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Abstract

Let G be a Lie group, g = Lie(G) — its Lie algebra, g* — the dual vector space
and G — the set of equivalence classes of unitary irreducible representations of
G. The orbit method [1] establishes a correspondence between points of G and
G-orbits in g*. For many Lie groups it gives the answers to all major problems
of representation theory in terms of coadjoint orbits. Formally, the notions and
statements of the orbit method make sense when G is infinite-dimensional Lie
group, or an algebraic group over a topological field or ring K, whose additive
group is self dual (e.g., p-adic or finite).

In this paper, we introduce a big family of finite groups G,,, for which the
orbit method works perfectly well. Namely, let N, (K) be the algebraic group
of upper unitriangular (n + 1) x (n 4+ 1) matrices with entries from K, and F,
be the finite field with ¢ elements. We define GG,, as the quotient of of the group
Np41(F,) over its second commutator subgroup.

1 Introduction

This paper is part of a bigger program of the application of the orbit method in represen-
tation theory. The main ingredient of the orbit method is the notion of a coadjoint orbit.
The method works not only for ordinary Lie groups, but also for infinite-dimensional Lie
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groups and for algebraic groups over a topological ring K, which satisfies the following
condition. Every additive character of K has the form x\(z) = e(Ax), where A € K and e
is a fived non-trivial character.® This condition is satisfied for real, complex, quaternion,
p-adic and finite fields and also for the adele ./ring.

It is known (see. e.g. [1]) that the method can be formulated as a collection of simple
rules, which gives transparent answers to all main questions. This “User’s guide” can
be understood literally when the group in question is a connected and simply connected
nilpotent Lie group. For many other Lie or algebraic groups it works after some algebraic
and/or topological corrections. There are also groups, for which the right application of
the orbit method is still unknown.

One time it was a hope that some modification of the orbit method will work for the
groups N, (F,) of upper unitriangular (n+1) x (n+ 1) matrices with elements from a finite
field F, (considered as algebraic groups). A simple argument shows that the number of
coadjoint orbits of the group N, (F,) is equal to the number of conjugacy classes, hence
to the number of equivalence classes of irreducible representations of this group. However,
the explicit construction of irreducible representations and their characters in terms of
coadjoint orbits is known only for small n.

In this paper, we consider a family of groups related to, but more simple than the
full triangular group N, (K), for which all questions of representation theory have explicit
answers in terms of coadjoint orbits. Namely, we consider the quotient group of N, (K)
by its second commutant [[V,,(K), N, (K)], N,(K)]. We call it “two-diagonal group” and
denote by T'D,,(K), or simply G,,. It is a (2n — 1)-dimensional affine algebraic group over
the field K. As such the group G, has the Lie algebra g, with the dual space g;. These
spaces are the spaces of respectively, the adjoint and coadjoint representations of G,,. Our
first goal is to describe explicitly orbits of these two representations.

At the beginning, we impose no restrictions on the ground field K, but out main results
(Sections 2.2, 3.2, 4, 5) concern the case K =T,,.

Both g,, and g} can be realized as subquotients of the full matrix space Mat,(K). We
choose the coordinates {a;}1<i<n,{bj}1<j<n—1 for A € g, and {z;}1<i<n, {y;}1<j<n—1 for
F ¢ g, so that

0 a b ... 0 0 0o 0 ... 0 0 0
0 0 ay ... 0 0 1 0 0 0 0
A= 0 0 0 O 4 e | bn—l ’F_
o o0 0 ... 0 n, 0O 0 ... zp-x 0 O
| 0 0 0o ... 0 0 | | 0 0 .. Yn1 x 0 ]

'In other words, the additive group K* is Pontryagin self-dual.



A general element of the group G, has the form
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This justifies the name “two-diagonal group”). We denote this element by g(@; ) where

a=(ay,...,a,) and B = (Bi,...,Bn_1). The group laws are
g(a17""7an;/617"'7671_1)9(&/17'"'7(){'/{7,;/817"‘7/67/1—1) -
glan +af, . an +ag; B+ B +aadly, o Baor + B g+ anaag,);
g(ala cee '70471;517 s 7ﬁn71)_1 = g(_ala coey Ty _61 + 10, ..., _ﬂnfl + Oénfloén)

For adjoint and coadjoint representations, the action of g(@, ) € G,, does not depend
on 3. The diagonals of a’s and y’s are invariant with respect to the G,-actions, and the
action on the diagonals of b’s and z’s is described by the formulas:

W, b
bl b
2| = 2+ [y g ay) - S,
b;7, 1 bn—l ay
[ I, . (%) T
il o] =[xy 2 Tn] + T
(079

where the (n — 1) x n matrix S and the n x n matrix 7" are

w0 0 0 1 0 vy 0 ... 0 0 0
_a a 0 0 —y1 O y2 O 0 O
v 0 —y, 0 ... 0 0 0
S=1| " " - L T= ... .
00 -1 0 0 0 0 0 Yoo O
0 0 ... —ap_o an,
0 0 0 —a 0 0 0 ~Ynz 0 Yna
- el 0 0 0 0 Y1 0 |

It will be more convenient to us to write the above formulas for the G, -action in a more

traditional form:



I —
bl = bl +aas —Qo1 Ty = I —QY1

/o !/
b2 = b2 +aas —Q302 Lo = Ta +a1y1 —Q3Y2
! /
b3 = b3 +asay —Q4Q3 Xy = T3 +Oé2y2 —Q4Y3
......................................................... (1)
y =b / _
n—2 — Un—2 + Qp_20p—1 — Qp_10p—2 Lp_1 = Tp—1 + Ap—2Yn—2 — Oplyn—1
! _ I
bnfl - bnfl + ap 10, — QpQp 1 T, = Tn + Up—1Yn—1

We will refer to orbits of the coadjoint representation as just to “orbits,” and to orbits
of the adjoint representation as to “classes.”

2 Orbits.

2.1 Description.

For given yy,...,Yn—1;21, ..., Tp; Ty, ..., 2, we consider the right system (1) as the system
of n equations with n unknowns aq, ... a,. If this system has a solution, then the matrices
with z1,...,2, and 21, ..., 2/, belong to the same orbit.

First consider the case, when vy, ..., y,_1 are all different from zero. Our system splits
into two systems with unknowns oy, asz, as ... and unknowns as, ay, ag, . . ., and this split-
ting looks differently in the cases of even and odd n.

