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Abstract: In this paper we extend the novel approach to discrete Painlevé

equations initiated in our previous work [2]. A classification scheme for dis-

crete Painlevé equations proposed by Sakai interprets them as birational

isomorphisms between generalized Halphen surfaces (surfaces obtained from

ℙ1 × ℙ1 by blowing up at eight points). Sakai’s classification is thus based on

the classification of generalized Halphen surfaces. In our scheme, the family

of generalized Halphen surfaces is replaced by a pencil of quadrics in ℙ3. A

discrete Painlevé equation is viewed as an autonomous transformation of ℙ3

that preserves the pencil and maps each quadric of the pencil to a different

one. Thus, our scheme is based on the classification of pencils of quadrics

in ℙ3. Compared to our previous work, here we consider a technically more
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demanding case where the characteristic polynomial ∆(𝜆) of the pencil of

quadrics is not a complete square. As a consequence, traversing the pencil

via a 3D Painlevé map corresponds to a translation on the universal cover of

the Riemann surface of
√
∆(𝜆), rather than to a Möbius transformation of the

pencil parameter 𝜆 as in [2].

1 Introduction

This paper is the second contribution to our study devoted to a novel interpretation

of discrete Painlevé equations, which builds up on [2]. Discrete Painlevé equations

belong to the most intriguing objects in the theory of discrete integrable systems. After

some examples sporadically appeared in various applications, their systematic study

started when Grammaticos, Ramani and Papageorgiou proposed the notion of “singularity

confinement” as an integrability detector, and found the first examples of second order

nonlinear non-autonomous difference equations with this property, which they denoted

as discrete Painlevé equations [9, 16]. The activity of their group was summarized in [8]. A

general classification scheme of discrete Painlevé equations was proposed by Sakai [18]

and it is given a detailed exposition in the review paper by Kajiwara, Noumi and Yamada

[11]. In the framework of Sakai’s scheme, discrete Painlevé equations are birational maps

between generalized Halphen surfaces 𝑋. The latter can be realized as ℙ1 × ℙ1 blown up

at eight points. A monographic exposition of discrete Painlevé equations is given by Joshi

[10].

Let us summarize the main ingredients and features of our alternative approach to

discrete Painlevé equations, initiated in [2].

• A pencil of quadrics {𝑄𝜆} in ℙ3 containing non-degenarate quadrics. Such pencils

can be classified modulo projective transformations of ℙ3, and they come in thirteen

classes. The class of the pencil can be identified by the type of its base curve 𝑄0 ∩
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𝑄∞. This is a spatial curve of degree 4, whose type can vary from a generic one

(irreducible smooth curve for a pencil of type (i)), through irreducible curves with a

node (type (ii)) or with a cusp (type (iii)), to various types of reducible curves (from

two non-coplanar conics intersecting at two points, type (iv), to a pair of intersecting

double lines, type (xiii)).

• The second pencil of quadrics {𝑃𝜇} having one quadric in common with {𝑄𝜆}, say

𝑃∞ = 𝑄∞. The base curves of both pencils intersect at eight points 𝑆𝑖, 𝑖 = 1, … , 8.

• Given two pencils of quadrics, one can define a three-dimensional analog of a QRT

map 𝐹 = 𝑖1◦𝑖2, where the 3D QRT involutions 𝑖1, 𝑖2 act along two families of generators

of 𝑄𝜆, see [1]. Each involution puts into correspondence two intersection points of

a generator with the quadric 𝑃𝜇. By definition, such an involution, and therefore

the 3D QRT map 𝐹 = 𝑖1◦𝑖2, leaves each quadric of two pencils invariant, and thus

possesses two rational integrals of motion 𝜆 = 𝑄0∕𝑄∞ and 𝜇 = 𝑃0∕𝑃∞.

• A Painlevé deformation map is the device which allows us to travel across the pencil

{𝑄𝜆}. More precisely, such a map 𝐿 on ℙ3 preserves the pencil, but not fiber-wise.

Rather, it sends each quadric 𝑄𝜆 to a different quadric 𝑄𝜆. Moreover, 𝐿 preserves

the base curve of the pencil {𝑄𝜆}. In the cases considered in [2], the base curve is

reducible and contains straight lines. In these cases, 𝐿 does not necessarily fix these

straight lines point-wise. In the cases considered in the present paper, 𝐿 fixes the

base curve 𝑄0 ∩ 𝑄∞ pointwise (in particular, it fixes all eight points 𝑆𝑖).

• A 3D Painlevé map is obtained by composition𝐹 = 𝐿◦𝑖1◦𝐿◦𝑖2, provided it possesses the

singularity confinement property. It is to be stressed that the pencil {𝑄𝜆} continues to

play a fundamental role in the dynamics of 𝐹: the maps 𝐿◦𝑖1, 𝐿◦𝑖2 preserve the pencil

and map each quadric 𝑄𝜆 to 𝑄𝜆. We do not have a straightforward description of the

dynamical role of the pencil {𝑃𝜇}, but anticipate its relation to the isomonodromic

description of the discrete Painlevé equations.

One can say that in our approach the role of a family of generalized Halphen surfaces
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is played by the quadrics of the pencil {𝑄𝜆} with eight distinguished points on the base

curve of the pencil. The base curve itself plays the role of the unique anti-canonical

divisor. Let us stress several features of our construction which are in a sharp contrast to

the Sakai scheme.

• Neither the exceptional divisor nor the eight distinguished points evolve under the

map 𝐹. Their discrete time evolution is apparent and is due to their representation in

the so-called pencil-adapted coordinates. These are coordinates (𝑥, 𝑦, 𝜆) ∈ ℙ1×ℙ1×ℙ1

establishing an isomorphism between each quadric 𝑄𝜆 of the pencil and ℙ1 × ℙ1.

The pencil-adapted coordinates of a point on the base curve do depend on 𝜆, so

traversing the pencil 𝜆 ↦→ 𝜆 under 𝐹 induces an apparent discrete time evolution of

the base curve and of the eight distinguished points.

• The shift parameter 𝛿 of discrete Painlevé equations (or its exponent 𝑞 = 𝑒𝛿 for the

𝑞-difference equations among them) is not an intrinsic characteristic of the configu-

ration of eight distinguished points, but is a free parameter of the construction.

One can say that our approach is a realization of the old-style idea of discrete Painlevé

equations being non-autonomous versions (or modifications) of the QRT maps. This idea

was instrumental in the discovery and early classification attempts of discrete Painlevé

equations, summarized in [8]. A more geometric version of this procedure was proposed

in the framework of the Sakai’s scheme by Carstea, Dzhamay and Takenawa [5]. In

their scheme, the de-autonomization of a given QRT map depends on the choice of one

biquadratic curve of the pencil. In our approach, the choice of the base curve and eight

distinguished point on it determines uniquely all the ingredients of the construction,

starting with the two pencils of quadrics.

The structure of the paper is as follows. In Section 2, we describe the construction

scheme of discrete Painlevé equations applicable to the present case and stress its dis-

tinctions from the previous paper [2]. The main distinction is that here we consider the

pencils whose characteristic polynomial ∆(𝜆) is not a complete square. As a consequence,
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the 3D QRT involutions 𝑖1, 𝑖2 and the 3D QRT map 𝐹 = 𝑖1◦𝑖2 are no more birational maps

of ℙ3. Rather, these maps become birational maps on 𝒳, a branched double covering of

ℙ3, whose ramification locus is the union of the singular quadrics 𝑄𝜆𝑖 , where 𝜆𝑖 are the

branch points of the Riemann surface ℛ of
√
∆(𝜆).

In Section 3, we formulate a general recipe for the construction of the Painlevé

deformation map 𝐿, responsible to the evolution 𝜆 ↦→ 𝜆 across the pencil of quadrics {𝑄𝜆}.

While in the first part [2] we had 𝜆 = 𝜎(𝜆), where 𝜎 ∶ ℙ1 → ℙ1 is a Möbius automorphism

fixing the set Sing(𝑄) ∶=
{
𝜆 ∈ ℙ1 ∶ 𝑄𝜆 is degenerate

}
, in the present paper the natural

definition becomes 𝜆 = 𝜆(𝜈), where 𝜆 = 𝜆(𝜈) is the holomorphic uniformization map for

the Riemann surface ℛ, and 𝜈 = 𝜈 + 2𝛿 is the translation on the universal cover ℂ. The

recipe turns out to be applicable to all types of the pencil {𝑄𝜆} except for the generic type

(i). The latter leads to the elliptic Painlevé equation, which will be treated in a separate

publication.

In Section 4, we show that the so constructed 𝐿 ensures the fundamental singularity

confinement property for our 3D Painlevé maps.

There follow five Sections 5–9 containing a detailed elaboration of our scheme for

all relevant types of the pencils except for the type (i). We recover, within our novel

framework, all discrete Painlevé equations except for the elliptic one, which is left for a

separate publication.

2 General scheme

We now describe the construction scheme of discrete Painlevé equations applicable to

the present case and stress its distinctions from the previous paper [2]. The first steps

are the same as there:

• Start with a pencil {𝐶𝜇} of biquadratic curves in ℙ1 × ℙ1 and the corresponding QRT

map. Let 𝑠1, … , 𝑠8 ∈ ℙ1 × ℙ1 be the base points of this pencil. Lift {𝐶𝜇} to a pencil of

quadrics {𝑃𝜇} in ℙ3 using the Segre embedding of ℙ1 ×ℙ1 to ℙ3. The base curve of this
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pencil passes through the lifts 𝑆1, … , 𝑆8 of the base points 𝑠1, … , 𝑠8.

• Choose one distinguished biquadratic curve 𝐶∞ of the pencil, along with its lift to a

quadric 𝑃∞.

• Based on these data, construct the pencil of quadrics {𝑄𝜆 = 𝑄0 − 𝜆𝑄∞} in ℙ3 spanned

by 𝑄0 = {𝑋1𝑋2 − 𝑋3𝑋4 = 0} and 𝑄∞ ∶= 𝑃∞. Recall that 𝑄0 is nothing but the image of

ℙ1×ℙ1 by the Segre embedding. The base curve of the pencil {𝑄𝜆} is, by definition, the

curve𝑄0∩𝑄∞, which is the image of 𝐶∞ under the Segre embedding. The intersection

of this curve with the base curve of the pencil {𝑃𝜇} consists exactly of the points

𝑆1, … , 𝑆8.

The characteristic polynomial of the pencil {𝑄𝜆} is

∆(𝜆) = det(𝑀𝜆) = det(𝑀0 − 𝜆𝑀∞), (1)

where 𝑀0,𝑀∞ ∈ Sym4×4(ℂ) are symmetric matrices of the quadratic forms 𝑄0, 𝑄∞. In the

present paper, we are dealing with the cases where this polynomial is not a complete

square. According to the projective classification of pencils of quadrics, discussed in [2],

these are the following six cases:

(i) Pencil of quadrics through a non-singular spatial quartic curve.

Segre symbol [1, 1, 1, 1]; ∆(𝜆) = (𝜆 − 𝜆1)(𝜆 − 𝜆2)(𝜆 − 𝜆3)(𝜆 − 𝜆4).

(ii) Pencil of quadrics through a nodal spatial quartic curve.

Segre symbol [2, 1, 1]; ∆(𝜆) = (𝜆 − 𝜆1)2(𝜆 − 𝜆2)(𝜆 − 𝜆3).

(iii) Pencil of quadrics through a cuspidal spatial quartic curve.

Segre symbol [3, 1]; ∆(𝜆) = (𝜆 − 𝜆1)3(𝜆 − 𝜆2).

(iv) Pencil of quadrics through two non-coplanar conics sharing two points.

Segre symbol [(1, 1), 1, 1]; ∆(𝜆) = (𝜆 − 𝜆1)2(𝜆 − 𝜆2)(𝜆 − 𝜆3).

(v) Pencil of quadrics through two non-coplanar conics touching at a point.

Segre symbol [(2, 1), 1]; ∆(𝜆) = (𝜆 − 𝜆1)3(𝜆 − 𝜆2).
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(vi) Pencil of quadrics tangent along a non-degenerate conic.

Segre symbol [(1, 1, 1), 1]; ∆(𝜆) = (𝜆 − 𝜆1)3(𝜆 − 𝜆2).

As discussed in [2], for 𝑋 ∈ 𝑄𝜆, the generators 𝓁1(𝑋) and 𝓁2(𝑋) are rational functions of

𝑋 and of
√
∆(𝜆). The dependence on 𝜆 can be expressed as a holomorphic dependence on

the point of the Riemann surface ℛ of
√
∆(𝜆). This Riemann surface is a double cover of ℂ̂

branched at two or at four points. By the uniformization theorem, its universal cover is ℂ.

We will denote the uniformizing variable 𝜈 ∈ ℂ, so that the maps 𝜈 ↦→ 𝜆 and 𝜈 ↦→
√
∆(𝜆)

are holomorphic. The following three situations can be distinguished:

- case (i): four distinct branch points 𝜆1, 𝜆2, 𝜆3, 𝜆4, the Riemann surface ℛ is a torus,

whose conformal class is determined by the cross-ratio of the branch points. This

case, corresponding to the elliptic Painlevé equations, will be treated in an upcoming

work;

- cases (ii), (iv): two branch points 𝜆2, 𝜆3, one of the periods of the torus becomes

infinite, so that ℛ is a cylinder;

- cases (iii), (v), (vi): two branch points 𝜆1, 𝜆2, both periods of the torus become infinite,

so that ℛ is plane.

It becomes necessary to introduce modifications in the two major ingredients of the

construction in [2].

