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Abstract: We show that the Yajima-Oikawa (YO) equations, a model of short
wave-long wave interaction, arise from a simple geometric flow on curves
in the 3-dimensional sphere S* that are transverse to the standard contact
structure. For the family of periodic plane wave solutions of the YO equations
studied by Wright, we construct the associated transverse curves, derive their

closure condition, and exhibit several examples with non-trivial topology.
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1 Introduction

This work is part of our investigation of curve flows in the 3-sphere S that are invari-

ant under the action of the group SU(2,1) of pseudoconformal transformations, which
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preserves the standard contact structure on the sphere. While the focus of our previous
study [2] was Legendrian curves in the 3-sphere and geometric flows for such curves
which are integrable (i.e., inducing integrable evolution equations for their fundamental
differential invariants), in this note we discuss an interesting connection between an
integrable model of short wave-long wave interaction and a geometric flow for curves

that are transverse to the contact structure.

The pseudoconformal geometry of S is inherited from the geometry of the space C3

endowed with the indefinite Hermitian form
(z,w) 1= i(z3w; — z;W3) + Z,W;. (1)

(The coordinates are chosen so that the z,, z; axes are null directions.) Given the standard
action of SL(3,C) on C3, let SU(2,1) denote the subgroup that preserves this form. Let
N c C3 be the null cone, i.e., the set of nonzero null vectors for (1). The set of complex
lines on the null cone is diffeomorphic to S3, the unit sphere in C2 (see (30)). It follows
that the linear action of SU(2,1) on C3 induces an action on S* known as the group of
pseudoconformal transformations. We will let 7 denote the complex projectivization
map from C* minus the origin to CP?, as well as its restriction to the null cone, giving a

commutative diagram:
N C C\{0}
-k
S* c cp?
The pseudoconformal action preserves the standard contact structure on S*, defined for

curves in S3 in terms of their lifts relative to 7 as follows.

Definitions. Lety : I — S° be a regular parametrized curve on an interval I ¢ R. Then y

is Legendrian if it has a lift T" : T — 2V satisfying

Im(T",,,T) =0,Vx € I. (2)
By contrast, y is a transverse curve or T-curve if its lift satisfies

Im(I',,T) #0,Vx € I. (3)
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In other words, the tangent vector of a T-curve is everywhere transverse to the con-
tact planes. (Note that both conditions (2),(3) are invariant under a change of lift, i.e.,

multiplying I by a nonzero complex-valued function.)

Lety : I —» S3be aregular curve withlift T : I — V. Then T and its derivative T, satisfy
(I,T) =0 and Re(l',, ') = 0. If y is a transverse curve then Im(T,, ') # 0, SO we can assume
the normalization (T',, ') = i or equivalently (il',T,) = 1; we can furthermore choose a lift
that also satisfies (I',,T',) = 0 (see §2 for more details). With these assumptions, we define

a geometric flow based on the second derivative T, as
Iy =iT — <Fxx’ 1—‘x>i1—‘) > 4

which induces a well-defined flow for the T-curve y = 7ol'. Note that the vector field
in parentheses on the right-hand side is a modification of T, that lies in {T',}*, the or-
thogonal complement of the complex span {T',}. If we let p ;. denote the orthogonal
projection onto {I',}*, then writing (4) as I, = ip ;. (T'y,) suggests an analogy with the
vortex filament flow y, = y, Xy, (or binormal flow) for an arc length parametrized curve
y in Euclidean space [10], with the skew-symmetric operator ip; ;. the analogue of the

symplectic operator T, x for the binormal flow.

In Sections 2-4 we construct adapted frames for transverse curves—both local frames
(akin to the Frenet frames of Euclidean geometry) and non-local ‘natural’ frames—and
show that equation (4) can be rewritten in terms of a convenient non-local adapted frame

(r,T,,B) as

r[ = iZB,
where B is a unit spacelike vector orthogonal to {I', '} and z is a complex curvature, part
of the set (z,m), z € C,m € R, of geometric invariants of I'. After deriving the evolution

equations for the geometric invariants induced by a general vector field on (lifts of)

transverse curves, we show that the evolution induced by (4) on the invariants (z, m) is
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the following system of nonlinear PDE

z; = i(zyx — m2),

m; = 2(|z]?),,

known as the Yajima-Oikawa (YO) or Long-Wave-Short-Wave equations, a completely
integrable model of interaction of long and short waves.