If n is even, then the two systems are

/ /I __
Ty = T3 a1 —Q3Y2 Ty =1 — Y1
! /I __
Ty = X4 +a3ys —05Y4 T3 = X3 a2y —QyYs
.............................. and .
/ . / _
Tp_9g = Tp-2 =+ Ap—3Yn—3 — Qn-1Yn—2 Tp_3 = Tn-3 + Qp—aYn—q4 — Qp_2Yn—3
! / _
T, = Tp + Qp_1Yn—1 Ty 1= Tp-1+ Qn_9Yn—9 — Qpln_1

Both systems have unique solutions. We solve the first system “from the bottom to
the top”: we find «a,,_; from the last equation, then we find «,,_3 from the equation before
the last, and so on, up to as from the second equation and «; from the first equation.
The second system can be solved “from the top to the bottom”: we find as from the first
equation, then find a4 from the second equation, and so on. Thus, in this case there is
only one orbit (corresponding to the fixed set yy, ..., y,—1 of non-zero elements of K). This
orbit is an n-dimensional vector space over K with coordinates xy, ..., z,.



If n is odd, then the two systems are

Ty =21 —2l1 Ty =Tz  +1Y1 —Q3Y?2
Ty = T3 T2l —Q4Y3 Ty=x4  +ozys —Q5Y4
.............................. and ...
m{n_Q = Tp_2+ Ap—3Yn—3 — Op—_1Yn—2 x;_g = Tp_3+ Ap—4Yn—q4 — Op—2Yn—3
Ty, = Tp + Qn—1Yn-1 Tpo1 = Tp—1+ Qp2Yn—2 — WpYn-1
For the second system, the number of equations is one less than the number of unknowns.
It has more than one solution: we can choose arbitrary o, and then find a,,_9, a4, . . ., a3, 1
from our equations from the bottom to the top. However, for the first system, the number
of equations is one more than the number of unknown. We can find as, ay, ..., a, 3,051

using all the equations except the last one, x/ = x,, + a,—1Yn—1, and the value of a,_1,
which we have already found, may unfit this last equation. A simple computation shows
that this equation is satisfied if the equality

T1Y2Y4 - - - Yn—1 T Y1T3YaY6 - - - Yn—1 + Y1Y3T5Y6YS - - - Yn—1
+ o+ Y1Y3 - Yn—aTp—2Yn—1 T+ Y1Y3 . . Yp—2Xp = (2)
= T1YoYa - Yn—1 T Y1T5YaY6 - - - Yn—1 + Y1Y3T5Y6Y8 - - - Yn—1
o Y13 YnaTh oYn—1 + Y1Y3 - Yn—aTy,.

holds. In other words, the expression in the left hand side of (2) is an invariant of the

action of G, and, in the case of odd n, the orbit is characterized by the set y1,...,yn_2
of non-zero elements of K and the value I € K of our invariant (which may be 0).The
dimension of the orbit in this case is n — 1 with coordinates x1,...,x,_1.

Now let us turn to the general case: suppose that y;, =--- =y, =0(1<i;3 <--- <

im < n — 1), while all the remaining n — 1 —m y’s are different from zero. Then the right
system (1) splits into m + 1 independent systems, Sg, S1,...,Sm:

=1 — Q21
/
Ty = T o —Q3Y2
System SO ..... / ....................................
Ty 1 = Tjy—1 TG —2Yi —2 — QG Yiy—1
/
Ty = T4y +Q, —1Yi -1
’ (yi1 - O)
Tiz+1 = Tig+1 — iy +2lir +1
/ _
Ty vo = Tiy+2 T 1Yy 17— Oy +3Yiy +2
System Sl ..........................................

Ty g = Lig—1 TWis—2Yip—2 — iy Yip—1
Ty, = Tiy  TQiy1Yir—1




/
Lp_1 = Tp-1 +an—2Yn—2 —QpYn—1

/
T, = Tn +TO0n—1Yn—1

Let us introduce additional notations: ig = 0,%,,41 = n, and j, = 4,47 — i, for r =
0,1,...71{3. Thus, ]0+]1++]m:n

The systems Sg,S1,...,Sm have disjoint sets of unknowns: the j, unknowns in the
system S, are o 41,...,0; ,, (up to the numerations of a’s, 2’s #'’s, and y’s) are reduced
copies of the right system (1), and we can apply to it our findings for that system. Thus, if
Jr is even, then the system S, has a unique solution «;,41,...,q;_,, and if j, is odd then
the system S, is consistent (although a solution is not unique) if and only if I, = I, where

I = %i1Yi,+2Yin 4 - Yipyr—1 + Yir 10, 43Yi, 44Yi046 - - - Yip -1+ 0 F
TYir+1Yir+3 - - Yipy1 —5Lip g1 —3Yir 1 -2 T Yip+1Yip43 - - - Yip —3Tip -1,

and I is defined by the same formula with all ’s replaced by z'’s.

We arrive at the following description of all orbits of G,.
First, we need to fix an ordered partition

n=Jot+tj+ - +im

(where jo, J1, . - ., jm are positive integers). Then we put
1 = j07
la = Jo + Ji,

13 = Jo+ J1+ Jo,

Z.m:‘7'0_’_]1_’—"'_’_jm—l-

Second, we choose y1,...,y,—1 € K such that y;, =--- =y;,, = 0 and all the other y’s
are different from zero.

Third, we choose a v, € K for each r from 0,1,...,m such that j,. is odd.

These data determine an orbit. This orbit consists of the matrices with y’s fixed above
and arbitrary x1,...,z, € K satisfying the condition I, = v, for all r such that j,. is odd.
If v is the number of such r then the dimension of this orbit is n — v. Notice that v and n
have the same parity, n — v = 2k for an integer k, 0 < k < [g} Hence the dimension of

the orbit is 2k, in particular, the dimensions of all orbits are even.



If K =F,, then the number of orbits corresponding to an ordered partition n = jj +
Jut et g is (g = 1)" g

Notice that if p is the number of even terms of our partition, then u < k. Indeed,
each even term of the partition is at least 2, and each odd term is at least 2. Hence
n>2u+v=2u+n—-2k)=n—-2k—p) =k—pu=>0.

