
IMS
Stony 
Brook

Arnold Mathematical Journal

Volume 11, Issue 3, 2025

Circumscribed Circles in Integer

Geometry
Oleg Karpenkov Anna Pratoussevitch

Rebecca Sheppard

Received 17 Dec 2024; Accepted 7 May 2025

Abstract:

Integer geometry on a plane deals with objects whose vertices are points

in ℤ2. The congruence relation is provided by all affine transformations pre-

serving the lattice ℤ2. In this paper we study circumscribed circles in integer

geometry. We introduce the notions of integer and rational circumscribed

circles of integer sets. We determine the conditions for a finite integer set to

admit an integer circumscribed circle and describe the spectra of radii for

integer and rational circumscribed circles.
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Introduction

In this paper we introduce the notion of circumscribed circles in integer geometry and

investigate their properties.

The integer distance between two points in the lattice ℤ2 is defined in terms of the

number of lattice points on the segment between them; see Section 1.2 for more details.

An integer circle is the locus of all lattice points at a fixed integer distance from a given

lattice point. The properties of integer circles differ substantially from the properties of

their Euclidean counterparts. In fact, using the Basel Problem [Ayo74], it can be shown

that the density of a unit integer circle inℤ2 is positive and equal to 6∕𝜋2 (see also [HW08])

Note that the chords of unit integer circles provide a tessellation which is combinatorially

equivalent to the Farey tessellation of the hyperbolic plane, while their radial segments

correspond to geodesics in the hyperbolic plane (see [Ser, MGO19]).

An integer circumscribed circle of a subset of ℤ2 is defined as an integer circle that

contains this subset. While in Euclidean geometry every non-degenerate triangle has a

unique circumscribed circle, this is no longer the case in integer geometry. In fact, the

number of integer circumscribed circles of an integer triangle is infinite.

This paper aims to provide a comprehensive study of circumscribed circles in integer

geometry. In Theorem 2.9 we introduce necessary and sufficient conditions for a finite

integer set to admit a circumscribed circle. As a special case, we discuss the circumscribed

circles of integer quadrangles and their Euclidean counterparts.

While a finite set might not admit an integer circumscribed circle, it will have integer

dilates that do. The integer circumscribed circles of the dilates can be interpreted as

integer circles with rational centres and radii. We call the set of all such rational radii

the rational spectrum. In Theorem 3.10 we describe the structure of rational spectra of

finite sets.

This paper is organized as follows. In Section 1, we begin with basic definitions of integer
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geometry and introduce the notion of an integer circle. In Section 2 we state and prove

the conditions under which a finite integer set admits an integer circumscribed circle. We

extend the notion of circumscribed circles to the case of rational radii and rational centres

and describe the spectra of the radii of such circles in Section 3. In Section 4 we discuss

integer and rational circumscribed circles for segments, triangles and quadrangles in

more detail.

1 Basic Notions of Integer Geometry

1.1 Objects in Integer Geometry

Consider the plane ℝ2 with the fixed basis (1, 0), (0, 1). An integer point is a point in ℝ2

whose coordinates in this basis are integers, i.e. the set of all integer points is the latticeℤ2.

An integer set is a subset of ℤ2. An integer segment is a segment in ℝ2 with endpoints

in ℤ2. An integer line is a line in ℝ2 that contains at least two integer points. An integer

vector is a vector in ℝ2 with integer endpoints. An integer polygon is a polygon in ℝ2

whose vertices are integer points.

An integer affine transformation is an affine transformations that preserves the integer

lattice ℤ2. We denote the set of all integer affine transformations by Aff (2, ℤ). Similar

to the Euclidean isometries, Aff (2, ℤ) contains integer translations, integer rotations and

integer symmetries. They correspond to translations by integer vectors, multiplication by

matrices in SL(2, ℤ) and multiplication by matrices in GL(2,ℤ)⧵ SL(2, ℤ) respectively.

We say that two integer sets are integer congruent if there exists an integer affine

transformation sending one set to another.

An angle in ℝ2 with an integer point as its vertex is called an integer angle. An integer

angle that contains an integer point other than its vertex on each of its sides is called a

rational integer angle.
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1.2 Some Integer Invariants

Let us recall some basic notions of integer geometry (see [Kar22]). The integer length l𝓁(𝐴𝐵)

of a vector 𝐴𝐵 in ℤ2 is defined as the number of lattice points that the vector passes

through, minus one. Note that the integer length is given by the greatest common divisor

of the differences of coordinates. The integer distance ld(𝐴, 𝐵) between integer points 𝐴

and 𝐵 is the integer lengths of 𝐴𝐵. The integer distance ld(𝑂, 𝐿) between an integer point 𝑂

and an integer line 𝐿 is the index of the sub-lattice generated by vectors 𝑂𝑉, where 𝑉

runs through all integer points on the line 𝐿.

The integer area lS(𝐴𝐵𝐶) of a triangle 𝐴𝐵𝐶 is the index of the sub-lattice generated

by 𝐴𝐵 and 𝐴𝐶 in ℤ2. In fact, the integer area is equal to the absolute value of the determi-

nant det(𝐴𝐵,𝐴𝐶), and therefore it is twice the Euclidean area of the triangle 𝐴𝐵𝐶.

1.3 Integer Circles

We define an integer circle with centre 𝑂 ∈ ℤ2 and radius 𝑟 ∈ ℤ, 𝑟 > 0 as the locus of all

points 𝑃 such that l𝓁(𝑂𝑃) = 𝑟.

Proposition 1.1. The intersection of an integer line 𝐿 with an integer circle is either empty,

or an infinite periodic subset of integer points on 𝐿, or two points.

The integer radial line of an integer circle 𝐶 is an integer line passing through the

centre of 𝐶. An integer radial line of 𝐶 intersects 𝐶 in two points. An integer tangent line

to an integer circle 𝐶 of radius 𝑟 with centre 𝑂 is an integer line 𝐿 such that ld(𝑂, 𝐿) = 𝑟.

Remark 1.2. For every pair of integer tangent lines of an integer circle there exists an

integer isometry of the circle mapping one integer tangent line to the other.

Remark 1.3. Two integer circles of the same radius are integer congruent. Moreover, one

can be mapped to the other by a translation by an integer vector.