The YO system first appeared in work by Grimshaw [6] in the context of internal
gravity waves, and was derived by Yajima & Oikawa [12] and by Djordjevic & Redekopp
[5] as an integrable model of interaction of a long wave (of amplitude m) and a short
wave (of complex amplitude z).

In Section 5, we use the connection between the Lax pair for the YO equations at given
(z,m) and the adapted frame of the associated transverse curve to construct examples of
geometric realizations of solutions of the YO equations. We focus on the family of plane
wave YO solutions studied by Wright in [11], derive closure conditions for the associated
curves, and construct explicit formulas. The plane wave solutions, though simple at the
YO level, provide a wealth of closed transverse curves with non-trivial topology. We
present visualizations of several examples, that illustrate how the knot type and the
geometry relate to the parameters in the YO solutions.

In Section 6 we discuss some open questions and directions for future work.

2 Pseudoconformal Frames and Curvature

Lety : I — S* be a T-curve, and T be a lift satisfying Im(T",,T') > 0. Since the restriction
of the Hermitian form (1) to the complex span 8§ = span.{I',I'} is non-degenerate, we
construct a smooth adapted frame by selecting two linearly independent null vectors-I'
itself and a second vector V € S-and adding a third vector B which is spacelike and spans
the complex line orthogonal to S.

As described in Proposition 10 of [2], the ordered triple (T, B, V) of vectors in C* can
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be chosen to satisfy the following inner product relations
(I,T) =(V,V)=(B,I) =(B,V) =0,
(T,V)y=—i, (V,I)=1i, (B,B)=1.
as well as the condition det(l', B, V) = 1 (meaning that the vectors form the columns of
a unimodular matrix). We call a triple that satisfies these relations a unimodular null
frame. In the rest of this section we describe how a smoothly-varying unimodular null
frame, including the lift T" as its first member, can be chosen in an essentially unique way

for a regular T-curve, allowing us to identify fundamental invariants.

Local frame.

In Corollary 1 of [2] it is shown that, under suitable nondegeneracy assumptions, any
parametrized T-curve y has a unimodular null frame field (T, B, V), constructed in terms

of algebraic functions of the components of y and its derivatives, that satisfies

~ iip —iqg m
dF 4 2
—=F -3 . 5
dx 0 31p q 5)
1 0 %ip

where F denotes the matrix with columns T, B, V, and m, p,q are real-valued fundamental
differential invariants of the parametrized curve. We refer to this as the local frame, and
it is unique up to multiplication of each column by the same cube root of unity. It is the

analogue of the (local) Frenet frame for a unit-speed curve y : R — R? in Euclidean space.

Natural frame.

In the Euclidean case, one can also construct the (non-local) relatively parallel or natural
frame (T,U;,U,), where U; = cos& N +sin6 Band U, = —sinf N + cos 6 B, with 6 = — [t ds.
(Here N and B are the unit normal and binormal vectors and s is arclength.) This frame,

which is unique up to a choice of antiderivative 6, satisfies
dT dU, dU,

E = klUl + szz, K = —le, K = sz,
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so that the normal vectors U,, U, rotate only in the direction of the tangent line. The
functions k; = kcos6 and k, = ksin 6 are natural curvatures [1].

By analogy with the Euclidean case, given the local frame F for a T-curve y we can
use an antiderivative to neutralize the rotation of normal vector B in the normal plane,

forming a new unimodular null frame field defined by

F = Fexp(6)), where@:—fpdx, J=lo =3 o

0 0 -1
It follows that F satisfies the nonlocal frame equations
0 —iz m
dF
—=Flo 0 z]|, (6)
dx
1 0 O

where z = ¢q and m is the same as in (5). One can interpret z as a complex curvature,
measuring how the tangent line z{I', V} bends within the complex projective plane. The
real-valued invariant m = Im(V, V) measures the deviation of the projectivization of

from being a Legendrian curve in S°.

Companion A-frames

Any two unimodular null frames at the same point of S* are linked by a transformation
of the following form (see, e.g., Proposition 10 in [2])
F=w, B= g(B +un), V=7 [V —iuB- (1 + %i|/x|2)1“] , (7)
where v, u are complex, with v # 0, and 2 is real.
Given the local frame for a T-curve, we modify the frame using u = 0, v = 1and 4
constant in (7), to obtain the companion A-frameT =T,B = B,V = V — AI. This modified

frame satisfies
- 1, = & = o~ 2. = = 1 ~
Ie=(3p+4)I'+V, By=-igl'=3ipB, V,=(m-2A9I'+(3ip-DV.
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If we make a similar modification to a natural frame for a T-curve we obtain the compan-
ion A-natural frame, which satisfies
A —iz m—2?

