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Abstract: We put Darboux’s porism on folding of quadrilaterals, as well as

closely related Bottema’s zigzag porism, in the context of Arnold-Liouville

integrability.
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1 Introduction

One of the historically first manifestations of integrability is Poncelet’s porism, also known

as Poncelet’s closure theorem. Poncelet’s theorem says that if a planar 𝑛-gon is inscribed

in a conic 𝐶1 and circumscribed about another conic 𝐶2, then any point of 𝐶1 is a vertex

of such an 𝑛-gon, see Figure 1. The two arguably most standard proofs of this theorem

are based, respectively, on complex and symplectic geometry. The complex proof goes
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Folding of quadrilaterals

Figure 1: Every point of 𝐶1 is a vertex of a pentagon inscribed in 𝐶1 and circumscribed

about 𝐶2.

roughly as follows. One can identify the space of tangents dropped from a point on

𝐶1 to 𝐶2 with an elliptic curve. The successive sides of a polygon inscribed in 𝐶1 and

circumscribed about 𝐶2 are points on that curve related to each by a fixed translation.

This polygon closes up if and only if the translation vector is a torsion point on the elliptic

curve. Whether or not that is the case depends only on 𝐶1 and 𝐶2, but not on the initial

point, so all polygons inscribed in 𝐶1 and circumscribed about 𝐶2 will close up after the

same number of steps [GH77].

The second, symplectic, proof is based on the fact that any two generic conics can

be mapped, by a projective transformation, to confocal conics. In the confocal case, a

polygon inscribed in 𝐶1 and circumscribed about 𝐶2 can be identified with a billiard

trajectory in 𝐶1. The billiard in a conic is an integrable system, and any two polygons

inscribed in 𝐶1 and circumscribed about 𝐶2 correspond to trajectories belonging to the

same level set of the first integral. Hence, by Arnold-Liouville theorem, if one of the

trajectories is periodic with period 𝑛, then so is the other one, cf. [LT07].

A lesser known relative of Poncelet’s porism is Darboux’s porism on folding of quadri-

laterals. Folding of a vertex of a planar polygon is the reflection of that vertex is the

diagonal joining its neighbors, see Figure 2. Darboux’s porism says that if a sequence

of alternating foldings of adjacent vertices restores, after 2𝑛 steps, the initial polygon,

then this is the case for any polygon with the same side lengths. For example, folding any

polygon with side lengths 1, 3, 3
√
5, 5 six times, we come back to the initial polygon, see
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Figure 2: Folding of the vertex 𝐶 of a quadrilateral 𝐴𝐵𝐶𝐷. Its new position is 𝐶′.

[Izm23, Figure 2].

Just like Poncelet’s porism, Darboux’s theorem can be proved using elliptic curves.

Specifically, one shows that the complexified moduli space of quadrilaterals with fixed

side length is an elliptic curve. Composition of foldings at adjacent vertices amounts to

a translation on that curve. Whether or not a sequence of foldings restores the initial

polygon depends on whether the translation vector is a torsion point and is independent

on the particular choice of a quadrilateral [Izm23].

What currently seems to be missing in the literature is a symplectic proof of Darboux’s

theorem. We provide such a proof in the present paper. Specifically, we show that,

in an appropriate sense, Darboux’s folding is Arnold-Liouville integrable, and deduce

Darboux’s porism.

Furthermore, we extend these results to Bottema’s zigzag porism [Bot65], which can

be stated as follows. Let 𝐶𝑎 and 𝐶𝑏 be two circles such that there exists a unit equilateral

2𝑛-gon whose odd-indexed vertices lie on 𝐶𝑎 and even-indexed vertices lie on 𝐶𝑏. Then

there exist infinitely many such 2𝑛-gons. The zigzag porism is equivalent to Darboux’s

porism when the circles are coplanar [CH00], but is in fact valid for any two circles in

ℝ3 [BHH74]. We construct the underlying Arnold-Liouville integrable system in this more

general setting.
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2 Arnold-Liouville integrability of folding

Let 𝒫 be the space of quadrilaterals 𝐴𝐵𝐶𝐷 with fixed side lengths, considered up to

orientation-preserving isometries. There is abundant literature on the topology of such

spaces for polygons with any number of vertices, see [KM95] and references therein. The

space 𝒫 is a smooth manifold assuming that there is no linear combination of side lengths

with coefficients ±1 which is equal to zero [KM95, Lemma 2]. In the case of quadrilaterals,

this manifold is diffeomorphic to a circle or disjoint union of two circles, see [KM95,

Theorem 1]. These circles are distinguished by the sign of the oriented area and are

interchanged by an orientation-reversing isometry, cf. [KM95, Section 10].

