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Abstract
The three-dimensional Kepler problem is related to the four-dimensional

isotropic harmonic oscillators by the Kustaanheimo-Stiefel transforma-
tion. In the first part of this paper, we study how certain integrable
mechanical billiards are related by this transformation. This in part illus-
trates the rotation-invariance of integrable reflection walls in the three-
dimensional Kepler billiards found so far. The second part of this paper
deals with the Birkhoff-Waldvogel Transformation of the three-dimensional
problem wiht two Kepler centers. In particular, we establish an analogous
theory of Levi-Civita planes for the Birkhoff-Waldvogel Transformation
and show the integrability of certain three-dimensional two-center bil-
liards via a different approach.

1 Introduction
The Kustaanheimo-Stiefel transformation was introduced in [10, 11] using spinors
as a way to regularize the three-dimensional Kepler problem. This transforma-
tion also admits formulation with quaternions [26, 20, 27], and can be regarded
as an unfolding of the Levi-Civita regularization [13, 14] of the planar Kepler
problem through the theory of Levi-Civita planes [19, 27].

The use of the conformal Levi-Civita transformation [15, 5, 14] to study pla-
nar integrable mechanical billiards defined with the Hooke and Kepler problems
has been first pointed out in [16] and extended in [22].

In the first part of this note, we discuss some consequences of the K.S.
(Kustaanheimo-Stiefel) transformation on integrable four-dimensional Hooke
and integrable three-dimensional Kepler billiards. An n-dimensional mechani-
cal billiard system is integrable if there exist n first integrals of the underlying
natural mechanical system that satisfy the following conditions: they are func-
tionally independent, in involution, and they remain invariant under reflections
at the reflection wall (c.f. [24]). It is widely known that for the four-dimensional
Hooke problem, a centered quadric reflection wall gives an integrable billiard sys-
tem [6], [4]. We shall show that when this reflection wall is invariant under an
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S1-symmetry of the K.S. transformation, then its image under the Hopf map-
ping is one of five special type of quadrics, with the Kepler center as a focus.
This is consistent with the results of [23] and provides a partial explanation of
why we conjecture that only these quadrics appear in three-dimensional inte-
grable Kepler billiards. We can think that the restriction on the type of quadrics
is forced by the S1-invariance of the centered quadric reflection wall lying on
the four-dimensional Hooke side. This generalizes the studies in the planar
case [22], [16] to the spatial case of Kepler billiards based on the Levi-Civita
transformation. This way we obtain

Thoerem A. Consider a surface of revolution in R3, by revolving a conic with a
focus at the origin about its principal axis. Then reflecting spatial Kepler orbits
(attracted to/repelled from the origin) off such a surface of revolution gives rise
to an integrable mechanical billiard.

This reproves the three-dimensional version of Theorem 14 in [23]. Moreover,
though we shall not discuss this aspect in this article, the method provides a
transformation that maps the orbits of one system to another, in such a way
that the reflection law of the first system on an energy surface corresponds to
that of the second system on its image. This method is not limited to integrable
mechanical billiard systems.

The Kustaanheimo-Stiefel transformation has been extended to a transfor-
mation which simultaneously regularizes both double collisions in the spatial
two-center problem first announced in a 1-page note of Stiefel-Waldvogel [18],
which generalized the transformation of Birkhoff used in the planar case. The
thesis of Waldvogel [25] provided a much more extensive geometrical study of
this transformation. In particular, the relation between this transformation and
the Kustaanheimo-Stiefel transformation has been clarified. Waldvogel later il-
lustrated this theory again in [26] with the use of quaternions. In this article,
we provide a quaternionic formulation of this Birkhoff-Waldvogel transforma-
tion in the spatial case, largely inspired by the studies of Waldvogel as well as
combining the symplectic viewpoint of [27]. We investigate in part an analogous
theory of Levi-Civita planes in this setting, consisting of planes and spheres in
the space of quaternions H ∼= R4 and a reduction of this transformation to a
dense open subset of IH ∼= R3, which already regularizes the double collisions
without increasing the dimension of the space. With this we link integrable
billiards on both sides, which illustrates some results in [23] with a different
method.

Thoerem B. Consider a surface of revolution in R3 by revolving a conic with
foci at the two Kepler centers around the axis joining the centers. Then reflecting
orbits of the spatial two-center problem off such a surface of revolution is an
integrable mechanical billiard. Moreover, taking a finite combination of these
surfaces does not destroy the integrability of the resulting two-center mechanical
billiard systems.

This provides an alternative proof of Theorem 14 in [23] for the spatial two-
center case.
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We organize this article as follows: In Section 2, we recall the theory of
Kustaanheimo-Stiefel regularization, which largely follows [27]. Then we apply
this transformation to link integrable mechanical billiards in Section 3. The
theory of Birkhoff-Waldvogel transformation and the corresponding link on in-
tegrable mechanical billiards are discussed in Section 4.

2 The Kustaanheimo-Stiefel Transformation
In this section, we discuss the Kustaanheimo-Stiefel transformation. We follow
the quaternionic formulation of [27].

A quaternion is represented as

z = z0 + z1i+ z2j + z3k, z0, z1, z2, z3 ∈ R

in which

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Addition and multiplication of quaternions are then naturally defined. With
these operations, the quaternions form a non-commutative normed division al-
gebra which we denote by H. For a quaternion z = z0 + z1i + z2j + z3k, its
real part is given by

Re(z) = z0

and its imaginary part is given by

Im(z) = z1i+ z2j + z3k.

Furthermore, the conjugation of z is defined as

z̄ = z0 − z1i− z2j − z3k.

The norm of z is defined as |z| :=
√
z · z̄.

We denote the set of purely imaginary quaternions by

IH = {z ∈ H | Re(z) = 0}.

We identify H with R4 and denote by S3 the unit sphere

{z ∈ H | |z|2 = z20 + z21 + z22 + z23 = 1} ⊂ H.

Also, we identify IH with R3. The unit sphere S2 therein is

{z ∈ IH | |z|2 = z21 + z22 + z23 = 1} ⊂ IH.

To introduce the Kustaanheimo-Stiefel transformation, we first recall the
Levi-Civita transformation [14]

T ∗(C \ {0}) → T ∗(C \ {0}), (z, w) 7→
(
q = z · z, p = z

2|z|2
· w
)
.
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It is well-known that this transformation is canonical, and transforms the planar
Kepler problem into the planar Hooke problem after making a proper time
reparametrization on an energy level. To see this, we start with the shifted
Hamiltonian of the Kepler problem and consider its zero-energy level:

|p2|
2

+
m

|q|
−f = 0.

The Levi-Civita transformation pulls this system back to

|w2|
8|z|2

+
m

|z|2
−f = 0.