• The generators 𝓁1, 𝓁2 are not rational functions on ℙ3 anymore. Rather, they become

well-defined rational maps on the variety 𝒳 which is a branched double covering of

ℙ3, whose ramification locus is the union of the singular quadrics 𝑄𝜆𝑖 , where 𝜆𝑖 are

the branch points of ℛ. The same is true for a linear projective change of variables

𝑋 = 𝐴𝜈𝑌 reducing the quadratic form 𝑄𝜆(𝜈) to the standard form 𝑄0, which we now

write as

𝑄𝜆(𝜈)(𝐴𝜈𝑌) = 𝑄0(𝑌), or 𝐴T
𝜈𝑀𝜆(𝜈)𝐴𝜈 = 𝑀0, (2)
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and for the pencil-adapted coordinates

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝜈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑥𝑦

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=∶ 𝜙𝜈(𝑥, 𝑦). (3)

Thus, 𝜙𝜈 gives a parametrization of 𝑄𝜆(𝜈) by (𝑥, 𝑦) ∈ ℙ1 × ℙ1, such that the generators

𝓁1, resp. 𝓁2 of 𝑄𝜆 correspond to 𝑥 = const, resp. to 𝑦 = const. Interchanging two sheets

of the covering corresponds to interchanging two families of generators 𝓁1, 𝓁2.

• Also the 3D QRT involutions 𝑖1, 𝑖2 for the pencil {𝑄𝜆}, defined by intersections of

its generators 𝓁1, 𝓁2 with the quadrics 𝑃𝜇 (see [1]), are not birational maps of ℙ3

anymore, and the same is true for the 3D QRT map 𝐹 = 𝑖1◦𝑖2. Rather, these maps

become birational maps on 𝒳.

The next main deviation from the construction of [2] is that it becomes unnatural to

consider Painlevé deformation maps 𝐿 as birational maps ℙ3 preserving the pencil {𝑄𝜆}

and sending each 𝑄𝜆 to 𝑄𝜎(𝜆), where 𝜎 ∶ ℙ1 → ℙ1 is a Möbius automorphism fixing the

set Sing(𝑄) ∶= {𝜆 ∈ ℙ1 ∶ 𝑄𝜆 is degenerate}. Instead, in the present context we formulate the

following requirement.

• A Painlevé deformation map 𝐿 is a birational map on 𝒳 preserving the pencil {𝑄𝜆}

and sending 𝑄𝜆(𝜈) to 𝑄𝜆(𝜈), where 𝜈 ↦→ 𝜈 = 𝜈 + 2𝛿 is a translation on the universal

cover of ℛ.

As compared with [2], our construction will involve some additional ingredients,

required to establish the relation to the form of discrete Painlevé equations known from

the literature. The Painlevé deformation map 𝐿 is decomposed in two factors, each one

depending only on one of the variables 𝑥, 𝑦, and shifting the variable 𝜈 by 𝛿. This can be

done in two ways:

𝐿 = 𝐿1◦𝑅2, where 𝐿1 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿), 𝑅2 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿), (4)
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resp.

𝐿 = 𝐿2◦𝑅1, where 𝐿2 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿), 𝑅1 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿). (5)

(The indices 1, 2 refer to the variables which do not change under the map, like for 𝑖1, 𝑖2.)

Each one of 𝐿1, 𝐿2, 𝑅1, 𝑅2 maps 𝑄𝜆(𝜈) to 𝑄𝜆(𝜈+𝛿). We set

𝜈𝑛 = 𝜈0 + 2𝑛𝛿 for 𝑛 ∈ 1
2ℤ,

so that 𝜈𝑛+1∕2 = 𝜈𝑛 + 𝛿. The variables associated to the discrete Painlevé equations known

from the literature, parametrize in our formulation the quadrics with half-integer indices,

namely

(𝑥𝑛, 𝑦𝑛, 𝜈2𝑛−1∕2) ∈ 𝑄𝜆(𝜈2𝑛−1∕2) , (𝑥𝑛+1, 𝑦𝑛, 𝜈2𝑛+1∕2) ∈ 𝑄𝜆(𝜈2𝑛+1∕2) .

Definition 1. A 3D Painlevé map is given by

𝐹 = 𝑖̃1◦̃𝑖2, 𝑤ℎ𝑒𝑟𝑒 𝑖̃1 = 𝑅1◦𝑖1◦𝐿1, 𝑖̃2 = 𝑅2◦𝑖2◦𝐿2, (6)

or, in coordinates,

(𝑥𝑛, 𝑦𝑛, 𝜈2𝑛−1∕2)
𝐿2→ (𝑥, 𝑦𝑛, 𝜈2𝑛)

𝑖2→ (𝑥, 𝑦𝑛, 𝜈2𝑛)
𝑅2→ (𝑥𝑛+1, 𝑦𝑛, 𝜈2𝑛+1∕2) (7)

𝐿1→ (𝑥𝑛+1, 𝑦, 𝜈2𝑛+1)
𝑖1→ (𝑥𝑛+1, 𝑦, 𝜈2𝑛+1)

𝑅1→ (𝑥𝑛+1, 𝑦𝑛+1, 𝜈2𝑛+3∕2). (8)

The map 𝐹 is conjugate to 𝐿◦𝑖1◦𝐿◦𝑖2; note that the latter map acts between the quadrics

with integer indices.

Our last requirement repeats the one in [2]:

• The singularity confinement properties of 𝑖̃1, 𝑖̃2 are the same as that of 𝑖1, 𝑖2.

Reduction to the symmetric case. If the eight points 𝑠𝑖 are symmetric with respect to

the symmetry switch 𝜎 ∶ (𝑥, 𝑦) ↦→ (𝑦, 𝑥), we can define a 2D QRT root 𝑓 = 𝑖1◦𝜎 = 𝜎◦𝑖2 such

that 𝐹 = 𝑓◦𝑓. In this case, the map 𝐿 in the pencil-adapted coordinates satisfies 𝐿 = 𝜎◦𝐿◦𝜎,

and therefore its decomposition factors satisfy

𝐿2 = 𝜎◦𝐿1◦𝜎, 𝑅2 = 𝜎◦𝑅1◦𝜎.
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The 3D Painlevé map 𝐹 can be written as

𝐹 = 𝑅1◦𝑖1◦𝐿1◦𝑅2◦𝑖2◦𝐿2 = 𝑅1◦𝑖1◦𝐿1◦𝜎◦𝑅1◦𝜎◦𝑖2◦𝜎◦𝐿1

= 𝑅1◦𝑖1◦𝜎◦𝐿2◦𝑅1◦𝜎◦𝑖2◦𝐿2

= (𝑅1◦𝑓◦𝐿2)2.

Therefore, one can define the Painlevé deformed QRT root as 𝑓 = 𝑅1◦𝑓◦𝐿2, then the

discrete Painlevé map decomposes as 𝐹 = 𝑓◦𝑓.

3 Construction of the Painlevé deformation map

The desired properties of the Painlevé deformation map 𝐿 are ensured by the following

construction.

Theorem 1. If the polynomial 𝑄∞ does not depend on 𝑋3, define the map 𝐿 ∶ [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶

𝑋4] ↦→ [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶ 𝑋4] by requiring that, for 𝑋 ∈ 𝑄𝜆(𝜈), there holds

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑋1 = 𝑋1𝑋4,

𝑋2 = 𝑋2𝑋4,

𝑋3 = 𝑋3𝑋4 −
(
𝜆(𝜈) − 𝜆(𝜈)

)
𝑄∞(𝑋),

𝑋4 = 𝑋2
4 ,

(9)

where 𝜈 = 𝜈 + 2𝛿. If 𝑄∞ does not depend on 𝑋1, define

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑋1 = 𝑋1𝑋2 +
(
𝜆(𝜈) − 𝜆(𝜈)

)
𝑄∞(𝑋),

𝑋2 = 𝑋2
2 ,

𝑋3 = 𝑋2𝑋3,

𝑋4 = 𝑋2𝑋4.

(10)

Then 𝐿 sends each 𝑄𝜆(𝜈) to 𝑄𝜆(𝜈) and fixes all points of the base curve of the pencil {𝑄𝜆} not

belonging to {𝑋4 = 0} (resp. to {𝑋2 = 0}), including all eight base points 𝑆𝑖, 𝑖 = 1, … , 8.

Proof. It follows by a simple computation. For instance, for the case (9):

𝑋1𝑋2 − 𝑋3𝑋4 − 𝜆(𝜈)𝑄∞(𝑋) = 𝑋2
4

(
𝑋1𝑋2 − 𝑋3𝑋4 − 𝜆(𝜈)𝑄∞(𝑋)

)
.
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Futher, if 𝑄∞(𝑋) = 0 and 𝑋4 ≠ 0, then [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶ 𝑋4] = [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶ 𝑋4]. ■

The recipe of Theorem 1 covers all cases treated in the present paper (pencils of

the types (ii)-(vi)). In retrospect, we notice that, with a natural modification (replace

𝜆 − 𝜆 = 𝜆(𝜈) − 𝜆(𝜈) by 𝜎(𝜆) − 𝜆), this recipe covers also the cases considered in the first

part of this study [2]. For pencils of the type (i) the quadric 𝑄∞ is non-degenerate, so a

modification of the recipe is required.

4 Singularity confinement

Our case-by-case computations reveal the following observation. In all examples of the

present paper, the eight points 𝑠1, … , 𝑠8 in ℙ1 × ℙ1 serve as the indeterminacy set for the

2D QRT involutions 𝑖1, 𝑖2. The singularity confinement structure can be summarised as:

{𝑥 = 𝑎𝑖}
𝑖1,→ 𝑠𝑖

𝑖2,→ {𝑦 = 𝑏𝑖}, 𝑖 = 1, … , 8. (11)

In the pencil-adapted coordinates, the 3D QRT involutions restricted to 𝑄𝜆(𝜈) are given

by the same formulas as the original 2D QRT involutions, with the points 𝑠𝑖 replaced by

their deformations 𝑠𝑖(𝜈). The latter still support a pencil of biquadratic curves, which are

the pre-images under 𝜙𝜈 of the intersection curves 𝑄𝜆(𝜈) ∩ 𝑃𝜇. Therefore, for the 3D QRT

involutions 𝑖1 and 𝑖2, we have

{𝑥 = 𝑎𝑖(𝜈)}
𝑖1→ 𝑠𝑖(𝜈)

𝑖2→ {𝑦 = 𝑏𝑖(𝜈)}. (12)

LetΦ𝑖 ⊂ ℙ3 be the ruled surface comprised of the lines on𝑄𝜆(𝜈) given, in the pencil-adapted

coordinates 𝜙𝜈, by the equations {𝑥 = 𝑎𝑖(𝜈)}. Likewise, let Ψ𝑖 ⊂ ℙ3 be the ruled surface

comprised of the lines on 𝑄𝜆(𝜈) given in the coordinates 𝜙𝜈 by the equations {𝑦 = 𝑏𝑖(𝜈)}.

Then, in view of (12), we obtain the following singularity confinement patterns for 𝑖1, 𝑖2:

Φ𝑖
𝑖1→ 𝑆𝑖

𝑖2→ Ψ𝑖. (13)

We emphasize that the surfaces Φ𝑖 are blown down to points (rather than curves), and

these points are blown up to surfaces Ψ𝑖 again.

Arnold Mathematical Journal, Vol.11(4), 2025 207

http://dx.doi.org/10.56994/ARMJ


Jaume Alonso, Yuri B. Suris

Theorem 2. Suppose that the involutions 𝑖1, 𝑖2 ∶ ℙ3 ⤏ ℙ3 have a singularity confinement

pattern of the type (13), and 𝐿 satisfies

𝐿(𝑆𝑖) = 𝑆𝑖. (14)

Then for the deformed maps 𝑖̃1 = 𝑅1◦𝑖1◦𝐿1, 𝑖̃2 = 𝑅2◦𝑖2◦𝐿2 we have:

𝐿−11 (Φ𝑖)
𝑖̃1→ 𝑅1(𝑆𝑖)

𝑖̃2→ 𝑅2(Ψ𝑖), (15)

which implies for 𝐹 = 𝑖̃1◦̃𝑖2 the singularity confinement pattern

(𝐿1◦̃𝑖2)−1(Φ𝑖)
𝐹
→ 𝑅1(𝑆𝑖)

𝐹
→ (̃𝑖1◦𝑅2)(Ψ𝑖). (16)

An important observation is that the eight points 𝑅1(𝑆𝑖) participating in these singu-

larity confinement patterns do not support a net of quadrics.

5 From a pencil of type (v) to the d-Painlevé equation of the

surface type 𝐴(1)
1

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic

curves {𝐶𝜇} through eight points 𝑠𝑖 = (𝑎𝑖, 𝑏𝑖), 𝑖 = 1, … , 8, where

𝑏𝑖 = −𝑎𝑖, 𝑖 = 1, … , 4, and 𝑏𝑖 = 1 − 𝑎𝑖, 𝑖 = 5, … , 8. (17)

These eight points support a pencil of biquadratic curves if they satisfy the condition

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 − 𝑎5 − 𝑎6 − 𝑎7 − 𝑎8 = −2. (18)

This pencil contains a reducible curve, consisting of two (1,1)-curves:

𝐶∞ = {(𝑥 + 𝑦)(𝑥 + 𝑦 − 1) = 0}. (19)

The vertical involution 𝑖1 for this pencil can be described by the following equation:

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦), (𝑦 + 𝑥)(𝑥 + 𝑦)
(𝑦 + 𝑥 − 1)(𝑥 + 𝑦 − 1)

=
∏4

𝑖=1(𝑥 − 𝑎𝑖)
∏8

𝑖=5(𝑥 − 𝑎𝑖)
. (20)
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s4

s5

s6
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s8

(a) (b)

Figure 1: (a) Base set of the surface type 𝐴(1)
1 : two quadruples of points on two touching

(1,1)-curves in ℙ1 × ℙ1. (b) Pencil of quadrics through two touching non-coplanar conics

Similarly, the horizontal involution 𝑖2 can be described by the following equation:

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦), (𝑥 + 𝑦)(𝑥 + 𝑦)
(𝑥 + 𝑦 − 1)(𝑥 + 𝑦 − 1)

=
∏4

𝑖=1(𝑦 + 𝑎𝑖)
∏8

𝑖=5(𝑦 + 𝑎𝑖 − 1)
. (21)

The QRT map is the composition of these two involutions, 𝐹 = 𝑖1◦𝑖2. The singularity

confinement structure of the involutions 𝑖1, 𝑖2 is as in (11). The symmetric case corresponds

to

𝑎2𝑖 = −𝑎2𝑖−1, 𝑖 = 1, 2, 𝑎2𝑖 = 1 − 𝑎2𝑖−1, 𝑖 = 3, 4.

