
Discretization of the sub-Riemannian Heisenberg
Group

Evgeny G. Malkovich1⋆

1Novosibirsk State University and Sobolev Institute of Mathematics, Russia
⋆ e.malkovich@g.nsu.ru, malkovich@math.nsc.ru

Abstract. In this article, we present a discrete model of the sub-
Riemannian Heisenberg group H, which serves as an analog of a trian-
gulation of a two-dimensional surface embedded in R3. The constructed
discrete model is represented by a spatial graph Γr with weighted edges.
The shortest paths within Γr approximate geodesics in H.
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1. Introduction

The Heisenberg group H is one of the best known and straightforward
examples of nonholonomic geometry. It consists of the three-dimensional
space R3 equipped with a two-dimensional non-integrable subbundle of the
tangent bundle TR3. In the context of the Heisenberg group, the planes Π
of admissible directions are spanned by two vector fields, X and Y :

X =
∂

∂x
− y

2

∂

∂z
, Y =

∂

∂y
+

x

2

∂

∂z
. (1)

It is straightforward to verify that the Lie bracket [X,Y ] = ∂
∂z . Ac-

cording to Frobenius theorem, there is no foliation of R3 into a family of
two-dimensional surfaces Σ such that X and Y are tangent to Σ; this is
equivalent to the non-integrability of distribution. In this scenario, it is
quite clear that the normal vector −→n of the plane Π would need to be the
gradient of some function F = F (x, y, z) up to multiplication by a scalar
function λ = λ(x, y, z):

λ−→n = λX × Y = λ(
y

2
,−x

2
, 1) = (F ′

x, F
′
y, F

′
z).

It is not hard to check that there are no solutions λ(x, y, z) and F (x, y, z)
of this system of PDEs: from the first two equations it easy to show that F
should be a function depending only on ϕ = arctan y

x and z; usind the third
equation one will find that F doesn’t depend on ϕ either; after that it is
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clear that there are no non-trivial solutiouns. In contrast, in the integrable
(or holonomic) case the family of surfaces Σ is defined as the level sets of
some function F

Σ = {p ∈ R3|F (p) = const}.

To discretize a smooth surface Σ, one can simply define a triangulation of
this surface. If the triangles in this triangulation are sufficiently small, they
can approximate the pieces of the surface accurately.

For the non-holonomic geometry on H, we can consider a small disk Dε =
{αX+βY |α2+β2 < ε2} ⊂ Π as a “two-dimensional piece of the Heisenberg
group” [1]. However, it turns out that a discrete model of the Heisenberg
group, represented as a set of intersecting disks, fails to capture the essential
geometric features of H.

To construct a viable discrete model ofH, we define a local sub-Riemannian
distance between sufficiently close points. This distance is generated by
the distribution (1), similar to how it is approached in Heron’s problem.
Subsequently, we define a spatial graph Γr as a discretization of the sub-
Riemannian Heisenberg group. Numerical experiments indicate that the
metric properties of this graph — such as the shape of the shortest paths —
effectively simulate the corresponding properties of the Heisenberg group.

There is a series of works [2, 3, 4] that explore discrete non-holonomic
systems from the perspectives of finite-difference operators and computa-
tional methods. For instance, in the article titled “On Discrete Geometry
of Non-Holonomic Spaces” [5], the authors examine a discrete version of
the Lagrange-d’Alembert-Chaplygin equations without delving into specific
discrete geometric objects. This work aims to construct a tangible discrete
model for H — the simplest example of sub-Riemannian geometry.

2. Local sub-Riemannian Distance

Consider two arbitrary points pi = (xi, yi, zi) and pj = (xj , yj , zj) in H.
Each point defines a plane spanned by the vectors Xi = (1, 0,−yi

2 ) and
Yi = (0, 1, xi

2 ). A normal vector to this plane is given by Ni = (yi2 ,−
xi
2 , 1).

The corresponding planes are:

Πi :
yi
2
(x− xi)−

xi
2
(y − yi) + (z − zi) = 0

Πj :
yj
2
(x− xj)−

xj
2
(y − yj) + (z − zj) = 0.

