighborhood ∆ ∋ a that is isomorphic to an analytic
space in the usual sense.

This construction can be generalized as follows. If E is a coherent analytic sheaf
on F , then there exists a Banach analytic space Dou(E) parametrizing coherent
subsheaves S ⊂ E such that the quotient E/S has compact support. To be more
precise, a family of subsheaves of E with base B is a coherent subsheaf Σ ⊂ pr∗2 E
on B × F such that pr∗2 E/Σ is flat over B and supp(pr∗2 E/Σ) is proper over B,
and there is a universal family of subsheaves of E over Dou(E).

The spaceDou(E) is also locally isomorphic to an analytic space. If one puts E =
OF in this construction, one obtains a canonical isomorphism D(F ) ∼= Dou(OF ).

If a ∈ Dou(E) is a point corresponding to the subsheaf S ⊂ E , then one can
define the Zariski tangent space TaDou(E) to Dou(E) at a as Ta∆, where ∆ ⊂
Dou(E) is any neighborhood of a that is isomorphic to an analytic space. This
Zariski tangent space is canonically isomorphic to Hom(S, E/S) (see [4, Section 9.1,
Remarque 3]).

If a coherent sheaf E is a subsheaf of a coherent sheaf F and if F/E has compact
support, then Dou(E) is naturally embedded in Dou(F) (a subsheaf of E can be
regarded as a subsheaf of F). This embedding induces injective homomorphisms of
Zariski tangent spaces. Indeed, let SpecC[ε]/(ε2) be the analytic space consisting
of one point such that the ring of functions is C[ε]/(ε2). Then TaDou(E), as
a set, is canonically bijective to the set of families of subsheaves of E over the
base SpecC[ε]/(ε2) (ibid.). If supp(F/E) is compact, any family of subsheaves
of E (over an arbitrary base) is automatically a family of subsheaves of F , and
different families of subsheaves of E , being different subsheaves of pr∗2 E , are ipso
facto different subsheaves of pr∗2 F .
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In the sequel we will be using the following notation.

Notation 2.1. If F is a complex manifold and a ∈ D(F ), then Ca stands for the
analytic subspace of F corresponding to a.

Similarly, if E is a coherent sheaf on a complex manifold and a ∈ Dou(E), then
Sa is the subsheaf in E corresponding to a.

3. Deformations of rational curves

In this section we state and prove two auxiliary results concerning deformations
of smooth rational curves on complex surfaces. These results are well known for
deformations of curves on which no restrictions are imposed. For example, Propo-
sition 3.1 below follows immediately from the main result of [7], and its algebraic-
geometric counterpart (for smooth algebraic surfaces over a field of characteristic
zero) follows immediately from the theorem in Lecture 23 of [9]. However, I did
not manage to find a suitable reference for deformations of curves passing through
given points.

We will be using the general theory from Section 2 in the following setting. F
will always be a smooth and connected complex surface, C ⊂ F will be a complex
submanifold isomorphic to P1 (the Riemann sphere), and we will always assume
that the self-intersection index d = (C · C) is non-negative. By D(F,C) we will
mean an unspecified open subset of D(F ) that contains the point corresponding
to C ⊂ F and is isomorphic to an analytic space. The reader will check that this
indeterminacy of definition does not affect the arguments that follow.

Moreover, suppose that S = {p1, . . . , pm} ⊂ C is a subset of cardinality m ≤ d =
(C ·C). Let IS ⊂ OF be the ideal sheaf of the analytic subset S ⊂ F . If I ⊂ IS is
a coherent subsheaf, then it follows from the exact sequence

0 → IS/I → OF /I → OF /IS → 0

that supp(OF /I) = supp(IS/I) ∪ S, so supp(IS/I) is compact if and only if
supp(OF /I) is compact. Hence, the Douady space Dou(IS) parametrizes the
(ideal sheaves of) compact analytic subspaces of F containing the subset S. An un-
specified open subset of Dou(IS) containing the point corresponding to C (strictly
speaking, to the ideal sheaf of C, which is a subsheaf of IS) and isomorphic to an
analytic space, will be denoted by D(F,C, S). In view of the natural embedding
of Dou(IS) into Dou(OF ) = D(F ) we will always assume that D(F,C, S) ⊂
D(F,C).

