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The Flapping Birds in the Pentagram Zoo

1 Introduction

1.1 Context

When you visit the pentagram zoo you should certainly make the pentagram map itself

your first stop. This old and venerated animal has been around since the place opened

up and it is very friendly towards children. When defined on convex pentagons, this

map has a very long history. See e.g. [15]. In modern times [19], the pentagram is defined

and studied much more generally. The easiest case to explain is the action on convex

𝑛-gons. One starts with a convex 𝑛-gon 𝑃, for 𝑛 ≥ 5, and then forms a new convex 𝑛-gon

𝑃′ by intersecting the consecutive diagonals, as shown Figure 1.1 below.

The magic starts when you iterate the map. One of the first things I proved in [19]

about the pentagram map is the successive iterates shrink to a point. Many years later, M.

Glick [3] proved that this limit point is an algebraic function of the vertices, and indeed

found a formula for it. See also [9] and [1].

P

P'

P''

Figure 1.1: The pentagram map iterated on a convex 7-gon 𝑃.

Forgetting about convexity, the pentagram map is generically defined on polygons

in the projective plane over any field except for 𝒁∕2. In all cases, the pentagram map

commutes with projective transformations and thereby defines a birational map on the

space of 𝑛-gons modulo projective transformations. The action on this moduli space has

a beautiful structure. As shown in [17] [18], and independently in [23], the pentagram
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map is a discrete completely integrable system when the ground field is the reals. ([23]

also treats the complex case.) Recently, M. Weinreich [24] generalized the integrability

result, to a large extent, to fields of positive characteristic.

The pentagram map has many generalizations. See for example [2], [14], [16], [10], [11],

[6]. The paper [2] has the first general complete integrability result. The authors prove the

complete integrability of the (𝑘, 1) diagonal maps, i.e. the maps obtained by intersecting

successive 𝑘-diagonals. Figure 1.3 below shows the (3, 1) diagonal map. (Technically, [2]

concentrates on what happens when these maps act on so-called corregated polygons in

higher dimensional Euclidean spaces.) The paper [6] proves an integrability result for a

very wide class of generalizations, including the ones we study below. (Technically, for the

maps we consider here, the result in [6] does not establish the algebraic independence

of invariants needed for complete integrability.) The pentagram map and its many

generalizations are related to a number of topics: alternating sign matrices [20], dimers

[5], cluster algebras [4], the KdV hierarchy [12], [13], spin networks [2], Poisson Lie groups

[8], Lax pairs [23], [10], [11], [6], [8], and so forth. The zoo has many cages and sometimes

you have to get up on a tall ladder to see inside them.

Figure 1.2: The (3, 1)-diagonal map acting on 8-gons.

The algebraic side of the pentagram zoo is extremely well developed, but the geometric

side is hardly developed at all. In spite of all the algebraic results, we don’t really know,
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geometrically speaking, much about what the pentagram map and its relatives really do

to polygons.

Geometrically speaking, there seems to be a dichotomy between convexity and non-

convexity. The generic pentagram orbit of a projective equivalance class of a convex

polygon lies on a smooth torus, and you can make very nice animations. What you will

see, if you tune the power of the map and pick suitable representatives of the projective

classes, is a convex polygon sloshing around as if it were moving through water waves.

If you try the pentagram map on a non-convex polygon, you see a crazy erratic picture

no matter how you try to normalize the images. The situation is even worse for the other

maps in the pentagram zoo, because these generally do not preserve convexity. Figure 1.2

shows how the (3, 1)-diagonal map does not necessarily preserve convexity, for instance.

See [21], [22] for more details.

If you want to look at pentagram map generalizations, you have to abandon convexity.

However, in this paper, I will show that sometimes there are geometrically appealing

replacements. The context for these replacements is the (𝑘 + 1, 𝑘)-diagonal map, which

I call ∆𝑘, acting on what I call 𝑘-birds. ∆𝑘 starts with the polygon 𝑃 and intersects the

(𝑘 + 1)-diagonals which differ by 𝑘 clicks. (We will give a more formal definition in the

next section.) ∆𝑘 is well (but not perfectly) understood algebraically [6]. Geometrically it

is not well understood at all.

1.2 The Maps and the Birds

Definition of a Polygon: For us, a polygon is a choice of both vertices and the edges

connecting them. Each polygon 𝑃 we consider will all be planar, in the sense that there is

some projective transformation that maps 𝑃, both vertices and edges, to the affine patch.

Our classical example is a regular 𝑛-gon, with the obvious short edges chosen.

The Maps: Given a polygon 𝑃, let 𝑃𝑎 denote the (𝑎)th vertex of 𝑃. Let 𝑃𝑎𝑏 be the line
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through 𝑃𝑎 and 𝑃𝑏. The vertices of ∆𝑘(𝑃) are

𝑃𝑗,𝑗+𝑘+1 ∩ 𝑃𝑗+1,𝑗−𝑘. (1)

Here the indices are taken mod 𝑛. Figure 1.3 shows this for (𝑘, 𝑛) = (2, 7). The polygons in

Figure 1.3 are examples of a concept we shall define shortly, that of a 𝑘-bird.

Figure 1.3: ∆2 acting on 2-birds.

We should say a word about how the edges are defined. In the case for the regular 𝑛-gon

we make the obvious choice, discussed above. In general, we define the class of polygons

we consider in terms of a homotopy from the regular 𝑛-gon. So, in general, we make the

edge choices so that the edges vary continuously.

The Birds: Given an 𝑛-gon 𝑃, we let 𝑃𝑎,𝑏 denote the line containing the vertices 𝑃𝑎 and 𝑃𝑏.

We call 𝑃 𝑘-nice if 𝑛 > 3𝑘, and 𝑃 is planar, and the 4 lines

𝑃𝑖,𝑖−𝑘−1, 𝑃𝑖,𝑖−𝑘, 𝑃𝑖,𝑖+𝑘, 𝑃𝑖,𝑖+𝑘+1 (2)

are distinct for all 𝑖. It is not true that the generic 𝑛-gon is 𝑘-nice, because there are open

sets of non-planar polygons. (Consider a neighborhood of 𝑃, where 𝑃 the regular 100-gon

with the opposite choice of edges.) However, the generic perturbation of a planar 𝑛-gon

is also 𝑘-nice.

We call 𝑃 a 𝑘-bird if 𝑃 is the endpoint of a path of 𝑘-nice 𝑛-gons that starts with the

regular 𝑛-gon. We let 𝐵𝑘,𝑛 be the subspace of 𝑛-gons which are 𝑘-birds. Note that 𝐵𝑘,𝑛
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contains the set of convex 𝑛-gons, and the containment is strict when 𝑘 > 1. As Figure 1.3

illustrates, a 𝑘-bird need not be convex for 𝑘 ≥ 2. We will show that 𝑘-birds are always

star-shaped, and in particular embedded. As we mentioned above, we use the homotopic

definition of a 𝑘-bird, to define the edges of ∆𝑘(𝑃) when 𝑃 is a 𝑘-bird.

Example: The homotopy part of our definition looks a bit strange, but it is necessary. To

illustrate this, we consider the picture further for the case 𝑘 = 1. In this case, a 1-bird must

be convex, though the 1-niceness condition just means planar and locally convex. Figure

1.4 shows how we might attempt a homoropy from the regular octagon to a locally convex

octagon which essentially wraps twice around a quadrilateral. The little grey arrows

give hints about how the points are moved. At some times, the homotopy must break

the 1-niceness condition. The two grey polygons indicate failures and the highlighted

vertices indicate the sites of the failures. There might be other failures as well; we are

taking some jumps in our depiction.

Figure 1.4: A homotopy that cannot stay 1-nice.

One could make similar pictures when 𝑘 ≥ 1, but the pictures might be harder to

understand.
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1.3 The Main Result

Given an embedded planar polygon 𝑃, let 𝑃𝐼 denote the interior of region bounded by 𝑃.

We say that 𝑃 is strictly star shaped with respect to 𝑥 ∈ 𝑃𝐼 if each ray emanating from 𝑥

intersects 𝑃 exactly once. More simply, we say that 𝑃 is strictly star shaped if it is strictly

star shaped with respect to some point 𝑥 ∈ 𝑃𝐼 . Here is the main result.

Theorem 1.1. Let 𝑘 ≥ 2 and 𝑛 > 3𝑘 and 𝑃 ∈ 𝐵𝑘,𝑛. Then

1. 𝑃 is strictly star-shaped, and in particular embedded.

2. ∆𝑘(𝑃) ⊂ 𝑃𝐼 .

3. ∆𝑘(𝐵𝑘,𝑛) = 𝐵𝑘,𝑛.

Remark: The statement that 𝑛 > 3𝑘 is present just for emphasis. 𝐵𝑛,𝑘 is by definition

empty when 𝑛 ≤ 3𝑘. The restriction 𝑛 > 3𝑘 is necessary. Figure 1.5 illustrates what would

be a counter-example to Theorem 1.1 for the pair (𝑘, 𝑛) = (3, 9). The issue is that a certain

triple of 4-diagonals has a common intersection point. This does not happen for 𝑛 > 3𝑘.

See Lemma 3.6.
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Figure 1.5: ∆3 acting on a certain convex 9-gon.

1.4 The Energy

We will deduce Statements 1 and 2 of Theorem 1.1 in a geometric way. The key to proving

Statement 3 is a natural quantity associated to a 𝑘-bird. We let 𝜎𝑎,𝑏 be the slope of the line

𝑃𝑎,𝑏 and we define the cross ratio

𝜒(𝑎, 𝑏, 𝑐, 𝑑) =
(𝑎 − 𝑏)(𝑐 − 𝑑)

(𝑎 − 𝑐)(𝑏 − 𝑑)
. (3)

We define
𝜒𝑘(𝑃) =

𝑛∏

𝑖=1

𝜒(𝑖, 𝑘, 𝑃), 𝜒(𝑖, 𝑘, 𝑃) = 𝜒(𝜎𝑖,𝑖−𝑘, 𝜎𝑖,𝑖−𝑘−1, 𝜎𝑖,𝑖+𝑘+1, 𝜎𝑖,𝑖+𝑘) (4)

Here we are taking the cross ratio the slopes the lines involved in our definition of 𝑘-nice.

When 𝑘 = 1 this is the familiar invariant 𝜒1 = 𝑂𝐸 for the pentagram map ∆1. See [19],

[20], [17], [18]. When 𝑛 = 3𝑘 + 1, a suitable star-relabeling of our polygons converts ∆𝑘 to

∆1 and 𝜒𝑘 to 1∕𝜒1. So, in this case 𝜒𝑘◦∆𝑘 = 𝜒𝑘. Figure 1.5 illustrates this for (𝑘, 𝑛) = (3, 10).

Note that the polygons suggested by the dots in Figure 1.5 are not convex. Were we to

add in the edges we would get a highly non-convex pattern.

0
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Figure 1.6: A star-relabeling converts ∆1 to ∆3 and 1∕𝜒1 to 𝜒3.

In general, 𝜒𝑘 is not as clearly related to 𝜒1. Nonetheless, we will prove

Theorem 1.2. 𝜒𝑘◦∆𝑘 = 𝜒𝑘.
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Theorem 1.2 is meant to hold for all 𝑛-gons, as long as all quantities are defined. There

is no need to restrict to birds.

1.5 The Collapse Point

When it is understood that 𝑃 ∈ 𝐵𝑘,𝑛 it is convenient to write

𝑃𝓁 = ∆𝓁
𝑘
(𝑃) (5)

We also let 𝑃 denote the closed planar region bounded by 𝑃. Figure 1.7 below shows

𝑃 = 𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃4 for some 𝑃 ∈ 𝐵4,13.

Figure 1.7: ∆4 and its iterates acting on a member of 𝐵4,13.

Define

𝑃∞ =
⋂

𝓁∈𝒁

𝑃𝓁, 𝑃−∞ =
⋃

𝓁∈𝒁

𝑃𝓁. (6)

Theorem 1.3. If 𝑃 ∈ 𝐵𝑘,𝑛 then 𝑃∞ is a point and 𝑃−∞ is an affine plane.

Our argument will show that 𝑃 ∈ 𝐵𝑘,𝑛 is strictly star-shaped with respect to all points

in 𝑃𝑛. In particular, all polygons in the orbit are strictly star-shaped with respect to the

collapse point 𝑃∞. See Corollary 7.3.
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One might wonder if some version of Glick’s formula works for the 𝑃∞ in general. I

discovered experimentally that this is indeed the case for 𝑛 = 3𝑘 + 1 and 𝑛 = 3𝑘 + 2. See

§9.2 for a discussion of this and related matters.

Here is a corollary of our results that is just about convex polygons.

Corollary 1.4. Suppose that 𝑛 > 3𝑘 and 𝑃 is a convex 𝑛-gon. Then the sequence {∆𝓁
𝑘
(𝑃)}

shrinks to a point as 𝓁 → ∞, and each member of this sequence if strictly star-shaped with

respect to the collapse point.

1.6 The Triangulations

In §7.1 we associate to each 𝑘-bird 𝑃 a triangulation 𝜏𝑃 ⊂ 𝑷, the projective plane. Here

𝜏𝑃 is an embedded degree 6 triangulation of 𝑃−∞ − 𝑃∞. The edges are made from the

segments in the 𝛿-diagonals of 𝑃 and its iterates for 𝛿 = 1, 𝑘, 𝑘 + 1.

Figure 1.8 shows this tiling associated to a member of 𝐵5,16. In this figure, the interface

between the big black triangles and the big white triangles is some∆𝓁
5
(𝑃) for some smallish

value of 𝓁. (I zoomed into the picture a bit to remove the boundary of the initial 𝑃.) The

picture is normalized so that the line 𝑃−∞ is the line at infinity. When I make these kinds

of pictures (and animations), I normalize so that the ellipse of inertia of 𝑃 is the unit disk.
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Figure 1.8: The triangulation associated to a member of 𝐵5,16.

1.7 Paper Organization

This paper is organized as follows.

• In §2 we prove Theorem 1.2.

• In §3 we prove Statement 1 of Theorem 1.1.

• In §4 we prove Statement 2 of Theorem 1.1.

• In §5 we prove a technical result called the Degeneration Lemma, which will help

with Statement 3 of Theorem 1.1.
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• In §6 we prove Statement 3 of Theorem 1.1.

• In §7 we introduce the triangulations discussed above. Our Theorem 7.2 will help

with the proof of Theorem 1.3.

• In §8 we prove Theorem 1.3.

• In §9, an appendix, we sketch an alternate proof of Theorem 1.2 which Anton Izosi-

mov kindly explained. We also discuss Glick’s collapse formula and star relabelings

of polygons.

1.8 Visit the Flapping Bird Exhibit

Our results inject some more geometry into the pentagram zoo. Our results even have

geometric implications for the pentagram map itself. See §9.3. There are different ways

to visit the flapping bird exhibit in the zoo. You could read the proofs here, or you might

just want to to look at some images:

http://www.math.brown.edu/∼reschwar/BirdGallery

You can also download and play with the software I wrote:

http://www.math.brown.edu/∼reschwar/Java/Bird.TAR

The software has detailed instructions. You can view this paper as a justification for why

the nice images actually exist.

2 The Energy

The purpose of this chapter is to prove Theorem 1.2. The proof, which is similar to what I

do in [19], is more of a verification than a conceptual explanation. My computer program

allows the reader to understand the technical details of the proof better. The reader might

want to just skim this chapter on the first reading. In §9 I will sketch an alternate proof,

which I learned from Anton Izosimov. Izosimov’s proof also uses the first two sections of

this chapter.
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2.1 Projective Geometry

Let 𝑷 denote the real projective plane. This is the space of 1-dimensional subspaces of 𝑹3.

The projective plane 𝑷 contains 𝑹2 as the affine patch. Here 𝑹2 corresponds to vectors of

the form (𝑥, 𝑦, 1), which in turn define elements of 𝑷.

Let 𝑷∗ denote the dual projective plane, namely the space of lines in 𝑷. The elements

in 𝑷
∗ are naturally equivalent to 2-dimensional subspaces of 𝑹3. The line in 𝑷 such a

subspace Π defines is equal to the union of all 1-dimensional subspaces of Π.

Any invertible linear transformation of 𝑹3 induces a projective transformation of 𝑷,

and also of 𝑷∗. These form the projective group 𝑃𝑆𝐿3(𝑹). Such maps preserve collinear

points and coincident lines.

