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The Flapping Birds in the Pentagram Zoo

1 Introduction

1.1 Context

When you visit the pentagram zoo you should certainly make the pentagram map itself
your first stop. This old and venerated animal has been around since the place opened
up and it is very friendly towards children. When defined on convex pentagons, this
map has a very long history. See e.g. [15]. In modern times [19], the pentagram is defined
and studied much more generally. The easiest case to explain is the action on convex
n-gons. One starts with a convex n-gon P, for n > 5, and then forms a new convex n-gon
P’ by intersecting the consecutive diagonals, as shown Figure 1.1 below.

The magic starts when you iterate the map. One of the first things I proved in [19]
about the pentagram map is the successive iterates shrink to a point. Many years later, M.
Glick [3] proved that this limit point is an algebraic function of the vertices, and indeed

found a formula for it. See also [9] and [1].

Figure 1.1: The pentagram map iterated on a convex 7-gon P.

Forgetting about convexity, the pentagram map is generically defined on polygons
in the projective plane over any field except for Z/2. In all cases, the pentagram map
commutes with projective transformations and thereby defines a birational map on the
space of n-gons modulo projective transformations. The action on this moduli space has

a beautiful structure. As shown in [17] [18], and independently in [23], the pentagram

Arnold Mathematical Journal, Vol.11(4), 2025 11


http://dx.doi.org/10.56994/ARMJ

Richard Evan Schwartz

map is a discrete completely integrable system when the ground field is the reals. ([23]
also treats the complex case.) Recently, M. Weinreich [24] generalized the integrability
result, to a large extent, to fields of positive characteristic.

The pentagram map has many generalizations. See for example [2], [14], [16], [10], [11],
[6]. The paper [2] has the first general complete integrability result. The authors prove the
complete integrability of the (k, 1) diagonal maps, i.e. the maps obtained by intersecting
successive k-diagonals. Figure 1.3 below shows the (3,1) diagonal map. (Technically, [2]
concentrates on what happens when these maps act on so-called corregated polygons in
higher dimensional Euclidean spaces.) The paper [6] proves an integrability result for a
very wide class of generalizations, including the ones we study below. (Technically, for the
maps we consider here, the result in [6] does not establish the algebraic independence
of invariants needed for complete integrability.) The pentagram map and its many
generalizations are related to a number of topics: alternating sign matrices [20], dimers
[5], cluster algebras [4], the KAV hierarchy [12], [13], spin networks [2], Poisson Lie groups
[8], Lax pairs [23], [10], [11], [6], [8], and so forth. The zoo has many cages and sometimes

you have to get up on a tall ladder to see inside them.

Figure 1.2: The (3,1)-diagonal map acting on 8-gons.

The algebraic side of the pentagram zoo is extremely well developed, but the geometric

side is hardly developed at all. In spite of all the algebraic results, we don’t really know,
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geometrically speaking, much about what the pentagram map and its relatives really do

to polygons.

Geometrically speaking, there seems to be a dichotomy between convexity and non-
convexity. The generic pentagram orbit of a projective equivalance class of a convex
polygon lies on a smooth torus, and you can make very nice animations. What you will
see, if you tune the power of the map and pick suitable representatives of the projective
classes, is a convex polygon sloshing around as if it were moving through water waves.
If you try the pentagram map on a non-convex polygon, you see a crazy erratic picture
no matter how you try to normalize the images. The situation is even worse for the other
maps in the pentagram zoo, because these generally do not preserve convexity. Figure 1.2
shows how the (3,1)-diagonal map does not necessarily preserve convexity, for instance.

See [21], [22] for more details.

If you want to look at pentagram map generalizations, you have to abandon convexity.
However, in this paper, I will show that sometimes there are geometrically appealing
replacements. The context for these replacements is the (k + 1, k)-diagonal map, which
I call Ay, acting on what I call k-birds. A, starts with the polygon P and intersects the
(k + 1)-diagonals which differ by k clicks. (We will give a more formal definition in the
next section.) Ay is well (but not perfectly) understood algebraically [6]. Geometrically it

is not well understood at all.

1.2 The Maps and the Birds

Definition of a Polygon: For us, a polygon is a choice of both vertices and the edges
connecting them. Each polygon P we consider will all be planar, in the sense that there is
some projective transformation that maps P, both vertices and edges, to the affine patch.

Our classical example is a regular n-gon, with the obvious short edges chosen.

The Maps: Given a polygon P, let P, denote the (a)th vertex of P. Let P,;, be the line
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through P, and P,. The vertices of A, (P) are
Pjjretr O Pjyj k- (@)

Here the indices are taken mod n. Figure 1.3 shows this for (k,n) = (2,7). The polygons in

Figure 1.3 are examples of a concept we shall define shortly, that of a k-bird.

Figure 1.3: A, acting on 2-birds.

We should say a word about how the edges are defined. In the case for the regular n-gon
we make the obvious choice, discussed above. In general, we define the class of polygons
we consider in terms of a homotopy from the regular n-gon. So, in general, we make the

edge choices so that the edges vary continuously.

The Birds: Given an n-gon P, we let P, ;, denote the line containing the vertices P, and P,,.

We call P k-nice if n > 3k, and P is planar, and the 4 lines

Pii_k—1» Piiks Piivk> Piitks1 (2)

are distinct for all i. It is not true that the generic n-gon is k-nice, because there are open
sets of non-planar polygons. (Consider a neighborhood of P, where P the regular 100-gon
with the opposite choice of edges.) However, the generic perturbation of a planar n-gon
is also k-nice.

We call P a k-bird if P is the endpoint of a path of k-nice n-gons that starts with the

regular n-gon. We let By, be the subspace of n-gons which are k-birds. Note that By,
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contains the set of convex n-gons, and the containment is strict when k > 1. As Figure 1.3
illustrates, a k-bird need not be convex for k > 2. We will show that k-birds are always
star-shaped, and in particular embedded. As we mentioned above, we use the homotopic

definition of a k-bird, to define the edges of A, (P) when P is a k-bird.

Example: The homotopy part of our definition looks a bit strange, but it is necessary. To
illustrate this, we consider the picture further for the case k = 1. In this case, a 1-bird must
be convex, though the 1-niceness condition just means planar and locally convex. Figure
1.4 shows how we might attempt a homoropy from the regular octagon to a locally convex
octagon which essentially wraps twice around a quadrilateral. The little grey arrows
give hints about how the points are moved. At some times, the homotopy must break
the 1-niceness condition. The two grey polygons indicate failures and the highlighted
vertices indicate the sites of the failures. There might be other failures as well; we are

taking some jumps in our depiction.

o€
CGTA

Figure 1.4: A homotopy that cannot stay 1-nice.

One could make similar pictures when k > 1, but the pictures might be harder to

understand.
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1.3 The Main Result

Given an embedded planar polygon P, let P! denote the interior of region bounded by P.
We say that P is strictly star shaped with respect to x € P! if each ray emanating from x
intersects P exactly once. More simply, we say that P is strictly star shaped if it is strictly

star shaped with respect to some point x € P!. Here is the main result.
Theorem 1.1. Let k > 2 and n > 3k and P € By ,. Then

1. P is strictly star-shaped, and in particular embedded.
2. A(P) Cc PL.

3. Ak(Bin) = B

Remark: The statement that n > 3k is present just for emphasis. B, is by definition
empty when n < 3k. The restriction n > 3k is necessary. Figure 1.5 illustrates what would
be a counter-example to Theorem 1.1 for the pair (k,n) = (3,9). The issue is that a certain
triple of 4-diagonals has a common intersection point. This does not happen for n > 3k.

See Lemma 3.6.
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Figure 1.5: A; acting on a certain convex 9-gon.

1.4 The Energy

We will deduce Statements 1 and 2 of Theorem 1.1 in a geometric way. The key to proving
Statement 3 is a natural quantity associated to a k-bird. We let o, , be the slope of the line

P, and we define the cross ratio

_(@a=-b)c—d)
x(a,b,c,d) = CEECEr 3)
We define .
xc(P) = [ [ xG. k. P), Xk, P) = x(0i ks Oii—k—1>Tiitk+1> Oi,i+k) (4)

i=1
Here we are taking the cross ratio the slopes the lines involved in our definition of k-nice.
When k = 1 this is the familiar invariant y; = OE for the pentagram map A,. See [19],
[20], [17], [18]. When n = 3k + 1, a suitable star-relabeling of our polygons converts A, to
A; and y to 1/x;. So, in this case y;oA, = x,. Figure 1.5 illustrates this for (k,n) = (3, 10).
Note that the polygons suggested by the dots in Figure 1.5 are not convex. Were we to

add in the edges we would get a highly non-convex pattern.

Figure 1.6: A star-relabeling converts A; to A; and 1/y; to y;.

In general, y, is not as clearly related to y,. Nonetheless, we will prove
Theorem 1.2. y;o0A; = xi.
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Theorem 1.2 is meant to hold for all n-gons, as long as all quantities are defined. There

is no need to restrict to birds.

1.5 The Collapse Point

When it is understood that P € B, it is convenient to write
P’ = Ay(P) ©)

We also let P denote the closed planar region bounded by P. Figure 1.7 below shows

P =P° P',P?, P3 P* for some P € By .

Figure 1.7: A, and its iterates acting on a member of B, ;5.

Define

Po=(P, Po={JP. (6)
teZ teZ

Theorem 1.3. IfP € By, then P, is a point and P_, is an affine plane.

Our argument will show that P € By, is strictly star-shaped with respect to all points
in P". In particular, all polygons in the orbit are strictly star-shaped with respect to the

collapse point P,.. See Corollary 7.3.
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One might wonder if some version of Glick’s formula works for the P, in general. I
discovered experimentally that this is indeed the case for n = 3k + 1 and n = 3k + 2. See

§9.2 for a discussion of this and related matters.

Here is a corollary of our results that is just about convex polygons.

Corollary 1.4. Suppose that n > 3k and P is a convex n-gon. Then the sequence {Ai(P)}
shrinks to a point as ¢ — oo, and each member of this sequence if strictly star-shaped with

respect to the collapse point.

1.6 The Triangulations

In §7.1 we associate to each k-bird P a triangulation 7, C P, the projective plane. Here
7p 1S an embedded degree 6 triangulation of P_ — P,,. The edges are made from the

segments in the §-diagonals of P and its iterates for § = 1,k,k + 1.

Figure 1.8 shows this tiling associated to a member of B; ;4. In this figure, the interface
between the big black triangles and the big white triangles is some A (P) for some smallish
value of ¢. (I zoomed into the picture a bit to remove the boundary of the initial P.) The
picture is normalized so that the line P__ is the line at infinity. When I make these kinds

of pictures (and animations), I normalize so that the ellipse of inertia of P is the unit disk.
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Figure 1.8: The triangulation associated to a member of Bs .

1.7 Paper Organization

This paper is organized as follows.
* In §2 we prove Theorem 1.2.
* In §3 we prove Statement 1 of Theorem 1.1.
* In §4 we prove Statement 2 of Theorem 1.1.

* In §5 we prove a technical result called the Degeneration Lemma, which will help

with Statement 3 of Theorem 1.1.
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* In §6 we prove Statement 3 of Theorem 1.1.

* In §7 we introduce the triangulations discussed above. Our Theorem 7.2 will help

with the proof of Theorem 1.3.

* In §8 we prove Theorem 1.3.

In §9, an appendix, we sketch an alternate proof of Theorem 1.2 which Anton Izosi-
mov kindly explained. We also discuss Glick’s collapse formula and star relabelings

of polygons.

1.8 Visit the Flapping Bird Exhibit

Our results inject some more geometry into the pentagram zoo. Our results even have
geometric implications for the pentagram map itself. See §9.3. There are different ways
to visit the flapping bird exhibit in the zoo. You could read the proofs here, or you might
just want to to look at some images:
http://www.math.brown.edu/~reschwar/BirdGallery

You can also download and play with the software I wrote:
http://www.math.brown.edu/~reschwar/Java/Bird.TAR

The software has detailed instructions. You can view this paper as a justification for why

the nice images actually exist.