Extending Notation 2.1, we will denote by Ca ⊂ F the analytic subspace of F
corresponding to the point a ∈ D(F,C, S).

Let a ∈ D(F,C) be the point corresponding to C ⊂ F , and let IC ∼= OF (−C)
be the ideal sheaf of C ⊂ F . According to the general theory, the Zariski tangent
space to D(F,C) at a is

(1) TaD(F,C) = HomOF
(IC ,OF /IC) ∼= HomOC

(IC/I2
C ,OC) = NF |C ∼= OC(d)

(here and below, Hom refers to the space of global homomorphisms, not to the
Hom sheaf). Similarly, taking into account that IC ⊂ IS and denoting by b ∈
D(F,C, S) the point corresponding to C, one has

TbD(F,C, S) ∼= HomOF
(IC , IS/IC)

∼= HomOC
(IC/I2

C , IS) ∼= NF |C ⊗OC(−S) ∼= OC(d−m).



MEROMORPHIC FUNCTIONS ON NEIGHBORHOODS OF RATIONAL CURVES 5

The main results about deformations of C ⊂ F that we need are as follows.

Proposition 3.1. Suppose that F is a smooth and connected complex surface,
C ⊂ F is a complex submanifold isomorphic to P1, and d = (C · C) ≥ 0. Then
there exists a neighborhood ∆ ∋ a of the point a ∈ D(F,C) corresponding to C such
that the analytic space ∆ is a smooth complex manifold of dimension d+1 and, for
any b ∈ ∆, Cb

∼= P1.

A similar result, of which Proposition 3.1 is a particular case, holds forD(F,C, S).

Proposition 3.2. In the above setting, suppose that S = {p1, . . . , pm} ⊂ C is
a subset of cardinality m ≤ d. Then there exists a neighborhood ∆ ∋ a of the
point a ∈ D(F,C, S) corresponding to C such that the analytic space ∆ is a smooth
complex manifold of dimension d−m+ 1 and, for any b ∈ ∆, Cb

∼= P1.

We begin with a particular case, which is essentially contained in [11] (and which
follows from the main result of [7]).

Lemma 3.3. Proposition 3.1 holds if d = 0.

Proof. Let a ∈ D(F,C) be the point corresponding to C ⊂ F . Since d = 0, one
has NF |C ∼= OC , so it follows from (1) that dimTaD(F,C) = 1. But, according
to the main result of [11], there exist a neighborhood W ⊃ C and an isomorphism
φ : W → D × C, where D is the unit disk in C, such that φ(p) = (0, p) for any
p ∈ C. If one puts

G = {(z, x) ∈ D × F : x ∈ W, pr1(φ(x)) = z},
then the family G induces a morphism Φ: D → D(F,C) such that Φ(0) = a (the
point corresponding to C) and Φ is 1–1 onto its image. Hence, dima D(F,C) ≥ 1.
Since dimTaD(F,C) = 1, one concludes that D(F,C) is a smooth 1-dimensional
complex manifold in a neighborhood of a. □

To prove Proposition 3.2 in full generality, we will need two simple lemmas.

Lemma 3.4. If p : H → D, where D is the unit disk in C, is a proper and flat
morphism of analytic spaces, and if the fiber p−1(0) is reduced and isomorphic
to P1, then there exists an ε ∈ (0; 1) such that the fiber f−1(a) is also reduced and
isomorphic to P1 whenever |a| < ε.

Sketch of proof. It is easy to see that there exists an ε > 0 such that p−1(Dε) → Dε

is a proper submersion of complex manifolds. Hence, topologically it is a locally
trivial bundle, so all the fibers are homeomorphic to S2, whence the result. □

Lemma 3.5. Suppose that X is an analytic space, a ∈ X, and dimTaX = n. Then
the following two assertions are equivalent.

(1) X is a smooth n-dimensional complex manifold in a neighborhood of the
point a.

(2) There exists a non-empty Zariski open subset V ⊂ P(TaX) such that for any
1-dimensional linear subspace ℓ ⊂ TaX corresponding to a point of V there exists a
smooth 1-dimensional locally closed complex submanifold Y ⊂ X such that Y ∋ a
and TaY = ℓ ⊂ TaX.