Denote by 𝐹𝐵 ∶ 𝒫 → 𝒫 folding of the vertex 𝐵. This mapping is well-defined assuming

that the vertices 𝐴 and 𝐶 cannot come together. This holds provided that the side lengths

satisfy at least one of the following conditions: |𝐴𝐵| ≠ |𝐵𝐶| or |𝐴𝐷| ≠ |𝐶𝐷|. Likewise, let

𝐹𝐶 ∶ 𝒫 → 𝒫 be folding of 𝐶, and let 𝐹 ∶= 𝐹𝐶◦𝐹𝐵 be the composition of the two foldings.

Darboux’s porism says that if 𝐹𝑛(𝑃) = 𝑃 for some quadrilateral 𝑃 ∈ 𝒫, then 𝐹𝑛 is the

identity mapping on 𝒫. We shall prove this by establishing Arnold-Liouville integrability

of the mapping 𝐹.

Clearly, 𝐹 cannot be Arnold-Liouville integrable on the space 𝒫 of quadrilaterals with

fixed side lengths, as the latter space is one-dimensional. So, we consider a bigger space

𝒫′ of quadrilaterals with fixed lengths of the sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐷, again considered up to

orientation-preserving isometries. This space is diffeomorphic to a two-dimensional

torus and is parametrized by the oriented angles ∠𝐴𝐵𝐶 and ∠𝐵𝐶𝐷. The squared length

of the side 𝐴𝐷 is a smooth function of the torus 𝒫′. The space 𝒫 of quadrilaterals with

fixed lengths of all sides is a level set of that function.

Theorem 2.1. The folding mapping 𝐹 = 𝐹𝐶◦𝐹𝐵 is Arnold-Liouville integrable on the moduli

space 𝒫′ of quadrilaterals 𝐴𝐵𝐶𝐷 with fixed lengths of the sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐷.

Proof. Folding does not affect side lengths. In particular, |𝐴𝐷|2 is a first integral of 𝐹.

Arnold Mathematical Journal, Vol.11(4), 2025 115

http://dx.doi.org/10.56994/ARMJ


Anton Izosimov

Furthermore, the map 𝐹∶ 𝒫′ → 𝒫′ has an invariant symplectic structure given by

Ω ∶= 𝑑∠𝐴𝐵𝐶 ∧ 𝑑∠𝐵𝐶𝐷.

To show invariance, consider, for instance, folding of the vertex 𝐶 depicted in Figure 2.

The pullback of the symplectic form Ω by this map is

𝐹∗𝐶Ω = 𝑑∠𝐴𝐵𝐶′ ∧ 𝑑∠𝐵𝐶′𝐷 = 𝑑(∠𝐴𝐵𝐶 − 2∠𝐶𝐵𝐷) ∧ 𝑑(2𝜋 − ∠𝐵𝐶𝐷) = −Ω − 2𝑑∠𝐶𝐵𝐷 ∧ 𝑑∠𝐵𝐶𝐷.

Furthermore, since the side lengths |𝐵𝐶| and |𝐶𝐷| are fixed, the angle ∠𝐶𝐵𝐷 is a function

of the angle ∠𝐵𝐶𝐷 and is independent of the angle ∠𝐴𝐵𝐶. So, 𝑑∠𝐶𝐵𝐷 ∧ 𝑑∠𝐵𝐶𝐷 = 0,

implying

𝐹∗𝐶Ω = −Ω,

i.e., the form Ω is anti-invariant under a single folding, and hence invariant under 𝐹.

3 Darboux’s porism

Theorem 3.1 (Darboux’s porism). Assume we are given a quadrilateral which restores

its initial shape after 2𝑛 alternating foldings at adjacent vertices. Suppose its side lengths

are such that no linear combination of them with coefficients ±1 is equal to zero. Then

any quadrilateral with the same side lengths restores its initial shape after 2𝑛 alternating

foldings at adjacent vertices.

