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Abstract: We prove that linearizable actions are also symplectically lin-
earizable (either smoothly or analytically) in a neighborhood of a fixed point.
Specifically, the fundamental vector fields associated with the action can be
simultaneously linearized in Darboux coordinates. This result extends equiv-
ariant symplectic local normal forms to non-compact group actions.

In both formal and analytic frameworks, the existence of linearizing co-
ordinates is tied to a cohomological equation, which admits a solution for
semisimple actions [9, 8]. Consequently, an analytic symplectic action of a
semisimple Lie algebra can be locally linearized in Darboux coordinates, en-
abling the simultaneous analytic linearization of Hamiltonian vector fields
near a shared zero. However, in the smooth setting, this result is restricted to
semisimple Lie algebras of compact type. We construct an explicit example of
a smooth, non-linearizable Hamiltonian action with a semisimple linear part,

thereby answering in the negative a question posed by Eliasson [5].
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1 Introduction

A classical result due to Bochner [1] establishes that a compact Lie group action on
a smooth manifold is locally equivalent, in the neighbourhood of a fixed point, to its
linearization. This result holds in the C* category. It is worth exploring if similar results
hold in the non-compact case.

As observed in [8], if the Lie group is connected, the linearization problem can be
formulated in the following terms: find a linear system of coordinates for the vector fields
corresponding to the one-parameter subgroups of G; or more generally, consider the
representation of a Lie algebra and find coordinates on the manifold that simultaneously
linearize the vector fields in the image of the representation vanishing at a point. This is
the perspective we adopt in this note when referring to linearization.

In the formal and analytic cases, the existence of coordinates that linearize the action
is related to a cohomological equation that can always be solved when the Lie group
under consideration is semisimple [9], [8]. Guillemin and Sternberg also studied the
problem in the C* setting. At the end of [8], they presented the celebrated example
of a non-linearizable action of 81(2,R) on R3, constructed via a perturbation involving
the radial vector field with flat coefficients. This example has been foundational in
the literature, inspiring the construction of other examples with profound geometric
implications, such as Weinstein’s non-stable Poisson structure example [19].

When the semisimple Lie algebras are of compact type, the linearization of the action
can be achieved by combining the local integration of the Lie group action with Bochner’s
theorem, leading to the linearization of the associated Lie algebra action [6].

Linearization techniques also play a significant role in Hamiltonian systems. When a
Hamiltonian system arises from a symplectic action of a compact Lie group fixing a point,
the equivariant version of Darboux’s theorem ([18], [3]) ensures that the group action
can be linearized in Darboux coordinates near the fixed point. It is worth exploring if
similar results apply beyond the compact case.

For complete integrable systems, an associated abelian symplectic action emerges.
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When the integrable system in local coordinates has a “linear part" linked to a Cartan
subalgebra, this leads to non-degenerate singularities [4]. As shown in [5], [4], [10], [11]
and [12], complete integrable systems near non-degenerate singular points are equivalent
to their linear models. Consequently, the Hamiltonian system itself is equivalent to the
linear one. This result provides normal forms for integrable systems near singular non-
degenerate points and, specifically, ensures the simultaneous linearization of Hamiltonian

vector fields near a common zero.

The next challenge involves Hamiltonian systems with a semisimple linear part, as
proposed by Eliasson in [5]. In the formal or analytic setting, results by Guillemin and
Sternberg [8] and Kushnirenko [9] demonstrate that such systems are equivalent to the
linear model when the symplectic form is disregarded. In this note, we establish that not
only can the Hamiltonian vector fields be linearized, but they can also be linearized in

Darboux coordinates.

Following Guillemin and Sternberg’s approach, we prove that if a symplectic Lie
algebra action of semisimple type fixes a point, there exist analytic Darboux coordinates
in which the analytic vector fields generating the Lie algebra action are linear. This
result also extends to complex analytic Lie algebra actions on complex analytic manifolds.
Additionally, we construct an example of a Hamiltonian system with a semisimple linear

part that is not C*-linearizable.

Organization of this article: In Section 2, we prove that linearizable actions on
symplectic manifolds can be locally linearized in Darboux coordinates. In Section 3, we
apply this to show that any real analytic symplectic action of a semisimple Lie algebra
can be linearized in real analytic Darboux coordinates in a neighborhood of a fixed point.
Furthermore, this result extends to analytic complex manifolds and complex analytic
actions of semisimple Lie algebras. In Section 4, we present a counterexample proving
that the linearization result does not hold in general for smooth Hamiltonian actions of

semisimple Lie algebras.
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2 Linearizable actions in Darboux coordinates

Let g be a Lie algebra and let p : ¢ — Lgyq1c Stand for a representation of g in the algebra
of real (or complex) analytic vector fields on a real (or complex) analytic manifold M.