2 The Energy

The purpose of this chapter is to prove Theorem 1.2. The proof, which is similar to what I
do in [19], is more of a verification than a conceptual explanation. My computer program
allows the reader to understand the technical details of the proof better. The reader might
want to just skim this chapter on the first reading. In §9 I will sketch an alternate proof,
which I learned from Anton Izosimov. Izosimov’s proof also uses the first two sections of

this chapter.
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2.1 Projective Geometry

Let P denote the real projective plane. This is the space of 1-dimensional subspaces of R’.
The projective plane P contains R* as the affine patch. Here R* corresponds to vectors of
the form (x, y, 1), which in turn define elements of P.

Let P* denote the dual projective plane, namely the space of lines in P. The elements
in P* are naturally equivalent to 2-dimensional subspaces of R’. The line in P such a
subspace II defines is equal to the union of all 1-dimensional subspaces of II.

Any invertible linear transformation of R® induces a projective transformation of P,
and also of P*. These form the projective group PSL;(R). Such maps preserve collinear
points and coincident lines.

A duality from P to P* is an analytic diffeomorphism P — P* which maps collinear
points to coincidence lines. The classic example is the map which sends each linear
subspace of R’ to its orthogonal complement.

A PolyPoint is a cyclically ordered list of points of P. When there are »n such points,
we call this an n-Point. A PolyLine is a cyclically ordered list of lines in P, which is the
same as a cyclically ordered list of points in P*. A projective duality maps PolyLines to
PolyPoints, and vice versa.

Each n-Point determines 2" polygons in P because, for each pair of consecutive points,
we may choose one of two line segments to join them. As we mentioned in the introduction,
we have a canonical choice for k-birds. Theorem 1.2 only involves PolyPoints, and our
proof uses PolyPoints and PolyLines.

Given a n-Point P, we let P j be its jth point. We make a similar definition for n-Lines.

We always take indices mod n.

2.2 Factoring the Map

Like the pentagram map, the map A, is the product of 2 involutions. This factorization
will be useful here and in later chapters.

Given a PolyPoint P, consisting of points P, ..., P,, we define Q = D,,(P) to be the

Arnold Mathematical Journal, Vol.11(4), 2025 22


http://dx.doi.org/10.56994/ARMJ

The Flapping Birds in the Pentagram Zoo

PolyLine whose successive lines are Py ,, P ,,+1, €tc. Here P, ,, denotes the line through

P, and P,,, etc. We labed the vertices so that

Q_m—i = Piiym- )

This is a convenient choice. We define the action of D,, on PolyLines in the same way,
switching the roles of points and lines. For PolyLines, P, ,, is the intersection of the line
P, with the line P,,. The map D,, is an involution which swaps PolyPoints with PolyLines.

We have the compositions
Ay = DyoDyy1, At = Dygq0Dy. 8)

The energy y, makes sense for n-Lines as well as for n-Points. The quantities y, oD, (P)
and y; oDy, ,(P) can be computed directly from the PolyPoint P. Figure 2.1 shows schemat-
ically the 4-tuples associated to x(0,k,Q) for Q = P and D, (P) and D, ,(P). In each case,
x1(Q)1is a product of n cross ratios like these. If we want to compute the factor of y, (D, (P))
associated to index i we subtract (rather than add) i from the indices shown in the middle

figure. A similar rule goes for D, ,(P).

s -2k-1

Figure 2.1: Computing the k-energy.

Theorem 1.2 follows from the next two results.
Lemma 2.1. y,oD; = yy.
Lemma 2.2. y;oD;.; = xi-
These results have almost identical proofs. We consider Lemma 2.1 in detail and then

explain the small changes needed for Lemma 2.2.
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2.3 Proof of the First Result

We study the ratio

R(P) = M_ 9)

Xk(P)
We want to show that R(P) equals 1 wherever it is defined. We certainly have R(P) = 1

when P is the regular n-Point.
Given a PolyPoint P we choose a pair of vertices a, b with |a — b| = k. We define P(¢) to

be the PolyPoint obtained by replacing P, with
(1 — )P, + tPy,. (10)

Figure 2.2 shows what we are talking about, in case k = 3. We have rotated the picture so

that P, and P, both lie on the X-axis.

Figure 2.2: Connecting one PolyPoint to another by sliding a point.

The two functions

F©) = x(P)), 8(t) = xioDk(P(1)) (11)

are each rational functions of t. Our notation does not reflect that f and g depend on
P,a,b.
A linear fractional transformation is a map of the form

at + 8
_)

m, a,B,7,6 €ER, ad — By #0.

Lemma 2.3 (Factor I). Ifn > 4k + 2 and P is a generically chosen n-Point, then f(t) and g(t)
are each products of 4 linear fractional transformations. The zeros of f and g occur at the

same points and the poles of f and g occur at the same points. Hence f /g is constant.
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The only reason we choose n > 4k + 2 in the Factor Lemma is so that the various
diagonals involved in the proof do not have common endpoints. The Factor Lemma I
works the same way for all k and for all choices of (large) n. We write P « Q if we can
choose indices a,b and some t € R such that Q = P(¢). The Factor Lemma implies that
when P, Q are generic and P « Q we have R(P) = R(Q). The result for non-generic choices

of P follows from continuity. Any n-Point Q can be included in a finite chain
Py Py oo Py =0Q,

where P, is the regular n-Point. Hence R(Q) = R(P,) = 1. This shows that Lemma 2.1 holds
for (k,n) where k > 2 and n > 4k + 2. (The case k = 1 is a main result of [19], and by now

has many proofs.)

Lemma 2.4. If Lemma 2.1 is true for all large values of n, then it is true for all values of n.

Proof: If we are interested in the result for small values of n, we can replace a given
PolyPoint P with its m-fold cyclic cover mP. We have y,(mP) = y,(P)" and y,(Dy(mP)) =

xx(Dr(p))™. Thus, the result for large n implies the result for small n. &

In view of Equation 4 we have

(@) = f1()...f (D), [ = x(, k, P(1)). (12)

Thus f(t) is the product of n “local” cross ratios. We call an index j asleep if none of the
lines involved in the cross ratio f;(t) depend on ¢. In other words, the lines do not vary at
all with ¢. Otherwise we call j awake.

As we vary t, only the diagonals P, change for h = —k,—k — 1,k + 1, k. From this fact,

it is not surprising that there are precisely 4 awake indices. These indices are
jo = O, jl = k + 1, j2 == —k - 1, j3 = —k (13)
The index k is not awake because the diagonal P, (t) does not move with ¢.

Arnold Mathematical Journal, Vol.11(4), 2025 25


http://dx.doi.org/10.56994/ARMJ

Richard Evan Schwartz

We define a chord of P(t) to be a line defined by a pair of vertices of P(t). The point
Py(t) moves at linear speed, and the 4 lines involved in the calculation of fcj(t) are distinct
unless Py(t) lies in one of the chords of P(t). Thus fcj(t) only has zeros and poles at the
corresponding values of ¢. It turns out that only the following chords are involved.

—k —k —k -k k-1 —-k-1 k+1 k+1
k-1 k+1 1 -2k -1 -1 —2k -1 1 2k+1

(14)

We call these c,, ..., c;. For instance, ¢, is the line through P_, and P_;_,. Let ¢; denote the
value of ¢ such that P(¢;) € c;.

The PolyPoint Q(t) = D, (P(t)) has the same structure as P(t). Up to projective transfor-
mations Q(¢) is also obtained from the regular PolyPoint by moving a single vertex along
one of the k-diagonals. The pattern of zeros and poles is not precisely the same because
the chords of Q(t) do not correspond to the chords of P(¢) in a completely straightfor-
ward way. The k-diagonals of Q(¢) correspond to the vertices of P(t) and vice versa. The
(k + 1) diagonals of Q(¢) correspond to the vertices of A L(P(r)). This is what gives us our
quadruples of points in the middle picture in Figure 2.1.

We now list the pattern of zeros and poles. We explain our notation by way of example.

The quadruple (f,2,4,5) indicates that f. has a simple zero at f, and a simple pole at ¢s.
(f,0,0,1), (f,1,6,7), (f,2,4,5), (f,3,2,3). (15)

(g: 07 6’ 5)’ (g’ 170’ 3)7 (g; 2, 27 1)’ (g7 35 47 7)' (16)

Since these functions have holomorphic extensions to C with no other zeros and poles,
these functions are linear fractional transformations. This pattern establishes the Factor
Lemma I.

Checking that the pattern is correct is just a matter of inspection. We give two example

checks.
* To see why f, has a simple zero at ¢, we consider the quintuple
(—k—1,-2k —1,-2k — 2,0, —1).
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At t, the two diagonals P_,_; , and P_,_; _; coincide. In terms of the cross ratios of
the slopes we are computing y(a, b,c,d) with a = b. The point Py(t) is moving with

linear speed and so the zero is simple.

* To see why g., has a simple pole at ¢, we consider the 4 points

Porojr2 N Priy1s Pryrs Pis Prgpr NP_gp. (17)

These are all contained in the k-diagonal P, ;,;, which corresponds to the vertex
(—k — 1) of Di(P). At t = t, the three points Py(t) and P_; and P, are collinear. This
makes the 2nd and 4th listed point coincided. In terms of our cross ratio y(a, b, c,d)
we have b = d. This gives us a pole. The pole is simple because the points come

together at linear speed.
The other explanations are similar. The reader can see graphical illustrations of these
zeros and poles using our program.
2.4 Proof of the Second Result

The proof of Lemma 2.2 is essentially identical to the proof of Lemmma 2.1. Here are the
changes. The Factor Lemma II has precisely the same statement as the Factor Lemma I,

except that
* When defining P(t) we use points P, and P, with |a — b| = k + 1.
* We are comparing P(t) with D, ,(P(t)).

This changes the definition of the functions f and g. With these changes made, the Factor
Lemma I is replaced by the Factor Lemma II, which has an identical statement. This time

the chords involved are as follows.

k-1 —-k-1 —-k-1 —-k-1 -k —k k k
-k k -1 -2k -1 1 —2k—-1 -1 2k+1

(18)
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This time the 4 awake indices are:
Jo=0, ji=k, jo=-k-1, j;=-k (19)

Here is the pattern of zeros and poles.
(f,0,1,0), (f,1,7,6), (f,2,3,2), (f,3,5,4). (20)

(g: 0’ 57 6)’ (g’ 17 3’ O)a (g; 2’ 75 4)’ (g, 35 1’ 2)' (21)

The pictures in these cases look almost identical to the previous case. The reader can see
these pictures by operating my computer program. Again, the zeros of f and g are located
at the same places, and likewise the poles of f and g are located at the same places. Hence

f/g is constant. This completes the proof the Factor Lemma II, which implies Lemma 2.2.

3 The Soul of the Bird

3.1 Goal of the Chapter

Given a polygon P c R?, let P be the closure of the bounded components of R* — P and let
P! be the interior of P. (Eventually we will see that birds are embedded, so P will be a
closed topological disk and P’ will be an open topological disk.)

Suppose now that P(¢t) for ¢t € [0,1] is a pathin B, starting at the regular n-gon P(0). We
can adjust by a continuous family of projective transformations so that P(¢) is a bounded
polygon in R* for all ¢ € [0,1]. We orient P(0) counter-clockwise around P/(0). We extend
this orientation choice continuously to P(t). We let P,,(¢) denote the diagonal through
vertices P,(t) and P,(t). We orient P, ,(t) so that it points from P,(t) to P,(t). We take
indices mod n.

We now recall a definition from the introduction: When P is embedded, we say that
P is strictly star shaped with respect to x € P! if each ray emanating from x intersects P

exactly once.
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3

7

Figure 3.1: The soul of a 3-bird

Each such (k+1)-diagonal defines an oriented line that contains it, and also the (closed)
distinguished half plane which lies to the left of the oriented line. These n half-planes
vary continuously with ¢. The soul of P(t), which we denote S(t), is the intersection of the
distinguished half-planes. Figure 3.1 shows the an example.

The goal of this chapter is to prove the following result.
Theorem 3.1. Let P be a bird and let S be its soul. Then:
1. S is has non-empty interior.
2. ScP.
3. P is strictly star-shaped with respect to any point in S.

Theorem 3.1 immediately implies Statement 1 of Theorem 1.1.

