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Abstract: In this paper we extend the novel approach to discrete Painlevé
equations initiated in our previous work [2]. A classification scheme for dis-
crete Painlevé equations proposed by Sakai interprets them as birational
isomorphisms between generalized Halphen surfaces (surfaces obtained from
P! x P! by blowing up at eight points). Sakai’s classification is thus based on
the classification of generalized Halphen surfaces. In our scheme, the family
of generalized Halphen surfaces is replaced by a pencil of quadrics in P3. A
discrete Painlevé equation is viewed as an autonomous transformation of P3
that preserves the pencil and maps each quadric of the pencil to a different
one. Thus, our scheme is based on the classification of pencils of quadrics

in P3. Compared to our previous work, here we consider a technically more
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demanding case where the characteristic polynomial A(1) of the pencil of
quadrics is not a complete square. As a consequence, traversing the pencil
via a 3D Painlevé map corresponds to a translation on the universal cover of
the Riemann surface of \/A(1), rather than to a Mébius transformation of the

pencil parameter A as in [2].

1 Introduction

This paper is the second contribution to our study devoted to a novel interpretation
of discrete Painlevé equations, which builds up on [2]. Discrete Painlevé equations
belong to the most intriguing objects in the theory of discrete integrable systems. After
some examples sporadically appeared in various applications, their systematic study
started when Grammaticos, Ramani and Papageorgiou proposed the notion of “singularity
confinement” as an integrability detector, and found the first examples of second order
nonlinear non-autonomous difference equations with this property, which they denoted
as discrete Painlevé equations [9, 16]. The activity of their group was summarized in [8]. A
general classification scheme of discrete Painlevé equations was proposed by Sakai [18]
and it is given a detailed exposition in the review paper by Kajiwara, Noumi and Yamada
[11]. In the framework of Sakai’s scheme, discrete Painlevé equations are birational maps
between generalized Halphen surfaces X. The latter can be realized as P! x P! blown up
at eight points. A monographic exposition of discrete Painlevé equations is given by Joshi
[10].

Let us summarize the main ingredients and features of our alternative approach to

discrete Painlevé equations, initiated in [2].

¢ A pencil of quadrics {Q,} in P3 containing non-degenarate quadrics. Such pencils
can be classified modulo projective transformations of P3, and they come in thirteen

classes. The class of the pencil can be identified by the type of its base curve Q, n
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Q.- This is a spatial curve of degree 4, whose type can vary from a generic one
(irreducible smooth curve for a pencil of type (1)), through irreducible curves with a
node (type (ii)) or with a cusp (type (iii)), to various types of reducible curves (from
two non-coplanar conics intersecting at two points, type (iv), to a pair of intersecting

double lines, type (xiii)).

* The second pencil of quadrics {P,} having one quadric in common with {Q;}, say

P, = Q.. The base curves of both pencils intersect at eight points S;,i = 1, ..., 8.

* Given two pencils of quadrics, one can define a three-dimensional analog of a QRT
map F = i;0i,, where the 3D QRT involutions i, i, act along two families of generators
of Q,, see [1]. Each involution puts into correspondence two intersection points of
a generator with the quadric P,. By definition, such an involution, and therefore
the 3D QRT map F = i;oi,, leaves each quadric of two pencils invariant, and thus

possesses two rational integrals of motion 1 = Q,/Q., and u = P,/P,.

* A Painlevé deformation map is the device which allows us to travel across the pencil
{Q,}. More precisely, such a map L on P? preserves the pencil, but not fiber-wise.
Rather, it sends each quadric Q, to a different quadric Q;. Moreover, L preserves
the base curve of the pencil {Q;}. In the cases considered in [2], the base curve is
reducible and contains straight lines. In these cases, L does not necessarily fix these
straight lines point-wise. In the cases considered in the present paper;, L fixes the

base curve Q, n Q. pointwise (in particular, it fixes all eight points S;).

* A 3D Painlevé map is obtained by composition F = Loi; oLoi,, provided it possesses the
singularity confinement property. It is to be stressed that the pencil {Q;} continues to
play a fundamental role in the dynamics of F: the maps Loi;, Loi, preserve the pencil
and map each quadric Q, to Q;. We do not have a straightforward description of the
dynamical role of the pencil {P,}, but anticipate its relation to the isomonodromic

description of the discrete Painlevé equations.

One can say that in our approach the role of a family of generalized Halphen surfaces

Arnold Mathematical Journal, Vol.11(4), 2025 199


http://dx.doi.org/10.56994/ARMJ

Jaume Alonso, Yuri B. Suris

is played by the quadrics of the pencil {Q,} with eight distinguished points on the base
curve of the pencil. The base curve itself plays the role of the unique anti-canonical
divisor. Let us stress several features of our construction which are in a sharp contrast to

the Sakai scheme.

* Neither the exceptional divisor nor the eight distinguished points evolve under the
map F. Their discrete time evolution is apparent and is due to their representation in
the so-called pencil-adapted coordinates. These are coordinates (x, y, 1) € P! x P! x P!
establishing an isomorphism between each quadric Q; of the pencil and P! x PL.
The pencil-adapted coordinates of a point on the base curve do depend on 4, so
traversing the pencil 1 ~— 1 under F induces an apparent discrete time evolution of

the base curve and of the eight distinguished points.

* The shift parameter § of discrete Painlevé equations (or its exponent g = ¢’ for the
g-difference equations among them) is not an intrinsic characteristic of the configu-

ration of eight distinguished points, but is a free parameter of the construction.

One can say that our approach is a realization of the old-style idea of discrete Painlevé
equations being non-autonomous versions (or modifications) of the QRT maps. This idea
was instrumental in the discovery and early classification attempts of discrete Painlevé
equations, summarized in [8]. A more geometric version of this procedure was proposed
in the framework of the Sakai’s scheme by Carstea, Dzhamay and Takenawa [5]. In
their scheme, the de-autonomization of a given QRT map depends on the choice of one
biquadratic curve of the pencil. In our approach, the choice of the base curve and eight
distinguished point on it determines uniquely all the ingredients of the construction,
starting with the two pencils of quadrics.

The structure of the paper is as follows. In Section 2, we describe the construction
scheme of discrete Painlevé equations applicable to the present case and stress its dis-
tinctions from the previous paper [2]. The main distinction is that here we consider the

pencils whose characteristic polynomial A(1) is not a complete square. As a consequence,
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the 3D QRT involutions iy, i, and the 3D QRT map F = i;0i, are no more birational maps
of P3. Rather, these maps become birational maps on X, a branched double covering of
3, whose ramification locus is the union of the singular quadrics Q, , where 4; are the
branch points of the Riemann surface ® of \/A(%).

In Section 3, we formulate a general recipe for the construction of the Painlevé
deformation map L, responsible to the evolution A ~— 2 across the pencil of quadrics {Q,}.
While in the first part [2] we had 1 = o(1), where ¢ : P! — P! is a M6bius automorphism
fixing the set Sing(Q) := {1 € P! : Q; is degenerate}, in the present paper the natural
definition becomes 1 = 1(9), where 1 = A(v) is the holomorphic uniformization map for
the Riemann surface R, and ¥ = v + 26 is the translation on the universal cover C. The
recipe turns out to be applicable to all types of the pencil {Q,} except for the generic type
(1). The latter leads to the elliptic Painlevé equation, which will be treated in a separate
publication.

In Section 4, we show that the so constructed L ensures the fundamental singularity
confinement property for our 3D Painlevé maps.

There follow five Sections 5-9 containing a detailed elaboration of our scheme for
all relevant types of the pencils except for the type (i). We recover, within our novel
framework, all discrete Painlevé equations except for the elliptic one, which is left for a

separate publication.

2 General scheme

We now describe the construction scheme of discrete Painlevé equations applicable to
the present case and stress its distinctions from the previous paper [2]. The first steps

are the same as there:

+ Start with a pencil {C,;} of biquadratic curves in P! x P! and the corresponding QRT
map. Let 5, ..., 53 € P! x P! be the base points of this pencil. Lift {C,} to a pencil of
quadrics {P,} in * using the Segre embedding of P! x P! to P*. The base curve of this
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pencil passes through the lifts S;, ..., Sg of the base points s, ..., sg.