We say that p € M is a fixed point for p if the vector fields in p(g) vanish at p. We say
that p can be linearized in a neighborhood of a fixed point if there exist local coordinates
in a neighbourhood of p such that the vector fields in the image of p can be simultaneously
linearized (i.e, p is equivalent to a linear representation).

Assume that the Lie algebra action is (analytically/smoothly) linearizable and assume
that M is endowed with a symplectic structure (smooth, analytic). We first prove that it is

then symplectically linearizable.

Theorem 2.1. Let g be a Lie algebra and let (M, w) be a (real or complex) analytic symplectic
manifold. Let p be a representation by analytic symplectic vector fields. Let p be a fixed
point for p and assume that p can be linearized. Then there exist local analytic coordinates
(X1, Y15 - » Xp» ¥ N @ neighborhood of p for p such that p is a linear representation and w

can be written as,

n
w = del- A dy;.

i=1

Proof. Let p be an analytic symplectic action of a Lie algebra on a manifold M, with a
fixed point p € M. Choose analytic coordinates (x;,y;, ..., X,,, y,,) centered at p in which
the action p is linear. Let w; denote the symplectic form in these coordinates. Although p
is now linear, w; need not be of Darboux type.

We denote by w, the constant (degree-zero) term in the Taylor expansion of w, at the
origin. Since w, is preserved by p and p is linear; it follows that w, is preserved by the
linearized action p(V) = p. In particular, w, is a constant symplectic form invariant under

the action. Our goal is to construct a local analytic diffeomorphism ¢, fixing the origin,
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such that ¢*(w;) = w, and ¢ commutes with p. That is, we seek an equivariant analytic
Darboux theorem for w;, linearizing the form while preserving the linear action p.
To this end, we apply the path method [16] for analytic symplectic structures. By the

Poincaré lemma, there exists an analytic 1-form « such that
Wy = wy + da.
Define a path of symplectic forms:
w; =tw; + (1 —tw,, te][0,1].

Each w, is an analytic symplectic form in a neighbourhood of the origin. Moreover, the
action p preserves both w, and w;, hence it preserves the entire path w;,.

We now define the time-dependent analytic vector field X, by Moser’s equation:
ix,wp = —at. 2.1)

In order to ensure that X, is invariant under p, it suffices to construct « invariant under
p. For this purpose, we apply the standard homotopy operator used in the proof of the
Poincaré lemma, adapted to our equivariant setting.

LetR = )} x;0,, +y;0, be the radial vector field, and h, the homothety x ~— tx. Then,

we define
1
a = f %hf(iRﬁ’) dt, where 8 = w; — w,.
0

Because 3 is p-invariant and p commutes with R, it follows that « is also p-invariant. Thus,
the vector field X, is invariant under p.

Let ¢, denote the flow of X/, satisfying the differential equation

d
P @=x@@). f=id 2.2

Since X, is p-invariant, the flow ¢, commutes with the action p. Moreover, because «

vanishes at the origin, so does X;, ensuring that each ¢, fixes the origin.
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By construction, ¢;(w,) = wy, and in particular ¢;(w;) = w,. The diffeomorphism
¢ := ¢, is then the desired equivariant analytic transformation taking w; to o, while
preserving the linear action p.

This completes the proof. O

Remark 2.2. The theorem above is stated in the analytic category; however, if the lin-
earization is assumed to hold in the smooth category, the symplectic diffeomorphism

obtained from the proof is also smooth.

3 The case of analytic semisimple Lie algebra actions

Guillemin and Sternberg provided in [8] a complete characterization of analytically
linearizable actions. They demonstrated that a necessary and sufficient condition for the
representation

P - 8 = Lanalytic
to be locally analytically linearizable is the existence of an analytic vector field X, defined
in a neighborhood of p, vanishing at p, with the identity matrix as its Jacobian at p, and
commuting with all the vector fields in g.

This condition was elegantly recast in cohomological terms in [8]. They proved that
the first cohomology group H!(g, V*) acts as an obstruction to analytic linearization. For
semisimple g, H!(g, V*) vanishes for all representation spaces V, ensuring the possibility
of analytic linearization. On the other hand, for non-semisimple g, one can construct a
representation space V such that H!(g, V*) # 0, which precludes analytic linearization.

This result establishes the semisimple case as a natural candidate for analytic lin-
earization.

Guillemin and Sternberg [8] and Kushnirenko [9] proved the following.