We are going to give a homotopical proof of Theorem 3.1. We say that a value ¢t € [0, 1]
is a good parameter if Theorem 3.1 holds for P(t). All three conclusions of Theorem 3.1 are
open conditions. Finally, 0 is a good parameter. For all these reasons, it suffices to prove
that the set of good parameters is closed. By truncating our path at the first supposed

failure, we reduce to the case when Theorem 3.1 holds for all ¢t € [0, 1).
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3.2 The Proof

For ease of notation we set X = X(1) for any object X associated to P(1).

Lemma 3.2. If P is any k-bird, then P, and P, lie to the left of Py ;1. The same goes if all

indices are cyclically shifted by the same amount.

Proof: Consider the triangle with vertices Py(t) and P,(t) and P,,,(t). The k-niceness
condition implies that this triangle is non-degenerate for all ¢t € [0, 1]. Since Py(¢) lies to
to the left of Py ,;(¢), the non-degeneracy implies the same result for ¢t = 1. The same

argument works for the triple 2k + 1,k,k +1). &

Lemma 3.3. S is non-empty and contained in PL.

Proof: By continuity, S is nonempty and contained in P u P!. By the k-niceness property
and continuity, P, lies strictly to the right of Py ;. Hence the entire half-open edge [Py, P;)
lies strictly to the right of P, ,.,. Hence [Py, P;) is disjoint from S. By cyclic relabeling, the

same goes for all the other half-open edges. Hence SN P = ¢. Hence S C P!. &

Lemma 3.4. P is strictly star-shaped with respect to any point of S.

Proof: Since P(¢) is strictly star-shaped with respect to all points of S(¢) for ¢ < 1, this
lemma can only fail if there is an edge of P whose extending line contains a point x € S.

We can cyclically relabel so that the edge of P,P;.

k+1

Figure 3.2: The diagonal Py, does not separate 1 from x.
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Since x ¢ P, either P, lies between P, and x or P, lies in between x and P;. In the first
case, both P, and x lie on the same side of the diagonal P .,. This is a contradiction: P,
is supposed to lie on the right and x is supposed to lie on the left. In the second case we

get the same kind of contradiction with respect to the diagonal P_; ;. &

We say that P has opposing (k + 1)-diagonals if it has a pair of (k + 1)-diagonals which
lie in the same line and point in opposite directions. In this case, the two left half-spaces

are on opposite sides of the common line.

Lemma 3.5. P does not have opposing (k + 1)-diagonals.

Proof: We suppose that P has opposing diagonals and we derive a contradiction. In this
case S, which is the intersection of all the associated left half-planes, must be a subset of
the line L containing these diagonals. But then P intersects L in at least 4 points, none of
which lie in S. But then P cannot be strictly star-shaped with respect to any point of S.

This is a contradiction. &

We call three (k + 1)-diagonals of P(t) interlaced if the intersection of their left half-

spaces is a triangle. See Figure 3.3.

b3 a1

a2
bl

b2

a3

Figure 3.3: Interlaced diagonals on P(t).
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Given interlaced (k + 1)-diagonals, and a point x in the intersection, the circle of rays
emanating from x encounters the endpoints of the diagonals in an alternating pattern:
a,,bs, a,, by, as, by, Wwhere a,, a,, a; are the tail points and b,, b,, b; are the head points. Here

a, names the vertex P, (t), etc.

Lemma 3.6. P(t) cannot have interlaced diagonals for t < 1.

Proof: Choose x € S(t). The n-gon P(t) is strictly star-shaped with respect to x. Hence, the
vertices of P are encountered in order (mod ») by a family of rays that emanate from x
and rotates around full-circle. Given the order these vertices are encountered, we have
aj;1 = a; +7;, where ; < k. Here we are taking the subscripts mod 3 and the vertex
values mod n. This tells us that n = 5, + 1, + 13 < 3k. This contradicts the fact that n > 3k.
o

It only remains to show that S has non-empty interior. A special case of Helly’s
Theorem says the following: If we have a finite number of convex subsets of R then
they all intersect provided that every 3 of them intersect. Applying Helly’s Theorem to
the set of interiors of our distinguished half-planes, we conclude that we can find 3 of
these open half-planes whose triple intersection is empty. On the other hand, the triple
intersection of the closed half-planes contains x. Since P has no opposing diagonals, this
is only possible if the 3 associated diagonals are interlaced for ¢ sufficiently close to 1.

This contradicts Lemma 3.6. Hence S has non-empty interior.

4 The Feathers of the Bird

4.1 Goal of the Chapter

Recall that P! is the interior of the region bounded by P. We call the union of black

triangles in Figure 4.1 the feathers of the bird. the black region in the center is the soul.
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Figure 4.1 The feathers of a 3-bird.

Each feather F of a k-bird P is the convex hull of its base, an edge e of P, and its tip, a
vertex of A (P).
The goal of this chapter is to prove the following result, which says that the simple

topological picture shown in Figure 4.1 always holds.
Theorem 4.1. The following is true.
1. Let F be an feather with base e. Then F — {e} C P'.
2. Distinct feathers can only intersect at a vertex of P.
3. The line segment connecting two consecutive feather tips lies in P’.

When we apply A, to P we are just specifying the points of A, (P). We define the polygon
A (P) so that the edges are the bounded segments connecting the consecutive tips of the
feathers of P. With this definion, Statement 2 of Theorem 1.1 follows immediately from

Theorem 4.1.
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4.2 The Proof

There is one crucial idea in the proof of Theorem 4.1: The soul of P lies in the sector F*

opposite any of its feathers F. See Figure 4.2.

3
e

Figure 4.2 The soul lies in the sectors opposite the feathers.

We will give a homotopical proof of Theorem 4.1. By truncating our path of birds, we

can assume that Theorem 4.1 holds for all t € [0,1). We set P = P(1), etc.

Statement 1: Figure 4.3 shows the 2 ways that Statement 1 could fail:
1. The tip v of the feather F could coincide with some p € P.

2. Some p € P could lie in the interior point of 0F —e.

W

(U
Figure 4.3: Case 1 (left) and Case 2 (right).

For all x € F*, the ray xp intersects P both at p and at a point p’ € e. This contradicts

the fact that for any x € S c F*, the polygon P is strictly star-shaped with respect to x.
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This establishes Statement 1 of Theorem 4.1.

Statement 2: Let F, and F, be two feathers of P, having bases ¢, and e,. For Statement 2,
it suffices to prove that F; —e; and F, — e, are disjoint.

The same homotopical argument as for Statement 1 reduces us to the case when F;
and F, have disjoint interiors but dF, —e; and 6F, — e, share a common point x. If §F; and
dF, share an entire line segment then, thanks to the fact that all the feathers are oriented
the same way, we would have two (k + 1) diagonals of P lying in the same line and having
opposite orientation. Lemma 3.5 rules this out.

In particular x must be the tip of at least one feather. Figure 4.4 shows the case when

x = vy, the tip of F,, but x # v,. The case when x = v, = v, has a similar treatment.

el

Figure 4.4: Opposiing sectors are disjoint

In this case, the two sectors F; and F; are either disjoint or intersect in a single point.
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This contradicts the fact that S c F; C F; has non-empty interior. This contradiction

establishes Statement 2 of Theorem 4.1.

Statement 3: Recall that P = PuU P!. Let F; and F, be consecutive feathers with bases e;
and e, respeectively. Let f be the edge connecting the tips of F; and F,. Our homotopy

idea reduces us to the case when f c P and f n P # §. Figure 4.5 shows the situation.

Figure 4.5: The problem a common boundary point

Note that f n P must be strictly contained in the interior of f because (by Statement 1
of Theorem 4.1) the endpoints of f lie in P’. But then, f N P is disjoint from F} n F;, which
is in turn contained in the shaded region G. For any x € G and each vertex p of f, the
ray the ray xp also intersects P at a point p’ € e; U e,. This gives the same contradiction
as above when we take x € S C Fy N F; C G. This completes the proof of Statement 3 of

Theorem 4.1.
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5 The Degeneration of Birds

5.1 Statement of Result

Let By, denote the space of n-gons which are k-birds. Let y, denote the k-energy. With
the value of k fixed in the background, we say that a degenerating path is a path Q(t) of

n-gons such that
1. Q(¢t)is planar for all ¢t € [0,1].
2. All vertices of Q(t) are distinct for all ¢ € [0, 1].
3. Q(t) € By, for all t € [0,1) but Q(1) & By ,.
4. x(Q()) >¢y>0forallt e[0,1].

In this chapter we will prove the following result, which will help us prove that
Ag(By.n) C B, in the next chapter. The reader should probably just use the statement as

a black box on the first reading.

Lemma 5.1 (Degeneration). If Q(-) is a degenerating path, then all but at most one vertex

of Q(1) lies in a line segment.

Remark: Our proof only uses the fact that Q has nontrivial edges, nontrivial k-diagonals,
and nontrivial (k+1)-diagonals. Some of the other vertices could coincide and it would not
matter. Also, the same proof works if, instead of a continuous path, we have a convergent

sequence {Q(t,)} with ¢, — 1 and a limiting polygon Q(1) = lim Q(t,).

Example: Let us give an example for the case k = 1 and n = 5. Figure 5.0 shows a picture

of a pentagon Q(¢) fort =1 —s.
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Ao—(0,1)

(-2,0) (2,0)

S (-1,-s)C (1,-s)

Figure 5.0: A degenerating path in the case k =1 and n = 5.

Here s ranges from 1 to 0 as ¢t ranges from 0 to 1. We have labeled some of the slopes
to facility the calculation (which we leave to the reader) that y;(Q(t)) remains uniformly

bounded away from 0.

5.2 Distinguished Diagonals

We orient Q(t) so that it goes counter-clockwise around the region it bounds. We orient
the diagonal Q,;, so that it points from Q, to Q,. For ¢ < 1 the vertices Q,(t) and Q,(¢) lie to
the right of the diagonal Q, . 1(¢), in the sense that a person walking along this diagonal
according to its orientation would see that points in the right. This has the same proof
as Lemma 3.2. The same rule holds for all cyclic relabelings of these points. The rule
holds when ¢ < 1. Taking a limit, we get a weak version of the rule: Each of Q,(1) and
Qi (1) either lies to the right of the diagonal Q,x,(1) or on it. The same goes for cyclic
relabeings. We call this the Right Hand Rule.

Say that a distinguished diagonal of Q(t) is either a k-diagonal or a (k + 1)-diagonal.

There are 2n of these, and they come in a natural cyclic order:

Qok(t) Qop+1(8), Qri+1(), Qi i42(D), ... (22)

The pattern alternates between k and (k + 1)-diagonals. We say that a diagonal chain is a
consecutive list of these.

We say that one oriented segment L, lies ahead of another one L, if we can rotate L,
by 6 € (0, 7) radians counter-clockwise to arrive at a segment parallel to L,, In this case

we write L; < L,. We have
Qo i+1(8) < Q1 41(8) < Qppe42(8) < Qppe42(8). (23)
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k+2
k+1

1 2

Figure 5.1: The turning rule

This certainly holds when ¢ = 0. By continuity and the Right Hand Rule, this holds for all
t < 1. Taking a limit, we see that the k-diagonals of Q(1) weakly turn counter-clockwise in
the sense that either L; < L, for consecutive diagonals or else L; and L, lie in the same
line and point in the same direction. Moreover, the total turning is 2z. If we start with
one distinguished diagonal and move through the cycle then the turning angle increases

by jumps in [0, 7] until it reaches 27z. We call these observations the Turning Rule.

5.3 Collapsed Diagonals

Figure 5.2 shows the distinguished diagonals incident to Q,. We always take indices mod

n. Thus -k —1=n—-k -1 mod n.

k+1

Figure 5.2: The 4 distinguished diagonals incident to Qy(t).

We say that Q has collapsed diagonals at a vertex if Q if the 4 distinguished diagonals
incident to Q, do not all lie on distinct lines. We set Q = Q(1). We set X = X(1) for each
object X associated to Q(1).
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Since Q is planar but not k-nice, Q must have collapsed diagonals at some vertex. We

relabel so that the collapsed diagonals are at Q,.

Lemma 5.2. If Q has collapsed diagonals at Q, then Q_,_; , and Q +; point in opposite

directions or Q_; o and Q, point in the same direction.

