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Abstract: We show that the Yajima-Oikawa (YO) equations, a model of short

wave-long wave interaction, arise from a simple geometric flow on curves

in the 3-dimensional sphere 𝑆3 that are transverse to the standard contact

structure. For the family of periodic plane wave solutions of the YO equations

studied by Wright, we construct the associated transverse curves, derive their

closure condition, and exhibit several examples with non-trivial topology.
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structures; transverse curves; long wave-short wave models.

1 Introduction

This work is part of our investigation of curve flows in the 3-sphere 𝑆3 that are invari-

ant under the action of the group 𝑆𝑈(2, 1) of pseudoconformal transformations, which
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preserves the standard contact structure on the sphere. While the focus of our previous

study [2] was Legendrian curves in the 3-sphere and geometric flows for such curves

which are integrable (i.e., inducing integrable evolution equations for their fundamental

differential invariants), in this note we discuss an interesting connection between an

integrable model of short wave-long wave interaction and a geometric flow for curves

that are transverse to the contact structure.

The pseudoconformal geometry of 𝑆3 is inherited from the geometry of the space ℂ3

endowed with the indefinite Hermitian form

⟨𝐳,𝐰⟩ ∶= i(𝑧3𝑤1 − 𝑧1𝑤3) + 𝑧2𝑤2. (1)

(The coordinates are chosen so that the 𝑧1, 𝑧3 axes are null directions.) Given the standard

action of 𝑆𝐿(3, ℂ) on ℂ3, let 𝑆𝑈(2, 1) denote the subgroup that preserves this form. Let

𝒩 ⊂ ℂ3 be the null cone, i.e., the set of nonzero null vectors for (1). The set of complex

lines on the null cone is diffeomorphic to 𝑆3, the unit sphere in ℂ2 (see (30)). It follows

that the linear action of 𝑆𝑈(2, 1) on ℂ3 induces an action on 𝑆3 known as the group of

pseudoconformal transformations. We will let 𝜋 denote the complex projectivization

map from ℂ3 minus the origin to ℂ𝑃2, as well as its restriction to the null cone, giving a

commutative diagram:
𝒩 ⊂
𝜋

ℂ3∖{0}

?
𝑆3 ⊂

𝜋

ℂ𝑃2
?

The pseudoconformal action preserves the standard contact structure on 𝑆3, defined for

curves in 𝑆3 in terms of their lifts relative to 𝜋 as follows.

Definitions. Let 𝛾 ∶ 𝐼 → 𝑆3 be a regular parametrized curve on an interval 𝐼 ⊂ ℝ. Then 𝛾

is Legendrian if it has a lift Γ ∶ 𝐼 → 𝒩 satisfying

Im⟨Γ𝑥, Γ⟩ = 0, ∀𝑥 ∈ 𝐼. (2)

By contrast, 𝛾 is a transverse curve or T-curve if its lift satisfies

Im⟨Γ𝑥, Γ⟩ ≠ 0, ∀𝑥 ∈ 𝐼. (3)
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In other words, the tangent vector of a T-curve is everywhere transverse to the con-

tact planes. (Note that both conditions (2),(3) are invariant under a change of lift, i.e.,

multiplying Γ by a nonzero complex-valued function.)

Let 𝛾 ∶ 𝐼 → 𝑆3 be a regular curve with lift Γ ∶ 𝐼 → 𝒩. Then Γ and its derivative Γ𝑥 satisfy

⟨Γ, Γ⟩ = 0 and Re⟨Γ𝑥, Γ⟩ = 0. If 𝛾 is a transverse curve then Im⟨Γ𝑥, Γ⟩ ≠ 0, so we can assume

the normalization ⟨Γ𝑥, Γ⟩ = i or equivalently ⟨iΓ, Γ𝑥⟩ = 1; we can furthermore choose a lift

that also satisfies ⟨Γ𝑥, Γ𝑥⟩ = 0 (see §2 for more details). With these assumptions, we define

a geometric flow based on the second derivative Γ𝑥𝑥 as

Γ𝑡 = i (Γ𝑥𝑥 − ⟨Γ𝑥𝑥, Γ𝑥⟩iΓ) , (4)

which induces a well-defined flow for the T-curve 𝛾 = 𝜋◦Γ. Note that the vector field

in parentheses on the right-hand side is a modification of Γ𝑥𝑥 that lies in {Γ𝑥}⟂, the or-

thogonal complement of the complex span {Γ𝑥}. If we let 𝗉{Γ𝑥}⟂ denote the orthogonal

projection onto {Γ𝑥}⟂, then writing (4) as Γ𝑡 = i𝗉{Γ𝑥}⟂ (Γ𝑥𝑥) suggests an analogy with the

vortex filament flow 𝛾𝑡 = 𝛾𝑥 ×𝛾𝑥𝑥 (or binormal flow) for an arc length parametrized curve

𝛾 in Euclidean space [10], with the skew-symmetric operator i𝗉{Γ𝑥}⟂ the analogue of the

symplectic operator 𝑇𝑥× for the binormal flow.