Figure 1 shows in bold those points of the integer unit circle 𝑆0 centred at the origin 𝑂

whose coordinates do not exceed 5 in absolute value. The polygon in Figure 1 is called a
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Figure 1: An integer circle circumscribed about an integer quadrangle.
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Farey starburst and is obtained by connecting these points by straight segments in the

order of increasing argument. The vertices 𝐴, 𝐵, 𝐶, 𝐷 belong to the integer circle 𝑆0, hence

𝑆0 is a circumscribed circle of the quadrangle 𝐴𝐵𝐶𝐷.

Remark 1.4. Consider the integer unit circle 𝑆0 centred at the origin 𝑂. Let 𝛼 be some

integer angle and 𝐴 the point (1, 0). Then it is possible to find infinitely many points 𝐵

in 𝑆0 such that the angle ∠𝐴𝑂𝐵 is integer congruent to 𝛼. Note the difference with the

Euclidean case, where there are exactly two such points 𝐵.

1.4 Integer Trigonometry

Let us discuss basic definitions of integer trigonometry introduced in [Kar09, Kar08] (for

the multi-dimensional trigonometry see [BKD23]).

Definition 1.5. Let 𝑝, 𝑞 be co-prime integers with 𝑞 ≥ 𝑝 > 0. The integer arctangent of 𝑞∕𝑝

is the angle ∠𝐴𝑂𝐵, where

𝐴 = (1, 0), 𝑂 = (0, 0), and 𝐵 = (𝑝, 𝑞).

We define integer sine, integer cosine and integer tangent as

lsin∠𝐴𝑂𝐵 = 𝑞, lcos∠𝐴𝑂𝐵 = 𝑝, and ltan∠𝐴𝑂𝐵 = 𝑞∕𝑝.

Note that any rational angle is integer congruent to exactly one integer arctangent. So

the values of integer trigonometric functions form in fact a complete set of invariants of

rational angles up to integer congruence.

The integer sine has a nice geometric definition:

lsin∠𝐴𝐵𝐶 =
lS(𝐴𝐵𝐶)

l𝓁(𝐴𝐵) l𝓁(𝐴𝐶)

which directly corresponds to the Euclidean formula for the area of a parallelogram in

terms of the sine of its angle. The integer tangent is closely related to the geometry of

numbers and their connections to continued fractions [Kar13].
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2 Integer Circumscribed Circles

In this section we generalise the notion of a circumscribed circle in the context of integer

geometry.

Definition 2.1. An integer circumscribed circle of 𝑆 ⊂ ℤ2 is an integer circle that contains

𝑆.

In the Euclidean geometry there exists at most one circumscribed circle for a given

set 𝑆 with |𝑆| > 2. This is not the case in integer geometry where a set can have several

circumscribed circles. The radius of the circumscribed circle is an important quantity in

Euclidean geometry. A suitable replacement for this quantity in integer geometry is the

integer circumscribed spectrum.

Definition 2.2. Let 𝑆 be an integer set. The set of all radii of integer circumscribed circles

of 𝑆 is called the integer circumscribed spectrum of 𝑆 and denoted by Λℤ(𝑆).

Note the following.

Proposition 2.3. Let 𝑎, 𝑏 ∈ 𝑆 and let 𝑟 be the radius of a circumscribed circle of 𝑆. Then 𝑟

divides ld(𝑎, 𝑏).

Proof. Let 𝑥 be the centre of the circumscribed circle of 𝑆. Then

𝑎 − 𝑥 ≡ 𝑏 − 𝑥 ≡ (0, 0) mod 𝑟.

Hence 𝑎 − 𝑏 ≡ (0, 0) mod 𝑟, and therefore 𝑟 divides ld(𝑎, 𝑏).

This proposition implies that the integer spectrum is bounded:

Corollary 2.4. The integer spectrum Λℤ(𝑆) of an integer set 𝑆 that contains at least 2 points

is bounded.

The first natural question in the study of integer circumscribed circles is whether

Λℤ(𝑆) is empty. In this section we will introduce a criterion that answers this question
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for a finite set 𝑆 in terms of projections of 𝑆 to integer tori as defined below. Later in

Subsection 3.2 we will study the structure of Λℤ(𝑆).

Definition 2.5. For an integer 𝑚 ≥ 2, let the (mod𝑚) integer torus be

𝒯𝑚 = ℤ2∕⟨(𝑚, 0), (0,𝑚)⟩ ≅ ℤ∕𝑚ℤ × ℤ∕𝑚ℤ.

The projection 𝜋𝑚 ∶ ℤ2 → 𝒯𝑚 is given by (𝑥, 𝑦) → (𝑥mod𝑚, 𝑦 mod𝑚).

We say that two integer points 𝑣1 and 𝑣2 in ℤ2 are equivalent mod 𝑚 if 𝜋𝑚(𝑣1) = 𝜋𝑚(𝑣2),

denoted by 𝑣1 ≡ 𝑣2mod𝑚.

In the statement of the main result of this section we use the following terminology.

Definition 2.6. We say that an integer set 𝑆 is a covering set of 𝒯𝑚 if 𝜋𝑚(𝑆) = 𝒯𝑚.

Definition 2.7. We say that an integer set 𝑆 is tori-transparent if for every integer 𝑚 ≥ 2

we have that 𝑆 is not a covering set of 𝒯𝑚.

Remark 2.8. Note that a covering set of an integer torus 𝒯𝑡 with 𝑡 ≥ 2 must consist of at

least |𝒯𝑡| = 𝑡2 ≥ 4 points, hence all integer sets 𝑆 with |𝑆| ≤ 3 are tori-transparent.

Now we are ready to write down the existence criterion.

Theorem 2.9. Consider a finite integer set 𝑆 ⊂ ℤ2. Then the following three statements are

equivalent:

(i) There exists an integer circumscribed circle of 𝑆, i.e.

Λℤ(𝑆) ≠ ∅.

(ii) There exists an integer unit circumscribed circle of 𝑆, i.e.

1 ∈ Λℤ(𝑆).

(iii) The set 𝑆 is tori-transparent.

We start the proof with the following four lemmas.
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Lemma 2.10. Let 𝑣1, 𝑣2 ∈ ℤ2. Consider two integers 𝑑 and 𝑚 such that 𝑑 is a divisor of 𝑚.

Then 𝜋𝑚(𝑣1) = 𝜋𝑚(𝑣2) implies 𝜋𝑑(𝑣1) = 𝜋𝑑(𝑣2).

Proof. If 𝜋𝑚(𝑣1) = 𝜋𝑚(𝑣2), then 𝑣1 − 𝑣2 ≡ 0mod𝑚 and hence 𝑣1 − 𝑣2 ≡ 0mod𝑑, since 𝑑 is a

divisor of 𝑚. Therefore 𝜋𝑑(𝑣1) = 𝜋𝑑(𝑣2).

