
IMS
Stony 
Brook

Arnold Mathematical Journal

Volume 11, Issue 1, 2025

Contact geometry of Hill’s

approximation in a spatial restricted

four-body problem

Cengiz Aydin

Received 10 Mar 2024; Accepted 10 Oct 2024

Abstract: It is well-known that the planar and spatial circular restricted

three-body problem (CR3BP) is of contact type for all energy values below the

first critical value. Burgos-Garcia and Gidea extended Hill’s approach in the

CR3BP to the spatial equilateral CR4BP, which can be used to approximate

the dynamics of a small body near a Trojan asteroid of a Sun–planet system.

Our main result in this paper is that this Hill four-body system also has the

contact property. In other words, we can “contact” the Trojan. Such a result

enables to use holomorphic curve techniques and Floer theoretical tools in

this dynamical system in the energy range where the contact property holds.
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1 Introduction

Astronomical significance. One of the first triumphs in celestial mechanics was the La-

grange central configuration, one of the first explicit solutions to the three-body problem

discovered by Lagrange [29] in 1772. It consists of three bodies, not necessarily of equal

masses, forming the vertices of an equilateral triangle, each moving on a specific Kepler

orbit. The triangular configuration of the bodies is maintained throughout the entire

motion. A special type of Lagrange’s solution is the rigid circular motion of the three

bodies around their center of mass. It is common to use the term “Trojan” to describe

a small body, an asteroid or a natural satellite, that lies in such equilateral triangular

configuration together with the Sun and a planet, or with a planet and a moon. In other

words, such small bodies remain near triangular points 60° ahead of or behind the orbit

of a planet or a moon. Such triangular points correspond to the two equilateral Lagrange

points, 𝐿4 (leading) and 𝐿5 (trailing), of a Sun–planet or a planet–moon system. Since the

discovery of the first Trojan asteroid, 588 Achilles, near Jupiter’s Lagrange point 𝐿4 by

Max Wolf of the Heidelberg Observatory in 1906 (see [37]), such configurations have

not only deserved attention in theory, but have also gained tremendous astronomical

significance. By now many other examples of Trojan-like asteroids in our solar system

have become known. Jupiter has thousands of Trojans [44]; Mars [17] and Neptune [2]

also have some; only two Earth Trojans have been discovered so far [41]. Meanwhile

it is known [36] that the Saturn–Tethys system has two Trojans, Telesto (𝐿4-Trojan) and

Calypso (𝐿5-Trojan), and the Saturn–Dione system has two as well, Helene (𝐿4-Trojan) and

Polydeuces (𝐿5-Trojan). A twelve-year space probe to several Jupiter Trojans is currently

being operated by NASA’s Lucy mission, which was launched on 16 October 2021 as the

first mission to the Jupiter Trojans (see e.g., [38] for a recent research result). Outside the
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solar system there exists also the possibility of a Trojan planet associated to extrasolar

systems, formed by a star with similar mass as the Sun and a giant gas planet. Although

such Trojan planets only play a fictitious role at the moment, their dynamics are already

being analyzed theoretically [43].

In order to describe conveniently the dynamics of small bodies attracted by the grav-

itational field of three bodies in such a triangular central configuration, a restricted

four-body problem (R4BP) becomes necessary. There are plenty of results on various

models of the R4BP, such as [3], [8], [9], [13, 11, 12], [19], [22], [28], [31], [35], [42], [45].

Relevant for this work is the spatial equilateral circular one, in which three primaries

circle around their common center of mass and forming an equilateral triangular con-

figuration. In view of astronomical data associated to such configurations in the solar

system, the mass of one of the primaries (the Trojan) is much smaller than the other two

primaries. If one equates the mass of the Trojan to zero, the system represents the circular

restricted three-body problem (CR3BP). Therefore, to study the dynamics in the vicinity

of the Trojan, a practical and intelligent concept is to perform a Hill’s approximation in

the equilateral circular R4BP.

Hill’s approximation. In 1878 Hill [24] introduced a limiting case of the CR3BP, as

an approach to solve the motion of the Moon in the Sun–Earth problem. As a first ap-

proximation, the infinitesimal body (Moon) moves in the vicinity of the smaller primary

(Earth) and, by a symplectic rescaling of coordinates, the remaining primary (Sun) is

pushed infinitely far away in a way that it acts as a velocity independent gravitational

perturbation of the rotating Kepler problem formed by the Earth and the Moon.

Extending Hill’s concept to the equilateral circular R4BP was performed by Burgos-

García and Gidea [12], which is the central system in this paper. This problem studies the

dynamics near the Trojan and pushes the two remaining primaries (e.g., Sun and Jupiter)

to infinity, and depends on two parameters, the energy of the system and the mass ratio

𝜇 ∈ [0, 1
2
] of the two primaries at infinity (system is symmetric with respect to 𝜇 = 1

2
).
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The case 𝜇 = 0 corresponds to the classical Hill 3BP, therefore this Hill four-body model

generalizes the classical Hill’s approach. It is worth noting that this system is different as

the one introduced by Scheeres [42], in which the motion of a spacecraft in the Sun per-

turbed Earth–Moon system is studied. Moreover, this Hill four-body system was extended

in [11] as a problem with oblate bodies modeling the Sun–Jupiter–Hektor–Skamandrios

system.

Why we care about contact property. One of Hill’s main contributions was the dis-

covery of one periodic solution with a period of one synodic month of the Moon. Hill’s

lunar theory was, as Wintner said [47, p. 1], “considered by Poincaré as representing a

turning point in the history of celestial mechanics”. Poincaré sought to make periodic

solutions central in the study of the global dynamics, a focus that has persisted since his

pioneering work [39]. Inspired by Poincaré’s concept of using global surface of sections

for proving existence results of periodic orbits in the CR3BP [40], Birkhoff conjectured

[10] that retrograde periodic orbits in the CR3BP bound a disk-like global surface of

section (retrograde means that the motion of the orbit is in opposite direction as the

coordinate system is rotating; direct is the one that rotates in the same direction). Due to

preservation of an area form with finite total area, one can apply Brouwer’s translation

theorem to the Poincaré return map associated to the disk-like global surface of section

and find at least one fixed point that should correspond to a direct periodic orbit. The

direct orbit is astronomically more significant, since our Moon moves in a direct motion

around the Earth, whose existence is based so far on numerical computations, as Hill’s

lunar orbit. Such fixed point approaches related to existence results of periodic orbits

are sources of inspiration that have laid the fruitful fundamental principles of powerful

abstract methods and important breakthroughs in symplectic and contact geometry, such

as the work by Floer [20] on the Arnold conjecture, by Hofer [25] and Taubes [46] on

the Weinstein conjecture, and by Hofer–Wysocki–Zehnder [26] on the construction of
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disk-like global surface of sections with the help of holomorphic curves. The assumption

that energy level sets are of contact type enable to use holomorphic curve and Floer theo-

retical techniques in the energy range where the contact property holds. Especially, many

recent deep results associated with the dynamics of low-dimensional contact manifolds

have been proved: In the 3-dimensional case, [16] proved the existence of supporting

broken book decompositions, [15] showed how to use these broken book decompositions

to construct Birkhoff sections or global surfaces of section, [18] gave a detailed description

of the dynamics when there are exactly two simple Reeb orbits, and [27] described an

abstract framework for proving strong closing properties based on the smooth closing

lemma for Reeb flows; in the 5-dimensional case, [33] showed the relation between the

spatial dynamics of the CR3BP and iterated open book decompositions. We also refer

to [21] for a profound introduction to holomorphic techniques and their use in celes-

tial mechanics, particularly focused on the CR3BP and the above Birkhoff’s conjecture.