Proof. Only the implication (2) ⇒ (1) deserves a proof.
Observe that X is a complex manifold near a if and only if dima X = n =

dimTaX. Furthermore, the question being local, we may and will assume that X is
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a closed analytic subspace of a polydisc D ⊂ CN . Let D̄ be the blowup of D at a,
and let X̄ be the strict transform of Xred. If σ : D̄ → D is the blowdown morphism
and E = σ−1(a) is the exceptional divisor, then X̄ ∩E is a projective submanifold
of E ∼= PN−1, dim X̄ ∩ E = dima X − 1, and X̄ ∩ E ⊂ P(TaX) ⊂ E.

Now if Y ⊂ X is a locally closed 1-dimensional complex submanifold such that
Y ∋ a and if ℓ = TaY ⊂ TaX, then the point of P(Ta(X)) corresponding to ℓ
belongs to X̄ ∩E; thus, it follows from (2) that X̄ ∩E contains a non-empty Zariski
open subset of P(TaX), hence X̄ ∩ E = P(TaX), hence dima X = n, and we are
done. □

Proof of Proposition 3.2. Choose d −m distinct points q1, . . . , qd−m ∈ C \ S. Let
F̄ be the blowup of F at the points p1, . . . , pm, q1, . . . , qd−m, let σ : F̄ → F be the
corresponding blowdown morphism, and let C̄ ⊂ F̄ be the strict transform of C.
One has C̄ ∼= P1 and (C̄, C̄) = 0. Let ā ∈ D(F̄ , C̄) be the point corresponding
to C̄, and let a ∈ D(F,C, S) be the point corresponding to C.

Applying Lemma 3.3 to the pair (F̄ , C̄), one concludes that there exists a family
H̄0 ⊂ D × F̄ , where D is the unit disk in the complex plane, such that its fiber
over 0 is C̄ ⊂ F̄ and, for the induced mapping φ̄ : D → D(F̄ , C̄), its derivative
Dφ̄(0) : T0D → TāD(F̄ , C̄) is non-degenerate.

If we put H0 = (id× σ)(H̄0) ⊂ D × F , then H0 is a family of analytic subspaces
in F containing S; its fiber over 0 is C. Let φ : D → D(F,C, S) be the mapping
induced by this family.

It is clear that the diagram

TāD(F̄ , C̄) H0(NF̄ |C̄)

Dσ

��

T0D

Dφ̄(0)
88

Dφ(0) &&

ᾱ

33

α

++
TaD(F,C, S) H0(NF |C(−S)),

where the vertical arrow is induced by the natural homomorphismNF̄ |C̄ → σ∗NF |C ,

is commutative. It follows from (the proof of) Lemma 3.3 that ᾱ(∂/∂z), where z is
the coordinate on D, is a nowhere vanishing section of NF̄ |C̄

∼= OC̄ ; since the de-

rivative of the mapping σ is non-degenerate outside σ−1{p1, . . . , pm, q1, . . . , qd−m},
the section α(∂/∂z) = Dσ(ᾱ(∂/∂z)) is not identically zero. Hence, φ induces an
embedding of a possibly smaller disk Dε ⊂ D in D(F,C, S).

Moreover, since σ maps each of the curves σ−1(pi), σ−1(qj) to a point, and
since each of these curves is transverse to C̄, the section α(∂/∂z) vanishes at
p1, . . . , pm, q1, . . . , qd−m, so α(∂/∂z) spans the 1-dimensional linear space

(2) H0(NF |C(−S)(−q1 − · · · − qd−m)) ⊂ H0(NF |C(−S)) = TaD(F,C, S).

In the argument that follows we will assume that d−m ≥ 2, so that the words
about Veronese curves in Pd and Pd−m make sense; we leave it to the reader to
modify the wording for the case d−m = 1.

Keeping the above in mind, identify C with P1 and NF |C with OP1(d) = OC(d),

embed C in Pd with the complete linear system |OC(d)| to obtain a Veronese curve
Cd ⊂ Pd, and project Cd from Pd to Pd−m, the center of projection being the linear
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span of the images of the points p1, . . . , pm. The image of this projection will be
a Veronese curve Cd−m ⊂ Pd−m; denote the resulting isomorphism between C and
Cd−m by φ : C → Cd−m.