* Choose one distinguished biquadratic curve C, of the pencil, along with its lift to a

quadric Pg..

» Based on these data, construct the pencil of quadrics {Q; = Q, — 1Q} in P spanned
by Q, = {X,X, — X3X, = 0} and Q, := P.. Recall that Q, is nothing but the image of
P!xP! by the Segre embedding. The base curve of the pencil {Q,} is, by definition, the
curve QyNQ, which is the image of C, under the Segre embedding. The intersection
of this curve with the base curve of the pencil {P,} consists exactly of the points

S1,..,Sg.
The characteristic polynomial of the pencil {Q;} is
A(A) = det(M;) = det(M, — AM,), (@)

where My, M, € Sym,,(C) are symmetric matrices of the quadratic forms Qg, Q. In the
present paper, we are dealing with the cases where this polynomial is not a complete
square. According to the projective classification of pencils of quadrics, discussed in [2],

these are the following six cases:

(1) Pencil of quadrics through a non-singular spatial quartic curve.

Segre symbol [1,1,1,1]; AL = (A — 1))(A — 1,)(A — 15)(A — 4,).

(ii) Pencil of quadrics through a nodal spatial quartic curve.

Segre symbol [2,1,1]; A(A) = (A — 11)*(A — A,)(A — A3).

(iii) Pencil of quadrics through a cuspidal spatial quartic curve.
Segre symbol [3,1]; A1) = (1 — 4,)3(A — 4).

(iv) Pencil of quadrics through two non-coplanar conics sharing two points.
Segre symbol [(1,1),1,1]; A(D) = (A — 1;)*(A — 1,)(A — 15).

(v) Pencil of quadrics through two non-coplanar conics touching at a point.

Segre symbol [(2,1),1]; A(Q) = (A — 1,)°(A — 1,).
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(vi) Pencil of quadrics tangent along a non-degenerate conic.

Segre symbol [(1,1,1),1]; A(Q) = (1 — 1,)3(A — 1,).

As discussed in [2], for X € Q,, the generators ¢,(X) and ¢,(X) are rational functions of
X and of y/A(2). The dependence on 1 can be expressed as a holomorphic dependence on
the point of the Riemann surface ® of v/A(1). This Riemann surface is a double cover of C
branched at two or at four points. By the uniformization theorem, its universal cover is C.
We will denote the uniformizing variable v € C, so that the maps v v— 1 and v — \/m

are holomorphic. The following three situations can be distinguished:

- case (i): four distinct branch points 1,, 1,, 15, 44, the Riemann surface R is a torus,
whose conformal class is determined by the cross-ratio of the branch points. This
case, corresponding to the elliptic Painlevé equations, will be treated in an upcoming

work;

- cases (ii), (iv): two branch points 1,,1;, one of the periods of the torus becomes

infinite, so that R is a cylinder;

- cases (iii), (v), (vi): two branch points 1,, 1,, both periods of the torus become infinite,

so that R is plane.

It becomes necessary to introduce modifications in the two major ingredients of the

construction in [2].

» The generators ¢,, ¢, are not rational functions on P anymore. Rather, they become
well-defined rational maps on the variety X which is a branched double covering of
3, whose ramification locus is the union of the singular quadrics Q,, where 2; are
the branch points of R. The same is true for a linear projective change of variables
X = A,Y reducing the quadratic form Q) to the standard form Q,, which we now

write as

Qin(A4,Y) = Qo(Y), or AJMu)A, = My, (2)
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and for the pencil-adapted coordinates

X1 X
X y
=A, =: ¢y(x, ). (3)
X3 Xy
X4 1

Thus, ¢, gives a parametrization of Q,(,) by (x,y) € P! x P!, such that the generators
¢1,resp. ¢, of Q; correspond to x = const, resp. to y = const. Interchanging two sheets

of the covering corresponds to interchanging two families of generators ¢, ¢,.

» Also the 3D QRT involutions i,, i, for the pencil {Q,}, defined by intersections of
its generators ¢,, ¢, with the quadrics P, (see [1]), are not birational maps of P?
anymore, and the same is true for the 3D QRT map F = i,oi,. Rather, these maps

become birational maps on X.

The next main deviation from the construction of [2] is that it becomes unnatural to
consider Painlevé deformation maps L as birational maps P* preserving the pencil {Q;}
and sending each Q; to Q,(;), where ¢ : P! — P! is a Mébius automorphism fixing the
set Sing(Q) := {1 € P! : Q, is degenerate}. Instead, in the present context we formulate the

following requirement.

» A Painlevé deformation map L is a birational map on X preserving the pencil {Q,}
and sending Q;,) to Q;, where v ~— 7 = v 4+ 2§ is a translation on the universal

cover of R.

As compared with [2], our construction will involve some additional ingredients,
required to establish the relation to the form of discrete Painlevé equations known from
the literature. The Painlevé deformation map L is decomposed in two factors, each one
depending only on one of the variables x, y, and shifting the variable v by §. This can be

done in two ways:
L =L,0R,, where L, : (x,y,v) > (x,y,v+98), R, : (x,y,v) — (X,y,v + 95), 4)
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resp.
L = L,oR;, where L, : (x,y,v) v (X,y,v+ ), R; : (x,y,v) > (x,¥,v + 9). (5)

(The indices 1, 2 refer to the variables which do not change under the mabp, like for i, i,.)

Each one of L;, L,, Ry, R, maps Q) t0 Q ,+5). We set
1
VYV, =vy+2nd for ne EZ’

so thatv,,,,, = v, + d. The variables associated to the discrete Painlevé equations known
from the literature, parametrize in our formulation the quadrics with half-integer indices,

namely

(xn’ ynaVZn—l/Z) € Q/l(vz,,_l/z) ’ (xn+1:ynaV2n+1/2) € Q/l(v2n+1/2) .

Definition 1. A 3D Painlevé map is given by

ﬁ =71°72, where 71 = RloiloLl’ 72 = R20i20L2, (6)
or; in coordinates,
L, L R,
(Xps Yns Van—172) = (X, Y5 V2n) = (X, Y5 V2n) = (Xpg15 Yo Vantr/2) (7
Ly i ~ R,
= (X415 Y Vont1) = X1, V5 Vans1) = (Xng1s Ynr1s Vans3/2)- (8)

The map F is conjugate to Loi, oLoiy; note that the latter map acts between the quadrics

with integer indices.

Our last requirement repeats the one in [2]:

* The singularity confinement properties of i;, i, are the same as that of iy, i,.

Reduction to the symmetric case. If the eight points s; are symmetric with respect to
the symmetry switch o : (x,y) v— (¥, x), we can define a 2D QRT root f = i;oo = ooi, such
that F = fof. In this case, the map L in the pencil-adapted coordinates satisfies L = goLoag,

and therefore its decomposition factors satisfy
L2 =U°L100', R2 =U°R100.
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The 3D Painlevé map F can be written as

F = R10i10L10R20i20L2 = RloiloLIOUORloaoionoLl
= Rjoijoo0Ll,0R 000i,0L,
= (RyofoL,)%.

Therefore, one can define the Painlevé deformed QRT root as f = R;ofoL,, then the

discrete Painlevé map decomposes as F = fof.

3 Construction of the Painlevé deformation map
The desired properties of the Painlevé deformation map L are ensured by the following
construction.

Theorem 1. If the polynomial Q, does not depend on X, definethemap L : [X; : X, : X5 :
X4l == [X) 1 X, 1 X5 1 X,] by requiring that, for X € Q;,, there holds

21 = X1X4,

| X=X ) ©
X3 =X3X, — (/1(7/) - A(V))Qoo(X),

| Xa =X,

where v = v + 26. If Q, does not depend on X, define

21 =X X, + (/1(77) - A(V))Qoo(X),
X, = X2,

) j 2 (10)
X3 = X,X5,
24 = X2X4.