Lemma 2.11. Let 𝑆 be any subset of ℤ2. If 𝑆 is a covering set of 𝒯𝑚 then it is a covering set

of 𝒯𝑝 for any prime divisor 𝑝 of 𝑚.

Proof. The set 𝑆 is a covering set of 𝒯𝑚, hence for each 𝑣 ∈ ℤ2 there exists some 𝑠 ∈ 𝑆 such

that 𝜋𝑚(𝑣) = 𝜋𝑚(𝑠). By Lemma 2.10, 𝜋𝑝(𝑣) = 𝜋𝑝(𝑠). Hence, 𝑆 is a covering set of 𝒯𝑝.

Lemma 2.12. For any integer set 𝑆 the following statements are equivalent:

(i) The set 𝑆 is tori-transparent.

(ii) The set 𝑆 is not a covering set of any torus 𝒯𝑝 for prime 𝑝.

Proof. (i) ⇐⇒ (ii) If the set 𝑆 is tori-transparent then 𝑆 is not a covering set of any torus 𝒯𝑚

for integer 𝑚 ≥ 2, hence 𝑆 is not a covering set of any torus 𝒯𝑝 for prime 𝑝.

(ii) ⇐⇒ (i) Consider any integer 𝑚 ≥ 2 and let 𝑝 be a prime divisor of 𝑚. By assumption, 𝑆

is not a covering set of 𝒯𝑝. Hence, by Lemma 2.11, 𝑆 is not a covering set of 𝒯𝑚.

Lemma 2.13. Consider a finite, tori-transparent integer set 𝑆. Then for any finite subset 𝑀

of ℤ there exists a point 𝑣 ∈ ℤ2 such that 𝜋𝑚(𝑣) ∉ 𝜋𝑚(𝑆) for all 𝑚 ∈ 𝑀.

Proof. Let {𝑝1, … , 𝑝𝑛} be the set of all prime divisors of all elements in 𝑀. By Lemma 2.11

for every 𝑖 = 1, … , 𝑛 the set 𝑆 is not a covering set of 𝒯𝑝𝑖 . Hence for every 𝑖 = 1, … , 𝑛 there

exists a point 𝑣𝑖 ∈ ℤ2 such that for any 𝑠 ∈ 𝑆 we have

𝑣𝑖 ≢ 𝑠mod𝑝𝑖.

Then by the Chinese Remainder Theorem (applied coordinate-wise) there exists a point 𝑣

such that for every 𝑖 = 1, … , 𝑛 it holds:

𝑣 ≡ 𝑣𝑖mod𝑝𝑖.
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Hence for every 𝑖 = 1, … , 𝑛 we have

𝜋𝑝𝑖 (𝑣) = 𝜋𝑝𝑖 (𝑣𝑖) ∉ 𝜋𝑝𝑖 (𝑆).

Therefore, by Lemma 2.11 𝜋𝑝𝑖 (𝑣) ∉ 𝜋𝑚(𝑆) for all 𝑚 ∈ 𝑀.

Proof of Theorem 2.9 (iii) ⇐⇒ (ii). The existence of a circumscribed circle and the

property of being a covering set of integer tori 𝒯𝑚 are invariant under translation by

integer vectors. Thus we can assume that the set 𝑆 is contained in the positive quadrant

of ℤ2. Choose 𝑁 satisfying the following two conditions:

• 𝑆 is completely contained in the box [1, 𝑁] × [1,𝑁];

• the number of elements in 𝑆 does not exceed 𝑁.

Consider 𝑍 = {1, 2… ,𝑁} = [1,𝑁]∩ℤ. By Lemma 2.13 there exists (𝑎, 𝑏) such that 𝜋𝑚(𝑎, 𝑏)

is not in 𝜋𝑚(𝑆) for all 𝑚 ∈ 𝑍.

Set 𝛽 = 𝑏 + 𝑁!.

Let 𝑝1, … , 𝑝𝑘 be all prime numbers in the segment [𝑁 + 1, 𝛽]. Now note that the size of

the set 𝑆 is |𝑆| ≤ 𝑁 < 𝑝𝑖. Hence the set of first co-ordinates of points in 𝑆 has fewer than 𝑝𝑖

elements. Therefore, for any 𝑖 = 1, … , 𝑘 we can choose 𝑐𝑖 such that 𝑐𝑖 is not equal modulo

𝑝𝑖 to the first coordinate of any point in 𝑆.

By Chinese Remainder Theorem there exists a solution 𝛼 of the following system of

equations:

⎧

⎨
⎩

𝛼 ≡ 𝑎 mod 𝑁!

𝛼 ≡ 𝑐𝑖 mod 𝑝𝑖

Then we will show that the point (𝛼, 𝛽) has the property that 𝜋𝑚(𝛼, 𝛽) ∉ 𝜋𝑚(𝑆) for every

integer 𝑚, and therefore (𝛼, 𝛽) belongs to the unit integer circle with centre at (𝑥, 𝑦) for

every (𝑥, 𝑦) ∈ 𝑆.
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• If 𝑚 ≤ 𝑁 then 𝜋𝑚(𝛼, 𝛽) = 𝜋𝑚(𝑎, 𝑏) ∉ 𝜋𝑚(𝑆).

• If 𝑚 ∈ [𝑁 + 1, 𝛽] and 𝑚 is a prime, say 𝑚 = 𝑝𝑖, then 𝛼 ≡ 𝑐𝑖 mod 𝑝𝑖 and hence is not

equal to the first coordinate of any point in 𝑆 modulo 𝑝𝑖 (by the above). Therefore

𝜋𝑚(𝛼, 𝛽) ∉ 𝜋𝑚(𝑆).

• If 𝑚 ∈ [𝑁 + 1, 𝛽] and 𝑚 is not a prime then 𝜋𝑚(𝛼, 𝛽) ∉ 𝜋𝑚(𝑆) by Lemma 2.12 and by

the cases considered above.

• If 𝑚 > 𝛽 then the second co-ordinate of any point in 𝑆 is in the interval [1, 𝑁]

while 𝛽 > 𝑁! > 𝑁. Hence the difference of the second coordinates is contained

in [𝛽 − 𝑁, 𝛽 − 1] ⊂ [1,𝑚 − 1] and is therefore not equal to zero modulo 𝑚. Thus

𝜋𝑚(𝛼, 𝛽) ∉ 𝜋𝑚(𝑆).