Proof: Associated to each diagonal incident to Q, is the ray which starts at Q, and goes
in the direction of the other endpoint of the diagonal. (Warning: The ray may have the
opposite orientation than the diagonal it corresponds to.) If the angle between any of the
rays tends to 7 as t — 1 then the angle between the outer two rays tends to z. In this case
Q_ko and Qo point in the same directions. If the angle between non-adjacent rays tends
to 0 then Q_,_; o and Q,,; are squeezed together and point in opposite directions.
Suppose that the angle between adjacent rays tends to 0. If the two adjacent rays are
the middle ones, we have the case just considered. Otherwise, either the angle between
the two left rays tends to 0 or the angle between the two right rays tends to 0. In either
case, the uniform lower bound on the cross ratio forces a third diagonal to point either in
the same or the opposite direction as these adjacent diagonals when ¢t = 1. Any situation

like this leads to a case we have already considered. &

5.4 The Case of Aligned Diagonals

We say that Q has aligned diagonals at the vertex Q, if Q_;, and Q, are parallel. This is
the second option in Lemma 5.2. We make the same kind of definition at other vertices,

with the indices shifted in the obvious way;,.

Lemma 5.3. Suppose Q does not lie in a single line. Suppose also that Q has aligned
diagonals at Q. Then the diagonals Q_ ¢, Q_k 1, ..., Q_1 x, Qo all are parallel and (hence) the

2k + 1 points Q_y, ..., Qy, ..., Q. are contained in the line defined by these diagonals.

Proof: These two diagonals define a short chain of diagonals, which starts with the first

listed diagonal and ends with the second one. They also define a long chain, which starts
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with the second and ends with the first. The total turning of the diagonals is 27z, so one
of the two chains defined by our diagonals turns 2z and the other turns 0. Suppose first
that the long chain has 0 turning. This chain involves all points of Q, and forces all points

of Q to be on the same line. So, the short chain must consist of parallel diagonals. &

All we use in the rest of the proof is that Q_,, ..., Q; are all contained in a line L. By
shifting our indices, we can assume that Q,,; ¢ L. This relabeling trick comes with a cost.
Now we cannot say whether the points Q_;....Q, come in order on L. We now regain this

control.

Lemma 5.4. The length 2k-diagonal chain Q_, — ... = Qg consists entirely of parallel

diagonals. There is no turning at all.

Proof: The diagonals Q_;, and Q, . are either parallel or anti-parallel. If they are anti-
parallel, then the angle between the corresponding rays incident Q,(t) tends to 0 as t — 1.
But these are the outer two rays. This forces the angle between all 4 rays incident to Qq(¢)
to tend to 0. The whole picture just folds up like a fan. But one or these rays corresponds
to Qo x+1(t). This picture forces Q,,; € L. But this is not the case.

Now we know that Q_, and Q,, are parallel. All the diagonals in our chain are
either parallel or anti-parallel to the first and last ones in the chain. If we ever get an
anti-parallel pair, then the diagonals in the chain must turn 27 around. But then none of
the other distinguished diagonals outside our chain turns at all. As in Lemma 5.3, this

gives Q C L, which is false. &

We rotate the picture so that L coincides with the X-axis and so that Q,, points in
the positive direction. Since we are already using the words left and right for another
purpose, we say that p € L is forward of of q € L if p has larger X-coordinate. Likewise
we say that q is backwards of p in this situation. We say that Q,, points forwards. We

have established that Q_, ..., Qo all point forwards.

Lemma 5.5. Qy,, € L and both Q ., and Q, ., point backwards.
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Proof: We have arranged that Q,,; ¢ L. Let us first justify the fact that Q,,, lies above L.
This follows from Right Hand Rule applied to Q,,,; and Q, and the fact that Q,, points
forwards. Since Q_;, Q_;,;,Q; are collinear, Q has collapsed diagonals at Q,. But Q cannot
have aligned diagonals because Q; ;; is not parallel to Q_, ;. Hence Q has folded diagonals
at 1. This means that the diagonals Q_;; and Q; x, point in opposite directions. This
forces Q,,, € L and morever we can say that Q; ;,, points backwards.

We have Q, € L because 2 < k. We want to see that Q, ., points forwards and they

Suppose not. We consider the 3 distinguished diagonals

Qoks Quk+2s Qzk42-

These diagonals respectively point forwards, backwards, forwards and they all point one
direction or the other along L. But then, in going from Q,; to Q,,,, the diagonals have
already turned 2z. Since the total turn is 27, the diagonals Q, x4, Q3 x+3, > Quntk are all

parallel. But then Q,, ...,Q,, € L. This contradicts the fact that Q,,, € L. &

Lemma 5.6. For at least one of the two indices j € {2k + 2,2k + 3} we have Q; € L and Q.

points forwards.

Proof: Since Q,, Q,, Q;,, are collinear, Q has collapsed diagonals at Q;,,. So, by Lemma
5.2, we either have folded diagonals at Q,,, or aligned diagonals at Q,,. The aligned case
gives Q,.4, € L and the folded case gives Q,,,3; € L. We need to work out the direction of
pointing in each case.

Consider the aligned case. Suppose Q. k+> Points backwards, as shown in Figure

5.3.
k+1

‘
2k+2 k+2

Figure 5.3: Violation of the Right Hand Rule
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This violates the Right Hand Rule for Q, and Q. 5+, because Q,,; lies above L.
Consider the folded case. Since Q43 and Qy x, point in opposite directions, and

Q1 1+ points backwards (by the previous lemma), Qy,,r+3 points forwards. &

Let j € {2k + 2,2k + 3} be the index from Lemma 5.6. Consider the 3 diagonals

Qoks Qris1r  Qrsa,j-

These diagonals are all parallel to L and respectively point in the forwards, backwards,
forwards direction. This means that the diagonals in the chain Q,x — ... = Q4 ; have

already turned 27 radians. But this means that the diagonals

Qk+2,2k+3a Qk+3,2k+3’ Qk+3,2k+4a Qo,k:Qn,n+k

are all parallel and point forwards along L. Hence Qy,,, Qx43, -, Q, € L. Hence all points

but Q. liein L.

5.5 The Case of Double Folded Diagonals

We fix a value of k. Say that two indices a,b € Z/n are far if their distance is at least k
in Z/n. We say that Q has far folded diagonals if Q has folded diagonals at Q, and Q has
folded diagonals at b and a, b are far.

In this case we have two parallel diagonals Q, 4x+1 and Qp p4r+1. As in the proof of
Lemma 5.3, one of the two diagonal chains defined by these diagonals consists of parallel
diagonals. The far condition guarantees that at least 2k +1 consecutive points are involved
in each chain. But then we get 2k +1 collinear points. So, if Q has far folded diagonals, then
the same proof as in the previous section shows that the conclusion of the Degeneration

Lemma holds for Q.

5.6 Good Folded Diagonals

We say that the folded diagonals Q_,_; o and Qg x4 are good if all the points Qy1, Q425 - Qn_k—1

are collinear. This notion is empty when k = 2 and n = 7 but otherwise it has content. In
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this section we treat the case when Q has a pair of good folded diagonals. We start by
discussing an auxiliary notion.
We say that Q has backtracked edges at Q,, if the angle between the edges Q, ,,; and

Qg.q-1 1s either 0 or 2.

Lemma 5.7. If Q has backtracked edges at Q, then Q has folded diagonals at Q,.

Proof: For t € [0, 1), the edges of Q emanating from a divide the plane into 4 sectors, and
one of these sectors, C(t) contains all the distinguished diagonals emanating from Q,(¢).
The sector C(¢) is the one which locally intersects Q(t) near Q,(t). The angle of C(t) tends
to 0 ast — 1, forcing all the distinguished diagonals emanating from Q,(¢) to squeeze

down as ¢t — 1. This gives us the folded diagonals. &

We will use Lemma 5.7 in our analysis of good folded edges. Now we get to it. We
rotate so that our two diagonals are in the line L, which is the X-axis. We normalize so

that Q, is the origin, and Q,,; and Q_,_, are forward of Q,.

Lemma 5.8. Ifn > 3k+1and Q_y_1, Qo x+1 are good folded diagonals, then the Degeneration

Lemma is true for Q.

Proof: Suppose first that Q, € L. Then Q has folded diagonals at Q;,,. Whenn > 3k + 1
the indices (k + 1) and (—k — 1) are k-far. This gives Q far folded diagonals, a case we have
already treated.

To finish our proof, we show that Q, € L. We explore some of the other points. We
know that Q;,,...,Q,_x—1 € L. We can relabel dihedrally so that Q,,_;_, is forwards of
Qi+1- We claim that Qy,, is forwards of Q,,;. Suppose not. Then there is some index
a € {k +2,...,—k — 2} such that Q, is backwards of Q,,,. What is going on is that our points
would start by moving backwards on L and eventually they have to turn around. The
index a is the turn-around index. This gives us backtracked edges at Q,. By Lemma 5.7,
we have folded diagonals at Q,. But a and 0 are k-far indices. This gives Q far-folded

diagonals.
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The only way out of the contradiction is that Q. is forwards of Q; ;.

k+1 k+2
% > O=0 O

1

Figure 5.4: A contradiction involving Q;.

Suppose Q; ¢ L. by the Right Hand Rule applied to the diagonal Q ., the point Q;
lies beneath L, as shown in Figure 5.4. But then Q,,, lies to the left of the diagonal Q, y ..

This violates the Right Hand Rule. Now we know that Q, € L. &

Lemma 5.9. Suppose n =3k + 1 and k > 2. If Q_;_1 9, Qo x+1 are good folded diagonals, then

the Degeneration Lemma is true for Q.

Proof: The same argument as in Lemma 5.8 establishes the key containment Q, € L. (We
need k > 2 for this.) From here, as in Lemma 5.8, we deduce that Q_y_; o and Q1 54, are
parallel. This time the conclusion we get from this is not as good. We get a run of k points
in L, and then a point not necessarily in L, and then a run of k additional points in L.

The points are Qy1, ..., Qo415 ---» Qo With the point Q_, omitted. But then Q has folded
diagonals at each of these points except the outer two, Q,,; and Q,. But then For each
such index h, we see that both Q. 1) belong to L. This gives us all but one point in L.

It is instructive to consider an example, say k = 4 and n = 13. In this case, our ini-
tial run of points in L is Qs, Qs, Q7, Qg, Q19, Q11> Q12, Q13- The folded diagonals at Qg, Q;, Qg
respectively give Q;,Q,,Q; € L. The folded diagonals at Q,y, Q;;,Q;, respectively give
Q2,Q03,Q,€L. &

Finally we consider the case k = 2 and n = 7. In this case all we know is that Q,, Q3,Q4 €
L with Q;, Q, forwards of Q,. We can dihedrally relabel to that Q, is forwards of Q;. Here
Q3 = Q4 and Q4 = Qy,4,- So, now we can run the same argument as in Lemma 5.9 to

conclude that Q, € L. Now we proceed as in the proof of Lemma 5.9.
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5.7 Properties of the Soul

We define S = S(1) to be the set of all accumulation points of sequences {p(t,)} where
p(t,) € S(t,) and t, — 1. Here S(t,) is the soul of P(t,). We have one more case to analyze,
namely ungood folded diagonals. To make our argument go smoothly, we first prove

some properties about S.

Lemma 5.10. Suppose that Q has folded diagonals at Q,. If the Degeneration Lemma is

false for Q, then S is contained in the line segment joining Q, to Q.

Proof: Here is a general statement about S. Since S(¢) is non-empty and closed for all
t < 1, we see by compactness that S is also a non-empty closed subset of the closed region
bounded by Q. By continuity S lies to the left of all the closed half-planes defined by the
oriented (k + 1) diagonals (or in their boundaries). Since S lies to the left of (or on) each
(k + 1) diagonal, S is a subset of the line L common to the folded diagonals and indeed
S lies to one side of the fold point Q,. From the way we have normalized, S lies in the
X-axis forward of Q,. (The point Q, might be an endpoint of S.)

If S contains points of L that lie forward of Q,,; then either the diagonal Qy x+>
points along the positive X-axis or into the lower half-plane. In the former cases, the
diagonals Qg 41, Qk+1.2k+2 are parallel and we get at least 2k + 1 collinear points and so
the Degeneration Lemma holds for Q.

If Qy11.2k42 Points into the negative half-plane, then the diagonal Q,,, turns more
than 7 degrees before reaching Q. .. But then the diagonals in the chain Q_;_; , —

e = Qo1 = Qp41.2k+2 turn more than 2z degrees. This is a contradiction. &

Remark: The same argument works with Q_;_; in place of Q;,;.