Another dynamical consequence of the contact property of energy level sets, discussed

in the latter reference, is that blue sky catastrophes cannot occur. On a practical level,

Floer theoretic bifurcation tools have recently been applied to numerical investigations

of periodic orbits [4], [6], [32].

Main result. For the planar CR3BP it is well-known that below the first critical value,

the two bounded components of the energy level sets, after Moser regularization, are of

contact type [1]. Each component corresponds to the unit cotangent bundle of 𝑆2 with the

standard contact structure, meaning that each contact manifold corresponds to (𝑆∗𝑆2, 𝜉𝑠𝑡).

The same result for the spatial case was shown in [14], where each contact manifold

corresponds to (𝑆∗𝑆3, 𝜉𝑠𝑡). We note that [21, Chapter 6.1] proved the same result for the

classical planar Hill 3BP.

The Hill four-body system we consider has four Lagrange points, where 𝐿1 is symmetric

to 𝐿2 (lying on the 𝑥-axis), and 𝐿3 is symmetric to 𝐿4 (lying on the 𝑦-axis). If the energy

value 𝑐 is below the first critical value 𝐻(𝐿1∕2), then the energy level set has one bounded
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component (where the origin is contained), which we denote by Σ𝑏𝑐 . This component

is non-compact because of a singularity at the origin corresponding to collision. After

performing Moser regularization, we obtain a compact 5-dimensional manifold, which

we denote by Σ̃𝑏𝑐 . The spatial system is invariant under a symplectic involution 𝜎 which is

induced by the reflection at the ecliptic. The restriction of the spatial problem to the fixed

point set Fix(𝜎) corresponds to the planar problem. In fact, we can restrict the whole

procedure to Fix(𝜎) and obtain a compact 3-dimensional manifold, which we denote by

Σ̃𝑏𝑐 |Fix(𝜎). Our main result in this paper is the following theorem.

Theorem 1.1. For any given 𝜇 ∈ [0, 1
2
] it holds that

Σ̃𝑏𝑐 ≅ (𝑆∗𝑆3, 𝜉𝑠𝑡), if 𝑐 < 𝐻(𝐿1∕2),

Σ̃𝑏𝑐 |Fix(𝜎) ≅ (𝑆∗𝑆2, 𝜉𝑠𝑡), if 𝑐 < 𝐻(𝐿1∕2).

Our method to prove Theorem 1.1 is the same as in [1], [14], namely we find a Liouville

vector field on the cotangent bundle which is transverse to Σ̃𝑏𝑐 whenever 𝑐 < 𝐻(𝐿1∕2). This

transversality result implies the contact property. The Liouville vector field we use is

inspired by Moser regularization, which first interchanges the roles of position and

momenta, and then uses the stereographic projection. In this setting, the Liouville vector

field is the natural one (i.e., the radial vector field in fiber direction) on the new cotangent

bundle structure after switching position and momenta. Therefore, our transversality

result implies in particular fiberwise starshapedness.

Organization of the paper. In Section 2 we discuss the Hamiltonian, its linear symme-

tries, Lagrange points and Hill’s regions. The goal of Section 3 is to prove Theorem 1.1. We

first recall some basic definitions and notations from contact geometry, and then show

transversality in the non-regularized case. After this, we perform Moser regularization

and prove therein the transversality property.
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2 Hill’s approximation in the spatial equilateral circular R4BP

2.1 Hamiltonian

We consider three point masses (primaries), 𝐵1, 𝐵2 and 𝐵3, moving in circular periodic

orbits in the same plane with constant angular velocity around their common center of

gravity fixed at the origin, while forming an equilateral triangle configuration (see Figure

1). A fourth body 𝐵4 is significantly smaller than the other three and thus a negligible

effect on their motion. We set 𝐵1 on the negative 𝑥-axis at the origin of time and assume

that the corresponding three masses are𝑚1 ≥ 𝑚2 ≥ 𝑚3. It is convenient to choose the units

of mass, distance and time such that the gravitational constant is 1, and the period of the

circular orbits is 2𝜋. In these units the side length of the equilateral triangle configuration

is normalized to be one, and 𝑚1 +𝑚2 +𝑚3 = 1. Moreover, it is convenient to use a rotating

frame of reference that rotates with an angular velocity of the orbital angular rate

of the primaries. Then, the dynamics of the infinitesimal body 𝐵4 is described by the

Hamiltonian

𝐻(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) =
1
2
(
𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧

)
−
𝑚1
𝑟1

−
𝑚2
𝑟2

−
𝑚3
𝑟3

+ 𝑝𝑥𝑦 − 𝑝𝑦𝑥,

which is a first integral of the system. An equivalent first integral is the Jacobi integral 𝐶

defined by 𝐶 = −2𝐻. Notice that 𝑟𝑖 indicates the corresponding distance from 𝐵4 to 𝑖-th

primary, for 𝑖 = 1, 2, 3. The general expressions of the position coordinates (𝑥𝑖, 𝑦𝑖, 0) can

be seen in [9]. If 𝑚3 = 0 and 𝑚2 = 𝜇, then one recovers the constellation of the CR3BP

associated to 𝐵1 and 𝐵2, where 𝐵3 is located at the equilateral Lagrange point 𝐿4. Moreover,

the phase space is the trivial cotangent bundle 𝑇∗
(
ℝ3 ⧵ {𝐵1, 𝐵2, 𝐵3}

)
=
(
ℝ3 ⧵ {𝐵1, 𝐵2, 𝐵3}

)
×ℝ3,

endowed with the standard symplectic form 𝜔 =
∑
𝑑𝑝𝑘 ∧ 𝑑𝑘 (𝑘 = 𝑥, 𝑦, 𝑧). The flow of the

Hamiltonian vector field 𝑋𝐻 , defined by 𝑑𝐻(⋅) = 𝜔(⋅, 𝑋𝐻), is equivalent to the equations of

motion, {�̇� = 𝜕𝐻
𝜕𝑝𝑘

, �̇�𝑘 = − 𝜕𝐻
𝜕𝑘
} (𝑘 = 𝑥, 𝑦, 𝑧).

We now briefly recall the fundamental steps of Hill’s approximation, as performed

in [12] where the details can be seen. Let 𝐵3 be the primary (the Trojan), whose mass is

much smaller than the other two primaries. The first step is to set the Trojan to the origin.
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Figure 1: Equilateral circular restricted four-body problem. Left: Case of 𝑚1 > 𝑚2 > 𝑚3.

Right: Case of𝑚2 = 𝑚3 in a rotating frame of reference; 𝐵2 and𝐵3 are located symmetrically

with respect to 𝐵1.

The second step rescales symplectically the coordinates depending on 𝑚1∕3
3 . The third

step makes use of a Taylor expansion of the gravitational potential of the Hamiltonian in

powers of 𝑚1∕3
3 . Finally, the limiting case for 𝑚3 → 0 yields the Hamiltonian

𝐻(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) =
1
2
(
𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧

)
+ 𝑝𝑥𝑦 − 𝑝𝑦𝑥 −

1
𝑟 +

1
8𝑥

2 −
3
√
3

4 (1 − 2𝜇)𝑥𝑦 − 5
8𝑦

2 + 1
2𝑧

2,

where 𝑟 =
(
𝑥2 + 𝑦2 + 𝑧2

) 1
2 , 𝑚1 = 1 − 𝜇 and 𝑚2 = 𝜇. Notice that if one expands the Hamilto-

nian of the CR3BP centered at the equilateral Lagrange point 𝐿4, then the quadratic part

corresponds to 𝐻 + 1∕𝑟.