One has
Pd−m = P((H0(NF |C(−S))∗);

for any d − m distinct points q1, . . . , qd−m ∈ C \ S the points φ(q1), . . . , φ(qd−m)
span a hyperplane in Pd−m, and the linear span ⟨φ(q1), . . . , φ(qd−m)⟩ is the projec-
tivization of

Ann(H0(NF |C(−S)(−q1 − · · · − qd−m))) ⊂ H0(NF |C(−S))∗.

Now the hyperplanes in Pd−m that are transverse to Cd−m form a non-empty
Zariski open subset in (Pd−m)∗ = P(H0(NF |C(−S))) and any such hyperplane
intersects Cd−m at d −m distinct points that are of the form φ(q1), . . . , φ(qd−m),
where q1, . . . , qd−m ∈ C \ S. Thus, the linear subspaces of the form (2) fill a
non-empty Zariski open subset in P(TaD(F,C, S)) as we vary q1, . . . , qd−m ∈ C \
S, so the hypotheses of Lemma 3.5 are satisfied if one puts Y = φ(D), hence
the smoothness is established. Now the assertion to the effect that the fibers are
isomorphic to P1 follows from Lemma 3.4. □

4. Good neighborhoods

Suppose that F is a smooth and connected complex surface and C ⊂ F is a
curve that is isomorphic to P1 and (C · C) ≥ 0. In the definition below we use
Notation 2.1.

Definition 4.1. We will say that an open subset W ⊂ F , W ⊃ C is a good
neighborhood of C if there exists a connected open subset ∆ ⊂ D(F,C) such that
W =

⋃
b∈∆ Cb and each Cb for b ∈ ∆ is a smooth curve isomorphic to P1.

Proposition 4.2. In the above setting, there exists a fundamental system of good
neighborhoods of C.

Proof. If d = 0, it follows immediately from Lemma 3.3. Suppose that d > 0.
Let a ∈ D(F ) be the point corresponding to C, and let ∆ ∋ a, ∆ ⊂ D(F,C)

be the neighborhood whose existence is asserted by Proposition 3.1. We denote
by H ⊂ ∆ × F the family of analytic subspaces of F induced by the embedding
∆ ↪→ D(F,C) (informally speaking, H = {(b, x) ∈ ∆ × F : x ∈ Cb}). Since all
the Cb’s are smooth 1-dimensional complex submanifolds of F and the base ∆ is a
smooth complex manifold as well, H is a smooth complex manifold.

I claim that the projection q : H → F is a submersion; once we have established
this fact, it will follow that q(H) ⊂ F is a good neighborhood of C.

To check this submersivity, consider an arbitrary point (b, x) ∈ H (i.e., x ∈ Cb);
we are to show that the derivative Dq(b, x) : T(b,x)H → TxF is surjective. To that
end, pick d distinct point p1, . . . , pd ∈ Cb \ {x}, where d = (C · C) = (Cb · Cb), and
put {p1, . . . , pd} = S.

Let i : D(F,C, S) ↪→ D(F,C) be the natural embedding, and let β ∈ D(F,C, S)
be the point corresponding to the curve Cb (so Cβ and Cb are the same curve in F ,
and i(β) = b).

Let ∆0 ⊂ D(F,Cb, S), ∆0 ∋ β be a neighborhood whose existence is asserted
by Proposition 3.2; we may and will assume that ∆0 ⊂ i−1(∆). Finally, let H0 ⊂
∆0 × F be the family of analytic subspaces of F (containing S) induced by the
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inclusion ∆0 ↪→ D(F,C, S), and let q0 : H0 → F be the projection. The inclusion
∆0 ⊂ D(F,C) induces an inclusion H0 → H, and one has the following obvious
commutative diagram:

(3) F

H0
� � //

q0

77

��

H

q

??

��
∆0
� � i // ∆

Observe that if c ∈ i(∆0) ⊂ ∆ and y ∈ Cc \ S then there exists a unique γ ∈ ∆0

such that y ∈ Cγ . Indeed, if y ∈ Cγ ∩ Cγ1 , γ, γ1 ∈ ∆0, then Cγ ∩ Cγ1 ⊃ {y} ∪ S,
whence (Cγ · Cγ1

) ⩾ d+ 1, which contradicts the fact that

(Cγ · Cγ1) = (C · C) = d.