In this case, 𝐹 = 𝑓◦𝑓, with 𝑓 = 𝑖1◦𝜎 = 𝜎◦𝑖2 being the QRT root (here 𝜎(𝑥, 𝑦) = (𝑦, 𝑥)).

3D Painlevé map. We consider the pencil of quadrics {𝑃𝜇} in ℙ3, the Segre lift of the

pencil of curves {𝐶𝜇}. The pencil {𝑄𝜆} is spanned by 𝑄0 = {𝑋1𝑋2 −𝑋3𝑋4 = 0} and 𝑄∞ = 𝑃∞ =

{(𝑋1 + 𝑋2)(𝑋1 + 𝑋2 − 𝑋4) = 0}:

𝑄𝜆 =
{
𝑋1𝑋2 − 𝑋3𝑋4 − 𝜆(𝑋1 + 𝑋2)(𝑋1 + 𝑋2 − 𝑋4) = 0

}
. (22)

The base set of the pencil 𝑄𝜆 consists of the two conics, {𝑋1𝑋2 −𝑋3𝑋4 = 0, 𝑋1 +𝑋2 = 0} and

{𝑋1𝑋2 − 𝑋3𝑋4 = 0, 𝑋1 + 𝑋2 = 𝑋4}, which have one common (touching) point [0 ∶ 0 ∶ 1 ∶ 0].
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This is a pencil of type (v). The intersection of this base set with the base set of the pencil

{𝑃𝜇} consists of eight points

𝑆𝑖 = [𝑎𝑖 ∶ 𝑏𝑖 ∶ 𝑎𝑖𝑏𝑖 ∶ 1], 𝑖 = 1, … , 8,

which are nothing but the lifts of the points 𝑠𝑖 under the Segre embedding.

The matrix 𝑀𝜆 of the quadratic form 𝑄𝜆:

𝑀𝜆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−2𝜆 1 − 2𝜆 0 −𝜆

1 − 2𝜆 −2𝜆 0 −𝜆

0 0 0 −1

−𝜆 −𝜆 −1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (23)

The characteristic polynomial of the pencil {𝑄𝜆} is: ∆(𝜆) = det(𝑀𝜆) = 1 − 4𝜆, which is not a

complete square, and Sing(𝑄𝜆) = { 1
4
,∞}. We uniformize the Riemann surface of

√
∆(𝜆) via

𝜆 = 1 − 𝜈2
4 ,

√
∆(𝜆) = 𝜈. (24)

Thus, 𝜆(−𝜈) = 𝜆(𝜈), while
√
∆(𝜆) changes its sign as 𝜈 → −𝜈. This gives us a double

cover of the original pencil branched at 𝜆 = 1∕4 (corresponding to 𝜈 = 0), and at 𝜆 = ∞

(corresponding to 𝜈 = ∞). The normalizing transformation of 𝑄𝜆(𝜈) to the canonical form

𝑄0 can be found as follows:
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝜈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑌1
𝑌2
𝑌3
𝑌4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (25)

where

𝐴𝜈 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2𝜈
(1 + 𝜈) 1

2𝜈
(1 − 𝜈) 0 0

1
2𝜈
(1 − 𝜈) 1

2𝜈
(1 + 𝜈) 0 0

1
4𝜈
(1 − 𝜈2) 1

4𝜈
(1 − 𝜈2) 1 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (26)
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Indeed, one immediately verifies that

𝐴T
𝜈𝑀𝜆(𝜈)𝐴𝜈 = 𝑀0.

Now, we are in the position to derive a parametrization of the quadric 𝑄𝜆:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝜈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑥𝑦

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2𝜈
((1 + 𝜈)𝑥 + (1 − 𝜈)𝑦)

1
2𝜈
((1 − 𝜈)𝑥 + (1 + 𝜈)𝑦)

𝑥𝑦 + 1−𝜈2

4𝜈
(𝑥 + 𝑦)

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=∶ 𝜙𝜈(𝑥, 𝑦). (27)

Observe that this parametrization is neither valid for 𝜈 = 0 nor for 𝜈 = ∞. The pencil-

adapted coordinates (𝑥, 𝑦, 𝜈) on (the double cover of) ℙ3 are:

𝑥 = (1 + 𝜈)𝑋1 − (1 − 𝜈)𝑋2
2𝑋4

, 𝑦 = (1 + 𝜈)𝑋2 − (1 − 𝜈)𝑋1
2𝑋4

, (28)

which have to be supplemented with

𝜆 = 1 − 𝜈2
4 = 𝑋1𝑋2 − 𝑋3𝑋4

(𝑋1 + 𝑋2)(𝑋1 + 𝑋2 − 𝑋4)
. (29)

Theorem 3. For any 𝛿 ∈ ℂ ⧵ {0}, define the Painlevé deformation map corresponding to the

translation 𝜈 ↦→ 𝜈 = 𝜈 + 2𝛿 by

𝐿 ∶

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑋1 = 𝑋1𝑋4,

𝑋2 = 𝑋2𝑋4,

𝑋3 = 𝑋3𝑋4 −
(
𝜆(𝜈) − 𝜆(𝜈)

)
𝑄∞(𝑋)

= 𝑋3𝑋4 + 𝛿(𝜈 + 𝛿)(𝑋1 + 𝑋2)(𝑋1 + 𝑋2 − 𝑋4),

𝑋4 = 𝑋2
4 .

Then, in pencil-adapted coordinates, the map 𝐿 acts as follows:

𝐿 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈), 𝑥 = 𝑥 + 𝛿
𝜈 (𝑥 + 𝑦), 𝑦 = 𝑦 + 𝛿

𝜈 (𝑥 + 𝑦), 𝜈 = 𝜈 + 2𝛿. (30)

For the latter map, the factorizations (4), (5) are given by

𝐿1 = 𝑅1 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿), 𝐿2 = 𝑅2 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿),
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where

𝑦 = 𝑦 + 𝛿
𝜈 (𝑥 + 𝑦) ⇔ 𝑦 + 𝑥

𝑦 + 𝑥 − 𝜈 − 𝛿 = 𝑦 + 𝑥
𝑦 + 𝑥 − 𝜈 , (31)

𝑥 = 𝑥 + 𝛿
𝜈 (𝑥 + 𝑦) ⇔ 𝑥 + 𝑦

𝑥 + 𝑦 − 𝜈 − 𝛿 = 𝑥 + 𝑦
𝑥 + 𝑦 − 𝜈 . (32)

Relation to the 𝑑-Painlevé equation of the surface type 𝐴(1)
1 . We now compute the 3D

Painlevé map 𝐹 = 𝑅1◦𝑖1◦𝐿1◦𝑅2◦𝑖2◦𝐿2 in the pencil-adapted coordinates (𝑥, 𝑦, 𝜈). For each

fixed 𝜈, the intersection curves 𝑄𝜆(𝜈) ∩ 𝑃𝜇 form a pencil through eight points

𝑠𝑖(𝜈) = (𝑎𝑖, −𝑎𝑖), 𝑖 = 1, … , 4, (33)

𝑠𝑖(𝜈) =
(𝜈 − 1

2 + 𝑎𝑖,
1 + 𝜈
2 − 𝑎𝑖

)
, 𝑖 = 5, … , 8, (34)

which are just the points 𝑆1, … , 𝑆8 (which are, recall, independent of 𝜈) expressed in the

pencil-adapted coordinates on𝑄𝜆(𝜈). The curve 𝐶∞(𝜈), which is the image of the base curve

of the pencil {𝑄𝜆} in the pencil-adapted coordinates on 𝑄𝜆(𝜈), is given by the equation

𝐶∞(𝜈) = {(𝑥 + 𝑦)(𝑥 + 𝑦 − 𝜈) = 0}. (35)

The map 𝐿 sends 𝐶∞(𝜈) to 𝐶∞(𝜈 + 2𝛿), while the maps 𝐿1 = 𝑅1 and 𝐿2 = 𝑅2 send 𝐶∞(𝜈)

to 𝐶∞(𝜈 + 𝛿). We observe that the map 𝐿 fixes the (𝑥, 𝑦) coordinates of the points of the

component {𝑥 + 𝑦 = 0} of 𝐶∞(𝜈), and acts as (𝑥, 𝑦) ↦→ (𝑥 + 𝛿, 𝑦 + 𝛿) on the component

{𝑥 + 𝑦 = 𝜈}. This “shift” under the map 𝐿 is, however, only apparent, as this map fixes the

curve 𝒬0 ∩ 𝒬∞ pointwise. Similarly, the map 𝐿1 = 𝑅1 acts on the second component as

(𝑥, 𝑦) ↦→ (𝑥, 𝑦 + 𝛿), while 𝐿2 = 𝑅2 acts as (𝑥, 𝑦) ↦→ (𝑥 + 𝛿, 𝑦). These actions are non-trivial

in homogeneous coordinates 𝑋.

The formulas for the 3D QRT involutions 𝑖1, 𝑖2 restricted to 𝑄𝜆(𝜈) coincide, in the pencil-

adapted coordinates, with the original QRT involutions (20) and (21), upon replacing 𝑠𝑖
by 𝑠𝑖(𝜈):

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦), (𝑦 + 𝑥)(𝑥 + 𝑦)
(𝑦 + 𝑥 − 𝜈)(𝑥 + 𝑦 − 𝜈)

=
∏4

𝑖=1(𝑥 − 𝑎𝑖)
∏8

𝑖=5(𝑥 − 𝑎𝑖 −
𝜈−1
2
)
=∶ 𝜓1(𝑥, 𝜈), (36)
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𝑖2(𝑥, 𝑦) = (𝑥, 𝑦), (𝑥 + 𝑦)(𝑥 + 𝑦)
(𝑥 + 𝑦 − 𝜈)(𝑥 + 𝑦 − 𝜈)

=
∏4

𝑖=1(𝑦 + 𝑎𝑖)
∏8

𝑖=5(𝑦 + 𝑎𝑖 −
1+𝜈
2
)
=∶ 𝜓2(𝑦, 𝜈). (37)

In the notation of the equations (7), (8), we have:

(𝑥 + 𝑦𝑛)(𝑦𝑛 + 𝑥)
(𝑥 + 𝑦𝑛 − 𝜈2𝑛)(𝑦𝑛 + 𝑥 − 𝜈2𝑛)

= 𝜓2(𝑦𝑛, 𝜈2𝑛), (38)

(𝑦 + 𝑥𝑛+1)(𝑥𝑛+1 + 𝑦)
(𝑦 + 𝑥𝑛+1 − 𝜈2𝑛+1)(𝑥𝑛+1 + 𝑦 − 𝜈2𝑛+1)

= 𝜓1(𝑥𝑛+1, 𝜈2𝑛+1). (39)

It remains to express 𝑥, 𝑦, 𝑥, 𝑦 in these formulas in terms of 𝑥𝑛, 𝑦𝑛. According to (7), we

have:

𝐿2 ∶ (𝑥𝑛, 𝑦𝑛, 𝜈2𝑛−1∕2) ↦→ (𝑥, 𝑦𝑛, 𝜈2𝑛) and 𝑅2 ∶ (𝑥, 𝑦𝑛, 𝜈2𝑛) ↦→ (𝑥𝑛+1, 𝑦𝑛, 𝜈2𝑛+1∕2),

and with expressions (32) for the maps 𝐿2, 𝑅2, we find:

𝑥 + 𝑦𝑛
𝑥 + 𝑦𝑛 − 𝜈2𝑛

= 𝑥𝑛 + 𝑦𝑛
𝑥𝑛 + 𝑦𝑛 − 𝜈2𝑛−1∕2

, (40)

𝑥 + 𝑦𝑛
𝑥 + 𝑦𝑛 − 𝜈2𝑛

=
𝑥𝑛+1 + 𝑦𝑛

𝑥𝑛+1 + 𝑦𝑛 − 𝜈2𝑛+1∕2
. (41)

Similarly, according to (8), we have:

𝐿1 ∶ (𝑥𝑛+1, 𝑦𝑛, 𝜈2𝑛+1∕2) ↦→ (𝑥𝑛+1, 𝑦, 𝜈2𝑛+1) and 𝑅1 ∶ (𝑥𝑛+1, 𝑦, 𝜈2𝑛+1) ↦→ (𝑥𝑛+1, 𝑦𝑛+1, 𝜈2𝑛+3∕2),

and with expressions (31) for the maps 𝐿1, 𝑅1, we find:

𝑦 + 𝑥𝑛+1
𝑦 + 𝑥𝑛+1 − 𝜈2𝑛+1

=
𝑥𝑛+1 + 𝑦𝑛

𝑥𝑛+1 + 𝑦𝑛 − 𝜈2𝑛+1∕2
, (42)

𝑥𝑛+1 + 𝑦
𝑥𝑛+1 + 𝑦 − 𝜈2𝑛+1

=
𝑥𝑛+1 + 𝑦𝑛+1

𝑥𝑛+1 + 𝑦𝑛+1 − 𝜈2𝑛+3∕2
. (43)

Combining equations (38), (39) with (40)–(43) results in the following non-autonomous

system:
(𝑥𝑛+1 + 𝑦𝑛)(𝑥𝑛 + 𝑦𝑛)

(𝑥𝑛+1 + 𝑦𝑛 − 𝜈2𝑛+1∕2)(𝑥𝑛 + 𝑦𝑛 − 𝜈2𝑛−1∕2)
= 𝜓2(𝑦𝑛, 𝜈2𝑛), (44)

(𝑥𝑛+1 + 𝑦𝑛+1)(𝑥𝑛+1 + 𝑦𝑛)
(𝑥𝑛+1 + 𝑦𝑛+1 − 𝜈2𝑛+3∕2)(𝑥𝑛+1 + 𝑦𝑛 − 𝜈2𝑛+1∕2)

= 𝜓1(𝑥𝑛+1, 𝜈2𝑛+1). (45)
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This is nothing but the 𝑑-Painlevé equation of the surface type 𝐴(1)
1 , as given in [11].