=Flo o z ) (8)

Remark. Note that if the projection of the frame vector V of a companion A-frame is
a Legendrian curve in S* (so that m — A2 = 0), then the same is true for the companion

frame constructed using —A.

3 Curve Flows and the Yajima-Oikawa Equations

If y(x, t) is a smooth variation of a T-curve and (T, B, V) is a smoothly-varying choice of

natural frame, then the vector field I'; = fT + gB + hV must satisfy
h,=-2Ref and (Imf), = Re(gz) 9

in order to keep the frame adapted, as shown in Proposition 11 of [2]. (Note that, since
condition (3) is an open condition, such variations always exist.) It follows that the

nonlocal invariants m and z = k + i¢ evolve by

k Img
m lh
t 2
where
—3¢D7lof 3¢D lok —D*+m 2Dok 4+ kD
P=|3kD ot +D?*-m —3kD 1ok 2Dof + ¢D
2kD + Dok 2¢D + Dof 2(mD + Dom) — D?

and D = 4,. The matrix operator 2 is skew-adjoint, and forms a Hamiltonian pair with

0 1 O
Q=|-1 0 0
0 0 D
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In particular, if T" evolves by
I, = izB, (11)
then the invariants z and m satisfy the Yajima-Oikawa (YO) equations
z; = i(zxx — m2),

(12)
m; = 2(|z]?),.

Integrability

The YO system (12) is the compatibility condition of the following pair of linear systems

¢.=Up, ¢ =V¢, (13)
where
A0 1 —%W —iz 0
U=|iz 0 of, V=|iz-z 21/12 z | (14)
m z -1 1zZ?  iAz-2Z,) —§1,12

with eigenfunction ¢ € C3, and spectral parameter 1 € C. (We will show below that this
is linearly equivalent to the Lax pair in [11].) When 1 € R, U and V take value in the Lie
algebra 3u(2, 1) of the subgroup of SL(3, C) that preserves the Hermitian form (1). Taking

the transpose of (13) and complex conjugating, we obtain

A —iz m L2 az-z,  |z?
3
F,=Flo 0 =z |, F,=F| iz —31/12 i(z, — A2) |- (15)
1 0 -1 0 z Lip2

3
Comparing the first of these equations to (8) shows that system (15) can be interpreted as

the Frenet equations for the companion natural A-frame of an T-curve with curvatures z
and 7 = m + 212, and which evolves by the flow
T, =izB + %i/lzl“. (16)

This connection between the YO Lax pair and the evolution of (framed) curves allows
the construction of interesting examples of transverse curves associated with simple

solutions of the YO system, as shown in the rest of the article.
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4 Plane wave solutions

In [11], Wright investigates the linear stability of plane wave solutions of the YO equa-
tions (17) and derives explicit solutions of the associated Lax pair in order to construct

homoclinic orbits of unstable plane waves.

4.1 Equivalent Versions of YO

In [11] the YO system is given as

A = =2i(Ay, — AB),
(17)
B, = 4(|A])x
for complex A(x,7) and real B(x, 7), and its Lax pair is given as
with
i A iB %igz CA—iA, A2
U=[o0 o -4|, V=|24 —gigz ¢A—iA, |,
-i 0 —i¢ 0 —A L2

3

where ¢ and 7 denote Wright’s spectral parameter and time variable respectively. (Wright’s
YO equations include an extra parameter which we omit because it can be removed by a
simple change of variable.) The equations (17) are equivalent to (12) under the substitu-
tionsA=z,B=mandr = %t. Moreover, the linear systems (18) and (13) are equivalent
under a change of gauge, since with these substitutions, U= MUM~! and V = MVM™},
where

0 01

M=o 1 0].
-1 0 0
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4.2 Wright’s Solutions

In this section, we will present Wright’s solutions, rewritten in terms of our variables.
We will then make use of the eigenfunction formulas in [11], appropriately adapted to
the geometric framework, to construct the associated transverse curves. We will then

identify the parameter choices that give rise to closed transverse curves.

