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Folding of quadrilaterals, zigzags, and

Arnold-Liouville integrability
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Abstract: We put Darboux’s porism on folding of quadrilaterals, as well as
closely related Bottema’s zigzag porism, in the context of Arnold-Liouville

integrability.
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1 Introduction

One of the historically first manifestations of integrability is Poncelet’s porism, also known
as Poncelet’s closure theorem. Poncelet’s theorem says that if a planar n-gon is inscribed
in a conic C, and circumscribed about another conic C,, then any point of C; is a vertex
of such an n-gon, see Figure 1. The two arguably most standard proofs of this theorem

are based, respectively, on complex and symplectic geometry. The complex proof goes
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Folding of quadrilaterals

Figure 1: Every point of C; is a vertex of a pentagon inscribed in C; and circumscribed

about C,.

roughly as follows. One can identify the space of tangents dropped from a point on
C, to C, with an elliptic curve. The successive sides of a polygon inscribed in C; and
circumscribed about C, are points on that curve related to each by a fixed translation.
This polygon closes up if and only if the translation vector is a torsion point on the elliptic
curve. Whether or not that is the case depends only on C; and C,, but not on the initial
point, so all polygons inscribed in C; and circumscribed about C, will close up after the
same number of steps [GH77].

The second, symplectic, proof is based on the fact that any two generic conics can
be mapped, by a projective transformation, to confocal conics. In the confocal case, a
polygon inscribed in C; and circumscribed about C, can be identified with a billiard
trajectory in C,. The billiard in a conic is an integrable system, and any two polygons
inscribed in C; and circumscribed about C, correspond to trajectories belonging to the
same level set of the first integral. Hence, by Arnold-Liouville theorem, if one of the
trajectories is periodic with period n, then so is the other one, cf. [LT07].

A lesser known relative of Poncelet’s porism is Darboux’s porism on folding of quadri-
laterals. Folding of a vertex of a planar polygon is the reflection of that vertex is the
diagonal joining its neighbors, see Figure 2. Darboux’s porism says that if a sequence
of alternating foldings of adjacent vertices restores, after 2n steps, the initial polygon,
then this is the case for any polygon with the same side lengths. For example, folding any

polygon with side lengths 1,3, 34/5, 5 six times, we come back to the initial polygon, see
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Figure 2: Folding of the vertex C of a quadrilateral ABCD. Its new position is C’.

[[zm23, Figure 2].

Just like Poncelet’s porism, Darboux’s theorem can be proved using elliptic curves.
Specifically, one shows that the complexified moduli space of quadrilaterals with fixed
side length is an elliptic curve. Composition of foldings at adjacent vertices amounts to
a translation on that curve. Whether or not a sequence of foldings restores the initial
polygon depends on whether the translation vector is a torsion point and is independent

on the particular choice of a quadrilateral [Izm23].

What currently seems to be missing in the literature is a symplectic proof of Darboux’s
theorem. We provide such a proof in the present paper. Specifically, we show that,
in an appropriate sense, Darboux’s folding is Arnold-Liouville integrable, and deduce

Darboux’s porism.

Furthermore, we extend these results to Bottema’s zigzag porism [Bot65], which can
be stated as follows. Let C, and C;, be two circles such that there exists a unit equilateral
2n-gon whose odd-indexed vertices lie on C, and even-indexed vertices lie on C,. Then
there exist infinitely many such 2n-gons. The zigzag porism is equivalent to Darboux’s
porism when the circles are coplanar [CHO0], but is in fact valid for any two circles in
R3 [BHH74]. We construct the underlying Arnold-Liouville integrable system in this more

general setting.
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2 Arnold-Liouville integrability of folding

Let 2 be the space of quadrilaterals ABCD with fixed side lengths, considered up to
orientation-preserving isometries. There is abundant literature on the topology of such
spaces for polygons with any number of vertices, see [KM95] and references therein. The
space 2 is a smooth manifold assuming that there is no linear combination of side lengths
with coefficients +1 which is equal to zero [KM95, Lemma 2]. In the case of quadrilaterals,
this manifold is diffeomorphic to a circle or disjoint union of two circles, see [KM95,
Theorem 1]. These circles are distinguished by the sign of the oriented area and are
interchanged by an orientation-reversing isometry, cf. [KM95, Section 10].