Remark. The symmetric case can be characterized by 𝜓1(𝑥, 𝜈) = 𝜓2(𝑥, 𝜈). In this case

the latter equations become two instances of

(𝑢𝑛+1 + 𝑢𝑛)(𝑢𝑛 + 𝑢𝑛−1)
(𝑢𝑛+1 + 𝑢𝑛 − 𝜈𝑛+1∕2)(𝑢𝑛 + 𝑢𝑛−1 − 𝜈𝑛−1∕2)

= 𝜓1(𝑢𝑛, 𝜈𝑛), (46)

if we set 𝑢2𝑛−1 = 𝑥𝑛, 𝑢2𝑛 ∶= 𝑦𝑛.

6 From a pencil of type (vi) to the d-Painlevé equation of the

surface type 𝐷(1)
4

By a simple limiting procedure, the results of the previous section lead to similar results

for the d-Painlevé equation of the surface type 𝐷(1)
4 . We refrain from giving complete

details here, and restrict ourselves only to the main results.

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic

curves {𝐶𝜇} through eight points

𝑠𝑖 = (𝑎𝑖, −𝑎𝑖), 𝑠𝑖+4 = (𝑎𝑖 + 𝜖,−𝑎𝑖 + 𝜖), 𝑖 = 1, … , 4, (47)

where the points 𝑠5, … , 𝑠8 are infinitely near to 𝑠1, … , 𝑠4, respectively. This pencil contains

a reducible curve:

𝐶∞ = {(𝑥 + 𝑦)2 = 0}. (48)

The vertical involution 𝑖1 and the horizontal involution 𝑖2 for this pencil can be described

by the following equations:

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦), 1
𝑦 + 𝑥 + 1

𝑥 + 𝑦 = 1
2

4∑

𝑖=1

1
𝑥 − 𝑎𝑖

, (49)

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦), 1
𝑥 + 𝑦 +

1
𝑥 + 𝑦 = 1

2

4∑

𝑖=1

1
𝑦 + 𝑎𝑖

. (50)
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(a) (b)

Figure 2: (a) Base set of the surface type 𝐷(1)
4 : four double points on a double (1,1)-curve

in ℙ1 × ℙ1. (b) Pencil of quadrics touching along a conic

3D Painlevé map. We consider the pencil of quadrics {𝑃𝜇} in ℙ3 obtained as the Segre

lift of the pencil of curves {𝐶𝜇}. The pencil {𝑄𝜆} is spanned by 𝑄0 = {𝑋1𝑋2 − 𝑋3𝑋4 = 0} and

𝑄∞ = 𝑃∞ = {(𝑋1 + 𝑋2)2 = 0}:

𝑄𝜆 =
{
𝑋1𝑋2 − 𝑋3𝑋4 − 𝜆(𝑋1 + 𝑋2)2 = 0

}
. (51)

The base set of the pencil 𝑄𝜆 is the double conic {𝑋1𝑋2 − 𝑋3𝑋4 = 0, 𝑋1 + 𝑋2 = 0}. This is a

pencil of type (vi). The matrix 𝑀𝜆 of the quadratic form 𝑄𝜆 is:

𝑀𝜆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−2𝜆 1 − 2𝜆 0 0

1 − 2𝜆 −2𝜆 0 0

0 0 0 −1

0 0 −1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (52)
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The characteristic polynomial of the pencil {𝑄𝜆} is: ∆(𝜆) = det(𝑀𝜆) = 1 − 4𝜆, the same as in

Section 5. The normalizing transformation of 𝑄𝜆(𝜈) to the canonical form 𝑄0 reads:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝜈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑌1
𝑌2
𝑌3
𝑌4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (53)

where

𝐴𝜈 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2𝜈
(1 + 𝜈) 1

2𝜈
(1 − 𝜈) 0 0

1
2𝜈
(1 − 𝜈) 1

2𝜈
(1 + 𝜈) 0 0

0 0 1 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (54)

A parametrization of the quadric 𝑄𝜆(𝜈) is given by:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝜈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑥𝑦

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2𝜈
((1 + 𝜈)𝑥 + (1 − 𝜈)𝑦)

1
2𝜈
((1 − 𝜈)𝑥 + (1 + 𝜈)𝑦)

𝑥𝑦

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=∶ 𝜙𝜈(𝑥, 𝑦). (55)

The pencil-adapted coordinates (𝑥, 𝑦, 𝜈) on (the double cover of) ℙ3 are:

𝑥 = (1 + 𝜈)𝑋1 − (1 − 𝜈)𝑋2
2𝑋4

, 𝑦 = (1 + 𝜈)𝑋2 − (1 − 𝜈)𝑋1
2𝑋4

, (56)

which have to be supplemented with

𝜆 = 1 − 𝜈2
4 = 𝑋1𝑋2 − 𝑋3𝑋4

(𝑋1 + 𝑋2)2
. (57)

Theorem 4. For any 𝛿 ∈ ℂ ⧵ {0}, define the Painlevé deformation map corresponding to the
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translation 𝜈 ↦→ 𝜈 = 𝜈 + 2𝛿 by

𝐿 ∶

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑋1 = 𝑋1𝑋4,

𝑋2 = 𝑋2𝑋4,

𝑋3 = 𝑋3𝑋4 −
(
𝜆(𝜈) − 𝜆(𝜈)

)
𝑄∞(𝑋)

= 𝑋3𝑋4 + 𝛿(𝜈 + 𝛿)(𝑋1 + 𝑋2)2,

𝑋4 = 𝑋2
4 .

Then, in pencil-adapted coordinates, the map 𝐿 acts as follows:

𝐿 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈), 𝑥 = 𝑥 + 𝛿
𝜈 (𝑥 + 𝑦), 𝑦 = 𝑦 + 𝛿

𝜈 (𝑥 + 𝑦), 𝜈 = 𝜈 + 2𝛿. (58)

For the latter map, the factorizations (4), (5) are given by

𝐿1 = 𝑅1 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿), 𝐿2 = 𝑅2 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿),

where

𝑦 = 𝑦 + 𝛿
𝜈 (𝑥 + 𝑦) ⇔ 𝜈 + 𝛿

𝑦 + 𝑥 = 𝜈
𝑦 + 𝑥 , (59)

𝑥 = 𝑥 + 𝛿
𝜈 (𝑥 + 𝑦) ⇔ 𝜈 + 𝛿

𝑥 + 𝑦 = 𝜈
𝑥 + 𝑦 . (60)

Computing the 3D Painlevé map 𝐹 = 𝑅1◦𝑖1◦𝐿1◦𝑅2◦𝑖2◦𝐿2 in the pencil-adapted coordi-

nates (𝑥, 𝑦, 𝜈), we come to the following non-autonomous system:

𝜈2𝑛+1∕2
𝑥𝑛+1 + 𝑦𝑛

+
𝜈2𝑛−1∕2
𝑥𝑛 + 𝑦𝑛

= 𝜈2𝑛
2

4∑

𝑖=1

1
𝑦𝑛 + 𝑎𝑖

, (61)

𝜈2𝑛+3∕2
𝑥𝑛+1 + 𝑦𝑛+1

+
𝜈2𝑛+1∕2
𝑥𝑛+1 + 𝑦𝑛

=
𝜈2𝑛+1
2

4∑

𝑖=1

1
𝑥𝑛+1 − 𝑎𝑖

. (62)

This can be considered as a 𝑑-Painlevé equation of the surface type 𝐷(1)
4 , in a realization

different from that in [11]. We remark here that the latter equation was put into our

scheme in [2, sect. 9], however in the framework of pencils of quadrics with rational

(non-branching) generators. There is no obvious relation between these two systems,

and it would be desirable to clarify this point.
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The symmetric case is characterised by 𝑎2𝑖 = −𝑎2𝑖−1, 𝑖 = 1, 2. In this case the latter

equations become two instances of

𝜈𝑛+1∕2
𝑢𝑛+1 + 𝑢𝑛

+
𝜈𝑛−1∕2

𝑢𝑛 + 𝑢𝑛−1
= 𝜈𝑛

( 𝑢𝑛
𝑢2𝑛 − 𝑎21

+ 𝑢𝑛
𝑢2𝑛 − 𝑎23

)
, (63)

if we set 𝑢2𝑛−1 = 𝑥𝑛, 𝑢2𝑛 ∶= 𝑦𝑛.

7 From a pencil of type (iv) to the q-Painlevé equation of the

surface type 𝐴(1)
1

2D QRT map. Consider the QRT map corresponding to the pencil of biquadratic curves

through eight points

𝑠𝑖 = (𝑎𝑖, 𝑏𝑖) =
(
𝜅𝑐𝑖, 𝜅𝑐−1𝑖

)
, 𝑖 = 1, … , 4, (64)

𝑠𝑖 = (𝑎𝑖, 𝑏𝑖) =
(
𝑐𝑖, 𝑐−1𝑖

)
, 𝑖 = 5, … , 8, (65)

with 𝜅 ≠ 0, 1. These eight points support a pencil of biquadratic curves if they satisfy the

condition ∏4
𝑖=1 𝑐𝑖

∏8
𝑖=5 𝑐𝑖

= 1 ⇔
∏4

𝑖=1 𝑎𝑖
∏8

𝑖=5 𝑎𝑖
= 𝜅4 ⇔

∏4
𝑖=1 𝑏𝑖

∏8
𝑖=5 𝑏𝑖

= 𝜅4. (66)

They are symmetric with respect to 𝜎(𝑥, 𝑦) = (𝑦, 𝑥) if 𝑐2𝑖 = 𝑐−12𝑖−1, 𝑖 = 1, … , 4. See Fig. 3 (a).

This pencil contains a reducible curve consisting of two (1,1)-curves:

𝐶∞ =
{
(𝑥𝑦 − 1)(𝑥𝑦 − 𝜅2) = 0

}
. (67)

The vertical involution 𝑖1 can be described by the following equation:

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦), (𝑥𝑦 − 𝜅2)(𝑥𝑦 − 𝜅2)
(𝑥𝑦 − 1)(𝑥𝑦 − 1)

=
∏4

𝑖=1(𝑥 − 𝜅𝑐𝑖)
∏8

𝑖=5(𝑥 − 𝑐𝑖)
. (68)

Similarly, the horizontal involution 𝑖2 can be described by the following equation:

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦), (𝑥𝑦 − 𝜅2)(𝑥𝑦 − 𝜅2)
(𝑥𝑦 − 1)(𝑥𝑦 − 1)

=
∏4

𝑖=1(𝑦 − 𝜅𝑐−1𝑖 )
∏8

𝑖=5(𝑦 − 𝑐−1𝑖 )
. (69)
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Figure 3: (a) Base set of the surface type 𝐴(1)
1 : two quadruples of points on two (1,1)-curves

(hyperbolas) in ℙ1 × ℙ1 intersecting at two points (∞, 0) and (0,∞). (b) Pencil of quadrics

through two non-coplanar conics intersecting at two points

The QRT map 𝐹 is the composition of these two involutions, 𝐹 = 𝑖1◦𝑖2. The singularity

confinement structure of the QRT involutions is as in (11). In the symmetric case we have

𝐹 = 𝑓2, with 𝑓 = 𝑖1◦𝜎 = 𝜎◦𝑖2 being the QRT root.

3D Painlevé map. As usual, we identify ℙ1 × ℙ1 with the quadric

𝑄0 = {𝑋1𝑋2 − 𝑋3𝑋4 = 0} ⊂ ℙ3,

via [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶ 𝑋4] = [𝑥 ∶ 𝑦 ∶ 𝑥𝑦 ∶ 1]. The points 𝑠𝑖 are lifted to

𝑆𝑖 = [𝑎𝑖 ∶ 𝑏𝑖 ∶ 𝑎𝑖𝑏𝑖 ∶ 1] =
⎧

⎨
⎩

[
𝜅𝑐𝑖 ∶ 𝜅𝑐−1𝑖 ∶ 𝜅2 ∶ 1

]
, 𝑖 = 1, … , 4,

[
𝑐𝑖 ∶ 𝑐−1𝑖 ∶ 1 ∶ 1

]
, 𝑖 = 5, … , 8.

(70)

We declare 𝑄𝜆 to be spanned by 𝑄0 and 𝑄∞ = 𝑃∞ = (𝑋3 − 𝜅2𝑋4)(𝑋3 − 𝑋4):

𝑄𝜆 =
{
𝑋1𝑋2 − 𝑋3𝑋4 − 𝜆(𝑋3 − 𝜅2𝑋4)(𝑋3 − 𝑋4) = 0

}
. (71)

The base set of the pencil 𝑄𝜆 consists of two conics, {𝑋1𝑋2 − 𝑋3𝑋4 = 0, 𝑋3 − 𝜅2𝑋4 = 0} and

{𝑋1𝑋2−𝑋3𝑋4 = 0, 𝑋3−𝑋4 = 0}, which intersect at two points [0 ∶ 1 ∶ 0 ∶ 0] and [1 ∶ 0 ∶ 0 ∶ 0].