Furthermore, after applying a rotation in the 𝑥𝑦-plane, the system is equivalent with the

system characterized by the Hamiltonian

𝐻(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) =
1
2
(
𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧

)
+ 𝑝𝑥𝑦 − 𝑝𝑦𝑥 −

1
𝑟 + 𝑎𝑥2 + 𝑏𝑦2 + 1

2𝑧
2, (1)

where

𝑎 = 1
2(1 − 𝜆2), 𝑏 = 1

2(1 − 𝜆1), 𝜆1 =
3
2(1 − 𝑑), 𝜆2 =

3
2(1 + 𝑑), 𝑑 =

√
1 − 3𝜇 + 3𝜇2.

Since 𝑑(1 − 𝜇) = 𝑑(𝜇), we can assume that 𝜇 ∈ [0, 1
2
]. Notice that 𝜆1 and 𝜆2 are the eigenval-

ues corresponding to the rotation transformation in the 𝑥𝑦-plane. The quantities 𝑎, 𝑏, 𝜆1, 𝜆2
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Figure 2: The quantities 𝑎 (red), 𝑏 (green), 𝜆1, 𝜆2 (both blue) and 𝑑 (black).

and 𝑑 are plotted in Figure 2. The Hamiltonian (1) consists of the rotating Kepler problem

(formed by the Trojan and the infinitesimal body) with a velocity independent gravita-

tional perturbation produced by the two remaining massive primaries (the degree 2 term

𝑎𝑥2 + 𝑏𝑦2 + 1
2
𝑧2) which are sent at infinite distance. By introducing the effective potential

𝑈∶ ℝ3 ⧵ {0}→ ℝ, (𝑥, 𝑦, 𝑧) ↦→ −1𝑟 −
1
2
(
𝜆2𝑥2 + 𝜆1𝑦2 − 𝑧2

)
, (2)

the Hamiltonian (1) can be written as

𝐻(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) =
1
2
(
(𝑝𝑥 + 𝑦)2 + (𝑝𝑦 − 𝑥)2 + 𝑝2𝑧

)
+𝑈(𝑥, 𝑦, 𝑧), (3)

and the equations of motion are given by

�̈� − 2�̇� = −𝜕𝑈
𝜕𝑥

= (𝜆2 −
1
𝑟3
)𝑥

�̈� + 2�̇� = −𝜕𝑈
𝜕𝑦

= (𝜆1 −
1
𝑟3
) 𝑦 (4)

�̈� = −𝜕𝑈
𝜕𝑧

= − (1 + 1
𝑟3
) 𝑧.

In particular, the case 𝜇 = 0 recovers the classical Hill 3BP. While the Hill 3BP depends

only on the energy of the orbit, this systems depends on two parameters, the mass ratio
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𝜇 and the energy of the system. Specific 𝜇-values of practical interest are for example

𝜇 = 0.00095, which approximates the Sun–Jupiter mass ratio, and 𝜇 = 0.00547, which

corresponds to the extrasolar system associated to the Sun-like star HD 28185 and its

Jupiter-like exoplanet HD 28185 b.

2.2 Linear symmetries

A “symmetry” 𝜎 is, by definition, a symplectic or anti-symplectic involution of the phase

space which leaves the Hamiltonian invariant, i.e.,

𝐻◦𝜎 = 𝐻, 𝜎2 = id, 𝜎∗𝜔 = ±𝜔. (5)

Anti-symplectic symmetries denote time-reversal symmetries in the Hamiltonian context,

see e.g., [30]. A periodic solution 𝐱 ≡ (𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) is symmetric with respect to an

anti-symplectic symmetry 𝜌 if 𝐱(𝑡) = 𝜌 (𝐱(−𝑡)) for all 𝑡, and symmetric with respect to a

symplectic one 𝜎 if 𝐱(𝑡) = 𝜎 (𝐱(𝑡)) for all 𝑡.

The reflection at the ecliptic {𝑧 = 0} gives rise to a linear symplectic symmetry of (1),

denoted by

𝜎(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = (𝑥, 𝑦,−𝑧, 𝑝𝑥, 𝑝𝑦,−𝑝𝑧), (6)

whose fixed point set Fix(𝜎) = {(𝑥, 𝑦, 0, 𝑝𝑥, 𝑝𝑦, 0)} corresponds to the planar problem. Other

linear symplectic symmetries are −𝜎 and ±id, where −𝜎 corresponds to the 𝜋-rotation

around the 𝑧-axis, hence the 𝑧-axis is invariant under −𝜎. Linear anti-symplectic symme-

tries are determined by

• 𝜌1(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = (𝑥,−𝑦,−𝑧,−𝑝𝑥, 𝑝𝑦, 𝑝𝑧) (𝜋-rotation around the 𝑥-axis),

• 𝜌2(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = (𝑥,−𝑦, 𝑧,−𝑝𝑥, 𝑝𝑦,−𝑝𝑧) (reflection at the 𝑥𝑧-plane),

• 𝜌3(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = (−𝑥, 𝑦,−𝑧, 𝑝𝑥,−𝑝𝑦, 𝑝𝑧) (𝜋-rotation around the 𝑦-axis),

• 𝜌4(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = (−𝑥, 𝑦, 𝑧, 𝑝𝑥,−𝑝𝑦,−𝑝𝑧) (reflection at the 𝑦𝑧-plane).

Together with the previous linear symplectic symmetries, they form the groupℤ2×ℤ2×ℤ2.

If one restrict the system to Fix(𝜎), linear anti-symplectic symmetries for the planar

problem are given by
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• 𝜌𝑥(𝑥, 𝑦, 0, 𝑝𝑥, 𝑝𝑦, 0) = (𝑥,−𝑦, 0,−𝑝𝑥, 𝑝𝑦, 0) (reflection at the 𝑥-axis),

• 𝜌𝑦(𝑥, 𝑦, 0, 𝑝𝑥, 𝑝𝑦, 0) = (−𝑥, 𝑦, 0, 𝑝𝑥,−𝑝𝑦, 0) (reflection at the 𝑦-axis),

that together with the linear symplectic ones {±id} form a Klein-four group ℤ2 ×ℤ2. These

symmetries show that it is not possible to say which of the two primaries at infinity we

are moving to or away from.

Remark 2.1. In [7] it shown that the Hill 3BP (𝜇 = 0) has two special properties.

i) The spatial linear symmetries already determine the planar ones. The same phe-

nomenon is also true for all 𝜇 ∈ [0, 1
2
]. To see this, let us denote by Σ𝑠 and Σ𝑝 each set

of spatial and planar linear symmetries. Consider the projection map given by the

restriction to Fix(𝜎),

𝜋∶ Σ𝑠 → Σ𝑝, 𝜌 ↦→ 𝜌|Fix(𝜎).