In Sections 2–4 we construct adapted frames for transverse curves—both local frames

(akin to the Frenet frames of Euclidean geometry) and non-local ‘natural’ frames—and

show that equation (4) can be rewritten in terms of a convenient non-local adapted frame

(Γ, Γ𝑥, 𝐵) as

Γ𝑡 = i𝑧𝐵,

where 𝐵 is a unit spacelike vector orthogonal to {Γ, Γ𝑥} and 𝑧 is a complex curvature, part

of the set (𝑧,𝑚), 𝑧 ∈ ℂ,𝑚 ∈ ℝ, of geometric invariants of Γ. After deriving the evolution

equations for the geometric invariants induced by a general vector field on (lifts of)

transverse curves, we show that the evolution induced by (4) on the invariants (𝑧,𝑚) is
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the following system of nonlinear PDE

𝑧𝑡 = i(𝑧𝑥𝑥 −𝑚𝑧),

𝑚𝑡 = 2(|𝑧|2)𝑥,

known as the Yajima-Oikawa (YO) or Long-Wave-Short-Wave equations, a completely

integrable model of interaction of long and short waves.

The YO system first appeared in work by Grimshaw [6] in the context of internal

gravity waves, and was derived by Yajima & Oikawa [12] and by Djordjevic & Redekopp

[5] as an integrable model of interaction of a long wave (of amplitude 𝑚) and a short

wave (of complex amplitude 𝑧).

In Section 5, we use the connection between the Lax pair for the YO equations at given

(𝑧,𝑚) and the adapted frame of the associated transverse curve to construct examples of

geometric realizations of solutions of the YO equations. We focus on the family of plane

wave YO solutions studied by Wright in [11], derive closure conditions for the associated

curves, and construct explicit formulas. The plane wave solutions, though simple at the

YO level, provide a wealth of closed transverse curves with non-trivial topology. We

present visualizations of several examples, that illustrate how the knot type and the

geometry relate to the parameters in the YO solutions.

In Section 6 we discuss some open questions and directions for future work.

2 Pseudoconformal Frames and Curvature

Let 𝛾 ∶ 𝐼 → 𝑆3 be a T-curve, and Γ be a lift satisfying Im⟨Γ𝑥, Γ⟩ > 0. Since the restriction

of the Hermitian form (1) to the complex span 𝒮 = spanℂ{Γ, Γ𝑥} is non-degenerate, we

construct a smooth adapted frame by selecting two linearly independent null vectors–Γ

itself and a second vector 𝑉 ∈ 𝒮–and adding a third vector 𝐵 which is spacelike and spans

the complex line orthogonal to 𝒮.

As described in Proposition 10 of [2], the ordered triple (Γ, 𝐵, 𝑉) of vectors in ℂ3 can
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be chosen to satisfy the following inner product relations

⟨Γ, Γ⟩ = ⟨𝑉, 𝑉⟩ = ⟨𝐵, Γ⟩ = ⟨𝐵, 𝑉⟩ = 0,

⟨Γ, 𝑉⟩ = −i, ⟨𝑉, Γ⟩ = i, ⟨𝐵, 𝐵⟩ = 1.

as well as the condition det(Γ, 𝐵, 𝑉) = 1 (meaning that the vectors form the columns of

a unimodular matrix). We call a triple that satisfies these relations a unimodular null

frame. In the rest of this section we describe how a smoothly-varying unimodular null

frame, including the lift Γ as its first member, can be chosen in an essentially unique way

for a regular T-curve, allowing us to identify fundamental invariants.

Local frame.

In Corollary 1 of [2] it is shown that, under suitable nondegeneracy assumptions, any

parametrized T-curve 𝛾 has a unimodular null frame field (Γ, 𝐵, 𝑉), constructed in terms

of algebraic functions of the components of 𝛾 and its derivatives, that satisfies

𝑑𝐹
𝑑𝑥

= 𝐹

⎡
⎢
⎢
⎢
⎢
⎣

1
3
i𝑝 −i𝑞 𝑚

0 − 2
3
i𝑝 𝑞

1 0 1
3
i𝑝

⎤
⎥
⎥
⎥
⎥
⎦

. (5)

where 𝐹 denotes the matrix with columns Γ, 𝐵, 𝑉, and 𝑚,𝑝, 𝑞 are real-valued fundamental

differential invariants of the parametrized curve. We refer to this as the local frame, and

it is unique up to multiplication of each column by the same cube root of unity. It is the

analogue of the (local) Frenet frame for a unit-speed curve 𝛾 ∶ ℝ → ℝ3 in Euclidean space.

Natural frame.

In the Euclidean case, one can also construct the (non-local) relatively parallel or natural

frame (𝑇,𝑈1, 𝑈2), where 𝑈1 = cos 𝜃 𝑁 + sin 𝜃 𝐵 and 𝑈2 = −sin 𝜃 𝑁 + cos 𝜃 𝐵, with 𝜃 = −∫ 𝜏 𝑑𝑠.