This is a pencil of type (iv).
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The matrix 𝑀𝜆 of the quadratic form 𝑄𝜆:

𝑀𝜆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

1 0 0 0

0 0 −2𝜆 −1 + (1 + 𝜅2)𝜆

0 0 −1 + (1 + 𝜅2)𝜆 −2𝜅2𝜆

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(72)

The characteristic polynomial of the pencil {𝑄𝜆} is:

∆(𝜆) = det(𝑀𝜆) =
(
1 − (1 + 𝜅2)𝜆

)2
− 4𝜅2𝜆2 =

(
1 − (1 + 𝜅)2𝜆

)(
1 − (1 − 𝜅)2𝜆

)
,

so that Sing(𝑄𝜆) = {(1+𝜅)−2, (1−𝜅)−2,∞}. This polynomial is not a complete square, and we

have to uniformize
√
∆(𝜆). The uniformizing variable is 𝜈 ∈ ℂ. However, in the present

situation it will be convenient to use 𝑤 = 𝑒𝜈 instead, with 𝑤 ∈ ℂ ⧵ {0}. The shift 𝜈 ↦→ 𝜈 + 𝛿

will be replaced by 𝑤 ↦→ 𝑞𝑤 with 𝑞 = 𝑒𝛿. We set

𝜆 = 𝜆(𝑤) = −(𝜅 − 𝑤)(1 − 𝜅𝑤)
(1 − 𝜅2)2𝑤

. (73)

Then ∆(𝜆) becomes a square:

∆(𝜆) = 𝜅2(1 − 𝑤2)2
𝑤2(1 − 𝜅2)2

⇒
√
∆(𝜆) = 𝜅(1 − 𝑤2)

𝑤(1 − 𝜅2)
.

Observe that 𝜆(𝑤) = 𝜆(𝑤−1), while
√
∆(𝜆) changes its sign under 𝑤 ↦→ 𝑤−1. This gives us a

double cover of the original pencil branched at 𝜆 = (1+𝜅)−2 (corresponding to 𝑤 = 1), and

at 𝜆 = (1 − 𝜅)−2 (corresponding to 𝑤 = −1). The point 𝜆 = ∞ (corresponding to 𝑤 = 0,∞)

is not a branch point. The normalizing transformation of 𝑄𝜆(𝑋) to the canonical form

𝑄0(𝑌) = 𝑌1𝑌2 − 𝑌3𝑌4 is achieved by the transformation

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝑤

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑌1
𝑌2
𝑌3
𝑌4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (74)

Arnold Mathematical Journal, Vol.11(4), 2025 220

http://dx.doi.org/10.56994/ARMJ


Discrete Painlevé equations

where one can take

𝐴𝑤 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 − 𝜅𝑤
1 − 𝑤2

𝑤(𝜅 − 𝑤)
1 − 𝑤2

0 0 𝜅 − 𝑤
𝜅(1 − 𝑤2)

𝑤(1 − 𝜅𝑤)
𝜅(1 − 𝑤2)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (75)

Indeed, one immediately verifies that

𝐴T
𝑤𝑀𝜆(𝑤)𝐴𝑤 = 𝑀0.

Now, we are in the position to derive a parametrization of the quadric 𝑄𝜆:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1

𝑋2

𝑋3

𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝑤

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑥𝑦

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=∶ 𝜙𝑤(𝑥, 𝑦). (76)

Observe that this parametrization is neither valid for 𝑤 = 0 nor for 𝑤 = ∞. The pencil-

adapted coordinates (𝑥, 𝑦, 𝑤) on (the double cover of) ℙ3 are:

𝑥 = (1 − 𝜅𝑤)𝑋3 − 𝜅(𝜅 − 𝑤)𝑋4
(1 − 𝜅2)𝑋2

= 𝑤(1 − 𝜅2)𝑋1
𝜅(1 − 𝜅𝑤)𝑋4 − (𝜅 − 𝑤)𝑋3

, (77)

𝑦 = (1 − 𝜅𝑤)𝑋3 − 𝜅(𝜅 − 𝑤)𝑋4
(1 − 𝜅2)𝑋1

= 𝑤(1 − 𝜅2)𝑋2
𝜅(1 − 𝜅𝑤)𝑋4 − (𝜅 − 𝑤)𝑋4

, (78)

which have to be supplemented with

𝜆 = −(𝜅 − 𝑤)(1 − 𝜅𝑤)
(𝜅2 − 1)2𝑤

= 𝑋1𝑋2 − 𝑋3𝑋4
(𝑋3 − 𝜅2𝑋4)(𝑋3 − 𝑋4)

. (79)

Theorem 5. For any 𝑞 ≠ ±1, define the Painlevé deformation map corresponding to the

translation 𝑤 ↦→ 𝑤 = 𝑞2𝑤 by

𝐿 ∶

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑋1 = 𝑋1𝑋2 +
(
𝜆(𝑤) − 𝜆(𝑤)

)
(𝑋3 − 𝑋4)(𝑋3 − 𝜅2𝑋4),

𝑋2 = 𝑋2
2 ,

𝑋3 = 𝑋2𝑋3,

𝑋4 = 𝑋2𝑋4,

(80)
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where 𝜆 = 𝜆(𝑤) is given by (73). Then, in pencil-adapted coordinates, the map 𝐿 acts as

follows:

𝐿 ∶ 𝑥 = 𝑞2𝑤2 − 1
𝑤2 − 1 𝑥− (𝑞2 − 1)𝑤2

𝑤2 − 1 𝑦−1, 𝑦 −1 = 𝑞2𝑤2 − 1
𝑞2(𝑤2 − 1)

𝑦−1− (𝑞2 − 1)
𝑞2(𝑤2 − 1)

𝑥, 𝑤 = 𝑞2𝑤. (81)

For the latter map, the factorizations (4), (5) are given by

𝐿1 = 𝑅1 ∶ (𝑥, 𝑦, 𝑤) ↦→ (𝑥, 𝑦, 𝑞𝑤), 𝐿2 = 𝑅2 ∶ (𝑥, 𝑦, 𝑤) ↦→ (𝑥, 𝑦, 𝑞𝑤)

where

𝑦 −1 = 𝑞2𝑤2 − 1
𝑞2(𝑤2 − 1)

𝑦−1 − (𝑞2 − 1)
𝑞2(𝑤2 − 1)

𝑥 ⇔ 𝑦𝑥 − 𝑞2𝑤2

𝑦𝑥 − 1 = 𝑞2 𝑦𝑥 − 𝑤2

𝑦𝑥 − 1 , (82)

and

𝑥 = 𝑞2𝑤2 − 1
𝑤2 − 1 𝑥 − (𝑞2 − 1)𝑤2

𝑤2 − 1 𝑦−1 ⇔ 𝑥𝑦 − 𝑞2𝑤2

𝑥𝑦 − 1 = 𝑥𝑦 − 𝑤2

𝑥𝑦 − 1 . (83)

Relation to the 𝑞-Painlevé equation of the surface type 𝐴(1)
1 . We now compute the 3D

Painlevé map 𝐹 = 𝑅1◦𝑖1◦𝐿1◦𝑅2◦𝑖2◦𝐿2 in the pencil-adapted coordinates (𝑥, 𝑦, 𝑤). For each

fixed 𝑤, the intersection curves 𝑄𝜆(𝑤) ∩ 𝑃𝜇 form a pencil through eight points

𝑠𝑖(𝑤) =
(
𝑤𝑐𝑖, 𝑤𝑐−1𝑖

)
, 𝑖 = 1, … , 4, (84)

𝑠𝑖(𝑤) =
(
𝑐𝑖, 𝑐−1𝑖

)
, 𝑖 = 5, … , 8, (85)

which are just the points 𝑆1, … , 𝑆8 expressed in the pencil-adapted coordinates on 𝑄𝜆(𝑤).

The formulas for the 3D QRT involutions 𝑖1, 𝑖2 restricted to 𝑄𝜆(𝑤) coincide, in the pencil-

adapted coordinates, with the original QRT involutions (68) and (69), upon replacing 𝜅 by

𝑤, and 𝑠𝑖 by 𝑠𝑖(𝑤):

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦), (𝑥𝑦 − 𝑤2)(𝑥𝑦 − 𝑤2)
(𝑥𝑦 − 1)(𝑥𝑦 − 1)

=
∏4

𝑖=1(𝑥 − 𝑤𝑐𝑖)
∏8

𝑖=5(𝑥 − 𝑐𝑖)
, (86)

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦), (𝑥𝑦 − 𝑤2)(𝑥𝑦 − 𝑤2)
(𝑥𝑦 − 1)(𝑥𝑦 − 1)

=
∏4

𝑖=1(𝑦 − 𝑤𝑐−1𝑖 )
∏8

𝑖=5(𝑦 − 𝑐−1𝑖 )
. (87)
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In the notation of the equations (7), (8), the latter two equations read:

(𝑥𝑦𝑛 − 𝑤2
2𝑛)(𝑥𝑦𝑛 − 𝑤2

2𝑛)
(𝑥𝑦𝑛 − 1)(𝑥𝑦𝑛 − 1)

=
∏4

𝑖=1(𝑦𝑛 − 𝑤2𝑛𝑐−1𝑖 )
∏8

𝑖=5(𝑦𝑛 − 𝑐−1𝑖 )
, (88)

(𝑦𝑥𝑛+1 − 𝑤2
2𝑛+1)(𝑦𝑥𝑛+1 − 𝑤2

2𝑛+1)
(𝑦𝑥𝑛+1 − 1)(𝑦𝑥𝑛+1 − 1)

=
∏4

𝑖=1(𝑥𝑛+1 − 𝑤2𝑛+1𝑐𝑖)
∏8

𝑖=5(𝑥𝑛+1 − 𝑐𝑖)
, (89)

where

𝑤2𝑛−1∕2 = 𝑞−1𝑤2𝑛, 𝑤2𝑛+1∕2 = 𝑞𝑤2𝑛. (90)

According to (7), we have:

𝐿2 ∶ (𝑥𝑛, 𝑦𝑛, 𝑤2𝑛−1∕2) ↦→ (𝑥, 𝑦𝑛, 𝑤2𝑛) and 𝑅2 ∶ (𝑥, 𝑦𝑛, 𝑤2𝑛) ↦→ (𝑥𝑛+1, 𝑦𝑛, 𝑤2𝑛+1∕2).

With expressions (83) for the maps 𝐿2, 𝑅2, we find:

𝑥𝑦𝑛 − 𝑤2
2𝑛

𝑥𝑦𝑛 − 1 = 𝑥𝑛𝑦𝑛 − 𝑤2𝑛𝑤2𝑛−1
𝑥𝑛𝑦𝑛 − 1 , (91)

𝑥𝑦𝑛 − 𝑤2
2𝑛

𝑥𝑦𝑛 − 1 =
𝑥𝑛+1𝑦𝑛 − 𝑤2𝑛+1𝑤2𝑛

𝑥𝑛+1𝑦𝑛 − 1 . (92)

Similarly, according to (8), we have:

𝐿1 ∶ (𝑥𝑛+1, 𝑦𝑛, 𝑤2𝑛+1∕2) ↦→ (𝑥𝑛+1, 𝑦, 𝑤2𝑛+1) and 𝑅1 ∶ (𝑥𝑛+1, 𝑦, 𝑤2𝑛+1) ↦→ (𝑥𝑛+1, 𝑦𝑛+1, 𝑤2𝑛+3∕2),

and with expressions (82) for the maps 𝐿1, 𝑅1, we find:

𝑞−2
𝑥𝑛+1𝑦 − 𝑤2

2𝑛+1
𝑥𝑛+1𝑦 − 1 =

𝑥𝑛+1𝑦𝑛 − 𝑤2𝑛+1𝑤2𝑛
𝑥𝑛+1𝑦𝑛 − 1 , (93)

𝑞2
𝑦𝑥𝑛+1 − 𝑤2

2𝑛+1
𝑦𝑥𝑛+1 − 1 =

𝑥𝑛+1𝑦𝑛+1 − 𝑤2𝑛+2𝑤2𝑛+1
𝑥𝑛+1𝑦𝑛+1 − 1 . (94)

Combining equations (88), (89) with (91)–(94) results in the following non-autonomous

system:
(𝑥𝑛+1𝑦𝑛 − 𝑤2𝑛+1𝑤2𝑛)(𝑥𝑛𝑦𝑛 − 𝑤2𝑛𝑤2𝑛−1)

(𝑥𝑛+1𝑦𝑛 − 1)(𝑥𝑛𝑦𝑛 − 1)
=
∏4

𝑖=1(𝑦𝑛 − 𝑤2𝑛𝑐−1𝑖 )
∏8

𝑖=5(𝑦𝑛 − 𝑐−1𝑖 )
, (95)
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(𝑦𝑛+1𝑥𝑛+1 − 𝑤2𝑛+2𝑤2𝑛+1)(𝑦𝑛𝑥𝑛+1 − 𝑤2𝑛+1𝑤2𝑛)
(𝑦𝑛+1𝑥𝑛+1 − 1)(𝑦𝑛𝑥𝑛+1 − 1)

=
∏4

𝑖=1(𝑥𝑛+1 − 𝑤2𝑛+1𝑐𝑖)
∏8

𝑖=5(𝑥𝑛+1 − 𝑐𝑖)
. (96)

This is the q-Painlevé equation of the surface type 𝐴(1)
1 , as given in [11]. In the symmetric

case, if 𝑐2𝑖 = 𝑐−12𝑖−1, 𝑖 = 1, … , 4, these equations become two instances of

(𝑢𝑛+1𝑢𝑛 − 𝑤𝑛+1𝑤𝑛)(𝑢𝑛𝑢𝑛−1 − 𝑤𝑛𝑤𝑛−1)
(𝑢𝑛+1𝑢𝑛 − 1)(𝑢𝑛𝑢𝑛−1 − 1)

=
∏4

𝑖=1(𝑢𝑛 − 𝑤𝑛𝑐𝑖)
∏8

𝑖=5(𝑢𝑛 − 𝑐𝑖)
. (97)

8 From a pencil of type (iii) to the d-Painlevé equation of the

surface type 𝐴(1)
0

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic

curves through eight points 𝑠𝑖 = (𝑎𝑖, 𝑏𝑖), 𝑖 = 1, … , 8, where

𝑎𝑖 = 𝑧𝑖(𝑧𝑖 − 𝜅1), 𝑏𝑖 = 𝑧𝑖(𝑧𝑖 − 𝜅2).