Proof of Theorem 2.9 (ii) ⇐⇒ (i). This is straightforward.

Proof of Theorem 2.9 (i) ⇐⇒ (iii). Assume that there exists a circumscribed circle of 𝑆 of

some radius 𝑟 centred at 𝑂. Suppose that 𝑆 is a covering set of 𝒯𝑚 for some integer 𝑚 ≥ 2.

Let 𝑝 be a prime divisor of 𝑚. Lemma 2.11 implies that 𝑆 is a covering set of 𝒯𝑝.

On the one hand there exists 𝑠1 ∈ 𝑆 such that 𝜋𝑝(𝑠1) = 𝜋𝑝(𝑂). Therefore, 𝑝 divides 𝑟.

On the other hand there exists 𝑠2 ∈ 𝑆 such that 𝜋𝑝(𝑠2) ≠ 𝜋𝑝(𝑂). Therefore, 𝑝 does not

divide l𝓁(𝑠2, 𝑂) = 𝑟.

This is a contradiction. Hence 𝑆 is tori-transparent.

Remark 2.14. The finiteness of the set 𝑆 is crucial in Theorem 2.9. For instance, the set

𝑆 = {0, 6} × ℤ

is an example of an infinite set, for which Theorem 2.9 does not hold.

Indeed, for every 𝑚, the set 𝑆 is not a covering set of 𝒯𝑚 as [1, 0]𝑚 ∉ 𝜋𝑚(𝑆) for 𝑚 ≠ 5

and [2, 0]𝑚 ∉ 𝜋𝑚(𝑆) for 𝑚 = 5. Assume that there exists a circle through all points of 𝑆

with centre (𝑥, 𝑦). The point (𝑥, 𝑦) is at integer distance one from all points of {0} × ℤ,
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hence gcd(𝑥, 𝑦 − 𝑛) = 1 for all 𝑛 ∈ ℤ and therefore 𝑥 = ±1. Similarly, (𝑥, 𝑦) is at integer

distance one from all points of {6}×ℤ, hence gcd(𝑥−6, 𝑦−𝑛) = 1 for all 𝑛 ∈ ℤ and therefore

𝑥 − 6 = ±1. We arrive at a contradiction.

Finally let us say a few words about the Aff (2, ℤ)-invariance of the property of being

a covering set of a torus.

Proposition 2.15. Let 𝑆 be an integer set and 𝑚 an integer number. The property of 𝑆 to be

a covering set of 𝒯𝑚 is preserved under Aff (2, ℤ).

Proof. Any element of Aff (2, ℤ) can be written as a map 𝑣 ↦→ 𝐴𝑣 + 𝑏 for some matrix 𝐴 ∈

GL(2,ℤ) and vector 𝑏 ∈ ℤ2. Note that the equation 𝑣1 ≡ 𝑣2mod𝑚 (coordinate-wise) is

equivalent to the equation 𝐴𝑣1 + 𝑏 ≡ 𝐴𝑣2 + 𝑏mod𝑚. So the number of points in the image

under the projection 𝜋𝑚 is preserved under Aff (2, ℤ).

Corollary 2.16. The property of a finite set to be tori-transparent is invariant underAff (2, ℤ).

Definition 2.17. Let 𝑆 be an integer set and 𝑘 a positive integer. We say that 𝑆 is shift-

divisible by 𝑘 if there exists an integer point 𝑥 and an integer set 𝑆̂ such that

𝑆 = 𝑥 + 𝑘𝑆̂.

We then say that 𝑆̂ ≈ 𝑆∕𝑘. Note that 𝑆 is shift-divisible by 𝑘 if and only if any two points

in 𝑆 are equivalent modulo 𝑘. Note that the set 𝑆̂ is uniquely defined up to a translation

by an integer vector. We define 𝑆∕𝑘 as the equivalence class of 𝑆̂ under translations by

integer vectors. The property of an integer set to be a covering set of 𝒯𝑚 is preserved

under translations by integer vectors, hence we can say that 𝑆∕𝑘 is a covering set of 𝒯𝑚

or is tori-transparent if the set 𝑆̂ has this property.

Proposition 2.18. Let 𝑆 be a finite integer set and 𝑎, 𝑏 integers. If 𝑆 is shift-divisible by 𝑎

and 𝑏 then 𝑆 is shift-divisible by lcm(𝑎, 𝑏).
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Proof. If 𝑆 is shift-divisible by 𝑎 and 𝑏 then any two points in 𝑆 are equivalent modulo 𝑎 and

modulo 𝑏 and therefore equivalent modulo lcm(𝑎, 𝑏). Hence 𝑆 is shift-divisible by lcm(𝑎, 𝑏).

Proposition 2.19. Let 𝑆 be a finite integer set and 𝑟 an integer. Then 𝑆 has a circumscribed

circle of radius 𝑟 if and only if 𝑆 is shift-divisible by 𝑟 and 𝑆∕𝑟 is tori-transparent.

Proof. Suppose that the set 𝑆 has a circumscribed circle 𝐶 of radius 𝑟 with centre 𝑥. Then

𝑆 − 𝑥 ⊂ 𝑟ℤ2 and 𝑆̂ = (𝑆 − 𝑥)∕𝑟 is an integer set such that 𝑆 = 𝑥 + 𝑟𝑆̂, i.e. 𝑆 is shift-divisible

by 𝑟 and 𝑆∕𝑟 ≈ 𝑆̂. Moreover, 𝐶̂ = (𝐶 −𝑥)∕𝑟 is a unit integer circumscribed circle of 𝑆̂, hence

1 ∈ Λℤ(𝑆̂). Theorem 2.9 implies that 𝑆∕𝑟 is tori-transparent.

Now suppose that 𝑆 is shift-divisible by 𝑟 and 𝑆∕𝑟 is tori-transparent, i.e. there exists an

integer point 𝑥 and an integer tori-transparent set 𝑆̂ such that 𝑆 = 𝑥 + 𝑟𝑆̂. By Theorem 2.9,

the set 𝑆̂ admits a unit integer circumscribed circle 𝐶̂. Then 𝐶 = 𝑥 + 𝑟𝐶̂ is an integer

circumscribed circle of 𝑆 of radius 𝑟.

Proposition 2.20. Let 𝑆 be a finite integer set and 𝑎, 𝑏 integers. If 𝑎, 𝑏 ∈ Λℤ(𝑆) then

lcm(𝑎, 𝑏) ∈ Λℤ(𝑆).

