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Abstract: Pre-geodesics of an affine connection are the curves that are
geodesics after a reparametrization (the analogous concept in Kahler geome-
try is known as J-planar curves). Similarly, dual-geodesics on a Riemannian
manifold are curves along which the 1-forms associated to the velocity are
preserved after a reparametrization.

Superintegrable systems are Hamiltonian systems with a large number
of independent constants of the motion. They are said to be second order
if the constants of the motion can be chosen to be quadratic polynomials in
the momenta. Famous examples include the Kepler-Coulomb system and the

isotropic harmonic oscillator.
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Dual-projective equivalence and superintegrability

We show that certain torsion-free affine connections which are naturally
associated to certain second order superintegrable systems share the same

dual-geodesics.
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1 Introduction

We consider geometric structures (more precisely, certain affine connections) that natu-
rally appear in the context of certain second order (maximally) superintegrable Hamil-
tonian systems. Such systems include famous models from mathematical physics, such
as the Kepler-Coulomb system, the isotropic harmonic oscillator or the Smorodinski-
Winternitz system. We obtain that the aforementioned geometric structures are dual-
projectively equivalent, a concept which has been introduced in the context of statistical
manifolds, Weylian structures and affine hypersurfaces.

Let (M, g) be a Riemannian (smooth) manifold. Assume that, fore > 0,y : (—¢,e) > M
is a (smooth) curve on M with tangent (velocity) vector field y. We denote the 1-form
associated to y (by virtue of g) by j°. Here, b : (M) — Q'(M) denotes the usual musical
isomorphism induced by g. Similarly, we denote by # : Q!(M) — %(M) the musical

isomorphism induced by g~!, when the underlying metric is clear.

Definition 1 ([Iva95]). A curve y on M is called dual-geodesic for an affine connection V if
V7' =q®)7",

where q : (—¢,e) — R. In particular, we say that y is an affinely parametrized dual-geodesic

for v, if
V7' =o0.

If V is the Levi-Civita connection of the (Riemannian) metric g, then we also say that a curve

is dual-geodesic for g, if it is dual-geodesic for V.
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It is well-known that for every dual-geodesic curve, there exists an affine parametriza-
tion, see [Iva95, Prop. 2.1]. In this reference, dual-geodesics are introduced as a tool for
the study of semi-conjugate connections and affine hypersurface immersions, and we
refer the interested reader there for more detailed information on this perspective. Here,
we mention only the following fact, which we need later: Let p € M and w € T,M. Then
there exists a (unique up to reparametrization and for sufficiently small € > 0) dual-geodesic

curvey : (—¢,e) — M, y(0) = p with y(0) = w, see [Iva95, Prop. 2.2] .

Definition 2 ([Iva95]). Two connections are called dual-projectively equivalent, if they

share the same dual-geodesic curves.

Dual-geodesics and dual-projectively equivalent connections have been discussed,
for instance, in [Iva95, Mat10], where they have been related to affine hypersurfaces,
statistical manifolds and Weylian structures. The purpose of this paper is to demonstrate
that dual-projectively equivalent connections naturally arise in the context of second
order superintegrable Hamiltonian systems. Let (M, g) be a simply connected (connected)
Riemannian manifold and denote its Levi-Civita connection by V. Then T*M carries a
natural symplectic structure w induced by the tautological 1-form. We consider a natural

Hamiltonian H : T*M - R,

H(x,p) =g;'(p,p) +V(x),

where (x, p) are canonical Darboux coordinates on T*M. For a function f : T*M - R,
we denote by X, the Hamiltonian vector field with respect to the natural symplectic
structure, i.e. ix,@ = df.

Definition 3. A (maximally) superintegrable system is given by a Hamiltonian H together
with 2n — 2 functions F'™ : T*M — R, such that (H,FW, ..., F?"=2) are functionally inde-
pendent, and such that Xy (F'™) = 0 for all 1 < m < 2n — 2. We say that a superintegrable

system is second order if the functions F™ are quadratic polynomials in the momenta, i.e.

n
F(x,p)= 2 K (Opipj + WM (x).
ij=1
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For the integrals of motion in a second order superintegrable system, it is easy to
check that (omitting the subscript (m) for brevity) the tensor field Y g,;g,, K’ dx' ® dx/ is
Killing, i.e. satisfies VxK(X,X) = 0 for all X € X(M). We write X for the R-linear space of
Killing tensors associated to a second order superintegrable system, meaning that there
is a function W on M such that F = K(pﬁ, pﬁ) + W is an integral of the motion for H, i.e.
Xy(F) =0.

