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Abstract: We introduce a new class of billiard-like system, “bouncing outer

billiards", which are 3-dimensional cousins of outer billiards of Neumann

and Moser. We prove that the bouncing outer billiards system on a smooth

convex body has at least four 1-parameter families of fixed points. We also

fully describe the dynamics of bouncing outer billiards on a line segment.

Finally, we carry out numerical experiments suggesting very complicated

(non-ergodic) behavior for several shapes, including the square and an ellipse.
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1 Introduction

Outer billiards are dynamical systems introduced by Neumann in 1959 [Neu58] and

then popularized by Moser in his lecture on stability of the solar system [Mos73, Mos78].
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Figure 1: Bouncing Outer Billiards Dynamics

The field of outer billiards became very active about 20 years ago. In this paper, we

suggest similar more complicated billiard systems called bouncing outer billiards, which

we proceed to define.

Let 𝑆 ⊂ ℝ2 be a compact convex set with smooth boundary. The visibility domain 𝑉𝑆
consists of all pairs (𝑝, 𝑣) where 𝑝 ∈ ℝ2 ⧵ 𝑖𝑛𝑡(𝑆), and 𝑣 ∈ 𝑇1𝑝ℝ2 is a unit vector based at 𝑝

such that the ray 𝑅 spanned by 𝑣 has a nonempty intersection with 𝑆.

We now define the dynamical system 𝐹𝑆 ∶ 𝑉𝑆 → 𝑉𝑆 in the following way. Given an

initial condition (𝑝, 𝑣) ∈ 𝑉𝑆 the corresponding ray 𝑅 reflects off the convex body at a point

𝑤 as 𝑅′ in the usual way — the angle of incidence equals the angle of reflection. Next we

apply the outer billiard law and consider the point 𝑝′ ∈ ⃖⃗𝑅′ such that ‖𝑝 −𝑤‖ = ‖𝑝′ −𝑤‖ as

indicated in Figure 1.

Finally, we will use the visibility angle reflection rule as follows. Let ⃖⃗𝐻 and ⃖⃗𝐾 be the

rays at 𝑝′ which are tangent to 𝑆. Let 𝑢 be the unit vector based at 𝑝′ pointing to 𝑤 (in the
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direction opposite to 𝑅′). Clearly, 𝑢 is inside the angle defined by ⃖⃗𝐻 and ⃖⃗𝐾. Let 𝑣′ be the

reflection of 𝑢 across the angle bisector of ∠(⃖⃗𝐻, ⃖⃗𝐾) as shown on Figure 1. This completes

the definition of bouncing billiard dynamics.

𝐹𝑆(𝑝, 𝑣) = (𝑝′, 𝑣′).

We will drop the subscript 𝑆 and simply write 𝐹 when no confusion is possible.

Remark 1.1. It is easy to see that if 𝑅 is tangent to 𝑆 then we have the classical outer billiard

dynamics. Hence, the outer billiard is simply the restriction 𝐹|𝜕𝑉𝑆 of the bouncing outer

billiard to the boundary of the visibility space.

Remark 1.2 If 𝑆 is not smooth, e.g. a polygon, then the angle reflection law is undefined

for some initial conditions. However, such initial conditions form a set of zero Lebesgue

measure since the boundary of a convex body is differentiable almost everywhere. Hence,

bouncing billiard dynamics still makes sense for almost every initial condition, but the

above relation to outer billiard is obscured.

Remark 1.3 S. Tabachnikov considered unfolding the outer billiard map into a family of

symplectomorphisms given by the first two steps in the definition of the bouncing outer

billiard [Tab95]. However, to the best of our knowledge, the visibility angle reflection rule

was not considered before.

In the next section, we establish the existence of families of fixed points for bouncing

outer billiards. Then, we fully describe integrable twist map dynamics of bouncing outer

billiards on a line segment. Finally, we present results of our numerical explorations in

the last section.

We would like to pose two questions.

Question 1.2. Does every orbit of the bouncing outer billiard on a smooth convex body

remain bounded?

We were not able to detect any unbounded orbits numerically.
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It is easy to check that bouncing outer billiards are conservative, that is, they preserve

the Lebesgue measure on 𝑉𝑆 (see Appendix A).

Question 1.3. Does there exist positive volume ergodic components?

We have found some orbits which appear to fill up 2-dimensional sets. However, in

the 3-dimensional space 𝑉𝑆, such orbits seem to be confined to 2-dimensional surfaces.

Acknowledgements. This paper is a result of an REU project of summer 2024 at The

Ohio State University. The authors are very grateful to Sergei Tabachnikov who provided

several illuminating remarks on earlier drafts. The authors would like to acknowledge

the support provided by the NSF grant DMS-2247747.

2 Fixed points

A natural question for any dynamical system is whether or not there exist fixed points,

and if so, how to find them.

Theorem 2.1. For any convex 𝑆 with 𝐶3 boundary, the associated billiard map has uncount-

ably many fixed points, which come in at least four local 1-parameter families.

Clearly, a point (𝑝, 𝑣) can only be a fixed point if 𝑣 is the bisector of the angle formed

by the tangent rays from 𝑝 to 𝑆. Therefore, given a point 𝑝 ∉ 𝑆, consider the angle given

by the two tangent lines from 𝑝 to 𝑆 and let 𝑣𝑝 ∈ 𝑇𝑝ℝ2 be the vector spanning the angle

bisector. The idea of the proof is to find a curve connecting two points, say 𝑝 and 𝑞 such

that the ray of 𝑣𝑝 “bounces to the left” and the ray of 𝑣𝑞 “bounces to the right.” Then, by

the intermediate value theorem, there exists a fixed point (𝑟, 𝑣𝑟) on such a curve.

We note right away that if 𝜕𝑆 has a circle subarc with constant curvature, then there

is a whole 2-parameter family of fixed points in proximity of such arc. Hence we can

assume, due to 𝐶3 regularity of the boundary, that there exists a subarc of 𝜕𝑆 with strictly

increasing curvature, as well as a subarc with strictly decreasing curvature.

The following is our main lemma.
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Lemma 2.2. Let 𝑓∶ [𝑠0, 𝑠2] → 𝜕𝑆 be a counter-clockwise arc-length parameterization of

a subarc of 𝜕𝑆 along which the curvature is strictly increasing. Assume that this arc is

sufficiently short so that the tangent lines at 𝑓(𝑠0) and 𝑓(𝑠2) intersect at a point 𝑝 as indicated

on Figure 2.