Proof. If 𝑎, 𝑏 ∈ Λℤ(𝑆) then Proposition 2.19 implies that 𝑆 is shift-divisible by 𝑎 and 𝑏 and

𝑆∕𝑎, 𝑆∕𝑏 are tori-transparent. Proposition 2.18 implies that 𝑆 is shift-divisible by lcm(𝑎, 𝑏).

Let 𝑆̂ = 𝑆∕(lcm(𝑎, 𝑏)). Let 𝑑 = gcd(𝑎, 𝑏), 𝑎̂ = 𝑎∕𝑑 and 𝑏̂ = 𝑏∕𝑑, so that gcd(𝑎̂, 𝑏̂) = 1 and

lcm(𝑎, 𝑏) = 𝑑𝑎̂𝑏̂. The set

𝑎̂𝑆̂ = 𝑎̂(𝑆∕(𝑑𝑎̂𝑏̂)) = 𝑆∕(𝑑𝑏̂) = 𝑆∕𝑏

is tori-transparent, hence 𝑆̂ is not a covering set of 𝒯𝑚 for all 𝑚 co-prime with 𝑎̂. Similarly,

the set

𝑏̂𝑆̂ = 𝑏̂(𝑆∕(𝑑𝑎̂𝑏̂)) = 𝑆∕(𝑑𝑎̂) = 𝑆∕𝑎

is tori-transparent, hence 𝑆̂ is not a covering set of 𝒯𝑚 for all 𝑚 co-prime with 𝑏̂. The

integers 𝑎̂ and 𝑏̂ are co-prime, hence every integer 𝑚 is co-prime with at least one of 𝑎̂

and 𝑏̂. Therefore 𝑆̂ is not a covering set of any 𝒯𝑚 for 𝑚 ≥ 2, i.e. 𝑆̂ = 𝑆∕(lcm(𝑎, 𝑏)) is

tori-transparent. Proposition 2.19 implies that lcm(𝑎, 𝑏) ∈ Λℤ(𝑆).
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3 Rational Circumscribed Circles

Some sets do not have integer circumscribed circles. However we can extend the defini-

tion of integer circumscribed circles to circles with rational radii. We will see that every

finite set has at least one rational circumscribed circle.

3.1 Definition of a Rational Circumscribed Circle

Definition 3.1. We call a fraction 𝑝
𝑞

irreducible if gcd(𝑝, 𝑞) = 1.

Definition 3.2. Consider an integer set 𝑆 and let 𝑝 and 𝑞 be two integers. We say that 𝑆

has a rational circumscribed circle of radius 𝑝
𝑞

if the set 𝑞𝑆 has a circumscribed circle of

radius 𝑝.

Definition 3.3. The rational circumscribed spectrum Λℚ(𝑆) of an integer set 𝑆 is the set of

all rational values 𝑝
𝑞

such that 𝑆 admits a rational circumscribed circle of radius 𝑝
𝑞

.

Remark 3.4. Since every integer circle is also a rational circle, we have

Λℤ(𝑆) ⊂ Λℚ(𝑆).

Proposition 3.5. Let 𝑆 be an integer set. If 𝑝
𝑞

is an irreducible fraction in Λℚ(𝑆) and 𝑎, 𝑏 ∈ 𝑆

then 𝑝 divides ld(𝑎, 𝑏).

Proof. By definition, 𝑝
𝑞
∈ Λℚ(𝑆) implies 𝑝 ∈ Λℤ(𝑞𝑆), i.e. the set 𝑞𝑆 has an integer circum-

scribed circle of radius 𝑝. Proposition 2.3 implies that 𝑝 is a divisor of ld(𝑞𝑎, 𝑞𝑏) = 𝑞⋅ld(𝑎, 𝑏)

for any 𝑎, 𝑏 ∈ 𝑆. As 𝑝 and 𝑞 are co-prime, it follows that 𝑝 is a divisor of ld(𝑎, 𝑏).

This proposition implies that the rational spectrum is bounded.

Corollary 3.6. Let 𝑆 be an integer set, |𝑆| ≥ 2. Then the rational spectrum Λℚ(𝑆) of 𝑆 and

the set of numerators of irreducible fractions in Λℚ(𝑆) are bounded.

Proposition 3.7. Let 𝑆 be a finite integer set. If 𝑝1
𝑞1

and 𝑝2
𝑞2

are two irreducible fractions

in Λℚ(𝑆) then
lcm(𝑝1𝑞2, 𝑝2𝑞1)

𝑞1𝑞2
=
lcm(𝑝1, 𝑝2)
gcd(𝑞1, 𝑞2)

∈ Λℚ(𝑆).
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Proof. If 𝑝1
𝑞1
∈ Λℚ(𝑆) then 𝑝1 ∈ Λℤ(𝑞1𝑆), hence 𝑝1𝑞2 ∈ Λℤ(𝑞1𝑞2𝑆). Similarly, 𝑝2𝑞1 ∈ Λℤ(𝑞1𝑞2𝑆).

Proposition 2.20 implies lcm(𝑝1𝑞2, 𝑝2𝑞1) ∈ Λℤ(𝑞1𝑞2𝑆), hence

lcm(𝑝1𝑞2, 𝑝2𝑞1)
𝑞1𝑞2

∈ Λℚ(𝑆).

Finally, we will use the following identity known in elementary number theory

lcm(𝑝1𝑞2, 𝑝2𝑞1)
𝑞1𝑞2

=
lcm(𝑝1, 𝑝2)
gcd(𝑞1, 𝑞2)

.

3.2 Structure of Rational Spectra

Proposition 3.8. Let 𝑆 be a finite integer set. If 𝑝
𝑞

and 𝑝′

𝑞′
are two irreducible fractions

in Λℚ(𝑆) and max(Λℚ(𝑆)) =
𝑝
𝑞

, then 𝑝′ | 𝑝 and 𝑞 | 𝑞′.

Proof. By Proposition 3.7, the number

lcm(𝑝, 𝑝′)
gcd(𝑞, 𝑞′)

is in Λℚ(𝑆), hence
lcm(𝑝, 𝑝′)
gcd(𝑞, 𝑞′)

≤ max(Λℚ(𝑆)) =
𝑝
𝑞 .

Note that lcm(𝑝, 𝑝′) ≥ 𝑝 and gcd(𝑞, 𝑞′) ≤ 𝑞, hence the inequality above can only hold if

lcm(𝑝, 𝑝′) = 𝑝, gcd(𝑞, 𝑞′) = 𝑞.