Lemma 5.11. If the Degeneration Lemma is false for Q then S cannot intersect Q in the

interior of an edge of Q.

Proof: Suppose this happens. We relabel so that the edge is Q, ;. By the Right Hand Rule,

the point Q, is not on the left of the diagonal Q, ;.;. At the same time, S is not on the right
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of the diagonal. The only possibility is that Q,, Qy, Qx,; are collinear. Likewise Q_;, Qy, Q;
are collinear. Furtheremore, the (k + 1)-diagonals Q_;; and Q. are parallel. Figure 5.5

shows the situation for Q(¢) and S(t) when ¢ is very near 1.

-k k+1

’\’>%/"‘°’°“'<”/4
0 1

Figure 5.5: The relevant points and lines.

But now we have two (k + 1)-diagonals that are parallel and which start at indices that
are k apart in Z /n. This gives us 2k + 1 consecutive collinear points on the line containing
our edge. We know how to finish the Degeneration Lemma in this case. The only way out

is that S cannot intersect Q in the interior of an edge of Q. &

Lemma 5.12. Ifthe Degeneration Lemma is false for Q, then S cannot contain a vertex of Q.

Proof: We relabel so that Q, € S. The same analysis as in the previous lemma shows that
Q;,Qo, Q_ are collinear. Figure 5.6. shows the situation for ¢t near 1. At the same time, the

points Q_;, Q,, Q, are collinear.

l

Oe— —— 1

Figure 5.6: The relevant points and lines

To avoid a case of the Degeneration Lemma we have already done, Q must have folded
diagonals at Q_;. Likewise Q must have folded diagonals at Q,. But then Q has far folded

diagonals, and the Degeneration Lemma holds for Q. &

Now let us bring back our assumptions: Q has folded diagonals at Q, and the points

Qo, Qi41, Q_j—1 all lie in the X-axis in the forward order listed.
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Corollary 5.13. If the Degeneration Lemma is false for Q then S lies in the open interval
bounded by Q, and Q,., and no point of S lies in Q. In particular, S contains a point x,

forwards of Q, and backwards of both Q, ., and Q_,_,, that is disjoint from Q.

5.8 Ungood Folded Diagonals

The only case left is when Q does not have 2k + 1 consecutive collinear points, and when
all folded diagonals of Q are ungood. Without loss of generality, we will consider the case
when Q has ungood folded diagonals at Q,. We normalize as in the previous section, so
that Qq, Qy41,Q__; lie in forward order on L, which is the X-axis. Let x be a point from
Corollary 5.13.

We call an edge of Q escaping if e n L is a single point. We call two different edges of Q,
in the labeled sense, twinned if they are both escaping and if they intersect in an open
interval. Even if two distinctly labeled edges of Q coincide, we consider them different as

labeled edges.

Lemma 5.14. Q cannot have twinned escaping edges.

Proof: Consider Q(t) for ¢ near 1. This polygon is strictly star shaped with respect to a

point x(¢) near x.

rt the twinned
pa edges of Q

of Q(t)
D /

%
L &

Figure 5.7: Rays intersecting the twinned segments

There is a disk D about x such that every p € D contains a ray which intersects the
twinned edges in the middle third portion of their intersection. Figure 5.7 shows what
we mean. Once ¢t is sufficiently near 1, the soul S(¢t) will intersect D, and for all points

p € D there will be a ray which intersects Q(¢) twice. This contradicts the fact that Q(t) is
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strictly star-shaped with respect to all points of S(t). &

We say that an escape edge rises above L if it intersects the upper half plane in a

segment.

Lemma 5.15. Q cannot have two escape edges which rise above L and intersect Q on the

same side of the point x.

Proof: This situation is similar to the previous proof. In this case, there is a small disk D
about x such that every point p € D has a ray which intersects both rising escape edges
transversely, and in the middle third of each of the two subsegments of these escape

edges that lie above L. Figure 5.8 shows this situation.

the
rising
edges par—t
“ *//of Q(t)

Figuren 5.8: Rays intersecting the rising segments.

In this case, some part of Q(t) closely shadows our two escape edges for ¢ near 1. But
then, once ¢ is sufficiently near 1, each ray we have been talking about intersects Q(¢)
at least twice, once by each escaping edge. This gives the same contradiction as in the

previous lemma. &

We define falling escape segments the same way. The same statement as in Lemma
5.15 works for falling escape segments. Since x ¢ Q we conclude that Q can have at most
4 escaping segments total.

But Q = Q, UQ_, where Q, is an arc of Q that starts at Q,,; and ends at Q_,_,. Since

both these arcs start and end on L, and since both do not remain entirely on L, we see
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that each arc has at least 2 escape edges, and none of these are twinned. This means that
both Q, and Q_ have exactly two escape edges.

Now for the moment of truth: Consider Q,. Since Q, just has 2 escape edges, they both
have to be either rising or falling. Also, since Q, starts and ends on the same side of x,
and cannot intersect x, both the escape edges for Q. are on the same side of x. This is a

contradiction. The same argument would work for Q_ but we don’t need to make it.

6 The Persistence of Birds

In this chapter we prove Statement 3 of Theorem 1.1, namely the fact that Ag(B, ) = B, .
First we use the Degeneration Lemma to prove that A, (B, ) C B, . Then we deduce the

opposite containment from projective duality and from the factoring of A, given in §2.2.

6.1 Containment

Suppose for the sake of contradiction that there is some P € B, such that A(P) ¢ By .
Recall that there is a continuous path P(¢) for ¢t € [0, 1] such that P(0) is the regular n-gon.

Define Q(t) = A, (P(t)). There is some ¢, € [0, 1] such that Q(t,) & By ,. We can truncate
our path so that ¢, = 1. In other words, Q(t) € B, for t € [0,1) but Q(1) & By .

Lemma 6.1. Q(-) is a degenerating path.

Proof: Note that Q(-) is planar and hence satisfies Property 1 for degenerating paths. Let
P =P(1) and Q = Q(1). If Q doe not have all distinct vertices then two different feathers of
P intersect at a point which (by Statement 2 of Theorem 1.1) lies in P!. This contradicts
Statement 2 of Theorem 4.1. Hence Q(-) satisfies Property 2 for degenerating paths. By
construction, Q(t) € B, for all t € [0,1). Hence Q(-) satisfies Property 3. The energy y;
is well-defined and continuous on B, ,. Hence, by compactness, y,(P(t)) > ¢, for some
€o > 0and all ¢ € [0,1]. Now for the crucial step: We have already proved that y; oA, = xi.
Hence y;(Q(t)) > ¢, for all t € [0,1]. That is, Q(-) satisfies Property 4 for degenerating
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paths. &

Now we apply the Degeneration Lemma to Q(-). We conclude that all but at most 1
vertex of Q(1) lies in a line L. Stating this in terms of P(1), we can say that all but at most
one of the feathers of P(1) have their tips in a single line L. Call an edge of P(1) ordinary
if the feather associated to it has its tip in L. We call the remaining edge, if there is one,
special. Thus, all but at most one edge of P is ordinary.

Let S(¢) be the soul of P(¢). We know that S(1) has non-empty interior by Theorem 3.1.

For ease of notation we set P = P(1) and S = S(1).

Lemma 6.2. P cannot have ordinary edges e, and e, that lie on opposite sides of L and are

disjoint from L.

Proof: Suppose this happens. Figure 6.1 shows the situation.

/L—\/%V
= i

F2

Figure 6.1: Two feathers on opposite sides of L.

Let F, and F, be the two associated feathers. Then the opposite sector F; lies above L,
and the opposite sector F; lies below L and the two tips are distinct. But then S(1), which

must lie in the intersection of these sectors, is empty. &

Lemma 6.3. P cannot have more than 2 ordinary edges which intersect L.

Proof: Note that an ordinary edge cannot lie in L because then the tip would not. So, an
ordinary edge that intersects L does so either at a single vertex or at an interior point. As
we trace along L in one direction or the other we encounter the first intersecting edge and

then the last one and then some other intersecting edge. Let F,.F,.F; be the two feathers,
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as shown in Figure 6.3. Let ¢; be the edge of F; that belongs to P. Let v; be the tip of F;.
(Figure 6.3 shows the case when e; N L is an interior point of e; for each j = 1,2, 3, but the

same argument would work if some of these intersection points were vertices.)

e3
vl outside v2

Figure 6.2: Three or more crossing edges

One of the two arcs « of Q joining v, to v, stays in L, namely the one avoiding the
one point of Q not on L. However, « passes right through F; and in particular crosses e;
transversely. However, one side of F; is outside P. Hence « is not contained in P/, the
interior of the region bounded by P. This contradicts Statement 2 of Theorem 1.1, which

saysthatQ c Pl. &

The line L divides the plane into two open half-planes, which we call the sides of
L. Lemma 6.2 says that P cannot have ordinary edges contained in opposite sides of L.
Lemma 6.3 says that at most 2 ordinary edges can intersect L. Hence, all but at most 2 of
the ordinary edges of P lie on one side of L. Call this the abundant side of L. Call the other
side the barren side. The barren side contains no ordinary edges at all, and perhaps the

special edge. In particular, at most two vertices of P lie in the barren side.

abundant
el c2
' L
/\/Xﬁ
vi v2 barren

Figure 6.3: Following the diagonals bounding a feather

At the same time, each ordinary edge on the abundant side contributes two vertices to

the barren side: We just follow the diagonals comprising the corresponding feather. These
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diagonals cross L from the abundant side into the barren side. Two different ordinary
edges contribute at least 3 distinct vertices to the barren side. This is a contradiction.
We have ruled out all possible behavior for P = P(1) assuming that Q = Q(1) is
degenerate. Hence, Q(1) is not degenerate. This means that Q(1) is a bird. This completes
the proof that
Ax(By.n) C By - (24)

6.2 Equality
We use the notation from §2.2. Equation 8 implies that
A = Diy10A0Dp - (25)

So far, Equation 25 makes sense in terms of PolyPoints and PolyLines.

Below we will explain how to interpret D,,; as a map from polygons in P to polygons
in P* and also as a map from polygons in P* to polygons in P. Since the dual projective
plane P* is an isomorphic copy of P, it makes sense to define B; . This space is just the

image of By , under any projective duality. Below we will prove
Theorem 6.4. Dy (B ,) C B},

It then follows from projective duality that Dy,,(B; ) C By ,. Combining these equa-
tions with Equation 25 we see that A Y(B,.x) C By This combines with Equation 24 to
finish the proof of Theorem 1.1.

Now we prove Theorem 6.4.

Lemma 6.5. If P € By ,, then we can enhance Dy ,(P) in such a way that Dy,(P) is a planar

polygon in P*. The enhancement varies continuously.

Proof: A polygon is a PolyPoint together with additional data specifying an edge in P
joining each consecutive pair of points. Dually, we get a polygon in P* from a PolyLine by
specifying, for each pair of consecutive lines L;, L;,,, an arc of the pencil of lines through

the intersection point which connects L; to L;;.

Arnold Mathematical Journal, Vol.11(4), 2025 53


http://dx.doi.org/10.56994/ARMJ

Richard Evan Schwartz

Specifying an enhancement of D, ;(P) is the same as specifing, for each consecutive
pair L, L, of (k + 1) diagonals of P, an arc of the pencil through their intersection that
connects L;, L,. There are two possible arcs. One of them avoids the interior of the soul
of P and the other one sweeps through the soul of P. We choose the arc that avoids the

soul interior. Figure 6.4 shows that we mean for a concrete example.

Figure 6.4: Enhancing a PolyLine to a polygon: Avoid the soul.

Since the soul of P has non-empty interior, there exists a point x € P which is disjoint
from all these pencil-arcs. Applying duality, this exactly says that there is some line in P*
which is disjoint from all the edges of our enhanced D, ,(P). Hence, this enhancement

makes Dy ;(P) planar. Our choice also varies continuously on B,, ;.. #

Lemma 6.6. D, ., maps a member of B, , to an n-gon which is k-nice.