(Here 𝑁 and 𝐵 are the unit normal and binormal vectors and 𝑠 is arclength.) This frame,

which is unique up to a choice of antiderivative 𝜃, satisfies
𝑑𝑇
𝑑𝑠

= 𝑘1𝑈1 + 𝑘2𝑈2,
𝑑𝑈1
𝑑𝑠

= −𝑘1𝑇,
𝑑𝑈2
𝑑𝑠

= −𝑘2𝑇,
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so that the normal vectors 𝑈1, 𝑈2 rotate only in the direction of the tangent line. The

functions 𝑘1 = 𝑘 cos 𝜃 and 𝑘2 = 𝑘 sin 𝜃 are natural curvatures [1].

By analogy with the Euclidean case, given the local frame 𝐹 for a T-curve 𝛾 we can

use an antiderivative to neutralize the rotation of normal vector 𝐵 in the normal plane,

forming a new unimodular null frame field defined by

𝐹 = 𝐹 exp(𝜃𝖩), where 𝜃 = −∫ 𝑝 𝑑𝑥, 𝖩 =

⎛
⎜
⎜
⎜
⎝

1
3
i 0 0

0 − 2
3
i 0

0 0 1
3
i

⎞
⎟
⎟
⎟
⎠

.

It follows that 𝐹 satisfies the nonlocal frame equations

𝑑𝐹
𝑑𝑥

= 𝐹

⎡
⎢
⎢
⎢
⎢
⎣

0 −i𝑧 𝑚

0 0 𝑧

1 0 0

⎤
⎥
⎥
⎥
⎥
⎦

, (6)

where 𝑧 = 𝑒i𝜃𝑞 and 𝑚 is the same as in (5). One can interpret 𝑧 as a complex curvature,

measuring how the tangent line 𝜋{Γ, 𝑉} bends within the complex projective plane. The

real-valued invariant 𝑚 = 𝖨𝗆⟨𝑉,𝑉𝑥⟩ measures the deviation of the projectivization of 𝑉

from being a Legendrian curve in 𝑆3.

Companion 𝜆-frames

Any two unimodular null frames at the same point of 𝑆3 are linked by a transformation

of the following form (see, e.g., Proposition 10 in [2])

Γ̃ = 𝜈Γ, 𝐵 = 𝜈
𝜈 (𝐵 + 𝜇Γ) , 𝑉 = 𝜈

−1 [
𝑉 − i𝜇𝐵 − (𝜆 + 1

2
i|𝜇|2)Γ

]
, (7)

where 𝜈, 𝜇 are complex, with 𝜈 ≠ 0, and 𝜆 is real.

Given the local frame for a T-curve, we modify the frame using 𝜇 = 0, 𝜈 = 1 and 𝜆

constant in (7), to obtain the companion 𝜆-frame Γ̃ = Γ, 𝐵 = 𝐵,𝑉 = 𝑉 − 𝜆Γ. This modified

frame satisfies

Γ̃𝑥 = (13i𝑝 + 𝜆) Γ̃ + 𝑉, 𝐵𝑥 = −i𝑞Γ̃ − 2
3i𝑝𝐵, 𝑉𝑥 = (𝑚 − 𝜆2)Γ̃ + (13i𝑝 − 𝜆)𝑉.
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If we make a similar modification to a natural frame for a T-curve we obtain the compan-

ion 𝜆-natural frame, which satisfies

𝑑𝐹
𝑑𝑥

= 𝐹

⎡
⎢
⎢
⎢
⎢
⎣

𝜆 −i𝑧 𝑚 − 𝜆2

0 0 𝑧

1 0 −𝜆

⎤
⎥
⎥
⎥
⎥
⎦

. (8)

Remark. Note that if the projection of the frame vector 𝑉 of a companion 𝜆-frame is

a Legendrian curve in 𝑆3 (so that 𝑚 − 𝜆2 = 0), then the same is true for the companion

frame constructed using −𝜆.

3 Curve Flows and the Yajima-Oikawa Equations

If 𝛾(𝑥, 𝑡) is a smooth variation of a T-curve and (Γ, 𝐵, 𝑉) is a smoothly-varying choice of

natural frame, then the vector field Γ𝑡 = 𝑓Γ + 𝑔𝐵 + ℎ𝑉 must satisfy

ℎ𝑥 = −2𝖱𝖾𝑓 and (𝖨𝗆𝑓)𝑥 = 𝖱𝖾(𝑔𝑧) (9)

in order to keep the frame adapted, as shown in Proposition 11 of [2]. (Note that, since

condition (3) is an open condition, such variations always exist.) It follows that the

nonlocal invariants 𝑚 and 𝑧 = 𝑘 + i𝓁 evolve by

⎡
⎢
⎢
⎢
⎢
⎣

𝑘

𝓁

𝑚

⎤
⎥
⎥
⎥
⎥
⎦𝑡

= 𝒫

⎡
⎢
⎢
⎢
⎢
⎣

𝖨𝗆𝑔

−𝖱𝖾 𝑔
1
2
ℎ

⎤
⎥
⎥
⎥
⎥
⎦

, (10)

where

𝒫 =

⎛
⎜
⎜
⎜
⎝

−3𝓁𝐷−1◦𝓁 3𝓁𝐷−1◦𝑘 − 𝐷2 +𝑚 2𝐷◦𝑘 + 𝑘𝐷

3𝑘𝐷−1◦𝓁 + 𝐷2 −𝑚 −3𝑘𝐷−1◦𝑘 2𝐷◦𝓁 + 𝓁𝐷

2𝑘𝐷 + 𝐷◦𝑘 2𝓁𝐷 + 𝐷◦𝓁 2(𝑚𝐷 + 𝐷◦𝑚) − 𝐷3

⎞
⎟
⎟
⎟
⎠

and 𝐷 = 𝜕𝑥. The matrix operator 𝒫 is skew-adjoint, and forms a Hamiltonian pair with