Definition 4. We say that a second order superintegrable system is irreducible, if the linear
space generated by the endomorphisms K, K’ € X, form an irreducible set, i.e. do not share
a common eigenspace. For the sake of brevity, an irreducible second order superintegrable

system will simply be referred to as an irreducible system in the following.

It was proven in [KSV23] that, for an irreducible system, there exists a tensor field

T e F(Symi(T*M ) ® TM), trace-free in its covariant indices, such that
N 1
VIV =TdV) + —gAvV, 1

where T depends on X only, and where A denotes the Laplace-Beltrami operator. In
general, the tensor 7 is not unique, but here we confine ourselves to systems for which 7
is unique. Specifically, we consider non-degenerate second order superintegrable systems.
These are irreducible systems with a (n + 2)-parameter family of potentials (see Section 2
for a precise definition). The main results are Theorems 1 and 2 in Section 3, which show
that three affine connections, which are naturally defined for non-degenerate systems,

are dual-projectively equivalent:

(A) the induced connection V& + T (“induced connections”),

(B) the corresponding connection that endows the space with the information-geometric
structure of a statistical manifold,

(C) the connections that naturally arise when one restricts to an (n + 1)-dimensional

subspace of potentials (to be explained later).

These connections can also be found in [KSV23, KSV24, CV25, Vol25b, NV24], for exam-

ple. Before we prove these dual-projective equivalences, we review some facts about
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irreducible second order superintegrable Hamiltonian systems.

2 Irreducible second order superintegrable systems

Two specific kinds of irreducible systems are going to play a crucial role in the following,
namely non-degenerate and (generalised) semi-degenerate systems. These are introduced
in the following two subsections. The terminology goes back to the foundational work
by Kalnins and coworkers, cf. [KKM]18, KKM05a, KKMO05b, KKMO05¢c, KKM06a, KKMO6b]

and the references therein. For semi-degenerate systems, we also mention [ER]J17].

2.1 Non-degenerate systems

Non-degenerate systems are quadruples (M, g, X, V) such that (M, g) is as before, X is a
linear space of Killing tensors (of dimension 2n—1 or larger, with g € X) and V c €*(M) is
a linear subspace (of dimension n + 2), such that the space of endomorphisms associated
to X is irreducible, and d(K(dV)) =0 for all V € ¥ and K € End(TM) with K* € X. Such a
system satisfies (1), which then implies the (closed) prolongation system (V denotes the

Levi-Civita connection of g, and A its Laplace-Beltrami operator)

V2V =T(dV) + %AVg

VAV = §(dV) + (tr(T) — g)AV
where g(X,Y) = g(d(X),Y) and §(X) = try(V.1(-, X)) + Z(X) — Ric (X) with g(Ric}(X), Y) =
Ric®(X,Y). Also, we introduce .7 € End(TM) via 7 (X) = trg(9(X, -, -)), where O : X(M)? -

X(M),
0X,Y,Z)(a) = TX, YX(T(Z)(a)),

forX,Y,Z € ¥(M), a € Q'(M), where T(Z)(«) is the 1-form T(-, Z)(«). For a non-degenerate

system, we define the induced connections by
vil = v T, 2)
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which is torsion-free and Ricci-symmetric, see [Vol25b]. For simplicity, we abbreviate
vl = v+T, Following [KSV23], we furthermore introduce the totally symmetric and
tracefree tensor field S € F(Symi(T*M)) and the 1-form ¢t € Q'(M) by setting S = 7 and

t = ——tr(T), such that
(n—-1)(n+2)

TX,Y,Z)=SX,Y,Z)+t(X)g(Y,2) + t(Y)g(X,Z) + t(Z)g(X,Y),
where T := 7’ and where X, Y, Z € X(M). Next, for dimension n > 3, we let
Z2=.—(m=2)S{t)+t®t)— Ric’, 3)

where .7(X,Y) = trg( S(X,)(S(-,Y)) ). It is shown in [KSV23] that, if n > 3 and if the

underlying manifold is of constant sectional curvature, then
Z =V 4)
for a function ¢ € ¢*(M). We can hence introduce the totally symmetric tensor field

+2
_/-'=T+nTg®t+ Hsymg®d§.