Then the angle bisector ray spanned by 𝑣𝑝 will “bounce off in the direction of 𝑓(𝑠0)”, that

is, after reflecting off 𝑆, the ray will intersect the tangent segment 𝑎.

Proof. Let 𝑘(𝑠) be the curvature at 𝑓(𝑠), and let 𝐾(𝑠) = ∫ 𝑠𝑠0 𝑘(𝑡)𝑑𝑡. Since we are using arc-

length parameterization,𝐾(𝑠) is the angle between the tangent lines at 𝑓(𝑠0) and 𝑓(𝑠). There

is a unique 𝑠1 such that 𝐾(𝑠1) = 𝐾(𝑠2)∕2. Then the tangent line at 𝑓(𝑠1) is perpendicular to

𝑣𝑝. Hence, to prove the claim of the lemma it suffices to show that the distance from 𝑓(𝑠1)

to the tangent line 𝑏 is less than the distance from 𝑓(𝑠1) to the tangent line 𝑎. This can be

expressed by the following inequality:

∫
𝑠2

𝑠1
sin(𝐾(𝑠2) − 𝐾(𝑠))𝑑𝑠 < ∫

𝑠1

𝑠0
sin(𝐾(𝑠))𝑑𝑠 (∗)

To prove this inequality, we can start with the following statements by change of variables:

∫
𝑠2

𝑠1
sin(𝐾(𝑠2) − 𝐾(𝑠))𝑘(𝑠)𝑑𝑠 = ∫

𝐾(𝑠1)

0
𝑠𝑖𝑛(𝑢)𝑑𝑢

∫
𝑠1

𝑠0
sin(𝐾(𝑠))𝑘(𝑠)𝑑𝑠 = ∫

𝐾(𝑠1)

0
𝑠𝑖𝑛(𝑣)𝑑𝑣

This gives

∫
𝑠2

𝑠1
𝑘(𝑠) sin(𝐾(𝑠2) − 𝐾(𝑠))𝑑𝑠 = ∫

𝑠1

𝑠0
𝑘(𝑠) sin(𝐾(𝑠))𝑑𝑠

Since curvature 𝑘∶ [𝑠0, 𝑠2] → ℝ+ is increasing the posited inequality follows proving the

lemma.

Proof of Theorem 2.1. Consider a local minimum (or maximum) of the curvature of 𝜕𝑆.

(By the 4-vertex theorem at least four local extrema exist.) On one side there is a short

arc with increasing curvature and on the other side there is short arc with decreasing

curvature. Applying the above lemma to the first arc we obtain an initial condition (𝑝, 𝑣𝑝)
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Figure 2: Fixed Point Lemma Setup
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which “bounces to the left” and similarly, applying (the analogue of) the lemma to the

arc with increasing curvature we obtain an initial condition (𝑞, 𝑣𝑞) which “bounces to the

right.” It remains to connect 𝑝 and 𝑞 by an arc disjoint with 𝑆 an apply the intermediate

value theorem.

It is clear from the above proof that each vertex of 𝜕𝑆 yields a 1-parameter family

of fixed points. These families could merge away from 𝑆. We would like to pose the

following question.

Question 2.3. Let 𝑆 be a convex domain with 𝐶3 boundary. Does every closed curve around

it contain at least one fixed point of the bouncing outer billiard map on 𝑆?

S. Tabachnikov considered a question of very similar flavor and eventually found a

counterexample [Tab12].

3 Bouncing on a Line Segment

3.1 Parameterizing the Dynamics

This section focuses on the behavior of the bouncing outer billiards system on a line

segment. Since all segments are congruent up to scaling, we only consider the segment

on the 𝑥-axis from -1 to 1. For convenience, we will consider only initial points 𝑝 with

positive 𝑦-values, as points with negative 𝑦-values are symmetric.

Recall that we denote the visibility domain by 𝑉. Consider initial condition (𝑝, 𝑣) ∈ 𝑉,

where 𝑝 = (𝑥, 𝑦), and let 𝜃 = arg(𝑣) + 𝜋
2

. The initial conditions define a ray from the point

𝑝 with slope tan(𝜃 − 𝜋
2
). Using this equation, we can derive:

𝑤 = (𝑥 + 𝑦 tan(𝜃), 0)

𝑝′ = (𝑥′, 𝑦′) = (𝑥 + 2𝑦 tan(𝜃), 𝑦)
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Note that the 𝑦-coordinate of the initial point will remain constant on the orbit. From

this point forward, we will refer to the 𝑦-value of the initial point as height and denote it

by ℎ.

Next, we obtain that the angle from 𝑝′ to the left and right endpoints of the segment

are given by arctan
( 1−𝑥′

ℎ

)
and arctan

(−1−𝑥′
ℎ

)
, respectively. Also, the angle from 𝑝′ to 𝑤 is

given by −𝜃. Applying the visibility angle reflection rule yields:

𝜃′ = arctan (1 − 𝑥′
ℎ ) + 𝜃 + arctan (−1 − 𝑥′

ℎ )

Summing up, the dynamics, 𝐹(𝑥, ℎ, 𝜃) = (𝑥′, ℎ, 𝜃′) is given by:

𝑥′ = 𝑥 + 2ℎ tan(𝜃)

𝜃′ = 𝜃 + arctan (1 − 𝑥′
ℎ ) + arctan (−1 − 𝑥′

ℎ )
(1)

3.2 A Second Invariant

In Section 3.1, we observed that the height ℎ is invariant. In this section, we will demon-

strate the existence of a second invariant.

We define a new coordinate system in which it becomes easier to see a second invari-

ant. First, consider the change of coordinates 𝑔(𝑥, ℎ, 𝜃) = (𝑤, ℎ, 𝑑) given by

⎧

⎨
⎩

𝑤 = 𝑥 + ℎ tan(𝜃)

𝑑 = ℎ tan(𝜃)
(2)

with the ℎ-coordinate remaining unchanged. The coordinate 𝑤 represents the 𝑥-value of

the bounce point and the coordinate 𝑑 represents the signed difference between the 𝑤

and the 𝑥-value of the initial point. The inverse coordinate transformation is given by:

⎧

⎨
⎩

𝑥 = 𝑤 − 𝑑

𝜃 = arctan
(𝑑
ℎ

) (3)
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Now, we seek to understand the dynamics in these new coordinates. Let 𝑓(𝑤, ℎ, 𝑑) =

𝑔◦𝐹◦𝑔−1(𝑤, ℎ, 𝑑). We let 𝑓(𝑤, ℎ, 𝑑) be denoted by (𝑤′, ℎ, 𝑑′), which we wish to write in terms

of 𝑤, ℎ, and 𝑑. First, combining (1) and (2) yields:

𝑥′ = 𝑤 + 𝑑 (4)

Now, we will use (1) to rewrite the equation for 𝑑′. Following this, we simplify and

use (2) and (4) to rewrite all instances of 𝑥′ and ℎ tan(𝜃) in terms of 𝑤 and 𝑑.