If 𝜌 ∈ Σ𝑠, then 𝜌|Fix(𝜎) ∈ Σ𝑝 with the corresponding (anti-)symplectic property. While

𝜋 is not injective (since 𝜋(𝜌1) = 𝜋(𝜌2)), it is surjective. If 𝜌 ∈ Σ𝑝 is symplectic (or

anti-symplectic), then a symplectic (or anti-symplectic) extension is given by 𝑧 ↦→ 𝑧

and 𝑝𝑧 ↦→ 𝑝𝑧 (or 𝑧 ↦→ −𝑧 and 𝑝𝑧 ↦→ 𝑝𝑧).

ii) There are no other linear symmetries. This statement also holds for all 𝜇 ∈ [0, 1
2
].

Its proof uses the equations (5) and the properties of linear symplectic and anti-

symplectic involutions. Since the exact same computations work for (1) for all

𝜇 ∈ [0, 1
2
], we forgo its proof in this paper.

2.3 Lagrange points and Hill’s region

From the third equation in (4) it is obvious that all Lagrange points are located at the

ecliptic {𝑧 = 0}. Using the projection onto the configuration space given by

𝜋∶ ℝ3 ⧵ {0} ×ℝ3 → ℝ3 ⧵ {0}, (𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) ↦→ (𝑥, 𝑦, 𝑧), (7)

there is a one-to-one correspondence between critical points of the Hamiltonian (3) and

the effective potential (2), determined by
(
𝜋|crit(𝐻)

)−1
(𝑥, 𝑦, 0) = (𝑥, 𝑦, 0,−𝑦, 𝑥, 0). In [12] it is
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shown that (2) has four critical points, whose coordinates are given explicitly in terms of

𝜇,

𝐿1 = (
1

3
√
𝜆2
, 0, 0) , 𝐿2 = (−

1
3
√
𝜆2
, 0, 0) , 𝐿3 = (0,

1
3
√
𝜆1
, 0) , 𝐿4 = (0,−

1
3
√
𝜆1
, 0) .

Note that 𝐿1∕2 are related to each other by 𝜌𝑦 (reflection at the 𝑦-axis), and 𝐿3∕4 are related

to each other by 𝜌𝑥 (reflection at the 𝑥-axis). The classical Hill 3BP (𝜇 = 0) only has 𝐿1∕2,

and especially, if 𝜇 → 0 then 𝜆1 → 0, which means that 𝐿3 and 𝐿4 are sent to infinity.

Therefore, the presence of a second primary at infinity for 𝜇 ∈ (0, 1
2
] produces the two

additional Lagrange points 𝐿3∕4. Since 𝜆2 > 𝜆1, we have for the critical values

𝐻(𝐿1∕2) = −32
3
√
𝜆2 < −32

3
√
𝜆1 = 𝐻(𝐿3∕4), for all 𝜇 ∈ (0, 12].

We now consider the energy level set Σ𝑐 ∶= 𝐻−1(𝑐), for 𝑐 ∈ ℝ. In view of the footpoint

projection (7), the “Hill’s region” of Σ𝑐 is defined as

K𝑐 ∶= 𝜋(Σ𝑐) ⊂ ℝ3 ⧵ {0},

which means that the Hill’s region of the energy level set is its shadow under the footpoint

projection. Since the first three terms in (3) are quadratic and hence non-negative, we

can obtain the Hill’s region by

K𝑐 =
{
(𝑥, 𝑦, 𝑧) ∈ ℝ3 ⧵ {0} ∣ 𝑈(𝑥, 𝑦, 𝑧) ≤ 𝑐

}
.

The topology of the Hill’s region depends on the energy level. If 𝑐 < 𝐻(𝐿1∕2), then the Hill’s

region has two connected components, one bounded and one unbounded (see Figure 3).

We denote the bounded component by K 𝑏
𝑐 and abbreviate by

Σ𝑏𝑐 ∶= 𝜋−1(K 𝑏
𝑐 ) ∩ Σ𝑐 (8)

the corresponding connected component of Σ𝑐.

Arnold Mathematical Journal, Vol.11(1), 2025 109

http://dx.doi.org/10.56994/ARMJ


Cengiz Aydin

Figure 3: Hill’s region (gray shaded domains) for planar problem {𝑧 = 0} for 𝜇 = 0.2. White

domains correspond to forbidden regions. Red dots indicate 𝐿1∕2; blue dots indicate 𝐿3∕4.

Right: For 𝑐 < 𝐻(𝐿1∕2). Left: For 𝐻(𝐿1∕2) < 𝑐 < 𝐻(𝐿3∕4). In the Hill 3BP (𝜇 = 0), when 𝐿3∕4

are sent to infinity, below the critical value the Hill’s region consists of one bounded

component and two unbounded components.

3 Contact property - Proof of Theorem 1.1

3.1 Basic notations

We now recall some basic definitions and notations from contact geometry, and refer for

details to [23].

Definition 3.1. Let 𝑀 be a smooth manifold of odd dimension 2𝑛+1. A “contact form” on

𝑀 is a 1-form 𝛼 ∈ Ω1(𝑀) such that 𝛼 ∧ (𝑑𝛼)∧𝑛 ≠ 0. Given a contact form 𝛼, the hyperplane

field 𝜉 = ker𝛼 ⊂ 𝑇𝑀 is oriented by 𝑑𝛼, and this oriented codimension-1 field is called the

“contact structure”. The pair (𝑀, 𝜉) is called “contact manifold”. The “Reeb vector field”

𝑅𝛼 is the unique vector field defined by the equations 𝑑𝛼(𝑅𝛼, ⋅) = 0 and 𝛼(𝑅) = 1, whose

flow is called “Reeb flow”.

Arnold Mathematical Journal, Vol.11(1), 2025 110

http://dx.doi.org/10.56994/ARMJ


Contact geometry of Hill’s approximation in a spatial restricted four-body problem

Definition 3.2. A “Liouville vector field” 𝑋 on a symplectic manifold (𝑀,𝜔) is a vector

field satisfying L𝑋𝜔 = 𝜔, where L denotes the Lie derivative, i.e., the Lie derivative along

𝑋 preserves 𝜔.

By Cartan’s formula and the closedness of the symplectic form 𝜔, we have L𝑋𝜔 =

𝑑 (𝜄𝑋𝜔) + 𝜄𝑋𝑑𝜔 = 𝑑 (𝜄𝑋𝜔) and therefore, we can write the Liouville condition as 𝑑 (𝜄𝑋𝜔) = 𝜔,

where 𝜄𝑋𝜔(⋅) = 𝜔(𝑋, ⋅).

Example 3.3. The cotangent bundle 𝑇∗𝑄 of a smooth manifold 𝑄 of dimension 𝑛 is

endowed with the so-called “Liouville one-form”. In local coordinates (𝑞1, ..., 𝑞𝑛) on 𝑄

and dual coordinates (𝑝1, ..., 𝑝𝑛) on the fibers of 𝑇∗𝑄, the Liouville one-form is defined by

𝜆𝑐𝑎𝑛 =
∑𝑛

𝑖=1 𝑝𝑖𝑑𝑞𝑖. Since the standard symplectic form is characterized by 𝜔𝑐𝑎𝑛 = 𝑑𝜆𝑐𝑎𝑛 =
∑𝑛

𝑖=1 𝑑𝑝𝑖 ∧ 𝑑𝑞𝑖, the “natural Liouville vector field” 𝑋 on 𝑇∗𝑄 associated to 𝜆𝑐𝑎𝑛 is defined by

𝜄𝑋𝜔𝑐𝑎𝑛 = 𝜆𝑐𝑎𝑛. In local coordinates,

𝑋 =
𝑛∑

𝑖=1
𝑝𝑖

𝜕
𝜕𝑝𝑖

,

that is, the radial vector field in fiber direction.