Then L sends each Q,, to Q, and fixes all points of the base curve of the pencil {Q,} not
belonging to {X, = 0} (resp. to {X, = 0}), including all eight base points S;, i = 1,..., 8.

Proof. It follows by a simple computation. For instance, for the case (9):
2.8, =3R4 — A0 (X) = X3(X1X; — XX, — A)Qe (X)),
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Futher, if Q,(X) =0and X, # 0, then [X; : X, : X; : Xu]=[X1 : X, : X5 : X,].

The recipe of Theorem 1 covers all cases treated in the present paper (pencils of
the types (ii)-(vi)). In retrospect, we notice that, with a natural modification (replace
1 =2 = A(®) — A(») by o(1) — 1), this recipe covers also the cases considered in the first
part of this study [2]. For pencils of the type (i) the quadric Q. is non-degenerate, so a

modification of the recipe is required.

4 Singularity confinement

Our case-by-case computations reveal the following observation. In all examples of the
present paper, the eight points sy, ..., sg in P! x P! serve as the indeterminacy set for the

2D QRT involutions iy, i,. The singularity confinement structure can be summarised as:
x=a} > 5 = y=b} i=1...8 (11)

In the pencil-adapted coordinates, the 3D QRT involutions restricted to Q,, are given
by the same formulas as the original 2D QRT involutions, with the points s; replaced by
their deformations s;(v). The latter still support a pencil of biquadratic curves, which are
the pre-images under ¢, of the intersection curves Q,,, n P,. Therefore, for the 3D QRT

involutions i; and i,, we have
x =g} = 50) = {y=b} (12)

Let ®; c 3 be the ruled surface comprised of the lines on Q;,, given, in the pencil-adapted
coordinates ¢,, by the equations {x = q;(v)}. Likewise, let ¥; c P be the ruled surface
comprised of the lines on Q,,, given in the coordinates ¢, by the equations {y = b;(v)}.
Then, in view of (12), we obtain the following singularity confinement patterns for i, i,:

iq iy
q)i - Si - ‘Pi. (13)

We emphasize that the surfaces ®; are blown down to points (rather than curves), and

these points are blown up to surfaces ¥; again.
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Theorem 2. Suppose that the involutions iy, i, : P -» P3 have a singularity confinement

pattern of the type (13), and L satisfies
L(S;) = S;. (14)
Then for the deformed maps i, = R;oi;0L,, i, = Ryo0iy0L, we have:
@) 2 Ri(S) > Ry(wy, )
which implies for F =i, oi, the singularity confinement pattern

_ F F -
(Lyoi) M (®;) — Ry(S) — (i10R,)(¥)). (16)

An important observation is that the eight points R,(S;) participating in these singu-

larity confinement patterns do not support a net of quadrics.

5 From a pencil of type (v) to the d-Painlevé equation of the

(€]

surface type A,

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic

curves {C,} through eight points s; = (a;, b;), i = 1,...,8, where
bj=-q;, i=1,..,4, and b;=1-gq;, i=5,..,8. 17
These eight points support a pencil of biquadratic curves if they satisfy the condition
ai+a,+a3+as—as—ag—a; —ag = —2. (18)
This pencil contains a reducible curve, consisting of two (1,1)-curves:
Co ={x+y)(x+y—1)=0} (19)
The vertical involution i, for this pencil can be described by the following equation:

F+0x+y)  ILG-a)

= . 20
G+x-Dx+y-1) Hfzs(x—ai) .

il(x’y) = (xa j"—)a
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€))] )

; . @. ; ;
Figure 1: (a) Base set of the surface type A,”: two quadruples of points on two touching

(1,1)-curves in P! x PL. (b) Pencil of quadrics through two touching non-coplanar conics

Similarly, the horizontal involution i, can be described by the following equation:

E+y)x+y) 0+

= . 21
E+y—-Dxx+y-1) H?zs(y+ai_1) (21)

h(x,y) = (X, ),

The QRT map is the composition of these two involutions, F = i;0i,. The singularity
confinement structure of the involutionsi;, i, isasin (11). The symmetric case corresponds

to

Ay = =0y, 1 =1,2, Ay =1—ay,1=3,4
In this case, F = fof, with f = i;o0 = goi, being the QRT root (here o(x,y) = (¥, x)).
3D Painlevé map. We consider the pencil of quadrics {P,} in %, the Segre lift of the

pencil of curves {C,}. The pencil {Q,;} is spanned by Q, = {X;X, — X3X, = 0} and Q,, = P, =
{X + X)X + X, —X,) =0}

Q, = {Xle — X3 X, — AKX + X)X, + X, — X,) = 0}. (22)

The base set of the pencil Q; consists of the two conics, {X;X, — X3X, =0, X; + X, = 0} and
{X1X, — X5X, =0, X; + X, = X,}, which have one common (touching) point [0 : 0 : 1 : 0].
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This is a pencil of type (v). The intersection of this base set with the base set of the pencil

{P,} consists of eight points

which are nothing but the lifts of the points s; under the Segre embedding.

The matrix M; of the quadratic form Q;:

21 1-24 0 -4
1-24 =24 0 -4
0 0 0 -1

—A -4 -1 0

The characteristic polynomial of the pencil {Q,} is: A(1) = det(M;) = 1 — 44, which is not a
complete square, and Sing(Q;) = {i, oo}. We uniformize the Riemann surface of /A1) via

1 -2

/1=4,

AQQ) = . (24)

Thus, A(-v) = A(v), while y/A(1) changes its sign as v — —v. This gives us a double
cover of the original pencil branched at 1 = 1/4 (corresponding to » = 0), and at 1 = oo
(corresponding to v = oo0). The normalizing transformation of Q,,) to the canonical form

Qo can be found as follows:

X, Y,
X Y
=4, |, (25)
X3 Y,
X, Y,

where

La+v) La-») 0 o0

2v 2v

La-» La+v) o0 o
2v

A, =% . (26)
ﬁu —?) ﬁ(l —12) 1 0

0 0 01
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Indeed, one immediately verifies that
ATM;0)A, = M.

Now, we are in the position to derive a parametrization of the quadric Q;:

_ - _ - [ 1 ]
X, X ;((1 +v)x+ 1 —v)y)
X, y | |5@=-vx+a+vy
=A, = ) = ¢v(x’ »). 27)
X, xy xy + 1;—:(x +y)
[ X4 | | 1] 1

Observe that this parametrization is neither valid for v = 0 nor for v = . The pencil-

adapted coordinates (x, y,v) on (the double cover of) P* are:

Y= Q+v»)X, -1 -v)X, y= Q+v)X,— 1 -v)X;

X, X, (28)
which have to be supplemented with
— 2 XX, — X5X,
1= 1—-v 142 344 (29)

4 X X)X+ X, - X))
Theorem 3. For any é € C \ {0}, define the Painlevé deformation map corresponding to the

translation v w— v = v + 26 by

(%, = XX,
X, = XX,
L: X5 = X3X,—(A0) - A(»)Qw(X)
= X3X4+0(v + )X, + X)Xy + X, — X,),
X, = X2

Then, in pencil-adapted coordinates, the map L acts as follows:
oo o ) “ ) N
L:(xyv)—(X,9,9), X=x+ ;(x+y), y=y+ ;(x+y), V=v+26. (30)
For the latter map, the factorizations (4), (5) are given by
Li=R; : (x,y,v)— (x,y,v+6), L,=R, : (x,y,v)— (X,y,v + ),
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where
- ) y+x o y+x
y=y+yaty) J+x—v—-6 y+x—-v (31)
~_ 6 X+y _x+y
x—x+vu+y)<© Tiy—v—38 x+y—7v (32)

Relation to the d-Painlevé equation of the surface type A?). We now compute the 3D
Painlevé map F = R;oi oL, 0R,0iy0L, in the pencil-adapted coordinates (x, y, v). For each

fixed v, the intersection curves Q,,, n P, form a pencil through eight points

Si(V) = (ai’ _ai)’ i= 1’ oo 54’ (33)
s;(v) = (Vgl +al~,1+Tv—ai), i=5,..,8, (34)

which are just the points S, ..., Sg (which are, recall, independent of ») expressed in the
pencil-adapted coordinates on Q,,). The curve C.,(v), which is the image of the base curve

of the pencil {Q,} in the pencil-adapted coordinates on Q;,y, is given by the equation
Co) ={x+y)x+y—-v)=0}L (35)

The map L sends C,,(v) to C (v + 28), while the maps L, = R, and L, = R, send C(v)
to C,(v + 6). We observe that the map L fixes the (x,y) coordinates of the points of the
component {x + y = 0} of C(v), and acts as (x,y) v— (x + 8,y + &) on the component
{x +y = v}. This “shift” under the map L is, however, only apparent, as this map fixes the
curve Q, n 9, pointwise. Similarly, the map L, = R, acts on the second component as
(x,y) = (x,y + 6), while L, = R, acts as (x,y) ~— (x + &,y). These actions are non-trivial
in homogeneous coordinates X.