𝑑′ = ℎ tan(𝜃′)

= ℎ tan (𝜃 + arctan (1 − 𝑥′
ℎ ) + arctan (−1 − 𝑥′

ℎ ))

= ℎ
⎛
⎜
⎜
⎝

tan(𝜃) + −2𝑥′ℎ
1+ℎ2−(𝑥′)2

1 + 2𝑥′ℎ
1+ℎ2−(𝑥′)2

⎞
⎟
⎟
⎠

= ℎ tan(𝜃) + ℎ3 tan(𝜃) − ℎ(𝑥′)2 tan(𝜃) − 2𝑥′ℎ2
1 + ℎ2 − (𝑥′)2 + 2𝑥′ℎ tan(𝜃)

= 𝑑3 + 2ℎ2𝑤 + 2𝑑2𝑤 + 𝑑𝑤2 + ℎ2𝑑 − 𝑑
𝑤2 − 𝑑2 − ℎ2 − 1

(5)

Finally, we can calculate 𝑤′ by using the relationship 𝑤′ = 𝑑′ + 𝑥′, which gives:

𝑤′ = 𝑤 + 𝑑 + 𝑑3 + 2ℎ2𝑤 + 2𝑑2𝑤 + 𝑑𝑤2 + ℎ2𝑑 − 𝑑
𝑤2 − 𝑑2 − ℎ2 − 1

= 𝑤3 + 𝑑2𝑤 + ℎ2𝑤 + 2𝑑𝑤2 − 𝑤 − 2𝑑
𝑤2 − 𝑑2 − ℎ2 − 1

(6)

We will now show the existence of a second invariant denoted 𝑎2, as 𝑎 will later be

shown to be the semi-axis of an ellipse.

Proposition 3.1. The quantity 𝑎2 ∶= ℎ2𝑤2+𝑑2

ℎ2+𝑑2
∈ (−1, 1) is preserved under dynamics. That is,

ℎ2𝑤2 + 𝑑2
ℎ2 + 𝑑2 = ℎ2(𝑤′)2 + (𝑑′)2

ℎ2 + (𝑑′)2
.

The proof involves substituting 𝑤′ and 𝑑′ into the equation for 𝑎2 to get (𝑎′)2 =
ℎ2(𝑤′)2+(𝑑′)2

ℎ2+(𝑑′)2
. After using (5) and (6) to simplify, we obtain:
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(𝑎′)2 = (ℎ2𝑤2 + 𝑑2)(𝑝(𝑤, ℎ, 𝑑))
(ℎ2 + 𝑑2)(𝑝(𝑤, ℎ, 𝑑))

= ℎ2𝑤2 + 𝑑2
ℎ2 + 𝑑2 = 𝑎2,

where

𝑝(𝑤, ℎ, 𝑑) = 𝑑4 + ℎ4 + 2𝑑2ℎ2 + 4𝑑3𝑤 + 6𝑑2𝑤2 + 4𝑑ℎ2𝑤

+ 4𝑑𝑤3 + 𝑤4 + 2ℎ2𝑤2 − 4𝑑𝑤 − 2𝑤2 + 1 + 2ℎ2 − 2𝑑2.

Related to this is an equivalent invariant:

𝑏2 = ℎ2𝑤2 + 𝑑2
1 − 𝑤2 = ℎ2𝑎2

1 − 𝑎2 .

3.3 Invariant Ellipses

In our altered coordinate system, the invariants 𝑎 and 𝑏 are actually the semi-axes of an

invariant ellipse in the (𝑤, ℎ, 𝑑) coordinate system.

Proposition 3.2. Let 𝑤, ℎ, 𝑑 ∈ ℝ. Recalling the definitions 𝑎2 = ℎ2𝑤2+𝑑2

ℎ2+𝑑2
and 𝑏2 = ℎ2𝑤2+𝑑2

1−𝑤2
, we

have 𝑤2

𝑎2
+ 𝑑2

𝑏2
= 1 (when 𝑎2, 𝑏2 ≠ 0).

Proof.
𝑤2

𝑎2 +
𝑑2

𝑏2 =
𝑤2

ℎ2𝑤2 + 𝑑2

ℎ2 + 𝑑2

+
𝑑2

ℎ2𝑤2 + 𝑑2

1 − 𝑤2

=
ℎ2𝑤2 + 𝑑2𝑤2 + 𝑑2 − 𝑑2𝑤2

ℎ2𝑤2 + 𝑑2

= 1

By Proposition 3.1, we have that 𝑎2 = (𝑎′)2, and by the relationship between 𝑎 and 𝑏

we have that 𝑏2 = (𝑏′)2. Together with Proposition 3.2, we get
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Figure 3: Several Invariant Ellipses with Height One

(𝑤′)2
𝑎2 + (𝑑′)2

𝑏2 = 1,

thus showing that any orbit belongs to an ellipse in the (𝑤, 𝑑)-coordinate system.

Note that if 𝑎 or 𝑏 are equal to zero, then the other must be as well by the equation

relating them. If they are both zero, we have that 𝑤 = 𝑑 = 0 for all points in the orbit.

Using (3), this implies that 𝑥 = 𝜃 = 0 for all points in the orbit, which means such initial

conditions correspond to fixed points.

3.4 Twist Dynamics

For this section, we will fix a height ℎ and an invariant ellipse, thereby fixing invariants

𝑎 and 𝑏, which are defined to be the positive square roots of 𝑎2 and 𝑏2, respectively. We

can parameterize the ellipse with 𝑟(𝜃) = (𝑤, 𝑑) = (𝑎 cos(𝜃), 𝑏 sin(𝜃)). We now define the
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function 𝑓 ∶ 𝑆1 → 𝑆1 as 𝑓 = 𝑟−1◦𝑓◦𝑟, which allows us to view the restriction of 𝑓 to our

invariant ellipse as a circle diffeomorphism.

Theorem 3.3. There exists some 𝜑 ∈ 𝑆1 such that 𝑓(𝜃) = 𝜃 + 𝜑, where 𝜑 = 𝜑(𝑎) is a strictly

increasing function, 𝜑′(𝑎) > 0 given by:

𝜑(𝑎) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

arctan( 2𝑎𝑏
𝑏2−𝑎2

) + 𝜋 𝑎 < 𝑏

arctan( 2𝑎𝑏
𝑏2−𝑎2

) 𝑎 > 𝑏
3𝜋
2

𝑎 = 𝑏

with

𝜑′(𝑎) =
2𝑏

𝑏2 + 𝑎2.

