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Abstract: We prove that linearizable actions are also symplectically lin-

earizable (either smoothly or analytically) in a neighborhood of a fixed point.

Specifically, the fundamental vector fields associated with the action can be

simultaneously linearized in Darboux coordinates. This result extends equiv-

ariant symplectic local normal forms to non-compact group actions.

In both formal and analytic frameworks, the existence of linearizing co-

ordinates is tied to a cohomological equation, which admits a solution for

semisimple actions [9, 8]. Consequently, an analytic symplectic action of a

semisimple Lie algebra can be locally linearized in Darboux coordinates, en-

abling the simultaneous analytic linearization of Hamiltonian vector fields

near a shared zero. However, in the smooth setting, this result is restricted to

semisimple Lie algebras of compact type. We construct an explicit example of

a smooth, non-linearizable Hamiltonian action with a semisimple linear part,

thereby answering in the negative a question posed by Eliasson [5].
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1 Introduction

A classical result due to Bochner [1] establishes that a compact Lie group action on

a smooth manifold is locally equivalent, in the neighbourhood of a fixed point, to its

linearization. This result holds in the 𝐶𝑘 category. It is worth exploring if similar results

hold in the non-compact case.

As observed in [8], if the Lie group is connected, the linearization problem can be

formulated in the following terms: find a linear system of coordinates for the vector fields

corresponding to the one-parameter subgroups of 𝐺; or more generally, consider the

representation of a Lie algebra and find coordinates on the manifold that simultaneously

linearize the vector fields in the image of the representation vanishing at a point. This is

the perspective we adopt in this note when referring to linearization.

In the formal and analytic cases, the existence of coordinates that linearize the action

is related to a cohomological equation that can always be solved when the Lie group

under consideration is semisimple [9], [8]. Guillemin and Sternberg also studied the

problem in the 𝐶∞ setting. At the end of [8], they presented the celebrated example

of a non-linearizable action of 𝔰𝔩(2,ℝ) on ℝ3, constructed via a perturbation involving

the radial vector field with flat coefficients. This example has been foundational in

the literature, inspiring the construction of other examples with profound geometric

implications, such as Weinstein’s non-stable Poisson structure example [19].

When the semisimple Lie algebras are of compact type, the linearization of the action

can be achieved by combining the local integration of the Lie group action with Bochner’s

theorem, leading to the linearization of the associated Lie algebra action [6].

Linearization techniques also play a significant role in Hamiltonian systems. When a

Hamiltonian system arises from a symplectic action of a compact Lie group fixing a point,

the equivariant version of Darboux’s theorem ([18], [3]) ensures that the group action

can be linearized in Darboux coordinates near the fixed point. It is worth exploring if

similar results apply beyond the compact case.

For complete integrable systems, an associated abelian symplectic action emerges.
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When the integrable system in local coordinates has a “linear part" linked to a Cartan

subalgebra, this leads to non-degenerate singularities [4]. As shown in [5], [4], [10], [11]

and [12], complete integrable systems near non-degenerate singular points are equivalent

to their linear models. Consequently, the Hamiltonian system itself is equivalent to the

linear one. This result provides normal forms for integrable systems near singular non-

degenerate points and, specifically, ensures the simultaneous linearization of Hamiltonian

vector fields near a common zero.

The next challenge involves Hamiltonian systems with a semisimple linear part, as

proposed by Eliasson in [5]. In the formal or analytic setting, results by Guillemin and

Sternberg [8] and Kushnirenko [9] demonstrate that such systems are equivalent to the

linear model when the symplectic form is disregarded. In this note, we establish that not

only can the Hamiltonian vector fields be linearized, but they can also be linearized in

Darboux coordinates.

Following Guillemin and Sternberg’s approach, we prove that if a symplectic Lie

algebra action of semisimple type fixes a point, there exist analytic Darboux coordinates

in which the analytic vector fields generating the Lie algebra action are linear. This

result also extends to complex analytic Lie algebra actions on complex analytic manifolds.