The formulas for the 3D QRT involutions iy, i, restricted to Q) coincide, in the pencil-

adapted coordinates, with the original QRT involutions (20) and (21), upon replacing s;

by s;(v):

G+oa+y) I -a)
G+x—v)(x+y—v) Hfzs(x —a— vz;l)

il(x’y) = (x’y), = ¢1(X, V), (36)
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4
X i= (y + ai)

b = @) D HoOra) o om @

y Y I +a- T)

In the notation of the equations (7), (8), we have:
X+ y)Yn + %) _

Gt = 2O F =) 20V 9
o+ xn+1)(xn+1 +y) _ 1p1(xn+1, V2n+1)' (39)

0+ xp11 = Vanr1)Xng1 + Y — Voni1)

It remains to express x,y, X,y in these formulas in terms of x,, y,. According to (7), we

have:

Lyt (Xp, Yn> Van—172) == (X, Y5, v2p)  and Ry 1 (X, Y, Vo) == (Xpi1s Vs Vant1/2)s

and with expressions (32) for the maps L,, R,, we find:

x+yn — xn+yn (40)
X+ Yn— Vo Xp + Yn _VZn—l/z’

X+ Yn— Vo Xpt1+Yn — Van+1/2

Similarly, according to (8), we have:

Lyt (%41, Vi Van1/2) V= (Xpg1, Y5 Vope1)  and - Ry 1 (%41, Y, Vang1) += (Xng1s Va1 Vane/2)s

and with expressions (31) for the maps L,, R;, we find:

Y+ Xpn _ Xpt1 + Vn (42)
Y+ X1 —=Vope1  Xpg1 + Vo = Vant1/z
Xpi1 + 37 _ Xnt1 + Ynt1 (43)

Xpt1+Y = Vons1  Xnt1 t Ynt1 — Vans3)2

Combining equations (38), (39) with (40)—(43) results in the following non-autonomous

system:
(xn+1 + yn)(xn + yn)
= P2(Vn> Van), (44)
(xn+1 +Vn— V2n+1/2)(xn +Vn— VZn—l/Z) 2w an
+ +
(xn+1 yn+1)(xn+1 yn) — ¢1(xn+1’ V2n+1)- (45)

(xn+1 + Vny1 — V2n+3/2)(xn+1 +Vn— V2n+1/2)

Arnold Mathematical Journal, Vol.11(4), 2025 213


http://dx.doi.org/10.56994/ARMJ

Jaume Alonso, Yuri B. Suris

This is nothing but the d-Painlevé equation of the surface type Agl), as given in [11].

Remark. The symmetric case can be characterized by ¢,(x,v) = ¢,(x, ). In this case

the latter equations become two instances of

(un+1 + un)(un + un—l)
(un+1 +u, — Vn+1/2)(un + Uy — Vn—l/z)

= lpl(un’ Vn)a (46)

if we set uy,_; = x,, Uy, := Vp-

6 From a pencil of type (vi) to the d-Painlevé equation of the

(1

surface type D,

By a simple limiting procedure, the results of the previous section lead to similar results
for the d-Painlevé equation of the surface type fo). We refrain from giving complete

details here, and restrict ourselves only to the main results.

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic
curves {C,} through eight points

s;=(a;,—q;), Sizsa=(a;+¢,—a;+¢€), i=1,...,4, 47

where the points ss, ..., sg are infinitely near to s,, ..., s4, respectively. This pencil contains
a reducible curve:

Co ={(x +y)* =0} (48)

The vertical involution i; and the horizontal involution i, for this pencil can be described

by the following equations:

1 1 1 1
i = == 49
hy) =009, st o 2;x_ai, (49)
. _ 1 1 1 1
h(x,y) =(X,y), m+X+y _§;y+ai' (50)
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$1,82

$3,54

5,56

S7,S8

@

al

»)

Figure 2: (a) Base set of the surface type Dil): four double points on a double (1,1)-curve

in P! x PL. (b) Pencil of quadrics touching along a conic

3D Painlevé map. We consider the pencil of quadrics {P,} in P? obtained as the Segre

lift of the pencil of curves {C,}. The pencil {Q,} is spanned by Q, = {X;X, — X3X, = 0} and

Qu =Py ={(X; + X,)* = O

Qi = XX, — X3X, — AX, + X,)? = 0.

(51)

The base set of the pencil Q, is the double conic {X, X, — X;X, =0, X; + X, = 0}. Thisis a

pencil of type (vi). The matrix M, of the quadratic form Q, is:

21
1-24

1-24 0
—21 0
0 0

0 -1

0
0
-1

0
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The characteristic polynomial of the pencil {Q,} is: A(1) = det(M;) = 1 — 44, the same as in

Section 5. The normalizing transformation of Q,,, to the canonical form Q, reads:

X1 Y,
X Y
2 =A.V 2 ’
X3 Y3
X, Y,
where
La+v) La-v») 0 0
2v 2v
La-» La+») o o
A = 2v 2v
L=
0 0 10
0 0 0 1

A parametrization of the quadric Q,,, is given by:

_Xl- n %((1 +v)x + (1 —v)y)
L@-vx+a+

Xl _ A, Y1_ (=X +{1+2)y) =: ¢,(x,y).

X, Xy Xy

| X, | | 1] 1

The pencil-adapted coordinates (x, y,v) on (the double cover of) P? are:

- 2.X4 ’ y - 2X4 ’

which have to be supplemented with

1 —'))2 X1X2 —X3X4
A= = .
4 (X1 +X5)?

(53)

(54)

(55)

(56)

(57)

Theorem 4. For any § € C \ {0}, define the Painlevé deformation map corresponding to the
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translation v w— 9 = v + 26 by

X1 = X1X4
X, = XX,
L: { X5 = X3X,—(A0) - A(»)Qw(X)
= X3X, 4 6(v +8)(X; + X,)?,
X, = X2

Then, in pencil-adapted coordinates, the map L acts as follows:
oo o 5 “ ) N
L:(xyv)—X99), X=x+ ;(x+y), y=y+ ;(x+y), V=v+26. (58)
For the latter map, the factorizations (4), (5) are given by

Ll =R1 : (x,y,V) = (x,i,')}'i‘a), L2 =R2 : (x,y,V) = (-ﬁf’yav-i_a)a

where
- o) v+4 v
y—y+;(x+y) < Tix  yEx (59)
- o) +4 v
x—x+;(x+y) = Tty Xty (60)

Computing the 3D Painlevé map F = R;oi;oL;oR,0i,0L, in the pencil-adapted coordi-

nates (x,y,v), we come to the following non-autonomous system:

Von+1/2 Yon-1/2  Vop 4 1 61)
Xn+1 + Vn Xp + Yn 2 i=1 yn+ai’
4
Van+3/2 Yont1/2 Vopq Z 1 (62)
Xn+1 T Yo+l Xn+1 + Vn 2 i=1 Xn+1 — G .