The intersection of these planes defines a line lij = Πi
⋂
Πj , which can be

expressed in parametric form:

lij(t) =


(zj−zi)(xi+xj)

xiyj−xjyi
(zj−zi)(yi+yj)

xiyj−xjyi
zi+zj

2

+ t

 2xj − 2xi
2yj − 2yi
xiyj − xjyi

 .
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We define the local sub-Riemannian (lsR) distance between the two points
pi and pj as the length of the shortest broken line consisting of two segments
that connect these points within the union of the two planes Πi

⋃
Πj .

dlsR(pi, pj) = min
q∈lij

(ρ(pi, q) + ρ(q, pj)),

where ρ is the standard Euclidean distance in R3. This approach generalizes
the classic Heron’s problem of finding a point q on a fixed line that minimizes
the sum of distances to two fixed points. One of the planes, let’s say Πi,
can be rotate about the line lij until it coincides with the another plane Πj

and the points pi and pj will be placed in the different half-planes defined
by the line lij . Then

dlsR(pi, pj)
2 = ρ(p′i, pj)

2 = (ρi + ρj)
2 + (ρ(p⊥i , p

⊥
j ))

2, (2)

as can be seen in the Fig.1. Here p⊥i is the projection of pi onto lij and

ρi = ρ(pi, p
⊥
i ).

Figure 1. The local sub-Riemannian distance dlsR(pi, pj)
and Heron’s problem.

The distances ρi and ρj can be calculated easily

ρi =
|xiyj − xjyi + 2zi − 2zj |√

4(xi − xj)2 + 4(yi − yj)2 + (xiyj − xjyi)2

√
4 + x2i + y2i , (3)

ρj =
|xiyj − xjyi + 2zi − 2zj |√

4(xi − xj)2 + 4(yi − yj)2 + (xiyj − xjyi)2

√
4 + x2j + y2j . (4)
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The distance ρ(p⊥i , p
⊥
j ) between the projections of the points on the line lij

is

ρ(p⊥i , p
⊥
j )

2 =

(
2(xi − xj)

2 + 2(yi − yj)
2 + (zj − zi)(xiyj − xjyi)

)2
4(xi − xj)2 + 4(yi − yj)2 + (xiyj − xjyi)2

. (5)

Gathering (3)− (5) and substituting them into (2) gives the lsR-distance:

dlsR(pi, pj) =
1√

4(xi − xj)2 + 4(yi − yj)2 + (xiyj − xjyi)2
·

·
(
(xiyj − xjyi + 2zi − 2zj)

2
(√

4 + x2i + y2i +
√

4 + x2j + y2j
)2
+ (6)

+
(
2(xi − xj)

2 + 2(yi − yj)
2 + (zj − zi)(xiyj − xjyi)

)2) 1
2
.

We will use formula (6) to define weights of the edges in a graph Γr.
Next we set p1 as an origin point O ∈ H and examine the ball B(O, 1) with
respect to the lsR-distance.

dlsR(O, (x, y, z)) =
√
x2 + y2 ·

√
1 +

z2

(x2 + y2)2
(2 +

√
4 + x2 + y2)2. (7)

It is evident that the vertical axis Oz is ‘forbidden’ — points pi and pj
having different z coordinate define parallel planes Πi and Πj . Consequently,
the lsR-distance dlsR(O, (0, 0, z)) becomes infinite (as illustrated in Fig. 2).
This contrasts with the standard sub-Riemannian ball in the Heisenberg
group, which takes on an ‘apple’ shape [6, 7]. In contrast, the lsR-distance
results in a pinched ball resembling a donut with an infinitely small hole.

Figure 2. The hemisphere in the dlsR-distance and its ∞-
shaped Oxz-section (red).

The sub-Riemannian distance dsR from the origin O to the point (x, y, z)
in the Heisenberg group H is defined as follows [7]:

a) if z = 0, then dsR(O, (x, y, 0)) =
√
x2 + y2,

b) if z ̸= 0 and x = y = 0, then dsR(O, (0, 0, z)) =
√

2π|z|,
c) if z ̸= 0 and x2 + y2 > 0, then dsR(O, (x, y, z)) = q

sin q

√
x2 + y2,

where
2q − sin 2q

4 sin2 q
=

z

x2 + y2
. (8)
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The Taylor expansion of (7) gives

dlsR(O, (x, y, z)) =
√

x2 + y2
(
1 +

1

2

z2

(x2 + y2)2
(2 +

√
4 + x2 + y2)2 + ...

)
.

In the general case c) of the sub-Riemannian distance, assuming that q is
small enough, from (8) one gets

q ∼ 3z

x2 + y2
.

Then

dsR(O, (x, y, z)) =
√

x2 + y2
(
1 +

1

2

3z2

(x2 + y2)2
+ ...

)
.

The second term in this expansion can be interpreted as a sub-Riemannian

correction to the 2-dimensional Euclidean distance function
√

x2 + y2. No-

tably, both corrections share a common multiplier of the form 3z2

(x2+y2)2
, which

is a positive indication. It is possible to introduce an additional parameter
Λ into the lsR-distance (7) that changes the weight of the (ρ(p⊥i , p

⊥
j ))

2 sum-
mand, namely√

x2 + y2 ·

√
1 + Λ

z2

(x2 + y2)2
(2 +

√
4 + x2 + y2)2.