𝒬 =
⎛
⎜
⎜
⎝

0 1 0

−1 0 0

0 0 𝐷

⎞
⎟
⎟
⎠

.
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In particular, if Γ evolves by

Γ𝑡 = i𝑧𝐵, (11)

then the invariants 𝑧 and 𝑚 satisfy the Yajima-Oikawa (YO) equations

𝑧𝑡 = i(𝑧𝑥𝑥 −𝑚𝑧),

𝑚𝑡 = 2(|𝑧|2)𝑥.
(12)

Integrability

The YO system (12) is the compatibility condition of the following pair of linear systems

𝝓𝑥 = 𝑈𝝓, 𝝓𝑡 = 𝑉𝝓, (13)

where

𝑈 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜆 0 1

i𝑧 0 0

𝑚 𝑧 −𝜆

⎤
⎥
⎥
⎥
⎥
⎦

, 𝑉 =

⎡
⎢
⎢
⎢
⎢
⎣

− 1
3
i𝜆2 −i𝑧 0

𝜆𝑧 − 𝑧𝑥
2
3
i𝜆2 𝑧

|𝑧|2 i(𝜆𝑧 − 𝑧𝑥) − 1
3
i𝜆2

⎤
⎥
⎥
⎥
⎥
⎦

, (14)

with eigenfunction 𝜙 ∈ ℂ3, and spectral parameter 𝜆 ∈ ℂ. (We will show below that this

is linearly equivalent to the Lax pair in [11].) When 𝜆 ∈ ℝ, 𝑈 and 𝑉 take value in the Lie

algebra 𝔰𝔲(2, 1) of the subgroup of 𝑆𝐿(3, ℂ) that preserves the Hermitian form (1). Taking

the transpose of (13) and complex conjugating, we obtain

𝐹𝑥 = 𝐹

⎡
⎢
⎢
⎢
⎢
⎣

𝜆 −i𝑧 𝑚

0 0 𝑧

1 0 −𝜆

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐹𝑡 = 𝐹

⎡
⎢
⎢
⎢
⎢
⎣

1
3
i𝜆2 𝜆𝑧 − 𝑧𝑥 |𝑧|2

i𝑧 − 2
3
i𝜆2 i(𝑧𝑥 − 𝜆𝑧)

0 𝑧 1
3
i𝜆2

⎤
⎥
⎥
⎥
⎥
⎦

. (15)

Comparing the first of these equations to (8) shows that system (15) can be interpreted as

the Frenet equations for the companion natural 𝜆-frame of an T-curve with curvatures 𝑧

and 𝑚̃ = 𝑚 + 𝜆2, and which evolves by the flow

Γ𝑡 = i𝑧𝐵 + 1
3
i𝜆2Γ. (16)

This connection between the YO Lax pair and the evolution of (framed) curves allows

the construction of interesting examples of transverse curves associated with simple

solutions of the YO system, as shown in the rest of the article.
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4 Plane wave solutions

In [11], Wright investigates the linear stability of plane wave solutions of the YO equa-

tions (17) and derives explicit solutions of the associated Lax pair in order to construct

homoclinic orbits of unstable plane waves.

4.1 Equivalent Versions of YO

In [11] the YO system is given as

𝐴𝜏 = −2i(𝐴𝑥𝑥 − 𝐴𝐵),

𝐵𝜏 = 4(|𝐴|2)𝑥
(17)

for complex 𝐴(𝑥, 𝜏) and real 𝐵(𝑥, 𝜏), and its Lax pair is given as

𝝍𝑥 = 𝐔𝝍, 𝝍𝜏 = 2𝐕𝝍 (18)

with

𝐔 =

⎡
⎢
⎢
⎢
⎢
⎣

i𝜁 𝐴 i𝐵

0 0 −𝐴

−i 0 −i𝜁

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐕 =

⎡
⎢
⎢
⎢
⎢
⎣

1
3
i𝜁2 𝜁𝐴 − i𝐴𝑥 i|𝐴|2

2𝐴 − 2
3
i𝜁2 𝜁𝐴 − i𝐴𝑥

0 −𝐴 1
3
i𝜁2

⎤
⎥
⎥
⎥
⎥
⎦

,

where 𝜁 and 𝜏 denote Wright’s spectral parameter and time variable respectively. (Wright’s

YO equations include an extra parameter which we omit because it can be removed by a

simple change of variable.) The equations (17) are equivalent to (12) under the substitu-

tions 𝐴 = 𝑧, 𝐵 = 𝑚 and 𝜏 = 1
2
𝑡. Moreover, the linear systems (18) and (13) are equivalent

under a change of gauge, since with these substitutions, 𝐔 = 𝑀𝑈𝑀−1 and 𝐕 = 𝑀𝑉𝑀−1,

where

𝑀 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 1

0 1 0

−i 0 0

⎤
⎥
⎥
⎥
⎥
⎦

.
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4.2 Wright’s Solutions

In this section, we will present Wright’s solutions, rewritten in terms of our variables.