Remark 3.2. The condition on linear combinations of side lengths cannot be avoided.

Consider, for instance a quadrilateral with all four vertices along a line, shown in Figure 3.

Here we have |𝐴𝐵| = 2, |𝐵𝐶| = 1, |𝐶𝐷| = 2, |𝐴𝐷| = 3. Clearly, this quadrilateral is invariant

under any folding. However, that is not so for a generic quadrilateral with side lengths

2, 1, 2, 3.

Proof of Theorem 3.1. The assumption on linear combinations of side lengths ensures

that the moduli space 𝒫 of quadrilaterals with such side lengths is a regular level set of

the function |𝐴𝐷|2 on the moduli space 𝒫′ of polygons with fixed lengths of 𝐴𝐵, 𝐵𝐶, 𝐶𝐷.
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Figure 3: A degenerate polygon.

We are given that there is a quadrilateral 𝑃 ∈ 𝒫 on that level set such that 𝐹𝑛(𝑃) = 𝑃. So,

by Arnold-Liouville integrability of 𝐹, we have that 𝐹𝑛 is the identity on the connected

component of𝒫 containing 𝑃. Moreover, since there are at most two components, and they

are interchanged by an orientation-reversing isometry which commutes with foldings,

we must have that 𝐹𝑛 is the identity of the whole of 𝒫, as desired.

4 A remark on polygons with more vertices

The 𝐹-invariant symplectic form on the moduli space 𝒫′ of quadrilaterals with fixed

lengths of the sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐷 induces an 𝐹-invariant non-vanishing 1-form on any non-

singular level set of the first integral |𝐴𝐷|2, i.e., on the moduli space 𝒫 of quadrilaterals

with fixed side lengths. The existence of this 1-form is at heart of Arnold-Liouville theorem.

It can be shown that, up to a constant factor, this form is given by

𝑑∠𝐴𝐵𝐶
area of △𝐴𝐶𝐷

.

This expression is invariant under cyclic permutation of vertices, up to sign. Likewise,

the expression

𝑑𝜙𝑖+2 ∧⋯ ∧ 𝑑𝜙𝑖−2
area of the triangle formed by vertices 𝑖 − 1, 𝑖, 𝑖 + 1

,

where 𝜙𝑖 is the angle subdued at 𝑖th vertex (the indices are understood cyclically, modulo

𝑛), gives a volume form on the moduli space of 𝑛-gons with fixed side lengths which is

anti-invariant under each folding and hence invariant under an even number of foldings.

However, for 𝑛 > 4, this does not imply any kind of integrable behavior. Moreover,

already for pentagons a random sequence of foldings has dense orbits on the moduli

space 𝒫 [CD23].
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Figure 4: The zigzag porism: all zigzags with the same edge length close after the same

number of steps.

5 The zigzag porism

Let 𝐶𝑎 and 𝐶𝑏 be two circles in ℝ3. A zigzag between 𝐶𝑎 and 𝐶𝑏 is an equilateral polygon

whose odd-indexed vertices lie on 𝐶𝑎 and even-indexed vertices lie on 𝐶𝑏. The zigzag

porism says that if there exists a closed 2𝑛-gonal zigzag between𝐶𝑎 and𝐶𝑏, then any zigzag

between 𝐶𝑎 and 𝐶𝑏 with the same edge length is also a closed 2𝑛-gon [Bot65, BHH74], see

Figure 4.

A zigzag between two circles 𝐶𝑎, 𝐶𝑏 may be built by iterating the zigzag map 𝑍∶ 𝐶𝑎 ×

𝐶𝑏 → 𝐶𝑎 × 𝐶𝑏 which sends a pair 𝐴 ∈ 𝐶𝑎, 𝐵 ∈ 𝐶𝑏 to a pair 𝐴′ ∈ 𝐶𝑎, 𝐵′ ∈ 𝐶𝑏 such that

|𝐴′𝐵′| = |𝐴′𝐵| = |𝐴𝐵|, see Figure 5. This map is a composition of two involutions, namely

(𝐴, 𝐵) ↦→ (𝐴′, 𝐵), where |𝐴′𝐵| = |𝐴𝐵|, and (𝐴′, 𝐵) ↦→ (𝐴′, 𝐵′), where |𝐴′𝐵′| = |𝐴′𝐵|. Observe

Figure 5: The zigzag map 𝑍∶ (𝐴, 𝐵) ↦→ (𝐴′, 𝐵′).