The proof of this theorem is computational and will be included in the Appendix B.

3.5 Periodic Orbits for the Billiard on the Segment

Clearly, the middle perpendicular (the 𝑦-axis) gives a 1-parameter family of fixed points

(these correspond to degenerate ellipses with 𝑎 = 𝑏 = 0). Points of higher period are

due to rational rotation numbers and come in 2-parameter families as one can vary the

height as well.

Figure 4: “M" and “W" period 4 orbits
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We point out two aesthetically pleasing sub-families of period 4 orbits on Figure 4.

The 𝑀-orbits fill out a semi-circle and the 𝑊-orbits fill out a semi-ellipse. For the “W"

case on the right, the horizontal semi-axis is
√
2 and the foci of this ellipse are the ±1

endpoints of the segment.

It is easy to calculate from the formula for the rotation number in Theorem 1.3 that

for a given height ℎ the interval of possible rotation numbers 𝜑 has the form (𝜋, 𝜌(ℎ)),

where 𝜌 is an explicit decreasing function, 𝜌(ℎ) → 0, ℎ → ∞; 𝜌(ℎ) → 2𝜋, ℎ → 0. In

particular, (𝜋, 𝜌(ℎ)) ⊂ (𝜋, 2𝜋) and, hence, there are no orbits of period 2. Clearly, for all

sufficiently small heights orbits of all periods ≥ 3 are present. As height increases smaller

period orbits begin to disappear. For example orbits of period 4 with rotation number 3𝜋
2

disappear at ℎ = 1 and orbits of period 3 with rotation number 4𝜋
3

disappear at ℎ ≃ 1.8.

The explicit formula of Theorem 1.3 allows to explicitly calculate periodic orbits.

For example, if one wished to find periodic orbits of least period 7, one can calculate

parameter values that correspond to the rotation number 10𝜋
7

.

Figure 5 depicts a family of period seven orbits of height one. Note that the depicted

orbit is symmetric about the line 𝑥 = 0, which unfolds into the family of asymmetric

period seven orbits as indicated on the figure.

4 Numerical Simulations

4.1 Bouncing on Parabola Arcs

After fully understanding the dynamics on the segment, we can perturb the dynamics

and examine how integrability is being destroyed. Probably the simplest way is to

consider the unfolding of the segment into a piece of a downward-facing parabola given

by 𝑓(𝑥) = −𝑎𝑥2 + 𝑎 {−1 ≤ 𝑥 ≤ 1}. We will make a slight modification to our visibility

domain to make sure that bouncing billiard still makes sense.

Recall that our definition required that for (𝑝, 𝑣) in the visibility domain, the ray
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Figure 5: Family of Orbits of Period 7

spanned by 𝑣 has a nonempty intersection with the boundary of the set. For the parabola,

we will require that the ray has a nonempty intersection with the parabola, but we will

impose the additional requirement that the segment 𝑝𝑤 lies entirely above the parabola

given by −𝑎𝑥2 + 𝑎, where 𝑤 is the closest intersection point to 𝑝 of the ray and parabola.

In other words, a point 𝑝 must not be able to “see" the underside of the parabola. The

dynamics rule remains the same, simply utilizing the newly defined visibility domain for

the visibility angle reflection.

Remark 4.1. Despite the fact that our integrable model is a perfect twist map, KAM theory

doesn’t apply directly since we are in a 3-dimensional situation. Still, as we see below, KAM

features such as elliptic islands seem to be present in our unfolding.
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Figure 6 depicts some orbits on a parabola of height 3
10

. We observe that most of the

orbits that begin close to the parabola fill invariant arcs which align themselves along

the parabola (see the red orbit marked with a (2) in the figure). Others, such as the blue

(1) and yellow (3) orbits, fill up periodic curves. Finally, some orbits, such as the black

(4) one, exhibit more complicated behavior similar to Aubry-Mather sets with positive

Lyapunov exponent.

Figure 6: Orbits on Parabola of Height 3
10

As we increase the height, the observed behaviors become more complicated. Figure 7

and Figure 8 depict orbits on parabolas of heights 1
2

and 1, respectively. On these more

extreme parabolas, we still observe periodic curves which take more complicated shapes,

including non-symmetric orbits such as the blue (1) orbit on Figure 8. Additionally, with

increased height, we more easily detect chaotic behavior, such as the black (4) orbits of

both figures and the yellow (3) orbit of Figure 8.
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Figure 7: Orbits on Parabola of Height 1
2

Figure 8: Orbits on Parabola of Height 1
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4.2 Bouncing on the Square

It is also interesting to investigate bouncing billiards on polygons. For the sake of simplic-

ity, we will focus solely on the system on the square. On the square, we classify observed

orbits into five categories.

Figure 9: Orbits on a Square

The first category, such as the red (2) orbit in Figure 9, consists of points staying a

fixed perpendicular distance away from one side of the square. For some such orbits, the

orbit never extend in the direction parallel to that side further than the endpoints of the

side. In this case, the system is identical to that on the line segment. In other cases, such

orbit can extend past the corners of the square while still remaining on one side; in this
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case the orbit is not the same as an orbit on the segment.

The second kind are those orbits which fill up four closed curves, with one near each

corner of the square. This can be seen in the cyan (5) orbit of Figure 9. Most of these

orbits observed appeared to be rotationally symmetric, but the one pictured is not.

The third kind involves what appears to be an invariant loop near each corner, but

actually consists of many smaller closed curves making up the apparent larger circle.

This is depicted in the blue (1) orbit of the figure.

The fourth kind is another chaotic variety. It involves a period 4 non-smooth set,

possibly a Cantor set. This kind is depicted in the yellow (3) orbit of the figure.

The final class of orbits occupy all sides of the square and seem to behave chaotically

such as the black (4) orbit. Such orbits appear to fill up positive area domains. However,

numerics become very tricky for such orbits, as we clearly detected positive Lyapunov

exponents for such orbits.

Figure 10: Period Twelve Orbit on Square with Large Eigenvalue

Another finding on the square is the existence of periodic points whose Jacobian
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matrix has eigenvalues greater than one. Figure 10 shows one such example. It depicts a

period twelve orbit whose Jacobian matrix has eigenvalues approximately 0.086, 1, and

11.592.

Remark 4.2. It is easy to see from the form of the differential of the bouncing outer billiard

on a convex polygon that every periodic point of such a billiard has at least one eigenvalue

equal to 1.