These eight points support a pencil of biquadratic curves if they satisfy the condition

8∑

𝑖=1
𝑧𝑖 = 2(𝜅1 + 𝜅2).

They belong to the curve with the equation

(𝑥 − 𝑦)2 = (𝜅2 − 𝜅1)(𝜅2𝑥 − 𝜅1𝑦).

This is a biquadratic curve in ℙ1 × ℙ1 with a cusp point at (∞,∞), see Fig. 4 (a).

The vertical involution 𝑖1 can be described by the following equation:

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦),
(
𝑦 − 𝜉(𝜉 − 𝜅2)

)(
𝑦 − 𝜉(𝜉 − 𝜅2)

)
(
𝑦 − (𝜉 − 𝜅1)(𝜉 − 𝜅1 + 𝜅2)

)(
𝑦 − (𝜉 − 𝜅1)(𝜉 − 𝜅1 + 𝜅2)

) =
𝑈(𝜉)

𝑈(𝜅1 − 𝜉)
, 𝑥 = 𝜉(𝜉 − 𝜅1). (98)

Here we use the abbreviation

𝑈(𝑧) =
8∏

𝑖=1
(𝑧 − 𝑧𝑖). (99)
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s4

s5 s6
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(a) (b)

Figure 4: (a) Base set of the surface type 𝐴(1)
0 : eight points on a cuspidal (2,2)-curve in

ℙ1 × ℙ1. (b) Pencil of quadrics through cuspidal spatial quartic in ℙ3

Formula (98) is understood as follows. Written as a polynomial in 𝜉, it is anti-symmetric

with respect to 𝜉 ↔ 𝜅1−𝜉. Upon division by 𝜉 −2𝜅1, the resulting polynomial is symmetric

and therefore it can be actually expressed as a polynomial in 𝑥 = 𝜉(𝜉 − 𝜅1). This defines 𝑖1
as a birational involution (its symmetry w.r.t. 𝑦 ↔ 𝑦 is obvious).

Similarly, the horizontal involution 𝑖2 can be described by the following equation:

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦),
(
𝑥 − 𝜂(𝜂 − 𝜅1)

)(
𝑥 − 𝜂(𝜂 − 𝜅1)

)
(
𝑥 − (𝜂 − 𝜅2)(𝜂 − 𝜅2 + 𝜅1)

)(
𝑥 − (𝜂 − 𝜅2)(𝜂 − 𝜅2 + 𝜅1)

) =
𝑈(𝜂)

𝑈(𝜅2 − 𝜂)
, 𝑦 = 𝜂(𝜂 − 𝜅2). (100)

The QRT map 𝐹 is the composition of these two involutions, 𝐹 = 𝑖1◦𝑖2. The eight points

𝑠1, … , 𝑠8 in ℙ1 × ℙ1 serve as the indeterminacy set for 𝑖1 and for 𝑖2. The singularity confine-

ment structure is as in (11).

Remark. In what follows, we restrict ourselves to the case 𝜅1 + 𝜅2 = 0. This restriction

is not essential, but will allow us to shorten some of the formulas. Thus, from now on we

set

𝜅1 = −𝜅, 𝜅2 = 𝜅. (101)
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If, additionally, the points 𝑧𝑖 satisfy the condition

𝑧𝑖+4 = −𝑧𝑖, 𝑖 = 1, … , 4, (102)

then the QRT involutions admits a symmetry 𝑖1 = 𝜎◦𝑖2◦𝜎, where 𝜎(𝑥, 𝑦) = (𝑦, 𝑥), so that

one can introduce the QRT root 𝑓 = 𝑖1◦𝜎 = 𝜎◦𝑖2, such that 𝐹 = 𝑓◦𝑓.

3D Painlevé map. As usual, we identify ℙ1 × ℙ1 with the quadric 𝑄0 = {𝑋1𝑋2 − 𝑋3𝑋4 =

0} ⊂ ℙ3 via [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶ 𝑋4] = [𝑥 ∶ 𝑦 ∶ 𝑥𝑦 ∶ 1]. The points 𝑠𝑖 are lifted to

𝑆𝑖 = [𝑎𝑖 ∶ 𝑏𝑖 ∶ 𝑎𝑖𝑏𝑖 ∶ 1].

We declare 𝑄𝜆 to be spanned by 𝑄0 and 𝑄∞ = 𝑃∞ = (𝑋1 − 𝑋2)2 − 2𝜅2(𝑋1 + 𝑋2)𝑋4:

𝑄𝜆 =
{
𝑋1𝑋2 − 𝑋3𝑋4 − 𝜆

(
(𝑋1 − 𝑋2)2 − 2𝜅2(𝑋1 + 𝑋2)𝑋4

)
= 0

}
. (103)

The base set of the pencil 𝑄𝜆 is a cuspidal space curve of degree 4, {𝑋1𝑋2 −𝑋3𝑋4 = 0, (𝑋1 −

𝑋2)2 − 2𝜅2(𝑋1 + 𝑋2)𝑋4 = 0}, with the cusp at [0 ∶ 0 ∶ 1 ∶ 0]. This is a pencil of type (iii).

The matrix 𝑀𝜆 of the quadratic form 𝑄𝜆:

𝑀𝜆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−2𝜆 1 + 2𝜆 0 2𝜆𝜅2

1 + 2𝜆 −2𝜆 0 2𝜆𝜅2

0 0 0 −1

2𝜆𝜅2 2𝜆𝜅2 −1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(104)

The characteristic polynomial of the pencil {𝑄𝜆} is: ∆(𝜆) = det(𝑀𝜆) = 1 + 4𝜆, so that

Sing(𝑄𝜆) = {− 1
4
,∞}. We set

𝜆 = 𝜈2 − 1
4 ,

√
∆(𝜆) = 𝜈. (105)

Thus, 𝜆(𝜈) = 𝜆(−𝜈), while
√
∆(𝜆) changes its sign as 𝜈 ↦→ −𝜈. This gives us a double

cover of the original pencil branched at 𝜈 = 0, corresponding to 𝜆 = −1∕4, and at 𝜈 = ∞,

corresponding to 𝜆 = ∞. The normalizing transformation of 𝑄𝜆 to the canonical form 𝑄0
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can be found as follows:
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝜈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑌1
𝑌2
𝑌3
𝑌4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (106)

where

𝐴𝜈 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2𝜈
(𝜈 + 1) 1

2𝜈
(𝜈 − 1) 0 0

1
2𝜈
(𝜈 − 1) 1

2𝜈
(𝜈 + 1) 0 0

𝜅2

2
(𝜈2 − 1) 𝜅2

2
(𝜈2 − 1) 1 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (107)

Indeed, one immediately verifies that

𝐴T
𝜈𝑀𝜆(𝜈)𝐴𝜈 = 𝑀0.

Now, we are in the position to derive a parametrization of the quadric 𝑄𝜆(𝜈):

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝜈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑥𝑦

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2𝜈
((𝜈 + 1)𝑥 + (𝜈 − 1)𝑦)

1
2𝜈
((𝜈 − 1)𝑥 + (𝜈 + 1)𝑦)

𝑥𝑦 + 𝜅2

2
(𝜈2 − 1)(𝑥 + 𝑦)

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=∶ 𝜙𝜈(𝑥, 𝑦). (108)

Observe that this parametrization is neither valid for 𝜈 = 0 nor for 𝜈 = ∞. The pencil-

adapted coordinates (𝑥, 𝑦, 𝜈) on (the double cover of) ℙ3 are:

𝑥 = (𝜈 + 1)𝑋1 − (𝜈 − 1)𝑋2
2𝑋4

, 𝑦 = (𝜈 + 1)𝑋2 − (𝜈 − 1)𝑋1
2𝑋4

, (109)

which have to be supplemented with

𝜆 = 𝜈2 − 1
4 = 𝑋1𝑋2 − 𝑋3𝑋4

(𝑋1 − 𝑋2)2 − 2𝜅2(𝑋1 + 𝑋2)𝑋4
. (110)

The degenerate quadrics for 𝜈 = ∞ and for 𝜈 = 0 are cones.
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Theorem 6. For any 𝛿 ∈ ℂ ⧵ {0}, define the Painlevé deformation map corresponding to the

translation 𝜈 ↦→ 𝜈 = 𝜈 + 2𝛿 by

𝐿 ∶

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑋1 = 𝑋1𝑋4,

𝑋2 = 𝑋2𝑋4,

𝑋3 = 𝑋3𝑋4 −
(
𝜆(𝜈) − 𝜆(𝜈)

)
𝑄∞(𝑋)

= 𝑋3𝑋4 − 𝛽(𝜈 + 𝛽)(𝑋1 − 𝑋2)2 + 2𝜅2𝛽(𝜈 + 𝛽)(𝑋1 + 𝑋2)𝑋4,

𝑋4 = 𝑋2
4 .

Then, in pencil-adapted coordinates, the map 𝐿 acts as follows:

𝐿 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈), 𝑥 = 𝑥 + 𝛿(𝑥 − 𝑦)
𝜈 , 𝑦 = 𝑦 + 𝛿(𝑦 − 𝑥)

𝜈 , 𝜈 = 𝜈 + 2𝛿. (111)

For the latter map, the factorizations (4), (5) are given by

𝐿1 = 𝑅1 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿), 𝑦 = 𝑦 + 𝛿
𝜈 (𝑦 − 𝑥), (112)

𝐿2 = 𝑅2 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿), 𝑥 = 𝑥 + 𝛿
𝜈 (𝑥 − 𝑦). (113)

Relation to the 𝑑-Painlevé equation of the surface type 𝐴(1)
0 . In the pencil-adapted

coordinates (𝑥, 𝑦, 𝜈), for each fixed 𝜈, the intersection curves 𝑄𝜆(𝜈) ∪ 𝑃𝜇 form the pencil

through the points

𝑠𝑖(𝜈) = (𝑎𝑖(𝜈), 𝑏𝑖(𝜈)) =
(
𝑧𝑖(𝑧𝑖 + 𝜅𝜈), 𝑧𝑖(𝑧𝑖 − 𝜅𝜈)

)
, 𝑖 = 1, … , 8, (114)

which are just the points 𝑆𝑖 expressed in the pencil-adapted coordinates on 𝑄𝜆(𝜈). Thus,

the 3D QRT involutions 𝑖1, 𝑖2 act on each quadric 𝑄𝜆(𝜈) in the pencil-adapted coordinates

via formulas which are obtained from the corresponding 2D formulas by replacing 𝜅 by

𝜅𝜈:

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦),
(
𝑦 − 𝜉(𝜉 − 𝜅𝜈)

)(
𝑦 − 𝜉(𝜉 − 𝜅𝜈)

)
(
𝑦 − (𝜉 + 𝜅𝜈)(𝜉 + 2𝜅𝜈)

)(
𝑦 − (𝜉 + 𝜅𝜈)(𝜉 + 2𝜅𝜈)

) =
𝑈(𝜉)

𝑈(−𝜅𝜈 − 𝜉)
, 𝑥 = 𝜉(𝜉 + 𝜅𝜈), (115)
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𝑖2(𝑥, 𝑦) = (𝑥, 𝑦),
(
𝑥 − 𝜂(𝜂 + 𝜅𝜈)

)(
𝑥 − 𝜂(𝜂 + 𝜅𝜈)

)
(
𝑥 − (𝜂 − 𝜅𝜈)(𝜂 − 2𝜅𝜈)

)(
𝑥 − (𝜂 − 𝜅𝜈)(𝜂 − 2𝜅𝜈)

) =
𝑈(𝜂)

𝑈(𝜅𝜈 − 𝜂)
, 𝑦 = 𝜂(𝜂 − 𝜅𝜈). (116)

In notations of (7), (8), the latter two equations take the following form:
(
𝑥 − 𝜂(𝜂 + 𝜅𝜈2𝑛)

)(
𝑥 − 𝜂(𝜂 + 𝜅𝜈2𝑛)

)
(
𝑥 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 2𝜅𝜈2𝑛)

)(
𝑥 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 2𝜅𝜈2𝑛)

) =
𝑈(𝜂)

𝑈(𝜅𝜈2𝑛 − 𝜂)
,

𝑦𝑛 = 𝜂(𝜂 − 𝜅𝜈2𝑛), (117)

(
𝑦 − 𝜉(𝜉 − 𝜅𝜈2𝑛+1)

)(
𝑦 − 𝜉(𝜉 − 𝜅𝜈2𝑛+1)

)
(
𝑦 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 2𝜅𝜈2𝑛+1)

)(
𝑦 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 2𝜅𝜈2𝑛+1)

) =
𝑈(𝜉)

𝑈(−𝜅𝜈2𝑛+1 − 𝜉)
,

𝑥𝑛+1 = 𝜉(𝜉 + 𝜅𝜈2𝑛+1). (118)

Recall that here

𝜈2𝑛+1 = 𝜈2𝑛+1∕2 + 𝛿 = 𝜈2𝑛 + 2𝛿.