A duality from 𝑷 to 𝑷
∗ is an analytic diffeomorphism 𝑷 → 𝑷

∗ which maps collinear

points to coincidence lines. The classic example is the map which sends each linear

subspace of 𝑹3 to its orthogonal complement.

A PolyPoint is a cyclically ordered list of points of 𝑷. When there are 𝑛 such points,

we call this an 𝑛-Point. A PolyLine is a cyclically ordered list of lines in 𝑷, which is the

same as a cyclically ordered list of points in 𝑷
∗. A projective duality maps PolyLines to

PolyPoints, and vice versa.

Each 𝑛-Point determines 2𝑛 polygons in 𝑷 because, for each pair of consecutive points,

we may choose one of two line segments to join them. As we mentioned in the introduction,

we have a canonical choice for 𝑘-birds. Theorem 1.2 only involves PolyPoints, and our

proof uses PolyPoints and PolyLines.

Given a 𝑛-Point 𝑃, we let 𝑃𝑗 be its 𝑗th point. We make a similar definition for 𝑛-Lines.

We always take indices mod 𝑛.

2.2 Factoring the Map

Like the pentagram map, the map ∆𝑘 is the product of 2 involutions. This factorization

will be useful here and in later chapters.

Given a PolyPoint 𝑃, consisting of points 𝑃1, ..., 𝑃𝑛, we define 𝑄 = 𝐷𝑚(𝑃) to be the
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PolyLine whose successive lines are 𝑃0,𝑚, 𝑃1,𝑚+1, etc. Here 𝑃0,𝑚 denotes the line through

𝑃0 and 𝑃𝑚, etc. We labed the vertices so that

𝑄−𝑚−𝑖 = 𝑃𝑖,𝑖+𝑚. (7)

This is a convenient choice. We define the action of 𝐷𝑚 on PolyLines in the same way,

switching the roles of points and lines. For PolyLines, 𝑃0,𝑚 is the intersection of the line

𝑃0 with the line 𝑃𝑚. The map 𝐷𝑚 is an involution which swaps PolyPoints with PolyLines.

We have the compositions

∆𝑘 = 𝐷𝑘◦𝐷𝑘+1, ∆−1
𝑘

= 𝐷𝑘+1◦𝐷𝑘. (8)

The energy 𝜒𝑘 makes sense for 𝑛-Lines as well as for 𝑛-Points. The quantities 𝜒𝑘◦𝐷𝑘(𝑃)

and 𝜒𝑘◦𝐷𝑘+1(𝑃) can be computed directly from the PolyPoint 𝑃. Figure 2.1 shows schemat-

ically the 4-tuples associated to 𝜒(0, 𝑘, 𝑄) for 𝑄 = 𝑃 and 𝐷𝑘(𝑃) and 𝐷𝑘+1(𝑃). In each case,

𝜒𝑘(𝑄) is a product of 𝑛 cross ratios like these. If we want to compute the factor of 𝜒𝑘(𝐷𝑘(𝑃))

associated to index 𝑖 we subtract (rather than add) 𝑖 from the indices shown in the middle

figure. A similar rule goes for 𝐷𝑘+1(𝑃).

Figure 2.1: Computing the 𝑘-energy.

Theorem 1.2 follows from the next two results.

Lemma 2.1. 𝜒𝑘◦𝐷𝑘 = 𝜒𝑘.

Lemma 2.2. 𝜒𝑘◦𝐷𝑘+1 = 𝜒𝑘.

These results have almost identical proofs. We consider Lemma 2.1 in detail and then

explain the small changes needed for Lemma 2.2.
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2.3 Proof of the First Result

We study the ratio

𝑅(𝑃) =
𝜒𝑘◦𝐷𝑘(𝑃)

𝜒𝑘(𝑃)
. (9)

We want to show that 𝑅(𝑃) equals 1 wherever it is defined. We certainly have 𝑅(𝑃) = 1

when 𝑃 is the regular 𝑛-Point.

Given a PolyPoint 𝑃 we choose a pair of vertices 𝑎, 𝑏 with |𝑎 − 𝑏| = 𝑘. We define 𝑃(𝑡) to

be the PolyPoint obtained by replacing 𝑃𝑎 with

(1 − 𝑡)𝑃𝑎 + 𝑡𝑃𝑏. (10)

Figure 2.2 shows what we are talking about, in case 𝑘 = 3. We have rotated the picture so

that 𝑃𝑎 and 𝑃𝑏 both lie on the 𝑋-axis.

t

Figure 2.2: Connecting one PolyPoint to another by sliding a point.

The two functions

𝑓(𝑡) = 𝜒𝑘(𝑃(𝑡)), 𝑔(𝑡) = 𝜒𝑘◦𝐷𝑘(𝑃(𝑡)) (11)

are each rational functions of 𝑡. Our notation does not reflect that 𝑓 and 𝑔 depend on

𝑃, 𝑎, 𝑏.

A linear fractional transformation is a map of the form

𝑡 →
𝛼𝑡 + 𝛽

𝛾𝑡 + 𝛿
, 𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝑹, 𝛼𝛿 − 𝛽𝛾 ≠ 0.

Lemma 2.3 (Factor I). If 𝑛 ≥ 4𝑘 + 2 and 𝑃 is a generically chosen 𝑛-Point, then 𝑓(𝑡) and 𝑔(𝑡)

are each products of 4 linear fractional transformations. The zeros of 𝑓 and 𝑔 occur at the

same points and the poles of 𝑓 and 𝑔 occur at the same points. Hence 𝑓∕𝑔 is constant.
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The only reason we choose 𝑛 ≥ 4𝑘 + 2 in the Factor Lemma is so that the various

diagonals involved in the proof do not have common endpoints. The Factor Lemma I

works the same way for all 𝑘 and for all choices of (large) 𝑛. We write 𝑃 ↔ 𝑄 if we can

choose indices 𝑎, 𝑏 and some 𝑡 ∈ 𝑹 such that 𝑄 = 𝑃(𝑡). The Factor Lemma implies that

when 𝑃,𝑄 are generic and 𝑃 ↔ 𝑄 we have 𝑅(𝑃) = 𝑅(𝑄). The result for non-generic choices

of 𝑃 follows from continuity. Any 𝑛-Point 𝑄 can be included in a finite chain

𝑃0 ↔ 𝑃1 ↔⋯↔ 𝑃2𝑛 = 𝑄,

where 𝑃0 is the regular 𝑛-Point. Hence 𝑅(𝑄) = 𝑅(𝑃0) = 1. This shows that Lemma 2.1 holds

for (𝑘, 𝑛) where 𝑘 ≥ 2 and 𝑛 ≥ 4𝑘 + 2. (The case 𝑘 = 1 is a main result of [19], and by now

has many proofs.)

Lemma 2.4. If Lemma 2.1 is true for all large values of 𝑛, then it is true for all values of 𝑛.

Proof: If we are interested in the result for small values of 𝑛, we can replace a given

PolyPoint 𝑃 with its 𝑚-fold cyclic cover 𝑚𝑃. We have 𝜒𝑘(𝑚𝑃) = 𝜒𝑘(𝑃)
𝑚 and 𝜒𝑘(𝐷𝑘(𝑚𝑃)) =

𝜒𝑘(𝐷𝑘(𝑝))
𝑚. Thus, the result for large 𝑛 implies the result for small 𝑛. ♠

In view of Equation 4 we have

𝑓(𝑡) = 𝑓1(𝑡)...𝑓𝑛(𝑡), 𝑓𝑗(𝑡) = 𝜒(𝑗, 𝑘, 𝑃(𝑡)). (12)

Thus 𝑓(𝑡) is the product of 𝑛 “local” cross ratios. We call an index 𝑗 asleep if none of the

lines involved in the cross ratio 𝑓𝑗(𝑡) depend on 𝑡. In other words, the lines do not vary at

all with 𝑡. Otherwise we call 𝑗 awake.

As we vary 𝑡, only the diagonals 𝑃0,ℎ change for ℎ = −𝑘,−𝑘 − 1, 𝑘 + 1, 𝑘. From this fact,

it is not surprising that there are precisely 4 awake indices. These indices are

𝑗0 = 0, 𝑗1 = 𝑘 + 1, 𝑗2 = −𝑘 − 1, 𝑗3 = −𝑘. (13)

The index 𝑘 is not awake because the diagonal 𝑃0,𝑘(𝑡) does not move with 𝑡.

Arnold Mathematical Journal, Vol.11(4), 2025 25

http://dx.doi.org/10.56994/ARMJ


Richard Evan Schwartz

We define a chord of 𝑃(𝑡) to be a line defined by a pair of vertices of 𝑃(𝑡). The point
𝑃0(𝑡) moves at linear speed, and the 4 lines involved in the calculation of 𝑓𝑐𝑗 (𝑡) are distinct
unless 𝑃0(𝑡) lies in one of the chords of 𝑃(𝑡). Thus 𝑓𝑐𝑗 (𝑡) only has zeros and poles at the
corresponding values of 𝑡. It turns out that only the following chords are involved.

−𝑘

−𝑘 − 1

−𝑘

𝑘 + 1

−𝑘

1

−𝑘

−2𝑘 − 1

−𝑘 − 1

−1

−𝑘 − 1

−2𝑘 − 1

𝑘 + 1

1

𝑘 + 1

2𝑘 + 1
(14)

We call these 𝑐0, ..., 𝑐7. For instance, 𝑐0 is the line through 𝑃−𝑘 and 𝑃−𝑘−1. Let 𝑡𝑗 denote the

value of 𝑡 such that 𝑃(𝑡𝑗) ∈ 𝑐𝑗.

The PolyPoint 𝑄(𝑡) = 𝐷𝑘(𝑃(𝑡)) has the same structure as 𝑃(𝑡). Up to projective transfor-

mations 𝑄(𝑡) is also obtained from the regular PolyPoint by moving a single vertex along

one of the 𝑘-diagonals. The pattern of zeros and poles is not precisely the same because

the chords of 𝑄(𝑡) do not correspond to the chords of 𝑃(𝑡) in a completely straightfor-

ward way. The 𝑘-diagonals of 𝑄(𝑡) correspond to the vertices of 𝑃(𝑡) and vice versa. The

(𝑘 + 1) diagonals of 𝑄(𝑡) correspond to the vertices of ∆−1
𝑘
(𝑃(𝑡)). This is what gives us our

quadruples of points in the middle picture in Figure 2.1.

We now list the pattern of zeros and poles. We explain our notation by way of example.

The quadruple (𝑓, 2, 4, 5) indicates that 𝑓𝑐2 has a simple zero at 𝑓4 and a simple pole at 𝑡5.

(𝑓, 0, 0, 1), (𝑓, 1, 6, 7), (𝑓, 2, 4, 5), (𝑓, 3, 2, 3). (15)

(𝑔, 0, 6, 5), (𝑔, 1, 0, 3), (𝑔, 2, 2, 1), (𝑔, 3, 4, 7). (16)

Since these functions have holomorphic extensions to 𝑪 with no other zeros and poles,

these functions are linear fractional transformations. This pattern establishes the Factor

Lemma I.

Checking that the pattern is correct is just a matter of inspection. We give two example

checks.

• To see why 𝑓𝑐2 has a simple zero at 𝑡4 we consider the quintuple

(−𝑘 − 1,−2𝑘 − 1,−2𝑘 − 2, 0, −1).
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At 𝑡4 the two diagonals 𝑃−𝑘−1,0 and 𝑃−𝑘−1,−1 coincide. In terms of the cross ratios of

the slopes we are computing 𝜒(𝑎, 𝑏, 𝑐, 𝑑) with 𝑎 = 𝑏. The point 𝑃0(𝑡) is moving with

linear speed and so the zero is simple.

• To see why 𝑔𝑐2 has a simple pole at 𝑡1 we consider the 4 points

𝑃2𝑘+2,𝑘+2 ∩ 𝑃1,𝑘+1, 𝑃𝑘+1, 𝑃1, 𝑃1,𝑘+1 ∩ 𝑃−𝑘,0. (17)

These are all contained in the 𝑘-diagonal 𝑃1,𝑘+1, which corresponds to the vertex

(−𝑘 − 1) of 𝐷𝑘(𝑃). At 𝑡 = 𝑡1 the three points 𝑃0(𝑡) and 𝑃−𝑘 and 𝑃𝑘+1 are collinear. This

makes the 2nd and 4th listed point coincided. In terms of our cross ratio 𝜒(𝑎, 𝑏, 𝑐, 𝑑)

we have 𝑏 = 𝑑. This gives us a pole. The pole is simple because the points come

together at linear speed.

The other explanations are similar. The reader can see graphical illustrations of these

zeros and poles using our program.

2.4 Proof of the Second Result

The proof of Lemma 2.2 is essentially identical to the proof of Lemma 2.1. Here are the

changes. The Factor Lemma II has precisely the same statement as the Factor Lemma I,

except that

• When defining 𝑃(𝑡) we use points 𝑃𝑎 and 𝑃𝑏 with |𝑎 − 𝑏| = 𝑘 + 1.

• We are comparing 𝑃(𝑡) with 𝐷𝑘+1(𝑃(𝑡)).

This changes the definition of the functions 𝑓 and 𝑔. With these changes made, the Factor

Lemma I is replaced by the Factor Lemma II, which has an identical statement. This time

the chords involved are as follows.

−𝑘 − 1

−𝑘

−𝑘 − 1

𝑘

−𝑘 − 1

−1

−𝑘 − 1

−2𝑘 − 1

−𝑘

1

−𝑘

−2𝑘 − 1

𝑘

−1

𝑘

2𝑘 + 1
(18)
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This time the 4 awake indices are:

𝑗0 = 0, 𝑗1 = 𝑘, 𝑗2 = −𝑘 − 1, 𝑗3 = −𝑘. (19)

Here is the pattern of zeros and poles.

(𝑓, 0, 1, 0), (𝑓, 1, 7, 6), (𝑓, 2, 3, 2), (𝑓, 3, 5, 4). (20)

(𝑔, 0, 5, 6), (𝑔, 1, 3, 0), (𝑔, 2, 7, 4), (𝑔, 3, 1, 2). (21)

The pictures in these cases look almost identical to the previous case. The reader can see

these pictures by operating my computer program. Again, the zeros of 𝑓 and 𝑔 are located

at the same places, and likewise the poles of 𝑓 and 𝑔 are located at the same places. Hence

𝑓∕𝑔 is constant. This completes the proof the Factor Lemma II, which implies Lemma 2.2.

3 The Soul of the Bird

3.1 Goal of the Chapter

Given a polygon 𝑃 ⊂ 𝑹
2, let 𝑃 be the closure of the bounded components of 𝑹2 − 𝑃 and let

𝑃𝐼 be the interior of 𝑃. (Eventually we will see that birds are embedded, so 𝑃 will be a

closed topological disk and 𝑃𝐼 will be an open topological disk.)

Suppose now that 𝑃(𝑡) for 𝑡 ∈ [0, 1] is a path in 𝐵𝑛,𝑘 starting at the regular 𝑛-gon 𝑃(0). We

can adjust by a continuous family of projective transformations so that 𝑃(𝑡) is a bounded

polygon in 𝑹
2 for all 𝑡 ∈ [0, 1]. We orient 𝑃(0) counter-clockwise around 𝑃𝐼(0). We extend

this orientation choice continuously to 𝑃(𝑡). We let 𝑃𝑎𝑏(𝑡) denote the diagonal through

vertices 𝑃𝑎(𝑡) and 𝑃𝑏(𝑡). We orient 𝑃𝑎,𝑏(𝑡) so that it points from 𝑃𝑎(𝑡) to 𝑃𝑏(𝑡). We take

indices mod 𝑛.

We now recall a definition from the introduction: When 𝑃 is embedded, we say that

𝑃 is strictly star shaped with respect to 𝑥 ∈ 𝑃𝐼 if each ray emanating from 𝑥 intersects 𝑃

exactly once.
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Figure 3.1: The soul of a 3-bird

Each such (𝑘+1)-diagonal defines an oriented line that contains it, and also the (closed)

distinguished half plane which lies to the left of the oriented line. These 𝑛 half-planes

vary continuously with 𝑡. The soul of 𝑃(𝑡), which we denote 𝑆(𝑡), is the intersection of the

distinguished half-planes. Figure 3.1 shows the an example.

The goal of this chapter is to prove the following result.

Theorem 3.1. Let 𝑃 be a bird and let 𝑆 be its soul. Then:

1. 𝑆 is has non-empty interior.

2. 𝑆 ⊂ 𝑃𝐼 .

3. 𝑃 is strictly star-shaped with respect to any point in 𝑆.