We may now multiply this transformed Hamiltonian by |z|2, which only reparametrizes
the flow on this energy-level. We obtain

|w2|
8

+m−f |z|2 = 0.

which is the restriction of the Hamiltonian of the planar Hooke problem |w2|
8 −f |z|2

on its (−m)-energy hypersurface.
The whole construction is based on the complex square mapping

C \ {0} 7→ C \ {0}, z 7→ z2,

which is a 2-to-1 conformal mapping.
A generalization of the complex square mapping with quaternions is the

following Hopf mapping
H → IH, z 7→ z̄iz.

Note that this mapping is well-defined, since

Re(z̄iz) = 0,∀z ∈ H.

This mapping is “S1-to-1”, namely the circle

{exp(iθ)z |, z ∈ H \ {0}, θ ∈ R/2πZ} ⊂ H

is mapped under the Hopf mapping to the same point z̄iz ∈ IH.
Moreover, this mapping restricts to a mapping S3 → S2. This is a mapping

with S1-fibres, and induces the non-trivial Hopf fibration

S1 ↪→ S3 → S2.

Associated to the Hopf mapping, the Kustaanheimo-Stiefel mapping is de-
fined as

T ∗(H \ {0}) → IH×H, (z, w) 7→
(
Q = z̄i · z, P =

z̄i

2|z|2
· w
)
.
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The fibers of the mapping are the circle orbits of the S1-Hamiltonian action

θ·(z, w) 7→ (exp(iθ)z, exp(iθ)w)

on the cotangent bundle T ∗H. The bilinear function

BL(z, w) := Re(z̄iw)

is the associated moment map.
We define

Σ := {(z, w)|BL(z, w) = 0} ⊂ T ∗H ∼= H×H,

and
Σ1 = Σ \ {z = 0}.

Both are invariant under this S1-Hamiltonian action.
We define the restricted K.S. mapping as

KS := K.S.|Σ1
: Σ1 → T ∗(IH\{0}).

For the following lemma from [27], we present an alternative, simpler proof.

Lemma 1. For the restricted Kustaanheimo-Stiefel mapping KS : Σ1 → T ∗(IH\{0})
we have

KS∗(Re(dP̄ ∧ dQ)) = Re(dw̄ ∧ dz)|Σ1 .

Proof. We shall show

KS∗Re(P̄ dQ) = Re(w̄dz)|Σ1 . (1)

which then implies the assertion of this lemma by taking differentials on both
sides.

To see (1), we compute

P̄ dQ = − w̄iz̄
−1

2
((dz̄)iz + z̄idz)

= (−w̄iz̄−1(dz̄)iz + w̄dz)/2.

(2)

The condition
BL(z, w) = Re(z̄iw) = 0

is equivalent to
Re(z−1iw) = 0.

Consequently, we also have
Re(w̄iz̄−1) = 0.

This implies

Re(w̄iz̄−1(dz̄)iz) = Re(w̄iz̄−1 · Im((dz̄)iz)).
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Since
Im((dz̄)iz) = −Im(z̄(−i)dz),

we have

Re(w̄iz̄−1(dz̄)iz) = −Re(w̄iz̄−1·Im(z̄(−i)dz)) = −Re(w̄iz̄−1z̄(−i)dz) = −Re(w̄dz),
(3)

where in the second equation, we have used

Re(w̄iz̄−1) = 0.

The assertion (1) is thus obtained by combining the equations (2) and (3).

On Σ1, the orbits of the S1-action mentioned above lie in the direction of the
one-dimensional kernel distribution of the 2-form Re(dw̄ ∧ dz). By the theory
of symplectic reduction, the 2-form Re(dw̄ ∧ dz) of Σ1 gives rise to the reduced
symplectic form ω1 on the quotient space V 1 of Σ1 by the S1-action. Thus, the
Kustaanheimo-Stiefel mapping induces a symplectomorphism

KSred : (V1, ω1) → (T ∗(IH\{0}), Re(dP̄ ∧ dQ)).

We have
KS = KSred ◦ ϕ

in which ϕ : Σ1 → V1 is the quotient map.

Proposition 2. Any zero-energy orbit of the four-dimensional Hooke problem
with the shifted Hamiltonian

∥w∥2

8
−f∥z∥2 +m

in Σ1 is sent via KS to a zero-energy orbit of the three-dimensional Kepler
Problem in T ∗(IH\{0}) with Hamiltonian

∥P∥2

2
+

m

∥Q∥
−f.

after a proper time reparametrization.

Proof. We first observe that the function BL is a first integral of the system(
T ∗H, Re(dw̄ ∧ dz), H =

∥w∥2

8
−f∥z∥2 +m

)
.

This follows either from a direct verification, or alternatively from the invariance
of H under the above mentioned (Hamiltonian) S1-action. Consequently, the
set Σ1 is invariant under its flow.

We consider the restriction of this system on Σ1. Any orbit of this restricted
system descends to an orbit in the quotient system in (V1, ω1, H1) so that

ϕ∗H1 = H,
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which is consequently sent to an orbit via KSred in the system

(T ∗IH, Re(dp̄ ∧ dq),K)

such that
KS∗

redK = H1.

Applying ϕ∗ to both sides of this identity, we get

H = ϕ∗KS∗
redK = KS∗K.

From this we deduce

K =
∥P∥2∥Q∥

2
+m−f∥Q∥.

Now we restrict the system to {K = 0} = {H = 0}. We observe that the
restricted flow can now be time reparametrized (with factor ∥Q∥−1) into the
restricted flow on the zero-energy hypersurface of the three-dimensional Kepler
Hamiltonian

∥P∥2

2
+

m

∥Q∥
−f.

The link between Kustaanheimo-Stiefel transformation and the Levi-Civita
transformation is given by the Levi-Civita planes. These are planes in H gener-
ated by two unit quaternions v1, v2 such that v1 ̸= ±v2 and satisfy

BL(v1, v2) = 0.

The key property of such a plane is that its image is a plane in IH and in relevant
basis the restriction of the Hopf mapping is equivalent to the complex square
mapping

C → C, z 7→ z2.

Therefore K.S. is restricted to L.C. on the tangent bundle of such a plane. We
proceed with the details.

Definition 3. A Levi-Civita plane is a plane in H spanned by two linearly
independent unit quarternions v1, v2 ∈ H satisfying BL(v1, v2) = 0.

Proposition 4. The Hopf mapping

H → IH, z 7→ z̄iz

sends a Levi-Civita plane to a plane passing through the origin in IH. On the
other hand, any plane in IH passing through the origin is the image of a S1-
family of Levi-Civita planes.
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Proof. Let V be a Levi-Civita plane spanned by two unit, orthogonal quater-
nions v1 and v2 in H: This means that we have

|v1| = |v2| = 1, BL(v1, v2) = 0 and ⟨v1, v2⟩ = 0.