Hence, there exists a neighborhood V ∋ (β, x) in H0 such that the restriction of q0
to V is 1–1 onto its image.

Since, according to Proposition 3.2, the Douady spaceD(F,Cb, S) is 1-dimensional
and smooth in a neighborhood of the point β corresponding to Cb ⊂ F , and since
a holomorphic mapping of complex manifolds of the same dimension that is 1–1
onto its image is an open embedding, it follows now that q0(V) is open in F and
q0|V : V → q0(V) is a biholomorphism. In particular, Dq0(β, x) : T(β,x)H0 → TxF is
an isomorphism. Now it follows from the diagram (3) that Dq(b, x) : T(b,x)H → TxF
is a surjection.

This proves the submersivity of the projection q : H → F , so q(H) ⊂ F is a good
neighborhood of C, and, for any open and connected ∆′ ⊂ ∆, ∆′ ∋ a, the set
q(p−1(∆′)) ⊃ C, where p : H → ∆ is the projection, is a good neighborhood of C
as well. The neighborhoods q(p−1(∆′)), for various such ∆′, form a fundamental
system of good neighborhoods of C. □

Proposition 4.3. Suppose that C ⊂ F , where F is a smooth complex surface, is
a curve that is isomorphic to P1, and that (C · C) = d > 0. If W ⊂ F is a good
neighborhood of C in the sense of Definition 4.1, then for any x ∈ W there exist
two curves C1, C2 ∋ x, C1, C2 ⊂ W such that C1

∼= C2
∼= P1 and the curves C1 and

C2 are transverse at x.

Proof. Since W is a good neighborhood, there exists a curve Cb ∋ x, where b ∈ ∆.
Pick d − 1 distinct points p1, . . . , pd−1 ∈ Cb \ {x} and put S = {x, p1, . . . , pd−1}.
According to Proposition 3.2, one has dimβ D(F,Cb, S) = 1, where β is the point
of D(F,Cb, S) corresponding to Cb. Let ∆0 ∋ β, ∆0 ⊂ D(F,Cb, S) be the neigh-
borhood whose existence is asserted by Proposition 3.2, and let γ1, γ2 ∈ ∆0 be two
distinct points. I claim that the curves C1 := Cγ1

and C2 := Cγ2
are transverse

at x. Indeed, if this not the case, then the local intersection index of C1 and C2

at x is at least 2, whence

(C · C) = (C1 · C2) ≥ d− 1 + 2 ≥ d+ 1,

contrary to the fact that (C · C) = d. This contradiction proves the required
transversality. □
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5. Transcendence degree 2

In this section we prove Proposition 1.1. We begin with two simple observations.

Proposition 5.1. If F is a smooth connected complex surface that contains a curve
C ⊂ P1 such that (C · C) > 0, then the field of meromorphic functions M(F ) is
finitely generated over C and tr.degC M(F ) ≤ 2.

Proof. Theorem 2.1 from [10] asserts that there exists a pseudoconcave neighbor-
hood U ⊃ C. According to [1, Théorème 5], the field M(U) is finitely generated
over C and tr.degC M(U) ≤ 2. Observe that M(F ) embeds in M(U) as an ex-
tension of C; since any sub-extension of a finitely generated extension of fields is
also finitely generated and the transcendence degree is additive in towers, we are
done. □

Lemma 5.2. Suppose that F is a connected complex surface such that tr.degC M(F ) ≥
2. If there exists a connected open set U ⊂ F such that M(U) ∼= C(T1, T2), then
M(F ) ∼= C(T1, T2).

Proof. SinceM(F ) embeds intoM(U), it follows immediately from the two-dimensional
Lüroth theorem. □

(Recall that the two-dimensional Lüroth theorem asserts that if K ⊂ C(T1, T2)
is a subfield containing C and tr.degC K = 2, then K ∼= C(T1, T2); this fact fol-
lows immediately from the existence of a smooth projective model for any finitely
generated extension of C and from Theorem 3.5 in [3, Chapter VI].)