Proof: Let Q = D;,1(P). A (k + 1)-diagonal of Q is just a vertex of P. A k diagonal of Q is a
vertex of Ay (p). Thus, to check the k-nice property for Q we need to take n-collections of
4-tuples of points and check that they are distinct. In each case, the points are collinear

because the lines of Q are coincident.
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Figure 6.5 One of the n different 4-tuples we need to check.

Once we make this specification, there is really combinatorially only possibility for
which collections we need to check. Figure 6.5 shows one such 4-tuple, a,b,c,d. The
shaded triangles are the two feathers of P whose tips are b,c. But a, b, c,d are distinct

vertices of P U A (P) and so they are distinct. That is all there is to it. &

To show that Q = D, ,(P) is a k-bird, we consider a continuous path P(¢t) from the
regular n-gon P(0) to P = P(1). We set Q(t) = P(t). By construction, Q(0) is a copy of the
regular n-gon in P*, and Q(¢) is k-nice for all ¢ € [0,1], and Q(¢) is a planar polygon for all
t € [0,1]. By definition Q = Q(1) is a k-bird. This completes the proof of Theorem 6.4.

7 The Triangulation

7.1 Basic Definition

In this section we gather together the results we have proved so far and explain how we

construct the triangulation 7, associated to a bird P € By ,.

Since Ay(By,,) C By, We know that A (P) is also a k-bird. Combining this with Theorem
3.1 and Theorem 4.1 we can say that A, (P) is one embedded n-gon contained in P/, the
interior of the region bounded by the embedded P. The region between P and A, (P) is
a topological annulus. Moreover, A, (P) is obtained from P by connecting the tips of the
feathers of P. The left side Figure 7.1 shows how this region is triangulated. The black
triangles are the feathers of P and each of the white triangles is made from an edge of

A (P) and two edges of adjacent feathers.
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Figure 7.1: The triangulation of the annulus

Lemma 7.1. For every member P € By ,, the associated 2n triangles have pairwise disjoint

interiors, and thus triangulate the annular region between P and A (P).

Proof: As usual, we make a homotopical argument. If this result is false for some P, then
we can look at path which starts at the regular n-gon (for which it is true) and stop at the
first place where it fails. Theorem 4.1 tells us that nothing goes wrong with the feathers
of P. The only thing that can go wrong is A, (P) fails to be an embedded polygon. Since

this does not happen, we see that in fact there is no counter-example at all. &

We can now iterate, and produce 2n triangles between A, (P) and Ai(P), etc. The right
side of Figure 7.1 shows the result of doing this many times. The fact that A, (B ,,) = Bi,
allows us to extend outward as well. When we iterate forever in both directions, we get
an infinite triangulation of a (topological) cylinder that has degree 6 everywhere. This is

what Figure 1.6 is showing. We call this bi-infinite triangulation zp.

7.2 Some Structural Results
The following result will help with the proof of Theorem 1.3.

Theorem 7.2. Let P € B, . Let S be the soul of B. Then for ¢ > n we have Ai(P) cS.
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Proof: We first note the existence of certain infinite polygonal arcs in 7. We start at a
vertex of P and then move inward to a vertex of A (P) along one of the edges. We then
continue through this vertex so that 3 triangles are on our left and 3 on our right. Figure

7.2 below shows the two paths like this that emanate from the same vertex of P.

Figure 7.2: The spiral paths.

The usual homotopical argument establishes the fact that the spiral paths are locally
convex. One can understand their combinatrics, and how they relate to the polygons in
the orbit, just by looking at the case of the regular n-gon. We call the two spiral paths in
Figure 7.2 partners. In the regular n-gon the partners intersect infinitely often. So this
is true in general. Each spiral path has an initial segment joining the initial endpoint
on P to the first intersection point with the partner. We define a petal to be the region
bounded by the initial paths of the two partners.

It is convenient to write P’ = A’(P). In the regular case, P’ is contained in the petal
for ¢ > n — 1.. Hence, the same goes in the general case. Because the initial segments are

locally conveg, the petal lies to the left of the lines extending the edges e¢; and e, when
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these edges are oriented according to the (k + 1)-diagonals of P. But this argument works
for every pair of partner spiral paths which start at a vertex of P. We conclude that for
¢ > n, the polygon P? lies to the left of all the (k + 1)-diagonals of P. But the soul of P is

exactly the intersection of all these left half planes. &

Theorem 7.2 in turn gives us information about the nesting properties of birds within

an orbit. Let S, denote the soul of P?. Let

S =[) Se- S—wo = Se- (26)
telZ teZ

It follows from Theorem 7.2 that P, = S, and P__ = S_., because
Sesn C P C S, C PL. (27)
Hence these sets are all convex subsets of an affine plane.

Corollary 7.3. Any P € By, is strictly star-shaped with respect to all points in the convex
hull of A7(P).

Proof: Since P‘*" c S,, and P? is strictly star shaped with respect to all points of S¢, we
see that P? is strictly star shaped with respect to all points of P‘**. Since S, is convex,
we can say more strongly that P? is strictly star-shaped with respect to all points of the
convex hull of P/+". Now we just set ¢ = 0 and recall the meaning of our notation, we get

the exact statement of the result. &

An immediate corollary is that P is strictly star-shaped with respect to P,. (Theorem

1.3 says that this is a single point.)
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8 Nesting Properties of Birds

8.1 Duality

In this chapter we prove Theorem 1.3. In this first section we show how Statement 1 of
Theorem 1.3 implies Statement 2. We want to prove that the “backwards union” P__, is
an affine plane. Here P € B, is a k-bird.

We take ¢ > 0 and consider P~¢ = A;f(P). Since P~ is planar, there is a closed set A, of
lines in P which miss P~¢. These sets of lines are nested: A; D A, D A;.... The intersection
is non-empty and contains some line L. We can normalize so that L is the line at infinity.
Thus all P~ lie in R*>. We want to see that P__ = R%.

Let Dy, be the map from §2.2 and §6.2. From Equation 8 we see that D, ,; conjugates

Ay to A;l. With Theorem 6.4 in mind, define the following “dual” k-birds:
¢ = AY (Dy11(P)) = Dyyy (P79). (28)

From Statement 1 of Theorem 1.3, the sequence of k-birds {I1¢} shrinks to a point in the
dual plane P*. The vertices of IT* are the (k + 1)-diagonals of P~*. Because the vertices of

I1¢ shrink to a single point, all the (k + 1)-diagonals of P~¢ converge to a single line L’.

Lemma 8.1. L' is the line at infinity.

Proof: Suppose not. When ¢ is large, all the (k + 1)-diagonals point nearly in the same
direction as L’. In particular, this is true of the subset of these diagonals which define the
soul S~*. But these special diagonals turn monotonically and by less than 7 radians as we
move from one to the next. Hence, some of these diagonals nearly point in one direction
along L’ and some point nearly in the opposite direction. But then S~ converges to a

subset of L’. This is a contradiction, &

The soul S~ is a convex set, containing the origin, and is bounded by some of the

(k + 1) diagonals. If S~ does not converge to the whole plane, then some (k + 1)-diagonal
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intersects a uniformly bounded region in R* for each ¢. But this produces a sequence
of (k + 1)-diagonals that does not converge to the line at infinity. This is a contradiction.

Hence S~¢ converges to all of R*. But then so does P~7.

8.2 The Pre-Compact Case

The rest of the chapter is devoted to proving Statrement 1 of Theorem 1.3. Let P € B,
and let PY = A?(P). We take ¢ =0, 1,2, 3....

Conjecture 8.2. The sequence {P’} is pre-compact modulo affine transformations. That s,

this sequence has a convergent subsequence which converges to another element of B, .

In this section I will prove the P, is a single point under the assumption that {P*} is
pre-compact.

We would like to see that the diameter of P? steadily shrinks, but the notion of diameter
is not affinely natural. We first develop a notion of affinely natural diameter. For each
direction v in the plane, we let ||S||, denote the maximum length of L n S where L is a

straight line parallel to v. We then define

1511,
6(51,5,) =su
(S1.82) = sup e

The quantity §(S;, S,) is affine invariant, and (choosing a direction x which realizes the

e [o,1]. (29)

diamater of S;) we have
diam(s;) < (15111
diam(S;) ~ ISzl

< 46(57,53). (30)

Let S? be the soul of P?. By Theorem 5.11 we have S*** ¢ S*. More precisely, the former
set is contained in the interior of the latter set. Under the pre-compactness assumption,

there are infinitely many indices ¢; and some ¢ > 0 such that

S(Stitn sty <1 —e. (31)
But then
: ti+n
diam(S*/™") l—¢ (32)
diam(S?/)
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infinitely often. This forces diam(S?) — 0. But P, is contained in this nested intersection
and hence is a point.
If we knew the truth of Conjecture 8.2 then our proof of Theorem 1.3 would be done.

Since we don’t know this, we have to work much harder to prove Statement 1 in general.

8.3 Normalizing by Affine Transformations

Henceforth we assume that the forward orbit {P’} of P under A, is not pre-compact

modulo affine transformations.

Lemma 8.3. There is a sequence {T,} of affine transformations such that
1. T,(P?) has (the same) 3 vertices which make a fixed equilateral triangle.
2. T, expands distances on P’ for all ¢.

3. T,(P?) is contained in a uniformly bounded subset of R>.

Proof: To P! we associate the triangle r, made from 3 vertices of PY and having maximal
area. The diameter of 7, is uniformly small, so we can find a single equilateral triangle T
and an expanding affine map T, : 7, — T. Let d be the side length of T. Every vertex of
T,(P?) is within d of all the sides of T, because otherwise we’d have a triangle of larger

area. The sequence {T,} has the advertised properties. &

Let Q° = T,(P%). By compactness we can pass to a subsequence so that the limit
polygon Q exists, in the sense that the vertices and the edges converge. Let Q,, Q;, etc.
be the vertices of Q. Perhaps some of these coincide. Each distinguished diagonal of Q°
defines the unit vector which is parallel to it. Thus Q¢ defines a certain list of 2n unit
vectors. We can pass to a subsequence so that all these unit vectors converge. Thus Q still
has well defined distinguished diagonals even when the relevant points coincide.

We now define the “limiting soul”. Let S¢ = S(Q?), the soul of Q¢. As in §5.7. let S be

the set of accumulation points of sequences {p¢} with p’ € S?. Since S¢ c Q’ for all ¢ we
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have S c Q. Now we define a related object. We have a left half-plane associated to each
diagonal of Q. We define X to be the intersection of all these half-planes. We will use the

set = at various places below to get control over the set S.

Lemma 8.4. ScC 2.

Proof: Fix ¢ > 0. If this is not the case, then by compactness we can find a convergent
sequence {p’}, with p¢ € S?, which does not converge to a point of =. But p? lies in every
left half plane associated to Q¢. But then, by continuity, the accumulation point p lies in

every left half plane associated to Q. Hence p € Z. &

8.4 Structure of the Normalized Limits

We work under the assumption that P, is not a single point. The goal of this section
is to establish several structural properties about the sets S and Q. Our first property
guarantees that there is a chord S* of S connecting vertices of Q. Once we establish this,
we show that Q is a union of two “monotone” arcs joining the endpoints of S*. These
structural properties will be used repeatedly in subsequent sections of this chapter.

Let H, denote the convex hull of Q. Note that S C Q C Hy,.

Corollary 8.5. Suppose that P, is not a single point. Then (S, H) = 1.

Proof: Suppose not. Note that Hy, ¢ S*~" by Theorem 7.2 and convexity. Then for ¢ large

we have

8(Qf) = §(S?,St") < 5(Sf,HQ€) <48(S,Hp) +e¢,

and we can make ¢ as small as we like. This gives us a uniform & < 1 such that 5(Q¢) < &
once ¢ is large enough. The argument in the compact case now shows that P, is a single

point. &
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Corollary 8.5 says that S and Q have the same diameter. Hence there is a chord S* c S
which has the same diameter as Q. Since Q is a polygon, this means that Q must have
vertices at either endpoint of S*. We normalize so that S* is the unit segment joining (0, 0)

to (1,0).
Lemma 8.6. Let Q' C Q be an arc of Q that joins (0,0) to (1,0).
1. The vertices of Q" must have non-decreasing x-coordinates.
2. If consecutive vertices of Q' have the same x-coordinate, they coincide.