Additionally, we construct an example of a Hamiltonian system with a semisimple linear

part that is not 𝐶∞-linearizable.

Organization of this article: In Section 2, we prove that linearizable actions on

symplectic manifolds can be locally linearized in Darboux coordinates. In Section 3, we

apply this to show that any real analytic symplectic action of a semisimple Lie algebra

can be linearized in real analytic Darboux coordinates in a neighborhood of a fixed point.

Furthermore, this result extends to analytic complex manifolds and complex analytic

actions of semisimple Lie algebras. In Section 4, we present a counterexample proving

that the linearization result does not hold in general for smooth Hamiltonian actions of

semisimple Lie algebras.

Acknowledgements: I would like to thank Häkan Eliasson, Ghani Zeghib, David
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2 Linearizable actions in Darboux coordinates

Let 𝔤 be a Lie algebra and let 𝜌 ∶ 𝔤 ,→ 𝐿𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 stand for a representation of 𝔤 in the algebra

of real (or complex) analytic vector fields on a real (or complex) analytic manifold 𝑀.

We say that 𝑝 ∈ 𝑀 is a fixed point for 𝜌 if the vector fields in 𝜌(𝔤) vanish at 𝑝. We say

that 𝜌 can be linearized in a neighborhood of a fixed point if there exist local coordinates

in a neighbourhood of 𝑝 such that the vector fields in the image of 𝜌 can be simultaneously

linearized (i.e, 𝜌 is equivalent to a linear representation).

Assume that the Lie algebra action is (analytically/smoothly) linearizable and assume

that 𝑀 is endowed with a symplectic structure (smooth, analytic). We first prove that it is

then symplectically linearizable.

Theorem 2.1. Let 𝔤 be a Lie algebra and let (𝑀, 𝜔) be a (real or complex) analytic symplectic

manifold. Let 𝜌 be a representation by analytic symplectic vector fields. Let 𝑝 be a fixed

point for 𝜌 and assume that 𝜌 can be linearized. Then there exist local analytic coordinates

(𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛) in a neighborhood of 𝑝 for 𝜌 such that 𝜌 is a linear representation and 𝜔

can be written as,

𝜔 =
𝑛∑

𝑖=1
𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖.

Proof. Let 𝜌 be an analytic symplectic action of a Lie algebra on a manifold 𝑀, with a

fixed point 𝑝 ∈ 𝑀. Choose analytic coordinates (𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛) centered at 𝑝 in which

the action 𝜌 is linear. Let 𝜔1 denote the symplectic form in these coordinates. Although 𝜌

is now linear, 𝜔1 need not be of Darboux type.

We denote by 𝜔0 the constant (degree-zero) term in the Taylor expansion of 𝜔1 at the

origin. Since 𝜔1 is preserved by 𝜌 and 𝜌 is linear, it follows that 𝜔0 is preserved by the

linearized action 𝜌(1) = 𝜌. In particular, 𝜔0 is a constant symplectic form invariant under

the action. Our goal is to construct a local analytic diffeomorphism 𝜙, fixing the origin,
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such that 𝜙∗(𝜔1) = 𝜔0 and 𝜙 commutes with 𝜌. That is, we seek an equivariant analytic

Darboux theorem for 𝜔1, linearizing the form while preserving the linear action 𝜌.

To this end, we apply the path method [16] for analytic symplectic structures. By the

Poincaré lemma, there exists an analytic 1-form 𝛼 such that

𝜔1 = 𝜔0 + 𝑑𝛼.

Define a path of symplectic forms:

𝜔𝑡 = 𝑡𝜔1 + (1 − 𝑡)𝜔0, 𝑡 ∈ [0, 1].

Each 𝜔𝑡 is an analytic symplectic form in a neighbourhood of the origin. Moreover, the

action 𝜌 preserves both 𝜔0 and 𝜔1, hence it preserves the entire path 𝜔𝑡.