4.3 Bouncing on an Ellipse

While we fully understand the segment and the circle, in between fall ellipses, which also

show very complex behavior. We consider bouncing outer billiard on the ellipse with

major and minor semi-axis equal to 1 and 0.4, respectively. As expected, we can have

orbits which are similar to the segment and circle, as shown in Figure 11 and Figure 12,

respectively.

Figure 11: Segment-like behavior
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Figure 12: Circle-like behavior

We also have cases where the orbit closure fill periodic closed curves, such as those

in Figure 13 and Figure 14.

Arnold Mathematical Journal, Vol.11(3), 2025 136

http://dx.doi.org/10.56994/ARMJ


Bouncing Outer Billiards

Figure 13: Four closed invariant curves

Figure 14: Many closed invariant curves
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Finally, “in between" the circle-like behavior and four closed curve behavior, we detect

an orbit which appears to fill up positive area domain, as shown in Figure 15.

We notice that the types of orbits we observe for the parabola arc and the ellipse are

the same.

Figure 15: A chaotic orbit

Appendix A: The Conservative Property

Here we verify that bouncing outer billiard dynamics 𝐹 preserves the Lebesgue measure.

Let 𝑑𝐴 be the standard 2-dimensional Lebesgue measure restricted to ℝ2 and let 𝑑𝜃 be

the Lebesgue on the circle.

Proposition 4.3. Assume that the boundary of 𝑆 is a 𝐶2 curve; then the restriction of 𝑑𝐴⊗𝑑𝜃

to 𝑉𝑆 is an infinite measure which is invariant under 𝐹.

Remark 4.4. It is easy to verify invariance of the Lebesgue measure for polygons and seems
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likely to be true for any convex 𝑆, but we haven’t verified it in such generality.

Proof. We begin by noticing that the proposition holds true if 𝑆 is a closed disc. Indeed,

in this case it is easy to see that the visibility domain can be decomposed into circles on

each of which 𝐹 is a rigid rotation preserving the length (conditional measure). Hence 𝐹

preserves 𝑑𝐴 ⊗ 𝑑𝜃.

Now, given a general domain 𝑆 with 𝐶2 boundary, we will verify that 𝐹𝑆 is measure-

preserving by checking that the Jacobian 𝐽𝐹 = det(𝐷𝐹) equals 1. Let (𝑝, 𝑣) ∈ 𝑉𝑆, we can

assume that (𝑝, 𝑣) is in fact in the interior of 𝑉𝑆 since 𝜕𝑉𝑆 has measure zero. Therefore,

the ray starting at 𝑣 intersect 𝜕𝑆 at the bounce point 𝑤 transversely. This implies that

infinitesimal variations of (𝑝, 𝑣) result in infinitesimal variations of 𝑤 of the same order

of magnitude.

Consider the (unique) closed disc 𝐷 such that 𝜕𝐷 is tangent to 𝜕𝑆 at 𝑤 to the second

order. Clearly, we have 𝐹𝑆(𝑝, 𝑣) = 𝐹𝐷(𝑝, 𝑣). In fact, second-order tangency ensures that

𝐷𝐹𝑆(𝑝, 𝑣) = 𝐷𝐹𝐷(𝑝, 𝑣). Indeed, to see this, first note that infinitesimal variation of (𝑝, 𝑣)

results in infinitesimal variations of 𝑤 (on 𝜕𝑆 and 𝜕𝐷), agreeing up to the second order.

The angles of reflection of 𝑤 are controlled by the derivatives of 𝜕𝑆 and 𝜕𝐷 at 𝑤 and,

hence, agree up to the first order (again due to second-order tangency at 𝑤) and the claim

follows. Hence we have

𝐽𝐹𝑆(𝑝, 𝑣) = det 𝐷𝐹𝑆(𝑝, 𝑣) = det 𝐷𝐹𝐷(𝑝, 𝑣) = 1,

where the last equality is by measure-preserving property of 𝐹𝐷 pointed out at the

beginning of the proof.

It is easy to show that the total Lebesgue measure of 𝑉𝑆 is infinite when integrating in

the correct order. For any angle 𝜃, there is an infinitely long strip of constant width 𝑤 of

points whose rays at angle 𝜃 will hit 𝑆, where 𝑤 is the length of 𝑆 projected onto the axis

perpendicular to 𝜃.

Alternatively, one can verify the above proposition by a direct calculation of 𝐷𝐹(𝑝, 𝑣)

without any reference to the disc case. Specifically, we can center the (𝑥, 𝑦)-coordinate
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system at the bounce point 𝑤 so that the 𝑥-axis is tangent to 𝜕𝑆 and denote by 𝜃 the

circular coordinate. We write (𝑝, 𝑣) = (𝑎, 𝑏, 𝜃0). Clearly 𝑑𝐴 ⊗ 𝑑𝜃 = 𝑑𝑥 ⊗ 𝑑𝑦 ⊗ 𝑑𝜃 and we

need to verify that the Jacobian is 1 in (𝑥, 𝑦, 𝜃)-coordinates. Prior to the last visibility

angle reflection step we have (𝑎, 𝑏, 𝜃0) ↦→ (−𝑎, 𝑏, −𝜃0) and a routine calculation gives the

following expression for its derivative:

⎛
⎜
⎜
⎜
⎝

1 + 2𝑘𝑏 −2𝑘𝑎 − 2𝑎
𝑏

2𝑐2

𝑏
+ 2𝑘𝑐2

2𝑘𝑎 1 − 2𝑘𝑎2

𝑏
2𝑘𝑎𝑐2

𝑏

−2𝑘 2𝑘𝑎
𝑏

−1 − 2𝑘𝑐2

𝑏

⎞
⎟
⎟
⎟
⎠

where 𝑘 is the curvature at 𝑤 and 𝑐 =
√
𝑎2 + 𝑏2. The determinant of this matrix is −1,

which becomes 1, after composing with the reflection 𝜃 ↦→ 𝑐𝑜𝑛𝑠𝑡 − 𝜃 according to the

visibility angle reflection rule.