_
2(n—2)
which is then also a Codazzi tensor, c.f. [KSV23]. Note that the definition of f relies on
the assumption of having a space of constant sectional curvature. For later use, we also
introduce ¢ = rg~! and V¥ = V £ £ (and V/ = V¥),

Relaxing the curvature assumptions again, we introduce, for a non-degenerate system

in dimension n > 2, the totally symmetric tensor field

n+2
n

B=T+

gRt,
as well as the connections
Vi .= vzB (VB=V+B)

where B = Bg~!, c.f. [KSV23]. We remark that for so-called abundant systems, the connec-
tions V¥ and V*3, respectively, coincide up to a suitable gauge choice of ¢{. An abundant

system is a non-degenerate system with %n(n +1) linearly independent, compatible Killing
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tensor fields. Note the non-trivial freedom for choosing the function ¢, satisfying (4). This
gauge freedom is thoroughly discussed in [KSV23]. If n > 3 and g has constant sectional
curvature, [KSV23] shows that one can choose ¢ = 0 without changing the data of S and ¢,

i.e. without modifying the structure tensor 7.

2.2 Semi-degenerate systems

Generalized semi-degenerate systems, or (n + 1)-parameter systems, are quadruples
(M, g, X, V)such that (M, g) is as before, X is a linear space of Killing tensors (of dimension
2n—1 or larger, with g € X) and V c €*(M) is a linear subspace (of dimension n + 1), such
that the space of endomorphisms associated to X is irreducible, and d(K(dV)) = 0 for all
vV € vV and K € End(TM) with K’ € X. Moreover, we require that in addition to (1), an
equation of the form

AV =3(dV) (5)

holds, for some § € X(M) that is determined by X, and where A is the Laplace-Beltrami
operator of the Levi-Civita connection V of g. For the generalized semi-degenerate system
subject to (5) we therefore have

V2V = D(@dV),

where we introduce the tensor field b = T + %g ® § € T(Sym*(T*M) ® TM). Note that T
depends on the space X only. We also introduce D = D’ e I(Sym*(T*M) @ T*M) for later
use.

We say that a generalized semi-degenerate system, is weak, if there is V' > V such that
(M,g, X, V") is non-degenerate. Otherwise, we call it a strong semi-degenerate system.

For a (weak or strong) semi-degenerate system, we define the induced connection by
v :=vzD

(again abbreviating V2 = v*P). It is shown in [Vol25b] that V? is torsion-free, Ricci-
symmetric and projectively flat (the reference only discusses the case of strong semi-

degeneracy, but it is easy to extend this result to generalized semi-degenerate systems).
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We also introduce the tensor field, c.f. [NV24],

N(X,Y,Z) := % (2D(X,Y,Z)-D(X,Z,Y) - D(Y, Z,X))

+

3 (28X, Y)d(Z) — g(X, 2)a(Y) — g(¥, Z)d(X))
(n—-1)

where d = (n+2)t —s. It is shown in [NV24] that N = 0 characterizes precisely the situation
of a generalized semi-degenerate system that is weak (i.e. it is strong if N does not vanish).

This means, in the case N = 0, that

~

T=D--g®35

S|

satisfies the conditions of a non-degenerate structure tensor. For later use, and to keep

the notation clean, we introduce the 1-form s € Q'(M), s = §°.

3 Proof of the main results

In this section, we show the dual-geodesic equivalence of the connections (A)-(C). All of
these connections are torsion-free. Indeed, denoting the Levi-Civita connection of g by V,
the torsion-freeness of V + T follows immediately from the symmetries of 7, cf. [Vol25b].
The torsion-freeness of V + B follows immediately from the total symmetry of B°. In the
semi-degenerate case, the torsion-freeness of the connections V + D follows similarly.
Before we proceed to the actual proof, we review some results from the literature

that are going to be useful later.

Lemma 1 (Prop. 2.3 of [Iva95]). Let (M, g) be a pseudo-Riemannian manifold. Then two
torsion-free affine connections V, V' are dual-projectively equivalent if and only if there is a
1-form a € Q'(M) such that

VLY = VxY +afg(X,Y) (6)
for any vector fields X, Y € X(M).

Torsion-freeness is a necessary requirement for (6), and in the presence of torsion coun-

terexamples can easily be found.
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For later use, we also introduce the concept of semi-compatibility for pairs (V’, h)

consisting of an affine connection V' and a metric h.

Definition 5 ([Iva95]). The pair (V’, h) is said to be semi-compatible (via a), if there exists

a 1-form «a such that
Vi (Y, Z) = Vih(X,Z) = a(Y)h(X, Z) — a(X)h(Y, Z)

forany X,Y,Z € X(M). The pair (V', h) is called compatible, if it is semi-compatible via

a=0.

We begin our investigation with the dual-projective equivalence of the connections (A)
and (B). To this end, consider a non-degenerate system on (M, g) with structure tensor T
as before. Observe that the induced connection V7 and the structural connection V2 are

dual-projectively equivalent.