We now define the time-dependent analytic vector field 𝑋𝑡 by Moser’s equation:

𝑖𝑋𝑡𝜔𝑡 = −𝛼. (2.1)

In order to ensure that 𝑋𝑡 is invariant under 𝜌, it suffices to construct 𝛼 invariant under

𝜌. For this purpose, we apply the standard homotopy operator used in the proof of the

Poincaré lemma, adapted to our equivariant setting.

Let 𝑅 = ∑𝑥𝑖𝜕𝑥𝑖 + 𝑦𝑖𝜕𝑦𝑖 be the radial vector field, and ℎ𝑡 the homothety 𝑥 ↦→ 𝑡𝑥. Then,

we define

𝛼 ∶= ∫
1

0

1
𝑡 ℎ

∗
𝑡 (𝑖𝑅𝛽) 𝑑𝑡, where 𝛽 = 𝜔1 − 𝜔0.

Because 𝛽 is 𝜌-invariant and 𝜌 commutes with 𝑅, it follows that 𝛼 is also 𝜌-invariant. Thus,

the vector field 𝑋𝑡 is invariant under 𝜌.

Let 𝜙𝑡 denote the flow of 𝑋𝑡, satisfying the differential equation

𝜕𝜙𝑡
𝜕𝑡 (𝑞) = 𝑋𝑡(𝜙𝑡(𝑞)), 𝜙0 = id. (2.2)

Since 𝑋𝑡 is 𝜌-invariant, the flow 𝜙𝑡 commutes with the action 𝜌. Moreover, because 𝛼

vanishes at the origin, so does 𝑋𝑡, ensuring that each 𝜙𝑡 fixes the origin.
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By construction, 𝜙∗𝑡 (𝜔𝑡) = 𝜔0, and in particular 𝜙∗1(𝜔1) = 𝜔0. The diffeomorphism

𝜙 ∶= 𝜙1 is then the desired equivariant analytic transformation taking 𝜔1 to 𝜔0 while

preserving the linear action 𝜌.

This completes the proof.

Remark 2.2. The theorem above is stated in the analytic category; however, if the lin-

earization is assumed to hold in the smooth category, the symplectic diffeomorphism

obtained from the proof is also smooth.

3 The case of analytic semisimple Lie algebra actions

Guillemin and Sternberg provided in [8] a complete characterization of analytically

linearizable actions. They demonstrated that a necessary and sufficient condition for the

representation

𝜌 ∶ 𝑔 → 𝐿analytic

to be locally analytically linearizable is the existence of an analytic vector field 𝑋, defined

in a neighborhood of 𝑝, vanishing at 𝑝, with the identity matrix as its Jacobian at 𝑝, and

commuting with all the vector fields in 𝑔.

This condition was elegantly recast in cohomological terms in [8]. They proved that

the first cohomology group 𝐻1(𝑔, 𝑉∗) acts as an obstruction to analytic linearization. For

semisimple 𝑔, 𝐻1(𝑔, 𝑉∗) vanishes for all representation spaces 𝑉, ensuring the possibility

of analytic linearization. On the other hand, for non-semisimple 𝑔, one can construct a

representation space 𝑉 such that 𝐻1(𝑔, 𝑉∗) ≠ 0, which precludes analytic linearization.

This result establishes the semisimple case as a natural candidate for analytic lin-

earization.

Guillemin and Sternberg [8] and Kushnirenko [9] proved the following.

Theorem 3.1 (Guillemin-Sternberg, Kushnirenko). The representation 𝜌 ∶ 𝔤 ,→ 𝐿𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐
with 𝔤 semisimple is locally equivalent, via an analytic diffeomorphism, to a linear repre-

sentation of 𝔤 in a neighbourhood of a fixed point for 𝜌.
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As an application of theorem 2.1: When the representation is done by Hamiltonian

vector fields (locally symplectic), the analytic diffeomorphism that gives the equivalence

of the initial representation to the linear representation can be chosen to take the initial

symplectic form to the Darboux one. Namely,

Corollary 3.2. Let 𝔤 be a semisimple Lie algebra and let (𝑀, 𝜔) be a (real or complex) analytic

symplectic manifold. Let 𝜌 ∶ 𝔤 ,→ 𝐿𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 be a representation by analytic symplectic vector

fields. Then there exist local analytic coordinates (𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛) in a neighbourhood of a

fixed point 𝑝 for 𝜌 such that 𝜌 is a linear representation and 𝜔 can be written as,

𝜔 =
𝑛∑

𝑖=1
𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖.