Appendix B: Proof of Theorem 3.3

First, we will find an explicit formula for 𝑟−1(𝑤, 𝑑) for 𝑤 and 𝑑 lying on the ellipse. We

have 𝑤 = 𝑎 cos(𝜃) and 𝑑 = 𝑏 sin(𝜃), meaning tan(𝜃) = 𝑎𝑑
𝑏𝑤

. This yields:

𝜃 = 𝑟−1(𝑤, 𝑑) = arctan ( 𝑎𝑑𝑏𝑤) + 𝜋𝑛(𝑤) (7)

In this formula, we use

𝑛(𝑥) ∶=
⎧

⎨
⎩

1 𝑥 < 0

0 𝑥 ≥ 0

to compensate for the fact that arctan only outputs between −𝜋
2

to 𝜋
2

. This explicit formula

has the slight flaw that it fails for 𝑤 = 0. However, it can be shown separately that this

case matches the behavior of all other cases. Applying 𝑟−1 to the right of both sides of the

equation 𝑓 = 𝑟−1◦𝑓◦𝑟 yields 𝑓◦𝑟−1(𝑤, 𝑑) = 𝑟−1◦𝑓(𝑤, 𝑑) = 𝑟−1(𝑤′, 𝑑′). Applying (7) yields:

𝑓(arctan ( 𝑎𝑑𝑏𝑤) + 𝜋𝑛(𝑤)) = arctan ( 𝑎𝑑
′

𝑏𝑤′ ) + 𝜋𝑛(𝑤′)
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Thus 𝑓(𝜃) = 𝜃 + 𝜑(𝑤, 𝑑), where

𝜑(𝑤, 𝑑) = arctan ( 𝑎𝑑
′

𝑏𝑤′ ) + 𝜋𝑛(𝑤′) − arctan ( 𝑎𝑑𝑏𝑤) − 𝜋𝑛(𝑤).

We will first show that 𝜑(𝑤, 𝑑) is constant mod 𝜋. The terms 𝜋𝑛(𝑤′) and −𝜋𝑛(𝑤) are

equivalent to zero mod 𝜋, so we will revisit these later.

Thus, we currently seek to show that arctan( 𝑎𝑑
′

𝑏𝑤′
)−arctan( 𝑎𝑑

𝑏𝑤
) is constant mod 𝜋. We will

use the arc-tangent subtraction formula arctan(𝑥) − arctan(𝑦) = arctan( 𝑥−𝑦
1+𝑥𝑦

) + 𝑚𝜋, where

𝑚 is either 0 or 1 depending on 𝑥 and 𝑦. The term 𝑚𝜋 is equivalent to zero mod 𝜋 in all

cases, so we will revisit this term later as well.

For the purposes of the following calculation, we will set 𝑥 = 𝑎𝑑′

𝑏𝑤′
and 𝑦 = 𝑎𝑑

𝑏𝑤
. Our goal

is to show that 𝑥−𝑦
1+𝑥𝑦

is constant for any 𝑤 and 𝑑 on the fixed ellipse. First, since 𝑥 and 𝑦

each have a factor of 𝑎
𝑏

, which is constant for points on the ellipse, we can pull this out of

the fraction:

𝑥 − 𝑦
1 + 𝑥𝑦 = (𝑎𝑏)

⎛
⎜
⎜
⎝

𝑑′

𝑤′
− 𝑑

𝑤

1 + 𝑎2𝑑𝑑′

𝑏2𝑤𝑤′

⎞
⎟
⎟
⎠

Next, multiply the numerator and denominator by 𝑏2𝑤𝑤′ to get:

(𝑎𝑏 ) (
𝑏2𝑑′𝑤 − 𝑏2𝑑𝑤′

𝑏2𝑤𝑤′ + 𝑎2𝑑𝑑′)

We can pull out another 𝑏2 to bring the total constant factored out to 𝑎𝑏:

(𝑎𝑏) ( 𝑑′𝑤 − 𝑑𝑤′

𝑏2𝑤𝑤′ + 𝑎2𝑑𝑑′ )

After replacing 𝑤′ and 𝑑′ with their equivalent expressions in terms of 𝑤, ℎ, and 𝑑,

then multiplying the numerator and denominator by (𝑤2 − 𝑑2 − ℎ2 − 1), we get:

(𝑎𝑏)(2ℎ2𝑤2 + 2𝑑2)
𝑏2(𝑤4 + 𝑑2𝑤2 + ℎ2𝑤2 + 2𝑑𝑤3 − 𝑤2 − 2𝑑𝑤) + 𝑎2(𝑑4 + 2𝑑ℎ2𝑤 + 2𝑑3𝑤 + 𝑑2𝑤2 + 𝑑2ℎ2 − 𝑑2)
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After substituting in the expressions for 𝑎2 and 𝑏2, multiplying the numerator and

denominator by (1 − 𝑤2)(ℎ2 + 𝑑2), and simplifying, we get:

2𝑎𝑏(1 − 𝑤2)(ℎ2 + 𝑑2)
𝑑2ℎ2𝑤2 + ℎ4𝑤2 + ℎ2𝑤4 + 𝑑4 + 𝑑2ℎ2 + 𝑑2𝑤2 − ℎ2𝑤2 − 𝑑2

Factoring the denominator yields:

2𝑎𝑏(1 − 𝑤2)(ℎ2 + 𝑑2)
(ℎ2𝑤2 + 𝑑2)(ℎ2 + 𝑑2) − (ℎ2𝑤2 + 𝑑2)(1 − 𝑤2)

Finally, dividing the numerator and denominator by (1 − 𝑤2)(ℎ2 + 𝑑2) gives:

2𝑎𝑏
ℎ2𝑤2+𝑑2

1−𝑤2
− ℎ2𝑤2+𝑑2

(ℎ2+𝑑2)

= 2𝑎𝑏
𝑏2 − 𝑎2

Thus, we end up with the equation:

𝜑 = arctan ( 2𝑎𝑏
𝑏2 − 𝑎2 )𝑚𝑜𝑑 𝜋

Next, we will go back and carefully consider each of the extra terms we set aside

earlier to show that 𝜑 is actually constant mod 2𝜋. Each of these components individually

may depend on 𝑤, 𝑑, 𝑎, and 𝑏, but we will show that together they only depend on 𝑎 and

𝑏, which remain constant within an orbit.