Theorem 1. (i) The connections VI and V? share the same dual-geodesics.
(ii) For a non-degenerate system with induced connection V', there is a unique dual-

projectively equivalent connection V* such that (V*,g) is compatible. In fact, V* = V5.

The analogous statements hold, if we replace V? and V2 by V-7 and V-3, respectively. We
comment that the following proof also shows that T = 0, if VI = V*. This latter condition

holds for the so-called non-degenerate harmonic oscillator system [KSV23].

Proof. We denote the Levi-Civita connection of g by V&. We have VI —V8 = V8 —T— V848 =

B —T. Using the musical isomorphisms, we then compute

n

(B—T)X.Y.Z) = : 2 {(D)e(X,Y)

and conclude V7 — v& = 2 g ® t*. This proves the first claim. We next consider the
n

connections that are dual-projectively equivalent to V7. They are of the form, 8 € Q'(M),
ViY = VEY + BFg(X, V).
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A short computation shows that

Vig(Y,2) - V,,g(X,2) = a(Y)g(X, Z) — a(X)g(Y, 2)

with the 1-form « = 22¢ — B. The connection V* therefore is compatible with g if and
n

onlyif g = "T”t. We conclude

*v _ ol
VXY—VXY+ n

_ b
gX,Y)=VEiy.
O

Remark 1. We remark that an analogous computation shows VQg(Y, Z)— Vﬁyg(X ,Z)=0,
alongside Vf(g(Y, Z)— V?,g(X ,Z) = 0. However, the connections V' and VB are, in general,

different, as

s 5 1
g(V —vVB) = =D Mgymg ® dS.

We infer that the connections V* and V? coincide precisely if d. = 0. Note that the vanishing

of d¢ implies Z = 0.

We now turn our attention to the dual-projective equivalence of the connections (A)

and (C), i.e. we now consider systems with (n+1)-parameter potential. Again, we focus
on V2 = v+ for conciseness, as the discussion for V-2 is analogous. We introduce the
connection
vi=vD %sﬁ g
which is clearly dual-projectively equivalent to V2. We characterize weak semi-degeneracy
via V2.
Theorem 2. (i) Consider a weak semi-degenerate system with induced connection V2.
Assume that the induced connection of the naturally associated non-degenerate system is
V7. Then V2 and VT share the same dual-geodesics.

(ii) Consider a (generalized) semi-degenerate system with induced connection V2 and

semi-degeneracy 1-form s. Then (V2, g) are semi-compatible via

f=1G-(+2)0),

if and only if the system is a weak semi-degenerate system.

Arnold Mathematical Journal, Vol.11(4), 2025 107


http://dx.doi.org/10.56994/ARMJ

Andreas Vollmer

The analogous statements hold, if we replace V7 and V2 by V-7 and V-2, respectively.

Proof. We have VT = V', and hence V7’ and V? are dual-projectively equivalent, complet-

ing the first part of the theorem. For the second part, we first compute

VPe(Y,7) - VDg(X,2) = N(Y,Z,X) - N(X,Z,Y)

+ % (5(X) — (n+2)t(X)) (Y, 2)

-~ % (s(Y) = (n+2)1(Y)) g(X, 2)
= BCOR(Y, Z) — B(Y)g(X, Z) 7

where the exclamation point indicates the requirement that (V?, g) be semi-compatible
via s.

Part “=”: Inserting the formula for g into (7), we obtain the condition
N(Y,Z,X)=NX,Z,Y).

It follows that N = 0 and, invoking [NV24], we thus obtain the claim.
Part “<”: If the system is weakly semi-degenerate, then N = 0, due to [NV24]. We

immediately find that the condition at the exclamation point holds, if 3 is as claimed. U

4 Conclusion

We have seen here that certain affine connections that naturally appear in the theory
of irreducible superintegrable systems are dual-projectively equivalent. In particular,
the theorems stated in this paper imply that extendability (weak semi-degeneracy) for
a (n + 1)-parameter system is linked to the semi-compatibility (with the metric g) of its
induced connection V2. Weak semi-degeneracy in turn implies that there is a naturally
associated non-degenerate system whose induced connection V7 is dual-projectively
equivalent to V2. In this case there is also a connection V2 that is compatible with g and

dual-projectively equivalent to V2. The observed occurrence of dual-projective geometry
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is natural and linked to the underlying Weylian structure. The underlying Weylian

structure was discussed in [Vol25a]. Note that, by a direct computation,

vlg(Y,2) - ”T” {(X)g(Y, Z) € T(Sym>(T*M))

is totally symmetric. According to [Mat10], it was shown in [Mat07] that this implies the

existence of a Weylian connection.
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