
ARITHMETIC ON q-DEFORMED RATIONAL NUMBERS

TAKEYOSHI KOGISO, KENGO MIYAMOTO, XIN REN, MICHIHISA WAKUI,
AND KOHJI YANAGAWA

Abstract. Recently, Morier-Genoud and Ovsienko introduced a q-deformation
of rational numbers. More precisely, for an irreducible fraction r

s > 0, they con-
structed coprime polynomials R r

s
(q), S r

s
(q) ∈ Z[q] with R r

s
(1) = r,S r

s
(1) = s.

Their theory has a rich background and many applications. By definition, if
r ≡ r′ (mod s), then S r

s
(q) = S r′

s
(q). We show that rr′≡ − 1 (mod s) implies

S r
s
(q) = S r′

s
(q), and it is conjectured that the converse holds if s is prime (and

r 6≡ r′ (mod s)). We also show that s is a multiple of 3 (resp. 4) if and only
if S r

s
(ζ) = 0 for ζ = (−1 +

√
−3)/2 (resp. ζ = i). We give applications to the

representation theory of quivers of type A and the Jones polynomials of rational
links.
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1. Introduction

The q-deformation of a positive integer n, which is given by

[n]q =
1− qn

1− q
= qn−1 + qn−2 + · · ·+ q + 1,

is a very classical subject of mathematics. Recently, Morier-Genoud and Ovsienko
[MO20] introduced the q-deformation [α]q of a rational number α based on some
combinatorial properties of rational numbers. They further extended this notion
to arbitrary real numbers [MO22] by some number-theoretic properties of irrational
numbers. These works are related to many directions including Teichmüller spaces
[FC99], the 2-Calabi-Yau category of type A2 [BBL23], the Markov-Hurwitz ap-
proximation theory [K22, LL22, LMOV21, R22(a)], the modular group and Picard
groups [LeM21, MOV24, Ov21], Jones polynomials of rational knots [KW19(a),
LS19, NT20, MO20, BBL23, R22(b)], and combinatorics on fence posets [MSS21,
Og22, OR23].

For an irreducible fraction r
s
> 0, we have[r

s

]
q
=
R r

s
(q)

S r
s
(q)

for R r
s
(q),S r

s
(q) ∈ Z>0[q] with R r

s
(1) = r and S r

s
(1) = s.

There are many ways to compute [α]q (see Section 2 for details). For example, we
have[

6

5

]
q

=
[6]q
[5]q

=
q5 + q4 + q3 + q2 + q + 1

q4 + q3 + q2 + q + 1
,

[
7

5

]
q

=
q4 + 2 q3 + 2 q2 + q + 1

q3 + 2 q2 + q + 1
,

and observe that the denominators of 6
5

and 7
5

are the same 5, but the denominator
polynomials of their q-deformation are different. In general, the following problem
arises. When dose the equation S r

s
(q) = S r′

s
(q) hold for two irreducible fractions

r
s

and r′

s
? By definition, we have Sα+n(q) = Sα(q) for n ∈ Z, and hence r ≡ r′

(mod s) implies S r
s
(q) = S r′

s
(q). However, there are more subtle relations.

Example 1.1. (1) The table of Sα(q) for irreducible fractions α of the form r
17

is
the following.

A = [17]q = q16 + q15 + · · ·+ q + 1

B = q9 + 2 q8 + 2 q7 + 2 q6 + 2 q5 + 2 q4 + 2 q3 + 2 q2 + q + 1

C = q7 + 2 q6 + 3 q5 + 3 q4 + 3 q3 + 2 q2 + 2 q + 1

D = q7 + 2 q6 + 3 q5 + 4 q4 + 3 q3 + 2 q2 + q + 1

E = q6 + 2 q5 + 4 q4 + 4 q3 + 3 q2 + 2 q + 1

r (mod 17) 1, 16 2, 8 3, 11 4 5, 10 6, 14 7, 12 9, 15 13

S r
17
(q) A B C D E C∨ E∨ B∨ D∨
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Here, for f(q) ∈ Q[q], f∨(q) denotes its reciprocal polynomial qdeg(f)f(q−1). For
example, we have

E∨ = q6 + 2 q5 + 3 q4 + 4 q3 + 4 q2 + 2 q + 1.

(2) Next, we give the table of Sα(q) for irreducible fractions α of the form r
23

.

A = [23]q = q22 + q21 + · · ·+ q + 1

B = q12 + 2 q11 + 2 q10 + 2 q9 + 2 q8 + 2 q7 + 2 q6 + 2 q5 + 2 q4 + 2 q3 + 2 q2 + q + 1

C = q9 + 2 q8 + 3 q7 + 3 q6 + 3 q5 + 3 q4 + 3 q3 + 2 q2 + 2 q + 1

D = q8 + 2 q7 + 3 q6 + 4 q5 + 4 q4 + 3 q3 + 3 q2 + 2 q + 1

E = q7 + 3 q6 + 4 q5 + 5 q4 + 4 q3 + 3 q2 + 2 q + 1

F = q7 + 2 q6 + 4 q5 + 5 q4 + 5 q3 + 3 q2 + 2 q + 1

r (mod 23) 1, 22 2, 11 3, 15 4, 17 5, 9 6, 19 7, 13 8, 20 10, 16 14, 18 12, 21

S r
23
(q) A B C D E D∨ F C∨ F∨ E∨ B∨

From these examples, the third author of the present paper and Takeshi Sakurai,
who were supervised by the first author, proposed the following conjecture in their
master theses [R21, S21]. This is the main motivation of the present paper.

Conjecture 1.2 (Arithmetic conjecture). Let p be an odd prime integer. For two
positive integers a, b which are coprime to p, Sa

p
(q) = S b

p
(q) if and only if ab ≡ −1

(mod p) or a ≡ b (mod p).

The necessity part of Conjecture 1.2 really requires the assumption that p is prime.
In fact, S 5

24
(q) = S 11

24
(q) holds, while 5 · 11 6≡ −1 (mod 24). See Subsection 2.2 for

detail. On the other hand, without the assumption that p is prime, we can show
the sufficiency (so the essential part of the conjecture is its necessity). We give two
different proofs in Sections 3 and 4.

The proof given in Section 3 is rather direct. Combining an argument here and a
combinatorial result in [OR23], we can show that S r

s
(q) is palindromic if and only if

r2 ≡ 1 (mod s). Recall that f(q) ∈ Z[q] is said to be palindromic, if f∨(q) = f(q).
The proof given in Section 4 uses the q-deformation (a, b)p ∈ Z[q] of a pair (a, b)

of positive and coprime integers introduced in the previous work [W22] of the fourth
author. In Section 5 we study on behavior of Rα(q) and Sα(q) under the operations
i, r, ir on the positive rational numbers α, which are introduced in [KW19(a)].

For a given rational number α ∈ Q∩ (1,∞), the regular continued fraction expan-
sion of α determines a quiver Q of type A. In [MO20, Thoerem 4], they provided a
method for computing Rα(q) (and Sα(q)) by using combinatorial enumeration with
the quiver Q. Specifically, the coefficients of qk in Rα(q) coincides with the number
of marking of circles to k vertices of Q so that there is no arrow from an unmarked
vertex to a marked vertex. Thus, one representation-theoretic view of Rα(q) is that
it counts the number of submodules of the most dimensional indecomposable mod-
ule M over the path algebra kQ, where k is a field. Namely, the coefficients of qk in
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Rα(q) is equal to the number of k-dimensional submodules of M . In Section 6, we
give a formula for computing Rα(q).

In Section 7, we extend the result [MO20, Proposition 1.8] which states that
Sα(−1) and Rα(−1) belong to {0,±1}. First, we will show that

Rα(ω), Sα(ω) ∈ {0,±1,±ω,±ω2} for ω =
−1 +

√
−3

2

and
Rα(i), Sα(i) ∈ {0,±1,±i,±(1 + i),±(1− i)}.

Hence, for an irreducible fraction r
s
, S r

s
(q) ∈ Z[q] can be divided by [3]q = q2+ q+1

(resp. [4]q = q3 + q2 + q+1) if and only if s is a multiple of 3 (resp. 4). Inspired by
this fact, we conjecture that if p is a prime integer then Sa

p
(q) ∈ Z[q] is irreducible

over Q (Conjecture 7.9).
In Section 8, we give an application of the observations in the previous section.

For the rational link L(α) associated with α ∈ Q (for example, see [KL02]), the
Jones polynomial VL(α)(t) ∈ Z[t±1] ∪ t 12Z[t±1] has the normalized form Jα(q) ∈ Z[q]
([LS19]). Since Jα(q) for α > 1 can be expressed using Rα(q) and Sα(q) by [MO20,
Proposition A.1], one can study the special values of Jα(q) at q = −1, i,±ω. There
are several classical results on the special values of the Jones polynomials VL(t) for
general links L, and most of the facts given in this section easily follow from these
results. However, we give a new explanation using q-deformed rationals.

Acknowledgments

We would like to thank Professor Mikami Hirasawa for helpful comments and
references on results on existence of the Arf invariants of rational links. We would
also like to thank Professors Sophie Morier-Genoud, Valentin Ovsienko, and Taizo
Kanenobu for their encouragements of our research. We are grateful for the referee
for useful suggestions for improving the manuscript.

2. Preliminaries

Throughout this paper, for a real number x ∈ R, the symbols dxe and bxc mean
dxe = min{n ∈ Z | x ≤ n} and bxc = max{n ∈ Z | n ≤ x}, respectively. For
an irreducible fraction r

s
, we always assume that s > 0. We regard 0 = 0

1
as an

irreducible fraction.

2.1. q-deformed rational numbers. In this subsection, we review some basics
on q-deformations for rational numbers introduced by Morier-Genoud and Ovsienko
[MO20, MOV24]. A rational number α ∈ Q ∩ (1,∞) can be represented by

α = a1 +
1

a2 +
1

. . .
+

1

an
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with a1, . . . , an ∈ Z>0 and it can be also represented by

α = c1 −
1

c2 −
1

. . .
− 1

cl

with c1, . . . , cl ∈ Z>1. In this case, we write [a1, . . . , an] and [[c1, . . . , cl]] for these
expansions, respectively. The former expansion is called a regular continued fraction
of α, and the latter is called a Hirzebruch-Jung continued fraction (or negative
continued fraction in this paper) of α. One can always assume that the length n of
a regular continued fraction to be even, since [a1, . . . , an + 1] = [a1, . . . , an, 1]. The
expression as a regular continued fraction is uniquely determined if the parity of n
is specified, and that as a negative continued fraction is unique (since ci ≥ 2 for all
i now).

For an integer a, we set:

(2.1) M(a) :=

(
a 1
1 0

)
, M−(a) :=

(
a −1
1 0

)
.

Moreover, for a finite sequence of integers (a1, . . . , an), we set
(2.2) M(a1, . . . , an) =M(a1) · · ·M(an), M−(a1, . . . , an) =M−(a1) · · ·M−(an).