This can be considered as a d-Painlevé equation of the surface type Dil), in a realization
different from that in [11]. We remark here that the latter equation was put into our
scheme in [2, sect. 9], however in the framework of pencils of quadrics with rational
(non-branching) generators. There is no obvious relation between these two systems,

and it would be desirable to clarify this point.
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The symmetric case is characterised by a,; = —a,_;, i = 1,2. In this case the latter

equations become two instances of

v Vy—
n+1/2 n-1/2 _ ‘Vn( uy, U, )’ (63)

Upt+1 + Uy Uy + Uy u,zl — af u,% - a§

if we set uy,_; = xp,, Uy, = Vp-

7 From a pencil of type (iv) to the g-Painlevé equation of the

®
surface type A,

2D QRT map. Consider the QRT map corresponding to the pencil of biquadratic curves
through eight points

s = (@, by) = (ke xc;), i=1,..,4, (64)

S; = (al‘, bl) = (Ci,Ci_l), i= 5, ,8, (65)

with x # 0,1. These eight points support a pencil of biquadratic curves if they satisfy the

condition
4 4 4

Il ¢ -1 o Il a o IT;_, bi _
8 8 8 :

Hi:S Ci Hi:s a; Hi:S b;

They are symmetric with respect to o(x,y) = (y,x) if ¢;; = cz‘il_l, i=1,..,4. See Fig. 3 (a).

(66)

This pencil contains a reducible curve consisting of two (1,1)-curves:
Co = {(xy — D(xy —x*) = 0}. (67)
The vertical involution i; can be described by the following equation:

4
52 2 . — ;

R o,z (68)
xy —1)(xy—1) I .(x—c¢)

Similarly, the horizontal involution i, can be described by the following equation:

Xy —xH)(xy =) _ T, —xch)

= . 69
(55)’ - 1)(xy -1 H?:S(y — Ci_l) (69)

L(x,y) = (X, ),
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(a) (b)

Figure 3: (a) Base set of the surface type Agl): two quadruples of points on two (1,1)-curves
(hyperbolas) in P! x P! intersecting at two points (co,0) and (0, o). (b) Pencil of quadrics

through two non-coplanar conics intersecting at two points

The QRT map F is the composition of these two involutions, F = i;0i,. The singularity
confinement structure of the QRT involutions is as in (11). In the symmetric case we have

F = f2, with f = i;oo = ooi, being the QRT root.
3D Painlevé map. As usual, we identify P! x P! with the quadric
Qo = {X1 X, — X3X, = 0} C P?,
via [X; : X, : X3 : X4] =[x :y: xy : 1]. The points s; are lifted to
[ke; et a2 1], i=1,..,4,
S;=1la; :b;:ab; :1] = (70)
it i1:1]i=5,..,8
We declare Q, to be spanned by Q, and Q, = P, = (X5 — x*X,)(X; — X,):
Q, = {XIXZ — XX, — A(X5 — 12X,)(X;5 — X,) = 0}. (71)

The base set of the pencil Q; consists of two conics, {X;X, — X;X, = 0, X5 — x2X, = 0} and
{X1X,—X5X, =0, X;—X, = 0}, which intersect at two points[0 : 1 : 0 : 0]and[1:0: 0 : 0].
This is a pencil of type (iv).
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The matrix M; of the quadratic form Q;:

0 1 0 0
10 0 0

M/l = (72)
0 0 —21 “1+0+1x»)A
0 0 —1+(1+x?)A —21%2

The characteristic polynomial of the pencil {Q,} is:
AQ) = detMy) = (1 — (1 +x3)2) — 4222 = (1 — (1 +1022)(1 — (1 — 1)22),

so that Sing(Q;) = {(1+x)72,(1—x)~2, oo}. This polynomial is not a complete square, and we
have to uniformize 4/A(1). The uniformizing variable is v € C. However, in the present
situation it will be convenient to use w = e” instead, with w € C \ {0}. The shiftv +—» v +§

will be replaced by w ~— qw with g = ¢°. We set

_(K —w)(1 —xw)

A=Aw) = P (73)
Then A(1) becomes a square:
_*Q—w?)? k(1 —w?)
M= pa e = VAW = aTay

Observe that A(w) = A(w™'), while \/A(1) changes its sign under w ~— w. This gives us a
double cover of the original pencil branched at 2 = (1 +x)~2 (corresponding to w = 1), and
at 1 = (1 —x)~2 (corresponding to w = —1). The point 1 = co (corresponding to w = 0, o)
is not a branch point. The normalizing transformation of Q;(X) to the canonical form

Qu(Y) =YY, —Y3Y, is achieved by the transformation

X, Y,
X Y
=4, 1, (74)
X3 Y;
X, Y,
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where one can take

1 0 0 0
01 0 0
Aw = 1—xw wkx—-—w) | (75)
0 0
1—w? 1—w?
Xx—Ww w(l —xw)
x(1—w?) x(1-—w?)

Indeed, one immediately verifies that
ALM Ay, = M.

Now, we are in the position to derive a parametrization of the quadric Q;:

X3 X
X5 y
= Aw =1 ¢u(x, ). (76)
X3 Xy
X4 1

Observe that this parametrization is neither valid for w = 0 nor for w = . The pencil-

adapted coordinates (x, y,w) on (the double cover of) P3 are:

_ (1 —xw)X; — x(x — w)X, _ w(l —xH)X, 77
(1 -x2)X, x(1 —xw)X, — (x — w)X;’
_ (1 —xw)X5 — x(x — w)X, _ w1l —x»)X, (78)
(1 -%x2)X, x(1 —xw)X, — (x — w)X,’
which have to be supplemented with
P _—w)d —xw) X3 X5~ X5Xy . (79)
(k2 —1)2w (X3 —12X,)(X5 — Xy)

Theorem 5. For any q # +1, define the Painlevé deformation map corresponding to the

translation w ~— © = q*w by

X1 = XX, + (AD) — Aw)) (X5 — X)(X5 — €2Xy),
X, =X2,
L: {272 (80)
X3 = X,Xs,
L ?4 = X2X4,
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where A = A(w) is given by (73). Then, in pencil-adapted coordinates, the map L acts as

follows:

2,2 2 2 2,2 2
o qw -1 (q _l)w -1 P | q-w -1 -1 (q _1) ~ 2

L: — —_ . e — - X, = . 81
YTt w—1 " Y q2(w2—1)y qz(w2—1)x ©=gqw. (1)

For the latter map, the factorizations (4), (5) are given by

L =R; : (x,y,w) - (x,y,qw), L, =R, : (x,y,w) — (X,y,qw)

where
goo Qw1 L @-) o Y ogw | yx—w? 82)
q>(w?—-1) q>(w?—-1) yx—1 yx—1~
and
o q2w2—1x_ (> - Dw* | - Xy —q’w? _ xy-—uw’ 83)
w?—1 w?-—1 Xy—1 xy—1"

Relation to the g-Painlevé equation of the surface type Agl). We now compute the 3D
Painlevé map F = R, oi;0L,0R,0i,0L, in the pencil-adapted coordinates (x, y, w). For each

fixed w, the intersection curves Q( N P, form a pencil through eight points
s(w) = (we, we; '), i=1,..,4, (84)

sw) = (¢,¢t), i=5,..,8, (85)

which are just the points S, ..., Sg expressed in the pencil-adapted coordinates on Q.
The formulas for the 3D QRT involutions iy, i, restricted to Q,,) coincide, in the pencil-
adapted coordinates, with the original QRT involutions (68) and (69), upon replacing x by
w, and s; by s;(w):

S N * (x — we
) =G, w) _ iz we) (86)
WDy =D - )

. L Gy—w)ay—wd) IO —we)
b = b b o~ = . 87
i(x,y) = (X,y) & - Doy —1) Hfzs(y e (87)

Arnold Mathematical Journal, Vol.11(4), 2025 222


http://dx.doi.org/10.56994/ARMJ

Discrete Painlevé equations
In the notation of the equations (7), (8), the latter two equations read:

~ 4 _
(Xyn - wgn)(x.yn - wgn _ Hi=1(yn - w2nci 1)

= , (88)
S — S -
(Xyn 1)(xyn 1) Hi:S(yn - Ci 1)
= 4
(yxn+1 - w§n+1)(yxn+1 - wgn_ﬂ) _ Hizl(xn+1 - w2n+lci) (89)
Vi _ — - 8
(yxn+1 1)(yxn+1 1) Hi=5(xn+1 - Ci)
where
Wop—1/2 = g Wap, Wapt1/2 = qWoy. (90)
According to (7), we have:
Ly @ (X Yo Wan—172) == (X, Y, W) aNd Ry 1 (X, Vi, Wap) == (Xpg1, Vi Wang1/2)-
With expressions (83) for the maps L,, R,, we find:
2
XYn — w2n — XnYn — WapWop—1 (91)
Xyp—1 Xpyn — 1 ’
XYn — win _ Xn+1Yn — Wop+1Wop (92)
fyn -1 Xn+1Vn — 1 .