Theorem 3.1 (Guillemin-Sternberg, Kushnirenko). The representation p : ¢ — Lgpaiytic
with g semisimple is locally equivalent, via an analytic diffeomorphism, to a linear repre-

sentation of g in a neighbourhood of a fixed point for p.
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As an application of theorem 2.1: When the representation is done by Hamiltonian
vector fields (locally symplectic), the analytic diffeomorphism that gives the equivalence
of the initial representation to the linear representation can be chosen to take the initial

symplectic form to the Darboux one. Namely,

Corollary 3.2. Let g be a semisimple Lie algebra and let (M, w) be a (real or complex) analytic
symplectic manifold. Let p : g — Lguqiyeic be a representation by analytic symplectic vector
fields. Then there exist local analytic coordinates (xi, y, ..., Xn, ¥,) IN @ neighbourhood of a

fixed point p for p such that p is a linear representation and w can be written as,

n
w = del‘ /\dyl

i=1
4 Non-linearizable semisimple smooth actions

4.1 The counterexample of Cairns and Ghys

In this section we recall the results of Cairns and Ghys concerning a C*-action of SL(2, R)
on R?® which is not linearizable. All results mentioned in this section are contained in
section 8 of [2].

Consider the basis {X, Y, Z} of 31(2, R) satisfying the relations:
[X5Y]=_Z’ [ZaX]=Ya [Z,Y]=—X
Now consider the representation on R* defined on this basis as:

p(X) = yZ4z2

0z dy

pY) = x—+zo 4.1)
E} E}

p(Z) = X5 Ve

The orbits of this action are the level sets of the quadratic form Q = x* + y*> — z% =
r? — z2 (where r? = x2 + y?). These level sets are non-degenerate quadrics: one-sheeted

hyperboloids for Q > 0, two-sheeted hyperboloids for Q < 0, and a quadratic cone for
Q=0.
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Introduce the radial vector field

R—xi+ i+z—
= *ox Yoy TP

and perturb p by setting
X=pX)+fR,
Y =p(Y)+gR, 4.2)
Z=p(2),

where

fGx,y,2) =xA(z,Vx2 +y?), g(x,y,2) = —yA(z,Vx2 +y?),

and
a(r* —z2)

Az,r) = =

>

with a: R —» R any C*®-function which vanishes for r* — z2 < 0 and is bounded.
By [2], the fields X, Y, Z still close under the Lie bracket to an 81(2, R)-algebra and are
complete. Hence they integrate to an action p of the universal cover of SL(2, R), which

descends to SL(2, R) itself since Z = p(Z) is unchanged. Moreover:

+ On the “hyperbolic region” {x?> + y?> > z?}, one has a(r> — z?) # 0 and {X,Y, Z} are

linearly independent, so p—orbits are 3-dimensional.

» On and inside the “cone” {x?> + y*> < z?},one has a(r* —z>) =030 X = p(X), ¥ = p(Y),

and p coincides with the linear action.

Since the original linear action never has 3-dimensional orbits, 4 cannot be conjugate to

it. Therefore, the deformed action is not linearizable.

4.2 The counterexample of Guillemin and Sternberg

The construction of Guillemin and Sternberg [8] follows the guidelines outlined below. It

is quite similar to the counterexample of Grant and Cairns; however, the key difference
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is that the vector field the perturbation does not preserve Z, so it cannot be guaranteed
that it lifts to SL(2, R).

If we perturb the initial action of 3[(2, R) to the non-linear action:

pIX) = p(X) + *Zg(r? = 2R,

pY) = p(Y) — ﬁ—fg(rz — )R,
B(Z) = p(Z) + g(r* — z*)R,

where R = x% + y% + z:—z is the radial vector field, and g € C*(R) is such that g(x) > 0 if
x> 0,and g(x) =0if x < 0.

Inside the cone r2 —z2, the two sets of vector fields are identical. However, if we choose
gu) = e /% u>0,and g(u) = 0, u <0, for example, then outside the cone r? — z2 = 0, the
vector field p(X) = x% — y% has closed circular orbits, while the corresponding deformed
vector field p(X) has orbits that spiral outward.

Therefore, it is impossible to find a C*-mapping defined in a neighborhood of the

origin. Hence, p is not linearizable.

4.3 A Hamiltonian counterexample

We construct a counterexample to C*-linearization under the hypothesis that the action
is Hamiltonian, thereby giving a negative answer to a question of Eliasson [5]. We keep

the notation of the Cairns-Ghys construction from Section 4.1.