2.2 The number of orbits of given dimension.

We suppose again that K = IF,. The following holds:

Theorem 2.1 The number of orbits of G,, of dimension 2k is

ot (e ()

The proof is based on the following combinatorial

Lemma 2.2 The number of (ordered) partition of n > 2u + v into the sum of p even and

v odd positive integers is
(,u+u> ‘ ((n+1/)/2— 1)
o p+v—1 )

Proof of Lemma 2.2. To specify a partition of n into p even and v odd summands, we

. . . +v
first need to choose p positions for the even summands, which can be done in a

ways. Then we transform all our partitions in the following way: we add 1 to each odd
summand and then divide all the summands by 2. We get an ordered partition of the
Y into i + v summands with no condition on the parity of the summands. It
n+v)/2—1
w+v—1

n
number

is well known that the number of such partitions is << ), which implies our
statement.

Proof of Theorem 2.1. According to Section 2.1, 2k-dimensional orbits of GG, correspond
to (ordered) partitions of n with the number of odd terms equal to v = n—2k. The number
of orbits corresponding to partitions with 4 even and v odd parts is

(q . 1)”*(M+V)q1/ _ ((] _ 1)2k7,uqn72k'



By Lemma, the number of such partitions is

() )-
(n—k—1)n—k=2)...(n—2k+p) (n—2k+p)...(n—2k+1) _
(k —p)! !

m—k—1)(Mn—-k—2)...(n—2k+1)
(k —p)lp!

Thus the total number of orbits of dimension 2k is

“(n—2k+ p).

k
> Lo n(_kk—_ui)m”(n_%ﬂ)(q—1)2’“ HgnE L (n = 2k + p)
b=0 o
k
_ (n—k—1) k‘(n — 2k + 1)qn_2k<q _ 1)’“;(71 — 2k + p) (z) (g — 1)

The sum in the last line is

(n =k i( ) ¢— 1) i(’f—ﬂ)(z)(q—l)’““z(n—%)q’f_(q_l)dilq;)

pn=0 n=0

( —k)q" — k(g —1)¢"" = (n—2k)¢" + k" = ¢*'((n — 2k)q + k).

We plug this expression for the sum into the last formula and see that the total number
of orbits of dimension 2k is

ko1 rfm—k—=1)...(n—2k—1 n—k—1)...(n—2k
g — 1) (( )k!( )q+( (k)—l)!( ))

= () (55),

2.3 More on ordered partitions.

Since ordered partitions of natural numbers played an essential role in the previous section,
we present here a survey of their properties. Technically, the results of these section will
be used only in Section 5 below, so the reader may postpone its reading until that section.



2.3.1 Partial ordering. Intervals.

There is a partial ordering in the set of all ordered partitions of a number n: a partition
Py of n precedes a partition Py (notations: Py = Po or Py = Py), if the parts of Py are
obtained from the parts of P; by a further subdivision. Notice that if v; is the number of
odd terms of the partition P; and P; < P, then vy < vy (there is no such inequality for
even terms).

A more visualizable description of this partial ordering can be done in terms of dividers.
Namely, an ordered partition of n may be presented as a line of n dots with dividers placed
between some of them. For example, the diagram

presents the partition 1 4+ 2 4 2 4+ 1 4+ 3 4+ 2 of the number 11. In the language of such
diagrams, the relation P; < Py means that the diagram for Ps is obtained from the diagram
for P; by adding some (maybe, empty) set of additional dividers.

Notice also that if P is a partition with m terms, then the diagram for P contains m —1
dividers.

If P; < Py, then the interval [Py, Ps], or the interval with the head P; and the tail Py,
consists of all partition P such that P; < P < P,. In terms of the dots/dividers diagrams,
the diagram for a P in the interval [Py, Py| contains all the dividers from the diagram for
P plus some (maybe, empty) subset of the set of the additional dividers of Py. If m; is
the number of terms of the partition P;, then the number of these additional dividers is
(mg — 1) — (my — 1) = my — my, and the set of additional dividers has 2"2~™! subsets.
Accordingly, the interval [Py, Ps] consists of 2™~ partitions. For example, the set of all
ordered partitions of n is the interval with the head n = n and the tailn =1+1+---+ 1.
So, the total number of ordered partitions of n is 2771

Notice also that if the number of odd terms in the partition P; is v;, then the number
v of odd terms in any partition P in the interval [Py, Ps] the inequalities 14 < v < 15 hold.
In particular, if P; and Py have the same number v of odd terms, then every partition in
the interval [Py, Ps] also has v odd terms.

2.3.2 Partitions of even and odd types.
The following definition looks artificial, but it will be crucially important in the last section
of this article.

Definition. We say that the ordered partition n = n; +ng + - - - + n,, of n belongs to the
even (odd) type, if the first ng, which is not equal to 1, is even (odd).



This definition becomes ambiguous for the partition 1+ 1+--- 41, and we declare that
this partition belongs to both even and all types. For example, if n = 5, then:

Partitions of the even type:

441,243, 2+2+1, 24142, 2414141, 144, 14242, 1+2+1+1,
1+14+2+1, 1414142, 14+1+1+1+1

Partition of the odd type:

5,342 3+1+1, 1+3+1, 14+1+3, 1+1+1+1+1.

2.3.3 Numbers of ordered partitions

Let Qeven(n), Qoaa(n) be the numbers of ordered partitions of n of, respectively, even and
odd type. Since the full number of ordered partitions of n is 2! and one partition
(1+1+---+41) belongs to the both types, the sum Quyen(n) + Qoaa(n) must be 2"~ + 1.
It is easy to find the numbers Qeven(n) and Qoqq(n) for small values of n:

n 112131415
Qeven(n) | 1|23 ]6 |11
Qoaan) | 1112|316
o=ty 1 23|59 ]17

To fill this table in, we can either to list and count all ordered partitions of either type
(at it is done for n = 5 above), or use the equality Qeven(n) + Qoaa(n) = 2"~ + 1 and the
following simple

Lemma 2.3 For everyn > 1,

Qeven(n) = Qodd(n + 1)

Proof. To establish a bijection between the even type partitions of n and the odd type
partitions of n + 1, we put 1 +1+---+1 ¢— 1+1+---+1 and assign to every other

n n+1
even type partition of n the same partition of n+ 1 with the first even term increased by 1.

Using these equality and lemma, we fill the two middle rows of the table beginning with

Qoada(1) = 1 and following the path I\I\N\l\ o

Here is the final result:

10



Proposition 2.4

2"+2 ., . 2141
5 if n is even, —5 if n is even,
Qeven(n) = on ] Qodd(n> = .
1 it n s odd. o2 3*2, it 1 is odd.