Proposition 1 ([11]). For real constants a, b, k and A such that a > 0, the functions
z(x,t) = ae™N m(x,t)=b, whereN :=kx — At

give a solution of (12) if and only if the dispersion relation b + k? + A = 0 is satisfied. When

these z, m are substituted into (13), a non-trivial solution of (13) is given by
$(x, ) = elx+vOpr, (19)

where
1 0 0

P=]0 eN o],
0 0 1

and r is a nonzero common eigenvector of the matrices

10 1 —iw —ia 0
ia ik o0 |, a(l + ik) giAZ—iA a (20)
b a -1 a2 a(k +iA) —gw

with eigenvalues i and iv, respectively.

It is easy to check that the matrices in (20) have a non-trivial common eigenvector if
and only if x and v satisfy
(U +b+2%)(u—k)+a*>=0, (21a)

v=w—k*—A+ 512. (21b)
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In order to construct a fundamental matrix solution for (13) using solutions of the form
(19), let u = m,, m,, m; be three distinct roots of (21a) and let n,, n,, n; be the corresponding
values of v given by substituting these into (21b). Then a matrix solution is given by
® = PRE, where

-1 -1 -1 eilmix+nyt) 0 0
a a a ,
R=1%_ m k—-m, k—m,| E= 0 el(mx ) 0
0 0 ei(m3x+n3t)

A—imp A—im, A1 —im,

Our discussion in §3 implies that if ® is a fundamental matrix solution of the YO
Lax pair for a real value of 4, and taking value in the group SU(2,1), then F = ®' is a
A-natural frame matrix for a transverse curve evolving by (16). Since 1 € R implies that
the coefficient matrices in (13) take value in 811(2, 1), we can ensure that our fundamental
matrix takes value in SU(2,1) by modifying it to be equal to the identity matrix when
x=t=0

® = PRER'P !, where P, = P ) (22)
0 x=t=0

Using this matrix to construct the natural frame, and taking the projectivization of the
first frame vector T to obtain a transverse curve y, we now consider the question of when

the resulting curve is smoothly closed.

Proposition 2. Suppose the fundamental matrix ® = PRE described above corresponds
to a A-natural frame for a T-curve y. Then y is closed of length L if and only if there is a
cube root w of unity such that

eimjL — aeikL/S. (23)

Proof. Let F be a natural A-frame along the curve, satisfying the spatial part of (15), and
let F be the local frame related to F by F = F exp(—6J). Because the local frame is uniquely
determined by derivatives of y, up to multiplying by a cube root of unity, then y is closed
of length L if and only if

F(x + L) = wF(x). (24)
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For the solutions of Prop. 1, 0 = argz = —N; rewriting (24) in terms of F = @7, then in
terms of the factors of ® given by (22), and simplifying (using the fact that J commutes

with M and P) gives the condition (23). O

Without loss of generality, we will take L = 27 from now on, and assume the roots of
(21a) are numbered in ascending order; i.e., m; < m, < ms. Note that, for a given value of

4, these roots determine the coefficients in the polynomial via:

k= m; + my, + ms,
a? = (k — my)(k — my)(k — m3), (25)

b = mym, + m;m; + mym; — A%

Lemma 3. The above closure conditions (23) are satisfied if and only if there are positive

integers p, q such that k satisfies either
—%(213 +q) <k< %(p —q) (26a)
or
k> %(p +2q). (26D)
In either case, the roots are given by
m = 2(=2p—q+k), my=:(p—q+k), my=(p+2q+k), 27)
and w = e27¢/3 where ¢ = 0, 1, 2 is such that 3m; — k = e modulo 3.
Proof. We can rewrite the closure condition (23) as
mj=lj+§€+§k, (28)
for some integers [; < [, < 5. The second relation in (25) is satisfied for a > 0 if and only if

m; <k <m, <my or m; < m, < msz <Kk. (29)
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When written in terms of the positive integers p = I, — [, and q = I3 —,, the two conditions
in (29) become those in (26).
Conversely, suppose a pair positive integers p, q satisfy either of the equations in (26)

for some real number k. Let ¢ = 0,1,2 be chosen so that p — g = ¢ modulo 3, and let

1
h=3(-2p—-q-¢. L=ip-q-9 L=:(p+2)-3c

Then with m; given by (28), condition (29) is satisfied. O

4.3 Visualizing Examples

In this section we will exhibit examples of closed transverse curves in S3, generated using
the fundamental matrix ® corresponding to Wright’s solutions, with closure conditions
imposed using Lemma 3. In particular, we will observe knotted transverse curves which,
because their differential invariants are the same at each time, move by rigid motion
under the flow (16).