It follows from the definitions, we see that M−(a1, . . . , an) ∈ SL(2,Z), whereas
M(a1, . . . , an) ∈ SL(2,Z) if and only if n is even. These matrices are well-known as
the matrices of continued fractions in elementary number theory because one has
the following result.

Lemma 2.1 ([MO19, Proposition 3.1]). Let α = r
s
> 1 be an irreducible fraction,

and assume that it is expressed by
α = [a1, . . . , an] = [[c1, . . . , cl]]

with ai ≥ 1 (i = 1, . . . , n) and cj ≥ 2 (j = 1, . . . , l). Then,

M(a1, . . . , an) =

(
r r′

s s′

)
, M−(c1, . . . , cl) =

(
r −r′′
s −s′′

)
,

where r′

s′
= [a1, . . . , an−1] and r′′

s′′
= [[c1, . . . , cl−1]].

The q-deformation of positive rational numbers is based on the above lemma. Let q
be a formal symbol. For an integer a, we define a Laurent polynomial [a]q ∈ Z[q, q−1]
by

[a]q :=
1− qa

1− q
=


qa−1 + qa−2 + · · ·+ q + 1 if a > 0,

0 if a = 0,

−q−a − q−a+1 − · · · − q−2 − q−1 if a < 0.

By the definition of [a]q, for all a, n ∈ Z, the equation
(2.3) [a+ n]q = qn[a]q + [n]q
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holds. For an integer a, two q-deformations of (2.1) are defined by

(2.4) Mq(a) :=

(
[a]q qa

1 0

)
, M−

q (a) :=

(
[a]q −qa−1

1 0

)
.

The next lemma is a q-deformation of Lemma 2.1. Here, for regular continued
fractions, we only use those of even length. The q-deformations of (2.2) are defined
as follows.

Mq(a1, . . . , a2m) := Mq(a1)Mq−1(a2)Mq(a3) · · ·Mq−1(a2m)

M̃q(a1, . . . , a2m) := qa2+a4+···+a2mMq(a1, . . . , a2m)

M−
q (a1, . . . , an) := M−

q (a1)M
−
q (a2) · · ·M−

q (an).

Then, the following statements hold.

Proposition 2.2 ([MO20, Propositions 4.3 and 4.9]). Let α = r
s

be a rational
number as given in Lemma 2.1. The polynomials Rα(q),Sα(q) ∈ Z[q] given by

M−
q (c1, . . . , cl)

(
1
0

)
=

(
Rα(q)
Sα(q)

)
also satisfy

(2.5) M̃q(a1, . . . , a2m)

(
1
0

)
=

(
qRα(q)
qSα(q)

)
.

Moreover, the following statements hold.
(1) Rα(q) and Sα(q) are coprime in Z[q].
(2) We have R r

s
(1) = r and S r

s
(1) = s.

Based on Proposition 2.2, the q-deformation of a rational number α > 1 is defined
by

[α]q :=
Rα(q)

Sα(q)
.

Remark 2.3. Let PSLq(2,Z) be the subgroup of

PGL
(
2,Z

[
q±1
])

= GL
(
2,Z

[
q±1
])
/
{
±qNE2 | N ∈ Z

}
generated by the following two matrices

Rq :=

(
q 1
0 1

)
, Lq =

(
1 0
1 q−1

)
.

[LeM21, Proposition 1.1] states that PSL(2,Z) ∼= PSLq(2,Z). Via the equation

Mq(a1, . . . , a2m) = Ra1
q L

a2
q R

a3
q L

a4
q · · ·Ra2m−1

q La2m
q

and the classical PSL(2,Z) action on Q∪
{(

1
0

)}
, [MOV24] gives an insightful inter-

pretation of q-deformed rationals. We can also use negative continued fractions for
this interpretation.
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For an integer n ≥ 2, since n = [[n]] as a negative continued fraction, we have the
following philosophically trivial equations

(2.6) Rn(q) = [n]q and Sn(q) = 1.

Morier-Genoud and Ovsienko pointed out that the definition of q-deformed ra-
tional number [α]q can be extended to the case where α ≤ 1 including the negative
rational numbers by the following formulas, see [MO20, page 3]:

(2.7) [α + 1]q = q[α]q + 1.

However, for α < 0, Rα(q) is not an ordinary polynomial but a Laurent polynomial.
Similarly, for 0 < α < 1, Rα(q) is a polynomial, but Rα(0) = 0 (if α ≥ 1, we have
Rα(0) = 1). It can be easily verified that (2.5) holds for all α ∈ Q, that is, without
assuming that α > 1.

Lemma 2.4. For a rational number α and an integer n, we have

Rα+n(q) = qnRα(q) + [n]qSα(q) and Sα+n(q) = Sα(q),

equivalently, [α + n]q = qn[α]q + [n]q. In particular, we have

(2.8) Sα(q) = Sα+1(q) and Rα(q) = q−1(Rα+1(q)− Sα+1(q)).

Proof. It suffices to show that [α + n]q = qn[α]q + [n]q. For n ≥ 1, this is easily
shown by induction on n using (2.7). For n ≥ 1, replacing α by α − n, we have
[α]q = qn[α− n]q + [n]q. Hence

[α− n]q = q−n[α]q − q−n[n]q = q−n[α]q + [−n]q.

□

Lemma 2.5. Let a, x be positive and coprime integers with 1 ≤ a ≤ x, and express
x as the form x = ca + r for some c, r ∈ Z with 0 ≤ r < a. Then the following
equations hold:

Rx
a
(q) = [c+ 1]qR a

a−r
(q)− qcS a

a−r
(q),

Sx
a
(q) = R a

a−r
(q).

Proof. Note that it follows from the equations (2.6) and (2.8) that R1(q) = S1(q) =
1. If a = 1, then r = 0. Thus, we have

[c+ 1]qR a
a−r

(q)− qcS a
a−r

(q) = [x+ 1]qR1(q)− qxS1(q) = [x]q = Rx
a
(q).

The second equation obviously holds when a = 1.
If a > 1, then r > 0, and thus a

a−r
> 1. By x = ca+ r,

x

a
=

(c+ 1)a+ r − a
a

= c+ 1− 1
a

a−r

.
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So, if a
a−r

is expressed as a
a−r

= [[c1, . . . , cl]], then x
a
= [[c+ 1, c1, . . . , cl]] and

M−
q (c+ 1, c1, . . . , cl)

(
1
0

)
=M−

q (c+ 1)M−
q (c1, . . . , cl)

(
1
0

)

=

(
[c+ 1]qR a

a−r
(q)− qcS a

a−r
(q)

R a
a−r

(q)

)
.

This leads to the equations in the lemma. □
By Lemmas 2.4 and 2.5, we have
{ Sα(q) | α ∈ Q }= { Sα(q) | α ∈ Q ∩ (1, 2] } = {Rα(q) | α ∈ Q ∩ (1,∞) }.

Lemma 2.6. For coprime positive integers a, x with 1 ≤ a ≤ x, we have
R a

x
(q) = R x

x−a
(q)− S x

x−a
(q),(2.9)

S a
x
(q) = R x

x−a
(q).(2.10)

Proof. Express x
x−a

as the negative continued fraction x
x−a

= [[c1, . . . , cl]]. Then
a
x
+ 1 = [[2, c1, . . . , cl]], and(

R a
x
+1(q)

S a
x
+1(q)

)
=M−

q (2)M
−
q (c1, . . . , cl)

(
1
0

)
=

(
[2]q −q
1 0

)(R x
x−a

(q)

S x
x−a

(q)

)
.

This equation and Lemma 2.4 yield the equation (2.10) and
(2.11) qR a

x
(q) + S a

x
(q) = [2]qR x

x−a
(q)− qS x

x−a
(q)

The equation (2.9) can be obtained by substituting (2.10) to (2.11). □

2.2. The arithmetic conjecture on q-deformed rational numbers. Conjec-
ture 1.2 is the central problem of the present paper. In this subsection, we collect a
few remarks on this conjecture.

If Conjecture 1.2 holds for an odd prime p, then we have

(2.12) #{Sa
p
(q) | a ∈ Z} =


p+ 1

2
(p ≡ 1 (mod 4)),

p− 1

2
(p ≡ 3 (mod 4)).

To see this, recall the result of elementary number theory that there is some a ∈ Z
with a2 ≡ −1 (mod p) if and only if p ≡ 1 (mod 4). Thus, if p ≡ 1 (mod 4), then

{1, . . . , p− 1} = { a1, . . . , a p−3
2
, b1, . . . , b p−3

2
, c, d },

where aibi ≡ −1 (mod p) for each i and c2 ≡ d2 ≡ −1 (mod p). If p ≡ 3 (mod 4),
{1, . . . , p− 1} = { a1, . . . , a p−1

2
, b1, . . . , b p−1

2
}

holds, where aibi ≡ −1 (mod p) for each i. In the present assumption, we have
Sai

p
(q) = S bi

p

(q) for each i, and this is the only case when Sa
p
(q) = S b

p
(q) holds

for distinct a, b ∈ {1, . . . , p − 1}. Hence Conjecture 1.2 implies (2.12). However, in
Theorem 3.5 below, we will prove the sufficiency of the conjecture (without assuming
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that p is prime). So Sai
p
(q) = S bi

p

(q) actually holds, and (2.12) is equivalent to
Conjecture 1.2.

Next, we remark that the assumption that p is prime is really necessary for the
necessity part of Conjecture 1.2. In fact, 5

24
= [0, 4, 1, 4] and 11

24
= [0, 2, 5, 2] satisfy

S 5
24
(q) = S 11

24
(q) = q8 + 2q7 + 3q6 + 4q5 + 4q4 + 4q3 + 3q2 + 2q + 1

by Proposition 2.2 and (2.8), while 5 · 11 + 1 = 56 is not divisible by 24.
The following table shows composite numbers p and pairs of natural numbers

(a, b) (1 < a < b < p ≤ 111) which do not satisfy the necessity of Conjecture 1.2.
Note that if p admits a pair (a, b) with this property then it admits other pairs. For
example, (p− b, p− a) is also such a pair by Lemma 3.1 below.

p (a, b) p (a, b)
24 (5,11) 84 (19,25)
51 (11,20) 91 (19,32)
57 (13,16) 99 (17,28)
60 (11,19) 105 (23,38)
63 (13,20) 110 (19,41)
78 (17,29) 111 (25,34)

On the other hand, the sufficiency part of Conjecture 1.2 holds without the as-
sumption that p is prime. In Sections 3 and 4, we will prove this in two ways.

2.3. Closures of a quiver and q-deformed rational numbers. By a quiver
we mean a tuple Q = (Q0, Q1, s, t) consisting of two sets Q0, Q1 and two maps
s, t : Q1 → Q0. Each element of Q0 (resp. Q1) is called a vertex (resp. an arrow).
For an arrow α ∈ Q1, we call s(α) (resp. t(α)) the source (resp. the target) of α.
We will commonly write a α−→ b or α : a → b to indicate that an arrow α has the
source a and the target b. A quiver Q is finite if two sets Q0 and Q1 are finite sets.
The opposite quiver of Q, say Q∨, is defined by Q∨ = (Q0, Q1, t, s).