Then, we have
v̄1iv1 = −v̄2iv2,

which follows from the computation

2v̄1iv1 + 2v̄2iv2 = (v̄2v1 + v̄1v2)(v̄1iv2 + v̄2iv1)

= 2⟨v1, v2⟩(v̄1iv2 + v̄2iv1)

= 0.

(4)

For the first equation in (4) we used the following fact: The condition

BL(v1, v2) = 0

is equivalent to
v̄1iv2 − v̄2iv1 = 0.

Thus
(v̄1v2 − v̄2v1)(v̄1iv2 − v̄2iv1) = 0

which is equivalent to

v̄1iv1 + v̄2iv2 = v̄1v2v̄1iv2 + v̄2v1v̄2iv1.

Thus the quaternion v1 + v2 in V is sent via the Hopf mapping to the
quaternion

v̄1iv1 + v̄1iv2 + v̄2iv1 + v̄1iv1 = 2v̄1iv2.

As a vector in IH, it is linearly independent of the vector v̄1iv1, which follows
from v̄1i ̸= 0 and the linear independency of v1 and v2.

As a consequence, the image of V is the plane passing through the origin,
linearly spanned by v̄1iv1 and v̄1iv2.

On the other hand, for any unit quaternion w ∈ IH, there exists a S1-family
of unit vectors {eiθv} in H whose image under the Hopf map is w. Take a plane
W in IH passing through the origin spanned by two linearly independent unit
vectors w1 and w2. We can choose the pre-images of v1 and v2 in H of w1 and
w2 to be such that BL(v1, v2) = 0. Indeed, for v̄1iv2 = z0 + z1i+ z2j + z4k, we
have

Re(eiθv̄1iv2) = z0 cos θ − z1 sin θ,

thus we can take eiθ1v1 such that z0 cos θ1−z1 sin θ1 = 0 in the place of v1. Thus
we get the family of Levi-Civita planes span{eiθv1, eiθv2}, θ ∈ R/2πZ which are
sent to W .
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Proposition 5. There exists an identification with C of a Levi-Civita plane V
together with its image under the Hopf mapping, such that under this identifi-
cation, the restriction of the K.S. mapping to T ∗V is given by

T ∗C → T ∗C, (z, w) 7→ (z2,
z

2|z|2
· w)

which is the Levi-Civita transformation.

Proof. Let v1 and v2 be orthogonal unit vectors in V , which allows us to identify
V with C. We write z = av1 + bv2 and w = cv1 + dv2. Then K.S. sends (z, w)
into

((a2 − b2)v̄1iv1 + 2abv̄1iv2,
(ac− bd)v̄1iv1 + (ad+ bc)v̄1iv2

2(a2 + b2)
).

From the orthogonality of v1 and v2, we obtain

⟨v̄1iv1, v̄1iv2⟩ =
v̄1v2 + v̄2v1

2
= ⟨v1, v2⟩ = 0.

Hence we just need to identify v̄1iv1 and v̄1iv2 with the standard orthogonal basis
of C. The conclusion follows after both V and its image have been identified to
C.

3 Application to integrable Hooke and Kepler
billiards

We extend the correspondence shown above to the corresponding billiard sys-
tems. This generalizes the correspondence of Hooke and Kepler billiards in the
plane [16], [22] to the spatial (Kepler) case.

A centered quadric in H ∼= R4 is called S1-invariant, if it is invariant under
the S1-action

S1 ↷ H, θ · z 7→ exp(iθ)z.

Equivalently, these are quadrics which are pre-images of subsets in IH under
the Hopf mapping.

A centered quadric in H is called non-singular if it does not contain the
origin.

For an unbounded non-singular centered quadric in R4 given by

F (z0, z1, z2, z3) = 1

where F is a quadratic homogeneous function of z = (z0, z1, z2, z3) ∈ H, we
define its dual quadric by

−F (z0, z1, z2, z3) = 1.

In normal form, for the quadric

3∑
i=0

σi
ẑ2i
a2i

= 1,
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where σi ∈ {1,−1}, ai ∈ R and {ẑ0}3i=0 is an orthonormal basis in R4, its dual
is

3∑
i=0

−σi
ẑ2i
a2i

= 1.

Indeed for a quadric homogeneous function F (z0, z1, z2, z3) there exists a real
symmetric 4× 4 matrix A and a real orthogonal matrix Q such that zTAz = F
and QTAQ is diagonal, thus its normal form is given by (Qz)TAQz = 1. Clearly,
we have zT (−A)z = −F and (Qz)T (−A)Qz = −(Qz)TAQz.

Lemma 6. For an unbounded non-singular centered quadric E and its dual
quadric Ẽ in H, we denote their images in IH by the Hopf mapping by F and F̃
respectively. Let P ∈ F be the point of F with the least distance from O ∈ IH.
Let P̃ ∈ F̃ be the point of F̃ with the least distance from O ∈ IH. Then the
three points O,P, P̃ are collinear.

Proof. Consider a plane contains O,P, P̃ such that the intersection of F is
unbounded. Then the intersection of F̃ is unbounded as well. If E is non-
degenerate, then the intersections of F and F̃ with this plane are either two
centrally symmetric parallel lines or two branches of a focused hyperbola, since
they are the images of a pair of dual hyperbolae in the corresponding Levi-
Civita plane by the complex square mapping, see [22, Thm. 4]. In the case
of parallel lines, these two lines are centrally symmetric, therefore the three
points O,P, P̃ are collinear. In the case of hyperbola, the points P and P̃ lie on
different branches of the hyperbola, and PP̃ is its major axis which necessarily
contains O. When the quadric E is degenerate, we may have a parabola as an
intersection of F with the plane as well. A parabola is obtained as the image
of a line by the complex square mapping [22], and the dual line is sent to the
same parabola. In this case, we have P = P̃ .

Proposition 7. The image of any S1-invariant, non-singular, centered quadric
in H under the Hopf mapping is either a plane, or a centered sphere, or a
spheroid, or a sheet of a two-sheeted circular hyperboloid, or a paraboloid in IH,
with always a focus at the origin O ∈ IH in the latter three cases. These surfaces
correspond precisely to those obtained by revolving a Kepler orbit (a conic with
focus at O) about its principal axis.

Proof. We take an S1-invariant, non-singular, centered quadric E in H and de-
note its image in IH by F . The quadrics E and F are bounded away from the
origin O. We intersect F with a plane trough O ∈ IH. By the above theory of
Levi-Civita planes, this plane is the image of an S1-family of Levi-Civita planes
on each of them the Hopf mapping restricts to the complex square mapping.
The intersection of any of these Levi-Civita planes with the centered quadric in
H is a centered conic section. The image of this centered conic section is thus a
branch of a conic section in the plane through the origin O in IH. In case that
this branch is neither a line nor a circle, then O is a focus of it [22].