Similarly, according to (8), we have:

Lyt (X%p41, Yoo Wang1/2) V= (Xpg1, Y, Wapg1)  and Ry ¢ Xy, Vs Wong1) F—= (X1, Vi1 Want3/2),
and with expressions (82) for the maps L;, R;, we find:

2
Xty T Wh, _ Xn41¥n — Wopq1Wop

= , (93)
Xn+1Y — 1 Xn+1¥Vn — 1
= 2
2V Xnt1 = Wy, 4y _ Xn+1Vn+1 — Wons2Wonsy (94)
ixn+1 -1 Xn+1Vn+1 — 1

Combining equations (88), (89) with (91)—(94) results in the following non-autonomous

system:

4 -1
(xn+1yn - w2n+1w2n)(xnyn - w2nw2”_1) = Hi:l(yn _ werCi ) (95)
(Xp41Yn — DXy — 1) H?:s(yn - Ci_l)
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4
Vng1Xns1 = Wang2Want1)VnXng1 — Wopg1Wap) _ Hi:l(x”'H — Wn41Ci)

= (96)
(yn+1xn+1 - 1)(ynxn+1 - 1) H?=5(xn+1 — Ci)

This is the g-Painlevé equation of the surface type Agl) ,as given in [11]. In the symmetric

case, if ¢,; = Cz_il—l’ i=1,..,4, these equations become two instances of

4
(un+1un _ wn+1wn)(unun_1 —_ wnwn—l) _ Hi:l(un - wnci) (97)
(un+1un - 1)(unun—1 - 1) Hl-gzs(un - ci)

8 From a pencil of type (iii) to the d-Painlevé equation of the

surface type A"

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic

curves through eight points s; = (a;, b;), i = 1,...,8, where
a; = zi(z; —x1), by = zi(z; — 1)

These eight points support a pencil of biquadratic curves if they satisfy the condition
8
Zzi = 2(x; + x5).
i=1

They belong to the curve with the equation
(x = ¥)* = (1, — 1) (2% — K1 Y).

This is a biquadratic curve in P! x P! with a cusp point at (oo, o), see Fig. 4 (a).

The vertical involution i; can be described by the following equation:

il(x’ Y) = (X, .’)7)9
(T -E€-1))(y =8¢ —x2) _ uc)
(37_ E =1 —x + Kz))(y —(E—x)(E —x + Kz)) Uk, — 5),

Here we use the abbreviation

x =£(€ —xy). (98)

8
U(z) = [[(z -z (99)
i=1
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S

S4 S7

S5 S6

(a) (b)

Figure 4: (a) Base set of the surface type Agl): eight points on a cuspidal (2,2)-curve in

P! x PL. (b) Pencil of quadrics through cuspidal spatial quartic in P?

Formula (98) is understood as follows. Written as a polynomial in &, it is anti-symmetric
with respect to & « x; — §. Upon division by & — 2x,, the resulting polynomial is symmetric
and therefore it can be actually expressed as a polynomial in x = (¢ — «;). This defines i,

as a birational involution (its symmetry w.r.t. y < y is obvious).

Similarly, the horizontal involution i, can be described by the following equation:

iZ(x’y) = (555 y)’
(X =1 — 1) (x —=n(n — 1)) )
(i_ (m—1)(n — 13 + Kl))(x - =) —x,+ K1)) U, — 1)’

y=n(n—-1xy). (100)

The QRT map F is the composition of these two involutions, F = i;0i,. The eight points
$1,...,8g in P! x P! serve as the indeterminacy set for i; and for i,. The singularity confine-
ment structure is as in (11).

Remark. In what follows, we restrict ourselves to the case x; + x, = 0. This restriction
is not essential, but will allow us to shorten some of the formulas. Thus, from now on we

set
X =—K, K=K (101)
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If, additionally, the points z; satisfy the condition

Zipa=—2;, i=1,..,4, (102)
then the QRT involutions admits a symmetry i; = ooiyoo, where o(x,y) = (y, x), so that
one can introduce the QRT root f = i;oo = ooi,, such that F = fof.
3D Painlevé map. As usual, we identify P! x P! with the quadric Q, = {X, X, — XX, =
ObcP3via[X; : X, : X3 : X4] =[x :y: xy: 1]. The points s; are lifted to

S;=1la; : b; : a;b; : 1].
We declare Q, to be spanned by Q, and Q,, = P, = (X; — X;,)? — 2x*(X; + X,)X,:

Q; = {Xle — XX, — AKX = Xo)? — 23X, + X)X,) = 0}. (103)

The base set of the pencil Q, is a cuspidal space curve of degree 4, {X, X, — X3X, =0, (X; —
X,)? — 2x*(X; + X,)X, = 0}, with the cusp at [0 : 0 : 1 : 0]. This is a pencil of type (iii).

The matrix M; of the quadratic form Q;:

—21 14212 0 2%?
1421 =21 0 2%
0 0 0 -1

22 20> -1 0

The characteristic polynomial of the pencil {Q;} is: A(1) = det(M;) = 1 + 44, so that
Sing(Q;) = {—i, o). We set

2 -1

A=, Va@)=v. (105)

Thus, A(v) = A(—v), while \/A(1) changes its sign as v —— —v. This gives us a double
cover of the original pencil branched at v = 0, corresponding to 1 = —1/4, and at v = oo,

corresponding to 1 = co. The normalizing transformation of Q; to the canonical form Q,
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can be found as follows:

X Y,
X Y
2l Z A, 2 , (106)
X3 Y;
X, Y,
where
o+ -1 0 0
2v
lw-1) Z@+1 0 0
A= 2 : (107)
o2 _ o2 _
> (»=-1) > (»-1) 1 0
0 0 01

Indeed, one immediately verifies that
ATM;0)A, = M.

Now, we are in the position to derive a parametrization of the quadric Q,,):

'Xl' _x T i((v+1)x+(v—1)y)
X, y ~(v=Dx+@+1)y)
= A, =1 =: ¢,(x, ). (108)
X, xy xy + %(Vz - D(x+y)
| X4 | | 1] 1

Observe that this parametrization is neither valid for » = 0 nor for » = «. The pencil-

adapted coordinates (x, y,v) on (the double cover of) P are:

x:(v+1)X1—(v—1)X2 y:(v+1)X2—(v—1)X1

X, X, (109)
which have to be supplemented with
2 XX, — X5X
1= v —1 142 344 (110)

4 (X, —Xp)? - 212Xy + X)X,

The degenerate quadrics for v = oo and for » = 0 are cones.
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Theorem 6. For any 6§ € C \ {0}, define the Painlevé deformation map corresponding to the
translation v w— 9 = v + 25 by

r Py

X, = XX,
X, = XX,
L: X = X3X,—(20) = A(1))Qe(X)
= X3X4 — (v + B)(Xq — X5)* + 2°B(v + B)(X; + X)Xy,
X, = X

Then, in pencil-adapted coordinates, the map L acts as follows:

5(x — 5(y —
L: (x,9,9) — (9,9, 55=x+¥, )7=y+¥, S=v+25.  (111)

For the latter map, the factorizations (4), (5) are given by
~ ~ 9
Ll =R1 : (x,J’aV) = (xayav+5)a y=)’+;(y—x), (112)