We will begin with the term denoted as 𝑚𝜋 earlier. Recall that this arose out of the

extra term from the arc-tangent sum formula. Again using the definitions 𝑥 = 𝑎𝑑′

𝑏𝑤′
and

𝑦 = 𝑎𝑑
𝑏𝑤

, we get that 𝑚 = 0 if −𝑥𝑦 < 1 and 𝑚 = 1 if −𝑥𝑦 > 1. This is equivalent to saying

𝑚 = 0 if 1 + 𝑥𝑦 > 0 and 𝑚 = 1 if 1 + 𝑥𝑦 < 0. After substituting in expressions to get 1 + 𝑥𝑦

in terms of 𝑤, ℎ, and 𝑑 as well as simplifying and factoring, we get:

1 + 𝑥𝑦 = (𝑑2 + ℎ2𝑤2)(𝑑2 + ℎ2 + 𝑤2 − 1)
(𝑑2 + ℎ2)(𝑑2𝑤2 + ℎ2𝑤2 + 2𝑑𝑤3 + 𝑤4 − 2𝑑𝑤 − 𝑤2)

Since we are only concerned about the sign of 1 + 𝑥𝑦, and 𝑑2+ℎ2𝑤2

𝑑2+ℎ2
≥ 0, we can factor

this out and ignore it. This leaves us with:
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𝑑2 + ℎ2 + 𝑤2 − 1
𝑑2𝑤2 + ℎ2𝑤2 + 2𝑑𝑤3 + 𝑤4 − 2𝑑𝑤 − 𝑤2 =

𝑑2 + ℎ2 + 𝑤2 − 1
𝑤2(𝑑2 + ℎ2 + 𝑤2 − 1) + 2𝑑𝑤3 − 2𝑑𝑤

This has the same sign as its reciprocal, which after simplification becomes:

𝑤2 + 2𝑑𝑤3 − 2𝑑𝑤
𝑑2 + ℎ2 + 𝑤2 − 1

Next, it will benefit us to rewrite 𝑑 in terms of 𝑤, 𝑎, and 𝑏. Starting from the ellipse

equation 𝑤2

𝑎2
+ 𝑑2

𝑏2
= 1, we can derive the equation 𝑑2 = 𝑏2 − 𝑤2𝑏2

𝑎2
. Rewriting our previous

expression yields:

𝑤2 +
(2𝑤3 − 𝑤) (±

√
𝑏2 − 𝑤2𝑏2

𝑎2
)

𝑏2 − 𝑤2𝑏2

𝑎2
+ ℎ2 + 𝑤2 − 1

Next, we will remove ℎ from the expression. Recall the relationship between 𝑎2 and

𝑏2 given by 𝑏2 = ℎ2𝑎2

1−𝑎2
. From this, we can derive ℎ2 = 𝑏2−𝑎2𝑏2

𝑎2
. From here, we can perform a

series of simplifications:

𝑤2 +
(2𝑤3 − 𝑤) (±

√
𝑏2 − 𝑤2𝑏2

𝑎2
)

𝑏2 − 𝑤2𝑏2

𝑎2
+ ℎ2 + 𝑤2 − 1

= 𝑤2 +
2𝑤(𝑤2 − 1) (±

√
𝑏2 − 𝑤2𝑏2

𝑎2
)

𝑏2

𝑎2
− 𝑤2𝑏2

𝑎2
+ 𝑤2𝑎2

𝑎2
− 𝑎2

𝑎2

= 𝑤2 +
2𝑤𝑎2(𝑤2 − 1) (±

√
𝑏2(𝑎2−𝑤2)

𝑎2
)

(𝑤2 − 1)(𝑎2 − 𝑏2)

= 𝑤2 +
2𝑤𝑎𝑏(±

√
𝑎2 − 𝑤2)

𝑎2 − 𝑏2

=
𝑎2𝑤2 − 𝑏2𝑤2 + 2𝑤𝑎𝑏(±

√
𝑎2 − 𝑤2)

𝑎2 − 𝑏2
Next, we want to find the zeros of this expression with respect to 𝑤. Clearly, 𝑤 = 0 is a

zero. To find other zeros, we will set the numerator of our expression equal to zero and

assume 𝑤 ≠ 0. 𝑎2𝑤2 − 𝑏2𝑤2 + 2𝑤𝑎𝑏(±
√
𝑎2 − 𝑤2) = 0 ⇐⇒ 𝑎2𝑤 − 𝑏2𝑤 + 2𝑎𝑏(±

√
𝑎2 − 𝑤2) = 0.

After rearranging and squaring both sides, we get:
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𝑎2 − 𝑤2 = 𝑏4𝑤2 − 2𝑎2𝑏2𝑤2 + 𝑎4𝑤2

4𝑎2𝑏2

Solving for 𝑤 yields:

𝑤 = ± 2𝑎2𝑏
𝑎2 + 𝑏2

From this point forward, we will assume 𝑑 is positive. The calculations play out

similarly if 𝑑 is negative, and the results will be given with the positive case. This means

our fraction is zero when 𝑎2𝑤 − 𝑏2𝑤 + 2𝑎𝑏
√
𝑎2 − 𝑤2 = 0, removing the plus or minus

present earlier. We have the possible zeros of ± 2𝑎2𝑏
𝑎2+𝑏2

, but determining which is a true

zero will depend on the values of 𝑎 and 𝑏. This is because
√
𝑎2 − 𝑤2 becomes 𝑎(𝑎2−𝑏2)

𝑎2+𝑏2
if

𝑎 > 𝑏 or 𝑎(𝑏2−𝑎2)
𝑎2+𝑏2

if 𝑎 < 𝑏. This means that if 𝑎 > 𝑏 we have −2𝑎2𝑏
𝑎2+𝑏2

is a zero, whereas if 𝑏 > 𝑎

we have 2𝑎2𝑏
𝑎2+𝑏2

is a zero.

To find the sign of the expression, we can solve the derivatives at the zeros:

𝑑
𝑑𝑤

⎛
⎜
⎜
⎝

𝑎2𝑤2 − 𝑏2𝑤2 + 2𝑤𝑎𝑏
√
𝑎2 − 𝑤2

𝑎2 − 𝑏2

⎞
⎟
⎟
⎠

=
2𝑎2𝑤 − 2𝑏2𝑤 + 2𝑎𝑏

√
𝑎2 − 𝑤2 − 2𝑎𝑏𝑤2

𝑎2−𝑤2

𝑎2 − 𝑏2 (8)

We will first analyze the derivative values for 𝑎 > 𝑏. The denominator is positive in

this case, and we see that the derivative is positive at 𝑤 = 0. For 𝑤 = −2𝑎2𝑏
𝑎2+𝑏2

, we have that

the numerator of (8) becomes:

2𝑎2𝑏(𝑏2 − 𝑎2)
𝑎2 + 𝑏2 + −2𝑎𝑏𝑤2

𝑎2 − 𝑤
The second term of this expression is always negative. Since we assumed 𝑎 > 𝑏, the

first term is also negative, meaning the derivative is negative for this 𝑤-value.