Now we may begin the proof of Proposition 1.1. Thus, let F be a smooth
connected complex surface such that tr.degC M(F ) ≥ 2 and let C ∼= P1 be a
curve (one-dimensional complex submanifold) such that (C · C) = d > 0. Let
W ⊂ F be a good neighborhood of C in the sense of Definition 4.1. We are to
prove that M(F ) ∼= C(T1, T2); by virtue of Lemma 5.2 it suffices to prove that
M(W ) ∼= C(T1, T2).

Since tr.degC M(F ) ≤ 2 by virtue of Proposition 5.1 and tr.degC M(F ) ≥ 2 by
hypothesis, one has tr.degC M(F ) = 2. Now M(F ) is isomorphic to a subfield of
M(W ), so tr.degC M(W ) ≥ 2. Since Proposition 5.1 implies that tr.degC M(W ) ≤
2 and M(F ) is finitely generated over C, one concludes that M(W ) is a finitely
generated extension of C, of transcendence degree 2. Hence, M(W ) = C(f, g, h),
where the meromorphic functions f and g are algebraically independent over C and
h is algebraic over C(f, g) (of course, if one may set h = 0, there is nothing to
prove). Denote by P an irreducible polynomial in three independent variables F ,
G, and H such that P (f, g, h) is identically zero.

Now let Y ⊂ C3 be the affine algebraic surface that is the zero locus of P , and
let X ⊂ PN be a smooth projective model of Y .

Denote by V ⊂ W the open subset on which each of the meromorphic functions
f , g, and h is well defined and consider the holomorphic mapping Φ: V → Y defined
by the formula x 7→ (f(x), g(x), h(x)). The mapping Φ extends to a meromorphic
mapping from W to Ȳ ⊂ P3, where Ȳ is the closure of Y ; composing this mero-
morphic mapping with a birational mapping Ȳ 99K X, one obtains a meromorphic
mapping Φ1 : W 99K X.

Lemma 5.3. There exists a non-empty open subset O ⊂ W such that Φ1 is defined
on O and the derivative DΦ1(x) is non-degenerate for any x ∈ O.
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Assuming this lemma for a while, let us finish the proof of Proposition 1.1.
Our construction of the surfaces X and Y implies that M(X) ∼= M(W ); hence,

to prove Proposition 1.1 it suffices to show that M(X) ∼= C(T1, T2). We will derive
this fact from the Castelnuovo rationality criterion (see for example [3, Chapter VI,
3.4]), which may be stated as follows.

Theorem 5.4 (Castelnuovo). Suppose that X is a smooth projective surface over C.
Then M(X) ∼= C(T1, T2) if and only if H0(X,Ω1

X) = 0 and H0(X,ω⊗2
X ) = 0.

Here, H0(X,Ω1
X) is the space of holomorphic 1-forms on X and H0(X,ω⊗2

X ) is
the space of holomorphic 2-forms of weight 2 on X; we are to check that, for our
surface X, both these linear spaces do not contain non-zero elements.

To begin with, observe that if η is a holomorphic covariant tensor field on X that
is not identically zero, then Φ∗

1η is a holomorphic tensor field on W \ I, where I is
the indeterminacy locus of Φ1, and, in view of Lemma 5.3, Φ∗

1η is not identically
zero. Since I is a discrete subset of the complex surface W , Φ∗

1η extends to a tensor
field on the entire W . Thus, to show that H0(X,Ω1

X) = 0 and H0(X,ω⊗2
X ) = 0

it suffices to show that H0(W,Ω1
W ) = 0 and H0(W,ω⊗2

W ) = 0, that is, that there
are no non-trivial holomorphic 1-forms or 2-forms of weight 2 on W . We deal with
these two types of tensor fields separately.

The absence of holomorphic 1-forms. This is just the following lemma,
which will be used in Section 6 as well.

Lemma 5.5. Suppose that F is a non-singular complex surface, C ⊂ F is a curve
such that C ∼= P1 and (C · C) > 0, and W is a good neighborhood of C. Then any
holomorphic 1-form on W is identically zero.