Proof. Tt is sufficient to check that Quqq(1) = 1,Qodd(n) + Qeven(n) = 277! + 1, and
Qeven(n) = Qoaa(n + 1). In all these cases the check is immediate.

Corollary 2.5
| 2Qoaa(n), if n is even,
Qeven(n) = { 2Qoqa(n) + 1, if n is odd.

In conclusion, we will provide two more calculations, which will be useful below (in
Section 5). It will be the first, but not the last, example of calculations, which result
in the Fibonacci numbers. For the Fibonacci numbers, we use the notation F,, where
Fg = O,Fl = ]_, and Fn = Fn—l + Fn_Q, if n 2 2.

We begin with two examples of partitions of even and odd types. First, a partition with
all terms equal to 1 or 2 belongs to the even type. Second, a partition with all terms odd
belongs to the odd type.

Proposition 2.6 The number of ordered partitions of n into 1’s and 2’s is ¥, ;1.

Examples. For n =1, 1 = F5 partition: 1.

For n = 2, 2 = F3 partitions: 2;1 + 1.

For n = 3, 3 = F4 partitions: 1 +2,2+1; 1+ 1+ 1.

For n =4, 5 = F5 partitions: 2+2;1+1+2,14+24+1,2+1+1;1+1+1+1.

For n =5, 8 = F¢ partitions: 14+2+2,24+1+22+24+1;14+1+14+214+1+2+1,
1+2+1+1,241+14+1;14+1+14+1+1.
Proof of Proposition 2.6. Let the number of ordered partitions of n into 1’s and 2’s be
B,. Then, B; =1 =Fy, By = 2 = F3 (see above). Furthermore, if a partition of n > 3
into 1’s and 2’s ends with 1, then we remove this 1 and obtain a partition of n — 1 into 1’s
and 2’s; if it ends with 2, we remove this 2, and obtain a partition of n — 2 into 1’s and 2’s.
Moreover, any ordered partition of n — 1 or of n — 2 into 1’s and 2’s may be obtained in
this way. Hence, B, = B,_1 + B,_2,s0 B, = F,,11.

Proposition 2.7 The number of ordered partitions of n into odd terms is F,,.

11



Examples. For n =1, 1 = F; partition: 1.

For n =2, 1 = F, partition: 1+ 1.

For n = 3, 2 = F3 partitions: 3,1+ 1+ 1.

For n =4, 3 = F, partitions: 1+3,34+ 1,1+ 1+ 1.

For n =5, 5 = F; partitions: 5,1 4+14+3,14+3+1,3+1+1,1+1+14+1+1.

For n =6, 8 = Fg partitions: 1 4+5,34+3,54+1,14+1+1+3,1+1+3+1,
1+3+1+1,3+1+1+1,14+14+1+1+1+1.
Proof of Proposition 2.7. Let the number of ordered partitions of n into odd terms be
Cp. Then, C; =1 =Fy, Cy =1 = Fy (see above). Furthermore, if a partition of n > 3
into odd terms ends with 1, then we remove this 1 and obtain a partition of n — 1 into odd
terms; if the last term is 3 or more, we subtract 2 from this term, and obtain a partition of
n — 2 into odd terms. Moreover, any ordered partition of n — 1 or of n — 2 into odd terms
may be obtained in this way. Hence, C,, = C,,_1 + C},_5, so C,, = F,,.

2.4 Basic orbits.

We will call the orbits corresponding to the sets of non-zero y’s basic. Then, in some sense,
all orbits are products of basic orbits. Let jo,...,Jnm and 71,...,7, be as in Section 2.1.
Consider the projection

Gn%GjOXGjlx"'XGjm (3)
presented graphically (in the case n = 7,k = 2,50 = 2,j;1 = 3,jo = 2,13 = 2,13 = 5) in the
diagram below:

1 a5
1 Q2| f
1 (&3 1 a3
B3 o1 5, B3 o G
1 o fy 1 aa By
— 1 asf> ) 1 o7
1 5|5 1 a5
1 1
1 |6 [ 1
1 a7
1
The kernel of the projection (3) is the central subgroup of G,, described by the condi-
tions: all a’s and f’s are zero, except f;,, ..., 3 (B2 and B5 in the diagram above).
Thus the entries of the group G;, from this construction (0 < r < k) acquire the nota-
tions 41, .., %, 15 Bi,+1s - - -5 Biy—1; its adjoint representation is defined in the space of

12



upper triangular matrices with the entries a; 11,...,a;,;bi.41,...,0;,,—1; and its coad-
joint representation is defined in the space of lower triangular matrices with the entries
Liptly - s Lipprs Y1y -+ o5 Yipy 1 —1-

For fixed non-zero y; 41, . .., ¥i,,,—1, plus one additional invariant if j, = 4,41 —4, is odd
(see Section 2.1), there arises a basic orbit of the group Gj 11; fix such orbit for every r.
The product of these orbits lies the space of the coadjoint representation of the product
Gjo+1 X -+ X G471 and is an orbit of this product group. The projection (3) gives rise to
the action of the group G, in this orbit, and with this action, it is not different from the
orbit of GG, corresponding to the partition n = jy + - - - + ji and the set of n — 1 y’s,

Yis -5 Yin—1,Yir Yir+1s - - -5 Yio—1) Yios Yio+1y - - - - - - v YL _1—15 Yig_1) Yig_1+15 - - - s Yn—1
| | |
0 0 0
3 Classes

3.1 Description

The values of aq,...,a, are fixed within a class, so we need to consider possible equiva-
lences between the sequences by, . . ., b, for every fixed sequence aq, ..., a,. The sequences
bi,...,b,_1 and by, ... b, ;| are equivalent, if the left system (1),

bll = bl +aqas — Qo
bl2 = b2 +aas — Q3049
bg = b3 +Qsay —Q a3

/ _
n—92 — bn72 + Qp—20p—1 — Qp—10p—2

/ —
bnfl - bnfl + ap_1ay, — Oplp—1

has a solution in a4, ... a,. If all a’s are non-zero, then this system has a solution, so in this
case there is one class of capacity K" ! and the set of these classes is labeled by elements
of (K*)™. Let us look, what happens if some a; are zeroes.
If a; = 0, but a;_1 # 0 and a;41 # 0 (in particular, i # 1,n), then the equations with
b;_1 and b; become
biy= bio1 —aua;
by= b TG4,

which implies
/ /
b;_1ai1 + bja;—1 = bi_1a;41 + bia; 1.

13



Thus for the consistency of our system it is necessary that the last equality holds. In other
words, b;_1a;11 + b;a;_1 is an invariant, that is, it is fixed within a class.