To express in (117) the variables 𝑥, 𝑥 through 𝑥𝑛, 𝑦𝑛, we observe that

𝐿2 ∶ (𝑥𝑛, 𝑦𝑛, 𝜈2𝑛−1∕2) ↦→ (𝑥, 𝑦𝑛, 𝜈2𝑛), 𝑅2 ∶ (𝑥, 𝑦𝑛, 𝜈2𝑛) ↦→ (𝑥𝑛+1, 𝑦𝑛, 𝜈2𝑛+1∕2)

can be written, according to (113), as follows:

𝑥 = 𝑥𝑛 +
𝛿

𝜈2𝑛−1∕2
(𝑥𝑛 − 𝑦𝑛), resp. 𝑥𝑛+1 = 𝑥 + 𝛿

𝜈2𝑛
(𝑥 − 𝑦𝑛).

A simple computation confirms that these relations are equivalent to

𝑥 − 𝜂(𝜂 + 𝜅𝜈2𝑛)
𝑥 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 2𝜅𝜈2𝑛)

= 𝑥𝑛 − 𝜂(𝜂 + 𝜅𝜈2𝑛−1)
𝑥𝑛 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 𝜅𝜈2𝑛 − 𝜅𝜈2𝑛−1)

, 𝑦𝑛 = 𝜂(𝜂 − 𝜅𝜈2𝑛), (119)

𝑥 − 𝜂(𝜂 + 𝜅𝜈2𝑛)
𝑥 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 2𝜅𝜈2𝑛)

=
𝑥𝑛+1 − 𝜂(𝜂 + 𝜅𝜈2𝑛+1)

𝑥𝑛+1 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 𝜅𝜈2𝑛+1 − 𝜅𝜈2𝑛)
, 𝑦𝑛 = 𝜂(𝜂 − 𝜅𝜈2𝑛). (120)

Similarly, to express in (118) the variables 𝑦, 𝑦 through 𝑥𝑛+1, 𝑦𝑛, we observe that

𝐿1 ∶ (𝑥𝑛+1, 𝑦𝑛, 𝜈2𝑛+1∕2) ↦→ (𝑥𝑛+1, 𝑦, 𝜈2𝑛+1), 𝑅1 ∶ (𝑥𝑛+1, 𝑦, 𝜈2𝑛+1) ↦→ (𝑥𝑛+1, 𝑦𝑛+1, 𝜈2𝑛+3∕2),

which, according to (112), can be put as follows:

𝑦 = 𝑦𝑛 +
𝛿

𝜈2𝑛+1∕2
(𝑦𝑛 − 𝑥𝑛+1), 𝑦𝑛+1 = 𝑦 + 𝛿

𝜈2𝑛+1
(𝑦 − 𝑥𝑛+1).
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Again, these relations are equivalent to
𝑦 − 𝜉(𝜉 − 𝜅𝜈2𝑛+1)

𝑦 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 2𝜅𝜈2𝑛+1)
= 𝑦𝑛 − 𝜉(𝜉 − 𝜅𝜈2𝑛)
𝑦𝑛 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 𝜅𝜈2𝑛+1 + 𝜅𝜈2𝑛)

,

𝑥𝑛+1 = 𝜉(𝜉 + 𝜅𝜈2𝑛+1) (121)

𝑦 − 𝜉(𝜉 − 𝜅𝜈2𝑛+1)
𝑦 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 2𝜅𝜈2𝑛+1)

=
𝑦𝑛+1 − 𝜉(𝜉 − 𝜅𝜈2𝑛+2)

𝑦𝑛+1 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 𝜅𝜈2𝑛+2 + 𝜅𝜈2𝑛+1)
,

𝑥𝑛+1 = 𝜉(𝜉 + 𝜅𝜈2𝑛+1). (122)

Substituting (119)–(122) into (117), (118), we arrive at the following system of non-

autonomous difference equations for the variables 𝑥𝑛, 𝑦𝑛 :
(
𝑥𝑛+1 − 𝜂(𝜂 + 𝜅𝜈2𝑛+1)

)(
𝑥𝑛 − 𝜂(𝜂 + 𝜅𝜈2𝑛−1)

)
(
𝑥𝑛+1 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 𝜅𝜈2𝑛+1 − 𝜅𝜈2𝑛)

)(
𝑥𝑛 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 𝜅𝜈2𝑛 − 𝜅𝜈2𝑛−1)

)

= 𝑈(𝜂)
𝑈(𝜅𝜈2𝑛 − 𝜂)

, 𝑦𝑛 = 𝜂(𝜂 − 𝜅𝜈2𝑛), (123)

(
𝑦𝑛+1 − 𝜉(𝜉 − 𝜅𝜈2𝑛+2)

)(
𝑦𝑛 − 𝜉(𝜉 − 𝜅𝜈2𝑛)

)
(
𝑦𝑛+1 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 𝜅𝜈2𝑛+2 + 𝜅𝜈2𝑛+1)

)(
𝑦𝑛 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 𝜅𝜈2𝑛+1 + 𝜅𝜈2𝑛)

)

= 𝑈(𝜉)
𝑈(−𝜅𝜈2𝑛+1 − 𝜉)

, 𝑥𝑛+1 = 𝜉(𝜉 + 𝜅𝜈2𝑛+1). (124)

This is the 𝑑-Painlevé equation of the surface type 𝐴(1)
0 , as given in [20], [11].

Remark. In the symmetric situation, when 𝑈(𝑧) = 𝑈(−𝑧), the system (123), (124)

can be interpreted as a one-field second order difference equation, with 𝑥𝑛 = 𝑢2𝑛−1 and

𝑦𝑛 = 𝑢2𝑛. To see this, one should make the change 𝜉 ↦→ −𝜉 in equation (124), after which

it matches (123).

9 From a pencil of type (ii) to the q-Painlevé equation of the

surface type 𝐴(1)
0

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic

curves through eight points 𝑠𝑖 = (𝑎𝑖, 𝑏𝑖), where

𝑎𝑖 = 𝑧𝑖 +
𝜅1
𝑧𝑖
, 𝑏𝑖 =

1
𝑧𝑖
+ 𝑧𝑖
𝜅2
, 𝑖 = 1, … , 8.
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These eight points support a pencil of biquadratic curves if they satisfy the condition
8∏

𝑖=1
𝑧𝑖 = 𝜅21𝜅

2
2.

They belong to the curve with the equation

(𝑥 − 𝜅2𝑦)(𝑦 − 𝜅−11 𝑥) = (𝜅1𝜅2)−1(𝜅1 − 𝜅2)2.

This is a biquadratic curve in ℙ1 × ℙ1 with a simple node at (∞,∞), see Fig. 5 (a).

s1

s2

s3

s4

s5

s6

s7

s8

(a) (b)

Figure 5: (a) Base set of the surface type 𝐴(1)
0 : eight points on a nodal (2,2)-curve in ℙ1 ×ℙ1.

(b) Pencil of quadrics through a nodal spatial quartic in ℙ3

The vertical involution 𝑖1 can be described by the following equation:

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦),
(𝑦 − 1

𝜉
− 𝜉
𝜅2
) (𝑦 − 1

𝜉
− 𝜉
𝜅2
)

(𝑦 −
𝜉
𝜅1

− 𝜅1
𝜅2𝜉

) (𝑦 −
𝜉
𝜅1

− 𝜅1
𝜅2𝜉

)
= 𝑈(𝜉)

𝑈
(𝜅1
𝜉
) , 𝑥 = 𝜉 + 𝜅1

𝜉
. (125)

Here we use the abbreviation

𝑈(𝑧) = 𝑧−4
8∏

𝑖=1
(𝑧 − 𝑧𝑖). (126)

Formula (125) is understood as follows. Written as a Laurent polynomial in 𝜉, it is anti-

symmetric with respect to 𝜉 ↔ 𝜅1∕𝜉. Upon division by 𝜉 − 𝜅1∕𝜉, the resulting Laurent
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polynomial is symmetric and therefore it can be actually expressed as a polynomial

in 𝑥 = 𝜉 + 𝜅1∕𝜉. This defines 𝑖1 as a birational involution (its symmetry w.r.t. 𝑦 ↔ 𝑦 is

obvious).

Similarly, the horizontal involution 𝑖2 can be described by the following equation:

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦),
(𝑥 − 𝜂 − 𝜅1

𝜂 ) (𝑥 − 𝜂 − 𝜅1
𝜂 )

(𝑥 − 𝜅2
𝜂 − 𝜅1𝜂

𝜅2
) (𝑥 − 𝜅2

𝜂 − 𝜅1𝜂
𝜅2

)
= 𝑈(𝜂)

𝑈
(𝜅2
𝜂
), 𝑦 = 1

𝜂 +
𝜂
𝜅2
. (127)

The eight points 𝑠1, … , 𝑠8 in ℙ1 × ℙ1 serve as the indeterminacy set for 𝑖1 and for 𝑖2. The

singularity confinement structure is as in (11). The QRT map 𝐹 is the composition of these

two involutions, 𝐹 = 𝑖1◦𝑖2.

Remark. In what follows, we restrict ourselves to the case 𝜅1𝜅2 = 1. This restriction is

not essential, but will allow us to shorten some of the formulas. Thus, from now on we

set in this section

𝜅1 =
1
𝜅 , 𝜅2 = 𝜅. (128)

If, additionally, the points 𝑧𝑖 satisfy the condition

𝑧𝑖+4 = 𝑧−1𝑖 , 𝑖 = 1, … , 4, (129)

then the QRT involutions admits a symmetry 𝑖1 = 𝜎◦𝑖2◦𝜎, where 𝜎(𝑥, 𝑦) = (𝑦, 𝑥), so that

one can introduce the QRT root 𝑓 = 𝑖1◦𝜎 = 𝜎◦𝑖2, such that 𝐹 = 𝑓◦𝑓.

3D Painlevé map. As usual, we identify ℙ1 × ℙ1 with the quadric 𝑄0 = {𝑋1𝑋2 − 𝑋3𝑋4 =

0} ⊂ ℙ3 via [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶ 𝑋4] = [𝑥 ∶ 𝑦 ∶ 𝑥𝑦 ∶ 1]. The points 𝑠𝑖 are lifted to

𝑆𝑖 = [𝑎𝑖 ∶ 𝑏𝑖 ∶ 𝑎𝑖𝑏𝑖 ∶ 1].

We declare 𝑄𝜆 to be spanned by 𝑄0 and

𝑄∞ = 𝑃∞ = 𝜅(𝑋2
1 + 𝑋2

2) − (1 + 𝜅2)𝑋1𝑋2 + (𝜅 − 𝜅−1)2𝑋2
4 . (130)

The base set of the pencil 𝑄𝜆 is a nodal space curve {𝑄0 = 0, 𝑃∞ = 0} of degree 4, with the

node at [0 ∶ 0 ∶ 1 ∶ 0]. This is a pencil of type (ii).
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The matrix 𝑀𝜆 of the quadratic form 𝑄𝜆:

𝑀𝜆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−2𝜅𝜆 1 + (1 + 𝜅2)𝜆 0 0

1 + (1 + 𝜅2)𝜆 −2𝜅𝜆 0 0

0 0 0 −1

0 0 −1 −2(𝜅 − 𝜅−1)2𝜆

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (131)

The characteristic polynomial of the pencil {𝑄𝜆} is:

∆(𝜆) = det(𝑀𝜆) =
(
1 + (1 + 𝜅2)𝜆

)2
− 4𝜅2𝜆2 =

(
1 + (1 + 𝜅)2𝜆

)(
1 + (1 − 𝜅)2𝜆

)
,

so that Sing(𝑄𝜆) = {−(1 + 𝜅)−2, −(1 − 𝜅)−2,∞}. This polynomial is not a complete square,

and we have to uniformize
√
∆(𝜆). The uniformizing variable is 𝜈 ∈ ℂ. As in Sect. 7, it will

be convenient to use 𝑤 = 𝑒𝜈 instead, with 𝑤 ∈ ℂ ⧵ {0}. We set

𝜆 = 𝜆(𝑤) = (𝜅 − 𝑤)(1 − 𝜅𝑤)
(1 − 𝜅2)2𝑤

. (132)

Then ∆(𝜆) becomes a square:

∆(𝜆) = 𝜅2(1 − 𝑤2)2
𝑤2(1 − 𝜅2)2

⇒
√
∆(𝜆) = 𝜅(1 − 𝑤2)

𝑤(1 − 𝜅2)
.

Observe that 𝜆(𝑤) = 𝜆(𝑤−1), while
√
∆(𝜆) changes its sign under 𝑤 ↦→ 𝑤−1. This gives us a

double cover of the original pencil branched at 𝜆 = −(1 + 𝜅)−2 (corresponding to 𝑤 = 1),

and at 𝜆 = −(1 − 𝜅)−2 (corresponding to 𝑤 = −1). The point 𝜆 = ∞ is not a branch point (it

corresponds to 𝑤 = 0,∞). The normalizing transformation of 𝑄𝜆(𝑋) to the canonical form

𝑄0(𝑌) = 𝑌1𝑌2 − 𝑌3𝑌4 is achieved by the transformation

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝑤

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑌1
𝑌2
𝑌3
𝑌4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (133)
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where one can take

𝐴𝑤 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑤(1 − 𝜅𝑤)
𝜅(1 − 𝑤2)

𝑤(𝜅 − 𝑤)
𝜅(1 − 𝑤2)

0 0

𝑤(𝜅 − 𝑤)
𝜅(1 − 𝑤2)

𝑤(1 − 𝜅𝑤)
𝜅(1 − 𝑤2)

0 0

0 0 𝑤
𝜅 −(1 − 𝜅𝑤)(𝜅 − 𝑤)

𝜅2𝑤
0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (134)

Indeed, one immediately verifies that

𝐴T
𝑤𝑀𝜆(𝑤)𝐴𝑤 = 𝑤

𝜅 𝑀0.