In the case where 𝑎 < 𝑏, the denominator is always negative, and we have that the

derivative is negative at 𝑤 = 0. For 𝑤 = 2𝑎2𝑏
𝑎2+𝑏2

, the numerator becomes:

2𝑎2𝑏(𝑎2 − 𝑏2)
𝑎2 + 𝑏2 + −2𝑎𝑏𝑤2

𝑎2 − 𝑤
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This is again negative, but the derivative is positive, since the denominator of (8) is

negative. In summary, we have the following results:

In 𝑑 > 0 Case: If 𝑎 < 𝑏 and 𝑤 ∈ ( 2𝑎2𝑏
𝑎2+𝑏2

, 1] ∪ [−1, 0), then 1 + 𝑥𝑦 > 0.

If 𝑎 < 𝑏 and 𝑤 ∈ (0, 2𝑎2𝑏
𝑎2+𝑏2

), then 1 + 𝑥𝑦 < 0.

If 𝑎 > 𝑏 and 𝑤 ∈ [−1, −2𝑎
2𝑏

𝑎2+𝑏2
) ∪ (0, 1], then 1 + 𝑥𝑦 > 0.

If 𝑎 > 𝑏 and 𝑤 ∈ (−2𝑎
2𝑏

𝑎2+𝑏2
, 0), then 1 + 𝑥𝑦 < 0.

The case where 𝑑 < 0 works similarly, with results as follows:

In 𝑑 < 0 Case: If 𝑎 < 𝑏 and 𝑤 ∈ [−1, −2𝑎
2𝑏

𝑎2+𝑏2
) ∪ (0, 1], then 1 + 𝑥𝑦 > 0.

If 𝑎 < 𝑏 and 𝑤 ∈ (−2𝑎
2𝑏

𝑎2+𝑏2
, 0), then 1 + 𝑥𝑦 < 0.

If 𝑎 > 𝑏 and 𝑤 ∈ ( 2𝑎2𝑏
𝑎2+𝑏2

, 1] ∪ [−1, 0), then 1 + 𝑥𝑦 > 0.

If 𝑎 > 𝑏 and 𝑤 ∈ (0, 2𝑎2𝑏
𝑎2+𝑏2

), then 1 + 𝑥𝑦 < 0.

Next, we will tackle the 𝜋𝑛(𝑤′) term. Recall that 𝑛(𝑤′) is defined to be 1 when 𝑤′ is

negative and 0 otherwise. Thus, our next goal is to determine the sign of 𝑤′ under all

possible conditions. We will again take 𝑑 > 0 and present the results for the 𝑑 < 0 case

later.

𝑤′ = 𝑤3 + 𝑑2𝑤 + ℎ2𝑤 + 2𝑑𝑤2 − 𝑤 − 2𝑑
𝑤2 − 𝑑2 − ℎ2 − 1

=
𝑤3 − 𝑏2𝑤3

𝑎2
+ 𝑏2𝑤

𝑎2
+ 2𝑤2

√
𝑏2 − 𝑏2𝑤2

𝑎2
− 𝑤 − 2

√
𝑏2 − 𝑏2𝑤2

𝑎2

𝑤2 + 𝑏2𝑤2

𝑎2
− 𝑏2

𝑎2
− 1

= (𝑤2 − 1)(𝑎2𝑤 − 𝑏2𝑤 + 2𝑎𝑏
√
𝑎2 − 𝑤2)

(𝑤2 − 1)(𝑎2 + 𝑏2)

= 𝑎2𝑤 − 𝑏2𝑤 + 2𝑎𝑏
√
𝑎2 − 𝑤2

𝑎2 + 𝑏2

(9)

We have already examined the zeros of this expression when working through the

𝑚𝜋 term. It has a zero at 𝑤 = 2𝑎2𝑏
𝑎2+𝑏2

when 𝑎 < 𝑏 and one at −2𝑎2𝑏
𝑎2+𝑏2

when 𝑎 > 𝑏. Notably, this

expression does not have a zero at 𝑤 = 0 like the previous. In this case, we have that the
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derivative is negative at 𝑤 = 2𝑎2𝑏
𝑎2+𝑏2

when 𝑎 < 𝑏 and positive at −2𝑎2𝑏
𝑎2+𝑏2

when 𝑎 > 𝑏.

In 𝑑 > 0 Case: If 𝑎 < 𝑏 and 𝑤 ∈ [−1, 2𝑎2𝑏
𝑎2+𝑏2

), then 𝑤′ > 0.

If 𝑎 < 𝑏 and 𝑤 ∈ ( 2𝑎2𝑏
𝑎2+𝑏2

, 1], then 𝑤′ < 0.

If 𝑎 > 𝑏 and 𝑤 ∈ (−2𝑎
2𝑏

𝑎2+𝑏2
, 1], then 𝑤′ > 0.

If 𝑎 > 𝑏 and 𝑤 ∈ [−1, −2𝑎
2𝑏

𝑎2+𝑏2
), then 𝑤′ < 0.

Similarly, if 𝑑 < 0, we get:

In 𝑑 < 0 Case: If 𝑎 < 𝑏 and 𝑤 ∈ [−1, −2𝑎
2𝑏

𝑎2+𝑏2
), then 𝑤′ > 0.

If 𝑎 < 𝑏 and 𝑤 ∈ (−2𝑎
2𝑏

𝑎2+𝑏2
, 1], then 𝑤′ < 0.

If 𝑎 > 𝑏 and 𝑤 ∈ ( 2𝑎2𝑏
𝑎2+𝑏2

, 1], then 𝑤′ > 0.

If 𝑎 > 𝑏 and 𝑤 ∈ [−1, 2𝑎2𝑏
𝑎2+𝑏2

), then 𝑤′ < 0.

Finally, we have the −𝜋𝑛(𝑤) term, which requires no extra analysis since our results are

currently allowed to be dependent on 𝑤.

The final step in this proof is to check how many 𝜋 terms are added for each initial

condition for 𝑤 and 𝑑, as well as 𝑎 and 𝑏 values. This will be omitted since it solely

involves going through each relevant interval for 𝑤 and 𝑑 for both the 𝑎 > 𝑏 and 𝑎 < 𝑏

case. The results are as follows:

𝜑 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

arctan( 2𝑎𝑏
𝑏2−𝑎2

) + 𝜋 𝑎 < 𝑏

arctan( 2𝑎𝑏
𝑏2−𝑎2

) 𝑎 > 𝑏
−𝜋
2

𝑎 = 𝑏

Taking the derivative of 𝜑 with respect to 𝑎 yields:

𝜑′(𝑎) =
2𝑏

𝑏2 + 𝑎2

This is clearly positive for all values 𝑎 > 0 since 𝑏 is nonzero and positive for such 𝑎.
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