We first assume that E is bounded in H. Then its image F is also bounded
in IH. If all points from F have the same distance to the origin, then F is a
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centered sphere in IH. Otherwise, there exist a point P1 with least distance,
and another distinct point P2 with most distance from O. We consider the line
passing through these two points and take a plane in IH containing both this line
and the origin. By the above discussion on Levi-Civita planes, the intersection
of this plane with the image F is an ellipse focused at O. Consequently the
indicated line passes through the origin, since for an ellipse this line is the
major axis and passes through the foci. So the distance |P1P2| is the major axis
length of this ellipse.

We consider the family of planes passing through this line. If we take such a
plane close to the plane we first took, then by continuity, the intersection of F
on this plane is again an ellipse focused at O and the points P1 and P2 lie on the
ellipse as pericenter and as apocenter respectively. Thus the ellipses obtained
as intersection of F on nearby planes from the family are related by a rotation
around the line P1P2. Consequently E is a spheroid with the line P1P2 as the
symmetric axis.

This argument can be refined to the following local rigidity for (eccentric)
ellipses, without assuming that F is bounded: Consider the line P1O and a plane
through this line such that the intersection of F with it is an ellipse. Then the
intersection of F with nearby planes through P1O are also ellipses, and these
ellipses are obtained from each other by rotations along the axis P1O. Indeed
all these ellipses need to intersect P1O at the same point P2, which necessarily
is the apocenter for all of them. This implies this local rigidity for ellipses.

Now we consider the case that E is not bounded, thus F is not bounded
as well. We take a point P1 ∈ F which has the least distance from O. Since
the centered quadric E is not given by a positive-definite quadric form, its dual
quadric Ẽ is non-empty in H. The image in IH of the dual Ẽ is F̃ . We take
the point P̃1 ∈ F̃ which has the least distance from O ∈ IH. From Lemma
6, the three points O,P1, P̃1 lie on the same line. We consider the family of
planes passing through this line. Since F is unbounded, there exists a plane in
this family which has unbounded intersection with F . Thus the intersection of
F ∪F̃ with this plane is either a pair of two centrally symmetric parallel lines, a
pair of branches of a hyperbola with its focus at O, or a parabola with its focus
at O.

In the case of a hyperbola, note that we have the local rigidity just as in the
elliptic case: In a nearby plane from this family, the intersection of F ∪ F̃ is
again a hyperbola focused at O, with P1 and P2 as vertices at each branch. We
conclude that F is a branch of a circular two-sheeted hyperboloid with a focus
at O.

In the case of parallel lines, this local rigidity implies that F intersects nearby
planes in lines with P1 being the closed point from these lines to O. We conclude
F is a plane perpendicular to the line OP1.

The only left case is when the intersection of F with a plane containing
OP1 is a parabola. This happens when the original quadric E is unbounded
and degenerate. From the local rigidity of ellipses and hyperbolae, we conclude
that if the intersection with a plane passing through OP1 is a parabola, then
the intersections of F with nearby planes passing through OP1, we again obtain
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parabolae. These parabolae are focused at O and have P1 as the vertex. Thus,
F intersects the nearby planes from this family in parabolae with the focus and
the vertex in common. Thus in this case the image F is a paraboloid with a
focus at O.

Corollary 8. Any combination of confocal S1-invariant centered spheroids or
two-sheeted circular hyperboloids in H is sent to a combination of confocal
spheroid or a sheet of a two-sheeted circular hyperboloid.

Proof. This follows from the fact that any confocal family of conic sections
on a plane is sent to a confocal family of conic sections by the complex square
mapping ( [22, Thm. 4] ) and the rotational symmetry of the images of centered
quadrics with respect to the symmetry axis shown in Proposition 7.

Proposition 9. If a centered quadric in H is invariant under the S1-action on
H given by

θ · z 7→ exp(iθ)z, z ∈ H, (5)

then it is a centered quadric given in the non-degenerate case by the normal
form equation

u21
A2

± u22
B2

+
u23
A2

± u24
B2

= 1, A,B > 0 (6)

or in the degenerate case by the normal form equation

u21
A2

+
u23
A2

= 1, A > 0. (7)

The image under the Hopf mapping z 7→ Q = z̄i·z of such a centered quadric is a
spheroid/a sheet of a circular hyperboloid in the non-degenerate case, including
the sphere and plane as degeneracies, and a circular paraboloid in the degenerate
case.

Proof. By Proposition 7, the image of an S1-invariant centered quadric is either
a spheroid, or a sheet of a two-sheeted circular hyperboloid, or a paraboloid, all
with a focus at the origin, or otherwise a centered sphere or a plane. We shall
only discuss the case that this image is a spheroid. The other cases are similar.

The proof is computational. Up to normalization, a spheroid in IH focused
at the origin is given by an equation of the form

q21 −
√
C2 −D2

C2
+

q22
D2

+
q23
D2

− 1 = 0, C > D > 0.

The mapping z 7→ Q = z̄i · z pulls this equation back to

G1 ·G2 = 0

where the factors are

G1 := Cz21 + Cz22 + Cz23 + Cz24 − 2
√
C2 −D2z1z3 − 2

√
C2 −D2z2z4 −D2
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and

G2 := Cz21 + Cz22 + Cz23 + Cz24 + 2
√
C2 −D2z1z3 + 2

√
C2 −D2z2z4 +D2.

It is readily seen that the equation G2 = 0 does not admit any real solutions.
In the rotated coordinates (u1, u2, u3, u4) defined as

z1 =
u1 + u2√

2
, z2 =

u3 + u4√
2

, z3 =
u1 − u2√

2
, z4 =

u3 − u4√
2

,

we write
G1 = (C−

√
C2 −D2)u2

1+(C+
√

C2 −D2)u2
2+(C−

√
C2 −D2)u2

3+(C+
√

C2 −D2)u2
4−D2 = 0

and thus by a further normalization we get the desired form (6).

In [16], it is noticed that conformal transformations between mechanical
systems preserves billiard trajectories. A generalization of this observation to
our current situation is the following:

Proposition 10. Let R be an S1-invariant hypersurface in H \O and R̃ ⊂ IH
its image under the Hopf mapping. Let v1 be an incoming vector at a point
z ∈ R such that (z, v1) ∈ Σ1 with the outgoing vector v2 after reflection. Then
(z, v2) ∈ Σ1. Assume that the Hopf mapping pushes (v1, v2) into (ṽ1, ṽ2). Then
ṽ1 is reflected to ṽ2 by the reflection at q = z̄iz off R̃.

In the opposite direction, if ṽ1 is reflected to ṽ2 by the reflection at q off
R̃ ⊂ H \ O, then for any z such that q = z̄iz, there exists based vectors v1, v2
at z such that (z, v1), (z, v2) ∈ Σ1 which is pushed-forward into (ṽ1, ṽ2) by the
Hopf mapping, such that v1 is reflected to v2 at z off the pre-image R of R̃.