Let Q be a finite quiver. A subset C ⊂ Q0 is a closure if there is no arrow α ∈ Q1

such that s(α) ∈ Q0 \ C and t(α) ∈ C. A closure C is an ℓ-closure if the number
of elements of C is ℓ. The number of ℓ-closures is denoted by ρℓ(Q). Then the
polynomial

cl(Q) :=
n∑

ℓ=0

ρℓ(Q)q
ℓ ∈ Z[q],

where n = |Q0|, is called the closure polynomial of Q.
Obviously, the constant term and the coefficient of the leading term of cl(Q) are

1, including the extremal case cl(∅) = 1. We remark that, for any ℓ, the equation
(2.13) ρℓ(Q) = ρn−ℓ(Q

∨)

holds. For a polynomial f(q) ∈ Z[q], we define a polynomial f∨(q) by

f∨(q) = qdeg(f)f(q−1),

which is called the reciprocal polynomial of f(q). By (2.13), we have
(2.14) cl(Q)∨ = cl(Q∨).
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For a tuple of integers a := (a1, a2, . . . , as) with a1, as ≥ 0, a2, . . . , as−1 > 0, we
set the quiver

Q(a) := ◦ ←− ◦ · · · ◦ ←− ◦︸ ︷︷ ︸
a1 left arrows

−→ ◦ · · · ◦ −→ ◦︸ ︷︷ ︸
a2 right arrows

←− ◦ · · · ◦ ←− ◦︸ ︷︷ ︸
a3 left arrows

−→ · · · ,

with the left-right distinction. We understand that if a1 = 0, then
Q(a) := −→ ◦ · · · ◦ −→ ◦︸ ︷︷ ︸

a2 right arrows

←− ◦ · · · ◦ ←− ◦︸ ︷︷ ︸
a3 left arrows

−→ · · · .

Note that |Q(a)0| = a1+ a2+ · · ·+ as+1, and, for a = (a1, a2, . . . , as), the equation
(2.15) cl(Q(0, a)) = cl(Q(a))∨

holds since Q(0, a) ' Q(a)∨ as quivers. Here we have cl(Q(0, 0)) = cl(Q(0)) = 1+ q.

Remark 2.7. We note that the closure polynomial cl(Q(a)) of a quiver Q(a) can be
realized with the rank polynomials of a finite fence poset, which is more common in
combinatorics (see [MSS21] and [OR23] for detail).

Lemma 2.8. For a = (a1, a2, . . . , as), we put apal := (as, as−1, . . . , a1). Then, there
is an isomorphism of quivers

Q(apal) '

{
Q(a) if s is even,

Q(a)∨ if s is odd.
Therefore, we have

cl(Q(apal)) =

{
cl(Q(a)) if s is even,

cl(Q(a))∨ if s is odd.

Proof. First, we assume that s is even. Then, the direction of the i-th arrow of Q(a)
from the left is the opposite of that of the i-th arrow of Q(apal) from the right end.
Thus, Q(apal) is the “π-rotation”of Q(a), and hence Q(a) ' Q(apal) as quivers. We
leave the case n is odd to the reader as an easy exercise. □

According to [MO20, Section 3], Morier-Genoud and Ovsienko gave a combinato-
rial interpretation of the coefficients in Rα(q) and Sα(q).

Let α > 1 be a rational number, and write α as the regular continued fraction
α = [a1, a2, . . . , a2m]. Then, we set

QR
α := Q(a1 − 1, a2, . . . , a2m−1, a2m − 1),

QS
α :=

{
Q(0, a2 − 1, a3, . . . , a2m−1, a2m − 1) if m > 1,
Q(0, a2 − 2) if m = 1.

Here, if a2 = 1 and m > 1 (resp. a2 = 2 and m = 1, a2 = 1 and m = 1), we
understand that QS

α = Q(a3, . . . , a2m−1, a2m − 1) (resp. QS
α = Q(0), QS

α = ∅). The
quiver QS

α is obtained by deleting the first a1 arrows from QR
α .

Remark 2.9. If α 6∈ Z and α > 1, the above construction of QR
α and QS

α also works
for the expression as a regular continued fraction of odd length.
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Following the notation used in [MO20], we will use the symbols ρℓ(α) and σℓ(α)
to denote the numbers of ℓ-closures of QR

α and QS
α, respectively.

Theorem 2.10 ([MO20, Theorem 4]). Let α > 1 be an irreducible fraction. Then,
the following equations hold:

Rα(q) =
∑
ℓ≥0

ρℓ(α)q
ℓ
(
= cl(QR

α )
)
,(2.16)

Sα(q) =
∑
ℓ≥0

σℓ(α)q
ℓ
(
= cl(QS

α)
)
.(2.17)

2.4. Farey neighbors and Farey sums. In this subsection, we recall the defini-
tions of Farey neighbors and Farey sums.

Two irreducible fractions x
a
, y
b

are said to be Farey neighbors if ay − bx = 1. Here
we regard ∞ = 1

0
as an irreducible fraction.

For two irreducible fractions x
a
, y
b
, the operation ♯ is defined as follows:
x

a
♯
y

b
:=

x+ y

a+ b
.

If x
a
, y
b

are Farey neighbors, then x
a
♯y
b

is called the Farey sum of x
a

and y
b
. The

Farey sum of two irreducible fractions is also irreducible. Farey neighbors have the
following fundamental properties.

Lemma 2.11. The following assertions hold.
(1) Any non-negative rational number can be obtained from 0

1
and 1

0
applying ♯

in finitely many times.
(2) For any positive rational number α ∈ (0,∞), there uniquely exist Farey

neighbors x
a
, y
b

such that α = x
a
♯y
b
. The pair (x

a
, y
b
) is called the Farey parent

of α, and the fraction x
a

(resp. y
b
) is called the left parent (resp. the right

parent).

For proof of the above lemma, see [A13, Theorem 3.9] or [KW19(b), Lemma 3.5].

Let α and β be two fractions with α, β ≥ 1. If α♯β = [[c1, . . . , cl]], then the
equation

(2.18) [α♯β]q =
Rα(q) + qcl−1Rβ(q)

Sα(q) + qcl−1Sβ(q)

holds, see [MO20, Theorem 3].

3. A proof of the sufficiency of the conjecture

In this section, without the assumption that p is a prime number, we will show that
ab ≡ −1 (mod p) implies Sa

p
(q) = S b

p
(q), that is, the sufficiency part of Conjecture

1.2 holds. Recall that Sα+n(q) = Sα(q) for all α ∈ Q and n ∈ Z.
In the rest of the paper, p means a (not necessarily prime) integer with p ≥ 2,

unless otherwise specified.
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Lemma 3.1. Let a
p
, b
p

be irreducible fractions with a ≡ −b (mod p). We may assume
that a

p
−
⌊
a
p

⌋
≤ 1

2
, and hence a

p
= [a1, a2, . . . , ak] with a2 ≥ 2 as a regular continued

fraction. Then we have b
p
= [b1, 1, a2 − 1, a3, . . . , ak], where b1 =

⌊
b
p

⌋
.

Proof. Since the assertion only depends on the decimal parts of a
p

and b
p
, we may

assume that 0 < a
p
≤ b

p
< 1. Then we have b = p− a,

a

p
=

1

p

a

=
1

a2 +
p− aa2

a
and

b

p
=
p− a
p

=
1

p

p− a

=
1

1 +
a

p− a

=
1

1 +
1

p− a
a

=
1

1 +
1

(a2 − 1) +
p− aa2

a

.

If k > 2, we have p− aa2
a

= [a3, a4, . . . , ak], and the assertion follows. □

Proposition 3.2. Let a
p
, b
p

be irreducible fractions with a ≡ −b (mod p). Then we
have Sa

p
(q) = S∨

b
p

(q).

Proof. We may assume that 1 < a
p
, b
p
< 2, and a

p
= [1, a2, . . . , ak] with a2 ≥ 2.

Then we have b
p
= [1, 1, a2 − 1, a3, . . . , ak] by Lemma 3.1. With the notation of the

previous section, we have
QS

a
p
= Q(0, a2 − 1, a3, . . . , ak − 1) and QS

b
p

= Q(a2 − 1, a3, . . . , ak − 1)

(by Remark 2.9, we do not have to care about the parity of the length of the regular
continued fraction). Hence we have QS

b
p

= (QS
a
p
)∨ by (2.15), and

S b
p
(q) = cl(QS

b
p

) = cl((QS
a
p
)∨) = cl(QS

a
p
)∨ = S∨

a
p
(q)

by Theorem 2.10 and (2.15). □
The following lemma is a variant of “Palindrome Theorem” (for example, see

[KL02, Theorem 4]) for continued fractions. We will give a direct proof here for the
reader’s convenience.
Lemma 3.3. Let a

p
, b
p

be irreducible fractions with a
p
= [a1, a2, a3, . . . , an] as a regular

continued fraction. Set b1 :=
⌊
b
p

⌋
. Then b

p
= [b1, an, an−1, . . . , a2] if and only if

ab ≡ (−1)n (mod p).
Proof. Clearly, it suffices to show the case a1 = b1 = 0. First, assume that b

p
=

[0, an, . . . , a2]. By Lemma 2.1, we have(
a k
p l

)
=

(
0 1
1 0

)(
a2 1
1 0

)
· · ·
(
an 1
1 0

)
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for some k, l ∈ Z. Hence we have(
p l
a k

)
=

(
a2 1
1 0

)(
a3 1
1 0

)
· · ·
(
an 1
1 0

)
.

Taking the transpose of both sides, we get(
p a
l k

)
=

(
an 1
1 0

)(
an−1 1
1 0

)
· · ·
(
a2 1
1 0

)
.

Hence we have

(3.1)
(
l k
p a

)
=

(
0 1
1 0

)(
an 1
1 0

)
· · ·
(
a2 1
1 0

)
,

and it implies that l
p
= [0, an, . . . , a2] = b

p
, and hence l = b. The determinant

of the right side of (3.1) is (−1)n, so that of the left side is also. It implies that
ab− pk = (−1)n, and hence ab ≡ (−1)n (mod p).

The converse implication follows from the above observation and the uniqueness
of the solution of a · x = ±1 in Z/pZ. □

Proposition 3.4. Let a
p
, b
p

be irreducible fractions with ab ≡ 1 (mod p). Then we
have Sa

p
(q) = S∨

b
p

(q).

Proof. We may assume that 1 < a
p
, b
p
< 2. If a

p
= [1, a2, . . . , a2m], then b

p
=

[1, a2m, . . . , a2] by Lemma 3.3. Hence we have
QS

b
p

= Q(a2m − 1, a2m−1, . . . , a2 − 1)∨ ' Q(a2 − 1, a3, . . . , a2m − 1) = (QS
a
p
)∨

by Lemma 2.8. So the assertion follows from Theorem 2.10 and (2.15). □

The following implies the sufficiency of Conjecture 1.2.