We say that the set {a;11,air2,..., 0., forms a string of zeroes of length m if the
following holds: a;y 1 = a;42 = -+ = ajry, = 0; if & > 0 then a; # 0; if 1 + m < n then
ivmy1 # 0. I {aji1, aiva, ..., aim} i string of zeroes of length m > 2, then our system
contains a part

b= b — Q410

L= b

i1 i+1

L= b

i+2 i+2

Vivm—1 = bitm—1
b{H—m = bitm T ipm@itm+1

(the first line is absent if ¢ = 0, and the last line is absent, if i = n —m). Thus for the
consistency of our system it is necessary that b;,, = bi11,...,bi, . | = bitm—1. In other
words, b1, .. .,bi1m_1 are invariants.

Below, we will refer to non-zero a; as to a-invariants, and to invariants involving b; as
to b-invariants.

Thus, for any fixed ay,as, ..., a,_1 we have a full description of invariants; this descrip-
tion depends only on the locations of zero a’s. For example, if n = 10 and a1 = a3 = a4 =
as = ay = ag = a9 = 0, while as # 0,ag # 0,as # 0, then, in the addition to a-invariants
as, ag, ag, there are 4 b-invariants: bs, by, bgas + brag, by, and a class is determined by fix-
ing their values. Hence in this case classes are parallel 5-dimensional affine planes in the
9-dimensional space spanned by by, b, ..., by.

3.2 The number of classes of given dimension.

In Section 2.2, we proved a compact formula for the number of GG,,-orbits of a given dimen-
sion. Unfortunately, no formula of this quality exists for the classes. Below, we restrict
ourselves to an inductive procedure of calculating the number of classes of a given di-
mension. We again assume that K =F,. An element of g, is characterized by 2n — 1
elements of Fy: a1,...,a,,01,...,b,-1. The string a4,...,a, is fixed within any class. We
will usually label such a string by a sequence of heavy dots e and light dots o: heavy dots
correspond to non-zero a; and light dots correspond to zero a;. We will denote the num-
ber of k-dimensional G,-classes by d,(k). More specifically, d? (k) and d2 (k) will denote
the number of k-dimensional G,,-classes with, respectively, a; # 0 and a; = 0. (Thus,
dn(k) = d},(k) + d;,(K)).

For a given n, there are 2" strings of heavy and light dots. For each such string we
denote the number of heavy dots by m and the number of invariants, calculated as in
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Section 3.1, by £. Then this string contributes (¢ — 1)™¢‘ classes into d®(n — 1 — ¢) or
do(n — 1 — ), if, respectively, the first dot is heavy or light. For example, the string

ocecoeocecoco:n=10m=3,{=3

contributes (¢ — 1)3¢® classes into d5,(6).

How to find d, (k) or, separately, d? (k) and d2(k)? There is a “direct” way of doing
that: to consider all 27! strings of heavy and light dots, repeat for each of them the
computations similar to those in (4) and calculate the appropriate sums. Let us do this,
for example, for n = 3:

From this:
d3(0) = ¢
d3(1) = q(qg — 1)

di(2) =(@—-1)+(@—-1°=qla—1) di2)=(a—1)*+(q-

® ¢ ¢ O ¢ O O O
® ¢ O @€ O e O O

e O e @ O O @ O
33333333

=0,0=2, ¢ in d3(0)
=1,0=1, q(¢—1) in d3(1)
=1,0=0, q—1 in d3(2)
=1,0=1, q(¢—1) in d3(1)
=2,0=0, (¢—1)? in d3(2)
=2,0=1, q(¢g—1)* in d3(1)
=2,0=0, (¢q—1)? in d3(2)
=3,0=0, (¢—1)2 in d3(2)
d3(0) = 0

1)=g¢q

(4)

dg (0) = q2

d3(1) =qlg—1) +qlg = 1> =¢*(¢—1) ds(1) = q(¢> = 1)

1)? = q(qg—1)?

d3(2) = ¢*(q — 1)

However, calculation like this for large n is hardly possible. Below, we deduce an expression
of d, in terms of d,,_; and d,_5, which can be used for calculating d,, step by step.

Theorem 3.1 Forn > 3,

dy (k) =d5_\(k—1)
dy (k) =d5 \(k—1)
= d;zﬂ(k - 1)

+dy,_ (k)
+dy ok —1) +dp_o(k—
+d, o(k—1)

1)

Proof Let us look how n,m, and ¢ in (4) change, when we cut off one or two first dots
from the string of heavy and light dots.

n

m

14

k=n—-1-/

ole...
o|o...
oo ..
eo|e. ..
eo|o...

decreases by 1
decreases by 1
decreases by 1
decreases by 2
decreases by 2

stays the same
stays the same
decreases by 1
decreases by 1
decreases by 1

stays the same
decreases by 1
stays the same
decreases by 1
decreases by 1

decreases by 1
stays the same
decreases by 1
decreases by 1
decreases by 1
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Since every string of heavy and light dots with n > 4 begins with one of the combinations
in the first column of the table above, the statement of Theorem follows.

The relations in Theorem 3.1 determine the induction step. The base of induction is
provided by computations for n = 3 given above (and still easier computations for n = 1
and 2).

3.3 M-classes.

This section, like Section 2.3 above, will not be used before Section 5.

3.3.1 Sparse sequences and the definition of M-classes.

A subset {i1,1s,...,4x} of {1,2,...,n} is called a sparse sequence, if iy —is_; > 1 for every
s,1 < s < k. Let us count the number of sparse sequences.

Proposition 3.2 For a given n, the number of sparse sequences is the Fibonacci number
F,. .

Examples. For n = 1, there are 2 = F3 sparse sequences: (), {1}.
For n = 2, there are 3 = F, sparse sequences: 0, {1}, {2}.
For n = 3, there are 5 = Fj sparse sequences: (), {1},{2}, {3}, {1, 3}.
For n = 4, there are 8 = Fy sparse sequences: 0, {1}, {2}, {3}, {4}, {1,3},{1,4},{2,4}.

Proof. For n = 1,2 see above. For n > 3, let us consider a sparse sequence in 1,2, ..., n. If
the last term of this sequence is not n, then it is also a sparse sequence in 1,2,... ., n—1. If
the last term is n, then the sequence, being sparse, does not contain n—1. So, if we remove
the term n, we obtain a sparse sequence in 1,2,...,n — 2. Thus the number of sparse
sequences in 1,2, ..., n is the sum of the numbers of sparse sequences in 1,2,...,n—1 and
sparse sequences in 1,2, ....n — 2.