L=Ry: (cp) = By, v +8), T=x+ S(x—y) (113)

Relation to the d-Painlevé equation of the surface type Af)l). In the pencil-adapted
coordinates (x, y, ), for each fixed v, the intersection curves Q;,, U P, form the pencil

through the points
5;(v) = (q;(v), b;(v)) = (zi(z; + V), zi(z; — %)), i=1,..,8, (114)

which are just the points S; expressed in the pencil-adapted coordinates on Q,,. Thus,
the 3D QRT involutions i;, i, act on each quadric Q,(, in the pencil-adapted coordinates
via formulas which are obtained from the corresponding 2D formulas by replacing x by

Xv.

il(xi y) = (xa j;)a
(7 — £ —1om) (y — £ — xv) G

= , x= .15
G-CGroG+2o)i-CErmE+am) UCow-9 §E+w), (115
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i2(x’ y) = (52” y)a
(X =10 + 1)) (x = 5(n +xv)) U

= , Yy =nn—xv). 116
G = (- 1)) — 200))(x — (1 — 1) — 2xv))  UGev—m)" ” n(n —xv) (116)

In notations of (7), (8), the latter two equations take the following form:

(% = 0 + 1v2)) (x =10 + xv21)) )
(’f - (77 - KVZn)(n - ZKVZn))(x - (77 - KVZn)(r) - ZKVZn)) U(szn - 77)’
Yn =11 = xvap), (117)
(37_ g(é‘ - KV2n+1))(y - g(g - KV2n+1)) U(§)

(37_ (g + KV2n+1)(§ + 2KV2n+1))(y - (§ + KV2n+1)(§ + 2KV2n+1)) - U(_KV2n+1 - g),
Xp41 = §(§ +xvp041). (118)

Recall that here

Vongl = Vang1/2 + 8 = Vo, + 28.
To express in (117) the variables x, X through x,, y,, we observe that
Ly : (xnayn’VZn—l/Z) == (X, yn’VZn)’ Ry : (x, yn’VZn) L (xn+1’ yn’V2n+1/2)

can be written, according to (113), as follows:

- o
(Xp —Yn)» TESP. Xpy1 =X+ —(X —Yp).

X =Xx,+
Von-1/2 Von

A simple computation confirms that these relations are equivalent to

x —n(n +xv,,) _ X, — NN+ KVy_1) _
= s Yn=n(n—xvy,), (119)
X =M —=xv,)(M = 2xvy,) Xy — () — xKV,) (1) — KV — KVp_1)
X =1+ xvyy,) Xpe1 — NN + KV2p41)

Yn = 77(77 - KVZn)~ (120)

X — (1 —xvy,)() — 2xv,,) B Xpp1 — (0 = xV2,)() — KV 41 — KVZn),

Similarly, to express in (118) the variables y, y through x,,,, y,,, we observe that

Ly ¢ (X1, Yno Vans1y2) F= g1 V5 Vang1)s - Ri 0 (0ng1, ¥ Vang1) F= (Xng1s Yag1s Vana3g2)s

which, according to (112), can be put as follows:

5
On—Xpt1)s Yn1 =Y+ ” & = Xpt1)-

y=¥Yn+
Van+1/2 2n+1
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Again, these relations are equivalent to

Y — &€ —xv3,41) _ Yn = §(§ —xvy,)
Y= (€ + 150 )E +2kv3011) Y — (€ 4 12040 + 1V 41 + 103)]
Xn41 = g(g + Kv2n+1) (121)
y—§( —xvyp1) _ Vi1 — §(§ — xv3,42)
V=G +1200)E +2102001)  Yna1 — € + 102040 + K40 + KV5041)
Xn+1 = §(§ + Kv2n+1)- (122)

Substituting (119)-(122) into (117), (118), we arrive at the following system of non-
autonomous difference equations for the variables x,,y, :
(Xpa1 =00 + 1KV241)) (X — N + KV2_1))

(xn+1 — () = xv2.)( — KV 41 — KVzn))(xn — (1 — xv2)(1) — KV, — KVzn—l))
__ U
U(cvyy — 1)

Yn =101 —xvy,), (123)

(yn+1 - g(g - KV2n+2))(yn - §(§ - KVZn))

()’n+1 — (§ + 12041 +KVop40 + KV2n+1))(Yn — (§ +1v2p41)(€ + 1V + KVZn))

U
B U(_sz(i)l “gy T §( +xvyn11). (124)

This is the d-Painlevé equation of the surface type Aél), as given in [20], [11].

Remark. In the symmetric situation, when U(z) = U(-z), the system (123), (124)
can be interpreted as a one-field second order difference equation, with x,, = u,,_; and
Yn = Uy,. To see this, one should make the change £ ~— —£ in equation (124), after which
it matches (123).

9 From a pencil of type (ii) to the g-Painlevé equation of the

surface type A"

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic
curves through eight points s; = (a;, b;), where

K1 1 Zj .
a, =2z;+—, bi=_+_’ l=1,...,8.
Zj Zi K
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These eight points support a pencil of biquadratic curves if they satisfy the condition

8
[]z =2
i=1
They belong to the curve with the equation
(x —160)(y — Kl_lx) = (k%) (11 — 162)%.

This is a biquadratic curve in P! x P! with a simple node at (oo, o), see Fig. 5 (a).

.
s, \
\
)
s |
S3 /
'S4 |
sg

(a) (b)

ST

Figure 5: (a) Base set of the surface type A(()D: eight points on a nodal (2,2)-curve in P! x P!.

(b) Pencil of quadrics through a nodal spatial quartic in P?

The vertical involution i; can be described by the following equation:

p-i-d
g 1%} § X2 _ U(g) X = g + E (125)
g.

il(x5 Y) = (X, )7)1

Here we use the abbreviation

8
Uz)=z*]](z - z). (126)
i=1

Formula (125) is understood as follows. Written as a Laurent polynomial in £, it is anti-

symmetric with respect to £ « x;/£. Upon division by & — x, /§, the resulting Laurent
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polynomial is symmetric and therefore it can be actually expressed as a polynomial
in x = £ + x;/&. This defines i; as a birational involution (its symmetry w.r.t. y < yis
obvious).

Similarly, the horizontal involution i, can be described by the following equation:

U
<~ K Kl’?)( 1) K177) U(E) n K
X—-———)[(x-=-—
n L%) n %) n

The eight points sy, ..., sg in P! x P! serve as the indeterminacy set for i; and for i,. The
singularity confinement structure is as in (11). The QRT map F is the composition of these
two involutions, F = i; oi,.

Remark. In what follows, we restrict ourselves to the case x;x, = 1. This restriction is
not essential, but will allow us to shorten some of the formulas. Thus, from now on we
set in this section

== =x. 128
X1 = Ky =K (128)

If, additionally, the points z; satisfy the condition
Zipa=2z ', i=1,..,4, (129)

then the QRT involutions admits a symmetry i; = ooi,oo, where o(x,y) = (y, x), so that

one can introduce the QRT root f = i;o0 = ooi,, such that F = fof.

3D Painlevé map. As usual, we identify P! x P! with the quadric Q, = {X; X, — X5X, =
O}cP3via[X; : X, : X5 : Xu] =[x :y:xy:1]. The points s; are lifted to

We declare Q, to be spanned by Q, and
Qoo = Po = (X7 + X3) — (1 + 11X, X, + (c — k7 1)2X7. (130)

The base set of the pencil Q, is a nodal space curve {Q, = 0, P, = 0} of degree 4, with the
node at [0 : 0 : 1 : 0]. This is a pencil of type (ii).
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The matrix M; of the quadratic form Q;:

—2xA 1+(1+%x*)A 0 0
1+ +x3)A —2x 0 0
M, = . (131)
0 0 0 -1
0 0 -1 2k —x"1H%1

The characteristic polynomial of the pencil {Q,} is:
AQ) =det(M;) = (1+ (1 + KZ)/I)Z — 4 = (1+ 1+ %) (1+ (1 - %)),

so that Sing(Q;) = {—(1 + ¥)72,—(1 — x)~2, o}. This polynomial is not a complete square,
and we have to uniformize 4/A(1). The uniformizing variable is v € C. As in Sect. 7, it will

be convenient to use w = e” instead, with w € C \ {0}. We set

(x —w)(1 — xw)

A =Aw) = (1 —x2)2w

(132)

Then A(1) becomes a square:

1*(1 — w?)? x(1 — w?)