Theorem 3.5. Let p be a positive integer. For irreducible fractions a
p
, b
p

with ab ≡ −1
(mod p), we have Sa

p
(q) = S b

p
(q).

Proof. The assertion follows from Propositions 3.2, 3.4 and the fact that f∨∨(q) =
f(q) for general f(q) ∈ Z[q]. □

We note that, for the numerator R r
s
(q) for r

s
> 1, a similar result holds. See

Lemma 4.1 below.
Regarding QS

α as a finite poset, Oğuz and Ravichandran [OR23] intensely studied
Sα(q) from purely combinatorial point of view. Among other things, they showed
that Sα(q) is always unimodal. Here we apply their another result. A polynomial
f(q) is said to be palindromic if f∨(q) = f(q).

Theorem 3.6. For an irreducible fraction r
s
, S r

s
(q) is palindromic if and only if

r2 ≡ 1 (mod s).

Proof. Let b = (b1, . . . , bk) be an integer sequence such that b1, bk ≥ 0, b2, . . . , bk−1 >
0 and k is odd. [OR23, Theorem 1.3 (c)], which was first conjectured in [MSS21],
states that cl(Q(b)) is palindromic if and only if bi = bk+1−i for all 1 ≤ i ≤ k.
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Set r
s
= [a1, . . . , a2m]. By the above mentioned result, the q-polynomial S r

s
(q) =

cl(Q(a2 − 1, a3, . . . , a2m − 1)∨) is palindromic if and only if
(3.2) ai = a2m+2−i for all 2 ≤ i ≤ 2m.
By Lemma 3.3, the condition (3.2) holds if and only if a2 ≡ 1 (mod p). □
Corollary 3.7. The following hold.

(1) For an irreducible fraction a
pn

such that p is an odd prime, S a
pn
(q) is palin-

dromic, if and only if a ≡ ±1 (mod pn), if and only if S a
pn
(q) = [pn]q =

1 + q + · · ·+ qp
n−1.

(2) For n ≥ 2, S a
2n
(q) is palindromic if and only if a ≡ ±1 (mod 2n) or a ≡

2n−1 ± 1 (mod 2n).

Proof. (1) The latter equivalence is clear, so we prove the former. By Theorem 3.6,
it is sufficient to show that a2 ≡ 1 (mod pn) implies a ≡ ±1 (mod pn). If a2 ≡ 1
(mod pn), then pn divides (a+1)(a−1). Since p is an odd prime, p does only divide
one of a + 1 and a − 1. In fact, if p divides both a + 1 and a − 1, then p divides
2, which is a contradiction. This means that all n copies of p that appear in the
prime decomposition of (a+ 1)(a− 1) must come from either a+ 1 or a− 1. Thus,
pn divides either a+ 1 or a− 1, equivalently, a ≡ ±1 (mod pn).

(2) Since 4 cannot divide both a + 1 and a − 1 at the same time, an argument
similar to the above works. □

Combining the above results with Chinese remainder theorem, for a general s, we
can easily detect all r such that S r

s
is palindromic (equivalently, r2 ≡ 1 (mod s)).

Corollary 3.8. For an irreducible fraction r
s
> 1, R r

s
(q) is palindromic if and only

if s2 ≡ 1 (mod r).

Proof. By (2.10), we have R r
s
(q) = S r−s

r
(q). Hence we have

R r
s
(q) is palindromic ⇐⇒ S r−s

r
(q) is palindromic

⇐⇒ (r − s)2 ≡ 1 (mod r)

⇐⇒ s2 ≡ 1 (mod r),

where the second equivalence follows from Corollary 3.6. □

4. Another proof of the sufficiency of the conjecture

In [W22], the fourth author introduced the q-deformed integers derived from pairs
of positive and coprime integers. In this section, by using them we give the second
proof of the sufficiency of Conjecture 1.2. To do this we need the following inter-
pretation of the conjecture.

Lemma 4.1. Conjecture 1.2 is equivalent to the following statement.
(∗) Let p be an odd prime integer. For two integers a, b with 1 ≤ a < b < p,
R p

a
(q) = R p

b
(q) if and only if ab ≡ −1 (mod p).

Proof. This follows from Lemmas 2.4 and 2.6. □
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Definition 4.2 ([W22, Definition 4.3]). For a pair (a, b) of positive and coprime
integers we define a polynomial (a, b)q in q with integer coefficients by

(4.1) (a, b)q :=

{
(a− r, r)q + q(a, b− a)q if a < b,

(a− b, b)q + q⌈
a
b
⌉(r, b− r)q if a > b,

where r is the remainder when b is divided by a in case where a < b, and when a
is divided by b in case where a > b, and also (1, n)q = (n, 1)q := [1 + n]q for any
non-negative integer n.

The polynomial (a, b)q is convenient to compute [α♯β]q.

Theorem 4.3 ([W22, Theorem 4.4]). If α = x
a
, β = y

b
≥ 1 are Farey neighbors,

then
Sα♯β(q) = (a, b)q, Rα♯β(q) = (x, y)q.

Thus, we have

[α♯β]q =
(x, y)q
(a, b)q

.

Any rational number α > 0 is associated with a link L(α) in the 3-sphere S3

which is given by the diagram D(α) below, and such a link is called a rational link
or two-bridge link. If α belongs to the open interval (0, 1), then the diagram D(α)
is given as in Figure 1 after the expression of α = [0, a1, . . . , an] with odd n.

a an–

–
 

an–
 

a

Figure 1. the diagram D(α) of rational link

where

a =



a

if a ≥ 0,

–
 

a

if a < 0.

If α > 1, thenD(α) is defined byD(α) := D(α−1), and if α = 1, thenD(α) = .
For a negative rational number α, a rational link L(α) and its diagram D(α) are
defined in the same way as the positive case. Then we see that the link L(α) is the
mirror image of L(−α). However, for any α ∈ Q, there is some β ∈ Q∩ (1,∞) such
that L(α) and L(β) are isotopy. See, for example, [KL02, Theorem 2]. In this sense,
we may assume that α > 1.



16 T. KOGISO, K. MIYAMOTO, X. REN, M. WAKUI, AND K. YANAGAWA

As a useful isotopy invariant for an oriented link L in S3, the Jones polyno-
mial VL(t) [J85, K87], which is valued in Z[t± 1

2 ], is well-studied. Lee and Schif-
fler [LS19] introduced the following normalization Jα(q) of the Jones polynomial
Vα(t) := VL(α)(t) of a rational link L(α):

(4.2) Jα(q) := ±t−hVα(t)|t=−q−1 ,

where ±th is the leading term of Vα(t). This indicates the normalization such that
the constant term is 1 as a polynomial in q. We note that

J1(q) = 1, J∞(q) = q.

By Lee and Schiffler [LS19], it is known that the Jones polynomial Vα(t) can be
recovered from Jα(q). By [MO20, Proposition A.1] and the equation (2.18), we see
that, for a rational number α > 1, the normalized Jones polynomial Jα(q) can be
computed by

(4.3) Jα(q) = qRα(q) + (1− q)Sα(q).

Using this formula, the fourth author showed the following.

Theorem 4.4 ([W22, Theorem 5.3]). Let (a, p) be a pair of coprime integers with
1 ≤ a < p. Then

(4.4) (a, p)q = J p
a
(q) + q(a− r, r)q,

where r is the remainder when p is divided by a.

The equation (4.4) corresponds to the equation J r
s
(q) = R′− qS ′ in [MO20, p.45]

under the setting r
s
= p

a
. In fact, since S ′ = S p

a
(q) and R′ = qR p

a
(q) + S p

a
(q) as

shown in [MO20, p.45], we have S ′ = (a − r, r)q by (4.6) below and R′ = q(a, p −
a)q + (a− r, r)q = (a, p)q by (4.1) and (4.5) below.

As an application of Theorem 4.4 we have:

Theorem 4.5 ([W22, Theorem 5.4]). Let (a, p) be a pair of coprime integers with
1 ≤ a ≤ p, and r the remainder when p is divided by a. Then, the following equations
hold.

R p
a
(q) = (a, p− a)q,(4.5)

S p
a
(q) = (a− r, r)q.(4.6)

By using the above theorem, one can give another proof of Theorem 3.5, that is,
the sufficiency of Conjecture 1.2.

Another proof of Theorem 3.5. Since ab ≡ −1 (mod p), there is some m ∈ Z with
mp− ab = 1. Since 1 ≤ a ≤ b < p, we have 0 ≤ m < a. Thus,

(
a
m
, p−a
b−m

)
is the Farey

parents of p
b
. By using Theorem 4.3, we have

R p
b
(q) = (a, p− a)q.

(See also the proof of [KW22, Theorem 3.2].) Combining this equation with (4.5),
we get R p

a
(q) = R p

b
(q). □
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Remark 4.6. By Corollary 3.8 and (4.5), (a, b)q is palindromic if and only if a2 ≡ 1
(mod a + b). Combining this observation with Theorem 4.3, one can show the
following. For a positive irreducible fractions c

z
whose Farey parent is (a

x
, b
y
), S c

z
(q)

is palindromic, if and only of x2 ≡ 1 (mod x+y) (equivalently, y2 ≡ 1 (mod x+y)).

5. Three operations on the positive rational numbers and
q-deformed rational numbers

In the study of Conway-Coxeter friezes of zigzag-type developed by the first and
the fourth authors [KW19(b), KW19(a)] crucial three operators i, r, ir on the positive
rational numbers are introduced. In this section we examine effect of the operators
i, r, ir on Rα(q),Sα(q).

Let α = z
c
> 0 be an irreducible fraction. In the case where α ∈ (0, 1), irreducible

fractions i(α), r(α), (ir)(α) in the interval (0, 1) are defined as follows [KW19(a)]:

(5.1) i(α) :=
c− z
c

(= 1− α), r(α) :=
a

c
, ir(α) :=

b

c
,

where (x
a
, y
b
) is the Farey parent of α. Note that

(5.2) az ≡ 1 (mod c) and b ≡ −a (mod c).

In fact, since z = x+ y, c = a+ b and ay − bx = 1 now, we have

az = a(x+ y) = ax+ ay = ax+ 1 + bx = 1 + (a+ b)x = 1 + cx.

Hence as operations on Q∩ (0, 1), we have i2 = r2 = id and ir = ri. By Theorem 3.6,
for α ∈ Q ∩ (0, 1), r(α) = α if and only if Sα(q) is palindromic.

In the case where α > 1, i(α), r(α), and ir(α) are defined as follows:

(5.3) i(α) :=
(
i(α−1)

)−1
, r(α) :=

(
r(α−1)

)−1
, (ir)(α) :=

(
(ir)(α−1)

)−1
.

Here we also have i2 = r2 = id and ir = ri. Moreover, r(α) = α if and only if Rα(q)
is palindromic.