Proof. By assumption, we have

BL(z, v1) = 0.

Consider the normal vector Nz to R at z. Since R is S1-invariant, we have
that Nz is orthogonal to the S1-symmetric direction, which is given by iz.
Consequently, we have

BL(z,Nz) = Re(z̄iNz) = −⟨iz,Nz⟩ = 0.

Since BL is linear in its second variable, we conclude that

BL(z, v2) = 0

as well.
The second assertion follows as long as we show that the push-forward of

Nz is orthogonal to R̃ at q = z̄iz. The push-forward of a vector v ∈ Σ is 2z̄iv .
Thus

⟨z̄iv, z̄iNv⟩ = |z|2⟨v,Nv⟩, (8)

13



meaning that the angle between v and Nv is preserved. Applying this for any
vector v ∈ Σ ∩ TzR we conclude that z̄iNv is orthogonal to R̃ at q.

For the opposite direction, if ṽ is a vector at q ̸= 0 and z ∈ H \ O such
that q = z̄iz, then the vector v such that z̄iv = ṽ is a vector at z which is
pushed-forward to ṽ. With this construction we get at each z a pair of vectors
{v1, v2} from the pair of vectors {ṽ1, ṽ2} at q. There follows directly that

(z, v1), (z, v2) ∈ Σ1.

Moreover it follows from the angle-preservation relationship (8) that if ṽ1 is
reflected to ṽ2, then v1 is reflected to v2.

As part of the proof, we have shown that if an orbit of the four-dimensional
Hooke problem satisfies the bilinear relation, then so is its reflection. Therefore
we may say that a billiard orbit satisfies the bilinear relation. As only this type
of orbits are related to the spatial Kepler problem, we propose the following
definition.

Definition 11. The subsystem of a four-dimensional Hooke billiard consist-
ing only of orbits satisfying the bilinear relation is called the restricted four-
dimensional Hooke billiard.

Definition 12. A spatial Kepler billiard and a four-dimensional Hooke billiard
are called in correspondence, if the reflection wall of the Hooke problem in H
is the pre-image of the reflection wall of the Kepler problem in IH by the Hopf
map.

With these definitions we get the following theorem, which generalizes the
planar Hooke-Kepler billiard correspondence as has been investigated in [16]
and [22].

Theorem 13. Any billiard orbit of the spatial Kepler billiard is the image of
an S1-family of billiard orbits of the corresponding restricted four-dimensional
Hooke billiard. In the opposite direction, the image of any orbit of the restricted
four-dimensional Hooke billiard under the Hopf mapping is an orbit of the cor-
responding spatial Kepler billiard.

This theorem is not limited to the integrable case and thus may be useful to
understand the dynamics of non-integrable four-dimensional Hooke and three-
dimensional Kepler billiards.

For the integrable case, we know that a four-dimensional Hooke billiard with
a centered quadric reflection wall is integrable [6], [4]. We directly obtain the
following result, established in [23] via a completely different approach.

Thoerem A. Consider a surface of revolution in R3, by revolving a conic with a
focus at the origin about its principal axis. Then reflecting spatial Kepler orbits
(attracted to/repelled from the origin) off such a surface of revolution gives rise
to an integrable mechanical billiard.
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The first integrals for the three-dimensional integrable Kepler billiards can
be obtained from the first integrals of the four-dimensional Hooke billiards. On
the other hand the explicit representations of the first integrals are already
obtained in [23]. We here recall:

E =
ẋ2 + ẏ2 + ż2

2
+

m√
x2 + y2 + z2

,

Lyz = ẏz − ży,

Ẽsph =
1

2

(
(1 + a2)ẋ2 + ẏ2 + ż2 + ((

√
1 + a2x+ a)ẏ −

√
1 + a2yẋ)2

)
+

1

2

(
(yż − zẏ)2 + (

√
1 + a2zẋ− (

√
1 + a2x+ a)ż)2

)
+
m(1 + a2 + a

√
1 + a2x)√

x2 + y2 + z2
,

where a a is the half distance between the two foci.

4 The two-center problem and integrable billiards
In this section, we consider the spatial two-center problem, which describes the
motion of a particle in R3 moving under the gravitational attraction of two
fixed centers. In the plane, this system is known to be integrable due to the
works of Euler and Lagrange [3], [12]. The system is also integrable in R3.
It is considered as a simplification of the planar or spatial circular restricted
three-body problem with the Coriolis force and the centrifugal force ignored.

In [1], Birkhoff designed a way to simultaneously desingularize the two double
collisions of the particle with the two centers in the planar problem. This
has been subsequently generalized to the spatial problem as first announced in
Stiefel and Waldvogel [18]. In [25], Waldvogel explained that the construction is
analogous to the observation that on the Riemann sphere, Birkhoff’s mapping
is conjugate to the complex square mapping via a Möbius transformation. The
approach was then subsequently applied to the spatial problem. The use of
quaternions was introduced in [26].

The goal of this section is to discuss this transformation in the spatial case
with the language of the quaternions and symplectic geometry, with the hope
of clarifying the geometry of this transformation even further. Subsequently we
apply this transformation to the problem of integrable billiards. The main fact
we will use is that for a separable 2-degree of freedom Hamiltonian system of
the form:

H =
a(x)P 2

x + b(x)P 2
y

2
+A(x) +B(y) (9)

any coordinate line as a reflection wall results in an integrable mechanical bil-

liard. Indeed one has the independent integrals
a(x)P 2

x

2
+ A(x) and

b(x)P 2
y

2
+

B(y) constant along orbits and under reflections at a coordinate line. The
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same result can be obtained by considering the spatial two-center problem in
spheroidal elliptic coordinates, as this approach leads to the same class of the
separated system after reduction by rotations around the axis containing the
centers. However, it is worth mentioning that the method used here does not
require elliptic coordinates; instead, it utilizes spherical coordinates through
Birkhoff-Waldvogel’s Transformation.

We first recall Waldvogel’s view of Birkhoff transformation of the planar
two-center problem from [26]. See also [2] for a discussion on the geometry of
this transformation.

Consider the mappings

φ1 : C ∪ {∞} 7→ C ∪ {∞}, z 7→ α = 1− 2

1− z
,

L.C. : C ∪ {∞} 7→ C ∪ {∞}, α 7→ q = α2,

φ2 : C ∪ {∞} 7→ C ∪ {∞}, 7→ x = 1− 2

1− q
.

The mappings φ1 and φ2 are Möbius transformations on the Riemann sphere
C∪ {∞}. The mapping L.C. is the complex square mapping, branched at 0,∞
on the Riemann sphere.

The composition of these mappings in the natural order gives rise to

φ2 ◦ L.C. ◦ φ1 : C ∪ {∞} 7→ C ∪ {∞}, z 7→ x =
z+z−1

2
.