Denote by Fp : ? — 2 folding of the vertex B. This mapping is well-defined assuming
that the vertices A and C cannot come together. This holds provided that the side lengths
satisfy at least one of the following conditions: |AB| # |BC| or |AD| # |CD|. Likewise, let
Fc: P — P be folding of C, and let F := F-oFg be the composition of the two foldings.
Darboux’s porism says that if F*(P) = P for some quadrilateral P € P, then F" is the
identity mapping on . We shall prove this by establishing Arnold-Liouville integrability
of the mapping F.

Clearly, F cannot be Arnold-Liouville integrable on the space 2 of quadrilaterals with
fixed side lengths, as the latter space is one-dimensional. So, we consider a bigger space
P of quadrilaterals with fixed lengths of the sides AB, BC,CD, again considered up to
orientation-preserving isometries. This space is diffeomorphic to a two-dimensional
torus and is parametrized by the oriented angles ~ABC and «BCD. The squared length
of the side AD is a smooth function of the torus ’. The space ? of quadrilaterals with

fixed lengths of all sides is a level set of that function.

Theorem 2.1. The folding mapping F = FcoFy is Arnold-Liouville integrable on the moduli
space P’ of quadrilaterals ABCD with fixed lengths of the sides AB, BC,CD.

Proof. Folding does not affect side lengths. In particular, |AD|? is a first integral of F.
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Furthermore, the map F : ?’ — ?’ has an invariant symplectic structure given by
Q :=d£ABC A d«BCD.

To show invariance, consider, for instance, folding of the vertex C depicted in Figure 2.

The pullback of the symplectic form Q by this map is
F:Q=dsABC' Ad«BC'D = d(£ABC — 2£CBD) Ad(2m — £BCD) = —Q — 2d2CBD A d£BCD.

Furthermore, since the side lengths |BC| and |CD| are fixed, the angle ~CBD is a function
of the angle «BCD and is independent of the angle ZABC. So, d2CBD A d«BCD = 0,
implying

FiQ=-Q,

i.e., the form Q is anti-invariant under a single folding, and hence invariant under F. [

3 Darboux’s porism

Theorem 3.1 (Darboux’s porism). Assume we are given a quadrilateral which restores
its initial shape after 2n alternating foldings at adjacent vertices. Suppose its side lengths
are such that no linear combination of them with coefficients +1 is equal to zero. Then
any quadrilateral with the same side lengths restores its initial shape after 2n alternating

foldings at adjacent vertices.

Remark 3.2. The condition on linear combinations of side lengths cannot be avoided.
Consider, for instance a quadrilateral with all four vertices along a line, shown in Figure 3.
Here we have |AB| = 2, |BC| =1, |CD| = 2, |AD| = 3. Clearly, this quadrilateral is invariant
under any folding. However, that is not so for a generic quadrilateral with side lengths

2,1,2,3.

Proof of Theorem 3.1. The assumption on linear combinations of side lengths ensures
that the moduli space 2 of quadrilaterals with such side lengths is a regular level set of

the function |AD|? on the moduli space #’ of polygons with fixed lengths of AB, BC, CD.
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Figure 3: A degenerate polygon.

We are given that there is a quadrilateral P € 2 on that level set such that F*(P) = P. So,
by Arnold-Liouville integrability of F, we have that F" is the identity on the connected
component of ? containing P. Moreover, since there are at most two components, and they
are interchanged by an orientation-reversing isometry which commutes with foldings,

we must have that F” is the identity of the whole of 2, as desired. O

4 Aremark on polygons with more vertices

The F-invariant symplectic form on the moduli space ?’ of quadrilaterals with fixed
lengths of the sides AB, BC,CD induces an F-invariant non-vanishing 1-form on any non-
singular level set of the first integral |AD|?, i.e., on the moduli space 2 of quadrilaterals
with fixed side lengths. The existence of this 1-form is at heart of Arnold-Liouville theorem.
It can be shown that, up to a constant factor, this form is given by

d«£ABC
area of /\ ACD’