Therefore 𝑝′ | 𝑝 and 𝑞 | 𝑞′.

Corollary 3.9. Let 𝑆 be a finite integer set. If 𝑝
𝑞

is an irreducible fraction inΛℚ(𝑆) andmax(Λℚ(𝑆)) =
𝑝
𝑞

, then 𝑝 is the largest possible numerator and 𝑞 is the smallest possible denominator of an

irreducible fraction in Λℚ(𝑆).

Theorem 3.10. Let 𝑆 be a finite integer set. Let {𝑡1, … , 𝑡𝑛} be the set of all primes 𝑡 such that

𝑆 is a covering set of 𝒯𝑡. Let 𝜏 =
𝑛∏

𝑖=1
𝑡𝑖. Then there exists 𝑝 ∈ ℤ+ such that

Λℚ(𝑆) = {1𝑐 ⋅
𝑝
𝜏

|||||||
𝑐 ∈ ℤ+} .
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In fact, 𝑝 = max(Λℤ(𝜏𝑆)), 𝑝∕𝜏 = max(Λℚ(𝑆)), and the greatest common divisor of all integer

distances between pairs of points in 𝑆 is a multiple of 𝑝.

If 𝑆 is tori-transparent then 𝜏 = 1,

Λℚ(𝑆) = {
𝑝
𝑐

|||||||
𝑐 ∈ ℤ+}

and 𝑝 = max(Λℤ(𝑆)) = max(Λℚ(𝑆)).

Proof. Let 𝑝
𝑞

be an irreducible fraction such that max(Λℚ(𝑆)) =
𝑝
𝑞

.

1. We will show that 𝑞 is a divisor of 𝜏: We know that 𝑆 and hence 𝜏𝑆 is not a covering

set of 𝒯𝑡 for any prime 𝑡 ∉ {𝑡1, … , 𝑡𝑛}. For 𝑖 = 1, … , 𝑛, the set 𝑡𝑖𝑆 and hence 𝜏𝑆 is

not a covering set of 𝒯𝑡𝑖 . In summary, the set 𝜏𝑆 is not a covering set of 𝒯𝑡 for

every prime 𝑡, i.e. 𝜏𝑆 is tori-transparent. Theorem 2.9 implies 1 ∈ Λℤ(𝜏𝑆) and hence
1
𝜏
∈ Λℚ(𝑆). Proposition 3.8 implies 𝑞 | 𝜏.

2. We will now show that 𝑞 = 𝜏: We have shown that 𝑞 is a divisor of 𝜏. Suppose that

𝑞 ≠ 𝜏 then 𝑞 is the product of some but not all of 𝑡1, … , 𝑡𝑛. We can assume without loss

of generality that 𝑡1 is not a divisor of 𝑞. We know that 𝑆 is a covering set of 𝒯𝑡1 and

gcd(𝑡1, 𝑞) = 1, hence 𝑞𝑆 is also a covering set of 𝒯𝑡1 and therefore not tori-transparent.

Theorem 2.9 implies that Λℤ(𝑞𝑆) = ∅. On the other hand, we know that 𝑝
𝑞
∈ Λℚ(𝑠),

hence 𝑝 ∈ Λℤ(𝑞𝑆) in contradiction to Λℤ(𝑞𝑆) = ∅. Hence 𝑞 = 𝜏.

3. We will next show that

Λℚ(𝑆) ⊂ {1𝑐 ⋅
𝑝
𝜏

|||||||
𝑐 ∈ ℤ+} ∶

Consider an irreducible fraction 𝑝′

𝑞′
in Λℚ(𝑆). We know that the irreducible frac-

tion 𝑝
𝑞
= 𝑝

𝜏
is the maximum of Λℚ(𝑆). Proposition 3.8 implies that 𝑝′ | 𝑝 and 𝜏 | 𝑞′,

hence there exists 𝑐 ∈ ℤ+ such that

𝑝′

𝑞′ =
1
𝑐 ⋅

𝑝
𝜏 .

4. We will now show that

{1𝑐 ⋅
𝑝
𝜏

|||||||
𝑐 ∈ ℤ+} ⊂ Λℚ(𝑆) ∶
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Let 𝑐 ∈ ℤ+. We know that 𝑝
𝜏
∈ Λℚ(𝑆), hence 𝑝 ∈ Λℤ(𝜏𝑆) and therefore Λℤ(𝜏𝑆) ≠ ∅.

Theorem 2.9 implies that the set 𝜏𝑆 is tori-transparent. It follows that the set 𝑐(𝜏𝑆)

is also tori-transparent. Theorem 2.9 implies that 1 ∈ Λℚ(𝑐𝜏𝑆) and therefore 1
𝑐
∈

Λℚ(𝜏𝑆). We know that 𝑝, 1
𝑐
∈ Λℚ(𝜏𝑆), hence 𝑝

𝑐
∈ Λℚ(𝜏𝑆) according to Proposition 3.7.

Therefore 𝑝
𝑐𝜏
∈ Λℚ(𝑆).

5. Finally, we will show that the greatest common divisor of all integer distances

between pairs of points in 𝑆 is a multiple of 𝑝: We know that 𝑝
𝑞
= 𝑝

𝜏
∈ Λℚ(𝑆), hence

𝑝 ∈ Λℤ(𝜏𝑆) and therefore 𝜏𝑆 has a circumscribed circle of radius 𝑝. It follows that

the integer distance between any two points in 𝜏𝑆 is a multiple of 𝑝. We know that

gcd(𝑝, 𝜏) = gcd(𝑝, 𝑞) = 1, hence the integer distance between any two points in 𝑆 is a

multiple of 𝑝.

Remark 3.11. Let 𝑆 be a finite integer set. Then

Λℤ(𝑆) = Λℚ(𝑆) ∩ ℤ.

In the case Λℤ(𝑆) ≠ ∅, we additionally get the equality

max(Λℤ(𝑆)) = max(Λℚ(𝑆)).

Remark 3.12. There is a similarity between the expression for the rational circumscribed

spectrum in Theorem 3.10 and some formulas for coefficients of Ehrhart polynomials,

see for example [BR15].