Theorem 3.1 immediately implies Statement 1 of Theorem 1.1.

We are going to give a homotopical proof of Theorem 3.1. We say that a value 𝑡 ∈ [0, 1]

is a good parameter if Theorem 3.1 holds for 𝑃(𝑡). All three conclusions of Theorem 3.1 are

open conditions. Finally, 0 is a good parameter. For all these reasons, it suffices to prove

that the set of good parameters is closed. By truncating our path at the first supposed

failure, we reduce to the case when Theorem 3.1 holds for all 𝑡 ∈ [0, 1).
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3.2 The Proof

For ease of notation we set 𝑋 = 𝑋(1) for any object 𝑋 associated to 𝑃(1).

Lemma 3.2. If 𝑃 is any 𝑘-bird, then 𝑃0 and 𝑃2𝑘+1 lie to the left of 𝑃𝑘,𝑘+1. The same goes if all

indices are cyclically shifted by the same amount.

Proof: Consider the triangle with vertices 𝑃0(𝑡) and 𝑃𝑘(𝑡) and 𝑃𝑘+1(𝑡). The 𝑘-niceness

condition implies that this triangle is non-degenerate for all 𝑡 ∈ [0, 1]. Since 𝑃0(𝑡) lies to

to the left of 𝑃𝑘,𝑘+1(𝑡), the non-degeneracy implies the same result for 𝑡 = 1. The same

argument works for the triple (2𝑘 + 1, 𝑘, 𝑘 + 1). ♠

Lemma 3.3. 𝑆 is non-empty and contained in 𝑃𝐼 .

Proof: By continuity, 𝑆 is nonempty and contained in 𝑃 ∪ 𝑃𝐼 . By the 𝑘-niceness property

and continuity, 𝑃1 lies strictly to the right of 𝑃0,𝑘+1. Hence the entire half-open edge [𝑃0, 𝑃1)

lies strictly to the right of 𝑃0,𝑘+1. Hence [𝑃0, 𝑃1) is disjoint from 𝑆. By cyclic relabeling, the

same goes for all the other half-open edges. Hence 𝑆 ∩ 𝑃 = ∅. Hence 𝑆 ⊂ 𝑃𝐼 . ♠

Lemma 3.4. 𝑃 is strictly star-shaped with respect to any point of 𝑆.

Proof: Since 𝑃(𝑡) is strictly star-shaped with respect to all points of 𝑆(𝑡) for 𝑡 < 1, this

lemma can only fail if there is an edge of 𝑃 whose extending line contains a point 𝑥 ∈ 𝑆.

We can cyclically relabel so that the edge of 𝑃0𝑃1.

01x

k+1

01x

k+1

or

Figure 3.2: The diagonal 𝑃0,𝑘+1 does not separate 1 from 𝑥.
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Since 𝑥 ∉ 𝑃, either 𝑃1 lies between 𝑃0 and 𝑥 or 𝑃0 lies in between 𝑥 and 𝑃1. In the first

case, both 𝑃1 and 𝑥 lie on the same side of the diagonal 𝑃0,𝑘+1. This is a contradiction: 𝑃1
is supposed to lie on the right and 𝑥 is supposed to lie on the left. In the second case we

get the same kind of contradiction with respect to the diagonal 𝑃−𝑘,1. ♠

We say that 𝑃 has opposing (𝑘 + 1)-diagonals if it has a pair of (𝑘 + 1)-diagonals which

lie in the same line and point in opposite directions. In this case, the two left half-spaces

are on opposite sides of the common line.

Lemma 3.5. 𝑃 does not have opposing (𝑘 + 1)-diagonals.

Proof: We suppose that 𝑃 has opposing diagonals and we derive a contradiction. In this

case 𝑆, which is the intersection of all the associated left half-planes, must be a subset of

the line 𝐿 containing these diagonals. But then 𝑃 intersects 𝐿 in at least 4 points, none of

which lie in 𝑆. But then 𝑃 cannot be strictly star-shaped with respect to any point of 𝑆.

This is a contradiction. ♠

We call three (𝑘 + 1)-diagonals of 𝑃(𝑡) interlaced if the intersection of their left half-

spaces is a triangle. See Figure 3.3.

a1

b1

a2

a3

b2

b3

Figure 3.3: Interlaced diagonals on 𝑃(𝑡).
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Given interlaced (𝑘 + 1)-diagonals, and a point 𝑥 in the intersection, the circle of rays

emanating from 𝑥 encounters the endpoints of the diagonals in an alternating pattern:

𝑎1, 𝑏3, 𝑎2, 𝑏1, 𝑎3, 𝑏2, where 𝑎1, 𝑎2, 𝑎3 are the tail points and 𝑏1, 𝑏2, 𝑏3 are the head points. Here

𝑎1 names the vertex 𝑃𝑎1(𝑡), etc.

Lemma 3.6. 𝑃(𝑡) cannot have interlaced diagonals for 𝑡 < 1.

Proof: Choose 𝑥 ∈ 𝑆(𝑡). The 𝑛-gon 𝑃(𝑡) is strictly star-shaped with respect to 𝑥. Hence, the

vertices of 𝑃 are encountered in order (mod 𝑛) by a family of rays that emanate from 𝑥

and rotates around full-circle. Given the order these vertices are encountered, we have

𝑎𝑗+1 = 𝑎𝑗 + 𝜂𝑗, where 𝜂𝑗 ≤ 𝑘. Here we are taking the subscripts mod 3 and the vertex

values mod 𝑛. This tells us that 𝑛 = 𝜂1 + 𝜂2 + 𝜂3 ≤ 3𝑘. This contradicts the fact that 𝑛 > 3𝑘.

♠

It only remains to show that 𝑆 has non-empty interior. A special case of Helly’s

Theorem says the following: If we have a finite number of convex subsets of 𝑹2 then

they all intersect provided that every 3 of them intersect. Applying Helly’s Theorem to

the set of interiors of our distinguished half-planes, we conclude that we can find 3 of

these open half-planes whose triple intersection is empty. On the other hand, the triple

intersection of the closed half-planes contains 𝑥. Since 𝑃 has no opposing diagonals, this

is only possible if the 3 associated diagonals are interlaced for 𝑡 sufficiently close to 1.

This contradicts Lemma 3.6. Hence 𝑆 has non-empty interior.

4 The Feathers of the Bird

4.1 Goal of the Chapter

Recall that 𝑃𝐼 is the interior of the region bounded by 𝑃. We call the union of black

triangles in Figure 4.1 the feathers of the bird. the black region in the center is the soul.
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e

v

Figure 4.1 The feathers of a 3-bird.

Each feather 𝐹 of a 𝑘-bird 𝑃 is the convex hull of its base, an edge 𝑒 of 𝑃, and its tip, a

vertex of ∆𝑘(𝑃).

The goal of this chapter is to prove the following result, which says that the simple

topological picture shown in Figure 4.1 always holds.

Theorem 4.1. The following is true.

1. Let 𝐹 be an feather with base 𝑒. Then 𝐹 − {𝑒} ⊂ 𝑃𝐼 .

2. Distinct feathers can only intersect at a vertex of 𝑃.

3. The line segment connecting two consecutive feather tips lies in 𝑃𝐼 .

When we apply∆𝑘 to 𝑃 we are just specifying the points of∆𝑘(𝑃). We define the polygon

∆𝑘(𝑃) so that the edges are the bounded segments connecting the consecutive tips of the

feathers of 𝑃. With this definion, Statement 2 of Theorem 1.1 follows immediately from

Theorem 4.1.
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4.2 The Proof

There is one crucial idea in the proof of Theorem 4.1: The soul of 𝑃 lies in the sector 𝐹∗

opposite any of its feathers 𝐹. See Figure 4.2.

F*

F

S

e
v

Figure 4.2 The soul lies in the sectors opposite the feathers.

We will give a homotopical proof of Theorem 4.1. By truncating our path of birds, we

can assume that Theorem 4.1 holds for all 𝑡 ∈ [0, 1). We set 𝑃 = 𝑃(1), etc.

Statement 1: Figure 4.3 shows the 2 ways that Statement 1 could fail:

1. The tip 𝑣 of the feather 𝐹 could coincide with some 𝑝 ∈ 𝑃.

2. Some 𝑝 ∈ 𝑃 could lie in the interior point of 𝜕𝐹 − 𝑒.

Figure 4.3: Case 1 (left) and Case 2 (right).

For all 𝑥 ∈ 𝐹∗, the ray ⃖⃗𝑥𝑝 intersects 𝑃 both at 𝑝 and at a point 𝑝′ ∈ 𝑒. This contradicts

the fact that for any 𝑥 ∈ 𝑆 ⊂ 𝐹∗, the polygon 𝑃 is strictly star-shaped with respect to 𝑥.
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This establishes Statement 1 of Theorem 4.1.

Statement 2: Let 𝐹1 and 𝐹2 be two feathers of 𝑃, having bases 𝑒1 and 𝑒2. For Statement 2,

it suffices to prove that 𝐹1 − 𝑒1 and 𝐹2 − 𝑒2 are disjoint.

The same homotopical argument as for Statement 1 reduces us to the case when 𝐹1

and 𝐹2 have disjoint interiors but 𝜕𝐹1−𝑒1 and 𝜕𝐹2−𝑒2 share a common point 𝑥. If 𝜕𝐹1 and

𝜕𝐹2 share an entire line segment then, thanks to the fact that all the feathers are oriented

the same way, we would have two (𝑘 + 1) diagonals of 𝑃 lying in the same line and having

opposite orientation. Lemma 3.5 rules this out.

In particular 𝑥 must be the tip of at least one feather. Figure 4.4 shows the case when

𝑥 = 𝑣1, the tip of 𝐹1, but 𝑥 ≠ 𝑣2. The case when 𝑥 = 𝑣1 = 𝑣2 has a similar treatment.

F
1

F
2

Figure 4.4: Opposiing sectors are disjoint

In this case, the two sectors 𝐹∗
1

and 𝐹∗
2

are either disjoint or intersect in a single point.
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This contradicts the fact that 𝑆 ⊂ 𝐹∗
1
⊂ 𝐹∗

2
has non-empty interior. This contradiction

establishes Statement 2 of Theorem 4.1.

Statement 3: Recall that 𝑃 = 𝑃 ∪ 𝑃𝐼 . Let 𝐹1 and 𝐹2 be consecutive feathers with bases 𝑒1
and 𝑒2 respeectively. Let 𝑓 be the edge connecting the tips of 𝐹1 and 𝐹2. Our homotopy

idea reduces us to the case when 𝑓 ⊂ 𝑃 and 𝑓 ∩ 𝑃 ≠ ∅. Figure 4.5 shows the situation.

F
1 F

2

2

e1 e2

Figure 4.5: The problem a common boundary point

Note that 𝑓 ∩ 𝑃 must be strictly contained in the interior of 𝑓 because (by Statement 1

of Theorem 4.1) the endpoints of 𝑓 lie in 𝑃𝐼 . But then, 𝑓 ∩ 𝑃 is disjoint from 𝐹∗
1
∩ 𝐹∗

2
, which

is in turn contained in the shaded region 𝐺. For any 𝑥 ∈ 𝐺 and each vertex 𝑝 of 𝑓, the

ray the ray ⃖⃗𝑥𝑝 also intersects 𝑃 at a point 𝑝′ ∈ 𝑒1 ∪ 𝑒2. This gives the same contradiction

as above when we take 𝑥 ∈ 𝑆 ⊂ 𝐹∗
1
∩ 𝐹∗

2
⊂ 𝐺. This completes the proof of Statement 3 of

Theorem 4.1.
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5 The Degeneration of Birds

5.1 Statement of Result

Let 𝐵𝑘,𝑛 denote the space of 𝑛-gons which are 𝑘-birds. Let 𝜒𝑘 denote the 𝑘-energy. With

the value of 𝑘 fixed in the background, we say that a degenerating path is a path 𝑄(𝑡) of

𝑛-gons such that

1. 𝑄(𝑡) is planar for all 𝑡 ∈ [0, 1].

2. All vertices of 𝑄(𝑡) are distinct for all 𝑡 ∈ [0, 1].

3. 𝑄(𝑡) ∈ 𝐵𝑘,𝑛 for all 𝑡 ∈ [0, 1) but 𝑄(1) ∉ 𝐵𝑘,𝑛.

4. 𝜒𝑘(𝑄(𝑡)) > 𝜖0 > 0 for all 𝑡 ∈ [0, 1].

In this chapter we will prove the following result, which will help us prove that

∆𝑘(𝐵𝑘,𝑛) ⊂ 𝐵𝑘,𝑛 in the next chapter. The reader should probably just use the statement as

a black box on the first reading.

Lemma 5.1 (Degeneration). If 𝑄(⋅) is a degenerating path, then all but at most one vertex

of 𝑄(1) lies in a line segment.

Remark: Our proof only uses the fact that 𝑄 has nontrivial edges, nontrivial 𝑘-diagonals,

and nontrivial (𝑘+1)-diagonals. Some of the other vertices could coincide and it would not

matter. Also, the same proof works if, instead of a continuous path, we have a convergent

sequence {𝑄(𝑡𝑛)} with 𝑡𝑛 → 1 and a limiting polygon 𝑄(1) = lim𝑄(𝑡𝑛).

Example: Let us give an example for the case 𝑘 = 1 and 𝑛 = 5. Figure 5.0 shows a picture

of a pentagon 𝑄(𝑡) for 𝑡 = 1 − 𝑠.

Arnold Mathematical Journal, Vol.11(4), 2025 37

http://dx.doi.org/10.56994/ARMJ


Richard Evan Schwartz

(0,1)

(-2,0) (2,0)

(-1,-s) (1,-s)
-s

1/2

-s/3

0

1+s

A

B
C

Figure 5.0: A degenerating path in the case 𝑘 = 1 and 𝑛 = 5.

Here 𝑠 ranges from 1 to 0 as 𝑡 ranges from 0 to 1. We have labeled some of the slopes

to facility the calculation (which we leave to the reader) that 𝜒1(𝑄(𝑡)) remains uniformly

bounded away from 0.

5.2 Distinguished Diagonals

We orient 𝑄(𝑡) so that it goes counter-clockwise around the region it bounds. We orient

the diagonal 𝑄𝑎𝑏 so that it points from 𝑄𝑎 to 𝑄𝑏. For 𝑡 < 1 the vertices 𝑄1(𝑡) and 𝑄𝑘(𝑡) lie to

the right of the diagonal 𝑄0,𝑘+1(𝑡), in the sense that a person walking along this diagonal

according to its orientation would see that points in the right. This has the same proof

as Lemma 3.2. The same rule holds for all cyclic relabelings of these points. The rule

holds when 𝑡 < 1. Taking a limit, we get a weak version of the rule: Each of 𝑄1(1) and

𝑄𝑘(1) either lies to the right of the diagonal 𝑄0,𝑘+1(1) or on it. The same goes for cyclic

relabeings. We call this the Right Hand Rule.

Say that a distinguished diagonal of 𝑄(𝑡) is either a 𝑘-diagonal or a (𝑘 + 1)-diagonal.

There are 2𝑛 of these, and they come in a natural cyclic order:

𝑄0,𝑘(𝑡) 𝑄0,𝑘+1(𝑡), 𝑄1,𝑘+1(𝑡), 𝑄1,𝑘+2(𝑡), ... (22)

The pattern alternates between 𝑘 and (𝑘 + 1)-diagonals. We say that a diagonal chain is a

consecutive list of these.

We say that one oriented segment 𝐿2 lies ahead of another one 𝐿1 if we can rotate 𝐿1
by 𝜃 ∈ (0, 𝜋) radians counter-clockwise to arrive at a segment parallel to 𝐿2, In this case

we write 𝐿1 ≺ 𝐿2. We have

𝑄0,𝑘+1(𝑡) ≺ 𝑄1,𝑘+1(𝑡) ≺ 𝑄1,𝑘+2(𝑡) ≺ 𝑄2,𝑘+2(𝑡). (23)
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0

k+1

1

k+2

2

Figure 5.1: The turning rule

This certainly holds when 𝑡 = 0. By continuity and the Right Hand Rule, this holds for all

𝑡 < 1. Taking a limit, we see that the 𝑘-diagonals of 𝑄(1) weakly turn counter-clockwise in

the sense that either 𝐿1 ≺ 𝐿2 for consecutive diagonals or else 𝐿1 and 𝐿2 lie in the same

line and point in the same direction. Moreover, the total turning is 2𝜋. If we start with

one distinguished diagonal and move through the cycle then the turning angle increases

by jumps in [0, 𝜋] until it reaches 2𝜋. We call these observations the Turning Rule.