This is Birkhoff’s transformation, used to simultaneously regularize both double
collisions with two Kepler centers placed at −1, 1 ∈ C.

This suggests the following construction for the spatial two-center problem.
We define the base Birkhoff-Waldvogel mapping as the composition

ϕ2 ◦ Hopf ◦ ϕ1 :H ∪ {∞} 7→ IH ∪ {∞},

z 7→ x = i− 4∥z − i∥4
(
(z − z̄ − 2i)∥z − i∥2 + 2(z − i)i(z̄ + i)

)−1

where

ϕ1 :H ∪ {∞} 7→ H ∪ {∞},

z 7→ α = i− 2

z − i
,

Hopf :H ∪ {∞} 7→ IH ∪ {∞}
α 7→ q = ᾱiα

and

ϕ2 :IH ∪ {∞} → IH ∪ {∞},

q 7→ x = i− 2

q − i
.
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In coordinates, we have

x1 =
1

2

(
z1 +

z1(z
2
0 + 1)

z21 + z22 + z23

)
x2 =

1

2

(
z2 +

z2(z
2
0 − 1) + 2z0z3
z21 + z22 + z23

)
x3 =

1

2

(
z3 +

z3(z
2
0 − 1)− 2z0z2
z21 + z22 + z23

)
.

(10)

By restriction and properly lifting the mappings to the cotangent bundles,
we get the unrestricted Birkhoff-Waldvogel mapping

B̃.W. := Φ2 ◦K.S. ◦ Φ1 :(H \ {i,−i})×H → (H \ {i,−i})×H, (z, w) 7→ (x, y)

where

Φ1 :(H \ {i,−i})×H → (H \ {0, i})×H,

(z, w) 7→

(
α = i− 2

z − i
, β =

(z − i)w(z − i)

2

)
,

K.S. :(H \ {0, i})×H → (H \ {0, i})×H

(α, β) 7→
(
q = ᾱiα, p =

ᾱiβ

2|α|2

)
,

Φ2 :(H \ {0, i})×H → (H \ {i,−i})×H

(q, p) 7→

(
x = i− 2

q − i
, y =

(q − i)p(q − i)

2

)
.

Explicitly, the unrestricted Birkhoff-Waldvogel mapping B̃.W. is given by (z, w) 7→
(x, y) with

x = i− |z − i|2(2|z − i|−2(ziz̄ + z̄ − z + i)− z̄ + z − 2i)−1

y =
1

|i− 2(z − i)−1|2

× ((z − i)−1(z̄ + i)−1i(z̄ + i)− i(z̄ + i)−1 + (z − i)−1i+ 2(z − i)−1(z̄ + i)−1)

× w(1− (z̄ + i)(z − i)−1 + 2i(z − i)−1).

The mappings Φ1,Φ2 are constructed in a way that the transformations
on positions are natural generalizations of ϕ1, ϕ2, while the transformations
on momenta are obtained as contragradients. The mapping K.S. is the usual
Kustaanheimo-Stiefel transformation.

In (H \ {i})×H we define the subsets

Λ̂ := {(z, w) ∈ (H \ (R ∪ {i}∪{−i}))×H | Re((z̄ − i)w(z̄ + i)) = 0}
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and

Σ̂ := {(α, β) ∈ (H \ ({eiθ}∪{0}))×H | BL(α, β) = Re(ᾱiβ) = 0}.

Then we have the following:

Lemma 14. The image of the mapping Φ1 with the restricted domain Λ̂ is Σ̂.
Additionally, the image of the mapping Φ2 restricted to (IH \ {i, 0}) × IH is
(IH \ {i,−i})× IH.

To show this we first show

Lemma 15. ϕ−1
1 ({eiθ}) = R.

Since K.S.({eiθ}) = i and ϕ2(i) = ∞, this shows in particular that R ⊂ H
represents physical infinity of the physical space IH.

Proof. The pre-image of α = eiθ is

z = i− 2

α− i
= i− 2

cos θ − i(1− sin θ)

= i− 2(cos θ + i(1− sin θ))

(cos θ − i(1− sin θ))(cos θ + i(1− sin θ))

= i− cos θ + i(1− sin θ)

1− sin θ

=
cos θ

sin θ − 1
.

We thus have {
z =

cos θ

sin θ − 1
| θ ∈ R/2πZ

}
= R.

Proof. (of Lemma 15 ) The image Φ1(Λ̂) is contained in Σ̂, since

Re(ᾱiβ) = 0 ⇔ Re

(
−i− 2

z̄ + i

)
i

(
(z̄ + i)w(z̄ + i)

2

)
= 0

⇔ Re((1− 2(z̄ + i)−1i)(z̄ + i)w(z̄ + i))= 0

⇔ Re((z̄ + i)−1(z̄ + i− 2i)(z̄ + i)w(z̄ + i))= 0

⇔ Re((z̄ − i)w(z̄ + i)) = 0.

(11)

On the other hand, for any (α, β) ∈ Σ̂, its pre-image (z, w) ∈ Λ̂ by Φ1 is given
by the formulas

z =
2

i− α
+ i

and
w = 2(z̄ + i)−1β(z̄ + i)−1 = 2αβα.
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Thus, the first part of the lemma follows.
For (q, p) ∈ (IH \ {i}) × IH, the conjugation of its image (x, y) by Φ2 is

obtained as
x̄ = −i− 2

−q + i
= −(i− 2

q − i
) = −x

and

ȳ = − (q − i)p(q − i)

2
= − (−q + i)p(−q + i)

2
= − (q − i)p(q − i)

2
= −y,

thus (x, y) ∈ (IH \ {i})× IH.
On the other hand, for any (x, y) ∈ (IH \ {i}) × IH, the conjugate of its

pre-image (p, q) is obtained as

q̄ =
2

−i+ x
+ i = −

(
2

i− x
+ i

)
= −q

and
p̄ = −2xyx = −p,

thus the pre-image (p, q) belongs again to (IH \ {i})× IH.

Lemma 16. The image of the K.S mapping restricted to Σ̂ is (IH\{i, 0})×IH.

Proof. The image K.S.(Σ̂) is included in IH× IH since ᾱiα ∈ IH for any α ∈ H
and

BL(α, β) = 0 ⇔ Re(ᾱiβ) = Re(p) = 0.

On the other hand, for any (q, p) ∈ (IH \ {i}) × IH, we can take (α, β) ∈ Σ̂
such that K.S.(α, β) = (q, p). Indeed,for any (q, p) ∈ IH × IH, there exists an
S1-family {(eiθ1α, eiθ1β)} satisfying BL(α, β) = 0.