This expression is invariant under cyclic permutation of vertices, up to sign. Likewise,
the expression

dpia A Adi,
area of the triangle formed by verticesi —1,i,i + 1’

where ¢; is the angle subdued at ith vertex (the indices are understood cyclically, modulo
n), gives a volume form on the moduli space of n-gons with fixed side lengths which is
anti-invariant under each folding and hence invariant under an even number of foldings.
However, for n > 4, this does not imply any kind of integrable behavior. Moreover,
already for pentagons a random sequence of foldings has dense orbits on the moduli
space P [CD23].
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Figure 4: The zigzag porism: all zigzags with the same edge length close after the same

number of steps.

5 The zigzag porism

Let C, and C, be two circles in R3. A zigzag between C, and C, is an equilateral polygon
whose odd-indexed vertices lie on C, and even-indexed vertices lie on C,. The zigzag
porism says that if there exists a closed 2n-gonal zigzag between C, and C,, then any zigzag
between C, and C, with the same edge length is also a closed 2n-gon [Bot65, BHH74], see
Figure 4.

A zigzag between two circles C,, C, may be built by iterating the zigzag map Z : C, x
Cp, — C, x Cp, which sends a pair A € C,, B € C, to a pair A’ € C,, B € C, such that
|A’B’| = |A’B| = |AB|, see Figure 5. This map is a composition of two involutions, namely
(A,B) —— (A’,B), where |A’B| = |AB|, and (A’, B) —— (A’,B’), where |A’B’| = |A’B|. Observe

Figure 5: The zigzag map Z: (A,B) —— (A’,B’).
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Figure 6: Two successive legs AB, BA’ of a zigzag are related by folding.

that, in the case when the circles C,, C, are coplanar, these involutions are just foldings
of the quadrilateral 0,ABO,, where O,, O, are centers of C,,C;, at A and B respectively,
see Figure 6. So, the planar case of the zigzag porism is equivalent to Darboux’s porism

[CHOO]. Here we show that the integrability result carries over to the spatial situation:
Theorem 5.1. The zigzag map Z is Arnold-Liouville integrable for any circles C,, Cy, in R3.

Proof. By definition, the map Z: (A,B) ~— (A’,B’) preserves the squared distance be-
tween A and B. So, it suffices to find an area form on C, x Cp, invariant under Z. Let
¢4, € R/27Z be standard angular parameters on C,, C,. We will prove that the form
d¢, Ad¢, on C, x C,, is preserved by Z. To that end, it suffices to establish anti-invariance
of that form with respect to the involutions whose composition gives Z. Furthermore,

since those involutions are related to each other by interchanging the roles of the circles

Figure 7: The involution (4, B) —— (A’, B) takes the form d¢, A d¢, to —d¢, A dey.
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C,, Cy, it is sufficient to consider the involution (A, B) v— (A4’, B) defined by the condition
|A'B| = |AB|, where A, A’ € C,. Let B be the orthogonal projection of B onto the plane
containing C,. Then |AB| = |A’B|, see Figure 7. Here 0,X is the reference direction used

to define the angular coordinated ¢, on C,. We have
£X04A + £X0,A" = 2£X0,B.

So, the sum on the left only depends on the position of the point B but not A. Therefore,

in coordinates ¢,, ¢;, the involution (A, B) —— (A’, B) has the form

(ba> b)) == (f(#5) — da> Pp)

for a certain smooth function f. So, the form d¢, A d¢, is indeed anti-invariant under

this involution. ]

In terms of the map Z, the zigzag porism says that if an orbit of (4, B) € C, x C, under
Z is n-periodic, then the same holds for any (4’,B’) € C, x C, with |A’B’| = |AB|. This
is derived from Theorem 5.1 in the same way as Darboux’s porism is obtained from

Theorem 2.1.
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