4 Non-linearizable semisimple smooth actions

4.1 The counterexample of Cairns and Ghys

In this section we recall the results of Cairns and Ghys concerning a 𝐶∞-action of 𝑆𝐿(2,ℝ)

on ℝ3 which is not linearizable. All results mentioned in this section are contained in

section 8 of [2].

Consider the basis {𝑋, 𝑌, 𝑍} of 𝔰𝔩(2,ℝ) satisfying the relations:

[𝑋, 𝑌] = −𝑍, [𝑍, 𝑋] = 𝑌, [𝑍, 𝑌] = −𝑋

Now consider the representation on ℝ3 defined on this basis as:

𝜌(𝑋) = 𝑦 𝜕
𝜕𝑧
+ 𝑧 𝜕

𝜕𝑦

𝜌(𝑌) = 𝑥 𝜕
𝜕𝑧
+ 𝑧 𝜕

𝜕𝑥

𝜌(𝑍) = 𝑥 𝜕
𝜕𝑦
− 𝑦 𝜕

𝜕𝑥

(4.1)

The orbits of this action are the level sets of the quadratic form 𝑄 = 𝑥2 + 𝑦2 − 𝑧2 =

𝑟2 − 𝑧2 (where 𝑟2 = 𝑥2 + 𝑦2). These level sets are non-degenerate quadrics: one-sheeted

hyperboloids for 𝑄 > 0, two-sheeted hyperboloids for 𝑄 < 0, and a quadratic cone for

𝑄 = 0.
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Introduce the radial vector field

𝑅 = 𝑥 𝜕
𝜕𝑥 + 𝑦 𝜕

𝜕𝑦 + 𝑧 𝜕
𝜕𝑧 ,

and perturb 𝜌 by setting
𝑋 = 𝜌(𝑋) + 𝑓 𝑅 ,

𝑌 = 𝜌(𝑌) + 𝑔 𝑅 ,

𝑍 = 𝜌(𝑍) ,

(4.2)

where

𝑓(𝑥, 𝑦, 𝑧) = 𝑥 𝐴
(
𝑧,
√
𝑥2 + 𝑦2

)
, 𝑔(𝑥, 𝑦, 𝑧) = −𝑦 𝐴

(
𝑧,
√
𝑥2 + 𝑦2

)
,

and

𝐴(𝑧, 𝑟) =
𝑎
(
𝑟2 − 𝑧2

)

𝑟2 ,

with 𝑎∶ ℝ → ℝ any 𝐶∞–function which vanishes for 𝑟2 − 𝑧2 ≤ 0 and is bounded.

By [2], the fields 𝑋,𝑌, 𝑍 still close under the Lie bracket to an 𝔰𝔩(2,ℝ)–algebra and are

complete. Hence they integrate to an action 𝜌̂ of the universal cover of 𝑆𝐿(2,ℝ), which

descends to 𝑆𝐿(2,ℝ) itself since 𝑍 = 𝜌(𝑍) is unchanged. Moreover:

• On the “hyperbolic region” {𝑥2 + 𝑦2 > 𝑧2}, one has 𝑎(𝑟2 − 𝑧2) ≠ 0 and {𝑋, 𝑌, 𝑍} are

linearly independent, so 𝜌̂–orbits are 3-dimensional.

• On and inside the “cone” {𝑥2 + 𝑦2 ≤ 𝑧2}, one has 𝑎(𝑟2 − 𝑧2) = 0 so 𝑋 = 𝜌(𝑋), 𝑌 = 𝜌(𝑌),

and 𝜌̂ coincides with the linear action.