As Λ approaches zero, the ball B(O, 1) becomes thicker; conversely, as Λ →
∞, it flattens out — transforming from a donut to a pancake: B(O, 1) → D1.
It is crucial to note that if the lsR-ball B(O, 1) were merely a 2-dimensional
disc D1, then the distance between almost any pair of random points would
be infinite.

If the center of the ball shifts from the origin to the point pi, the ball
bends in such a way that its central plane of symmetry coincides with the
plane Πi of admissible directions at pi (Fig.3).

3. A spatial graph and a discrete sub-Riemannian distance

Consider the cubic domain Ω = [−1, 1]3 ⊂ H with a set D = {pi ∈ Ω|i =
1, . . . , N} of N points. These points can form either a regular lattice or
they can be randomly and uniformly distributed in Ω. We will consider the
scenario with random points. Calculate all distances dlsR(pi, pj) using (6)
and consider the weighted spatial graph Γr with vertices pi and edges vij of
weight dlsR(pi, pj) ≤ r, it means that vertices pi ∈ D and pj are connected
by the edge vij in the graph Γr if and only if the local sub-Riemannian
distance dlsR(pi, pj) between them is smaller than a fixed value r.

The graph Γr serves as a discrete model for the Heisenberg group. When
the parameter r is too small, most vertices in Γr tend to be disjoint. Con-
versely, if r is excessively large, nearly all pairs of points (pi, pj) will be
connected by an edge. The critical threshold value r∗ is influenced by both
the number of vertices N and the domain Ω. Here, r∗ refers to the specific
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Figure 3. The ball B((2, 0, 0), 1) in the dlsR-distance.

value of r such that for any r > r∗, the graph Γr becomes connected for an
average distribution of the points pi.

Next we perform a number of numerical experiments demonstrating that
the presented discrete model possesses features specific for the sub-Riemannian
Heisenberg group. Firstly, using the standard Dijkstra algorithm [8] for
finding shortest paths in a graph, one can find the shortest path in Γr. The
shortest path is a broken line with vertices at the points p1, pi1 , . . . , pik , p2,
thus the discrete sub-Riemannian (dsR) distance between p1 and p2 in Γr is

ddsR(p1, p2) = dlsR(p1, pi1) + dlsR(pi1 , pi2) + . . .+ dlsR(pik , p2). (9)

The distance between close vertices is defined via the local sub-Riemannian
distance, while the distance between arbitrary vertices is the length of the
shortest path in Γr.

Numerical calculations show that the shortest path between p1 = (0, 0, 0)
and p2 = (0, 0, z2) has a form of a single-wind helix (Fig.4) — a typical form
for the Heisenberg geodesics [7, 9]:

x(t) = (sin(θ0 + h3t)− sin θ0)/h3,

y(t) = (cos θ0 − cos(θ0 + h3t))/h3, (10)

z(t) = (h3t− sinh3t)/h
2
3.

In (10) the parameter θ0 can be chosen in such a way that the initial velocity
vector at t = 0 coincides with the first interval [p1, pi1 ] and the varying
parameter h3 gives the necessary height z(2π) of the helix (Fig.4, black
curve). Note that the discrete sub-Riemannian distance between points
having different z coordinate is finite, contrary to the local sub-Riemannian
distance.
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Figure 4. Sub-Riemannian geodesic (black, (10)) and typ-
ical shortest path (blue) in the graph Γ 1

2
with N = 1500

vertices connecting points (0, 0, 0) and (0, 0, 12), various pro-
jections.

Next we compare the distance ddsR between points as the vertices of the
graph Γr and the sub-Riemannian distance dsR in H. We will consider
two situations: horizontal and vertical. In the horizontal case, when p1 =
(0, 0, 0) and p2 = (x2, y2, 0), the geodesic inH is a straight horizontal interval
[p1, p2] in the plane Oxy. The vertical situation is when p1 = (0, 0, 0) and
p2 = (0, 0, z2) and the geodesic is a helix (10) with non-constant slope.
In accordance with a) the sub-Riemannian distance in the horizontal case

coincides with the Euclidean length dsR((0, 0, 0), (x2, y2, 0)) =
√
x22 + y22.