In more detail, given two positive integers p, g one may select any value of 1 and a real
value of k satisfying one of the inequalities in (26). The other parameters involved in the
solution are determined by equations (25) and (27). This yields two distinct 2-parameter
families of closed curves for each pair (p, q). (Exactly how we construct these curves is
explained below.) We will assume that p, q are relatively prime; experiments indicate
that the knot types are the same when p, g are multiplied by a common integer factor.

In the case (26a) we observe that the curve in R? is a right-handed (g, p + q) torus
knot. Recall that the type of a (m, n) torus knot depends only on the unordered pair {m, n}.
However, for our examples we find that when k is close to its lower limit, the knot takes a
shape with g strands that wind along the torus the long way (see Figure 1, top left, where
k = —3.85 > —4), while when k is close to its upper limit the knot has p + g strands winding
the long way (see Figure 1, bottom right, where k = 0.2 < 0.5.) In general, the knot shape is
more compact and symmetric when 1 = 0; Figure 2 shows two shapes for the same p,q,k

but different A values. Note that (25) shows that these curves have the same differential
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invariant z but different constant values m = b.

We showed in Lemma 12 of [2] that transverse curves for which z = 0 identically are
SU(2,1)-congruent to curves which run along the circular fibers of the Hopf fibration.
Thus, when k approaches one of the roots m;, a = |z| will approach zero and the closed
curve will approach a multiply-covered circle congruent to a Hopf fiber. In Figure 1, we
show a family of right-handed (2, 5) torus knots, corresponding to a range of k-values,
where at both ends of the family the curve approaches a multiply-covered circle.

In the case (26b) we observe that the curve in R3 is a left-handed (p, ) torus knot.
(When p =1 or g = 1 the curve is unknotted, as shown in Figure 4.) When k is close to
its lower limit the curve has p strands winding around the torus the long way, and its
shape approaches a circle covered p times. For large values of k, the curve approaches a
flattened teardrop shape, with the knot crossings compressed into a small region near

where x = 7. Both these limiting behaviors are illustrated in Figure 3.

4.4 Constructing Transverse Curves

Once we have a fundamental matrix solution @ for the linear system (13), the first

component of the 1-natural frame is then given by
I = Fe, = ®'e,,

taking value in the null cone . We produce curves in S* using a projection # : v — S3
given in terms of the components of T by

T —il, _A2r,

=———, Z;= = 30
T, + il 2T Ty 4+l (30)

Z

where (z;, z,) lie on the unit sphere in C? equipped with its standard Hermitian inner
product. For purposes of visualization, we in turn apply stereographic projection into R3

(using the point z; = 0, z, = i as pole) given by

Rez; Imz; Rez, )

o :(21,2) (1—ImZ2’ 1—Imzz’ 1-Imz,
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Figure 1: A family of (2, 5) torus knots obtained using p = 3, ¢ = 2, 1 = 0 and the values
k = —3.85,—3.25,—2.5 in the top row and k = —1.75,-0.7,0.2 in the bottom row. The first

and last figure show knots near the limiting values of k, since k € (—4,0.5) from (26a).

Figure 2: Right-handed (3,4) torus knots obtained using p = 1, ¢ = 3 and k = —2.2; on the
left 2 = 0, while on the right 2 = 3.1.
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s

Figure 3: Left-handed (2, 3) torus knots (i.e., trefoils) obtained using p =1, ¢ =2 and 1 = 0;
on the left k = 4.6, while on the right k = 31.

Remark. The action of SU(2, 1) on the null cone preserves the 1-form ay = (dg, g), which is
the pullback under # of the standard contact form on S3, given by ag = % Im(z,dz; +z,dz,).
The contact planes in S* annihilated by this 1-form are orthogonal to the Hopf fibers.
Since S3 is parallelizable, we can choose an globally defined orthogonal frame (vy, vy, V)
such that v;, v, are tangent to the contact planes. For purposes of visualizing the contact
distribution, we will use the following vectors in R* which are tangent to the image of

this distribution under stereographic projection:
_ 0 1,5, 5. 5 o] e}
o.v; =—(z+ xy)a + E(x -y +z°— 1)5 + (x — yz)a—z,
— 1222 9 N 9
O.Vy = 2(x y-—z +1)ax+(xy Z)6y+(xz+y)6z'

Figure 4 shows how the curve y is transverse to the planes spanned by these vector fields.
Recall from (6) that when m = 0 the frame vector V projects to a Legendrian curve in
S3. Figure 4 also shows this companion curve which in this example is linked with y and

tangent to the contact planes.