Definition. A class is called an M-class, if the subscripts 1,79, ...17; of a-invariants
;i , Qiy, - - -, 4;, fOorm a sparse sequence.

3.3.2 Containers

For a sparse sequence I = {iy,is,...,1} C {1,2,...,n}, we denote by C(I) the subset
of G, which consists of all matrices g(ay,...,an;b1,...,bp—1) wWith a; # 0 <= i € I.
Thus, C(I) is a union of M-classes. Containers play for M-classes a role similar to the
role which ordered partitions play for orbits: they place together M-classes with some
important properties being the same. First of all, the M-classes from the same container
have the same stabilizer.
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The formulas for the multiplication and inversion in the group G,, imply the following
formula for the conjugation:

/ AN / -1 . / /AN /
glay,....al; b, .. b ) tglar, .. an; by, baoy)glay, .o als b, b )
_ . / / ! !
=glay,...,an; by + arah, — agdl, ... by_y + ay_1a, — ayal,_,)

Hence g(a},...,al; by, ..., b, ;) belongs to the stabilizer of g(as, ..., a,;b1,...,b,_1) if and
only if

! ! ! !
10y — Aoy = *++ = Ap_1Q, — Gpa,_; = 0,

which means precisely that, for every i € I, a;_, = aj,; = 0 (here we use the fact that /
is sparse and mean that aj = a;, ., = 0). This shows that all elements of C(I) have the
same stabilizer, in other words, all M-classes within C'(I) have the same stabilizer, and
this stabilizer Stab(/) is a normal subgroup of G,,. For a more convenient description of
Stab(I), we need new notation. Let I~ be the set of those i € {1,...,n}, for which i — 1
or i+ 1 is contained in I, and let It be the complement of I~ in {1,...,n}. Then Stab(I)
is the set of all g(aq,...,an;b1,...,b,—1) with a; =0, if i € I~ that is, a; may be different
from zero only if i € I'™. (Notice that I™ may be not sparse and that I C I".)

The group Stab(/) may be non-commutative. Its commutator subgroup consists of all
glay,...,an;by,...,b,_1) with all a’s and b’s being zero, with a possible exception of those
b;, for which j,j+1¢€ IT.

Our description of the container C([), classes ¢ € C(I), and the stabilizer Stab(I) give
rise to direct computations of cardinalities of several related sets.

Proposition 3.3 (i) The number of containers is F, .
(i) | Stab(I)| = ¢" 11,
(iii) For a class ¢ € C(I), |c| = ¢!I"|.
(iv) For a class ¢ € C(I), the number of b-invariants is |[I7| + 1.
(v) The number of classes in C(I) is (g — 1)Hlg"" =1,

Proof. Part (i) is the same as Proposition 3.2.
Part (ii) follows from our description of Stab(I): an element of this group is determined
by Qjyyv o 7aik,b1, oo by1 € ]Fq.
|Gn| q2n—1

Part (iii) follows from Part (ii), since for ¢ € C(1), |c| = Stab (7] = Py =
abp(e qr—

n—|I*| _ 7]

q q

|c| can be calculated also directly form the description of ¢: the entries a; are fixed
within ¢, and the entries b; belong to a subspace of the b-space, whose codimension is the
number |b—inv.| of b-invariants. Hence, |c| = ¢" 1=~V Compare the two computations
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of |e: g =gl = |7 | =n — 1 — |b—inv.| = |b—inv.|=n—1—|[7| = || - 1.,
as stated in Part (iii).

Part (iv) follows from Part(iii): a class in C(I) is determined by |I| (non-zero) a-
invariants and |I*| — 1 b-invariants (which are allowed to be zero).

4 Representations.

The orbit method, as it is described in [1], provides a bijective correspondence between
coadjoint orbits and unireps. Our goal is to show that it works for the group G, =
TD(n,F,).

We begin with the observation that the construction of a complex representation corre-
sponding to a given orbit works for this group. We will provide an explicit construction of a
representation of GG, corresponding to an orbit and an explicit calculation of the character
of this representation.

Then we will show that all the representations constructed are irreducible, and the set
of these irreducible representations is complete in the sense that any irreducible complex
representation of G,, is equivalent to precisely one of the representations constructed.

Our construction will involve a fixed non-trivial homomorphism e: F, — C* of the
additive group of the field F, into the multiplicative group C*. Notice that the image
of this homomorphism is contained in the set of degree p roots of 1. Notice also that
this homomorphism is not unique: there are ¢ — 1 such homomorphisms labeled by non-
zero elements of F,: the homomorphism e,: F, — C* (a € F, — 0) acts by the formula

ea(§) = e(af).

4.1 The construction of representations by the orbit method.

The dimension of a representation corresponding to a 2k-dimensional orbit is ¢*. The
construction consists of three steps. Let €2 be an orbit.

First step. We choose a representative F' € (), compute the stabilizer Stab F' C G,,,
and choose a polarization subgroup H C G,, corresponding to some h C g,, such that

dim G,, + dim Stab F'

H > Stab F, dim H = >

The last property shows that the formula p(h) = e(tr(F'h)) defines a 1-dimensional unitary
representation of the group H.

Second step. Consider the right homogeneous G,-space T = H\G,, and the natural
projection p: G, — T,p(g) = Hg. If we choose for every class t € T a representative
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s(t) € G, then every element g € G,, can be uniquely written in the form g = hs(t) where
t € T,h € H. Clearly, here t is the class Hg € T and h = gs(t)~!. Thus the function
s: T — G, allows to identify G,, with the direct product H x T: an element g € G,
corresponds to the pair (gs(t)~!, ).

Third step. Introduce the so-called Master Equation:

s(t)g = W's(t') for given t € T, g € G,, and unknown t' € T, h’ € H.

We have seen above that this equation has a unique solution, ¢ = p(s(t)g),h’ =
s(t)gs(t)~.

Now we can describe the representation mg of GG,,. The space of this representation is
the space of complex-valued functions on T since 7" has dimension k over F,, the (complex)
dimension of the space of function is ¢*. The representation is described by the formula

(ma(g).f) (t) = p(A) ().

4.2 Basic representations and their characters.

We begin with the representations of GG, corresponding (in the sense of Section 4.1) to the
basic orbits (Section 2.4). We begin with the (simpler) case of even n.