We will then make use of the eigenfunction formulas in [11], appropriately adapted to

the geometric framework, to construct the associated transverse curves. We will then

identify the parameter choices that give rise to closed transverse curves.

Proposition 1 ([11]). For real constants 𝑎, 𝑏, 𝑘 and Λ such that 𝑎 > 0, the functions

𝑧(𝑥, 𝑡) = 𝑎e−i𝑁 𝑚(𝑥, 𝑡) = 𝑏, where 𝑁 ∶= 𝑘𝑥 − Λ𝑡

give a solution of (12) if and only if the dispersion relation 𝑏+𝑘2+Λ = 0 is satisfied. When

these 𝑧,𝑚 are substituted into (13), a non-trivial solution of (13) is given by

𝝓(𝑥, 𝑡) = ei(𝜇𝑥+𝜈𝑡)𝑃𝗋, (19)

where

𝑃 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0

0 e−i𝑁 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

,

and 𝗋 is a nonzero common eigenvector of the matrices

⎡
⎢
⎢
⎢
⎢
⎣

𝜆 0 1

i𝑎 i𝑘 0

𝑏 𝑎 −𝜆

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

− 1
3
i𝜆2 −i𝑎 0

𝑎(𝜆 + i𝑘) 2
3
i𝜆2 − iΛ 𝑎

𝑎2 𝑎(𝑘 + i𝜆) − 1
3
i𝜆2

⎤
⎥
⎥
⎥
⎥
⎦

(20)

with eigenvalues i𝜇 and i𝜈, respectively.

It is easy to check that the matrices in (20) have a non-trivial common eigenvector if

and only if 𝜇 and 𝜈 satisfy

(𝜇2 + 𝑏 + 𝜆2)(𝜇 − 𝑘) + 𝑎2 = 0, (21a)

𝜈 = 𝜇2 − 𝑘2 − Λ + 2
3
𝜆2. (21b)
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In order to construct a fundamental matrix solution for (13) using solutions of the form

(19), let 𝜇 = 𝑚1, 𝑚2, 𝑚3 be three distinct roots of (21a) and let 𝑛1, 𝑛2, 𝑛3 be the corresponding

values of 𝜈 given by substituting these into (21b). Then a matrix solution is given by

Φ = 𝑃𝑅𝐸, where

𝑅 =

⎛
⎜
⎜
⎜
⎜
⎝

−1 −1 −1
𝑎

𝑘 − 𝑚1

𝑎
𝑘 − 𝑚2

𝑎
𝑘 − 𝑚2

𝜆 − i𝑚1 𝜆 − i𝑚2 𝜆 − i𝑚3

⎞
⎟
⎟
⎟
⎟
⎠

, 𝐸 =

⎛
⎜
⎜
⎜
⎝

ei(𝑚1𝑥+𝑛1𝑡) 0 0

0 ei(𝑚2𝑥+𝑛2𝑡) 0

0 0 ei(𝑚3𝑥+𝑛3𝑡)

⎞
⎟
⎟
⎟
⎠

.

Our discussion in §3 implies that if Φ is a fundamental matrix solution of the YO

Lax pair for a real value of 𝜆, and taking value in the group 𝑆𝑈(2, 1), then 𝐹 = Φ† is a

𝜆-natural frame matrix for a transverse curve evolving by (16). Since 𝜆 ∈ ℝ implies that

the coefficient matrices in (13) take value in 𝔰𝔲(2, 1), we can ensure that our fundamental

matrix takes value in 𝑆𝑈(2, 1) by modifying it to be equal to the identity matrix when

𝑥 = 𝑡 = 0:

Φ = 𝑃𝑅𝐸𝑅−1𝑃−10 , where 𝑃0 = 𝑃||||𝑥=𝑡=0. (22)

Using this matrix to construct the natural frame, and taking the projectivization of the

first frame vector Γ to obtain a transverse curve 𝛾, we now consider the question of when

the resulting curve is smoothly closed.

Proposition 2. Suppose the fundamental matrix Φ = 𝑃𝑅𝐸 described above corresponds

to a 𝜆-natural frame for a T-curve 𝛾. Then 𝛾 is closed of length 𝐿 if and only if there is a

cube root 𝜔 of unity such that

ei𝑚𝑗𝐿 = 𝜔ei𝑘𝐿∕3. (23)

Proof. Let 𝐹 be a natural 𝜆-frame along the curve, satisfying the spatial part of (15), and

let 𝐹 be the local frame related to 𝐹 by 𝐹 = 𝐹 exp(−𝜃𝖩). Because the local frame is uniquely

determined by derivatives of 𝛾, up to multiplying by a cube root of unity, then 𝛾 is closed

of length 𝐿 if and only if

𝐹(𝑥 + 𝐿) = 𝜔𝐹(𝑥). (24)
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For the solutions of Prop. 1, 𝜃 = arg 𝑧 = −𝑁; rewriting (24) in terms of 𝐹 = Φ†, then in

terms of the factors of Φ given by (22), and simplifying (using the fact that 𝖩 commutes

with 𝑀 and 𝑃) gives the condition (23).