5.3 Collapsed Diagonals

Figure 5.2 shows the distinguished diagonals incident to 𝑄0. We always take indices mod

𝑛. Thus −𝑘 − 1 = 𝑛 − 𝑘 − 1 mod 𝑛.

Figure 5.2: The 4 distinguished diagonals incident to 𝑄0(𝑡).

We say that 𝑄 has collapsed diagonals at a vertex if 𝑄 if the 4 distinguished diagonals

incident to 𝑄𝑘 do not all lie on distinct lines. We set 𝑄 = 𝑄(1). We set 𝑋 = 𝑋(1) for each

object 𝑋 associated to 𝑄(1).
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Since 𝑄 is planar but not 𝑘-nice, 𝑄 must have collapsed diagonals at some vertex. We

relabel so that the collapsed diagonals are at 𝑄0.

Lemma 5.2. If 𝑄 has collapsed diagonals at 𝑄0 then 𝑄−𝑘−1,0 and 𝑄0,𝑘+1 point in opposite

directions or 𝑄−𝑘,0 and 𝑄0,𝑘 point in the same direction.

Proof: Associated to each diagonal incident to 𝑄0 is the ray which starts at 𝑄0 and goes

in the direction of the other endpoint of the diagonal. (Warning: The ray may have the

opposite orientation than the diagonal it corresponds to.) If the angle between any of the

rays tends to 𝜋 as 𝑡 → 1 then the angle between the outer two rays tends to 𝜋. In this case

𝑄−𝑘,0 and 𝑄0,𝑘 point in the same directions. If the angle between non-adjacent rays tends

to 0 then 𝑄−𝑘−1,0 and 𝑄0,𝑘+1 are squeezed together and point in opposite directions.

Suppose that the angle between adjacent rays tends to 0. If the two adjacent rays are

the middle ones, we have the case just considered. Otherwise, either the angle between

the two left rays tends to 0 or the angle between the two right rays tends to 0. In either

case, the uniform lower bound on the cross ratio forces a third diagonal to point either in

the same or the opposite direction as these adjacent diagonals when 𝑡 = 1. Any situation

like this leads to a case we have already considered. ♠

5.4 The Case of Aligned Diagonals

We say that 𝑄 has aligned diagonals at the vertex 𝑄0 if 𝑄−𝑘,0 and 𝑄0,𝑘 are parallel. This is

the second option in Lemma 5.2. We make the same kind of definition at other vertices,

with the indices shifted in the obvious way,.

Lemma 5.3. Suppose 𝑄 does not lie in a single line. Suppose also that 𝑄 has aligned

diagonals at 𝑄0. Then the diagonals 𝑄−𝑘,0, 𝑄−𝑘,1, ..., 𝑄−1,𝑘, 𝑄0,𝑘 all are parallel and (hence) the

2𝑘 + 1 points 𝑄−𝑘, ..., 𝑄0, ..., 𝑄𝑘 are contained in the line defined by these diagonals.

Proof: These two diagonals define a short chain of diagonals, which starts with the first

listed diagonal and ends with the second one. They also define a long chain, which starts
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with the second and ends with the first. The total turning of the diagonals is 2𝜋, so one

of the two chains defined by our diagonals turns 2𝜋 and the other turns 0. Suppose first

that the long chain has 0 turning. This chain involves all points of 𝑄, and forces all points

of 𝑄 to be on the same line. So, the short chain must consist of parallel diagonals. ♠

All we use in the rest of the proof is that 𝑄−𝑘, ..., 𝑄𝑘 are all contained in a line 𝐿. By

shifting our indices, we can assume that 𝑄𝑘+1 ∉ 𝐿. This relabeling trick comes with a cost.

Now we cannot say whether the points 𝑄−𝑘....𝑄𝑘 come in order on 𝐿. We now regain this

control.

Lemma 5.4. The length 2𝑘-diagonal chain 𝑄−𝑘,0 → ... → 𝑄0,𝑘 consists entirely of parallel

diagonals. There is no turning at all.

Proof: The diagonals 𝑄−𝑘,0 and 𝑄0,𝑘. are either parallel or anti-parallel. If they are anti-

parallel, then the angle between the corresponding rays incident 𝑄0(𝑡) tends to 0 as 𝑡 → 1.

But these are the outer two rays. This forces the angle between all 4 rays incident to 𝑄0(𝑡)

to tend to 0. The whole picture just folds up like a fan. But one or these rays corresponds

to 𝑄0,𝑘+1(𝑡). This picture forces 𝑄𝑘+1 ∈ 𝐿. But this is not the case.

Now we know that 𝑄−𝑘,0 and 𝑄0,𝑘 are parallel. All the diagonals in our chain are

either parallel or anti-parallel to the first and last ones in the chain. If we ever get an

anti-parallel pair, then the diagonals in the chain must turn 2𝜋 around. But then none of

the other distinguished diagonals outside our chain turns at all. As in Lemma 5.3, this

gives 𝑄 ⊂ 𝐿, which is false. ♠

We rotate the picture so that 𝐿 coincides with the 𝑋-axis and so that 𝑄0,𝑘 points in

the positive direction. Since we are already using the words left and right for another

purpose, we say that 𝑝 ∈ 𝐿 is forward of of 𝑞 ∈ 𝐿 if 𝑝 has larger 𝑋-coordinate. Likewise

we say that 𝑞 is backwards of 𝑝 in this situation. We say that 𝑄0,𝑘 points forwards. We

have established that 𝑄−𝑘,0, ..., 𝑄0,𝑘 all point forwards.

Lemma 5.5. 𝑄𝑘+2 ∈ 𝐿 and both 𝑄1,𝑘+2 and 𝑄2,𝑘+2 point backwards.

Arnold Mathematical Journal, Vol.11(4), 2025 41

http://dx.doi.org/10.56994/ARMJ


Richard Evan Schwartz

Proof: We have arranged that 𝑄𝑘+1 ∉ 𝐿. Let us first justify the fact that 𝑄𝑘+1 lies above 𝐿.

This follows from Right Hand Rule applied to 𝑄0,𝑘+1 and 𝑄𝑘 and the fact that 𝑄0,𝑘 points

forwards. Since 𝑄−𝑘, 𝑄−𝑘+1, 𝑄1 are collinear, 𝑄 has collapsed diagonals at 𝑄1. But 𝑄 cannot

have aligned diagonals because𝑄1,𝑘+1 is not parallel to𝑄−𝑘,1. Hence𝑄 has folded diagonals

at 1. This means that the diagonals 𝑄−𝑘,1 and 𝑄1,𝑘+2 point in opposite directions. This

forces 𝑄𝑘+2 ∈ 𝐿 and morever we can say that 𝑄1,𝑘+2 points backwards.

We have 𝑄2 ∈ 𝐿 because 2 ≤ 𝑘. We want to see that 𝑄2,𝑘+2 points forwards and they

Suppose not. We consider the 3 distinguished diagonals

𝑄0,𝑘, 𝑄1,𝑘+2, 𝑄2,𝑘+2.

These diagonals respectively point forwards, backwards, forwards and they all point one

direction or the other along 𝐿. But then, in going from 𝑄0,𝑘 to 𝑄2,𝑘+2, the diagonals have

already turned 2𝜋. Since the total turn is 2𝜋, the diagonals 𝑄2,𝑘+2, 𝑄3,𝑘+3, ..., 𝑄𝑛,𝑛+𝑘 are all

parallel. But then 𝑄2, ..., 𝑄𝑛 ∈ 𝐿. This contradicts the fact that 𝑄𝑘+1 ∉ 𝐿. ♠

Lemma 5.6. For at least one of the two indices 𝑗 ∈ {2𝑘 + 2, 2𝑘 + 3} we have 𝑄𝑗 ∈ 𝐿 and 𝑄𝑘+2,𝑗
points forwards.

Proof: Since 𝑄1, 𝑄2, 𝑄𝑘+2 are collinear, 𝑄 has collapsed diagonals at 𝑄𝑘+2. So, by Lemma

5.2, we either have folded diagonals at 𝑄𝑘+2 or aligned diagonals at 𝑄𝑘+2. The aligned case

gives 𝑄2𝑘+2 ∈ 𝐿 and the folded case gives 𝑄2𝑘+3 ∈ 𝐿. We need to work out the direction of

pointing in each case.

Consider the aligned case. Suppose 𝑄𝑘+2,2𝑘+2 points backwards, as shown in Figure

5.3.

k+2

k+1

2k+2

Figure 5.3: Violation of the Right Hand Rule
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This violates the Right Hand Rule for 𝑄𝑘+2 and 𝑄𝑘+1,2𝑘+2 because 𝑄𝑘+1 lies above 𝐿.

Consider the folded case. Since 𝑄𝑘+2,2𝑘+3 and 𝑄1,𝑘+2 point in opposite directions, and

𝑄1,𝑘+2 points backwards (by the previous lemma), 𝑄𝑘+2,2𝑘+3 points forwards. ♠

Let 𝑗 ∈ {2𝑘 + 2, 2𝑘 + 3} be the index from Lemma 5.6. Consider the 3 diagonals

𝑄0,𝑘, 𝑄1,𝑘+1, 𝑄𝑘+2,𝑗.

These diagonals are all parallel to 𝐿 and respectively point in the forwards, backwards,

forwards direction. This means that the diagonals in the chain 𝑄0,𝑘 → ... → 𝑄𝑘+2,𝑗 have

already turned 2𝜋 radians. But this means that the diagonals

𝑄𝑘+2,2𝑘+3, 𝑄𝑘+3,2𝑘+3, 𝑄𝑘+3,2𝑘+4, ... 𝑄0,𝑘 = 𝑄𝑛,𝑛+𝑘

are all parallel and point forwards along 𝐿. Hence 𝑄𝑘+2, 𝑄𝑘+3, ..., 𝑄𝑛 ∈ 𝐿. Hence all points

but 𝑄𝑘+1 lie in 𝐿.

5.5 The Case of Double Folded Diagonals

We fix a value of 𝑘. Say that two indices 𝑎, 𝑏 ∈ 𝒁∕𝑛 are far if their distance is at least 𝑘

in 𝒁∕𝑛. We say that 𝑄 has far folded diagonals if 𝑄 has folded diagonals at 𝑄𝑎 and 𝑄 has

folded diagonals at 𝑏 and 𝑎, 𝑏 are far.

In this case we have two parallel diagonals 𝑄𝑎,𝑎+𝑘+1 and 𝑄𝑏,𝑏+𝑘+1. As in the proof of

Lemma 5.3, one of the two diagonal chains defined by these diagonals consists of parallel

diagonals. The far condition guarantees that at least 2𝑘+1 consecutive points are involved

in each chain. But then we get 2𝑘+1 collinear points. So, if𝑄 has far folded diagonals, then

the same proof as in the previous section shows that the conclusion of the Degeneration

Lemma holds for 𝑄.

5.6 Good Folded Diagonals

We say that the folded diagonals𝑄−𝑘−1,0 and𝑄0,𝑘+1 are good if all the points𝑄𝑘+1, 𝑄𝑘+2, ..., 𝑄𝑛−𝑘−1
are collinear. This notion is empty when 𝑘 = 2 and 𝑛 = 7 but otherwise it has content. In
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this section we treat the case when 𝑄 has a pair of good folded diagonals. We start by

discussing an auxiliary notion.

We say that 𝑄 has backtracked edges at 𝑄𝑎 if the angle between the edges 𝑄𝑎,𝑎+1 and

𝑄𝑎,𝑎−1 is either 0 or 2𝜋.

Lemma 5.7. If 𝑄 has backtracked edges at 𝑄𝑎 then 𝑄 has folded diagonals at 𝑄𝑎.

Proof: For 𝑡 ∈ [0, 1), the edges of 𝑄 emanating from 𝑎 divide the plane into 4 sectors, and

one of these sectors, 𝐶(𝑡) contains all the distinguished diagonals emanating from 𝑄𝑎(𝑡).

The sector 𝐶(𝑡) is the one which locally intersects 𝑄(𝑡) near 𝑄𝑎(𝑡). The angle of 𝐶(𝑡) tends

to 0 as 𝑡 → 1, forcing all the distinguished diagonals emanating from 𝑄𝑎(𝑡) to squeeze

down as 𝑡 → 1. This gives us the folded diagonals. ♠

We will use Lemma 5.7 in our analysis of good folded edges. Now we get to it. We

rotate so that our two diagonals are in the line 𝐿, which is the 𝑋-axis. We normalize so

that 𝑄0 is the origin, and 𝑄𝑘+1 and 𝑄−𝑘−1 are forward of 𝑄0.

Lemma 5.8. If 𝑛 > 3𝑘+1 and𝑄−𝑘−1,0, 𝑄0,𝑘+1 are good folded diagonals, then the Degeneration

Lemma is true for 𝑄.

Proof: Suppose first that 𝑄1 ∈ 𝐿. Then 𝑄 has folded diagonals at 𝑄𝑘+1. When 𝑛 > 3𝑘 + 1

the indices (𝑘 + 1) and (−𝑘 − 1) are 𝑘-far. This gives 𝑄 far folded diagonals, a case we have

already treated.

To finish our proof, we show that 𝑄1 ∈ 𝐿. We explore some of the other points. We

know that 𝑄𝑘+1, ..., 𝑄𝑛−𝑘−1 ∈ 𝐿. We can relabel dihedrally so that 𝑄𝑛−𝑘−1 is forwards of

𝑄𝑘+1. We claim that 𝑄𝑘+2 is forwards of 𝑄𝑘+1. Suppose not. Then there is some index

𝑎 ∈ {𝑘 + 2, ..., −𝑘 − 2} such that 𝑄𝑎 is backwards of 𝑄𝑎±1. What is going on is that our points

would start by moving backwards on 𝐿 and eventually they have to turn around. The

index 𝑎 is the turn-around index. This gives us backtracked edges at 𝑄𝑎. By Lemma 5.7,

we have folded diagonals at 𝑄𝑎. But 𝑎 and 0 are 𝑘-far indices. This gives 𝑄 far-folded

diagonals.

Arnold Mathematical Journal, Vol.11(4), 2025 44

http://dx.doi.org/10.56994/ARMJ


The Flapping Birds in the Pentagram Zoo

The only way out of the contradiction is that 𝑄𝑘+2 is forwards of 𝑄𝑘+1.

0

k+1

-k-1L

k+2

1

Figure 5.4: A contradiction involving 𝑄1.

Suppose 𝑄1 ∉ 𝐿. by the Right Hand Rule applied to the diagonal 𝑄0,𝑘+1, the point 𝑄1
lies beneath 𝐿, as shown in Figure 5.4. But then 𝑄𝑘+1 lies to the left of the diagonal 𝑄1,𝑘+2.

This violates the Right Hand Rule. Now we know that 𝑄1 ∈ 𝐿. ♠

Lemma 5.9. Suppose 𝑛 = 3𝑘 + 1 and 𝑘 > 2. If 𝑄−𝑘−1,0, 𝑄0,𝑘+1 are good folded diagonals, then

the Degeneration Lemma is true for 𝑄.

Proof: The same argument as in Lemma 5.8 establishes the key containment 𝑄1 ∈ 𝐿. (We

need 𝑘 > 2 for this.) From here, as in Lemma 5.8, we deduce that 𝑄−𝑘−1,0 and 𝑄𝑘+1,2𝑘+2 are

parallel. This time the conclusion we get from this is not as good. We get a run of 𝑘 points

in 𝐿, and then a point not necessarily in 𝐿, and then a run of 𝑘 additional points in 𝐿.

The points are 𝑄𝑘+1, ..., 𝑄2𝑘+1, ..., 𝑄0 with the point 𝑄−𝑘 omitted. But then 𝑄 has folded

diagonals at each of these points except the outer two, 𝑄𝑘+1 and 𝑄0. But then For each

such index ℎ, we see that both 𝑄ℎ±(𝑘+1) belong to 𝐿. This gives us all but one point in 𝐿.