4.2.1 The case of even n.

In this case, basic orbits are labeled by sets (yi, ..., ¥y,_1) of non-zero elements of the field
F,. Values of x4, ..., 2, within every orbit are arbitrary, and for a representative F' of the
orbit corresponding to (y1,...,¥ys,—1) We take the matrix

0 Stab F N
F=|hn ; consists of n—1
\ matrices 0

Yn-10 0 1

(Thus the stabilizer Stab F' of F' does not depend on y1, ..., ¥n_1.)
For H, we can take the group consisting of matrices h shown below (the condition
F|ip,n = 0 holds, because the group H is commutative). The space T' = H\G,, has dimen-

n
sion —; the elements of this space are represented by matrices s(t) = s(ta,t4,. .., tn_2,ts)

also shown below.
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(1 a1 8 i 100 ]
1 0 B 1t 0
1 a3 53 1 0 0
t
= POR [ s L
101 10 0
1 0 1t
1 1
The Master equation s(t)g = h's(t") becomes
10000 1 a1 00 - 1aiB00- [10000-
01t00 0 1aB 0 - 01068,0:- |01%%0O0:
00100 00 10a38;5-=1{0010a48:-[00100: (5

0001t 000 1a: [00010- [000T1¢1:
000O0T1 0000T1- 000¢O0TI- 0000 T1:

(the products of matrices are “truncated”: we annihilate all the entries above the (-
diagonal). We equate the entries of the two product matrices and obtain the equalities:

Ay =g, =Qs, ..., 00 = Qpg;
t’2:t2+a2,tﬁl:t4+a4,...,t%:tn+an;
Br =D —than, By = Pa+ baas, ..., B g = Bua + tno20n—2, 8,1 = o1 — th,01
Now we have a description of the representation mq of GG, corresponding to the basic
orbit €2 corresponding, in turn, to the set (yi,...,y,—1) of non-zero elements of F,. The
space of this representation is the ¢™/-dimensional space F(t,ty, ..., tn_2,t,) of complex-
valued functions f(ts,t4,...,t,_9,1t,), and the representation is defined by the formula

(Wﬂ(g)f)(t% t47 s 7tn) - e(tr(Fh’))f( ,2? iu ce ,t%)
=e(yf) 4+ +Yn18, 1) f(ta+ o bty + gy ...ty + ).

Let us calculate the character of this representation. The space F(to,t4,...,t,) has a
natural basis composed of “d-functions”: for a fixed set to,ty4,...,t,, the d-function takes
the value 1 on this set of variables and the value 0 on other sets of variables. The en-
tries of the matrix of the operator mo(g) with respect to this basis correspond to pairs
(ta,tay .- tn), (th,th, ... t.), and this entry is zero, if (t5,...,t)) # (t2 + ag,..., ty + ap).
Thus, if at least one of ag,ay,...,q, is not zero, the matrix of mg(¢) has no non-zero
diagonal entries, and the trace of this matrix, that is, the value of the character, is zero.
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Suppose that ay = a4 = --- = a, = 0. Then the diagonal entry of the matrix
corresponding to (tq,...,t,) is

e(y1(B1 — (ta + ag)on) + ya(Be + taas) + y3(f3 — (ta + ca)ag) + -+ 4 Yn-1(Bn1 — (tyon)an_1)
= e(y1(B1 — taon) + Y2 (B + taag) + y3(Bs — tacs) + -+ + Yn—1(Bn-1 — thtn_1) =
e(151) - - - e(Yn—18n—1)e(ta(yos — y101)) . .. €(tp—2(Yn—20tn—1 — yn—3an—3))e(tn(_yn—lan—l))~

The sum of all these diagonal entries is

e(151) ... e(Un-1Bn-1) Z e(ta(yoas — y1011)) - ...

ta€F,

Z e<tn—2(yn—2an—1 - yn—305n—3)) Z e<tn<_yn—1an—1>>

tn72€ﬂ:‘q tneﬂ‘-"q
Finally, notice that for a v € Fy,
g, ifty=0
Z e(ty) = { :
= 0, if y#0

But o3 — y101 = -+ = Yp—2Qp_1 — Yn—30n—3 = —Yp—10p_1 = 0, only if oy = a3 =
- = ap_3 = ap_1 = 0. We arrive at the final result: the value of the character of the
representation mg on the matrix

_1 ar By
1 az 3,
11 B
1 ap
1
is ¢"%e(y181) . ..e(Yn_1Pn-1), if a1 = g = - - - = a,, = 0, and is zero otherwise.
4.2.2 The case of odd n.
In this case, a basic orbit € is determined by a set (y1,...,¥y,_1) of non-zero elements of
the field IF, and a value I of the invariant
T1Y2Ya - - - Yn—1 T Y103YaY6 - - - Yn—1 + Y1Y3T5Y6Y8 - - - Yn—1 + - .. (6)

ot NY3 - Yn—aTp—2Yn—1 + Y1Y3 .. Yn—2Tp
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For a representative F' of €2 we can take the matrix

[0
T I

F yl&\ Y2Yq - - - Yn—3Yn—1
| Yn—-1 0 O_

The stabilizer Stab F' of F' consists of matrices

1 o1y
1 a2 [y
glag,...,an1;B1,. .., o) =
1a”—1ﬂn—l
1 an
1

., Qp_o, (i, satisfying the system
AplYn—1- In

with ag = a4 = -+ = ap_3 = a,-1 = 0 and ay,as,..
of equations a y1 = asyo, 3Y3 = AsY4, -+ -, UnalYn—a = Op_2Yn—3, Up_2Yn—2 =
other words,

Q1 = K- -Y2Ys- - Yn—3Yn—1
a3 = K- -Y1Ys-. - Yn-3Yn-1
Ap—2 =K -Y1Y3.. - Yn—4Yn—1
On = K-WNY3-.-Yn—aYn—2

for some K € F,. For H, we can take the group of matrices shown on the left below
(no relations between oy, o, ..., a,—1; again, the condition F|p , = 0 holds, because the

n J—
group H is commutative). The space T has dimension and the representatives

s(t) = s(to,ta, ..., ty_3,t,—1) of elements of T" are shown below on the right.