AQ)= ———= VAQ) = ——=.

@ w2(1 — x2)? = @ w(l —x2)
Observe that A(w) = A(w™1), while y/A(1) changes its sign under w ~— w~!. This gives us a
double cover of the original pencil branched at 1 = —(1 + x)~2 (corresponding to w = 1),
and at 1 = —(1 — x)~2 (corresponding to w = —1). The point 1 = co is not a branch point (it
corresponds to w = 0, o). The normalizing transformation of Q;(X) to the canonical form

Qu(Y) =Y,Y, —Y;Y, is achieved by the transformation

X, Y,
X Y
2o, (133)
X; Ys
X, Y,
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where one can take

w(d—xw) wx-—w) 0
x(1—w?2) x(1—w?)
wx—-—w) wd-—xw) 0 0
A, =| K@T-w?) x(1-w?) . (134)
w 1 —xw)(x —w)
0 0 - =
X 2w
0 0 0 1
Indeed, one immediately verifies that
w
ALM Ay = ~Mo.
There follows a parametrization of the quadric Q.
X, b9
X y
=, = gulry). (135)
X3 Xy
X, 1

This parametrization is neither valid for w = 0 nor for w = ~. The pencil-adapted

coordinates (x, y, w) on (the double cover of) P3 are:

_x 1 —xw)X; — (x —w)X, _x 1 —xw)X, — (x —w)X; (136)
- w (1 - KZ)X4 ’ y= w (1 - KZ)X4 ’
which have to be supplemented with
1= (x —w)(1 — xw) _ X1 X, — X3X, . (137)
(k2 — 12w KX? + X2 — (1 +1)X, X, + (k — k12X

Theorem 7. For any q # +1, define the Painlevé deformation map corresponding to the

translation w ~— © = q*w by

X] =X1X4,
X, = X,X,,
L. Az 2484 (138)
X3 = X3X, — (A0) — A(w)) Qe (X),
f4 =Xi,
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where 1 = A(w) is given by (132), and Q. (X) is given in (130). Then, in pencil-adapted

coordinates, the map L acts as follows:

o 1-q? - 1-q? .
L: X=x+ (x—wy), y=y+ (y —wx), 0=q*w. (139)
w? -1 w? -1
For the latter map, the factorizations (4), (5) are given by
—_ q_2
L. (x,y,w) —— (x,y,qw), y=y+ 1 (y — qwx), (140)
— — 1—q2
Ryt (6y.w) = (6Fqu), §=y+ (v —wx) (141)
2
Lyt Guy.w) e (. qw), X =x+ =0 —quy), (142)
_ 42
Ry i (63,w) = (% y,qu), ¥ =x+ ——(x - wy). (143)

Relation to the g-Painlevé equation of the surface type A(()l). In the pencil-adapted
coordinates (x, y, w), for each fixed w, the intersection curves Q;, U P, form the pencil
through the points

5i(10) = (@) bi(w) = (z+ 5= -+ 1), 1=1,8, (144)

which are just the points S; expressed in the pencil-adapted coordinates on Q. Thus,
the 3D QRT involutions iy, i, act on each quadric Q,(,, in the pencil-adapted coordinates
via formulas which are obtained from the corresponding 2D formulas by replacing x by

w:

L(x,y) = (x, ), 1 S x=§+wig, (145)
(PN TR TR
X—-n——|lx—n——
B(x,y) = (%), ( w">< w”> u@) —%+% (146)
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In notations of (7), (8), this takes the form

(f_n_wzlnn><x_n , )

Wop7)

Un) 1.7
— , ==+ , (147)
(7{_ w0y, ] L) (x j Wy, j i) U(wzn) Yy n Wrp
2 2 n
n w5, n w;,
(i
& Wy § W _ u() Xpep = €+ 1 (148)
B 1 1 U( 1 ’ mH w2n+1§'
Y= wynii§ — w§n+1§ Y = Wy1§ — w§n+1§ Woni1§

Here, recall,

_ — 2
Wont+1 = qQWany1/2 = 4" Wop-

(149)
To express in (147) the variables x, X through x,, y,,, we observe that
Ly : (xn’ Yno w2n—1/2) = (x, Yn> wZn)’ Ry : (%, Yno wZn) i (xn+1’yn’ w2n+1/2)-
According to (142), (143), we find:
1—q72 _ 1-q? _
X =x,+ 2—(xn - qun—l/Zyn)a Xpy1 = X + 5 l(x — WypYn)-
wm-1/2 Won —
A straightforward computation confirms that these equations are equivalent to
e 1 N
Wop?) " Wrp—17M 1 n
= , == , 150
W1 _Bm__ 1 Tyt (150
7 wgn " Ui WopWop—1
- 1 s —p— L
~ Wy 7 Wop 7) TN wy,”
X — 7wl Xp41 — B e——

W, W
w3, n 2nWan+1

Similarly, to express in (148) the variables y, y through x,,,, y,, we observe that

Ly @ (Xp41, Yoo Wang1/2) F= (g1, Vs Wong1)y Ry 0 (X1, Y, Wangr) == (g1, Y1 Wanasy2)-
According to (140), (141), we find:

1—-q2 _ 1-qg2 _
Y=Y+ — n = QWant1/2Xn41)s Vo1 =V + ———( — Wans1Xp41).
Wons1/2 ~

n41
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These equations are equivalent to

1 ¢ ,_L_ 8
Wan+1 " w, 1
§ n+1 — § ”1 , Xy =&+ ” : (152)
Y= W€ — — Yp—Woypp§ — —— 2n+1
w2n+1§ w2n+1w2n§
51 § . 1 3
T w n+l =~ & w
3 2n+11 _ 3 2n+21 . Xp =&+ ” § (153)
V=W ——5—— Ve~ Wyné-——— 2n+1
2n+1§ w2n+2w2n+1§

Substitute (150)—(153) into (147), (148). This results in the following system of non-

autonomous difference equations for the variables x,, y,:

=)
Xpg1 =7 = Xp =7 =
<"+1 7 w2n+177>( n= 7 Wrp—17) _ U _ 1 n
_ D oy=—+ L (154
(x _ Wrp, _ n )(x _ Wy, _ L) U(%) n Wop
My WoWap 41 ooy WoWap—1 7

(y”“ w2n+z> (y" wZn) G

Yn = Wanp§ — ;) U(wmlﬂg)

w2n+1w2n§

Yn+1 — w2n+1§
w2n+2w2n+1§

(155)

Xpy1 = g +
Won+1

This is the g-Painlevé equation of the surface type Af)l), as given in [20], [11].

Remark. In the symmetric situation, when U(z) = U(z™!), the system (154), (155)
can be interpreted as a one-field second order difference equation, with x, = u,,_, and
Y = Uyy,. To see this, one should make in equation (155) the change ¢ ~— -1, after which

it matches (154).

10 Conclusions

In this paper, we carried out the largest part of the task left open in [2], namely extended

our novel approach to the pencils for which the generators through a point X € P?
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depend on X in a non-rational (branching) way. The only case left open for a further
investigation is the pencil of the generic type (i), associated (in our scheme) with the
elliptic Painlevé equation. Also the problem of an interpretation of the isomonodromic
property of discrete Painlevé equations within our scheme remains open and is left for
the future research. Finally, it will be important to extend the scheme of the present paper
to discrete Painlevé equations corresponding to further translations in the corresponding
affine Weyl symmetry groups. A path to this goal (via additional geometric involutions
related to pencils and nets of quadrics) was sketched in the concluding remarks of [2].
The first step towards this goal (in the two-dimensional framework) has been performed

in [3].
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