Arnold Mathematical Journal, Vol.11(4), 2025 118

http://dx.doi.org/10.56994/ARMJ


Folding of quadrilaterals

Figure 6: Two successive legs 𝐴𝐵, 𝐵𝐴′ of a zigzag are related by folding.

that, in the case when the circles 𝐶𝑎, 𝐶𝑏 are coplanar, these involutions are just foldings

of the quadrilateral 𝑂𝑎𝐴𝐵𝑂𝑏, where 𝑂𝑎, 𝑂𝑏 are centers of 𝐶𝑎, 𝐶𝑏, at 𝐴 and 𝐵 respectively,

see Figure 6. So, the planar case of the zigzag porism is equivalent to Darboux’s porism

[CH00]. Here we show that the integrability result carries over to the spatial situation:

Theorem 5.1. The zigzag map 𝑍 is Arnold-Liouville integrable for any circles 𝐶𝑎, 𝐶𝑏 in ℝ3.

Proof. By definition, the map 𝑍∶ (𝐴, 𝐵) ↦→ (𝐴′, 𝐵′) preserves the squared distance be-

tween 𝐴 and 𝐵. So, it suffices to find an area form on 𝐶𝑎 × 𝐶𝑏 invariant under 𝑍. Let

𝜙𝑎, 𝜙𝑏 ∈ ℝ∕2𝜋ℤ be standard angular parameters on 𝐶𝑎, 𝐶𝑏. We will prove that the form

𝑑𝜙𝑎 ∧ 𝑑𝜙𝑏 on 𝐶𝑎 × 𝐶𝑏 is preserved by 𝑍. To that end, it suffices to establish anti-invariance

of that form with respect to the involutions whose composition gives 𝑍. Furthermore,

since those involutions are related to each other by interchanging the roles of the circles

Figure 7: The involution (𝐴, 𝐵) ↦→ (𝐴′, 𝐵) takes the form 𝑑𝜙𝑎 ∧ 𝑑𝜙𝑏 to −𝑑𝜙𝑎 ∧ 𝑑𝜙𝑏.
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𝐶𝑎, 𝐶𝑏, it is sufficient to consider the involution (𝐴, 𝐵) ↦→ (𝐴′, 𝐵) defined by the condition

|𝐴′𝐵| = |𝐴𝐵|, where 𝐴,𝐴′ ∈ 𝐶𝑎. Let 𝐵̂ be the orthogonal projection of 𝐵 onto the plane

containing 𝐶𝑎. Then |𝐴𝐵̂| = |𝐴′𝐵̂|, see Figure 7. Here 𝑂𝑎𝑋 is the reference direction used

to define the angular coordinated 𝜙𝑎 on 𝐶𝑎. We have

∠𝑋𝑂𝑎𝐴 + ∠𝑋𝑂𝑎𝐴′ = 2∠𝑋𝑂𝑎𝐵̂.

So, the sum on the left only depends on the position of the point 𝐵 but not 𝐴. Therefore,

in coordinates 𝜙𝑎, 𝜙𝑏, the involution (𝐴, 𝐵) ↦→ (𝐴′, 𝐵) has the form

(𝜙𝑎, 𝜙𝑏) ↦→ (𝑓(𝜙𝐵) − 𝜙𝑎, 𝜙𝑏)

for a certain smooth function 𝑓. So, the form 𝑑𝜙𝑎 ∧ 𝑑𝜙𝑏 is indeed anti-invariant under

this involution.

In terms of the map 𝑍, the zigzag porism says that if an orbit of (𝐴, 𝐵) ∈ 𝐶𝑎 × 𝐶𝑏 under

𝑍 is 𝑛-periodic, then the same holds for any (𝐴′, 𝐵′) ∈ 𝐶𝑎 × 𝐶𝑏 with |𝐴′𝐵′| = |𝐴𝐵|. This

is derived from Theorem 5.1 in the same way as Darboux’s porism is obtained from

Theorem 2.1.
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