Hypersurfaces of contact type. Let𝑋 be a Liouville vector field on a 2𝑛+2 dimensional

symplectic manifold (𝑀,𝜔). Then 𝛼 ∶= 𝜄𝑋𝜔|Σ is a contact form on any hypersurface Σ ⊂ 𝑀

transverse to 𝑋 (i.e., with 𝑋 nowhere tangent to Σ). Such hypersurfaces are said to be

of “contact type”. To see this, let 𝑥 ∈ Σ and let {𝑣1, ..., 𝑣2𝑛+1} be a basis of 𝑇𝑥Σ. By using the

Liouville condition we have,

𝛼 ∧ (𝑑𝛼)∧𝑛(𝑣1, ..., 𝑣2𝑛+1) = 𝜄𝑋𝜔 ∧ 𝜔∧𝑛(𝑣1, ..., 𝑣2𝑛+1) =
1
𝑛𝜔

∧(𝑛+1)(𝑋, 𝑣1, ..., 𝑣2𝑛+1). (9)

Since {𝑋, 𝑣1, ..., 𝑣2𝑛+1} is a basis of 𝑇𝑥𝑀 (due to transversality) and 𝜔∧(𝑛+1) is a volume form

on 𝑀, we obtain that (9) is non-zero, i.e., the contact condition is satisfied.

Any hypersurface Σ ⊂ 𝑀 has a characteristic foliation 𝐿 which is a rank 1 foliation

with 𝐿𝑥 = ker
(
𝜔|𝑇𝑥Σ

)
, for 𝑥 ∈ Σ. If Σ is a energy level set of a Hamiltonian 𝐻∶ 𝑀 → ℝ,
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then for 𝑥 ∈ Σ we have that 𝑋𝐻(𝑥) ∈ 𝐿𝑥. If Σ is of contact type, then 𝑅𝛼(𝑥) ∈ 𝐿𝑥, i.e., the

Reeb flow of 𝛼 is a reparametrization of the Hamiltonian flow. In the case of 𝑀 = 𝑇∗𝑄,

if the contact form on Σ ⊂ 𝑇∗𝑄 is induced by the transversality of the natural Liouville

vector field 𝑋 on 𝑇∗𝑄, then the contact structure is called the “standard contact structure”

determined by

𝜉𝑠𝑡 = ker𝛼𝑐𝑎𝑛, 𝛼𝑐𝑎𝑛 ∶= 𝜄𝑋𝜔𝑐𝑎𝑛|Σ = 𝜆𝑐𝑎𝑛|Σ.

Moreover, in this case the energy hypersurface Σ ⊂ 𝑇∗𝑄 is “fiberwise starshaped”, i.e., for

each point 𝑞 ∈ 𝑄 the intersection Σ∩𝑇∗𝑞𝑄 bounds a starshaped domain in the linear space

𝑇∗𝑞𝑄, which means that the natural Liouville vector field is transverse to each Σ ∩ 𝑇∗𝑞𝑄.

3.2 Proof of transversality in non-regularized case

We now consider the Liouville vector field on 𝑇∗ℝ3 given by

𝑋 = 𝑥 𝜕
𝜕𝑥

+ 𝑦 𝜕
𝜕𝑦

+ 𝑧 𝜕
𝜕𝑧
. (10)

Proposition 3.4. For any given 𝜇 ∈ [0, 1
2
] assume that 𝑐 < 𝐻(𝐿1∕2) = − 3

2
3
√
𝜆2. Then the

bounded component Σ𝑏𝑐 of the energy level set, as defined by (8), is transverse to 𝑋.

As a consequence of Proposition 3.4, 𝜄𝑋𝜔|Σ𝑏𝑐 defines a contact form on Σ𝑏𝑐 . In order to

prove Proposition 3.4, we need some properties of the effective potential (2), which we

formulate in three lemmas and discuss in spherical coordinates,

𝑥 = 𝜌 cos 𝜃 sin𝜑

𝑦 = 𝜌 sin 𝜃 sin𝜑

𝑧 = 𝜌 cos𝜑

where 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜑 ≤ 𝜋. Since we consider energy level sets below the first critical

value, the radius 𝜌 is always smaller than the distance from 𝐿1∕2 to the origin, which is

1∕ 3
√
𝜆2 and always less than 1. Therefore, we assume that the radius 𝜌 is smaller than 1.

Now the effective potential (2) reads

𝑈(𝜌, 𝜃, 𝜑) = −1𝜌 −
1
2𝜌

2(𝜆2 cos2 𝜃 sin
2 𝜑 + 𝜆1 sin

2 𝜃 sin2 𝜑 − cos2 𝜑),
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which is 𝜋-periodic in the variables 𝜃 and 𝜑.

Lemma 3.5. For fixed radius 𝜌 ∈ (0, 1) the function 𝑈𝜌 ∶= 𝑈(𝜌, ⋅, ⋅) has its minimum at

(𝜃, 𝜑) = (0, 𝜋
2
).

Proof. The differential is given by

𝑑𝑈𝜌(𝜃, 𝜑) = 𝜌2(𝜆2 − 𝜆1) cos 𝜃 sin 𝜃 sin
2 𝜑𝑑𝜃 + 𝜌2 sin𝜑 cos𝜑(𝜆2 cos2 𝜃 + 𝜆1 sin

2 𝜃 + 1)𝑑𝜑.

Since 𝜆2 > 𝜆1, and the term 𝜆2 cos2 𝜃 + 𝜆1 sin
2 𝜃 + 1 is strictly positive, we find four critical

points at (0, 0), (0, 𝜋
2
), (𝜋

2
) and (𝜋

2
, 𝜋
2
). The corresponding Hessians are given by

𝐻𝑈𝜌
(0, 0) =

⎛
⎜
⎝

0 0

0 −𝜌2(𝜆2 + 1)

⎞
⎟
⎠
, 𝐻𝑈𝜌

(0, 𝜋2 ) =
⎛
⎜
⎝

𝜌2(𝜆2 − 𝜆1) 0

0 𝜌2(𝜆2 + 1)

⎞
⎟
⎠

𝐻𝑈𝜌
(𝜋2 , 0) =

⎛
⎜
⎝

0 0

0 −𝜌2(𝜆1 + 1)

⎞
⎟
⎠
, 𝐻𝑈𝜌

(𝜋2 ,
𝜋
2 ) =

⎛
⎜
⎝

−𝜌2(𝜆2 − 𝜆1) 0

0 𝜌2(𝜆1 + 1)

⎞
⎟
⎠
.

Therefore, the function 𝑈𝜌 attains its minimum at (𝜃, 𝜑) = (0, 𝜋
2
).

We denote by 𝑟 ∶= 1∕ 3
√
𝜆2 the distance from 𝐿1∕2 to the origin and introduce

𝐵𝑟(0) ∶= {(𝑥, 𝑦, 𝑧) ∈ ℝ3∶ 𝑥2 + 𝑦2 + 𝑧2 ≤ 𝑟2}

the ball of radius 𝑟 centered at the origin.

Corollary 3.6. The bounded part of Hill’s region, K 𝑏
𝑐 , is contained in 𝐵𝑟(0).