3. Either Q' c S* or Q' intersects S* only at (0,0) and (1,0).

Proof: Suppose the Statement 1 is false. Then we can find a vertical line A which intersects
S* at a relative interior point and which intersects Q' transversely at 3 points. But then
once ¢ is sufficiently large, Q¢ will intersect all vertical lines sufficiently close to A in at
least 3 points and moreover some of these lines will contain points of S?. This contradicts
the fact that Q? is strictly star-shaped with respect to all points of Q.

For Statement 2, we observe that Q' does not contain any point of the form (0, y) or
(1,y) for y # 0. Otherwise Q has larger diameter than 1. This is to say that once Q' leaves
(0,0) it immediately moves forward in the X-direction. Likewise, once Q’ (traced out the
other way) leaves (1,0) it immediately moves backward in the X-direction. If Statement 2
is false, ten we can find a non-horizontal line A’ which intersects S* in a relative interior
point and which intersects Q’ transversely at 3 points. The slope is A’ depends on which
of the two vertices of Q' lies above the other. Once we have A’ we play the same game as
for the first statement, and get the same kind of contradiction.

Suppose Statement 3 is false. We use the kind of argument we had in §5.8. By State-
ments 1 and 2 together, Q" must have an escape edge which touches S* in a relative
interior point. Moreover, this one escape edge is paired with another escape edge. Thus
we can find a point x € $* which strictly lies on the same side of both of these same-type

escape edges. The argument in §5.8 now shows that Q? is not strictly star-shaped with
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respect to points of S¢ very near x. &

Corollary 8.7. Suppose0 < a < b <nandQ, = Qp. Then either we have Q, = Q,; = ... = Qp

or else we have Q, = Qpy1 = ... = Qgyn-

Proof: In view of Lemma 8.6 it suffices to show that our two monotone arcs comprising
Q are disjoint except at their endpoints.

Let U denote the open upper halfplane, bounded by the X-axis. After reflecting in
the X-axis we can guarantee that one of our monotone arcs « has a point in U. But then,
by Lemma 8.6, all of « lies in U except for its endpoints. If the other monotone arc 8
intersects « away from the endpoints, then g has a point in U, but then, by Lemma 8.6,
all of 8 lies in U except for the endpoints. But then S lies in U, except for the points (0,0)
and (1,0). This contradicts the fact that S* Cc S. &

Our argument shows in particular that Q is embedded, up to adding repeated vertices.
However, we will not directly use this property in our proof below.
8.5 The Triangular Case

We continue with the assumption that P is not a single point. Here we pick off a special

case:
* There is a line L such that Q, & L.
* Qi Qki1s - Quk—1,Qn_ € L and
* Qi # Quk-

Figure 8.1 shows the situation. As always, the notation Q_; and Q,_; names the same
point. All but 2k — 1 points are on L, and except for Q, we don’t know where these other

2k — 1 points are.
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0

Figure 8.1: The triangular limit Q.
Given the constant energy of our orbit, the cross ratio of the lines

Qo> Qok+1> Qnk-1,0 Qn-kpo

is at least ;. Also, these lines are cyclically ordered about 0 as indicated in Figure
8.1, thanks to the k-niceness property and continuity. Also, the two lines containing
Qox and Q_i, are not parallel because Q, ¢ L. Hence S is contained in the shaded
region in Figure 8.1, namely the triangle with vertices Q, and Q. ). But this shaded
region has diameter strictly smaller than the triangle r with vertices Q, and Q.. Hence
diam(S) < diam(7) < diam(Q). This contradicts Corollary 8.5 which says, in particular, that

S and Q have the same diameter.

8.6 The Case of No Folded Diagonals

We work under the assumption that P, is not a single point. The notions of collapsed
diagonals, folded diagonals, and aligned diagonals from §5 make sense for Q because the
concepts just involve the directions of the diagonals. The proof of Lemma 5.3 also works

the same way.
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Lemma 8.8. Q must either have a trivial edge, a trivial distinguished diagonal, or collapsed

diagonals,

Proof: As remarked in §5, the proof of the Degeneration Lemma works for sequences
as well as paths, and only uses the fact that the limiting polygon has nontrivial edges
and nontrivial distinguished diagonals. So, if Q has no trivial edges and no trivial dis-
tinguished diagonals, then all but one vertex of Q lies in a single line. But then Q has

collapsed diagonals. &

Remark: Here is a second, more direct proof. If Lemma 8.8 is false then we have a picture
as in the left side of Figure 7.1. The feathers defined in §4.1 would be all non-degenerate
and the segments joining the tips of consecutive feathers would be nontrivial. This would

force S to lie in the interior of Q. But then diam(S) < diam(Q), contradicting Corollary 8.5.

If Q has a trivial distinguished diagonal, then by Lemma 8.7, we see that Q also has a
trivial edge. If Q has a trivial edge, say Q_; = Q,, then the diagonals at Q are collapsed at
Q- So, in all cases, Q has collapsed diagonals. We assume in this section that Q has no
folded diagonals anywhere. This means that Q has aligned diagonals, say at Q,. Thus Qg
and Qy , are parallel. Since Q does not lie in a line, Lemma 5.3 tells us that the chain of

2k + 1 parallel distinguished diagonals:

Qo,kcs Qo415 Q1 k415 Q1 k425 -+ Qre—1,2k5 Qi 2k (33)

Now we have a “runaway situation”. The two diagonals Q. x and Q,—; (Which are
just the reversals of the last two in Equation 33) are parallel. Thus Q has collapsed
diagonals at Q,;. Since Q has no folded diagonals, Q has aligned diagonals at Q,,. But then,
applying Lemma 5.3 again, we can extend that chain in Equation 33 so that it contines as
s o0 Qak—1.3k» Qak 3k~ But now Q has collapsed diagonals at Q;;. And so on. Continuing this
way, we end up with all points on Q. This is a contradiction.

The only way out is that Q must have folded diagonals somewhere
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8.7 The Case of Folded Diagonals

We continue to work under the assumption that P, is not a single point. Now we consider
the case when Q has folded diagonals at, say, Q,. What this means that the diagonals Qg y 1,
Qo1 are parallel. (Again, these diagonals are well defined even when their endpoints
coincide; we are just using a notational convention to name them here.) But then the
corresponding half planes intersect along a single line L, forcing ¥ c L. By Lemma 8.4,
the soul S is contained in =. Hence, S C L. Letting S* be the chord from §8.4, we also have
S = S*. This is because S and S* are segments of the same diagonal and in the same line.
We will use S and S* interchangeably below.

We normalize so that S is the line segment connecting (0, 0) to (1,0). As in §8.4, both
these points are vertices of Q. The folding condition forces ¥ (and hence S) to lie to one
side of these points. Hence, we have either Q, = (0,0) or Q, = (1,0). Without loss of
generality we consider the case when Q, = (0,0). Note that points of Q — S do not be-

long to L, because Q and S have the same diameter. We break the analysis down into cases.

Case 1: Suppose that Q,,, is not an endpoint of S* and Q,_,_; # (0,0). Consider the
arc Q' given by Qy — ... = Q41 — ... = Qg = (1,0). Here § is some index we do not know
explicitly, but we take § as large as possible, in the sense that Qg,; # (1,0). The arc Q'
connects (0,0) to (1,0) and intersets S* at Q,,, a point which is neither (0,0) or (1, 0). By
Lemma 8.6, we have Q" c S*. We conclude that Q,, ..., Qg CS™.

If 8 does not lie in the index interval (k + 1,n — k — 1) then we have just shown that
Qk41s - Qn_k_1 € S*. If B = n — k — 1 we have the same result. Here is what we do if 8
does lie in (k + 1,n — k — 1). We apply our same argument as in the previous paragraph
to the arc Qs — ... > Q,_x—;, and see that Qg, ...,Q,_x_; € S. So, in all cases, we see that
Q415+ Quk-1 €S.

In short, Q; € L unless j € {—k,...,—1}. All but k vertices belong to L. In particular, we
have an index h € {-k,...,—1} such that Q, ¢ L but Qj 1, Qnik+1>--> Qnank—1>Qnin-k € L.

Now we are close to the Triangular case from §8.5 except that all the indices are shifted
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by h. If it happens that Q. # Qnin—r then we have the Triangular Case and we are done.

The other possibility is that Qj,x = Qu4,.—k- In this case, Lemma 8.7 gives us Q,,x =
Qh+k+1 = Qnin—k—1 = Qnyn—i- In particular, the diagonals Q411 and Qy, 4,1 are folded
at Qy,. Since Q, ¢ L this means that there is some other line L’ such that S c L’. This is a

contradiction.

Case 2: Suppose Q_,_; = Q41 = (1,0). Before analyzing this case, we remember a
lesson from the end of Case 1: It is not possible for Q to have folded diagonals at a point

notonsS.

Corollary 8.7 says that Q,;; = ... = Q,_r—1 = (1,0). This is a run of k + 8 points, where
B =n—-Bk+1)>0. There is some index h € {1, ... + k} such that Q, ¢ L. Without loss of
generality we will take h € {1, ..., k}.

Suppose first that n > 3k + 1. Then there are at least k + 1 consecutive vertices sitting
at (1,0) and so both diagonals Q, ;. and Qy x4x+1 point from Q, to (1,0) # Q. This means
that Q has collapsed diagonals at Q;,. Remembering our lesson, we know that Q does not

have folded diagonals at Q,. Hence Q has aligned diagonals at Q,,.

Now we have the same runaway situation we had in §8.6. The diagonals in the chain
Qp—k.n--Qnn+k point are all pointing along the line connecting (1,0) to Q,, and they are
pointing away from (1, 0). This gives us collapsed diagonals at Q;_.,. Remembering our
lesson, we see that Q has aligned diagonals at Q;,. And so on. All the points after Q,, get

stuck on L’ and we have a contradiction.

If n = 3k + 1, then the same argument works as long as » # +k. So, we just have to
worry about the case when all points of Q belong to S except for Q, and Q_;, which do
not belong to S. Applying Lemma 8.6 to the arc Qy, —» Q; — ... » Q, — (1,0) we conclude
that Qy = ... = Qr_; = (0,0). Applying Lemma 8.6 to the arcQy - Q_; — ... = Q_; = (1,0)
we conclude that Q, = ... = Q,_; = (0,0). But now we have a run of 2k — 1 > k + 1 points
sitting at (0,0) and we can run the same argument as in the case n > 3k + 1, with (0,0) in

place of (1,0).
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Case 3: The only cases left to consider is when one or both of Q1) equals (0,0). We
suppose without loss of generality that Q_,_; = (0,0). Since we also have Q, = (0,0),
Lemma 8.7 gives Q_;_; = ... = Qo = (0,0). This is a run of k + 2 consecutive points sitting
at (0,0).

There is some smallest # > 0 so that Q, ¢ S. Applying Lemma 8.6 to the arc Q, — ... —
Qi — ... » (1,0), we conclude that Q,_; = ... = Q; = (0,0). (Otherwise Lemma 8.6 would
force Q, €S.)

Now we know that Q has collapsed diagonals at Q, ¢ L. We now get a contradiction

from the same runaway situation as in Case 2.

9 Appendix

9.1 The Energy Invariance Revisited

In this section we sketch Anton Izosimov’s proof that y, oA, = yi. This proof requires the
machinery from [6]. (The perspective comes from [8], but the needed result for A is in
the follow-up paper [6].)

Let P be an n-gon. Welet V4, ..., V,, be points in R’ representing the consecutive vertices
of P. Thus the vertex P; is the equivalence class of V;. We can choose periodic sequences
{a;}, {b;}, {c;}, {d;} such that

a;iVi+biVigk + Vi1 + diVigok1 =0, vi. (34)
Recall from §2.2 that Ay = DyoDy;.

Lemma 9.1. One of the cross ratio factors of y;oDy,1 IS (agd_i)/(cob_).

Proof: One of the factors is the cross ratio of Py, y, x, P;.,,, Where

X = Pojcr1 N P k1, Yy =P_j1 NPy
(Compare the right side of Figure 2.1, shifting all the indices there by k + 1.)
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The points x and y respectively are represented by vectors
X =agVo+ Vi1 = —boVi — doVaks1,

Y=—a_V_—c Vi=b_ Vo+d_ Vi

The point here is that the vector X lies in the span of {V, V}.,,} and in the span of {V, V5 1}
and projectively this is exactly what is required. A similar remark applies to Y.