It is instructive to consider an example, say 𝑘 = 4 and 𝑛 = 13. In this case, our ini-

tial run of points in 𝐿 is 𝑄5, 𝑄6, 𝑄7, 𝑄8, 𝑄10, 𝑄11, 𝑄12, 𝑄13. The folded diagonals at 𝑄6, 𝑄7, 𝑄8
respectively give 𝑄1, 𝑄2, 𝑄3 ∈ 𝐿. The folded diagonals at 𝑄10, 𝑄11, 𝑄12 respectively give

𝑄2, 𝑄3, 𝑄4 ∈ 𝐿. ♠

Finally we consider the case 𝑘 = 2 and 𝑛 = 7. In this case all we know is that𝑄0, 𝑄3, 𝑄4 ∈

𝐿 with 𝑄3, 𝑄4 forwards of 𝑄0. We can dihedrally relabel to that 𝑄4 is forwards of 𝑄3. Here

𝑄3 = 𝑄𝑘+1 and 𝑄4 = 𝑄𝑘+2. So, now we can run the same argument as in Lemma 5.9 to

conclude that 𝑄1 ∈ 𝐿. Now we proceed as in the proof of Lemma 5.9.
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5.7 Properties of the Soul

We define 𝑆 = 𝑆(1) to be the set of all accumulation points of sequences {𝑝(𝑡𝑛)} where

𝑝(𝑡𝑛) ∈ 𝑆(𝑡𝑛) and 𝑡𝑛 → 1. Here 𝑆(𝑡𝑛) is the soul of 𝑃(𝑡𝑛). We have one more case to analyze,

namely ungood folded diagonals. To make our argument go smoothly, we first prove

some properties about 𝑆.

Lemma 5.10. Suppose that 𝑄 has folded diagonals at 𝑄0. If the Degeneration Lemma is

false for 𝑄, then 𝑆 is contained in the line segment joining 𝑄0 to 𝑄𝑘+1

Proof: Here is a general statement about 𝑆. Since 𝑆(𝑡) is non-empty and closed for all

𝑡 < 1, we see by compactness that 𝑆 is also a non-empty closed subset of the closed region

bounded by 𝑄. By continuity 𝑆 lies to the left of all the closed half-planes defined by the

oriented (𝑘 + 1) diagonals (or in their boundaries). Since 𝑆 lies to the left of (or on) each

(𝑘 + 1) diagonal, 𝑆 is a subset of the line 𝐿 common to the folded diagonals and indeed

𝑆 lies to one side of the fold point 𝑄0. From the way we have normalized, 𝑆 lies in the

𝑋-axis forward of 𝑄0. (The point 𝑄0 might be an endpoint of 𝑆.)

If 𝑆 contains points of 𝐿 that lie forward of 𝑄𝑘+1 then either the diagonal 𝑄𝑘+1,2𝑘+2
points along the positive 𝑋-axis or into the lower half-plane. In the former cases, the

diagonals 𝑄0,𝑘+1, 𝑄𝑘+1,2𝑘+2 are parallel and we get at least 2𝑘 + 1 collinear points and so

the Degeneration Lemma holds for 𝑄.

If 𝑄𝑘+1,2𝑘+2 points into the negative half-plane, then the diagonal 𝑄0,𝑘+1 turns more

than 𝜋 degrees before reaching 𝑄𝑘+1,2𝑘+2. But then the diagonals in the chain 𝑄−𝑘−1,0 →

... → 𝑄0,𝑘+1... → 𝑄𝑘+1,2𝑘+2 turn more than 2𝜋 degrees. This is a contradiction. ♠

Remark: The same argument works with 𝑄−𝑘−1 in place of 𝑄𝑘+1.

Lemma 5.11. If the Degeneration Lemma is false for 𝑄 then 𝑆 cannot intersect 𝑄 in the

interior of an edge of 𝑄.

Proof: Suppose this happens. We relabel so that the edge is 𝑄0,1. By the Right Hand Rule,

the point 𝑄1 is not on the left of the diagonal 𝑄0,𝑘+1. At the same time, 𝑆 is not on the right
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of the diagonal. The only possibility is that 𝑄1, 𝑄0, 𝑄𝑘+1 are collinear. Likewise 𝑄−𝑘, 𝑄0, 𝑄1
are collinear. Furtheremore, the (𝑘 + 1)-diagonals 𝑄−𝑘,1 and 𝑄0,𝑘+1 are parallel. Figure 5.5

shows the situation for 𝑄(𝑡) and 𝑆(𝑡) when 𝑡 is very near 1.

0 1

k+1-k
the soul

Figure 5.5: The relevant points and lines.

But now we have two (𝑘 +1)-diagonals that are parallel and which start at indices that

are 𝑘 apart in 𝒁∕𝑛. This gives us 2𝑘 + 1 consecutive collinear points on the line containing

our edge. We know how to finish the Degeneration Lemma in this case. The only way out

is that 𝑆 cannot intersect 𝑄 in the interior of an edge of 𝑄. ♠

Lemma 5.12. If the Degeneration Lemma is false for 𝑄, then 𝑆 cannot contain a vertex of 𝑄.

Proof: We relabel so that 𝑄0 ∈ 𝑆. The same analysis as in the previous lemma shows that

𝑄1, 𝑄0, 𝑄−𝑘 are collinear. Figure 5.6. shows the situation for 𝑡 near 1. At the same time, the

points 𝑄−1, 𝑄0, 𝑄𝑘 are collinear.

the soul

0

-k

1

Figure 5.6: The relevant points and lines

To avoid a case of the Degeneration Lemma we have already done, 𝑄 must have folded

diagonals at 𝑄−𝑘. Likewise 𝑄 must have folded diagonals at 𝑄𝑘. But then 𝑄 has far folded

diagonals, and the Degeneration Lemma holds for 𝑄. ♠

Now let us bring back our assumptions: 𝑄 has folded diagonals at 𝑄0 and the points

𝑄0, 𝑄𝑘+1, 𝑄−𝑘−1 all lie in the 𝑋-axis in the forward order listed.
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Corollary 5.13. If the Degeneration Lemma is false for 𝑄 then 𝑆 lies in the open interval

bounded by 𝑄0 and 𝑄𝑘+1 and no point of 𝑆 lies in 𝑄. In particular, 𝑆 contains a point 𝑥,

forwards of 𝑄0 and backwards of both 𝑄𝑘+1 and 𝑄−𝑘−1, that is disjoint from 𝑄.

5.8 Ungood Folded Diagonals

The only case left is when 𝑄 does not have 2𝑘 + 1 consecutive collinear points, and when

all folded diagonals of 𝑄 are ungood. Without loss of generality, we will consider the case

when 𝑄 has ungood folded diagonals at 𝑄0. We normalize as in the previous section, so

that 𝑄0, 𝑄𝑘+1, 𝑄−𝑘−1 lie in forward order on 𝐿, which is the 𝑋-axis. Let 𝑥 be a point from

Corollary 5.13.

We call an edge of 𝑄 escaping if 𝑒 ∩ 𝐿 is a single point. We call two different edges of 𝑄,

in the labeled sense, twinned if they are both escaping and if they intersect in an open

interval. Even if two distinctly labeled edges of 𝑄 coincide, we consider them different as

labeled edges.

Lemma 5.14. 𝑄 cannot have twinned escaping edges.

Proof: Consider 𝑄(𝑡) for 𝑡 near 1. This polygon is strictly star shaped with respect to a

point 𝑥(𝑡) near 𝑥.

L

the twinned 

edges of Q
part

of Q(t)

D

Figure 5.7: Rays intersecting the twinned segments

There is a disk 𝐷 about 𝑥 such that every 𝑝 ∈ 𝐷 contains a ray which intersects the

twinned edges in the middle third portion of their intersection. Figure 5.7 shows what

we mean. Once 𝑡 is sufficiently near 1, the soul 𝑆(𝑡) will intersect 𝐷, and for all points

𝑝 ∈ 𝐷 there will be a ray which intersects 𝑄(𝑡) twice. This contradicts the fact that 𝑄(𝑡) is
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strictly star-shaped with respect to all points of 𝑆(𝑡). ♠

We say that an escape edge rises above 𝐿 if it intersects the upper half plane in a

segment.

Lemma 5.15. 𝑄 cannot have two escape edges which rise above 𝐿 and intersect 𝑄 on the

same side of the point 𝑥.

Proof: This situation is similar to the previous proof. In this case, there is a small disk 𝐷

about 𝑥 such that every point 𝑝 ∈ 𝐷 has a ray which intersects both rising escape edges

transversely, and in the middle third of each of the two subsegments of these escape

edges that lie above 𝐿. Figure 5.8 shows this situation.

L

part

of Q(t)

D

the 

rising

edges

Figuren 5.8: Rays intersecting the rising segments.

In this case, some part of 𝑄(𝑡) closely shadows our two escape edges for 𝑡 near 1. But

then, once 𝑡 is sufficiently near 1, each ray we have been talking about intersects 𝑄(𝑡)

at least twice, once by each escaping edge. This gives the same contradiction as in the

previous lemma. ♠

We define falling escape segments the same way. The same statement as in Lemma

5.15 works for falling escape segments. Since 𝑥 ∉ 𝑄 we conclude that 𝑄 can have at most

4 escaping segments total.

But 𝑄 = 𝑄+ ∪ 𝑄−, where 𝑄± is an arc of 𝑄 that starts at 𝑄𝑘+1 and ends at 𝑄−𝑘−1. Since

both these arcs start and end on 𝐿, and since both do not remain entirely on 𝐿, we see
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that each arc has at least 2 escape edges, and none of these are twinned. This means that

both 𝑄+ and 𝑄− have exactly two escape edges.

Now for the moment of truth: Consider 𝑄+. Since 𝑄+ just has 2 escape edges, they both

have to be either rising or falling. Also, since 𝑄+ starts and ends on the same side of 𝑥,

and cannot intersect 𝑥, both the escape edges for 𝑄+ are on the same side of 𝑥. This is a

contradiction. The same argument would work for 𝑄− but we don’t need to make it.

6 The Persistence of Birds

In this chapter we prove Statement 3 of Theorem 1.1, namely the fact that ∆𝑘(𝐵𝑛,𝑘) = 𝐵𝑛,𝑘.

First we use the Degeneration Lemma to prove that ∆𝑘(𝐵𝑛,𝑘) ⊂ 𝐵𝑛,𝑘. Then we deduce the

opposite containment from projective duality and from the factoring of ∆𝑘 given in §2.2.

6.1 Containment

Suppose for the sake of contradiction that there is some 𝑃 ∈ 𝐵𝑘,𝑛 such that ∆(𝑃) ∉ 𝐵𝑘,𝑛.

Recall that there is a continuous path 𝑃(𝑡) for 𝑡 ∈ [0, 1] such that 𝑃(0) is the regular 𝑛-gon.

Define 𝑄(𝑡) = ∆𝑘(𝑃(𝑡)). There is some 𝑡0 ∈ [0, 1] such that 𝑄(𝑡0) ∉ 𝐵𝑘,𝑛. We can truncate

our path so that 𝑡0 = 1. In other words, 𝑄(𝑡) ∈ 𝐵𝑛,𝑘 for 𝑡 ∈ [0, 1) but 𝑄(1) ∉ 𝐵𝑘,𝑛.

Lemma 6.1. 𝑄(⋅) is a degenerating path.

Proof: Note that 𝑄(⋅) is planar and hence satisfies Property 1 for degenerating paths. Let

𝑃 = 𝑃(1) and 𝑄 = 𝑄(1). If 𝑄 doe not have all distinct vertices then two different feathers of

𝑃 intersect at a point which (by Statement 2 of Theorem 1.1) lies in 𝑃𝐼 . This contradicts

Statement 2 of Theorem 4.1. Hence 𝑄(⋅) satisfies Property 2 for degenerating paths. By

construction, 𝑄(𝑡) ∈ 𝐵𝑛,𝑘 for all 𝑡 ∈ [0, 1). Hence 𝑄(⋅) satisfies Property 3. The energy 𝜒𝑘

is well-defined and continuous on 𝐵𝑘,𝑛. Hence, by compactness, 𝜒𝑘(𝑃(𝑡)) > 𝜖0 for some

𝜖0 > 0 and all 𝑡 ∈ [0, 1]. Now for the crucial step: We have already proved that 𝜒𝑘◦∆𝑘 = 𝜒𝑘.

Hence 𝜒𝑘(𝑄(𝑡)) > 𝜖0 for all 𝑡 ∈ [0, 1]. That is, 𝑄(⋅) satisfies Property 4 for degenerating
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paths. ♠

Now we apply the Degeneration Lemma to 𝑄(⋅). We conclude that all but at most 1

vertex of 𝑄(1) lies in a line 𝐿. Stating this in terms of 𝑃(1), we can say that all but at most

one of the feathers of 𝑃(1) have their tips in a single line 𝐿. Call an edge of 𝑃(1) ordinary

if the feather associated to it has its tip in 𝐿. We call the remaining edge, if there is one,

special. Thus, all but at most one edge of 𝑃 is ordinary.

Let 𝑆(𝑡) be the soul of 𝑃(𝑡). We know that 𝑆(1) has non-empty interior by Theorem 3.1.

For ease of notation we set 𝑃 = 𝑃(1) and 𝑆 = 𝑆(1).

Lemma 6.2. 𝑃 cannot have ordinary edges 𝑒1 and 𝑒2 that lie on opposite sides of 𝐿 and are

disjoint from 𝐿.

Proof: Suppose this happens. Figure 6.1 shows the situation.

L

F1

F2

Figure 6.1: Two feathers on opposite sides of 𝐿.

Let 𝐹1 and 𝐹2 be the two associated feathers. Then the opposite sector 𝐹∗
1

lies above 𝐿,

and the opposite sector 𝐹∗
2

lies below 𝐿 and the two tips are distinct. But then 𝑆(1), which

must lie in the intersection of these sectors, is empty. ♠

Lemma 6.3. 𝑃 cannot have more than 2 ordinary edges which intersect 𝐿.

Proof: Note that an ordinary edge cannot lie in 𝐿 because then the tip would not. So, an

ordinary edge that intersects 𝐿 does so either at a single vertex or at an interior point. As

we trace along 𝐿 in one direction or the other we encounter the first intersecting edge and

then the last one and then some other intersecting edge. Let 𝐹1.𝐹2.𝐹3 be the two feathers,
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as shown in Figure 6.3. Let 𝑒𝑗 be the edge of 𝐹𝑗 that belongs to 𝑃. Let 𝑣𝑗 be the tip of 𝐹𝑗.

(Figure 6.3 shows the case when 𝑒𝑗 ∩ 𝐿 is an interior point of 𝑒𝑗 for each 𝑗 = 1, 2, 3, but the

same argument would work if some of these intersection points were vertices.)

outsideF1
F2F3

e3
v1 v2

Figure 6.2: Three or more crossing edges

One of the two arcs 𝛼 of 𝑄 joining 𝑣1 to 𝑣2 stays in 𝐿, namely the one avoiding the

one point of 𝑄 not on 𝐿. However, 𝛼 passes right through 𝐹3 and in particular crosses 𝑒3
transversely. However, one side of 𝐹3 is outside 𝑃. Hence 𝛼 is not contained in 𝑃𝐼 , the

interior of the region bounded by 𝑃. This contradicts Statement 2 of Theorem 1.1, which

says that 𝑄 ⊂ 𝑃𝐼 . ♠

The line 𝐿 divides the plane into two open half-planes, which we call the sides of

𝐿. Lemma 6.2 says that 𝑃 cannot have ordinary edges contained in opposite sides of 𝐿.

Lemma 6.3 says that at most 2 ordinary edges can intersect 𝐿. Hence, all but at most 2 of

the ordinary edges of 𝑃 lie on one side of 𝐿. Call this the abundant side of 𝐿. Call the other

side the barren side. The barren side contains no ordinary edges at all, and perhaps the

special edge. In particular, at most two vertices of 𝑃 lie in the barren side.

abundant

barren

e1
e2

L

v1

v3

v2

Figure 6.3: Following the diagonals bounding a feather

At the same time, each ordinary edge on the abundant side contributes two vertices to

the barren side: We just follow the diagonals comprising the corresponding feather. These
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diagonals cross 𝐿 from the abundant side into the barren side. Two different ordinary

edges contribute at least 3 distinct vertices to the barren side. This is a contradiction.

We have ruled out all possible behavior for 𝑃 = 𝑃(1) assuming that 𝑄 = 𝑄(1) is

degenerate. Hence, 𝑄(1) is not degenerate. This means that 𝑄(1) is a bird. This completes

the proof that

∆𝑘(𝐵𝑘,𝑛) ⊂ 𝐵𝑘,𝑛. (24)

6.2 Equality

We use the notation from §2.2. Equation 8 implies that

∆−1
𝑘

= 𝐷𝑘+1◦∆𝑘◦𝐷𝑘+1. (25)

So far, Equation 25 makes sense in terms of PolyPoints and PolyLines.