Since the original linear action never has 3-dimensional orbits, 𝜌̂ cannot be conjugate to

it. Therefore, the deformed action is not linearizable.

4.2 The counterexample of Guillemin and Sternberg

The construction of Guillemin and Sternberg [8] follows the guidelines outlined below. It

is quite similar to the counterexample of Grant and Cairns; however, the key difference

Arnold Mathematical Journal, Vol.11(4), 2025 188

http://dx.doi.org/10.56994/ARMJ


On symplectic linearizable actions

is that the vector field the perturbation does not preserve 𝑍, so it cannot be guaranteed

that it lifts to 𝑆𝐿(2,ℝ).

If we perturb the initial action of 𝔰𝔩(2,ℝ) to the non-linear action:

𝜌̂(𝑋) = 𝜌(𝑋) + 𝑥𝑧
𝑟2 𝑔(𝑟

2 − 𝑧2)𝑅,

𝜌̂(𝑌) = 𝜌(𝑌) − 𝑦𝑧
𝑟2 𝑔(𝑟

2 − 𝑧2)𝑅,

𝜌̂(𝑍) = 𝜌(𝑍) + 𝑔(𝑟2 − 𝑧2)𝑅,

where 𝑅 = 𝑥 𝜕
𝜕𝑥
+ 𝑦 𝜕

𝜕𝑦
+ 𝑧 𝜕

𝜕𝑧
is the radial vector field, and 𝑔 ∈ 𝐶∞(ℝ) is such that 𝑔(𝑥) > 0 if

𝑥 > 0, and 𝑔(𝑥) = 0 if 𝑥 ≤ 0.

Inside the cone 𝑟2−𝑧2, the two sets of vector fields are identical. However, if we choose

𝑔(𝑢) = 𝑒−1∕𝑢2 , 𝑢 > 0, and 𝑔(𝑢) = 0, 𝑢 ≤ 0, for example, then outside the cone 𝑟2 − 𝑧2 = 0, the

vector field 𝜌(𝑋) = 𝑥 𝜕
𝜕𝑦
−𝑦 𝜕

𝜕𝑥
has closed circular orbits, while the corresponding deformed

vector field 𝜌̂(𝑋) has orbits that spiral outward.

Therefore, it is impossible to find a 𝐶∞-mapping defined in a neighborhood of the

origin. Hence, 𝜌 is not linearizable.

4.3 A Hamiltonian counterexample

We construct a counterexample to 𝐶∞–linearization under the hypothesis that the action

is Hamiltonian, thereby giving a negative answer to a question of Eliasson [5]. We keep

the notation of the Cairns–Ghys construction from Section 4.1.

Proposition 4.1. Let 𝛼 be the 𝑆𝐿(2,ℝ)–action on ℝ3 generated by

𝑋 = 𝜌(𝑋) + 𝑓𝑅, 𝑌 = 𝜌(𝑌) + 𝑔𝑅, 𝑍 = 𝜌(𝑍),

where 𝑅 = 𝑥 𝜕𝑥 + 𝑦 𝜕𝑦 + 𝑧 𝜕𝑧 and

𝑓 = 𝑥𝐴
(
𝑧,
√
𝑥2 + 𝑦2

)
, 𝑔 = −𝑦 𝐴

(
𝑧,
√
𝑥2 + 𝑦2

)
, 𝐴(𝑧, 𝑟) = 𝑎(𝑟2 − 𝑧2)

𝑟2 ,

with 𝑎 ∶ ℝ → ℝ smooth, bounded, and vanishing on ℝ−. Let 𝛼̂ be the cotangent lift of 𝛼 to

𝑇∗(ℝ3). Then 𝛼̂ is Hamiltonian and not 𝐶∞–linearizable in a neighbourhood of the origin.
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Proof. For a diffeomorphism 𝑔 ∶ 𝑀 → 𝑀, the cotangent lift is