Without loss of generality, we will take 𝐿 = 2𝜋 from now on, and assume the roots of

(21a) are numbered in ascending order, i.e., 𝑚1 < 𝑚2 < 𝑚3. Note that, for a given value of

𝜆, these roots determine the coefficients in the polynomial via:

𝑘 = 𝑚1 +𝑚2 +𝑚3,

𝑎2 = (𝑘 − 𝑚1)(𝑘 − 𝑚2)(𝑘 − 𝑚3),

𝑏 = 𝑚1𝑚2 +𝑚1𝑚3 +𝑚2𝑚3 − 𝜆2.

(25)

Lemma 3. The above closure conditions (23) are satisfied if and only if there are positive

integers 𝑝, 𝑞 such that 𝑘 satisfies either

− 1
2
(2𝑝 + 𝑞) < 𝑘 < 1

2
(𝑝 − 𝑞) (26a)

or

𝑘 > 1
2
(𝑝 + 2𝑞). (26b)

In either case, the roots are given by

𝑚1 =
1
3
(−2𝑝 − 𝑞 + 𝑘), 𝑚2 =

1
3
(𝑝 − 𝑞 + 𝑘), 𝑚3 =

1
3
(𝑝 + 2𝑞 + 𝑘), (27)

and 𝜔 = e2𝜋i𝜖∕3 where 𝜖 = 0, 1, 2 is such that 3𝑚𝑗 − 𝑘 ≡ 𝜖 modulo 3.

Proof. We can rewrite the closure condition (23) as

𝑚𝑗 = 𝑙𝑗 +
1
3
𝜖 + 1

3
𝑘, (28)

for some integers 𝑙1 < 𝑙2 < 𝑙3. The second relation in (25) is satisfied for 𝑎 > 0 if and only if

𝑚1 < 𝑘 < 𝑚2 < 𝑚3 or 𝑚1 < 𝑚2 < 𝑚3 < 𝑘. (29)
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When written in terms of the positive integers 𝑝 = 𝑙2−𝑙1 and 𝑞 = 𝑙3−𝑙2, the two conditions

in (29) become those in (26).

Conversely, suppose a pair positive integers 𝑝, 𝑞 satisfy either of the equations in (26)

for some real number 𝑘. Let 𝜖 = 0, 1, 2 be chosen so that 𝑝 − 𝑞 ≡ 𝜖 modulo 3, and let

𝑙1 =
1
3
(−2𝑝 − 𝑞 − 𝜖), 𝑙2 =

1
3
(𝑝 − 𝑞 − 𝜖), 𝑙3 =

1
3
(𝑝 + 2𝑞) − 1

3𝜖.

Then with 𝑚𝑗 given by (28), condition (29) is satisfied.

4.3 Visualizing Examples

In this section we will exhibit examples of closed transverse curves in 𝑆3, generated using

the fundamental matrix Φ corresponding to Wright’s solutions, with closure conditions

imposed using Lemma 3. In particular, we will observe knotted transverse curves which,

because their differential invariants are the same at each time, move by rigid motion

under the flow (16).

In more detail, given two positive integers 𝑝, 𝑞 one may select any value of 𝜆 and a real

value of 𝑘 satisfying one of the inequalities in (26). The other parameters involved in the

solution are determined by equations (25) and (27). This yields two distinct 2-parameter

families of closed curves for each pair (𝑝, 𝑞). (Exactly how we construct these curves is

explained below.) We will assume that 𝑝, 𝑞 are relatively prime; experiments indicate

that the knot types are the same when 𝑝, 𝑞 are multiplied by a common integer factor.

In the case (26a) we observe that the curve in ℝ3 is a right-handed (𝑞, 𝑝 + 𝑞) torus

knot. Recall that the type of a (𝑚, 𝑛) torus knot depends only on the unordered pair {𝑚, 𝑛}.

However, for our examples we find that when 𝑘 is close to its lower limit, the knot takes a

shape with 𝑞 strands that wind along the torus the long way (see Figure 1, top left, where

𝑘 = −3.85 ≳ −4), while when 𝑘 is close to its upper limit the knot has 𝑝+𝑞 strands winding

the long way (see Figure 1, bottom right, where 𝑘 = 0.2 ≲ 0.5.) In general, the knot shape is

more compact and symmetric when 𝜆 = 0; Figure 2 shows two shapes for the same 𝑝, 𝑞, 𝑘

but different 𝜆 values. Note that (25) shows that these curves have the same differential
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invariant 𝑧 but different constant values 𝑚 = 𝑏.

We showed in Lemma 12 of [2] that transverse curves for which 𝑧 = 0 identically are

𝑆𝑈(2, 1)-congruent to curves which run along the circular fibers of the Hopf fibration.

Thus, when 𝑘 approaches one of the roots 𝑚𝑗, 𝑎 = |𝑧| will approach zero and the closed

curve will approach a multiply-covered circle congruent to a Hopf fiber. In Figure 1, we

show a family of right-handed (2, 5) torus knots, corresponding to a range of 𝑘-values,

where at both ends of the family the curve approaches a multiply-covered circle.