Below we will explain how to interpret 𝐷𝑘+1 as a map from polygons in 𝑷 to polygons

in 𝑷
∗ and also as a map from polygons in 𝑷

∗ to polygons in 𝑷. Since the dual projective

plane 𝑷∗ is an isomorphic copy of 𝑷, it makes sense to define 𝐵∗
𝑘.𝑛

. This space is just the

image of 𝐵𝑘,𝑛 under any projective duality. Below we will prove

Theorem 6.4. 𝐷𝑘+1(𝐵𝑘,𝑛) ⊂ 𝐵∗
𝑘,𝑛

.

It then follows from projective duality that 𝐷𝑘+1(𝐵∗𝑘,𝑛) ⊂ 𝐵𝑘,𝑛. Combining these equa-

tions with Equation 25 we see that ∆−1
𝑘
(𝐵𝑛,𝑘) ⊂ 𝐵𝑛,𝑘. This combines with Equation 24 to

finish the proof of Theorem 1.1.

Now we prove Theorem 6.4.

Lemma 6.5. If 𝑃 ∈ 𝐵𝑘,𝑛, then we can enhance 𝐷𝑘+1(𝑃) in such a way that 𝐷𝑘+1(𝑃) is a planar

polygon in 𝑷
∗. The enhancement varies continuously.

Proof: A polygon is a PolyPoint together with additional data specifying an edge in 𝑷

joining each consecutive pair of points. Dually, we get a polygon in 𝑷
∗ from a PolyLine by

specifying, for each pair of consecutive lines 𝐿𝑗, 𝐿𝑗+1, an arc of the pencil of lines through

the intersection point which connects 𝐿𝑗 to 𝐿𝑗+1.
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Specifying an enhancement of 𝐷𝑘+1(𝑃) is the same as specifing, for each consecutive

pair 𝐿1, 𝐿2 of (𝑘 + 1) diagonals of 𝑃, an arc of the pencil through their intersection that

connects 𝐿1, 𝐿2. There are two possible arcs. One of them avoids the interior of the soul

of 𝑃 and the other one sweeps through the soul of 𝑃. We choose the arc that avoids the

soul interior. Figure 6.4 shows that we mean for a concrete example.

Figure 6.4: Enhancing a PolyLine to a polygon: Avoid the soul.

Since the soul of 𝑃 has non-empty interior, there exists a point 𝑥 ∈ 𝑃 which is disjoint

from all these pencil-arcs. Applying duality, this exactly says that there is some line in 𝑷
∗

which is disjoint from all the edges of our enhanced 𝐷𝑘+1(𝑃). Hence, this enhancement

makes 𝐷𝑘+1(𝑃) planar. Our choice also varies continuously on 𝐵𝑛,𝑘. ♠

Lemma 6.6. 𝐷𝑘+1 maps a member of 𝐵𝑘,𝑛 to an 𝑛-gon which is 𝑘-nice.

Proof: Let 𝑄 = 𝐷𝑘+1(𝑃). A (𝑘 + 1)-diagonal of 𝑄 is just a vertex of 𝑃. A 𝑘 diagonal of 𝑄 is a

vertex of ∆𝑘(𝑝). Thus, to check the 𝑘-nice property for 𝑄 we need to take 𝑛-collections of

4-tuples of points and check that they are distinct. In each case, the points are collinear

because the lines of 𝑄 are coincident.

a
b

c

d
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Figure 6.5 One of the 𝑛 different 4-tuples we need to check.

Once we make this specification, there is really combinatorially only possibility for

which collections we need to check. Figure 6.5 shows one such 4-tuple, 𝑎, 𝑏, 𝑐, 𝑑. The

shaded triangles are the two feathers of 𝑃 whose tips are 𝑏, 𝑐. But 𝑎, 𝑏, 𝑐, 𝑑 are distinct

vertices of 𝑃 ∪ ∆𝑘(𝑃) and so they are distinct. That is all there is to it. ♠

To show that 𝑄 = 𝐷𝑘+1(𝑃) is a 𝑘-bird, we consider a continuous path 𝑃(𝑡) from the

regular 𝑛-gon 𝑃(0) to 𝑃 = 𝑃(1). We set 𝑄(𝑡) = 𝑃(𝑡). By construction, 𝑄(0) is a copy of the

regular 𝑛-gon in 𝑷
∗, and 𝑄(𝑡) is 𝑘-nice for all 𝑡 ∈ [0, 1], and 𝑄(𝑡) is a planar polygon for all

𝑡 ∈ [0, 1]. By definition 𝑄 = 𝑄(1) is a 𝑘-bird. This completes the proof of Theorem 6.4.

7 The Triangulation

7.1 Basic Definition

In this section we gather together the results we have proved so far and explain how we

construct the triangulation 𝜏𝑃 associated to a bird 𝑃 ∈ 𝐵𝑘,𝑛.

Since ∆𝑘(𝐵𝑘,𝑛) ⊂ 𝐵𝑘,𝑛, we know that ∆𝑘(𝑃) is also a 𝑘-bird. Combining this with Theorem

3.1 and Theorem 4.1 we can say that ∆𝑘(𝑃) is one embedded 𝑛-gon contained in 𝑃𝐼 , the

interior of the region bounded by the embedded 𝑃. The region between 𝑃 and ∆𝑘(𝑃) is

a topological annulus. Moreover, ∆𝑘(𝑃) is obtained from 𝑃 by connecting the tips of the

feathers of 𝑃. The left side Figure 7.1 shows how this region is triangulated. The black

triangles are the feathers of 𝑃 and each of the white triangles is made from an edge of

∆𝑘(𝑃) and two edges of adjacent feathers.
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Figure 7.1: The triangulation of the annulus

Lemma 7.1. For every member 𝑃 ∈ 𝐵𝑘,𝑛, the associated 2𝑛 triangles have pairwise disjoint

interiors, and thus triangulate the annular region between 𝑃 and ∆𝑘(𝑃).

Proof: As usual, we make a homotopical argument. If this result is false for some 𝑃, then

we can look at path which starts at the regular 𝑛-gon (for which it is true) and stop at the

first place where it fails. Theorem 4.1 tells us that nothing goes wrong with the feathers

of 𝑃. The only thing that can go wrong is ∆𝑘(𝑃) fails to be an embedded polygon. Since

this does not happen, we see that in fact there is no counter-example at all. ♠

We can now iterate, and produce 2𝑛 triangles between ∆𝑘(𝑃) and ∆2
𝑘
(𝑃), etc. The right

side of Figure 7.1 shows the result of doing this many times. The fact that ∆𝑘(𝐵𝑘,𝑛) = 𝐵𝑘,𝑛

allows us to extend outward as well. When we iterate forever in both directions, we get

an infinite triangulation of a (topological) cylinder that has degree 6 everywhere. This is

what Figure 1.6 is showing. We call this bi-infinite triangulation 𝜏𝑃.

7.2 Some Structural Results

The following result will help with the proof of Theorem 1.3.

Theorem 7.2. Let 𝑃 ∈ 𝐵𝑛,𝑘. Let 𝑆 be the soul of 𝐵. Then for 𝓁 ≥ 𝑛 we have ∆𝓁
𝑘
(𝑃) ⊂ 𝑆.
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Proof: We first note the existence of certain infinite polygonal arcs in 𝜏𝑃. We start at a

vertex of 𝑃 and then move inward to a vertex of ∆𝑘(𝑃) along one of the edges. We then

continue through this vertex so that 3 triangles are on our left and 3 on our right. Figure

7.2 below shows the two paths like this that emanate from the same vertex of 𝑃.

e1 e2

Figure 7.2: The spiral paths.

The usual homotopical argument establishes the fact that the spiral paths are locally

convex. One can understand their combinatrics, and how they relate to the polygons in

the orbit, just by looking at the case of the regular 𝑛-gon. We call the two spiral paths in

Figure 7.2 partners. In the regular 𝑛-gon the partners intersect infinitely often. So this

is true in general. Each spiral path has an initial segment joining the initial endpoint

on 𝑃 to the first intersection point with the partner. We define a petal to be the region

bounded by the initial paths of the two partners.

It is convenient to write 𝑃𝓁 = ∆𝓁
𝑘
(𝑃). In the regular case, 𝑃𝓁 is contained in the petal

for 𝓁 > 𝑛 − 1.. Hence, the same goes in the general case. Because the initial segments are

locally convex, the petal lies to the left of the lines extending the edges 𝑒1 and 𝑒2 when
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these edges are oriented according to the (𝑘 + 1)-diagonals of 𝑃. But this argument works

for every pair of partner spiral paths which start at a vertex of 𝑃. We conclude that for

𝓁 ≥ 𝑛, the polygon 𝑃𝓁 lies to the left of all the (𝑘 + 1)-diagonals of 𝑃. But the soul of 𝑃 is

exactly the intersection of all these left half planes. ♠

Theorem 7.2 in turn gives us information about the nesting properties of birds within

an orbit. Let 𝑆𝓁 denote the soul of 𝑃𝓁. Let

𝑆∞ =
⋂

𝓁∈𝒁

𝑆𝓁, 𝑆−∞ =
⋃

𝓁∈𝒁

𝑆𝓁. (26)

It follows from Theorem 7.2 that 𝑃∞ = 𝑆∞ and 𝑃−∞ = 𝑆−∞, because

𝑆𝓁+𝑛 ⊂ 𝑃𝓁+𝑛 ⊂ 𝑆𝓁 ⊂ 𝑃𝓁. (27)

Hence these sets are all convex subsets of an affine plane.

Corollary 7.3. Any 𝑃 ∈ 𝐵𝑘,𝑛 is strictly star-shaped with respect to all points in the convex

hull of ∆𝑛
𝑘
(𝑃).

Proof: Since 𝑃𝓁+𝑛 ⊂ 𝑆𝓁, and 𝑃𝓁 is strictly star shaped with respect to all points of 𝑆𝓁, we

see that 𝑃𝓁 is strictly star shaped with respect to all points of 𝑃𝓁+𝑛. Since 𝑆𝓁 is convex,

we can say more strongly that 𝑃𝓁 is strictly star-shaped with respect to all points of the

convex hull of 𝑃𝓁+𝑛. Now we just set 𝓁 = 0 and recall the meaning of our notation, we get

the exact statement of the result. ♠

An immediate corollary is that 𝑃 is strictly star-shaped with respect to 𝑃∞. (Theorem

1.3 says that this is a single point.)
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8 Nesting Properties of Birds

8.1 Duality

In this chapter we prove Theorem 1.3. In this first section we show how Statement 1 of

Theorem 1.3 implies Statement 2. We want to prove that the “backwards union” 𝑃−∞ is

an affine plane. Here 𝑃 ∈ 𝐵𝑛,𝑘 is a 𝑘-bird.

We take 𝓁 ≥ 0 and consider 𝑃−𝓁 = ∆−𝓁
𝑘
(𝑃). Since 𝑃−𝓁 is planar, there is a closed set Λ𝓁 of

lines in 𝑷 which miss 𝑃−𝓁. These sets of lines are nested: Λ1 ⊃ Λ2 ⊃ Λ3.... The intersection

is non-empty and contains some line 𝐿. We can normalize so that 𝐿 is the line at infinity.

Thus all 𝑃−𝓁 lie in 𝑹
2. We want to see that 𝑃−∞ = 𝑹

2.

Let 𝐷𝑘+1 be the map from §2.2 and §6.2. From Equation 8 we see that 𝐷𝑘+1 conjugates

∆𝑘 to ∆−1
𝑘

. With Theorem 6.4 in mind, define the following “dual” 𝑘-birds:

Π𝓁 = ∆𝓁
𝑘
(𝐷𝑘+1(𝑃)) = 𝐷𝑘+1(𝑃

−𝓁). (28)

From Statement 1 of Theorem 1.3, the sequence of 𝑘-birds {Π𝓁} shrinks to a point in the

dual plane 𝑷∗. The vertices of Π𝓁 are the (𝑘 + 1)-diagonals of 𝑃−𝓁. Because the vertices of

Π𝓁 shrink to a single point, all the (𝑘 + 1)-diagonals of 𝑃−𝓁 converge to a single line 𝐿′.

Lemma 8.1. 𝐿′ is the line at infinity.

Proof: Suppose not. When 𝓁 is large, all the (𝑘 + 1)-diagonals point nearly in the same

direction as 𝐿′. In particular, this is true of the subset of these diagonals which define the

soul 𝑆−𝓁. But these special diagonals turn monotonically and by less than 𝜋 radians as we

move from one to the next. Hence, some of these diagonals nearly point in one direction

along 𝐿′ and some point nearly in the opposite direction. But then 𝑆−𝓁 converges to a

subset of 𝐿′. This is a contradiction, ♠

The soul 𝑆−𝓁 is a convex set, containing the origin, and is bounded by some of the

(𝑘 + 1) diagonals. If 𝑆−𝓁 does not converge to the whole plane, then some (𝑘 + 1)-diagonal

Arnold Mathematical Journal, Vol.11(4), 2025 59

http://dx.doi.org/10.56994/ARMJ


Richard Evan Schwartz

intersects a uniformly bounded region in 𝑹
2 for each 𝓁. But this produces a sequence

of (𝑘 + 1)-diagonals that does not converge to the line at infinity. This is a contradiction.

Hence 𝑆−𝓁 converges to all of 𝑹2. But then so does 𝑃−𝓁.

8.2 The Pre-Compact Case

The rest of the chapter is devoted to proving Statrement 1 of Theorem 1.3. Let 𝑃 ∈ 𝐵𝑛,𝑘

and let 𝑃𝓁 = ∆𝓁(𝑃). We take 𝓁 = 0, 1, 2, 3....

Conjecture 8.2. The sequence {𝑃𝓁} is pre-compact modulo affine transformations. That is,

this sequence has a convergent subsequence which converges to another element of 𝐵𝑛,𝑘.

In this section I will prove the 𝑃∞ is a single point under the assumption that {𝑃𝓁} is

pre-compact.

We would like to see that the diameter of 𝑃𝓁 steadily shrinks, but the notion of diameter

is not affinely natural. We first develop a notion of affinely natural diameter. For each

direction 𝑣 in the plane, we let ‖𝑆‖𝑣 denote the maximum length of 𝐿 ∩ 𝑆 where 𝐿 is a

straight line parallel to 𝑣. We then define

𝛿(𝑆1, 𝑆2) = sup
𝑣

‖𝑆1‖𝑣

‖𝑆2‖𝑣
∈ [0, 1]. (29)

The quantity 𝛿(𝑆1, 𝑆2) is affine invariant, and (choosing a direction 𝜇 which realizes the

diamater of 𝑆1) we have
diam(𝑆1)

diam(𝑆2)
≤
‖𝑆1‖𝜇

‖𝑆2‖𝜇
≤ 𝛿(𝑆1, 𝑆2). (30)

Let 𝑆𝓁 be the soul of 𝑃𝓁. By Theorem 5.11 we have 𝑆𝓁+𝑛 ⊂ 𝑆𝓁. More precisely, the former

set is contained in the interior of the latter set. Under the pre-compactness assumption,

there are infinitely many indices 𝓁𝑗 and some 𝜖 > 0 such that

𝛿(𝑆𝓁𝑗+𝑛, 𝑆𝓁𝑗 ) < 1 − 𝜖. (31)

But then
diam(𝑆𝓁𝑗+𝑛)

diam(𝑆𝓁𝑗 )
< 1 − 𝜖 (32)
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infinitely often. This forces diam(𝑆𝓁) → 0. But 𝑃∞ is contained in this nested intersection

and hence is a point.

If we knew the truth of Conjecture 8.2 then our proof of Theorem 1.3 would be done.

Since we don’t know this, we have to work much harder to prove Statement 1 in general.

8.3 Normalizing by Affine Transformations

Henceforth we assume that the forward orbit {𝑃𝓁} of 𝑃 under ∆𝑘 is not pre-compact

modulo affine transformations.

Lemma 8.3. There is a sequence {𝑇𝓁} of affine transformations such that

1. 𝑇𝓁(𝑃𝓁) has (the same) 3 vertices which make a fixed equilateral triangle.

2. 𝑇𝓁 expands distances on 𝑃𝓁 for all 𝓁.

3. 𝑇𝓁(𝑃𝓁) is contained in a uniformly bounded subset of 𝑹2.