Note that while Theorem 3.10 states that the greatest common divisor of all integer

distances between pairs of points in 𝑆 is a multiple of 𝑝, it is not necessarily equal to 𝑝 as

can be seen in the following example:

Example 3.13. Consider the set

𝑆 = {(0, 0), (2, 0), (0, 2), (2, 2)}.
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On the one hand, the set 𝑆 is tori-transparent, so Theorem 3.10 implies that there exists a

divisor 𝑝 of all integer distances between pairs of points in 𝑆 such that

Λℚ(𝑆) = {
𝑝
𝑐

|||||||
𝑐 ∈ ℤ+} .

The greatest common divisor of all integer distances between points in 𝑆 is 𝑔 = 2, hence

either 𝑝 = 1 and Λℤ(𝑆) = {1} or 𝑝 = 𝑔 = 2 and Λℤ(𝑆) = {1, 2}. On the other hand, we have

𝑆 = 2𝑆̂, where

𝑆̂ = {(0, 0), (1, 0), (0, 1), (1, 1)}.

Now 𝑆̂ is a covering set of𝒯2, hence Theorem 2.9 implies 1 ∉ Λℤ(𝑆̂) and therefore 2 ∉ Λℤ(𝑆).

Thus 𝑝 = 1 ≠ 𝑔.

To give a more precise description of circumscribed spectra, we will need the following

definition:

Definition 3.14. An integer set 𝑆 is called primitive if it is not shift-divisible by 𝑘 for any

integer 𝑘 > 1.

Remark 3.15. Note that a set is primitive if and only if the greatest common divisor of the

distances between all pairs of its points equals to one.

Theorem 3.16. Let 𝑆 be a finite integer set. Let 𝑥 be an integer point, 𝑔 an integer and 𝑆̂

a primitive set such that 𝑆 = 𝑥 + 𝑔𝑆̂. Let {𝑡1, … , 𝑡𝑛} be the set of all primes 𝑡 such that 𝑆̂ is a

covering set of 𝒯𝑡. Let 𝜏 =
𝑛∏

𝑖=1
𝑡𝑖. Then the rational circumscribed spectrum of 𝑆 is

Λℚ(𝑆) = {1𝑐 ⋅
𝑔
𝜏

|||||||
𝑐 ∈ ℤ+} .

If 𝑆̂ is tori-transparent then 𝜏 = 1 and

Λℚ(𝑆) = {
𝑔
𝑐

|||||||
𝑐 ∈ ℤ+} .

Proof. Theorem 3.10 implies that there exists 𝑝 ∈ ℤ+ such that

Λℚ(𝑆̂) = {1𝑐 ⋅
𝑝
𝜏

|||||||
𝑐 ∈ ℤ+} ,
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and that 𝑝 is a divisor of all integer distances between pairs of points in 𝑆̂. The set 𝑆̂ is

primitive, hence the greatest common divisor of all integer distances between pairs of

points in 𝑆̂ is equal to 1 and therefore 𝑝 = 1. It follows that

Λℚ(𝑆̂) = {1𝑐 ⋅
1
𝜏

|||||||
𝑐 ∈ ℤ+}

and therefore

Λℚ(𝑆) = Λℚ(𝑔𝑆̂) = 𝑔 ⋅ Λℚ(𝑆̂) = {1𝑐 ⋅
𝑔
𝜏

|||||||
𝑐 ∈ ℤ+} .

Definition 3.17. The primorial 𝑑# of 𝑑 ∈ ℤ+ is defined as the product of all prime numbers

smaller or equal to 𝑑.

Proposition 3.18. Let 𝑆 be a finite integer set and 𝑘 = |𝑆| then

1

⌊
√
𝑘⌋#

∈ Λℚ(𝑆).

Proof. Let 𝑘 = |𝑆|. Theorem 3.10 implies that 1
𝑛𝜏
∈ Λℚ(𝑆) for every 𝑛 ∈ ℤ+, where 𝜏 =

𝑛∏

𝑖=1
𝑡𝑖

and {𝑡1, … , 𝑡𝑛} is the set of all primes 𝑡 such that 𝑆 is a covering set of 𝒯𝑡. Note that if 𝑆 is a

covering set of an integer torus 𝒯𝑡 then 𝑡2 = |𝒯𝑡| ≤ |𝑆| = 𝑘 and therefore 𝑡 ≤
√
𝑘. It follows

that {𝑡1, … , 𝑡𝑛} is a subset of the set of all primes smaller or equal to
√
𝑘, hence 𝜏 is a divisor

of ⌊
√
𝑘⌋#, i.e. ⌊

√
𝑘⌋# = 𝑛𝜏 for some 𝑛 ∈ ℤ+. Therefore

1

⌊
√
𝑘⌋#

= 1
𝑛𝜏 ∈ Λℚ(𝑆).

Example 3.19. Let 𝑎, 𝑏 ≥ 2 be integers. The circumscribed spectra of the integer set

𝐺𝑎,𝑏 = {1, … , 𝑎} × {1, … , 𝑏}

are given by

Λℤ(𝐺𝑎,𝑏) = ∅, Λℚ(𝐺𝑎,𝑏) = {1𝑐 ⋅
1

(min(𝑎, 𝑏))#

|||||||
𝑐 ∈ ℤ+} .

To prove this, note that 𝐺𝑎,𝑏 is a primitive set. Theorem 3.16 implies that

Λℚ(𝐺𝑎,𝑏) = {1𝑐 ⋅
1
𝜏

|||||||
𝑐 ∈ ℤ+} ,
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where {𝑡1, … , 𝑡𝑛} is the set of all primes 𝑡 such that 𝐺𝑎,𝑏 is a covering set of 𝒯𝑡 and 𝜏 =
𝑛∏

𝑖=1
𝑡𝑖.

The set 𝐺𝑎,𝑏 is a covering set for an integer torus 𝒯𝑡 if and only if 2 ≤ 𝑡 ≤ min(𝑎, 𝑏).

Hence the set {𝑡1, … , 𝑡𝑛} consists of all primes smaller or equal to min(𝑎, 𝑏) and therefore

𝜏 = (min(𝑎, 𝑏))#. Finally, Λℤ(𝑆) = Λℚ(𝑆) ∩ ℤ = ∅.

4 Circumscribed Circles of Polygons

We define an integer circumscribed circle of a polygon 𝑃 as the integer circumscribed

circle of the set of vertices of 𝑃 in the sense of Definition 2.1. Note that an integer circle

is an integer circumscribed circle of 𝑃 if and only if all vertices of 𝑃 are on the circle

(see Figure 1). We define a rational circumscribed circle of a polygon 𝑃 as the rational

circumscribed circle of the set of vertices of 𝑃 in the sense of Definition 3.2.