In the case (26b) we observe that the curve in ℝ3 is a left-handed (𝑝, 𝑞) torus knot.

(When 𝑝 = 1 or 𝑞 = 1 the curve is unknotted, as shown in Figure 4.) When 𝑘 is close to

its lower limit the curve has 𝑝 strands winding around the torus the long way, and its

shape approaches a circle covered 𝑝 times. For large values of 𝑘, the curve approaches a

flattened teardrop shape, with the knot crossings compressed into a small region near

where 𝑥 = 𝜋. Both these limiting behaviors are illustrated in Figure 3.

4.4 Constructing Transverse Curves

Once we have a fundamental matrix solution Φ for the linear system (13), the first

component of the 𝜆-natural frame is then given by

Γ = 𝐹𝖾1 = Φ†𝖾1,

taking value in the null cone 𝒩. We produce curves in 𝑆3 using a projection 𝜋̂ ∶ 𝒩 → 𝑆3

given in terms of the components of Γ by

𝑧1 =
Γ3 − iΓ1
Γ3 + iΓ1

, 𝑧2 =

√
2Γ2

Γ3 + iΓ1
, (30)

where (𝑧1, 𝑧2) lie on the unit sphere in ℂ2 equipped with its standard Hermitian inner

product. For purposes of visualization, we in turn apply stereographic projection into ℝ3

(using the point 𝑧1 = 0, 𝑧2 = i as pole) given by

𝜎 ∶ (𝑧1, 𝑧2) ↦→ (
Re 𝑧1

1 − Im𝑧2
,

Im 𝑧1
1 − Im𝑧2

,
Re 𝑧2

1 − Im𝑧2
) .
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Figure 1: A family of (2, 5) torus knots obtained using 𝑝 = 3, 𝑞 = 2, 𝜆 = 0 and the values

𝑘 = −3.85, −3.25, −2.5 in the top row and 𝑘 = −1.75, −0.7, 0.2 in the bottom row. The first

and last figure show knots near the limiting values of 𝑘, since 𝑘 ∈ (−4, 0.5) from (26a).

Figure 2: Right-handed (3, 4) torus knots obtained using 𝑝 = 1, 𝑞 = 3 and 𝑘 = −2.2; on the

left 𝜆 = 0, while on the right 𝜆 = 3.1.
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Figure 3: Left-handed (2, 3) torus knots (i.e., trefoils) obtained using 𝑝 = 1, 𝑞 = 2 and 𝜆 = 0;

on the left 𝑘 = 4.6, while on the right 𝑘 = 31.

Remark. The action of 𝑆𝑈(2, 1) on the null cone preserves the 1-form 𝛼𝑁 = (𝑑𝑔, 𝑔), which is

the pullback under 𝜋̂ of the standard contact form on 𝑆3, given by 𝛼𝑆 =
1
2
Im(𝑧1𝑑𝑧1+𝑧2𝑑𝑧2).

The contact planes in 𝑆3 annihilated by this 1-form are orthogonal to the Hopf fibers.

Since 𝑆3 is parallelizable, we can choose an globally defined orthogonal frame (𝗏0, 𝗏1, 𝗏2)

such that 𝗏1, 𝗏2 are tangent to the contact planes. For purposes of visualizing the contact

distribution, we will use the following vectors in ℝ3 which are tangent to the image of

this distribution under stereographic projection:

𝜎∗𝗏1 = −(𝑧 + 𝑥𝑦) 𝜕
𝜕𝑥

+ 1
2
(𝑥2 − 𝑦2 + 𝑧2 − 1) 𝜕

𝜕𝑦
+ (𝑥 − 𝑦𝑧) 𝜕

𝜕𝑧
,

𝜎∗𝗏2 =
1
2
(𝑥2 − 𝑦2 − 𝑧2 + 1) 𝜕

𝜕𝑥
+ (𝑥𝑦 − 𝑧) 𝜕

𝜕𝑦
+ (𝑥𝑧 + 𝑦) 𝜕

𝜕𝑧
.

Figure 4 shows how the curve 𝛾 is transverse to the planes spanned by these vector fields.

Recall from (6) that when 𝑚 = 0 the frame vector 𝑉 projects to a Legendrian curve in

𝑆3. Figure 4 also shows this companion curve which in this example is linked with 𝛾 and

tangent to the contact planes.

5 Discussion

We have shown how the YO equations arise, somewhat unexpectedly, from a simple

geometric flow for curves in 𝑆3 that are transverse to the standard contact structure. The
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Figure 4: At left, in orange, is an unknotted 𝑇-curve 𝛾 generated using parameter values

𝑝 = 𝑞 = 1, 𝑘 = 2 and 𝜆 = 1∕
√
3. Substituting these values into (27) and (25) shows that

𝑚 = 𝑏 = 0, hence the curve traced by the projectivization of frame vector 𝑉 (shown at

right in magenta) is a Legendrian curve. Along both curves we have drawn some planes

of the contact distribution.

recent renewed interest in the YO equations and related systems (see, e.g., [3, 4, 7]), the

analogies between the geometric flow considered in this work and the vortex filament

flow, and the relatively simple reconstruction of the transverse curve in terms of solutions

of the YO Lax pair, makes this a good case for exploring questions such as recursion

schemes and the geometric and topological properties of transverse curves related to

special solutions of the YO equations.