N = 1000 N = 2000 N = 4000 N = 6000 dsR(p1, p2)

x2 = y2 =
1
2 1.8628 0.8971 0.8655 0.7752

√
2
2 ≈ 0.7071

x2 = y2 = 1 ∞ 1.9839 1.7267 1.5965
√
2 ≈ 1.4142

Table 1. Mean distance ddsR((0, 0, 0), (x2, y2, 0)) for different N and sub-
Riemannian distance, horizontal case.
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If the number of vertices N is small, the graph Γr can be disconnected,
in which case the distance between disconnected vertices is equal to infinity.
In Table 1 the value 0.8955 is the averaged distance of ddsR(p1, p2) calcu-
lated for 10 numerical experiments with 4000 random vertices each. As N
increases, the dispersion of ddsR(p1, p2) decreases and its value gets closer
to the value of dsR(p1, p2). The convergence of the distances in the vertical
case is shown in Table 2.

N = 1000 N = 2000 N = 4000 N = 6000 dsR(p1, p2)

z2 =
1
9 1.717 1.3617 1.2929 1.2702

√
2π
3 ≈ 0.8355

z2 =
4
9 3.2894 2.8339 2.5877 2.5209 2

√
2π
3 ≈ 1.671

Table 2. Mean distance ddsR((0, 0, 0), (0, 0, z2)) for different N and the sub-
Riemannian distance, vertical case.

From Tables 1 and 2 one can see that, as N increases, the discrete sub-
Riemannian distance gets closer to the standard sub-Riemannian distance
in H, but with different rates in the horizontal and vertical cases. A more
detailed discussion on these results will be provided in the next section.

The last feature of geodesics in H that is going to be checked for Γr is the
fact that the coordinate z(t) of the geodesic that starts at O is proportional
to the sectional area of the projection (x(t), y(t)) onto the Oxy plane. For
the considered discrete model this projection is a polygon, see the upper
right picture in Fig.4 The numerical experiment is the following:

1. Pick M test vertices p in Γr, whose third coordinate is z(p);
2. Find the shortest path from O to p;
3. Calculate the polygon area A(p) of the projected path.
For the Heisenberg group z(p) and A(p) are the same values, and, for

example, the Dido’s problem can easily be reformulated as a problem of
finding geodesics [7]. The results for Γ 1

2
with N = 3000 random vertices and

with M = 200 test vertices are presented in the Fig. 5. As the coordinate
z(p) is uniformly distributed in [−1, 1], the dots with coordinates (z(p), A(p))
on Fig. 5 lie quite close to the plot of |z(p)|.

4. Tortuosity

First let us recall briefly what tortuosity is. Consider a domain Ω′ ⊂ R3

modeling a piece of porous media, such that there is a connected subset
P ⊂ Ω′ modeling the system of the media pores. Next, Ω′ \ P simulates
solid material. One can consider two arbitrary points A,B ∈ P and the
shortest path γ(t), t ∈ [0, 1] connecting A and B that fully lies in the
system of pores P : ∀t ∈ [0, 1] γ(t) ∈ P . The ratio of the length of γ and the
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Figure 5. The coordinate z(p) and the area A(p) of the
projected polygon for M = 200 test vertices in Γ 1

2
.

standard Euclidean distance between A and B
1∫
0

|γ̇(t)|dt

distEucl(A,B)

called the tortuosity τ of the path γ(t). If the media is homogeneous and
isotropic and if distEucl(A,B) is sufficiently large, the tortuosity will be close
to a limit value: it is greater than 1 and measures the level of entanglement
of the system of pores. If the media is anisotropic then τ(A,B) will depend

on the direction
−−→
AB.

Secondly, one can study the tortuosity of the Delaunay triangulation of
uniformly distributed points [10]. It turns out that the ratio between the
length ltriang(A,B) of the shortest broken line connecting two points via
edges of the triangulation and the Euclidean distance,

ltriang(A,B)

distEucl(A,B)
,

converges from above to a fixed value τDln ≈ 1.05 for a two-dimensional
domain and τDln ≈ 1.09 for a three-dimensional domain.

Next we come back to a domain Ω with the standard sub-Riemannian
metric dsR and the spatial graph Γr in Ω with vertices pi ∈ D and metric
ddsR. The following ratio

τ(A,B) =
ddsR(A,B)

dsR(A,B)
(11)

is called the tortuosity of the path from A to B. This value depends on the
set D of vertices, on the coordinates of B and on the parameter r of the
graph Γr. It is a straight-forward generalization of the previously mentioned
tortuosity.
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Let us consider again two points A = p1 and B = p2 from the previous
section. From Table 1, when both points lie in the horizontal plane {z = 0}
and the sub-Riemannian geodesic is a straight line, the tortuosity (11) gets
close to τDln in the three-dimensional case of the Delaunay tortuosity.