𝑔(𝑞, 𝑝) =
(
𝑔(𝑞), (𝑑𝑔−1𝑞 )∗𝑝

)
,

so

𝜋◦𝑔 = 𝑔◦𝜋 and 𝑔(𝑞, 0) = (𝑔(𝑞), 0). (4.3)

Thus fibres map to fibres and the zero section is preserved by every cotangent lift. In

particular, with

𝐹 ∶= 𝜋−1(0) = {𝑥 = 𝑦 = 𝑧 = 0}, 𝑍 ∶= {𝑎 = 𝑏 = 𝑐 = 0}, 𝑂 ∶= (0, 0, 0; 0, 0, 0),

both 𝐹 and 𝑍 are invariant for the lifted linear action and for the lifted Cairns–Ghys

action (note that 0 is fixed in the base, since 𝜌 is linear and 𝑓𝑅, 𝑔𝑅 vanish at 0).

Let 𝛼(1) denote the linear part of 𝛼 and 𝛼̂(1) its cotangent lift. The latter is Hamiltonian

for 𝜔 = 𝑑𝜃 (𝜃 = 𝑎 𝑑𝑥 + 𝑏 𝑑𝑦 + 𝑐 𝑑𝑧), with moment map

𝜇 = (𝑧𝑏 + 𝑐𝑦, 𝑎𝑧 + 𝑐𝑥, −𝑎𝑦 + 𝑏𝑥) ∈ 𝔰𝔩(2,ℝ)∗,

whose Jacobian is

𝐷𝜇 =

⎛
⎜
⎜
⎜
⎝

0 𝑐 𝑏 0 𝑧 𝑦

𝑐 0 𝑎 𝑧 0 𝑥

𝑏 −𝑎 0 −𝑦 𝑥 0

⎞
⎟
⎟
⎟
⎠

.

For Hamiltonian actions one has dim(𝐺⋅𝑚) = rank 𝑑𝜇𝑚 (see, for instance, [7, §26]). A direct

computation shows that

rank𝐷𝜇 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, 𝑝 = 𝑂,

2, (𝑥, 𝑦, 𝑧) × (−𝑎,−𝑏, 𝑐) = 0, 𝑝 ≠ 𝑂,

3, otherwise.

Equivalently, the rank drops to 2 precisely when (𝑥, 𝑦, 𝑧) is collinear with (−𝑎,−𝑏, 𝑐), a locus
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containing 𝐹 = {𝑥 = 𝑦 = 𝑧 = 0} and 𝑍 = {𝑎 = 𝑏 = 𝑐 = 0} but strictly larger. Consequently,

dim𝒪𝛼̂(1)(𝑝) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, 𝑝 = 𝑂,

2, (𝑥, 𝑦, 𝑧) × (−𝑎,−𝑏, 𝑐) = 0, 𝑝 ≠ 𝑂,

3, otherwise,

(4.4)

and, in particular, dim𝒪𝛼̂(1)(𝑞, 0) = 2 for all 𝑞 ≠ 0.

For any lifted action, the fundamental vector fields satisfy

𝜉𝑋(𝑞, 𝑝) =
(
𝜉𝑋(𝑞), −𝑝◦𝑑𝜉𝑋(𝑞)

)
. (4.5)

Hence along 𝑍 one has 𝜉𝑋(𝑞, 0) = (𝜉𝑋(𝑞), 0), so every orbit starting in 𝑍 stays in 𝑍. Con-

versely, no orbit through a point (𝑞, 𝑝) ∉ 𝑍 can be contained in 𝑍, since it already contains

(𝑞, 𝑝) ∉ 𝑍. Thus, near 𝑂, the orbits contained in 𝑍 are exactly those starting in 𝑍. Moreover,

from (4.5) we read off

dim𝒪𝛼̂(𝑞, 0) = dim𝒪𝛼(𝑞).