Proof. Let (𝜌, 𝜃, 𝜑) ∈ 𝜕𝐵𝑟(0), i.e., 𝜌 = 𝑟 = 1∕ 3
√
𝜆2. Then, by Lemma 3.5,

𝑈(𝑟, 𝜃, 𝜑) ≥ 𝑈(𝑟, 0, 𝜋2 ) = −1𝑟 −
1
2𝑟

2𝜆2 = −32
3
√
𝜆2 = 𝐻(𝐿1∕2) > 𝑐. (11)

Therefore, (𝑟, 𝜃, 𝜑) does not lie in K 𝑏
𝑐 , and hence, 𝜕𝐵𝑟(0) ∩K 𝑏

𝑐 = ∅. Since K 𝑏
𝑐 is connected

and contains the origin in its closure, K 𝑏
𝑐 is contained in 𝐵𝑟(0).

Lemma 3.7. For every (𝜌, 𝜃, 𝜑) ∈ 𝐵𝑟(0) with 𝜌 ∈ (0, 𝑟) it holds that 𝜕𝑈
𝜕𝜌
(𝜌, 𝜃, 𝜑) > 0.
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Proof. Let (𝜌, 𝜃, 𝜑) ∈ 𝐵𝑟(0) with 𝜌 ∈ (0, 𝑟). Since 𝜆2 > 𝜆1 we have the following equivalences

(𝜆1 − 𝜆2) sin
2 𝜃 ≤ 0 ⇔ 𝜆2(cos2 𝜃 − 1) + 𝜆1 sin

2 𝜃 ≤ 0 ⇔ 𝜆2 cos2 𝜃 + 𝜆1 sin
2 𝜃 ≤ 𝜆2. (12)

By using (12), we estimate

𝜕𝑈
𝜕𝜌

= 1
𝜌2

− 𝜌
(
𝜆2 cos2 𝜃 sin

2 𝜑 + 𝜆1 sin
2 𝜃 sin2 𝜑 − cos2 𝜑

)
≥ 1
𝜌2

− 𝜆2𝜌 > 0. (13)

The last strict inequality holds since the function 𝑓∶ (0, 𝑟) → ℝ, 𝑥 ↦→ 1
𝑥2
− 𝜆2𝑥 is strictly

positive on its domain.

Lemma 3.8. For every (𝜌, 𝜃, 𝜑) ∈ 𝐵𝑟(0) with 𝜌 > 0 it holds that 𝜕2𝑈
𝜕𝜌2

(𝜌, 𝜃, 𝜑) ≤ −sin2 𝜑.

Proof. Let (𝜌, 𝜃, 𝜑) ∈ 𝐵𝑟(0) with 𝜌 > 0. Since the function 𝑓∶ (0, 𝑟]→ ℝ, 𝑥 ↦→ − 1
𝑥3

takes the

maximal value at 𝑥 = 𝑟, and because 𝜆2 ≥ 2, we estimate

𝜕2𝑈
𝜕𝜌2

= − 2
𝜌3

+ cos2 𝜑 − sin2 𝜑
(
𝜆2 cos2 𝜃 + 𝜆1 sin

2 𝜃
)
≤ − 2

𝑟3
+ 1 = −2𝜆2 + 1 ≤ −3 ≤ −sin2 𝜑.

Proof of Proposition 3.4. We show that

𝑑𝐻(𝑋)|Σ𝑏𝑐 > 0. (14)

The differential of the Hamiltonian (1) is given by

𝑑𝐻 =𝑝𝑥𝑑𝑝𝑥 + 𝑝𝑦𝑑𝑝𝑦 + 𝑝𝑧𝑑𝑝𝑧 + 𝑝𝑥𝑑𝑦 + 𝑦𝑑𝑝𝑥 − 𝑝𝑦𝑑𝑥 − 𝑥𝑑𝑝𝑦 (15)

+ 2𝑎𝑥𝑑𝑥 + 2𝑏𝑦𝑑𝑦 + 𝑧𝑑𝑧 + 𝑥
𝑟3
𝑑𝑥 +

𝑦
𝑟3
𝑑𝑦 + 𝑧

𝑟3
𝑑𝑧.

By inserting the Liouville vector field (10) into (15) we obtain

𝑑𝐻(𝑋) = 𝑝𝑥𝑦 − 𝑝𝑦𝑥 + 2𝑎𝑥2 + 2𝑏𝑦2 + 𝑧2 + 1
𝑟 . (16)

Recall that 𝑎 = 1
2
(1 − 𝜆2) and 𝑏 = 1

2
(1 − 𝜆1). In spherical coordinates the Liouville vector

field (10) becomes

𝑋 = 𝜌 𝜕
𝜕𝜌
,
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and (16) reads

𝑑𝐻(𝑋) =𝑝𝑥𝜌 sin 𝜃 sin𝜑 − 𝑝𝑦𝜌 cos 𝜃 sin𝜑 + (1 + 𝜆2)𝜌2 cos2 𝜃 sin
2 𝜑 (17)

+ (1 − 𝜆1)𝜌2 sin
2 𝜃 sin2 𝜑 + 𝜌2 cos2 𝜑 + 1

𝜌 .

In view of 𝜕𝑈
𝜕𝜌

from (13), we write (17) in the form

𝑑𝐻(𝑋) = 𝜌 sin 𝜃 sin𝜑(𝑝𝑥 + 𝜌 sin 𝜃 sin𝜑) − 𝜌 cos 𝜃 sin𝜑(𝑝𝑦 − 𝜌 cos 𝜃 sin𝜑) + 𝜌𝜕𝑈
𝜕𝜌

,

which we estimate by using the Cauchy–Schwarz inequality,

𝑑𝐻(𝑋) ≥ 𝜌𝜕𝑈
𝜕𝜌

− 𝜌 sin𝜑
√
(𝑝𝑥 + 𝜌 sin 𝜃 sin𝜑)2 + (𝑝𝑦 − 𝜌 cos 𝜃 sin𝜑)2

= 𝜌𝜕𝑈
𝜕𝜌

− 𝜌 sin𝜑
√
2(𝐻 −𝑈) − 𝑝2𝑧

≥ 𝜌𝜕𝑈
𝜕𝜌

− 𝜌 sin𝜑
√
2(𝐻 −𝑈).

Therefore, we have

𝑑𝐻(𝑋)|Σ𝑏𝑐 ≥ 𝜌 (𝜕𝑈
𝜕𝜌

− sin𝜑
√
2(𝑐 −𝑈)) .

Since the right hand side is independent of the momentum coordinates, to prove (14) it is

suffices to show that

(𝜕𝑈
𝜕𝜌

− sin𝜑
√
2(𝑐 −𝑈))

|||||||K 𝑏
𝑐

> 0. (18)

Let (𝜌, 𝜃, 𝜑) ∈ K 𝑏
𝑐 . In particular, 𝑈(𝜌, 𝜃, 𝜑) ≤ 𝑐. By Corollary 3.6, we have 𝜌 < 𝑟, and by (11)

it holds that 𝑈(𝑟, 𝜃, 𝜑) > 𝑐. Therefore, it exists 𝜏 ∈ [0, 𝑟 − 𝜌) such that

𝑈(𝜌 + 𝜏, 𝜃, 𝜑) = 𝑐.
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By using Lemma 3.7 and Lemma 3.8 we obtain

(𝜕𝑈
𝜕𝜌

(𝜌, 𝜃, 𝜑))
2
= (𝜕𝑈

𝜕𝜌
(𝜌 + 𝜏, 𝜃, 𝜑))

2
− ∫

𝜏

0

𝑑
𝑑𝑡

(𝜕𝑈
𝜕𝜌

(𝜌 + 𝑡, 𝜃, 𝜑))
2
𝑑𝑡

> −2 ∫
𝜏

0

𝜕𝑈
𝜕𝜌

(𝜌 + 𝑡, 𝜃, 𝜑)𝜕
2𝑈
𝜕𝜌2

(𝜌 + 𝑡, 𝜃, 𝜑)𝑑𝑡

≥ 2 sin2 𝜑 ∫
𝜏

0

𝜕𝑈
𝜕𝜌

(𝜌 + 𝑡, 𝜃, 𝜑)𝑑𝑡

= 2 sin2 𝜑 (𝑈(𝜌 + 𝜏, 𝜃, 𝜑) −𝑈(𝜌, 𝜃, 𝜑))

= 2 sin2 𝜑 (𝑐 −𝑈(𝜌, 𝜃, 𝜑)) .