From these lemmas, we obtain the following proposition:

Proposition 17. The restricted Birkhoff-Waldvogel mapping

B.W. : Λ̂ → (IH \ {i,−i})× IH (z, w) 7→ (x, y),

where

x = i− |z − i|2(2|z − i|−2(ziz̄ + z̄ − z + i)− z̄ + z − 2i)−1

y =
1

|i− 2(z − i)−1|2
((z − i)−1(z̄ + i)−1i(z̄ + i)− i(z̄ + i)−1 + (z − i)−1i+ 2(z − i)−1(z̄ + i)−1)

× w(1− (z̄ + i)(z − i)−1 + 2i(z − i)−1)

is surjective.

The following proposition describes the symplectic property of the restricted
Birkhoff-Waldvogel mapping:
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Proposition 18. B.W.∗(Re(dȳ ∧ dx)) = Re(dw̄ ∧ dz)|Λ̂.

Proof. We compute the 1-form:

Φ∗
1(Re(β̄dα)) = Re

(
(z − i)w̄(z − i)

2
· (−2d(z − i)−1)

)
= Re

(
(z − i)w̄(z − i)

2
· 2(z − i)−1(d(z − i))(z − i)−1

)
= Re(w̄dz)

Similarly, we get
Φ∗

2(Re(ȳdx)) = Re(p̄dq).

We now recall the fact

K.S.|∗Σ(Re(p̄dq)) = Re(β̄dα).

Since Σ̂ ⊂ Σ, we have

K.S.|∗
Σ̂
(Re(p̄dq)) = Re(β̄dα).

By combining these facts, we obtain

B.W.∗(Re(ȳdx)) = Re(w̄dz).

We now apply this mapping to the two center problem in R3 ∼= IH, with the
two centers at ±i ∈ IH. We start with the shifted-Hamiltonian of the two-center
problem

H − f =
|y|2

2
+

m1

|x− i|
+

m2

|x+ i|
− f

and consider its 0-energy hypersurface. By multiplying the above equation by
|x− i||x+ i|, we obtain

|x− i||x+ i|(H − f) =
|y|2|x− i||x+ i|

2
+m1|x+ i|+m2|x− i| − f |x− i||x+ i|.

With the following identities

B.W.∗(|x− i|) = |z − i|2

|z̄ − z|

B.W.∗(|x+ i|) = |z + i|2

|z̄ − z|

B.W.∗(|y|2) = |z̄ − z|4|w|2

4|z − i|2|z + i|2

we obtain

K̃ =
|w|2|z̄ − z|2

8
+m1

|z + i|2

|z̄ − z|
+m2

|z − i|2

|z̄ − z|
− f

|z − i|2|z + i|2

|z̄ − z|2
= 0, (12)
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which can be put in the standard form of a natural mechanical system in the
plane by a further multiplication of |z̄ − z|−2: In this way we get

K :=
|w|2

8
+m1

|z + i|2

|z̄ − z|3
+m2

|z − i|2

|z̄ − z|3
− f

|z − i|2|z + i|2

|z̄ − z|4
= 0. (13)

Note that the Hamiltonian (13) is regular at the physical double collisions
{z = ±i}. The physical collisions are therefore regularized. Its singular set
{z ∈ R} corresponds to ∞ of the original system, and is not contained in any
finite energy level (Lem. 15).

Proposition 19. Consider a plane in IH containing the i-axis given by the
equation

k2x2 + k3x3 = 0 (14)

with (k1, k2) ∈ R2 \O. The pre-image of this plane by the B.W. mapping is the
family of two-dimensional spheres and planes given by{

(sin θz0 − cos θ)2 + (z21 + z22 + z23) sin
2 θ = 1

k2(z2 cos θ + z3 sin θ) + k3(z3 cos θ − z2 sin θ) = 0.
(15)

For each θ ̸≡ 0, π (mod 2π), Equation (15) describes a two-dimensional
sphere as the intersection of a three-dimensional sphere with a hyperplane in
H. We call them Birkhoff spheres. We denote them by Sθ,κ respectively.

For θ ≡ 0, π (mod 2π), Equation (15) describes the plane{
z0 = 0

k2z2 + k3z3 = 0,
(16)

which we call a Birkhoff plane and we denote it by πκ. In both cases, the angle
κ is the unique angle which satisfies

cosκ = z2, sinκ = z3.

Moreover, the mapping B.W. is restricted to the Birkhoff mapping on the cotan-
gent bundle of a Birkhoff plane.

Proof. The pre-image of the plane (14) by the mapping ϕ2 is a plane given by

k1q2 + k2q3 = 0

in IH. The pre-image of this plane by the Hopf map is the family of Levi-Civita
planes given by{

α0 cos θ + α1 sin θ = 0

k2(α2 cos θ + α3 sin θ) + k3(α3 cos θ − α2 sin θ) = 0
(17)
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in which θ ∈ R/2πZ is an angle parametrizing the S1-symmetry of the Hopf
mapping. The pre-image of this family of Levi-Civita planes by ϕ1 is{

cos θ(−z0) + sin θ
(
z1 − 1 + (z20 + (z1 − 1)2 + z22 + z23)

2/2
)
= 0,

k2(cos θz2 + sin θz3) + k3(cos θz3 − sin θz2) = 0,
(18)

which is equivalent to Eq. 15. For the last assertion, the restriction of the B.W.
mapping to a Birkhoff plane is the composition of planar mappings each of them
can be identified with φ2, L.C., φ1 respectively. Indeed, the restriction of ϕ1 to
the ij-plane is obtained as

ϕ1(z1i+ z2j) = (1− 2((z1 − 1)2 + z2)
−1(1− z1))i+ 2((z1 − 1)2 + z2)

−1z2j

which is equivalent to the Möbius transformation on C ∪ {∞} given by

φ1(z0 + z1i) = 1− 2((z0 − 1)2 + z21)
−1(1− z0)− 2(z0 − 1)2 + z21)

−1z1i

up to some basis changes. One can generalize this identification to any planes
in IH containing the i-axis by rotating the plane with respect to the i-axis.
Analogously, we can identify the restriction of ϕ2 to a plane in IH containing
the i-axis. Finally, we recall the argument from Proposition 5 and use the
equivalence between the restriction of the Hopf mapping to the ij−plane in IH
and the complex square mapping. The conclusion follows.

It is desirable to relate Sθ,κ and πκ, as they are related by the symmetry
of the Birkhoff-Waldvogel mapping. We also would like to introduce natural
coordinates to analyze the transformed system. For this purpose, we have the
following lemma:

Lemma 20. Let z ∈ πκ be expressed as

z = (r cosψ) i+ (r sinψ cosκ) j + (r sinψ sinκ) k,

and zθ ∈ Sθ,κ be related to z by the action of the S1-symmetry of the Birkhoff-
Waldvogel mapping by shifting the corresponding angle by θ. Then we have

zθ =
(1− r2) sin θ + 2r cosψi+ 2r sinψ cos(θ + κ)j + 2r sinψ sin(θ + κ)k

(r2 + 1)− (r2 − 1) cos θ
.