Proof. Suppose that ω is such a form. Proposition 4.3 implies that, for any x ∈ W
there exist curves C1, C2 ⊂ W , C1

∼= C2
∼= P1 such that C1 ∩ C2 ∋ x and C1 and

C2 are transverse at X. Since there are no non-zero holomorphic 1-forms on the
Riemann sphere, the restriction of ω to both C1 and C2 is identically zero. Hence,
the linear functional ωx that ω induces on TxW is zero on TxC1, TxC2 ⊂ TxW .
Since C1 and C2 are transverse at x, these two linear spaces span the entire TxW ,
so ωx = 0. Since x ∈ W was arbitrary, ω = 0 and we are done. □

The absence of holomorphic 2-forms of weight 2. Recall that differential
2-forms of weight 2 on a surface G have, in local coordinates (z, w), the form
f(z, w)(dz ∧ dw)2. If ω is such a form, then, for any point x ∈ G, ωx is a mapping
from TxG× TxG to C; this mapping is uniquely determined by its value at a given
pair of linearly independent tangent vectors.

Lemma 5.6. If G = U × P1, where U is an open subset of C, then there is no
non-trivial holomorphic 2-form of weight 2 on G.

Proof. Suppose that ω is such a form. If z is the coordinate on U ⊂ C, then there
exists a nowhere vanishing holomorphic vector field ∂/∂z on G. For any b ∈ U ,
put Cb = {b} × P1. To show that ω = 0 it suffices to show that for any b ∈ U and
x ∈ Cb one has ωx(∂/∂z, v) = 0, where v ∈ TxCb is a nonzero tangent vector.

Consider the tensor field η = i∂/∂zω (the contraction of ω with ∂/∂z), which is a
family of functions ηx : TxG → C for all x ∈ G, ηx(w) = ωx(∂/∂z, w) for w ∈ TxG.
The field ω is a holomorphic section of Sym2 Ω1

G, and its restriction to each Cb is a

section of ω⊗2
Cb

, i.e., a quadratic differential on Cb, i.e., a section of OCb
(−4); such a
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holomorphic section must be identically zero, so, for any x ∈ Cb and any v ∈ TxCb,
ωx(∂/∂z, v) = η(v) = 0, and we are done. □

Now suppose that ω is a differential 2-form of weight 2 on W . To show that
ω = 0, pick d distinct points p1, . . . , pd ∈ C, where d = (C · C), and let W̄ be the
blowup of W at p1, . . . , pd and C̄ ⊂ W̄ be the strict transform of C. It suffices
to show that σ∗ω = 0, where σ : W̄ → W is the blowdown morphism, and it will
suffice to show that σ∗ω = 0 on a non-empty open subset of W̄ . Since C̄ ∼= P1

and (C̄ · C̄) = 0, it follows from the main result of Savelyev’s paper [11] that a
neighborhood of C̄ in W̄ is isomorphic to U × P1, where U is an open subset of C.
Now Lemma 5.6 applies.

This completes the proof of Proposition 1.1 modulo Lemma 5.3.

Proof of Lemma 5.3. It suffices to prove this assertion for Φ: V → Y ⊂ C3 instead
of Φ1. Moreover, if π : Y → C2 is the projection defined by forgetting the third
coordinate, then the derivative of π is non-degenerate on a non-empty Zariski open
subset of the smooth locus of Y ; hence, it suffices to establish the existence of such
a set O for the mapping Ψ = π ◦ Φ: V → C2, Ψ: x 7→ (f(x), g(x)).

The mapping Ψ extends to a meromorphic mapping W 99K P2 defined, in the
homogeneous coordinates, by x 7→ (1 : f(x) : g(x)); abusing the notation, we will
denote this meromorphic mapping by Ψ as well. The indeterminacy locus of the
meromorphic mapping Ψ is a discrete subset of W .

If there exists at least one point x ∈ W where Ψ is defined and DΨ(x) is non-
degenerate, we are done. Assume now that the derivative of Ψ is degenerate at
any point where Ψ is determined; we will show that this assumption leads to a
contradiction.

Let ∆ ⊂ D(F,C) be the open subset such that W = q(p−1(∆)), where p : H →
D(F ) and q : H → F are the canonical projections of the restriction of the universal
family H; recall that the curve q(p−1(b)) ⊂ F , where b ∈ ∆, is denoted by Cb.