By Lemmas 3.1 and 3.3, and the equation (5.2), one can show that for a positive
rational number α = [0, a2, . . . , an],

(ir)(α) =


[0, an, . . . , a3, a2] if n is odd,
[0, 1, an − 1, an−1, . . . , a3, a2] if n is even and an ≥ 2,

[0, an−1 + 1, an−2, . . . , a3, a2] if n is even and an = 1,
(5.4)

i(α) =

{
[0, 1, a2 − 1, a3, . . . , an] if a2 ≥ 2,

[0, a3 + 1, a4, . . . , an] if a2 = 1,
(5.5)

r(α) =


[0, 1, an − 1, an−1, . . . , a3, a2] if n is odd and an ≥ 2,

[0, an−1 + 1, an−2, . . . , a3, a2] if n is odd and an = 1,
[0, an, . . . , a3, a2] if n is even.

(5.6)
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Lemma 5.1. Let α ∈ Q ∩ (0,∞) whose expression as a regular continued fraction
is α = [a1, a2, . . . , an]. If n is odd, then

β =


[a1, . . . , an−1, an − 1] if an ≥ 2,

[a1, . . . , an−2] if an = 1 and n ≥ 3,

[0] if a1 = 1 and n = 1,

γ =

{
[a1, . . . , an−1] if n ≥ 3,
[ ] if n = 1

are Farey neighbors and α = β♯γ, where [ ] expresses ∞ = 1
0
. If n is even, then

β = [a1, . . . , an−1]

γ =


[a1, . . . , an−1, an − 1] if an ≥ 2,

[a1, . . . , an−2] if an = 1 and n ≥ 4,
[ ] if a2 = 1 and n = 2

are Farey neighbors and α = β♯γ.

Proof. Note that, as a regular continued fraction, each rational number has expres-
sions in both odd and even lengths. It is easy to check that two definitions (the odd
case and the even case) coincide.

We will prove the equation α = β♯γ by induction on n. The cases n = 0 and
n = 1 are clear. Now, we suppose that the statement holds for n− 1. We only show
the case n ≥ 3 is odd and an ≥ 2; the proofs in other cases are similar. Not that we
have β = [a1, . . . , an−1, an − 1] and γ = [a1, . . . , an−1] now. Set [a2, . . . , an−1] =

r
s
,

[a2, . . . , an−1, an − 1] = r′

s′
.

By induction hypothesis, ( r
s
, r

′

s′
) is the Farey parents of r+r′

s+s′
= [a2, a3, . . . , an].

Since β = r′a1+s′

r′
, γ = ra1+s

r
and sr′ − rs′ = 1, β and γ are Farey neighbors.

Moreover, it follows from induction hypothesis that we have

β♯γ =
a1(r + r′) + s+ s′

r + r′
= a1 +

1

r + r′

s+ s′

= a1 +
1

[a2, . . . , an]
= [a1, a2, . . . , an] = α.

□

For a quiver Q of type A, let denote by Qrot the quiver obtained from Q by
π-rotation. Since Q ' Qrot as quivers, their closure polynomials are same;

(5.7) cl(Q) = cl(Qrot).

For α ∈ Q ∩ (1,∞), the equations (5.4), (5.5) and (5.6) imply that

QR
i(α) = (QR

α )
∨,(5.8)

QR
(ir)(α) = (QR

α )
rot,(5.9)

QR
r(α) = (QR

α )
rot∨ = (QR

α )
∨rot.(5.10)
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Except for the denominator of i(α), the denominator and numerator polynomials
of q-deformations of i(α), r(α), (ir)(α) are computed from that of α and its Farey
parent as follows.
Theorem 5.2. Let α ∈ Q ∩ (1,∞) and (β, γ) be its parents. Then, the following
hold.

(1) Ri(α)(q) = Rr(α)(q) = R∨
α(q) and R(ir)(α)(q) = Rα(q).

(2) S(ir)(α)(q) = Rβ(q), and Sr(α)(q) = R∨
γ (q).

Proof. (1) By the equations (2.14) and (5.7), these follow from (5.8), (5.9), and
(5.10).

(2) We write α as α = [a1, a2, . . . , a2m]. Then, it follows from Lemma 5.1 that
β = [a1, . . . , a2m−1]. Since α−1 = [0, a1, . . . , a2m] ∈ Q ∩ (0, 1), we have (ir)(α−1) =
[0, a2m, . . . , a1] by (5.4). Thus, (ir)(α) = [a2m, . . . , a1]. Hence, Theorem 2.10 and
(5.7) imply that

S(ir)(α)(q) = cl(Q(0, a2m−1 − 1, a2m−2, . . . , a2, a1 − 1))

= cl(Q(0, a2m−1 − 1, a2m−2, . . . , a2, a1 − 1)rot)

= cl(Q(a1 − 1, a2, . . . , a2m−2, a2m−1 − 1))

= Rβ(q).

Finally, we consider Sr(α)(q). Suppose that a2m > 1. In this case, it follows
from Lemma 5.1 that γ = [a1, . . . , a2m−1, a2m − 1]. By (5.6), r(α) = [1, a2m −
1, a2m−1, . . . , a1]. Thus, we have

Sr(α)(q) = cl(Q(a2m − 2, a2m−1, . . . , a2, a1 − 1)∨)

= cl(Q(a2m − 2, a2m−1, . . . , a2, a1 − 1))∨

= cl(Q(a2m − 2, a2m−1, . . . , a2, a1 − 1)rot)∨

= cl(Q(a1 − 1, a2, . . . , a2m−1, a2m − 2))∨

= R∨
γ (q).

In the case where a2m = 1, by the same argument the same equation is derived. □
For a rational number α with 0 < α < 1, the q-deformations of i(α), r(α) and

(ir)(α) behave as follows.
Proposition 5.3. For a rational number α ∈ Q ∩ (0, 1), we have the followings.

(1) Sr(α)(q) = S∨
α (q) = Si(α)(q) = Rα−1(q).

(2) Ri(α)(q) = Rα−1(q)−Sα−1(q), Rr(α)(q) = Rα−1(q)−Rγ−1(q), where (β, γ) is
the parent of α.

Proof. (1) The first (resp. second) equality follows from (5.1), (5.2), and Proposi-
tion 3.4 (resp. Proposition 3.2). To see the third equality, express i(α) = a

x
as an

irreducible fraction. Then we have α = x−a
x

and α−1 = x
x−a

. So the equality follows
from (2.10).

(2) The first equation immediately follows from (2.9). Since i(ir(α)) = r(α) and
(ir(α))−1 = ir(α−1), replacing α by ir(α), the first equation yields

Rr(α)(q) = R(ir)(α−1)(q)− S(ir)(α−1)(q).
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Applying Theorem 5.2, we have Rr(α)(q) = Rα−1(q)−Rγ−1(q). □
As an application of Proposition 3.2 we have:

Theorem 5.4. Let α ∈ Q ∩ (1,∞), and express it as a regular continued fraction
α = [a1, a2, . . . , an].

(1) If a1 = 1, then
Si(α)(q) = S∨

(a2+1)(α−1)+α−2
α−1

(q).

(2) If a1 ≥ 2, then
Si(α)(q) = S∨

a1(α−1)+α−2
α−1

(q).

Proof. Set α = x
a

with 1 ≤ a < x. Then, Si(α)(q) = S x
x−a

(q), and hence by Proposi-
tion 3.2
(5.11) S x

x−a
(q) = S∨

x′
x−a

(q)

for x′ ∈ Z such that x′ ≡ −x (mod x− a) and
⌊

x
x−a

⌋
=
⌊

x′

x−a

⌋
.

(1) Since a1 = 1, we have a
x−a

= [a2, . . . , an], and 0 ≤ a − a2(x − a) < x − a. As
x′ one can take x′ := −x+ (a2 + 3)(x− a). Thus by (5.11) we have

S x
x−a

(q) = S∨
−x+(a2+3)(x−a)

x−a

(q)

= S∨
−α+(a2+3)(α−1)

α−1

(q)

= S∨
(a2+1)(α−1)+α−2

α−1

(q).

(2) Since a1 ≥ 2, we have x
a
− a1 = [0, a2, . . . , an] and 0 ≤ x − aa1 < a. In this

case one can take x′ := −x + (a1 + 2)(x − a). Then, by the same argument of the
proof of Part (1), the assertion is derived. □

6. A formula for computing closure polynomials of type A

On the one hand, for an irreducible fraction α > 1, the denominator and numer-
ator polynomials of [α]q are given by closure polynomials of some quivers of type
A (see Theorem 2.10). On the other hand, from a representation theoretical view-
point, the closure polynomial of a type A quiver Q counts subrepresentations of “the
full interval representation” of Q in which a field k corresponds to each vertex and
the identity map corresponds to each arrow. In this section, we give an expression
to calculate cl(Q) that explicitly gives the number of subrepresentations of the full
interval representation.

Let Q be a quiver of type A, that is, the underlying graph of Q is An = 1 − 2−
3− · · · − n. A representation of Q over a field k is a system M = (Ma, φα)a∈Q0,α∈Q1

(M = (Ma, φα) for short) consisting of k-vector spaces Ma (a ∈ Q0), and k-linear
maps φα :Ms(α) →Mt(α) (α ∈ Q1). The dimension of M is the sum of k-dimensions
of Ma. A representation M ′ = (M ′

a, φ
′
α) is said to be a subrepresentation of M if M ′

a

is a subspace of Ma, and φ′
α = φα|M ′

a
. For two representations M = (Ma, φα) and

N = (Na, ψα), a morphism of representations f : M → N is a family f = (fa)a∈Q0

of k-linear maps fa :Ma → Na such that ψαfs(α) = ft(α)φα for any arrow α.
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The category of finite dimensional representations of Q is denoted by rep(Q). It
is well-known that there is an k-linear equivalence between rep(Q) and the category
of finitely generated kQ-modules, where kQ is the path algebra of Q. For a vertex
i ∈ Q0, we denote by S(i) the corresponding simple kQ-module. For a kQ-module
M , we also denote by rad(M), top(M), and soc(M) the Jacobson radical, the top,
and the socle of M , respectively. The support of M is the set of composition factors,
which is denoted by supp(M). In this subsection, any objects of rep(Q) are freely
regarded as objects of mod kQ. For representations of quivers, see [ASS06, Chapters
II and III] for more details.

By the Gabriel theorem (for example, see [ASS06, Chapter VII, Theorem 5.10]),
there is one-to-one corresponding between indecomposable objects of rep(Q) and
positive roots of An, that is, pairs (i, j) with 1 ≤ i ≤ j ≤ n. In this correspondence,
each pair (i, j) is assigned with the interval representation I[i, j] = (Ma, φα), where

Ma =

{
k if i ≤ a ≤ j,
{0} otherwise, φα =

{
1 if i ≤ s(α) and t(α) ≤ j,
0 otherwise.

Following this notation, I[1, n] is called the full interval representation of Q. Then,
it follows from the definition of the closure polynomial that the coefficient of qℓ of
cl(Q) is equal to the number of ℓ-dimensional subrepresentations of I[1, n].