Therefore, by using Lemma 3.7 once more, we imply

𝜕𝑈
𝜕𝜌

(𝜌, 𝜃, 𝜑) > sin𝜑
√
2 (𝑐 −𝑈(𝜌, 𝜃, 𝜑)),

which shows (18) and thereby the proposition.

3.3 Moser-regularized energy level set and proof of transversality near the
origin

The Hamiltonian (1) has a singularity at the origin corresponding to collisions, thus the

bounded component Σ𝑏𝑐 of the energy level set is non-compact. Moser [34] observed that

the regularized Kepler problem coincides with the geodesic flow on the sphere endowed

with its standard metric by interchanging the roles of position and momenta. To remove

the singularity in our problem, we use the same concept as introduced by Moser.

We abbreviate by 𝐗 = (𝑥, 𝑦, 𝑧) and 𝐏 = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) the corresponding position and

momentum coordinates. We use a new time parameter 𝑠 and define for an energy value

𝑐 < 𝐻(𝐿1∕2) = − 3
2

3
√
𝜆2 a new Hamiltonian by

𝑠 = ∫ 𝑑𝑡
|𝐗|

, 𝐾𝑐(𝐗,𝐏) ∶= |𝐗| (𝐻(𝐗,𝐏) − 𝑐) ,

Notice that the flow of 𝐻 at energy level 𝑐 corresponds to the flow of 𝐾𝑐 at energy level 0.

Now we interchange the roles of position and momenta by the symplectic transformation
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mapping (𝐗,𝐏) to (−𝐏,𝐗). For simplicity of notation, we replace the new coordinates 𝐗′ =

−𝐏 and 𝐏′ = 𝐗 by 𝐗 and 𝐏. Then, the new transformed Hamiltonian 𝐾𝑐(𝐗,𝐏) = 𝐾𝑐(−𝐏,𝐗)

is explicitly given by

𝐾𝑐(𝐗,𝐏) =
1
2 |𝐗|

2|𝐏| + |𝐏|(𝑝𝑥𝑦 − 𝑝𝑦𝑥) − 1 + |𝐏|(𝑎𝑝2𝑥 + 𝑏𝑝2𝑦 +
1
2𝑝

2
𝑧) − |𝐏|𝑐 (19)

= 1
2
(
|𝐗|2 + 1

)
|𝐏| + (𝑝𝑥𝑦 − 𝑝𝑦𝑥)|𝐏| − 1 + (𝑎𝑝2𝑥 + 𝑏𝑝2𝑦 +

1
2𝑝

2
𝑧)|𝐏| − (𝑐 + 1

2)|𝐏|.

The next step is to use the stereographic projection which induces a symplectic trans-

formation between 𝑇∗ℝ3 and 𝑇∗𝑆3 that extends 𝐾𝑐 to a Hamiltonian on 𝑇∗𝑆3. Let 𝜉 =

(𝜉0, 𝜉1, 𝜉2, 𝜉3) ∈ ℝ4 with norm 1. We write a tangent vector 𝜂 ∈ 𝑇𝜉𝑆3 as 𝜂 = (𝜂0, 𝜂1, 𝜂2, 𝜂3),

with inner product (𝜉, 𝜂) = 0. We identify 𝑇𝑆3 with 𝑇∗𝑆3 ⊂ 𝑇∗ℝ4 by using the standard

metric on 𝑆3. Then, the symplectic transformation is given by

𝑥 =
𝜉1

1 − 𝜉0
, 𝑦 =

𝜉2
1 − 𝜉0

, 𝑧 =
𝜉3

1 − 𝜉0
, (20)

𝑝𝑥 = 𝜂1(1 − 𝜉0) + 𝜉1𝜂0, 𝑝𝑦 = 𝜂2(1 − 𝜉0) + 𝜉2𝜂0, 𝑝𝑧 = 𝜂3(1 − 𝜉0) + 𝜉3𝜂0.

Notice that here (𝑥, 𝑦, 𝑧) represents the momentum and (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) the position compared

to the original picture before switching their roles. After this transformation, going to

the North pole (where the momentum becomes infinite) corresponds to collision in

the original picture (where the position becomes zero). Dynamically, at collision (going

through the North pole) it bounces back. Therefore, Moser regularization is characterized

by adding the fiber over the North pole. Moreover, the inverse transformation is given by

𝜉0 =
|𝐗|2 − 1
|𝐗|2 + 1

, 𝜉1 =
2𝑥

|𝐗|2 + 1
, 𝜉2 =

2𝑦
|𝐗|2 + 1

, 𝜉3 =
2𝑧

|𝐗|2 + 1
,

𝜂0 = ⟨𝐗,𝐏⟩, 𝜂1 =
|𝐗|2 + 1

2 𝑝𝑥 − ⟨𝐗,𝐏⟩𝑥, 𝜂2 =
|𝐗|2 + 1

2 𝑝𝑦 − ⟨𝐗,𝐏⟩𝑦, 𝜂3 =
|𝐗|2 + 1

2 𝑝𝑧 − ⟨𝐗,𝐏⟩𝑧,

and, in addition, we have the relation

|𝜂| = 1
2(|𝐗|

2 + 1)|𝐏| = |𝐏|
1 − 𝜉0

. (21)

By inserting (20) and (21) into (19), the transformed Hamiltonian on 𝑇∗𝑆3, which we

denote by the same letter, is given by

𝐾𝑐(𝜉, 𝜂) = |𝜂|𝑓(𝜉, 𝜂) − 1, (22)
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where

𝑓(𝜉, 𝜂) ∶= 1 + (𝜂1𝜉2 − 𝜂2𝜉1)(1 − 𝜉0) + (𝑎𝑔21 + 𝑏𝑔22 +
1
2𝑔

2
3)(1 − 𝜉0) − (𝑐 + 1

2)(1 − 𝜉0),

𝑔𝑘 ∶= 𝑔𝑘(𝜉, 𝜂) ∶= 𝜂𝑘(1 − 𝜉0) + 𝜉𝑘𝜂0, 𝑘 = 1, 2, 3.