In this section we summarise the implications of the results of Theorem 3.16 for

integer and rational circumscribed circles of polygons.

4.1 Circumscribed Circles of Segments and Triangles

An integer segment or triangle always admits a unit integer circumscribed circle.

Proposition 4.1. Let 𝑆 be an integer segment or triangle. Let 𝑔 be the greatest common

divisor of all integer distances between pairs of vertices of 𝑆. Then the integer circumscribed

spectrum Λℤ(𝑆) consists of all positive divisors of 𝑔 and

Λℚ(𝑆) = {
𝑔
𝑐
||||||
𝑐 ∈ ℤ+} .

In particular if 𝑆 is a primitive segment or triangle then

Λℤ(𝑆) = {1}, Λℚ(𝑆) = { 1𝑐
||||||
𝑐 ∈ ℤ+} .

Proof. There exist an integer point 𝑥 and a primitive polygon 𝑆̂ such that 𝑆 = 𝑥 + 𝑔𝑆̂.

The set of vertices of 𝑆̂ consists of at most three points and therefore is tori-transparent.
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Theorem 3.16 implies that

Λℚ(𝑆) = {
𝑔
𝑐

|||||||
𝑐 ∈ ℤ+} .

It follows that Λℤ(𝑆) = Λℚ(𝑆) ∩ ℤ consists of all positive divisors of 𝑔.

We obtain the following corollary:

Corollary 4.2. If an integer set 𝑆 has a integer circumscribed circle of radius 𝑟 then the

integer distance between any two points of 𝑆 is a multiple of 𝑟.

Proof. Consider 𝐴, 𝐵 ∈ 𝑆. Any integer circumscribed circle of 𝑆 is in particular an integer

circumscribed circle of the segment 𝐴𝐵, hence the integer length of the segment 𝐴𝐵 is

divisible by 𝑟.

Let us recall the Euclidean Extended Sine Rule: for a triangle 𝐴𝐵𝐶 we have

|𝐴𝐵|
sin∠𝐵𝐶𝐴

= |𝐵𝐶|
sin∠𝐶𝐴𝐵

= |𝐶𝐴|
sin∠𝐴𝐵𝐶

= 2𝑅,

where 𝑅 is the radius of the circumscribed circle.

As was shown in [Kar08], the first two of these equalities hold in lattice geometry:

l𝓁(𝐴𝐵)
lsin∠𝐵𝐶𝐴

=
l𝓁(𝐵𝐶)

lsin∠𝐶𝐴𝐵
=

l𝓁(𝐶𝐴)
lsin∠𝐴𝐵𝐶

.

Proposition 4.1 tells us that there is no natural generalisation for the last equality. Indeed,

the circumscribed spectrum depends entirely on the integer length of the edges of the

triangle and does not depend on the angles.

For instance consider two triangles, one with vertices (0, 0), (1, 0), (0, 1) and another with

vertices (0, 0), (1, 2), (2, 1). For both triangles, all edges are of unit integer length. The sets

of integer sines of the angles of these triangles are distinct, for the first triangle all integer

sines are equal to 1 while for the second triangle all integer sines of the angles are equal

to 3. Nevertheless the circumscribed spectra for both triangles coincide.
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4.2 Circumscribed Circles of Quadrangles

We have seen that every triangle has an integer circumscribed circle, however this is no

longer true for quadrangles as the following example shows.

Definition 4.3. An integer polygon 𝑃 is empty if the only lattice points contained in 𝑃 are

the vertices.

Proposition 4.4. An empty integer strictly convex quadrilateral does not have a integer

circumscribed circle.

Proof. Note that every empty integer strictly convex quadrilateral is integer congruent

to the coordinate square 𝑆1 with vertices (0, 0), (1, 0), (1, 1) and (0, 1). The square 𝑆1 is a

covering set of 𝒯2, hence it is not tori-transparent. Theorem 2.9 implies that 𝑆1 does not

admit integer circumscribed circles of any radius.

However some quadrangles have integer circumscribed circles.

Example 4.5. The quadrilateral with vertices 𝐴 = (0, 0), 𝐵 = (1, 0), 𝐶 = (0, 1) and 𝐷 = (2, 2)

has a unit circumscribed circle centred at (1, 1).

The situation is similar to the Euclidean geometry, where a quadrangle has a circum-

scribed circle if and only if its opposite angles add up to 𝜋. The lattice version of this rule

is as follows:

Proposition 4.6. An integer quadrangle has an integer circumscribed circle if and only if

the set of its vertices is not a covering set of 𝒯2.

Proof. Theorem 2.9 implies that a quadrangle admits an integer circumscribed circle if

and only if its set of vertices 𝑉 is tori-transparent, i.e. is not a covering set of any integer

torus 𝒯𝑡 for 𝑡 ≥ 2. The set 𝑉 cannot be a covering set of 𝒯𝑡 for 𝑡 > 2 since |𝑉| = 4 < 𝑡2 = |𝒯𝑡|.

Hence the set 𝑉 is tori-transparent if and only if it is not a covering set of 𝒯2.
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Remark 4.7. The conditions for a quadrangle to admit a circumscribed circle can be

stated in terms of the parity of the six integer distances between its pairs of vertices as

follows: An integer quadrangle admits an integer circumscribed circle if and only if at

least one of the integer distances between its vertices is even.

On the other hand, the existence of an integer circumscribed circle is not determined

solely by the integer angles of the integer quadrangle. For example, the angles of the

quadrangles with vertices 𝐴(0, 0), 𝐵(0, 1), 𝐶(1, 1), 𝐷(1, 0) and 𝑃(−1, 0), 𝑄(−1, 1), 𝑅(0, 1), 𝑆(1, 0)

are congruent to each other, however the latter one admits a circumscribed circle, for

example one centred at the origin 𝑂(0, 0), while the former one does not.

A

B C

D P

Q R

SO

4.3 Circumscribed Circles of General Polygons

In fact, the argument used in the proof of Proposition 4.6 holds for all 𝑛-gons with 𝑛 ≤ 8:

Proposition 4.8. An integer 𝑛-gon with 𝑛 ≤ 8 has an integer circumscribed circle if and

only if the set of its vertices is not a covering set of 𝒯2.

In general, the following statement holds:

Proposition 4.9. An integer 𝑛-gon admits an integer circumscribed circle if and only if its

vertices are not a covering set of 𝒯𝑡 for every 𝑡 ≤
√
𝑛.
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