There follows a parametrization of the quadric 𝑄𝜆(𝑤):

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝑤

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑥𝑦

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=∶ 𝜙𝑤(𝑥, 𝑦). (135)

This parametrization is neither valid for 𝑤 = 0 nor for 𝑤 = ∞. The pencil-adapted

coordinates (𝑥, 𝑦, 𝑤) on (the double cover of) ℙ3 are:

𝑥 = 𝜅
𝑤 ⋅ (1 − 𝜅𝑤)𝑋1 − (𝜅 − 𝑤)𝑋2

(1 − 𝜅2)𝑋4
, 𝑦 = 𝜅

𝑤 ⋅ (1 − 𝜅𝑤)𝑋2 − (𝜅 − 𝑤)𝑋1
(1 − 𝜅2)𝑋4

, (136)

which have to be supplemented with

𝜆 = (𝜅 − 𝑤)(1 − 𝜅𝑤)
(𝜅2 − 1)2𝑤

= 𝑋1𝑋2 − 𝑋3𝑋4
𝜅𝑋2

1 + 𝜅𝑋2
2 − (1 + 𝜅2)𝑋1𝑋2 + (𝜅 − 𝜅−1)2𝑋2

4
. (137)

Theorem 7. For any 𝑞 ≠ ±1, define the Painlevé deformation map corresponding to the

translation 𝑤 ↦→ 𝑤 = 𝑞2𝑤 by

𝐿 ∶

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑋1 = 𝑋1𝑋4,

𝑋2 = 𝑋2𝑋4,

𝑋3 = 𝑋3𝑋4 −
(
𝜆(𝑤) − 𝜆(𝑤)

)
𝑄∞(𝑋),

𝑋4 = 𝑋2
4 ,

(138)
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where 𝜆 = 𝜆(𝑤) is given by (132), and 𝑄∞(𝑋) is given in (130). Then, in pencil-adapted

coordinates, the map 𝐿 acts as follows:

𝐿 ∶ 𝑥 = 𝑥 + 1 − 𝑞−2
𝑤2 − 1 (𝑥 − 𝑤𝑦), 𝑦 = 𝑦 + 1 − 𝑞−2

𝑤2 − 1 (𝑦 − 𝑤𝑥), 𝑤 = 𝑞2𝑤. (139)

For the latter map, the factorizations (4), (5) are given by

𝐿1 ∶ (𝑥, 𝑦, 𝑤) ↦→ (𝑥, 𝑦, 𝑞𝑤), 𝑦 = 𝑦 + 1 − 𝑞−2
𝑤2 − 1 (𝑦 − 𝑞𝑤𝑥), (140)

𝑅1 ∶ (𝑥, 𝑦, 𝑤) ↦→ (𝑥, 𝑦, 𝑞𝑤), 𝑦 = 𝑦 + 1 − 𝑞−2
𝑤2 − 1 (𝑦 − 𝑤𝑥), (141)

𝐿2 ∶ (𝑥, 𝑦, 𝑤) ↦→ (𝑥, 𝑦, 𝑞𝑤), 𝑥 = 𝑥 + 1 − 𝑞−2
𝑤2 − 1 (𝑥 − 𝑞𝑤𝑦), (142)

𝑅2 ∶ (𝑥, 𝑦, 𝑤) ↦→ (𝑥, 𝑦, 𝑞𝑤), 𝑥 = 𝑥 + 1 − 𝑞−2
𝑤2 − 1 (𝑥 − 𝑤𝑦). (143)

Relation to the 𝑞-Painlevé equation of the surface type 𝐴(1)
0 . In the pencil-adapted

coordinates (𝑥, 𝑦, 𝑤), for each fixed 𝑤, the intersection curves 𝑄𝜆(𝑤) ∪ 𝑃𝜇 form the pencil

through the points

𝑠𝑖(𝑤) = (𝑎𝑖(𝑤), 𝑏𝑖(𝑤)) =
(
𝑧𝑖 +

1
𝑤𝑧𝑖

, 1𝑧𝑖
+ 𝑧𝑖
𝑤
)
, 𝑖 = 1, … , 8, (144)

which are just the points 𝑆𝑖 expressed in the pencil-adapted coordinates on 𝑄𝜆(𝑤). Thus,

the 3D QRT involutions 𝑖1, 𝑖2 act on each quadric 𝑄𝜆(𝑤) in the pencil-adapted coordinates

via formulas which are obtained from the corresponding 2D formulas by replacing 𝜅 by

𝑤:

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦),
(𝑦 − 1

𝜉
− 𝜉
𝑤)(𝑦 −

1
𝜉
− 𝜉
𝑤)

(𝑦 − 𝑤𝜉 − 1
𝑤2𝜉 ) (

𝑦 − 𝑤𝜉 − 1
𝑤2𝜉 )

= 𝑈(𝜉)

𝑈
( 1
𝑤𝜉

), 𝑥 = 𝜉 + 1
𝑤𝜉

, (145)

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦),
(𝑥 − 𝜂 − 1

𝑤𝜂) (𝑥 − 𝜂 − 1
𝑤𝜂)

(𝑥 − 𝑤
𝜂 − 𝜂

𝑤2 ) (𝑥 −
𝑤
𝜂 − 𝜂

𝑤2 )
= 𝑈(𝜂)

𝑈
(𝑤
𝜂
), 𝑦 = 1

𝜂 +
𝜂
𝑤 . (146)
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In notations of (7), (8), this takes the form

(𝑥 − 𝜂 − 1
𝑤2𝑛𝜂

) (𝑥 − 𝜂 − 1
𝑤2𝑛𝜂

)

(𝑥 −
𝑤2𝑛
𝜂 − 𝜂

𝑤2
2𝑛
) (𝑥 −

𝑤2𝑛
𝜂 − 𝜂

𝑤2
2𝑛
)
= 𝑈(𝜂)

𝑈
(𝑤2𝑛
𝜂
), 𝑦𝑛 =

1
𝜂 +

𝜂
𝑤2𝑛

, (147)

(𝑦 − 1
𝜉
− 𝜉
𝑤2𝑛+1

) (𝑦 − 1
𝜉
− 𝜉
𝑤2𝑛+1

)

(𝑦 − 𝑤2𝑛+1𝜉 −
1

𝑤2
2𝑛+1𝜉

) (𝑦 − 𝑤2𝑛+1𝜉 −
1

𝑤2
2𝑛+1𝜉

)
= 𝑈(𝜉)

𝑈
( 1
𝑤2𝑛+1𝜉

) , 𝑥𝑛+1 = 𝜉 + 1
𝑤2𝑛+1𝜉

. (148)

Here, recall,

𝑤2𝑛+1 = 𝑞𝑤2𝑛+1∕2 = 𝑞2𝑤2𝑛. (149)

To express in (147) the variables 𝑥, 𝑥 through 𝑥𝑛, 𝑦𝑛, we observe that

𝐿2 ∶ (𝑥𝑛, 𝑦𝑛, 𝑤2𝑛−1∕2) ↦→ (𝑥, 𝑦𝑛, 𝑤2𝑛), 𝑅2 ∶ (𝑥, 𝑦𝑛, 𝑤2𝑛) ↦→ (𝑥𝑛+1, 𝑦𝑛, 𝑤2𝑛+1∕2).

According to (142), (143), we find:

𝑥 = 𝑥𝑛 +
1 − 𝑞−2

𝑤2
2𝑛−1∕2 − 1

(𝑥𝑛 − 𝑞𝑤2𝑛−1∕2𝑦𝑛), 𝑥𝑛+1 = 𝑥 + 1 − 𝑞−2

𝑤2
2𝑛 − 1

(𝑥 − 𝑤2𝑛𝑦𝑛).

A straightforward computation confirms that these equations are equivalent to

𝑥 − 𝜂 − 1
𝑤2𝑛𝜂

𝑥 − 𝑤2𝑛
𝜂 − 𝜂

𝑤2
2𝑛

=
𝑥𝑛 − 𝜂 − 1

𝑤2𝑛−1𝜂

𝑥𝑛 −
𝑤2𝑛
𝜂 − 𝜂

𝑤2𝑛𝑤2𝑛−1

, 𝑦𝑛 =
1
𝜂 +

𝜂
𝑤2𝑛

, (150)

𝑥 − 𝜂 − 1
𝑤2𝑛𝜂

𝑥 − 𝑤2𝑛
𝜂 − 𝜂

𝑤2
2𝑛

=
𝑥𝑛+1 − 𝜂 − 1

𝑤2𝑛+1𝜂

𝑥𝑛+1 −
𝑤2𝑛
𝜂 − 𝜂

𝑤2𝑛𝑤2𝑛+1

, 𝑦𝑛 =
1
𝜂 +

𝜂
𝑤2𝑛

. (151)

Similarly, to express in (148) the variables 𝑦, 𝑦 through 𝑥𝑛+1, 𝑦𝑛, we observe that

𝐿1 ∶ (𝑥𝑛+1, 𝑦𝑛, 𝑤2𝑛+1∕2) ↦→ (𝑥𝑛+1, 𝑦, 𝑤2𝑛+1), 𝑅1 ∶ (𝑥𝑛+1, 𝑦, 𝑤2𝑛+1) ↦→ (𝑥𝑛+1, 𝑦𝑛+1, 𝑤2𝑛+3∕2).

According to (140), (141), we find:

𝑦 = 𝑦𝑛 +
1 − 𝑞−2

𝑤2
2𝑛+1∕2 − 1

(𝑦𝑛 − 𝑞𝑤2𝑛+1∕2𝑥𝑛+1), 𝑦𝑛+1 = 𝑦 + 1 − 𝑞−2

𝑤2
2𝑛+1 − 1

(𝑦 − 𝑤2𝑛+1𝑥𝑛+1).

Arnold Mathematical Journal, Vol.11(4), 2025 236

http://dx.doi.org/10.56994/ARMJ


Discrete Painlevé equations

These equations are equivalent to

𝑦 − 1
𝜉
− 𝜉
𝑤2𝑛+1

𝑦 − 𝑤2𝑛+1𝜉 −
1

𝑤2
2𝑛+1𝜉

=
𝑦𝑛 −

1
𝜉
− 𝜉
𝑤2𝑛

𝑦𝑛 − 𝑤2𝑛+1𝜉 −
1

𝑤2𝑛+1𝑤2𝑛𝜉

, 𝑥𝑛+1 = 𝜉 + 1
𝑤2𝑛+1𝜉

, (152)

𝑦 − 1
𝜉
− 𝜉
𝑤2𝑛+1

𝑦 − 𝑤2𝑛+1𝜉 −
1

𝑤2
2𝑛+1𝜉

=
𝑦𝑛+1 −

1
𝜉
− 𝜉
𝑤2𝑛+2

𝑦𝑛+1 − 𝑤2𝑛+1𝜉 −
1

𝑤2𝑛+2𝑤2𝑛+1𝜉

, 𝑥𝑛+1 = 𝜉 + 1
𝑤2𝑛+1𝜉

. (153)

Substitute (150)–(153) into (147), (148). This results in the following system of non-

autonomous difference equations for the variables 𝑥𝑛, 𝑦𝑛:

(𝑥𝑛+1 − 𝜂 − 1
𝑤2𝑛+1𝜂

) (𝑥𝑛 − 𝜂 − 1
𝑤2𝑛−1𝜂

)

(𝑥𝑛+1 −
𝑤2𝑛
𝜂 − 𝜂

𝑤2𝑛𝑤2𝑛+1
) (𝑥𝑛 −

𝑤2𝑛
𝜂 − 𝜂

𝑤2𝑛𝑤2𝑛−1
)
= 𝑈(𝜂)

𝑈
(𝑤2𝑛
𝜂
), 𝑦𝑛 =

1
𝜂 +

𝜂
𝑤2𝑛

, (154)

(𝑦𝑛+1 −
1
𝜉
− 𝜉
𝑤2𝑛+2

) (𝑦𝑛 −
1
𝜉
− 𝜉
𝑤2𝑛

)

(𝑦𝑛+1 − 𝑤2𝑛+1𝜉 −
1

𝑤2𝑛+2𝑤2𝑛+1𝜉
) (𝑦𝑛 − 𝑤2𝑛+1𝜉 −

1
𝑤2𝑛+1𝑤2𝑛𝜉

)
= 𝑈(𝜉)

𝑈
( 1
𝑤2𝑛+1𝜉

) ,

𝑥𝑛+1 = 𝜉 + 1
𝑤2𝑛+1𝜉

. (155)

This is the 𝑞-Painlevé equation of the surface type 𝐴(1)
0 , as given in [20], [11].

Remark. In the symmetric situation, when 𝑈(𝑧) = 𝑈(𝑧−1), the system (154), (155)

can be interpreted as a one-field second order difference equation, with 𝑥𝑛 = 𝑢2𝑛−1 and

𝑦𝑛 = 𝑢2𝑛. To see this, one should make in equation (155) the change 𝜉 ↦→ 𝜉−1, after which

it matches (154).

10 Conclusions

In this paper, we carried out the largest part of the task left open in [2], namely extended

our novel approach to the pencils for which the generators through a point 𝑋 ∈ ℙ3
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depend on 𝑋 in a non-rational (branching) way. The only case left open for a further

investigation is the pencil of the generic type (i), associated (in our scheme) with the

elliptic Painlevé equation. Also the problem of an interpretation of the isomonodromic

property of discrete Painlevé equations within our scheme remains open and is left for

the future research. Finally, it will be important to extend the scheme of the present paper

to discrete Painlevé equations corresponding to further translations in the corresponding

affine Weyl symmetry groups. A path to this goal (via additional geometric involutions

related to pencils and nets of quadrics) was sketched in the concluding remarks of [2].

The first step towards this goal (in the two-dimensional framework) has been performed

in [3].
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