By shifting and squaring the Hamiltonian (22) we obtain the new smooth Hamiltonian

𝑄(𝜉, 𝜂) on a subset of 𝑇∗𝑆3,

𝑄(𝜉, 𝜂) = 1
2 |𝜂|

2𝑓(𝜉, 𝜂)2. (23)

The level set 𝐻−1(𝑐) = 𝐾−1
𝑐 (0) is compactified to the level set 𝑄−1( 1

2
). Since 𝑄 is smooth near

this level set, we consider 𝑄−1( 1
2
) as the regularized problem. Since the only problem in

compactness of Σ𝑏𝑐 comes from collisions with the origin, we consider points near the

origin, i.e., in view of (21), points (𝜉, 𝜂) satisfying

|𝐏| = |𝜂|(1 − 𝜉0) < 𝜀. (24)

Proposition 3.9. For 𝜀 > 0 small enough, the natural Liouville vector field on 𝑇∗𝑆3 given by

𝑋 =
3∑

𝑖=0
𝜂𝑖

𝜕
𝜕𝜂𝑖

, (25)

is transverse to 𝑄−1( 1
2
) over points (𝜉, 𝜂) satisfying (24).

Notice that the Liouville vector field (10) on 𝑇∗ℝ3 that we used for transversality in

the unregularized case is mapped, via the composition of the symplectic transformation

(20) with the symplectic switch map, to the natural Liouville vector field (25) on 𝑇∗𝑆3.

Proof of Proposition 3.9. We show that for 𝜀 > 0 small enough it holds that

𝑑𝑄(𝑋)|𝑄−1( 1
2
) > 0. (26)

The computation of 𝑑𝑄(𝑋), in view of (23) and (25), yields

𝑑𝑄(𝑋) = |𝜂|2𝑓(𝜉, 𝜂)2 + |𝜂|2𝑓(𝜉, 𝜂)
3∑

𝑖=0

𝜕𝑓
𝜕𝜂𝑖

(𝜉, 𝜂)𝜂𝑖

= 2𝑄 + |𝜂|2𝑓(𝜉, 𝜂)(1 − 𝜉0)(𝜂1𝜉2 − 𝜂2𝜉1 + 2𝑎𝑔21 + 2𝑏𝑔22 + 𝑔23).
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In order to prove (26), we first show that we can choose 𝜀 > 0 so small such that

|𝑓(𝜉, 𝜂)| ≥ 1
2 . (27)

Since the energy value 𝑐 < 𝐻(𝐿1∕2) = − 3
2

3
√
𝜆2 is negative, and in fact less then − 3

2
, the

quantity 𝑐 + 1
2

is negative as well. Notice from Figure 2 that 𝑎 < 0, |𝑎| ≤ 1 and 𝑏 > 0.

Therefore, 𝑏𝑔22 +
1
2
𝑔23 − (𝑐 + 1

2
) is positive. By using these, we estimate

|𝑓(𝜉, 𝜂)| =
||||||
1 + (𝜂1𝜉2 − 𝜂2𝜉1)(1 − 𝜉0) + (𝑎𝑔21 + 𝑏𝑔22 +

1
2𝑔

2
3)(1 − 𝜉0) − (𝑐 + 1

2)(1 − 𝜉0)
||||||

=
||||||
1 + (𝑏𝑔22 +

1
2𝑔

2
3 − (𝑐 + 1

2))(1 − 𝜉0) + (𝜂1𝜉2 − 𝜂2𝜉1)(1 − 𝜉0) + 𝑎𝑔21(1 − 𝜉0)
||||||

≥ 1 − |𝜂1𝜉2 − 𝜂2𝜉1|(1 − 𝜉0) − |𝑎|𝑔21(1 − 𝜉0)

≥ 1 − |𝜂1𝜉2 − 𝜂2𝜉1|(1 − 𝜉0) − 𝑔21(1 − 𝜉0).

Furthermore, |𝜂1𝜉2 − 𝜂2𝜉1| ≤ |𝜂||𝜉|, and because |𝜉| = 1, we have in view of (24),

|𝜂1𝜉2 − 𝜂2𝜉1|(1 − 𝜉0) ≤ |𝜂|(1 − 𝜉0) < 𝜀. (28)

This implies,

|𝑓(𝜉, 𝜂)| ≥ 1 − 𝜀 − 𝑔21(1 − 𝜉0).

If 𝜀 approaches 0, then 𝜉0 → 1, which means that we can choose 𝜀 so small such that

(27) holds. By using the level set condition 𝑄−1( 1
2
) together with the lower bound (27) for

|𝑓(𝜉, 𝜂)|, we find
1
2 = 𝑄(𝜉, 𝜂) = 1

2 |𝜂|
2𝑓(𝜉, 𝜂)2 ≥ 1

2 |𝜂|
2 1
2 ,

which gives an upper bound for |𝜂|, i.e.,

|𝜂| ≤ 2. (29)

We may write

𝑑𝑄(𝑋) ≥ 2𝑄 − |𝜂|2 |||𝑓(𝜉, 𝜂)|||
||||(1 − 𝜉0)

(
𝜂1𝜉2 − 𝜂2𝜉1 + 2𝑎𝑔21 + 2𝑏𝑔22 + 𝑔23

)|||| .

Notice that by (29) we obtain

|𝜂||𝜂||𝑓(𝜉, 𝜂)| ≤ 2
√
2𝑄(𝜉, 𝜂) = 2

√
212 = 2,
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which implies, together with (28),

𝑑𝑄(𝑋) ≥ 1 − 2
(|||(1 − 𝜉0)(𝜂1𝜉2 − 𝜂2𝜉1)||| +

||||(1 − 𝜉0)(2𝑎𝑔21 + 2𝑏𝑔22 + 𝑔23)
||||
)

≥ 1 − 2𝜀
(
1 + |2𝑎𝑔21 + 2𝑏𝑔22 + 𝑔23|

)
.

Since the latter term can be bounded by some constant 𝐴 on a compact set away from

the origin, we obtain

𝑑𝑄(𝑋) ≥ 1 − 2𝜀(1 + 𝐴).

Now we choose 𝜀 sufficiently small such that 𝑑𝑄(𝑋) > 0, which proves (26).

We have seen that for 𝑐 < 𝐻(𝐿1∕2) the bounded component Σ𝑏𝑐 of the energy level set

can be Moser-regularized to form a compact 5-dimensional manifold Σ̃𝑏𝑐 ⊂ 𝑇∗𝑆3 which

is diffeomorphic to 𝑆∗𝑆3. Since the Liouville vector field (10) on 𝑇∗ℝ3 and the natural

one (25) on 𝑇∗𝑆3 coincide after Moser regularization, we obtain a Liouville vector field

that is defined near the whole regularized level set, and in fact, it is the natural one. By

the transversality results from Proposition 3.4 and Proposition 3.9 we obtain that the

natural Liouville vector field on 𝑇∗𝑆3 is transverse to Σ̃𝑏𝑐 , which means that Σ̃𝑏𝑐 is fiberwise

starshaped, and moreover, Σ̃𝑏𝑐 ≅ (𝑆∗𝑆3, 𝜉𝑠𝑡).

For the planar problem, one can of course perform the same computation to obtain

the same result. But since the planar problem corresponds to the restriction of the spatial

system to the fixed point set of the symplectic symmetry 𝜎 from (6), the transversality

result in the planar case follows immediately. This consequence is based on a general

construction from [5]. Namely, if a energy level set Σ is of contact type and the entire

system has a symplectic symmetry 𝜎, such as (6), then the restriction of the contact form

on Σ to Σ|Fix(𝜎|Σ) is a contact form on Σ|Fix(𝜎|Σ). Therefore, we have the same result in the

planar problem, in which we denote the Moser-regularized compact 3-dimensional man-

ifold by Σ̃𝑏𝑐 |Fix(𝜎) ≅ 𝑆∗𝑆2 ⊂ 𝑇∗𝑆2. This completes the proof of Theorem 1.1.
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