5 Discussion

We have shown how the YO equations arise, somewhat unexpectedly, from a simple

geometric flow for curves in S* that are transverse to the standard contact structure. The
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Figure 4: At left, in orange, is an unknotted T-curve y generated using parameter values
p=gq=1k=2andA = 1/4/3. Substituting these values into (27) and (25) shows that
m = b = 0, hence the curve traced by the projectivization of frame vector V (shown at
right in magenta) is a Legendrian curve. Along both curves we have drawn some planes

of the contact distribution.

recent renewed interest in the YO equations and related systems (see, e.g., [3, 4, 7]), the
analogies between the geometric flow considered in this work and the vortex filament
flow, and the relatively simple reconstruction of the transverse curve in terms of solutions
of the YO Lax pair, makes this a good case for exploring questions such as recursion
schemes and the geometric and topological properties of transverse curves related to
special solutions of the YO equations.

A natural direction of investigation is the study of the integrable hierarchy of vector
fields for transverse curves associated with the YO hierarchy. These are generated by
beginning with a conserved density for the YO equations, e.g.,

1 1 1 _ 1 1
P11 = Em’ P2 = 5|Z|2, P3 = Elm(ZZx) - gmz, Pa = -3 (Wl|Z|2 + |Zx|2) y oo

and forming the vector field X,, = f,T + g,B + h,V where ([,B,V) is a natural frame.

The coefficients are determined by the corresponding density as follows. As in (10)
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write z = k + i¢ and express the density p, in terms of real invariants k, ¢, m and their

x-derivatives. Let

(an’ bn’ cn)T =Ep,
where E denotes the vector-valued Euler operator. Then the components of X,, are h,, = 2¢,,,
g, = i(a, +ib,) and f, = —(c,)y + id,,, where d,, = S Re(g,z) dx. (Thus, these vector fields

satisfy the conditions in (9) to preserve the adapted frame.)

The first few vector fields generated this way are

X, =V=T,
X, =izB = i(Ty, — mD),
— (1! L2 !
X; = (4mx + 21|z| )F +2z,B sz,
X, = (%lzli — iIm(sz)) I'+i(zy, — mz)B — |z|?V.
The fact that the antiderivative d, is always expressible in terms of z, m and their

derivatives is somewhat mysterious. However, we observe that these antiderivatives are

expressible in terms of Hermitian inner products of the vector fields themselves:

2j-2 2j-1
1 1
dyj = -3 Z (X2jk> X14k)» dyjp1 = -3 Z (DX 412k X1 1k0)-
k=1 k=1

Since d,, = Re(X,,,V) = é((Xn, V)y+(V,X,)) and V = X, these identities are equivalent to

2j-1 2j
D (Xaj k. X14k)=0  and D (DMK 41— X14k) = 0.
k=0 k=0

These show a remarkable parallel with the situation for vector fields in the hierarchy
for the vortex filament flow [9], where the antiderivative required for the tangential
component of X, is expressible in terms of inner products of the vector fields up to X,,. In
that case, the analogous identities were proved using the first-order ‘geometric’ recursion
operator for the vector fields. In our case, it may be sufficient to have a second-order

recursion operator that relates X,,,, to X,,.
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Backlund and Darboux transformations as well as Miura transformations are other
common features of integrable systems. In particular, the classical Backlund transfor-
mation for the sine-Gordon equation has its origins in relating pair of pseudospherical
surfaces through line congruences (see, e.g., §7.5 in [8]). It is possible that an analogous
transformation exists between T-curves evolving by the YO flow (11); one might expect
that the curves would be joined by a congruence of circles in S3 expressed in terms of the
vectors of the natural frame.

In relation to a possible Miura transformation, one can investigate the evolution
equations induced by (11) for the tangent indicatrix, i.e., the curve in S* traced out by
the projectivization of the frame vector V. It is natural to ask how the invariants of
these indicatrices are related to those of the primary curve, and furthermore whether,
when the primary curve evolves by an integrable geometric flow, the invariants of the

indicatrix evolve by a related integrable system.
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