Setting Q = V, X V.1, we compute the relevant cross ratio as

VO XY XXVk+1 _ d_kQ % aog _ d_kao (35)
VoXX YXVig  cQ " b Q  b_c’

which is just a rearrangement of the claimed term. &

The other cross ratio factors are obtained by shifting the indices in an obvious way.
As an immediate corollary, we see that

n

a;d;
XD @) =[] - (36)
i=1 bici
Let us call this quantity w; (P).
Lemma 9.2. If oA, = . then yioAy = xi.
Proof: If y oA, = w;, then ,ukoAl:l = u.. Equation 36 says that
XkODp41 = His MkODy 11 = Xk (37)

The first equation implies the second because Dy, is an involution. Since D, ,, conjugates

Ar to A we have

Xic©Ak = X0Dj410A; oDy y = oA oDy = fxoDyyy = X

This completes the proof. &
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Let P = Ai(P). Let {@;}, etc., be the sequences associated to P. We want to show that

n n ~ 7
a;d; aidl‘

11 he 117 (38)

i=1 i=1 biC;

This is just a restatement of the equation u,0A; = .
Now we use the formalism from [6] to establish Equation 38. We associate to our
polygon P operator D on the space V of bi-infinite sequences {V;} of vectors in R’. The

definition of D is given coordinate-wise as
D(V;) = a;V; + b;T*(V)) + ¢, TN (V) + d T*H(V)). (39)

Here T is the shift operator, whose action is T(V;) = V;,,. If we take {V;} to be a periodic
bi-infinite sequence of vectors corresponding to our polygon P, then D maps {V;} to the
0-sequence.

Next, we write D = D, + D_ where coordinate-wise
D.(V}) = a;V; + TNV, D_(V;) = bT*(V) + d; T+ (V). (40)

The pair (D,,D_) is associated to the polygon P.
Let D and (D,,D_) be the corresponding operators associated to P. One of the main

results of [6] is that the various choices can be made so that
D.D_=D_D,. (41)

This is called refactorization. Equating the lowest (respectively highest) terms of the
relation in Equation 41 gives us the identity @;b; = b;a;,, (respectively &d;,x11 = d;Ciiors1.)

These relations hold for all i and together imply Equation 38.

9.2 Extensions of Glick’s Formula

Theorem 1.1 in [3] says that the coordinates for the collapse point of the pentagram
map A, are algebraic functions of the coordinates of the initial polygon. In Equation 1.1

of [3], Glick goes further and gives a formula for the collapse point. I will explain his
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formula. Let (x*, y*) denote the accumulation point of the forward iterates of P under A,.
Let P = (x*,y*,1) be the collapse point. In somewhat different notation, Glick introduces

the operator
n
|Pi_1,0, Piyq]
TP = ”lI - Gp, GP(U) = - - - L.
3 ;lpi—lipiipi+1| l

(42)

Here |a, b, c| denotes the determinant of the matrix with rows a, b,c and I; is the 3 x 3
identity matrix. It turns out T is a A-invariant operatoy, in the sense that T, ) = T)p.
Moreover P, is an eigenvector of Tp. This is Glick’s formula for P,.. Actually, one can
say more simply that G, is a Aj-invariant operator and that P, is a fixed point of the
projective action of G,. This means that the vectors representing these points in R’ are
eigenvectors for the operator. The reason Glick uses the more complicated expression
nl; — Gp is that geometrically it is easier to work with.
Define Gp ,;, by the formula

n
|Pi—qs U, Piypl

Gpap(V) = ), >—F— P
@ ; |Pi—asPisPi+b| '

(43)

Let P, be the limit point of the forward iterates of P under A,.

A lot of experimental evidence suggests the following conjecture.

Conjecture 9.3. Let k > 2. If n = 3k + 1 the point P_, is a fixed point for the projective action
of Gpyx- If n = 3k + 2 the point P, is a fixed point for the projective action of Gp 1 x41- In

particular, in these cases the coordinates of P, are algebraic functions of the vertices of P.

Anton Izosimov kindly explained the following lemma, which seems like a big step in
proving the conjecture. (I am still missing the geometric side of Glick’s argument in this

new setting.)

Lemma 9.4. When n = 3k + 1 the operator Gp  is invariant under Ay,. When n = 3k + 2

the operator Gp 1 x+1 1S invariant under Ay.

Proof: These operators are Glick’s operator in disguise. When n = 3k + 1 we can relabel

our n-gons in a way that converts A, to the pentagram map. The corresponding space of
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birds B, corresponds to some strange set of “relabeled k-birds”. This relabeling converts
Gp xx Tespectively to Glick’s original operator. This proves the invariance of Gp ;, under
A, when n = 3k + 1. A similar thing works for n = 3k + 2, but this time the relabeling

converts A, to the inverse of the pentagram map. &

I was not able to find any similar formulas when n > 3k + 2.

Question 9.5. When n > 3k + 2 and P is a k-bird, are the coordinates of the collapse point

P, algebraic functions of the vertices of P?

Here is one more thing I have wondered about. Suppose that » is very large and P is a
convex n-gon. Then P can be considered as a k-bird for all k = 1,2,..., 3, where f is the
largest integer such that n > 35 + 1. When we apply the map A, for these various values
of k we get potentially 8 different collapse points. All I can say, based on experiments, is

that these points are not generally collinear.

Question 9.6. Does the collection of 8 collapse points in this situation have any special

meaning?

9.3 Star Relabelings

Let us further take up the theme in the proof of Lemma 9.4. Given an n-gon P and and

some integer r relatively prime to n, we define a new n-gon P*" by the formula

Pi" =Py;. (44)

Figure 1.5 shows the P*(-® when P is the regular 10-gon.
As we have already mentioned, the action of A; on the P*(=¥ is the same as the action
of Ay on P when n = 3k + 1. So, when n = 3k + 1, the pentagram map has another nice

invariant set (apart from the set of convex n-gons), namely
—k _
B = {P*P| P € By ,}.
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The action of the pentagram map on this set is geometrically nice. If we suitably star-
relabel, we get star-shaped (and hence embedded) polygons. A similar thing works when

n =3k + 2.

Acknowledgments

I would like to thank Misha Gekhtman, Max Glick, Anton Izosimov, Boris Khesin, Valentin
Ovsienko, and Serge Tabachnikov for many discussions about the pentagram zoo. I would
like to thank Anton, in particular, for extensive discussions about the material in §9.

R.E.S. was supported by N.S.F. Grant DMS-21082802

References

[1] Q. Aboud and A. Izosimov, The Limit Point of the Pentagram Map and Infinites-
imal Monodromy, LM.R.N,, Vol 7, (2022) 11

[2] M. Gekhtman, M. Shapiro, S. Tabachnikov, A. Vainshtein, Integrable cluster
dynamics of diected networks and pentagram maps, Adv. Math. 300 (2016), pp
390-450 12

[3] M. Glick, The Limit Point of the Pentagram Map, International Mathematics
Research Notices 9 (2020) pp. 2818-2831 11, 71

[4] M. Glick, The pentagram map and Y-patterns, Adv. Math. 227, 2012, pp. 1019-
1045. 12

[5] A. B. Goncharov and R. Kenyon, Dimers and Cluster Integrable Systems, Ann.
Sc. Ec. Norm. Super. (4) 46 (2013) no. 5 pp 747-813 12

[6] A.Izosimov and B. Khesin, Long Diagonal Pentagram Maps, Bulletin of the
L.M.S., vol. 55, no. 3, (2023) pp. 1-15 12, 13, 69, 71

Arnold Mathematical Journal, Vol.11(4), 2025 74


http://dx.doi.org/10.56994/ARMJ

The Flapping Birds in the Pentagram Zoo

[7] A.Izosimov, The pentagram map, Poncelet polygons, and commuting difference

operators, Compos. Math. 158 (2022) pp 1084-1124

[8] A.Izosimov, Pentagram maps and refactorization in Poisson-Lie groups, Ad-

vances in Mathematics, vol. 404 (2022) 12, 69

[9] A. Izosimov, Intersecting the Sides of the Polygon, Proc. A.M.S. 150 (2022)
639-649. 11

[10] B. Khesin, F. Soloviev Integrability of higher pentagram maps, Mathem. An-
nalen. Vol. 357 no. 3 (2013) pp. 1005-1047 12

[11] B. Khesin, F. Soloviev The geometry of dented pentagram maps, J]. European
Math. Soc. Vol 18 (2016) pp. 147 -179 12

[12] G. Mari Beffa, On Generalizations of the Pentagram Map: Discretizations of
AGD Flows, Journal of Nonlinear Science, Vol 23, Issue 2 (2013) pp. 304-334
12

[13] G. Mari Beffa, On integrable generalizations of the pentagram map
Int. Math. Res. Notices (2015) (12) pp. 3669-3693 12

[14] R Felipe and G. Mari-Beffa, The pentagram map on Grassmannians, Ann. Inst.
Fourier (Grenoble) 69 (2019) no. 1 pp 421-456 12

[15] Th. Motzkin, The pentagon in the projective plane, with a comment on Napier’s

rule, Bull. Amer. Math. Soc. 52, 1945, pp. 985-989. 11

[16] N.Ovenhouse, The Non-Commutative Integrability of the Grassman Pentagram
Map, arXiv 1810.11742 (2019) 12

[17] V. Ovsienko, R. E. Schwartz, S. Tabachnikov, The pentagram map: A discrete
integrable system, Comm. Math. Phys. 299, 2010, pp. 409-446. 11, 17

Arnold Mathematical Journal, Vol.11(4), 2025 75


http://dx.doi.org/10.56994/ARMJ

Richard Evan Schwartz

[18] V. Ovsienko, R. E. Schwartz, S. Tabachnikov, Liouville-Arnold integrability of
the pentagram map on closed polygons, Duke Math. J. Vol 162 No. 12 (2012)
pp. 2149-2196 11,17

[19] R. E. Schwartz, The pentagram map, Exper. Math. 1, 1992, pp. 71-81. 11, 17,
21, 25

[20] R. E. Schwartz, Discrete monodromy, pentagrams, and the method of conden-

sation, ]. of Fixed Point Theory and Appl. 3, 2008, pp. 379-409. 12, 17

[21] R. E. Schwartz, A Textbook Case of Pentagram Rigidity, arXiv 2108-07604
preprint (2021)[ 13

[22] R. E. Schwartz, Pentagram Rigidity for Centrally Symmetric Octagons, LM.R.N.
(2024) pp 9535-9561 13

[23] F. Soloviev Integrability of the Pentagram Map, Duke Math ]. Vol 162. No. 15,
(2012) pp. 2815 - 2853 11, 12

[24] M. Weinreich, The Algebraic Dynamics of the Pentagram Map, Ergodic Theory
and Dynamical Systems 43 (2023) no. 10, pp. 3460 — 3505 12

AUTHOR

Richard Evan Schwartz
Department of Mathematics,
Brown University; Providence, RI, USA

email: Richard.Evan.Schwartz@gmail.com

Arnold Mathematical Journal, Vol.11(4), 2025 76


http://dx.doi.org/10.56994/ARMJ

	Introduction
	Context
	The Maps and the Birds
	The Main Result
	The Energy
	The Collapse Point
	The Triangulations
	Paper Organization
	Visit the Flapping Bird Exhibit

	The Energy
	Projective Geometry
	Factoring the Map
	Proof of the First Result
	Proof of the Second Result

	The Soul of the Bird
	Goal of the Chapter
	The Proof

	The Feathers of the Bird
	Goal of the Chapter
	The Proof

	The Degeneration of Birds
	Statement of Result
	Distinguished Diagonals
	Collapsed Diagonals
	The Case of Aligned Diagonals
	The Case of Double Folded Diagonals
	Good Folded Diagonals
	Properties of the Soul
	Ungood Folded Diagonals

	The Persistence of Birds
	Containment
	Equality

	The Triangulation
	Basic Definition
	Some Structural Results

	Nesting Properties of Birds
	Duality
	The Pre-Compact Case
	Normalizing by Affine Transformations
	Structure of the Normalized Limits
	The Triangular Case
	The Case of No Folded Diagonals
	The Case of Folded Diagonals

	Appendix
	The Energy Invariance Revisited
	Extensions of Glick's Formula
	Star Relabelings