Observe that the restriction of Ψ to any Cb is a meromorphic, hence holomorphic,
mapping from Cb to P2. For any b1, b2 ∈ ∆, (Cb1 · Cb2) = (C · C) > 0, hence
Cb1 ∩ Cb2 ̸= ∅. Thus, if the restriction of Ψ to each Cb is constant, then Ψ is
constant, which is nonsense. Hence, we may and will pick a b ∈ ∆ such that the
restriction of Ψ to Cb is not constant. Put Ψ(Cb) = Z ⊂ P2; it follows from the
Chow theorem that Z is a projective algebraic curve.

Observe as well that the set of points x ∈ W where Ψ is defined and DΨ(x) = 0
must have empty interior (otherwise Ψ would be constant). Hence, there exists a
closed analytic subset D with empty interior such that, for any x ∈ W \ D, Ψ is
defined at x and rankDΨ(x) = 1. Hence, all the fibers of the restriction Ψ|W\D
are smooth analytic curves in W \D.

Pick a point x ∈ Cb \D such that TxCb is not contained in KerDΨ(x). There
exists an open set U ∋ x, U ⊂ W \D such that for any y ∈ Cb∩U the set Ψ−1(Ψ(y))
is a smooth analytic curve transverse to C at y. Now for any b′ ∈ ∆ that is close
enough to b there exists a non-empty open set V ⊂ Cb′ ∩U such that for any x′ ∈ V
there exists a point y′ ∈ Cb ∩U such that Ψ−1(Ψ(y′))∩Cb′ contains x

′ (see Fig. 1).
Hence, Ψ(V ) ⊂ Ψ(Cb); since V is a non-empty open subset of Cb′ , one concludes

that Ψ(Cb′) = Ψ(Cb) = Z ⊂ P2. Since the curves Cb′ , for all b′ close enough
to b, sweep, by virtue of Proposition 4.2, an open subset of W , one concludes that
Ψ(W ) ⊂ Z. Since Z is an algebraic curve in P2 and Ψ is defined by the formula
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Cb′

Cb U

fibers of Ψ|U︷ ︸︸ ︷

Figure 1

x 7→ (1 : f(x) : g(x)), it follows that the meromorphic functions f and g are
algebraically dependent, which yields the desired contradiction. □

6. Transcendence degree 1

In this section we prove Proposition 1.2. Its proof is similar to that of Proposi-
tion 1.1, but simpler.

To wit, by virtue of Proposition 5.1 the field M(F ) is finitely generated over C.
Since tr.degC M(F ) = 1, one has M(F ) = C(f, g), where the meromorphic func-
tions f and g are algebraically dependent over C (if M(F ) is generated by one
function, there is nothing to prove). Denote by P an irreducible polynomial in two
independent variables F and G such that P (f, g) = 0; let Y ⊂ C2 be the affine
curve that is the zero locus of P , and let X be the smooth projective curve (aka
compact Riemann surface) for which M(X) ∼= M(Y ).

Denote by V ⊂ F the open subset on which both f and g are well defined
and consider the holomorphic mapping Φ: V → Y defined by the formula x 7→
(f(x), g(x)). The mapping Φ extends to a meromorphic mapping from F to Ȳ ⊂ P2,
where Ȳ is the closure of Y ; composing this meromorphic mapping with a birational
mapping Ȳ 99K X, one obtains a meromorphic mapping Φ1 : F 99K X. Since, by
our construction, M(F ) ∼= M(X), it suffices to show that X ∼= P1, or, equivalently,
that there are no non-trivial holomorphic 1-forms on X.

To that end, let I ⊂ F be the indeterminacy locus of Φ1; it is a discrete subset
of F . Choose a good neighborhood W ⊃ C; since Φ1 is not constant, there exists
a non-empty open subset O ⊂ W \ I such that rankDΦ1(x) = 1 for any x ∈ O.
Now if ω ̸= 0 is a holomorphic form on X, then (Φ1|W\I)

∗ω is a holomorphic
form such that its restriction to O is not identically zero. Extending it to W , one
obtains a holomorphic 1-form on W which is not identically zero. This contradicts
Lemma 5.5, and this contradiction completes the proof of Proposition 1.2.
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