By [2, §8] there exist points 𝑞 → 0 in the base with 3–dimensional 𝛼–orbits. For such 𝑞,

put 𝑝 = (𝑞, 0) ∈ 𝑍 ⧵ {𝑂}. Then

dim𝒪𝛼̂(𝑞, 0) = dim𝒪𝛼(𝑞) = 3. (4.6)

Assume, for contradiction, that there exists a germ Φ ∶ (𝑇∗𝑀,𝑂) → (𝑇∗𝑀,𝑂) with Φ◦𝛼̂(1) =

𝛼̂◦Φ. Conjugacy carries orbits diffeomorphically to orbits, preserving their dimension.

Since, near 𝑂, the orbits contained in 𝑍 are precisely those starting in 𝑍 for both lifted

actions, necessarily Φ(𝑍) = 𝑍 and Φ(𝐹) = 𝐹. Hence Φ−1(𝑝) ∈ 𝑍 ⧵ {𝑂}, so by (4.4)

dim𝒪𝛼̂(1)(Φ−1(𝑝)
)
= 2,

whereas by (4.6) dim𝒪𝛼̂(𝑝) = 3, a contradiction. Therefore, 𝛼̂ is not 𝐶∞–linearizable near

the zero section.

Remark 4.2. We can employ the same strategy, adopting the counterexample by Guillemin

and Sternberg in the process.
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Consider the Lie algebra action of 𝔰𝔩(2,ℝ), denoted by 𝜌, on ℝ3, generated by the vector

fields:

𝜌̂(𝑋) = 𝜌(𝑋) + 𝑥𝑧
𝑟2 𝑔(𝑟

2 − 𝑧2)𝑅,

𝜌̂(𝑌) = 𝜌(𝑌) − 𝑦𝑧
𝑟2 𝑔(𝑟

2 − 𝑧2)𝑅,

𝜌̂(𝑍) = 𝜌(𝑍) + 𝑔(𝑟2 − 𝑧2)𝑅,

where 𝑅 = 𝑥 𝜕
𝜕𝑥
+ 𝑦 𝜕

𝜕𝑦
+ 𝑧 𝜕

𝜕𝑧
is the radial vector field, and 𝑔 ∈ 𝐶∞(ℝ) satisfies 𝑔(𝑢) = 𝑒−1∕𝑢2

for 𝑢 > 0 and 𝑔(𝑢) = 0 for 𝑢 ≤ 0.

Using similar guidelines to those of Guillemin and Sternberg in [8], we can verify that

the lifted action to 𝑇∗(ℝ3) is not 𝐶∞-linearizable.

The lift of the action can be computed using the Liouville one-form. Let 𝜃 = 𝑎 𝑑𝑥 +

𝑏 𝑑𝑦 + 𝑐 𝑑𝑧. Then, the lift of the non-perturbed vector field is a Hamiltonian vector field

with the Hamiltonian function

𝑓 = −𝑎𝑦 + 𝑏𝑥,

and the lifted vector field of the perturbed system is the Hamiltonian vector field with

respect to the function

𝑓′ = −𝑎𝑦 + 𝑏𝑥 + 𝑔(𝑟2 − 𝑧2)(𝑎𝑥 + 𝑏𝑦).

The Hamiltonian vector field of 𝑓 is given by:

𝑥 𝜕
𝜕𝑦 − 𝑦 𝜕

𝜕𝑥 + 𝑎 𝜕
𝜕𝑏 − 𝑏 𝜕

𝜕𝑎 ,

and it exhibits periodic orbits. In contrast, the corresponding deformed vector field,

the Hamiltonian vector field of 𝑓′, has orbits that spiral outward.
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4.4 The case of semisimple Lie algebras of compact type

When the Lie algebra action is of compact type, it can be integrated into an action of a

compact Lie group 𝐺 (see [6] for a proof, which is based on the use of algebroids).

Given a fixed point for the action 𝑝, we can associate a linear action of the group

in a neighbourhood of 𝑝, with the group action preserving the symplectic structure

(which we can assume to be in Darboux coordinates). Applying the equivariant Darboux

theorem [3], we obtain a diffeomorphism 𝜙 that linearizes the group action 𝐺 in Darboux

coordinates. By differentiation, this provides the linearization of the Lie algebra action 𝜌.
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