Proposition 4.1. Let a be the SL(2, R)-action on R? generated by
X=pX)+fR,  Y=p(Y)+gR  Z=p(2),
whereR = x9, +y0, +z9, and
foxa(zVE YY), g=yAzNE ), Awn=2C0E)

with a : R - R smooth, bounded, and vanishing on R~. Let @ be the cotangent lift of « to

T*(R?). Then @ is Hamiltonian and not C®-linearizable in a neighbourhood of the origin.
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Proof. For a diffeomorphism g : M — M, the cotangent lift is

8(q, p) = (g(a), (dgz")*p),

SO
mog=gor  and  g(q,0) = (g(q),0). 4.3)

Thus fibres map to fibres and the zero section is preserved by every cotangent lift. In

particular, with
F:=n'0)={x=y=2z=0}, Z:={a=b=c=0} 0 :=(0,0,0;0,0,0),

both F and Z are invariant for the lifted linear action and for the lifted Cairns-Ghys
action (note that 0 is fixed in the base, since p is linear and fR, gR vanish at 0).
Let a(V denote the linear part of « and @V its cotangent lift. The latter is Hamiltonian

for w = d6 (6 = adx + bdy + cdz), with moment map
u=(zb+cy, az +cx, —ay + bx) € 31(2, R)*,

whose Jacobian is
0 ¢c b 0 2z vy
Du=lc 0 a z 0 x|

b —a 0 -y x 0

For Hamiltonian actions one has dim(G-m) = rank du,, (see, for instance, [7, §26]). A direct

computation shows that

0, p=0,

rankDu =12, (x,y,z)x(—a,—b,c) =0, p# O,

3, otherwise.

\

Equivalently, the rank drops to 2 precisely when (x, y, z) is collinear with (—a, —b, ¢), alocus
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containing F = {x =y =z = 0} and Z = {a = b = ¢ = 0} but strictly larger. Consequently,
0, p=0,
dim Oaw(p) =12, (x,y,2)x(—a,—b,c) =0, p # O, 4.4

3, otherwise,

and, in particular, dim Oz (q,0) = 2 for all g # 0.

For any lifted action, the fundamental vector fields satisfy

Ex(q, D) = (£x(q), — podEx(q)). (4.5)

Hence along Z one has ;?X(q, 0) = (£x(q),0), so every orbit starting in Z stays in Z. Con-
versely, no orbit through a point (g, p) ¢ Z can be contained in Z, since it already contains
(g, p) & Z. Thus, near O, the orbits contained in Z are exactly those starting in Z. Moreover,
from (4.5) we read off

dim Oa(q, 0) = dim O%(qg).

By [2, §8] there exist points g — 0 in the base with 3-dimensional a-orbits. For such g,

put p = (q,0) € Z \ {0}. Then
dim ©%(g,0) = dim 0%(q) = 3. (4.6)

Assume, for contradiction, that there exists a germ @ : (T*M, O) — (T*M, O) with ®og® =
ao®. Conjugacy carries orbits diffeomorphically to orbits, preserving their dimension.
Since, near O, the orbits contained in Z are precisely those starting in Z for both lifted

actions, necessarily ®(Z) = Z and ®(F) = F. Hence ®~!(p) € Z \ {0}, so by (4.4)
dim 0%"(@1(p)) = 2,

whereas by (4.6) dim Oa(p) = 3, a contradiction. Therefore, @ is not C*®-linearizable near

the zero section. ]

Remark 4.2. We can employ the same strategy, adopting the counterexample by Guillemin

and Sternberg in the process.
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Consider the Lie algebra action of 8(2, R), denoted by p, on R3, generated by the vector
fields:

pX) = p(X) + ~Zg(r? = 2R,
A(Y) = p(Y) — Zg(r? — )R,
p(2) = p(2) +8(r? - )R,

whereR = xai + yai + zai is the radial vector field, and g € C®(R) satisfies g(u) = e~1/*’
X y z

for u > 0and g(u) =0 foru <0.

Using similar guidelines to those of Guillemin and Sternberg in [8], we can verify that

the lifted action to T#(R?) is not C*-linearizable.

The lift of the action can be computed using the Liouville one-form. Let 6 = adx +
bdy + cdz. Then, the lift of the non-perturbed vector field is a Hamiltonian vector field

with the Hamiltonian function

f = —ay + bx,

and the lifted vector field of the perturbed system is the Hamiltonian vector field with

respect to the function

f" = —ay + bx + g(r* — z*)(ax + by).

The Hamiltonian vector field of f is given by:

xi— i+ai—bi
3y Yax "%pb  "aa’

and it exhibits periodic orbits. In contrast, the corresponding deformed vector field,

the Hamiltonian vector field of f’, has orbits that spiral outward.
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4.4 The case of semisimple Lie algebras of compact type

When the Lie algebra action is of compact type, it can be integrated into an action of a
compact Lie group G (see [6] for a proof, which is based on the use of algebroids).
Given a fixed point for the action p, we can associate a linear action of the group
in a neighbourhood of p, with the group action preserving the symplectic structure
(which we can assume to be in Darboux coordinates). Applying the equivariant Darboux
theorem [3], we obtain a diffeomorphism ¢ that linearizes the group action G in Darboux

coordinates. By differentiation, this provides the linearization of the Lie algebra action p.
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