(19)

Proof. The mapping πκ → Sθ,κ, z 7→ zθ is computed as zθ = ϕ−1
1 (eiθϕ1(z)).

This leads to the formula above.

We may thus use (r, ψ, κ, θ) as coordinates for points in H \O with the help
of Eq. (19). The mapping (r, ψ, κ, θ) 7→ z := zθ is seen to be 2-to-1, as both
(r, ψ, κ, θ) and (r, ψ, κ, θ + π) is sent to the same point z ∈ H.

We compute K̃ in Eq. (12) with these coordinates. We denote by (Pr, Pψ, Pκ, Pθ)
the corresponding conjugate momenta. We set Pθ = 0, which is equivalent to
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the condition Re((z̄ + i)w(z̄ − i)) = 0. This follows from Eq.(11). We then
obtain after this restriction the formula

K̃ =
r2P 2

r

2
+
P 2
ψ

2
+

P 2
κ

2 sin2 ψ
− 2r2P 2

κ

(r2 − 1)2
(20)

+ 4f cos2 ψ + (m1 −m2) cosψ +
(fr2 − (m1 +m2)r/2 + f)(r2 + 1)

r2
.

(21)

This can be considered as the reduced system with respect to the S1-symmetry
in the direction of θ.

We have
K̃ = K̃1 + K̃2, (22)

with

K̃1(r, Pr, Pκ) =
r2P 2

r

2
− 2r2P 2

κ

(r2 − 1)2
+

(fr2 − (m1 +m2)r/2 + f)(r2 + 1)

r2
;

K̃2(ψ, Pψ, Pκ) =
P 2
ψ

2
+

P 2
κ

2 sin2 ψ
+ 4f cos2 ψ + (m1 −m2) cosψ.

(23)

The angle κ does not appear in this formula, reflecting the rotational invari-
ance of the system around the axis of centers in IH. We may thus fix Pκ = C.
The further reduced Hamiltonian is

K̃red = K̃red,1 + K̃red,2, (24)

with

K̃red,1(r, Pr) =
r2P 2

r

2
− 2r2C2

(r2 − 1)2
+

(fr2 − (m1 +m2)r/2 + f)(r2 + 1)

r2
;

K̃red,2(ψ, Pψ) =
P 2
ψ

2
+

C2

2 sin2 ψ
+ 4f cos2 ψ + (m1 −m2) cosψ.

(25)

Both K̃red,1(r, Pr), K̃red,2(ψ, Pψ) are 1 degree of freedom systems. The
theory of [22] applies. Any finite combination of coordinate lines {r = cst.} and
{ψ = cst.} in the (r, ψ)-plane are integrable reflection walls.

It follows from Eq. (19) that each fibre of the B.W.-mapping intersects the
subspace IH in two points when r ̸= 1, and lie completely in this subspace when
r = 1. In this latter case, only the combination of the angles θ+κ appears in the
formula, meaning that in this case the κ-orbit is the same as the θ-orbit. This
is reflected in the formula (20) for K̃, which is singular at {r = 1} if C ̸= 0.
Indeed it is not hard to check that this set corresponds to the i-axis in the
physical space IH. This follows from Eq.(10). Otherwise, it is also singular at
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ψ = 0, π (mod 2π), corresponding again to the i−axis. With this in mind, we
consider the restriction of the system to the set

D̃ = {z = z1i+ z2j + z3k ∈ IH\ : |z| ≠ 0, 1, (z2, z3) ̸= (0, 0)}

with (orthogonal) spherical coordinates (r, ψ, κ), given by Eqs. (22), (23).

Proposition 21. A mechanical billiard system in IH, defined by the restriction
of K̃ and any finite combination of concentric spheres and any cones symmetric
around the i-axis with the vertex at the origin is integrable.

Proof. The spherical coordinates (r, ψ, κ) are orthogonal. At a point of reflection
we decompose the velocity as vr e⃗r+vψ e⃗ψ+vκ e⃗κ. We consider a sphere centered
at the origin O or a cone symmetric around the i-axis with a vertex at O as
reflection wall. Due to the symmetry of the wall with respect to the i-axis,
the κ-component of the velocity, thus the Pκ does not change under reflections.
Also, the intersection of the wall and a plane containing the i-axis is a circle
centered at the origin or a line passing through the origin, thus the argument in
[22, Lemma 3] applies and we see that both P 2

r and P 2
ψ are conserved. Therefore,

we conclude that K̃1 and K̃2 are conserved.

By a quadric of class R in IH we mean a spheroid or a circular hyperboloid
of two sheets there-in with foci at the two Kepler centers ±i following [23].
Restricting the system in IH to the Birkhoff planes and making use of [22], we
obtain that the above mentioned system is equivalent to the two-center billiards
in R3 with any combinations of quadrics of class R as reflection walls.

Theorem 22. The above-mentioned mechanical billiard system is equivalent to
the two-center billiards in R3 with any combinations of quadrics of class R as
reflection walls.

Thoerem B. Consider a surface of revolution in R3 by revolving a conic with
foci at the two Kepler centers around the axis joining the centers. Then reflecting
orbits of the spatial two-center problem on such a surface of revolution R is an
integrable mechanical billiard. Moreover, taking a finite combination of these
surfaces does not destroy the integrability of the resulting two-center mechanical
billiard systems.

This provides an alternative way to show the integrability of these two-center
billiards, and generalizes [22] to dimension 3.

Remark 23. The Lagrange problem in R3 is given by the Hamiltonian

H =
|w|2

2
+m0|z|2 +

m1

|z − i|
+

m2

|z + i|
,

with m0,m1,m2 ∈ R as parameters.
The same procedure shows that this system is separable after reduction in the

same coordinates as above. Consequently, Thm. 22 also holds with the Lagrange
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problem as the underlying system, as well as for other similar systems separable
after reduction in these coordinates.

We here recall the explicit representation of the first integrals for the inte-
grable Lagrange billiard obtained in [23]:

E =
ẋ2 + ẏ2 + ż2

2
+m0(x

2 + y2 + z2) +
m1√

(x− 1) + y2 + z2
+

m2√
(x+ 1) + y2 + z2

,

Lyz = ẏz − ży,

Esph =
1

2

(
2ẋ2 + ẏ2 + ż2 + ((

√
2x+ 1)ẏ −

√
2yẋ)2 + (

√
2zẋ− (

√
2x+ 1)ż)2 + (yż − zẏ)2

)
+m0(2x

2 + y2 + z2) +
m1(1 +

√
2x)√

(x− 1/
√
2)2 + y2 + z2

+
m2(1−

√
2x)√

(x+ 1/
√
2)2 + y2 + z2

.

Setting m0 = 0 yields the first integrals of the two-center problem stated in
Theorem B.
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