Throughout this section, we fix a type A quiver Q = Q(a) for some tuple a =
(a1, a2, . . . , as) ∈ Zs

≥0, which has n vertices, and denote by I(a) the full representation
of Q(a). It is clear that ρ1(Q(a)) = dimk soc(I(a)), which equals to the number of
sinks of Q(a). Note that the Jordan-Hölder theorem implies that any coefficients of
cl(Q(a)) are greater than or equal to 1. This yields that, for any irreducible fraction
α > 1, any coefficients of the polynomials Rα(q) and Sα(q) are greater than 1. We
also remark that the top and the socle of I(a) is given by

top(I(a)) =
⊕
k≥1

S(1 + a1 + a2 + · · ·+ a2k−1)

soc(I(a))) =


S(1)⊕

⊕
k≥1

S(1 + a1 + a2 + · · ·+ a2k) if a1 6= 0,⊕
k≥1

S(1 + a1 + a2 + · · ·+ a2k) if a1 = 0.

Now, we choose 1 ≤ k1 < k2 < · · · < kt and 1 ≤ ℓ1 < ℓ2 < · · · < ℓt′ to be

top(I(a)) = S(k1)⊕ · · · ⊕ S(kt),
soc(I(a)) = S(ℓ1)⊕ · · · ⊕ S(ℓt′).

Here, we put

Ta := {(ki1 , . . . , kis) ∈ Zs | 1 ≤ i1 < · · · < is ≤ t, s ∈ N}.

A subquiver of Q(a) of the form

◦ −→ ◦ · · · ◦ −→ ◦︸ ︷︷ ︸
p1 arrows

←− ◦ · · · ◦ ←− ◦︸ ︷︷ ︸
p2 arrows
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is called a (p1, p2)-valley. For (p1, p2)-valley, we define a polynomial valq(p1, p2) by
valq(p1, p2) := cl(Q(0, p1, p2)).

Observe that the equation valq(p1, p2) = valq(p2, p1) holds by (5.7) and this can be
calculated through the following.

Lemma 6.1. For (p1, p2)-valley with p1 ≥ p2, we have

valq(p1, p2) = 1 +

p2+1∑
k=1

kqk + (p2 + 1)

p1+1∑
k=p2+2

qk +

p1+p2+1∑
k=p1+2

(p1 + p2 + 2− k)qk

Proof. This lemma follows from direct computation. □

Now, we define a sequence of pairs of integers as follows:

(i) Compute a− 1 :=

{
(a1 − 1, a2 − 1, . . . , as − 1) if a1 6= 0,
(a2 − 1, a3 − 1 . . . , as − 1) if a1 = 0.

(ii) We put

(b1, b2, . . . , b2m) :=



(0, a− 1, 0) if a1 6= 0 and s is even,

(0, a− 1) if a1 6= 0 and s is odd,

(a− 1, 0) if a1 = 0 and s is even,

(a− 1) if a1 = 0 and s is odd.

(iii) We set Ja := {(b1, b2), (b3, b4), . . . , (b2m−1, b2m)}.

Proposition 6.2. The number of ℓ-dimensional subrepresentation of rad(I(a)) co-
incides with the coefficient of qℓ of

valq(b1, b2) · valq(b3, b4) · · · valq(b2m−1, b2m).

Proof. We show the case that a1 > 0 and s is even: the proof of other cases are
similar. In this case, m = t+ 1 and the quiver Q(a) is of the form:

1← ◦ · · · ◦ ← ◦︸ ︷︷ ︸
b2 arrows

← k1 → ◦ → ◦ · · · ◦ → ◦︸ ︷︷ ︸
b3 arrows

← ◦ · · · ◦ ← ◦︸ ︷︷ ︸
b4 arrows

← k2

→ ◦ → ◦ · · · ◦ → ◦︸ ︷︷ ︸
b5 arrows

← ◦ · · · ◦ ← ◦︸ ︷︷ ︸
b6 arrows

← k3 → · · · ← kt → ◦ → ◦ · · · ◦ → n︸ ︷︷ ︸
b2m−1 arrows

.

This yields that rad(I(a)) is decomposed as
rad(I(a))) = I[1, k1 − 1]⊕ I[k1 + 1, k2 − 1]⊕ · · · ⊕ I[kt + 1, kt − 1]⊕ I[kt + 1, n].

Thus, each subrepresentation N ⊂ rad(I(a)) is the direct sum of subrepresentations
N1 ⊂ I[1, k1−1], Ni ⊂ I[ki+1, ki+1−1] (i = 1, . . . , t−1), and Nt ⊂ I[kt+1, n]. Since
the numbers of subrepresentations of I[1, k1− 1], I[ki+1, ki+1− 1] (i = 1, . . . , t− 1),
and I[kt + 1, n] are equal to valq(b1, b2), valq(b2i+1, b2i+2) (i = 1, . . . , t − 1), and
valq(b2m−1, b2m), respectively, the assertion follows. □

For each ki (i = 1, . . . , t), a polynomial ∆q(ki) is defined as follows.
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(i) Suppose that a1 > 0. In this case, we define ∆q(ki) by

∆q(ki) :=


qℓi+1−ℓi+1[ℓi − ki−1]q[ki+1 − ℓi+1]q if i 6= 1, t,

qℓ2 [k2 − ℓ2]q if i = 1,

qn−ℓt+1[ℓt − kt−1]q if i = t.
(ii) Suppose that a1 = 0. In this case, we define ∆q(ki) by

∆q(ki) :=


qℓi−ℓi−1+1[ℓi−1 − ki−1]q[ki+1 − ℓi]q if i 6= 1, t,

qℓ1 [k2 − ℓ1]q if i = 1,

qn−ℓt−1+1[ℓt−1 − kt−1]q if i = t.
For each ki, take a subset

{(v(ki)2j−1, v
(ki)
2j ) | j = 1, 2, . . . , rki} ⊂ Ja

such that any (v
(ki)
2j−1, v

(ki)
2j )-valley is not adjacent to vertex ki. Then, we set

∆̃q(ki) := ∆q(ki)

rki∏
j=1

val(v
(ki)
2j−1, v

(ki)
2j ).

Lemma 6.3. The coefficient of qℓ of ∆̃q(ki) coincides with the number of ℓ-dimensional
subrepresentations N of I(a) such that S(ki) ∈ supp(N), but S(kj) /∈ supp(N) for
i 6= j.

Proof. We only show the statement when a1 > 0 and s is even; the proofs in other
cases are similar.

Let N(ki) be the largest dimensional subrepresentation of I(a) such that S(ki) ∈
supp(N), but S(kj) /∈ supp(N) for i 6= j. It is sufficient to show that the coefficient
of qℓ of ∆̃q(ki) coincides with the number of ℓ-dimensional subrepresentations of
N(ki). Observe that I[ki−1 +1, ki+1− 1] ⊂ N(ki) and every subrepresentation of N(ki)

must have I[ℓi, ℓi+1] as a subrepresentation whose dimension is ℓi+1 − ℓi + 1. Here,
if ki−1 (resp. ki+1) is not in Q(a)0, then we replace ki−1 + 1 by ℓ1 (resp. ki+1 − 1 by
ℓi+1). Now, we consider an isomorphism

I[ki−1 + 1, ki+1 − 1]/I[ℓi, ℓi+1] ' I[ki−1 + 1, ℓi − 1]⊕ I[ℓi+1 + 1, ki+1 − 1].

Since the number of ℓ-dimensional subrepresentations of I[ki−1 + 1, ℓi − 1] (resp.
I[ℓi+1 + 1, ki+1 − 1]) corresponds to the coefficient of qℓ of [ℓi − ki−1]q (resp. [ki+1 −
ℓi+1]q), the number of ℓ-dimensional subrepresentations N ′ of I[ki−1+1, ki+1−1] such
that S(ki) ∈ supp(N ′) is the coefficient of qℓ of ∆q(ki). Remaining subrepresentations
that must be counted come from subrepresentations of rad(I(a))/(I[ki−1 + 1, ki+1 −
1]/S(ki)). Therefore, the assertion follows from Proposition 6.2. □

Next, for two ki1 < ki2 , we define

∆q(ki1 , ki2) :=


∆q(ki1)∆q(ki2)

q[ℓi2 − ki2−1]q[ki1+1 − ℓi1+1]q
if i2 = i1 + 1,

∆q(ki1)∆q(ki2) otherwise.
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Inductively, for ki1 < ki2 < · · · < kir , we define

∆q(ki1 , ki2 , . . . , kir) :=


∆q(ki1 , ki2 , . . . , kir−1)∆q(kir)

q[ℓir − kir−1]q
if ir = ir−1 + 1,

∆q(ki1 , ki2 , . . . , kir−1)∆q(kir) otherwise.

Take a subset

{(v(ki1 ,...,kir )2j−1 , v
(ki1 ,...,kir )

2j ) | j = 1, 2, . . . , r(ki1 ,...,kir )} ⊂ Ja

such that any (v
(ki1 ,...,kir )

2j−1 , v
(ki1 ,...,kir )

2j )-valley is not adjacent to one of vertices ki1 , . . . , kir .
Then, for r = 1, . . . , t, we set

∆̃q(k1, . . . , kr) := ∆q(k1, . . . , kr)

r(k1,...,kr)∏
j=1

val(v
(k1,...,kr)
2j−1 , v

(k1,...,kr)
2j ).

Theorem 6.4. The equation

(6.1) cl(Q(a)) =
∏

(bi,bi+1)∈Ja

valq(bi, bi+1) +
∑

(ki1 ,...,kis )∈Ta

∆̃q(ki1 , . . . , kis)

holds.

Proof. By Proposition 6.2, the first term of the right-hand side of (6.1) counts ℓ-
dimensional subrepresentations of rad(I(a)). Therefore, counting the cases where
each S(ki) (i = 1, . . . , t) belongs to the support is sufficient. By the proof of
Lemma 6.3, the number of ℓ-dimensional subrepresentations N of I(a) such that
S(ki1), . . . , S(kir) ∈ supp(N) but Sj 6∈ supp(N) for j 6= ki1 , . . . , kir is the coefficient
of qℓ of ∆̃q(ki1 , . . . , kir). Thus, the assertion follows. □

Example 6.5. (1) Let a = (1, 3, 1, 1). Then, the quiver Q(a) is of the form

Q(a) = 1←− 2 −→ 3 −→ 4 −→ 5←− 6 −→ 7,

and ((b1, b2), (b3, b4), (b5, b6)) = ((0, 0), (2, 0), (0, 0)). So, we compute

valq(0, 0)valq(2, 0)valq(0, 0) = q5 + 3q4 + 4q3 + 4q2 + 3q + 1,

∆̃q(2) = q5[1]q[1]qvalq(0, 0) = q6 + q5,

∆̃q(6) = q3[3]qvalq(0, 0) = q6 + 2q5 + 2q4 + q3,

∆̃q(2, 6) =
∆q(2)∆q(6)

q[3]q[1]q
= q7.