A natural direction of investigation is the study of the integrable hierarchy of vector

fields for transverse curves associated with the YO hierarchy. These are generated by

beginning with a conserved density for the YO equations, e.g.,

𝜌1 =
1
2
𝑚, 𝜌2 =

1
2
|𝑧|2, 𝜌3 =

1
2
Im(𝑧𝑧𝑥) −

1
8
𝑚2, 𝜌4 = − 1

2

(
𝑚|𝑧|2 + |𝑧𝑥|2

)
, …

and forming the vector field 𝑋𝑛 = 𝑓𝑛Γ + 𝑔𝑛𝐵 + ℎ𝑛𝑉 where (Γ, 𝐵, 𝑉) is a natural frame.

The coefficients are determined by the corresponding density as follows. As in (10)

Arnold Mathematical Journal, Vol.11(4), 2025 93

http://dx.doi.org/10.56994/ARMJ


Annalisa Calini, Thomas Ivey

write 𝑧 = 𝑘 + i𝓁 and express the density 𝜌𝑛 in terms of real invariants 𝑘, 𝓁,𝑚 and their

𝑥-derivatives. Let

(𝑎𝑛, 𝑏𝑛, 𝑐𝑛)𝑇 = 𝖤𝜌𝑛

where 𝖤 denotes the vector-valued Euler operator. Then the components of𝑋𝑛 are ℎ𝑛 = 2𝑐𝑛,

𝑔𝑛 = i(𝑎𝑛 + i𝑏𝑛) and 𝑓𝑛 = −(𝑐𝑛)𝑥 + i𝑑𝑛, where 𝑑𝑛 = ∫ Re(𝑔𝑛𝑧) 𝑑𝑥. (Thus, these vector fields

satisfy the conditions in (9) to preserve the adapted frame.)

The first few vector fields generated this way are

𝑋1 = 𝑉 = Γ𝑥,

𝑋2 = i𝑧𝐵 = i(Γ𝑥𝑥 −𝑚Γ),

𝑋3 =
( 1
4
𝑚𝑥 +

1
2
i|𝑧|2

)
Γ + 𝑧𝑥𝐵 −

1
2
𝑚𝑉,

𝑋4 =
( 1
2
|𝑧|2𝑥 − i Im(𝑧𝑧𝑥)

)
Γ + i(𝑧𝑥𝑥 −𝑚𝑧)𝐵 − |𝑧|2𝑉.

The fact that the antiderivative 𝑑𝑛 is always expressible in terms of 𝑧,𝑚 and their

derivatives is somewhat mysterious. However, we observe that these antiderivatives are

expressible in terms of Hermitian inner products of the vector fields themselves:

𝑑2𝑗 = − 1
2

2𝑗−2∑

𝑘=1
⟨𝑋2𝑗−𝑘, 𝑋1+𝑘⟩, 𝑑2𝑗+1 = − 1

2

2𝑗−1∑

𝑘=1
(−1)𝑘⟨𝑋2𝑗+1−𝑘, 𝑋1+𝑘⟩.

Since 𝑑𝑛 = Re⟨𝑋𝑛, 𝑉⟩ =
1
2
(⟨𝑋𝑛, 𝑉⟩ + ⟨𝑉, 𝑋𝑛⟩) and 𝑉 = 𝑋1, these identities are equivalent to

2𝑗−1∑

𝑘=0
⟨𝑋2𝑗−𝑘, 𝑋1+𝑘⟩ = 0 and

2𝑗∑

𝑘=0
(−1)𝑘⟨𝑋2𝑗+1−𝑘, 𝑋1+𝑘⟩ = 0.

These show a remarkable parallel with the situation for vector fields in the hierarchy

for the vortex filament flow [9], where the antiderivative required for the tangential

component of𝑋𝑛+1 is expressible in terms of inner products of the vector fields up to𝑋𝑛. In

that case, the analogous identities were proved using the first-order ‘geometric’ recursion

operator for the vector fields. In our case, it may be sufficient to have a second-order

recursion operator that relates 𝑋𝑛+2 to 𝑋𝑛.
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Bäcklund and Darboux transformations as well as Miura transformations are other

common features of integrable systems. In particular, the classical Bäcklund transfor-

mation for the sine-Gordon equation has its origins in relating pair of pseudospherical

surfaces through line congruences (see, e.g., §7.5 in [8]). It is possible that an analogous

transformation exists between T-curves evolving by the YO flow (11); one might expect

that the curves would be joined by a congruence of circles in 𝑆3 expressed in terms of the

vectors of the natural frame.

In relation to a possible Miura transformation, one can investigate the evolution

equations induced by (11) for the tangent indicatrix, i.e., the curve in 𝑆3 traced out by

the projectivization of the frame vector 𝑉. It is natural to ask how the invariants of

these indicatrices are related to those of the primary curve, and furthermore whether,

when the primary curve evolves by an integrable geometric flow, the invariants of the

indicatrix evolve by a related integrable system.
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