Proof: To 𝑃𝓁 we associate the triangle 𝜏𝓁 made from 3 vertices of 𝑃𝓁 and having maximal

area. The diameter of 𝜏𝓁 is uniformly small, so we can find a single equilateral triangle 𝑇

and an expanding affine map 𝑇𝓁 ∶ 𝜏𝓁 → 𝑇. Let 𝑑 be the side length of 𝑇. Every vertex of

𝑇𝓁(𝑃
𝓁) is within 𝑑 of all the sides of 𝑇, because otherwise we’d have a triangle of larger

area. The sequence {𝑇𝓁} has the advertised properties. ♠

Let 𝑄𝓁 = 𝑇𝓁(𝑃
𝓁). By compactness we can pass to a subsequence so that the limit

polygon 𝑄 exists, in the sense that the vertices and the edges converge. Let 𝑄0, 𝑄1, etc.

be the vertices of 𝑄. Perhaps some of these coincide. Each distinguished diagonal of 𝑄𝓁

defines the unit vector which is parallel to it. Thus 𝑄𝓁 defines a certain list of 2𝑛 unit

vectors. We can pass to a subsequence so that all these unit vectors converge. Thus 𝑄 still

has well defined distinguished diagonals even when the relevant points coincide.

We now define the “limiting soul”. Let 𝑆𝓁 = 𝑆(𝑄𝓁), the soul of 𝑄𝓁. As in §5.7. let 𝑆 be

the set of accumulation points of sequences {𝑝𝓁} with 𝑝𝓁 ∈ 𝑆𝓁. Since 𝑆𝓁 ⊂ 𝑄𝓁 for all 𝓁 we
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have 𝑆 ⊂ 𝑄. Now we define a related object. We have a left half-plane associated to each

diagonal of 𝑄. We define Σ to be the intersection of all these half-planes. We will use the

set Σ at various places below to get control over the set 𝑆.

Lemma 8.4. 𝑆 ⊂ Σ.

Proof: Fix 𝜖 > 0. If this is not the case, then by compactness we can find a convergent

sequence {𝑝𝓁}, with 𝑝𝓁 ∈ 𝑆𝓁, which does not converge to a point of Σ. But 𝑝𝓁 lies in every

left half plane associated to 𝑄𝓁. But then, by continuity, the accumulation point 𝑝 lies in

every left half plane associated to 𝑄. Hence 𝑝 ∈ Σ. ♠

8.4 Structure of the Normalized Limits

We work under the assumption that 𝑃∞ is not a single point. The goal of this section

is to establish several structural properties about the sets 𝑆 and 𝑄. Our first property

guarantees that there is a chord 𝑆∗ of 𝑆 connecting vertices of 𝑄. Once we establish this,

we show that 𝑄 is a union of two “monotone” arcs joining the endpoints of 𝑆∗. These

structural properties will be used repeatedly in subsequent sections of this chapter.

Let 𝐻𝑄 denote the convex hull of 𝑄. Note that 𝑆 ⊂ 𝑄 ⊂ 𝐻𝑄.

Corollary 8.5. Suppose that 𝑃∞ is not a single point. Then 𝛿(𝑆,𝐻𝑄) = 1.

Proof: Suppose not. Note that 𝐻𝑄𝓁 ⊂ 𝑆𝓁−𝑛 by Theorem 7.2 and convexity. Then for 𝓁 large

we have

𝛿(𝑄𝓁−𝑛) = 𝛿(𝑆𝓁, 𝑆𝓁−𝑛) ≤ 𝛿(𝑆𝓁, 𝐻𝑄𝓁) < 𝛿(𝑆,𝐻𝑄) + 𝜖,

and we can make 𝜖 as small as we like. This gives us a uniform 𝛿 < 1 such that 𝛿(𝑄𝓁) < 𝛿

once 𝓁 is large enough. The argument in the compact case now shows that 𝑃∞ is a single

point. ♠
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Corollary 8.5 says that 𝑆 and 𝑄 have the same diameter. Hence there is a chord 𝑆∗ ⊂ 𝑆

which has the same diameter as 𝑄. Since 𝑄 is a polygon, this means that 𝑄 must have

vertices at either endpoint of 𝑆∗. We normalize so that 𝑆∗ is the unit segment joining (0, 0)

to (1, 0).

Lemma 8.6. Let 𝑄′ ⊂ 𝑄 be an arc of 𝑄 that joins (0, 0) to (1, 0).

1. The vertices of 𝑄′ must have non-decreasing 𝑥-coordinates.

2. If consecutive vertices of 𝑄′ have the same 𝑥-coordinate, they coincide.

3. Either 𝑄′ ⊂ 𝑆∗ or 𝑄′ intersects 𝑆∗ only at (0, 0) and (1, 0).

Proof: Suppose the Statement 1 is false. Then we can find a vertical lineΛwhich intersects

𝑆∗ at a relative interior point and which intersects 𝑄′ transversely at 3 points. But then

once 𝓁 is sufficiently large, 𝑄𝓁 will intersect all vertical lines sufficiently close to Λ in at

least 3 points and moreover some of these lines will contain points of 𝑆𝓁. This contradicts

the fact that 𝑄𝓁 is strictly star-shaped with respect to all points of 𝑄𝓁.

For Statement 2, we observe that 𝑄′ does not contain any point of the form (0, 𝑦) or

(1, 𝑦) for 𝑦 ≠ 0. Otherwise 𝑄 has larger diameter than 1. This is to say that once 𝑄′ leaves

(0, 0) it immediately moves forward in the 𝑋-direction. Likewise, once 𝑄′ (traced out the

other way) leaves (1, 0) it immediately moves backward in the 𝑋-direction. If Statement 2

is false, ten we can find a non-horizontal line Λ′ which intersects 𝑆∗ in a relative interior

point and which intersects 𝑄′ transversely at 3 points. The slope is Λ′ depends on which

of the two vertices of 𝑄′ lies above the other. Once we have Λ′ we play the same game as

for the first statement, and get the same kind of contradiction.

Suppose Statement 3 is false. We use the kind of argument we had in §5.8. By State-

ments 1 and 2 together, 𝑄′ must have an escape edge which touches 𝑆∗ in a relative

interior point. Moreover, this one escape edge is paired with another escape edge. Thus

we can find a point 𝑥 ∈ 𝑆∗ which strictly lies on the same side of both of these same-type

escape edges. The argument in §5.8 now shows that 𝑄𝓁 is not strictly star-shaped with
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respect to points of 𝑆𝓁 very near 𝑥. ♠

Corollary 8.7. Suppose 0 ≤ 𝑎 < 𝑏 < 𝑛 and 𝑄𝑎 = 𝑄𝑏. Then either we have𝑄𝑎 = 𝑄𝑎+1 = ... = 𝑄𝑏

or else we have 𝑄𝑏 = 𝑄𝑏+1 = ... = 𝑄𝑎+𝑛.

Proof: In view of Lemma 8.6 it suffices to show that our two monotone arcs comprising

𝑄 are disjoint except at their endpoints.

Let 𝑈 denote the open upper halfplane, bounded by the 𝑋-axis. After reflecting in

the 𝑋-axis we can guarantee that one of our monotone arcs 𝛼 has a point in 𝑈. But then,

by Lemma 8.6, all of 𝛼 lies in 𝑈 except for its endpoints. If the other monotone arc 𝛽

intersects 𝛼 away from the endpoints, then 𝛽 has a point in 𝑈, but then, by Lemma 8.6,

all of 𝛽 lies in 𝑈 except for the endpoints. But then 𝑆 lies in 𝑈, except for the points (0, 0)

and (1, 0). This contradicts the fact that 𝑆∗ ⊂ 𝑆. ♠

Our argument shows in particular that 𝑄 is embedded, up to adding repeated vertices.

However, we will not directly use this property in our proof below.

8.5 The Triangular Case

We continue with the assumption that 𝑃 is not a single point. Here we pick off a special

case:

• There is a line 𝐿 such that 𝑄0 ∉ 𝐿.

• 𝑄𝑘, 𝑄𝑘+1, ..., 𝑄𝑛−𝑘−1, 𝑄𝑛−𝑘 ∈ 𝐿 and

• 𝑄𝑘 ≠ 𝑄𝑛−𝑘.

Figure 8.1 shows the situation. As always, the notation 𝑄−𝑘 and 𝑄𝑛−𝑘 names the same

point. All but 2𝑘 − 1 points are on 𝐿, and except for 𝑄0 we don’t know where these other

2𝑘 − 1 points are.
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Figure 8.1: The triangular limit 𝑄.

Given the constant energy of our orbit, the cross ratio of the lines

𝑄0,𝑘, 𝑄0,𝑘+1, 𝑄𝑛−𝑘−1,0, 𝑄𝑛−𝑘,0

is at least 𝜖0. Also, these lines are cyclically ordered about 0 as indicated in Figure

8.1, thanks to the 𝑘-niceness property and continuity. Also, the two lines containing

𝑄0,𝑘 and 𝑄−𝑘,0 are not parallel because 𝑄0 ∉ 𝐿. Hence 𝑆 is contained in the shaded

region in Figure 8.1, namely the triangle with vertices 𝑄0 and 𝑄±(𝑘+1). But this shaded

region has diameter strictly smaller than the triangle 𝜏 with vertices 𝑄0 and 𝑄±𝑘. Hence

diam(𝑆) < diam(𝜏) ≤ diam(𝑄). This contradicts Corollary 8.5 which says, in particular, that

𝑆 and 𝑄 have the same diameter.

8.6 The Case of No Folded Diagonals

We work under the assumption that 𝑃∞ is not a single point. The notions of collapsed

diagonals, folded diagonals, and aligned diagonals from §5 make sense for 𝑄 because the

concepts just involve the directions of the diagonals. The proof of Lemma 5.3 also works

the same way.
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Lemma 8.8. 𝑄 must either have a trivial edge, a trivial distinguished diagonal, or collapsed

diagonals,

Proof: As remarked in §5, the proof of the Degeneration Lemma works for sequences

as well as paths, and only uses the fact that the limiting polygon has nontrivial edges

and nontrivial distinguished diagonals. So, if 𝑄 has no trivial edges and no trivial dis-

tinguished diagonals, then all but one vertex of 𝑄 lies in a single line. But then 𝑄 has

collapsed diagonals. ♠

Remark: Here is a second, more direct proof. If Lemma 8.8 is false then we have a picture

as in the left side of Figure 7.1. The feathers defined in §4.1 would be all non-degenerate

and the segments joining the tips of consecutive feathers would be nontrivial. This would

force 𝑆 to lie in the interior of 𝑄. But then diam(𝑆) < diam(𝑄), contradicting Corollary 8.5.

If 𝑄 has a trivial distinguished diagonal, then by Lemma 8.7, we see that 𝑄 also has a

trivial edge. If 𝑄 has a trivial edge, say 𝑄−1 = 𝑄0, then the diagonals at 𝑄 are collapsed at

𝑄𝑘. So, in all cases, 𝑄 has collapsed diagonals. We assume in this section that 𝑄 has no

folded diagonals anywhere. This means that 𝑄 has aligned diagonals, say at 𝑄𝑘. Thus 𝑄0,𝑘
and 𝑄𝑘,2𝑘 are parallel. Since 𝑄 does not lie in a line, Lemma 5.3 tells us that the chain of

2𝑘 + 1 parallel distinguished diagonals:

𝑄0,𝑘, 𝑄0,𝑘+1, 𝑄1,𝑘+1, 𝑄1,𝑘+2, ..., 𝑄𝑘−1,2𝑘, 𝑄𝑘,2𝑘 (33)

Now we have a “runaway situation”. The two diagonals 𝑄2𝑘,𝑘 and 𝑄2𝑘,𝑘−1 (which are

just the reversals of the last two in Equation 33) are parallel. Thus 𝑄 has collapsed

diagonals at 𝑄2𝑘. Since 𝑄 has no folded diagonals, 𝑄 has aligned diagonals at 𝑄2𝑘. But then,

applying Lemma 5.3 again, we can extend that chain in Equation 33 so that it contines as

, ..., 𝑄2𝑘−1,3𝑘, 𝑄2𝑘,3𝑘. But now 𝑄 has collapsed diagonals at 𝑄3𝑘. And so on. Continuing this

way, we end up with all points on 𝑄. This is a contradiction.

The only way out is that 𝑄 must have folded diagonals somewhere
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8.7 The Case of Folded Diagonals

We continue to work under the assumption that 𝑃∞ is not a single point. Now we consider

the case when𝑄 has folded diagonals at, say, 𝑄0. What this means that the diagonals𝑄0,𝑘+1,

𝑄0,−𝑘−1 are parallel. (Again, these diagonals are well defined even when their endpoints

coincide; we are just using a notational convention to name them here.) But then the

corresponding half planes intersect along a single line 𝐿, forcing Σ ⊂ 𝐿. By Lemma 8.4,

the soul 𝑆 is contained in Σ. Hence, 𝑆 ⊂ 𝐿. Letting 𝑆∗ be the chord from §8.4, we also have

𝑆 = 𝑆∗. This is because 𝑆 and 𝑆∗ are segments of the same diagonal and in the same line.

We will use 𝑆 and 𝑆∗ interchangeably below.

We normalize so that 𝑆 is the line segment connecting (0, 0) to (1, 0). As in §8.4, both

these points are vertices of 𝑄. The folding condition forces Σ (and hence 𝑆) to lie to one

side of these points. Hence, we have either 𝑄0 = (0, 0) or 𝑄0 = (1, 0). Without loss of

generality we consider the case when 𝑄0 = (0, 0). Note that points of 𝑄 − 𝑆 do not be-

long to 𝐿, because𝑄 and 𝑆 have the same diameter. We break the analysis down into cases.

Case 1: Suppose that 𝑄𝑘+1 is not an endpoint of 𝑆∗ and 𝑄𝑛−𝑘−1 ≠ (0, 0). Consider the

arc 𝑄′ given by 𝑄0 → ... → 𝑄𝑘+1 → ... → 𝑄𝛽 = (1, 0). Here 𝛽 is some index we do not know

explicitly, but we take 𝛽 as large as possible, in the sense that 𝑄𝛽+1 ≠ (1, 0). The arc 𝑄′

connects (0, 0) to (1, 0) and intersets 𝑆∗ at 𝑄𝑘+1, a point which is neither (0, 0) or (1, 0). By

Lemma 8.6, we have 𝑄′ ⊂ 𝑆∗. We conclude that 𝑄0, ..., 𝑄𝛽 ⊂ 𝑆∗.

If 𝛽 does not lie in the index interval (𝑘 + 1, 𝑛 − 𝑘 − 1) then we have just shown that

𝑄𝑘+1, ..., 𝑄𝑛−𝑘−1 ∈ 𝑆∗. If 𝛽 = 𝑛 − 𝑘 − 1 we have the same result. Here is what we do if 𝛽

does lie in (𝑘 + 1, 𝑛 − 𝑘 − 1). We apply our same argument as in the previous paragraph

to the arc 𝑄𝛽 → ... → 𝑄𝑛−𝑘−1, and see that 𝑄𝛽, ..., 𝑄𝑛−𝑘−1 ∈ 𝑆. So, in all cases, we see that

𝑄𝑘+1, ..., 𝑄𝑛−𝑘−1 ∈ 𝑆.

In short, 𝑄𝑗 ∈ 𝐿 unless 𝑗 ∈ {−𝑘, ..., −1}. All but 𝑘 vertices belong to 𝐿. In particular, we

have an index ℎ ∈ {−𝑘, ..., −1} such that 𝑄ℎ ∉ 𝐿 but 𝑄ℎ+𝑘, 𝑄ℎ+𝑘+1, ..., 𝑄ℎ+𝑛−𝑘−1, 𝑄ℎ+𝑛−𝑘 ∈ 𝐿.

Now we are close to the Triangular case from §8.5 except that all the indices are shifted
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by ℎ. If it happens that 𝑄ℎ+𝑘 ≠ 𝑄ℎ+𝑛−𝑘 then we have the Triangular Case and we are done.

The other possibility is that 𝑄ℎ+𝑘 = 𝑄ℎ+𝑛−𝑘. In this case, Lemma 8.7 gives us 𝑄ℎ+𝑘 =

𝑄ℎ+𝑘+1 = 𝑄ℎ+𝑛−𝑘−1 = 𝑄ℎ+𝑛−𝑘. In particular, the diagonals 𝑄ℎ,ℎ+𝑘+1 and 𝑄ℎ,ℎ+𝑛−𝑘−1 are folded

at 𝑄ℎ. Since 𝑄ℎ ∉ 𝐿 this means that there is some other line 𝐿′ such that 𝑆 ⊂ 𝐿′. This is a

contradiction.