N = 1000 N = 2000 N = 4000 N = 6000

x2 = y2 =
1
2 2.6344 1.2687 1.2240 1.0963

x2 = y2 = 1 ∞ 1.4028 1.2210 1.1289

Table 3. The tortuosity τ((0, 0, 0), (x2, y2, 0)) for different N , horizontal
case.

In the case of helicoidal geodesic, the difference between the sub-Riemannian
and discrete sub-Riemannian distances becomes more evident:

N = 1000 N = 2000 N = 4000 N = 6000

z2 =
1
9 2.0551 1.6298 1.5475 1.5203

z2 =
4
9 1.9685 1.6959 1.5486 1.5086

Table 4. The tortuosity τ((0, 0, 0), (0, 0, z2)) for different N , vertical case.

Considering this ‘anisotropic’ behaviour of τ(A,B) we formulate the fol-
lowing

Conjecture on the limit tortuosity. Consider a cubic domain Ω ⊂ H
with the sub-Riemannian distance dsR and the corresponding spatial graph
Γr with N uniformly distributed vertices D and the discrete sub-Riemannian
distance ddsR. Fix two points A = (0, 0, 0) ∈ D and B = (cosφ, 0, sinφ) ∈
D. As N → ∞ one can choose a parameter of the graph Γr with the asymp-
totic

r ∼ c ·N−d for some c > 0, d > 0, (12)

such that the tortuosity τ(A,B) converges to a limit tortuosity τ̃ = τ̃(φ)
depending only on the coordinate φ of B for almost all positions of vertices
in D. The limit tortuosity should be bounded

1 < τ̃ < C ∀φ ∈ [0, 2π].

Due to the fact that all considered functions are random variables the
convergence of the tortuosity in this conjecture should be almost sure con-
vergence. Finding optimal bounds for the constants c, d and C is another
problem to consider. Also, the connection between d and the dimension
(topological or Hausdorf) of the Heisenberg group is not clear.

We will say that a broken line with vertices A = pi1 , pi2 , . . . , pik = B
is ε-close to a geodesic γ(t), t ∈ [t0, t1], connecting A and B if there is a
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cylindrical neighbourhood of γ(t)

Cylε =
⋃

t∈[t0,t1]

{γ(t) + v|∀v ∈ R3, |v| ≤ ε},

containing all vertices pi and all edges [pij , pij+1] of the broken line.
Finally, we can formulate the approximation conjecture:

Approximation Conjecture. Consider a cubic domain Ω ⊂ H with the
sub-Riemannian distance dsR, the orresponding spatial graph Γr with N uni-
formly distributed vertices D and the discrete sub-Riemannian distance ddsR.
Fix two points A = O ∈ D and arbitrary B ∈ D and a sub-Riemannian ge-
odesic γ(t) connecting A = γ(t0) and B = γ(t1). For any ϵ there is number
N of vertices and a parameter r satisfying (12) such that there is a shortest
path A = pi1 , pi2 , . . . , pik = B in the graph Γr which is ε-close to γ(t).

Note that if the point B lies on the Oz axis then there is no uniqueness
of the sub-Riemannian geodesic connecting A = O and B, it is defined up
to rotation as it was mentioned earlier. In this case in the approximate
conjecture one should choose an appropriate geodesic. It seems to be clear
how to prove that in a cylindric neighbourhood of the fixed geodesic there
is a broken line with vertices and edges from Γr. But how to prove that this
broken line will be globally shortest path in Γr?

5. Conclusion.

Here we presented a discrete model Γr of the Heisenberg group H as a
spatial graph with weighted edges. The weight of the edge is defined by
the local sub-Riemannian distance dlsR, generated by the non-integrable
Heisenberg distribution (1). The discrete sub-Riemannian distance ddsR is
the length of a shortest path in Γr. Numerical experiments give a motivation
to formulate an approximation conjecture stating that shortest paths in the
graph Γr will be sufficiently close to the geodesics in H if the number of
vertices N is large enough and the parameter r is appropriately small.

The constructed model can be considered as a ‘triangulation of the sub-
Riemannian Heisenberg group’, but without triangles. The triangulation of
a smooth two-dimensional surface embedded in R3 is a collection of vertices,
edges and triangles. In the non-integrable case there is no surface, so there
should be no triangles. It is natural to choose a spatial graph Γr, consisting
only of vertices and edges, as a model for non-integrable geometry.

We believe that the presented construction will be interesting both for
specialists in discrete geometry and in sub-Riemannian geometry. The pre-
sented model can be useful for simulations of various processes in anisotropic
medias, such as heat propagation, diffusion in anisotropic porous materials,
deformations of layered solids, etc.
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