Thus, we have

cl(Q(a)) = q7 + 2q6 + 4q5 + 5q4 + 5q3 + 4q2 + 3q + 1.

(2) Let a = (0, 3, 1, 5, 1). Then, the quiver Q(a) is of the form

Q(a) = 1 −→ 2 −→ 3 −→ 4←− 5 −→ 6 −→ 7 −→ 8 −→ 9 −→ 10←− 11,
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and ((b1, b2), (b3, b4)) = ((2, 0), (4, 0)). So, we compute
valq(2, 0)valq(4, 0) = q8 + 2q7 + 3q6 + 4q5 + 4q4 + 4q3 + 3q2 + 2q + 1,

∆̃q(1) = q4valq(4, 0) = q9 + q8 + q7 + q6 + q5 + q4,

∆̃q(5) = q7[3]q = q9 + q8 + q7,

∆̃q(11) = q2[5]qvalq(2, 0) = q9 + 2q8 + 3q7 + 4q6 + 4q5 + 3q4 + 2q3 + q2,

∆̃q(1, 5) =
∆q(1)∆q(5)

q[3]q
= q10,

∆̃q(1, 11) = ∆q(1)∆q(11) = q10 + q9 + q8 + q7 + q6,

∆̃q(5, 11) =
∆q(5)∆q(11)

q[5]q
= q10 + q9 + q8,

∆̃q(1, 5, 11) =
∆q(1)∆q(5)∆q(11)

q2[3]q[5]q
= q11.

Thus, we have
cl(Q(a)) = q11 + 3q10 + 5q9 + 7q8 + 8q7 + 9q6 + 9q5 + 8q4 + 6q3 + 4q2 + 2q + 1.

7. Special values of the q-deformed rational numbers

In [MO20, Proposition 1.8], it is shown that both Sα(−1) and Rα(−1) belong to
{0,±1}. From this, we see that for an irreducible fraction r

s
, s is even if and only if

S r
s
(q) is divisible by [2]q = 1 + q. In this section, we extend this observation. Set

ω :=
−1 +

√
−3

2
.

Theorem 7.1. For a rational number α, we have Rα(ω),Sα(ω) ∈ {0,±1,±ω,±ω2}.

Proof. First, we assume that α > 1, and write α = [[c1, . . . , cl]]. By Proposition 2.2,
we have (

Rα(ω)
Sα(ω)

)
=
(
M−

q (c1)M
−
q (c2) · · ·M−

q (cl)
)
|q=ω

(
1
0

)
.

It is easy to check that M−
q (c)|q=ω for a positive integer c is one of the following

forms:

M−
q (c)|q=ω =



X :=

(
0 −ω2

1 0

)
if c ≡ 0 (mod 3),

Y :=

(
1 −1
1 0

)
if c ≡ 1 (mod 3),

Z :=

(
−ω2 −ω
1 0

)
if c ≡ 2 (mod 3).

LetG be the subgroup of GL(2,C) generated byX,Y and Z. A direct computation
shows that the X12 = Y 6 = Z3 = E2. Set

(7.1) A :=

{
ζ

(
1
0

)
, ζ

(
1
−ω

)
, ζ

(
1
1

)
, ζ

(
0
1

) ∣∣∣∣ ζ = ±1,±ω,±ω2

}
⊂ C2.
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Then, easy calculation shows that A is closed under the natural action of G. Thus,
for any W ∈ G, all entries of W , especially Rα(ω) and Sα(ω) for α > 1, belong to
the set {0,±1,±ω,±ω2}.

Let us consider the case α ≤ 1. By (2.8), we have

(7.2)
(
Rα(ω)
Sα(ω)

)
=

(
ω2 −ω2

0 1

)(
Rα+1(ω)
Sα+1(ω)

)
.

It is easy to check that the set A is closed under the multiplication of
(
ω2 −ω2

0 1

)
,

so we can show that
(
Rα+1(ω)
Sα+1(ω)

)
∈ A implies

(
Rα(ω)
Sα(ω)

)
∈ A. Since α + n > 1

for sufficiently large n, the desired assertion follows from repeated use of the above
implication. □

Since the leading coefficient of [n]q = 1 + q + · · · + qn−1 is 1, when we divide
f(q) ∈ Z[q] by [n]q, the quotient and the remainder belong to Z[q]. It is clear that
if S r

s
(q) can be divided by [3]q = 1 + q + q2, then s = S r

s
(1) is a multiple of 3. The

following states that the converse is also true.
Corollary 7.2. The following assertions hold.

(1) If s = S r
s
(1) is a multiple of 3, S r

s
(q) can be divided by [3]q. Moreover, for

an irreducible fraction r
s
, we have

S r
s
(ω) =


0 if s ≡ 0 (mod 3),
1, ω, ω2 if s ≡ 1 (mod 3),
−1,−ω,−ω2 if s ≡ 2 (mod 3).

(2) Similarly, we have

R r
s
(ω) =


0 if r ≡ 0 (mod 3),
1, ω, ω2 if r ≡ 1 (mod 3),
−1,−ω,−ω2 if r ≡ 2 (mod 3).

Proof. (1) Note that ω2 = −(w+1). By Theorem 7.1, the remainder of the polyno-
mial S r

s
(q) divided by [3]q is aq + b for a, b ∈ {0,±1} with (a, b) 6= (1,−1), (−1, 1).

Since s = S r
s
(1) ≡ a+ b (mod 3), the assertion easily follows.

(2) While R r
s
(q) ∈ Z[q, q−1] has terms of negative degree for r

s
< 0, we have

f(q) := q3nR r
s
(q) ∈ Z[q] for n� 0. Since f(1) = R r

s
(1) = r and f(ω) = R r

s
(ω), we

can use the argument of the proof of (1). □
Example 7.3. Even if we fix s, S r

s
(ω) depends on r. For example, we have S 12

11
(ω) =

−ω2, S 13
11
(ω) = −ω, S 14

11
(ω) = −ω2, S 15

11
(ω) = −1, and so on.

Corollary 7.4. For an irreducible fraction r
s
, s ≡ r (mod 3) if and only if R r

s
(ω) =

S r
s
(ω).

Proof. By (2.8), we have R r
s
−1(q) = q−1(R r

s
(q)−S r

s
(q)). By Corollary 7.2, we have

R r
s
(ω) = S r

s
(ω) ⇐⇒ R r−s

s
(ω) = 0 ⇐⇒ r − s is a multiple of 3.
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So we are done. □

In the rest of this section, i means
√
−1.

Proposition 7.5. We have Rα(i),Sα(i) ∈ {0,±1,±i,±(1 + i),±(1 − i)}, and the
remainder of Sα(q) divided by q2 + 1 is aq + b for a, b ∈ {0,±1}.

Proof. It suffices to show the first assertion. The proof is similar to that of The-
orem 7.1. First, assume that α > 1. It is easy to check that M−

q (c)|q=i is of the
form

M−
q (c)|q=i =



X0 :=

(
0 i
1 0

)
if c ≡ 0 (mod 4),

X1 :=

(
1 −1
1 0

)
if c ≡ 1 (mod 4),

X2 :=

(
1 + i −i
1 0

)
if c ≡ 2 (mod 4),

X3 :=

(
i 1
1 0

)
if c ≡ 3 (mod 4).

A direct computation shows that X8
0 = X6

1 = X4
2 = X12

3 = E2. Let G′ be the
subgroup of GL(2,C) generated by X0, X1, X2 and X3. The set

B :=

{
ζ

(
1
0

)
, ζ

(
0
1

)
, ζ

(
1
1

)
, ζ

(
i
1

)
, ζ

(
1 + i
1

)
, ζ

(
1

1− i

) ∣∣∣∣ ζ = ±1,±i} .
is closed under the natural action of G′. Hence all entries of any element in G′ belong
to {0,±1,±i,±(1 + i),±(1 − i)}. Since Rα(i) and Sα(i) are entries of a suitable
element of G′, we are done.

For the case α ≤ 1, we can use the same argument as the last part of the proof of
Theorem 7.1. □

Theorem 7.6. For an irreducible fraction r
s
, the following are equivalent.

(1) s is a multiple of 4,
(2) S r

s
(q) is divisible by [4]q = q3 + q2 + q + 1,

(3) S r
s
(q) is divisible by q2 + 1.

Proof. (1)⇒ (2) : Let g(q) ∈ Z[q] be the remainder of S r
s
(q) divided by 1+ q2, that

is,
S r

s
(q) = f(q) · (1 + q2) + g(q) (f(q) ∈ Z[q], deg(g) ≤ 1).

Since [4]q = (1+q)(1+q2) and S r
s
(−1) = 0 by [MO20, Proposition 1.8], it suffices to

show that S r
s
(q) is divisible by 1+q2 (equivalently, g(q) = 0). For the contradiction,

assume that g(q) 6= 0. Proposition 7.5 states that g(q) = ±1,±q,±(1+ q),±(1− q).
However, since g(1) = s − 2f(1) and s is a multiple of 4, g(1) is even, and hence
g(q) 6= ±1,±q. Finally, we have g(q) = ±(1 + q),±(1− q).

In what follows, for f(q) ∈ Z[q], (f(q)) denotes the ideal of Z[q] generated by
f(q), and Z[q]/(f(q)) denotes the quotient ring. For the canonical surjections π1 :
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Z[q]→ Z[q]/(1+ q) and π2 : Z[q]→ Z[q]/(1+ q2) (if there is no danger of confusion,
we denote πi(f(q)) by f(q)), consider the ring homomorphism

ϕ : Z[q] 3 f(q) 7−→ (π1(f(q)), π2(f(q))) ∈ (Z[q]/ (1 + q))×
(
Z[q]/

(
1 + q2

))
.

Since Z[q] is a UFD, and 1 + q and 1 + q2 are coprime, we have ker(ϕ) = ([4]q). In
the present situation, we have

ϕ(S r
s
(q)) = (0, g(q)).

Recall that g(q) = ±(1 + q),±(1− q), but we have
ϕ(±(1 + q)) = (0,±(1 + q)) or ϕ(±(q + q2)) = (0,∓(1− q)).

Hence, we have either
±(1 + q)− S r

s
(q) ∈ ([4]q) or ± (q + q2)− S r

s
(q) ∈ ([4]q).

In both cases, ±2−S r
s
(1) ∈ 4Z, and it means that S r

s
(1) ≡ 2 (mod 4). It contradicts

the assumption that S r
s
(1) ∈ 4Z.

(2) ⇒ (3) : Obvious.
(3)⇒ (2) : If S r

s
(q) is divisible by 1+ q2, then there is some f(q) ∈ Z[q] such that

S r
s
(q) = (1 + q2)f(q). It follows that s = S r

s
(1) = 2f(1) is even, and hence S r

s
(q) is

also divisible by 1 + q. Since [4]q = (1 + q)(1 + q2), the assertion follows. □
The next result can be proved by an argument similar to the corresponding results

for q = ω.