Case 2: Suppose 𝑄−𝑘−1 = 𝑄𝑘+1 = (1, 0). Before analyzing this case, we remember a

lesson from the end of Case 1: It is not possible for 𝑄 to have folded diagonals at a point

not on 𝑆.

Corollary 8.7 says that 𝑄𝑘+1 = ... = 𝑄𝑛−𝑘−1 = (1, 0). This is a run of 𝑘 + 𝛽 points, where

𝛽 = 𝑛 − (3𝑘 + 1) ≥ 0. There is some index ℎ ∈ {±1, ... ± 𝑘} such that 𝑄ℎ ∉ 𝐿. Without loss of

generality we will take ℎ ∈ {1, ..., 𝑘}.

Suppose first that 𝑛 > 3𝑘 + 1. Then there are at least 𝑘 + 1 consecutive vertices sitting

at (1, 0) and so both diagonals 𝑄ℎ,𝑘+ℎ and 𝑄ℎ,𝑘+ℎ+1 point from 𝑄ℎ to (1, 0) ≠ 𝑄ℎ. This means

that 𝑄 has collapsed diagonals at 𝑄ℎ. Remembering our lesson, we know that 𝑄 does not

have folded diagonals at 𝑄ℎ. Hence 𝑄 has aligned diagonals at 𝑄ℎ.

Now we have the same runaway situation we had in §8.6. The diagonals in the chain

𝑄ℎ−𝑘,ℎ...𝑄ℎ,ℎ+𝑘 point are all pointing along the line connecting (1, 0) to 𝑄ℎ, and they are

pointing away from (1, 0). This gives us collapsed diagonals at 𝑄ℎ+𝑘. Remembering our

lesson, we see that 𝑄 has aligned diagonals at 𝑄ℎ+𝑘. And so on. All the points after 𝑄ℎ get

stuck on 𝐿′ and we have a contradiction.

If 𝑛 = 3𝑘 + 1, then the same argument works as long as ℎ ≠ ±𝑘. So, we just have to

worry about the case when all points of 𝑄 belong to 𝑆 except for 𝑄𝑘 and 𝑄−𝑘, which do

not belong to 𝑆. Applying Lemma 8.6 to the arc 𝑄0 → 𝑄1 → ... → 𝑄𝑘 → (1, 0) we conclude

that 𝑄0 = ... = 𝑄𝑘−1 = (0, 0). Applying Lemma 8.6 to the arc 𝑄0 → 𝑄−1 → ... → 𝑄−𝑘 → (1, 0)

we conclude that 𝑄0 = ... = 𝑄𝑘−1 = (0, 0). But now we have a run of 2𝑘 − 1 ≥ 𝑘 + 1 points

sitting at (0, 0) and we can run the same argument as in the case 𝑛 > 3𝑘 + 1, with (0, 0) in

place of (1, 0).
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Case 3: The only cases left to consider is when one or both of 𝑄±(𝑘+1) equals (0, 0). We

suppose without loss of generality that 𝑄−𝑘−1 = (0, 0). Since we also have 𝑄0 = (0, 0),

Lemma 8.7 gives 𝑄−𝑘−1 = ... = 𝑄0 = (0, 0). This is a run of 𝑘 + 2 consecutive points sitting

at (0, 0).

There is some smallest ℎ > 0 so that 𝑄ℎ ∉ 𝑆. Applying Lemma 8.6 to the arc 𝑄0 → ... →

𝑄𝑘 → ... → (1, 0), we conclude that 𝑄ℎ−1 = ... = 𝑄1 = (0, 0). (Otherwise Lemma 8.6 would

force 𝑄ℎ ∈ 𝑆.)

Now we know that 𝑄 has collapsed diagonals at 𝑄ℎ ∉ 𝐿. We now get a contradiction

from the same runaway situation as in Case 2.

9 Appendix

9.1 The Energy Invariance Revisited

In this section we sketch Anton Izosimov’s proof that 𝜒𝑘◦∆𝑘 = 𝜒𝑘. This proof requires the

machinery from [6]. (The perspective comes from [8], but the needed result for ∆𝑘 is in

the follow-up paper [6].)

Let 𝑃 be an 𝑛-gon. We let 𝑉1, ..., 𝑉𝑛 be points in 𝑹
3 representing the consecutive vertices

of 𝑃. Thus the vertex 𝑃𝑗 is the equivalence class of 𝑉𝑗. We can choose periodic sequences

{𝑎𝑖}, {𝑏𝑖}, {𝑐𝑖}, {𝑑𝑖} such that

𝑎𝑖𝑉𝑖 + 𝑏𝑖𝑉𝑖+𝑘 + 𝑐𝑖𝑉𝑖+𝑘+1 + 𝑑𝑖𝑉𝑖+2𝑘+1 = 0, ∀𝑖. (34)

Recall from §2.2 that ∆𝑘 = 𝐷𝑘◦𝐷𝑘+1.

Lemma 9.1. One of the cross ratio factors of 𝜒𝑘◦𝐷𝑘+1 is (𝑎0𝑑−𝑘)∕(𝑐0𝑏−𝑘).

Proof: One of the factors is the cross ratio of 𝑃0, 𝑦, 𝑥, 𝑃𝑘+1, where

𝑥 = 𝑃0,𝑘+1 ∩ 𝑃𝑘,2𝑘+1, 𝑦 = 𝑃−𝑘,1 ∩ 𝑃0,𝑘+1.

(Compare the right side of Figure 2.1, shifting all the indices there by 𝑘 + 1.)
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The points 𝑥 and 𝑦 respectively are represented by vectors

𝑋 = 𝑎0𝑉0 + 𝑐0𝑉𝑘+1 = −𝑏0𝑉𝑘 − 𝑑0𝑉2𝑘+1,

𝑌 = −𝑎−𝑘𝑉−𝑘 − 𝑐−𝑘𝑉1 = 𝑏−𝑘𝑉0 + 𝑑−𝑘𝑉𝑘+1.

The point here is that the vector𝑋 lies in the span of {𝑉0, 𝑉𝑘+1} and in the span of {𝑉𝑘, 𝑉2𝑘+1}

and projectively this is exactly what is required. A similar remark applies to 𝑌.

Setting Ω = 𝑉0 × 𝑉𝑘+1, we compute the relevant cross ratio as

𝑉0 × 𝑌

𝑉0 × 𝑋
⋅
𝑋 × 𝑉𝑘+1

𝑌 × 𝑉𝑘+1
=
𝑑−𝑘Ω

𝑐0Ω
×

𝑎0Ω

𝑏−𝑘Ω
=
𝑑−𝑘𝑎0

𝑏−𝑘𝑐0
, (35)

which is just a rearrangement of the claimed term. ♠

The other cross ratio factors are obtained by shifting the indices in an obvious way.

As an immediate corollary, we see that

𝜒𝑘(𝐷𝑘+1(𝑃)) =

𝑛∏

𝑖=1

𝑎𝑖𝑑𝑖

𝑏𝑖𝑐𝑖
. (36)

Let us call this quantity 𝜇𝑘(𝑃).

Lemma 9.2. If 𝜇𝑘◦∆𝑘 = 𝜇𝑘 then 𝜒𝑘◦∆𝑘 = 𝜒𝑘.

Proof: If 𝜇𝑘◦∆𝑘 = 𝜇𝑘 then 𝜇𝑘◦∆
−1

𝑘
= 𝜇𝑘. Equation 36 says that

𝜒𝑘◦𝐷𝑘+1 = 𝜇𝑘, 𝜇𝑘◦𝐷𝑘+1 = 𝜒𝑘. (37)

The first equation implies the second because 𝐷𝑘+1 is an involution. Since 𝐷𝑘+1 conjugates

∆𝑘 to ∆−1
𝑘

we have

𝜒𝑘◦∆𝑘 = 𝜒𝑘◦𝐷𝑘+1◦∆
−1

𝑘
◦𝐷𝑘+1 = 𝜇𝑘◦∆

−1

𝑘
◦𝐷𝑘+1 = 𝜇𝑘◦𝐷𝑘+1 = 𝜒𝑘.

This completes the proof. ♠
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Let 𝑃 = ∆𝑘(𝑃). Let {𝑎𝑖}, etc., be the sequences associated to 𝑃. We want to show that

𝑛∏

𝑖=1

𝑎𝑖𝑑𝑖

𝑏𝑖𝑐𝑖
=

𝑛∏

𝑖=1

𝑎𝑖𝑑𝑖

𝑏𝑖𝑐𝑖

. (38)

This is just a restatement of the equation 𝜇𝑘◦∆𝑘 = 𝜇𝑘.

Now we use the formalism from [6] to establish Equation 38. We associate to our

polygon 𝑃 operator 𝐷 on the space 𝒱 of bi-infinite sequences {𝑉𝑖} of vectors in 𝑹
3. The

definition of 𝐷 is given coordinate-wise as

𝐷(𝑉𝑖) = 𝑎𝑖𝑉𝑖 + 𝑏𝑖𝑇
𝑘(𝑉𝑖) + 𝑐𝑖𝑇

𝑘+1(𝑉𝑖) + 𝑑𝑖𝑇
2𝑘+1(𝑉𝑖). (39)

Here 𝑇 is the shift operator, whose action is 𝑇(𝑉𝑖) = 𝑉𝑖+1. If we take {𝑉𝑖} to be a periodic

bi-infinite sequence of vectors corresponding to our polygon 𝑃, then 𝐷 maps {𝑉𝑖} to the

0-sequence.

Next, we write 𝐷 = 𝐷+ + 𝐷− where coordinate-wise

𝐷+(𝑉𝑖) = 𝑎𝑖𝑉𝑖 + 𝑐𝑖𝑇
𝑘+1(𝑉𝑖), 𝐷−(𝑉𝑖) = 𝑏𝑖𝑇

𝑘(𝑉𝑖) + 𝑑𝑖𝑇
2𝑘+1(𝑉𝑖). (40)

The pair (𝐷+, 𝐷−) is associated to the polygon 𝑃.

Let 𝐷̃ and (𝐷̃+, 𝐷̃−) be the corresponding operators associated to 𝑃. One of the main

results of [6] is that the various choices can be made so that

𝐷̃+𝐷− = 𝐷̃−𝐷+. (41)

This is called refactorization. Equating the lowest (respectively highest) terms of the

relation in Equation 41 gives us the identity 𝑎𝑖𝑏𝑖 = 𝑏𝑖𝑎𝑖+𝑘 (respectively 𝑐𝑖𝑑𝑖+𝑘+1 = 𝑑𝑖𝑐𝑖+2𝑘+1.)

These relations hold for all 𝑖 and together imply Equation 38.

9.2 Extensions of Glick’s Formula

Theorem 1.1 in [3] says that the coordinates for the collapse point of the pentagram

map ∆1 are algebraic functions of the coordinates of the initial polygon. In Equation 1.1

of [3], Glick goes further and gives a formula for the collapse point. I will explain his
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formula. Let (𝑥∗, 𝑦∗) denote the accumulation point of the forward iterates of 𝑃 under ∆1.

Let 𝑃∞ = (𝑥∗, 𝑦∗, 1) be the collapse point. In somewhat different notation, Glick introduces

the operator

𝑇𝑃 = 𝑛𝐼3 − 𝐺𝑃, 𝐺𝑃(𝑣) =

𝑛∑

𝑖=1

|𝑃𝑖−1, 𝑣, 𝑃𝑖+1|

|𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1|
𝑃𝑖. (42)

Here |𝑎, 𝑏, 𝑐| denotes the determinant of the matrix with rows 𝑎, 𝑏, 𝑐 and 𝐼3 is the 3 × 3

identity matrix. It turns out 𝑇𝑃 is a ∆1-invariant operator, in the sense that 𝑇∆0(𝑃) = 𝑇𝑃.

Moreover 𝑃∞ is an eigenvector of 𝑇𝑃. This is Glick’s formula for 𝑃∞. Actually, one can

say more simply that 𝐺𝑃 is a ∆0-invariant operator and that 𝑃∞ is a fixed point of the

projective action of 𝐺𝑝. This means that the vectors representing these points in 𝑹
3 are

eigenvectors for the operator. The reason Glick uses the more complicated expression

𝑛𝐼3 − 𝐺𝑃 is that geometrically it is easier to work with.

Define 𝐺𝑃,𝑎,𝑏 by the formula

𝐺𝑃,𝑎,𝑏(𝑣) =

𝑛∑

𝑖=1

|𝑃𝑖−𝑎, 𝑣, 𝑃𝑖+𝑏|

|𝑃𝑖−𝑎, 𝑃𝑖, 𝑃𝑖+𝑏|
𝑃𝑖. (43)

Let 𝑃∞,𝑘 be the limit point of the forward iterates of 𝑃 under ∆𝑘.

A lot of experimental evidence suggests the following conjecture.

Conjecture 9.3. Let 𝑘 ≥ 2. If 𝑛 = 3𝑘+1 the point 𝑃∞ is a fixed point for the projective action

of 𝐺𝑃,𝑘,𝑘. If 𝑛 = 3𝑘 + 2 the point 𝑃∞ is a fixed point for the projective action of 𝐺𝑃,𝑘+1,𝑘+1. In

particular, in these cases the coordinates of 𝑃∞ are algebraic functions of the vertices of 𝑃.

Anton Izosimov kindly explained the following lemma, which seems like a big step in

proving the conjecture. (I am still missing the geometric side of Glick’s argument in this

new setting.)

Lemma 9.4. When 𝑛 = 3𝑘 + 1 the operator 𝐺𝑃,𝑘,𝑘 is invariant under ∆𝑘. When 𝑛 = 3𝑘 + 2

the operator 𝐺𝑃,𝑘+1,𝑘+1 is invariant under ∆𝑘.

Proof: These operators are Glick’s operator in disguise. When 𝑛 = 3𝑘 + 1 we can relabel

our 𝑛-gons in a way that converts ∆𝑘 to the pentagram map. The corresponding space of
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birds 𝐵𝑛,𝑘 corresponds to some strange set of “relabeled 𝑘-birds”. This relabeling converts

𝐺𝑃,𝑘,𝑘 respectively to Glick’s original operator. This proves the invariance of 𝐺𝑃,𝑘,𝑘 under

∆𝑘 when 𝑛 = 3𝑘 + 1. A similar thing works for 𝑛 = 3𝑘 + 2, but this time the relabeling

converts ∆𝑘 to the inverse of the pentagram map. ♠

I was not able to find any similar formulas when 𝑛 > 3𝑘 + 2.

Question 9.5. When 𝑛 > 3𝑘 + 2 and 𝑃 is a 𝑘-bird, are the coordinates of the collapse point

𝑃∞ algebraic functions of the vertices of 𝑃?

Here is one more thing I have wondered about. Suppose that 𝑛 is very large and 𝑃 is a

convex 𝑛-gon. Then 𝑃 can be considered as a 𝑘-bird for all 𝑘 = 1, 2, ..., 𝛽, where 𝛽 is the

largest integer such that 𝑛 ≥ 3𝛽 + 1. When we apply the map ∆𝑘 for these various values

of 𝑘 we get potentially 𝛽 different collapse points. All I can say, based on experiments, is

that these points are not generally collinear.

Question 9.6. Does the collection of 𝛽 collapse points in this situation have any special

meaning?

9.3 Star Relabelings

Let us further take up the theme in the proof of Lemma 9.4. Given an 𝑛-gon 𝑃 and and

some integer 𝑟 relatively prime to 𝑛, we define a new 𝑛-gon 𝑃∗𝑟 by the formula

𝑃∗𝑟
𝑗
= 𝑃𝑟𝑗. (44)

Figure 1.5 shows the 𝑃∗(−3) when 𝑃 is the regular 10-gon.

As we have already mentioned, the action of ∆1 on the 𝑃∗(−𝑘) is the same as the action

of ∆𝑘 on 𝑃 when 𝑛 = 3𝑘 + 1. So, when 𝑛 = 3𝑘 + 1, the pentagram map has another nice

invariant set (apart from the set of convex 𝑛-gons), namely

𝐵
∗(−𝑘)

𝑘,𝑛
= {𝑃∗(−𝑘)| 𝑃 ∈ 𝐵𝑘,𝑛}.
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The action of the pentagram map on this set is geometrically nice. If we suitably star-

relabel, we get star-shaped (and hence embedded) polygons. A similar thing works when

𝑛 = 3𝑘 + 2.
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