Corollary 7.7. The following assertions hold.
(1) We have

S r
s
(i) =


0 if s ≡ 0 (mod 4),

±(1 + i),±(1− i) if s ≡ 2 (mod 4),

±1,±i if s ≡ 1 (mod 2),

and

R r
s
(i) =


0 if r ≡ 0 (mod 4),

±(1 + i),±(1− i) if r ≡ 2 (mod 4),

±1,±i if r ≡ 1 (mod 2).
(2) For an irreducible fraction r

s
, we have s ≡ r (mod 4) if and only if R r

s
(i) =

S r
s
(i).

Example 7.8. It is clear that the analog of Corollaries 7.2 and 7.7 does not hold
for primitive n-th roots of unity with n ≥ 5. In fact, since S 7

5
(q) = q3 + 2q2 + q+ 1,

we have S 7
5
(ζ) 6= 0, where ζ is a primitive 5th root of unity (i.e., a root of q4 + q3 +

q2 + q + 1). Moreover, using a computer system, we see that S 37
35
(q) is irreducible

over Q, while 35 is a composite number.

Conjecture 7.9. If p is a prime integer, then Sa
p
(q) is irreducible over Q.

Using the computer program Maple, we checked the conjecture for prime numbers
up to 739. The following is another piece of evidence.
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Theorem 7.10. Let p be a prime integer. If Sa
p
(q) is reducible in Q[q] (i.e., Con-

jecture 7.9 does not hold), all of its factors have degree at least 7.

Proof. Consider the factorization

Sa
p
(q) =

k∏
j=1

fj(q)

in the polynomial ring Q[q]. It is a classical result that we can take fj(q) from Z[q]
for all j. Assume that k ≥ 2. Since fj(1) ∈ Z for all j and p = Sa

p
(1) =

∏k
j=1 fj(1)

is a prime number, we may assume that f1(1) = p and fj(1) = 1 for all j ≥ 2.
Since both the leading coefficient and constant term of Sa

p
(q) are 1, those of fj(q)

are ±1. Since all coefficients of Sa
p
(q) are positive, if q = α is a real root of the

equation Sa
p
(q) = 0 then α < 0. Clearly, the same is true for each fj(q), so both the

leading coefficient and constant term of fj(q) are 1 (note that fj(1) > 0 now).
If p = 2, 3, the assertion is clear. So we may assume that p ≥ 5. Since p =
Sa

p
(1) is odd, Sa

p
(−1) =

∏k
j=1 fj(−1) = ±1. Since fj(−1) ∈ Z for all j, we have

fj(−1) = ±1, and hence the remainder of fj(q) divided by q + 1 is ±1. Similarly,
we have Sa

p
(i) =

∏k
j=1 fj(i) = ±1,±i by Corollary 7.7. Since fj(i) ∈ Z[i] for all

j, we have fj(i) = ±1,±i, and the remainder of fj(q) divided by q2 + 1 is ±1,±q.
Since p = Sa

p
(1) is not a multiple of 3, Sa

p
(ω) =

∏k
j=1 fj(ω) = ±1,±ω,±ω2. Since

fj(ω) ∈ Z[ω] for all j, we have fj(ω) = ±1,±ω,±ω2 by Corollary 7.2, and the
remainder of fj(q) divided by q2 + q + 1 is ±1,±q,±(1 + q).

Set g(q) = q(q+1)(q2+1)(q2+q+1), and consider the natural ring homomorphism
Ψ : Z[q]/(g(q)) −→ Z[q]/(q)× Z[q]/(q + 1)× Z[q]/(q2 + 1)× Z[q]/(q2 + q + 1).

Since Z[q] is a UFD, Ψ is injective. Let us find polynomials in Z[q] whose images
under Ψ are characteristic.

For t(q) := (q+1)(q2+1)(q2+ q+1), we have Ψ(t(q)) = (1, 0, 0, 0) and t(1) = 12.
For

u1(q) := q(q2 + q + 1), u2(q) := q2(q2 + q + 1),
u3(q) := q3(q2 + q + 1), u4(q) := q(q2 + q + 1)2,

we have
Ψ(u1(q)) = (0,−1,−1, 0), Ψ(u2(q)) = (0, 1,−q, 0),
Ψ(u3(q)) = (0,−1, 1, 0), Ψ(u4(q)) = (0,−1,−q, 0),

and uk(1) = 3 for k = 1, 2, 3, u4(1) = 9. For
v1(q) := q(q + 1)(q2 + 1), v2(q) := q(q + 1)2(q2 + 1), v3(q) := q2(q + 1)(q2 + 1),

we have
Ψ(v1(q)) = (0, 0, 0, q), Ψ(v2(q)) = (0, 0, 0,−1), Ψ(v3(q)) = (0, 0, 0,−1− q)

and v1(1) = v3(1) = 4, v2(1) = 8.
The possible values of Ψ(f(q)) have been determined above, and the leading

coefficient of fj(q) is 1. Hence, if deg fj(q) ≤ 6, we have
fj(q) = c1g(q) + t(q) + c2uk(q) + c3vl(q)
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for some c1 = 0, 1, c2, c3 = ±1, k = 1, . . . , 4 and l = 1, 2, 3. If j ≥ 2, fj(q) must
satisfy the following conditions:

• fj(q) 6= 1 and fj(1) = 1.
• The leading coefficient is 1.

However, easy calculation shows that no choice of c1, . . . , c3, j, k satisfies these con-
ditions. Finally, we consider f1(q). We have

p = f1(1) ≤ g(1) + t(1) + uk(1) + vl(1) ≤ 12 + 12 + 9 + 8 = 41.

However, Conjecture 7.9 has been checked in this range by using Maple. □

8. Application to Jones polynomials of rational knots

Using the results in the previous section, we study the special values of the Jones
polynomial Vα(t) and the normalized one Jα(q) of a rational link L(α).

For a general link L, it is a classical fact that
VL(1) = (−2)c(L)−1,

where c(L) is the number of the components of L. On the other hand, for an
irreducible fraction r

s
, it is well-known that c(L( r

s
)) = 1, 2, and c(L( r

s
)) = 1 if and

only if r is odd. Hence we have

V r
s
(1) =

{
−2 if r is even,
1 if r is odd.

We can explain this equation using q-deformed rationals.
Recall the equation (4.3), which states that the normalized Jones polynomial

Jα(q) of a rational link L(α) can be computed by the following formula:
Jα(q) = q · Rα(q) + (1− q) · Sα(q).

By an argument similar to the previous section, we can show that(
R r

s
(−1)

S r
s
(−1)

)
= ±

(
1
0

)
,±
(
0
1

)
,±
(
1
1

)
(this is a refinement of [MO20, Proposition 1.8]). Hence we have

(8.1) |V r
s
(1)| = |J r

s
(−1)| =

{
2 if r is even,
1 if r is odd.

Next, we will consider the special values of Jα(q) at q = i, ω,−ω. Many parts of
the following results should be well-known, but we are interested in the relation to
q-deformed rationals.

Theorem 8.1. For an irreducible fraction r
s
> 1, we have

J r
s
(ω) ∈ {±1,±ω,±ω2},

if r is not a multiple of 3, and
J r

s
(ω) ∈ {±(1− ω),±ω(1− ω),±ω2(1− ω)},
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if r is a multiple of 3. In particular,

(8.2) |V r
s
(−ω)| = |J r

s
(ω)| =

{√
3 if r is a multiple of 3,

1 otherwise.

Proof. The assertion easily follows from (the proof of) Theorem 7.1. By (4.3), we
have

J r
s
(ω) =

(
ω 1− ω

)(R r
s
(ω)

S r
s
(ω)

)
and

(
R r

s
(ω)

S r
s
(ω)

)
∈ A,

where A is the set given in (7.1). So the assertion follows. □

Remark 8.2. For a general link L, Lickorish and Millett ([LiM86, Theorem 3]) showed
that

(8.3) VL(−ω) = ±ic(L)−1(
√
3i)d,

where d = dimH1(Σ(L);Z3) with Σ(L) the double cover of the 3-sphere S3 branched
over L.

By (4.2), we have
V r

s
(−ω) = ±(−ω)hJ r

s
(ω−1)

(note that ω−1 = ω2 = ω). Hence, comparing (8.3) with (8.2), we have

dimH1(Σ(L(r/s));Z3) =

{
1 if r is a multiple of 3,
0 otherwise.

The next result can be proved similarly to Theorem 8.1, but we use Proposition 7.5
this time.

Theorem 8.3. For an irreducible fraction r
s
> 1, we have

J r
s
(i) =


0 if r ≡ 2 (mod 4),
±(1 + i),±(1− i) if r ≡ 0 (mod 4),
±1,±i if r ≡ 1, 3 (mod 4).

Remark 8.4. For a general link L, Murakami [M86] (see also [LiM86, Theorem 1])
showed that

VL(i) =

{
(−
√
2)c(L)−1(−1)Arf(L) if Arf(L) exists,

0 otherwise.

Comparing this equation with Theorem 8.3, we see that Arf(L( r
s
)) exists if and only

if r 6≡ 2 (mod 4). We were unable to find this statement in literature, but it must
be possible to prove it directly.

For a general link L, it is known that VL(ω) = (−1)c(L)−1. Hence, for a rational
link L( r

s
), we have V r

s
(ω) = (−1)r−1 and hence

(8.4) J r
s
(−ω) ∈ {±1,±ω,±ω2}.
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We can give a new interpretation to this equation using q-deformed rationals. Note
that M−

q (c)|q=−ω is of the form

X0 :=

(
0 ω2

1 0

)
if c ≡ 0 (mod 6),

X1 :=

(
1 −1
1 0

)
if c ≡ 1 (mod 6),

X2 :=

(
1− ω ω
1 0

)
if c ≡ 2 (mod 6),

X3 :=

(
1− ω + ω2 −ω2

1 0

)
if c ≡ 3 (mod 6),

X4 :=

(
−ω + ω2 1

1 0

)
if c ≡ 4 (mod 6),

X5 :=

(
ω2 −ω
1 0

)
if c ≡ 5 (mod 6).

By (4.3), for α = [[c1, . . . , cl]], we have(
Jα(−ω) ∗

)
=
(
−ω 1 + ω

)
·
(
M−

q (c1)M
−
q (c2) · · ·M−

q (cl)
)
|q=−ω,

where
(
Jα(−ω) ∗

)
and

(
−ω 1 + ω

)
are 1×2 matrices, and · means the product of

matrices. Easy calculation shows that
(
−ω 1 + ω

)
= −ω

(
1 ω

)
and there exists

ζi ∈ {±1,±ω,±ω2} such that (
1 ω

)
·Xi = ζi

(
1 ω

)
for each 0 ≤ i ≤ 5. So we can show (8.4) by induction on l.

Remark 8.5. In the above notation, the matrix X3 is not diagonalizable, and hence
Xn

3 6= E2 for all positive integers n. It means that the subgroup of GL(2,C) generated
by X3 is infinite, and hence {Sα(−ω) | α ∈ Q} is an infinite set.
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