22

1 Of151 100
1 0 B 1t 0
1 OfSﬁg 1 00
ks s(t) =
1 O/Bn—l 1tn—2
1 Qp 10
1 1




The Master equation has the same appearance as before (see (5)), but the matrices now
have even, not odd, order. For the entries, we have the following equalities:

! /o / _ .
Oél —a17 Oé3—O./3,....,Ozn_1 —an_l,
! ! / _ .
2—t2+0&2,t4—t4+044,..., n_l—tn—l+an—17
o / /o / _ / / ! _
61 =B — tya, 52 = By +toas, . .. 7ﬁn72 = Br_2 — U100, 9, 57171 = Bro1 +tp10m,.

Now we have a description of the representation mq of G,, corresponding to the basic
orbit Q corresponding, in turn, to the set (y1,...,y,—1) of non-zero elements of F, and the
value I € F, of the invariant (6). The space of this representation is the ¢"~1/2-dimensional
space F(tg,...,t,_1) of complex-valued functions f(ts,...,%,_1), and the representation is
defined by the formula

(ma(9)f)(ta, .- tamr) = e(tr(FR)) f(th, ... 1,_1)
= e(xloq -+ ylﬁi + -+ yn_lﬁé_l)f(tg +ag, ...ty + an_l).

Let us calculate the character of this representation. The space F(to,...,t, 1) again
has a basis of o-functions. The entries of the matrix of the operator mg(g) with re-
spect to this basis correspond to pairs (ta,...,t,_2), (t5,...,t! ), and this entry is zero, if
(to, ..., tn_1) # (ta + ag,... ,ty_1 + a_q1). Thus, if at least one of ag, ay,...,a,_1 is not
zero, the matrix of mg(g) has no no-zero diagonal entries, and the trace of this matrix, that
is, the value of the character, is zero.

Suppose that as = a4 = -+ = «, = 0. Then the diagonal entry of the matrix
corresponding to (g, ..., t,) is

e(riar)e(yi (B — tacr) + y2(Ba + taaz) + . ..
ey yn—Z(ﬁn—2 - tn—lan—Q) + yn—l(ﬂn—l + tn—lan)

First of all,

e(yi1(Br — tac) + ya( B2 + teas) + - -+ + Yn—2(Bn-2 — th—20tn—3) + Yn—2(Bn—2 + th_otn_1)
=e(y1/1)...e(Yn-10n-1) - e(ta(—y1a1 + yo3) . . . €(tn_1(—Yn—20n—2 + Yn—101,)

The sum of all these diagonal entries is

e(ylﬁl) .- 'e(ynflﬁnfl) Z e(tz(?ha?) - ?JlOél)) s Z e(tnfl(_yn72an72 + ynflan)

to€ly tn—1€F,

Each of the sums in the last formula equals g, if yoaz3 —y100 = -+ = Y10 — Y20 _2,
that is, if the equalities (7) hold, and at least one of them is zero otherwise.
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It remains to find e(x;aq) in the case, when (7) holds. But in this case

I
T = —————— “KYa. .. Yn_1 = K1, so e(z11) = e(kl).
Y2 Yn—1

We arrive at the final result: the value of the character of the representation g on the

n—1 .
matrix g(aq, ..., 01, ..., Bue1) 18 ¢ 2 e(kl)e(y151) ... e(Yn_10n-1), f aa = g = -+ =
a,—1 = 0 and the formulas (7) hold for oy, as,...,a,. In all other cases, the value of the
character is zero.

4.3 Representations corresponding to all orbits.

We observed in Section 2.4 that all orbits are products of basic orbits. More precisely: if
an orbit ) of GG,, corresponds to an ordered partition n = jy + j1 + - - - + Jji, then this orbit
is the products of some basic orbits {2y, {21, ..., of the groups G;,,Gj,, ..., Gj, with the
action of GG, determined by the projection (3). But in this case the representation mq of G,
determined by these orbits is the tensor product mg, ® T, ® - -+ ® mq, of the basic repre-
sentations of the groups Gj,,Gj,,. .., G, corresponding to the orbits €, 2, ..., And
the character of the representation mq is the product of characters of the representations
Gj,,Gj,, ..., Gj,, which were calculated in Section 4.2.

Jo»
Let us prove now that the representations constructed are all irreducible, and
any irreducible representation is equivalent to one of them.

Since all these representations have different characters, they are not equivalent to each
other. Let us prove now that

4.3.1 They are all irreducible.

Let us begin with basic representations (Section 4.2). The space of each of these representa-
tion is the space of complex-valued functions f(ta, t4,...,t,) if niseven and f(ta,t4, ..., th—1),
if n is odd; the variables ¢; in both cases are elements of the field F,. For a basis of this
space we can take the set of “d-functions;” each of them takes value 1 for some fixed set
of variable ¢; and the value 0 on every different set of variables. It is clear that if f is a 6-
function concentrated at (o, t4,%s,...), and g = g(aq, ..., ,; 81, ..., Bu_1), then, mo(g) f is
the §-function concentrated at (to+ g, t4+ay, te+ag, . . . ) times a non-zero coefficient. This
means that if a space of a subrepresentation of our representation contains a d-function,
then this space contains a whole basis, that is, this subrepresentation coincides with the
whole representation.

What if the space of a subrepresentation contains no J-functions? Take a non-zero
element f of this space, which is a linear combination of the minimal possible number
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m > 1 of d-functions (that is, f takes non-zero values at m points). We can apply to it an
operator mq(g), where ¢ is a matrix with ap = ay = ag = -+ = 0, Then the result will be a
linear combination of the same d-function as f (that is, the function mo(g))f takes non-zero
values at the same points as f). More precisely, the value at (¢, t4, g, . .. ) is multiplied by

e(y1(B1 — taar) + y2(Bo + taaz) + y3(Bs — tacs) + ya(Bs + tacs) +...)

(t, = t;, since ag = aq = --- = 0) times e(x1a1), if n is even.
Suppose that f takes non-zero values at the points (to,t4,ts,...) # (th, ta, b, ... ). If
ty # t,, then we apply to this f the matrix g with oy # 0,0 = a3 = --- = 0. The

values f(ta,ta,t6,...), f(t5, 1), ts,...) will be multiplied by different numbers. If #, =
ty, but t) # t4, then we apply g with a3 # 0 and all other a’s are zeroes — again
f(ta, ta t, ... ), f(th, th, ts, ...) will be multiplied by different numbers. And so on. Thus

WQ(Q)f(tQ,t4,t6, R ) = Cf(tg,t4, tﬁ, . ),WQ(Q)f(té,tﬁl,t%, R ) = C/f(tg,tﬁl,tg, R ), and ¢ %

c. Let f =cf —mq(g)f. The function fis not zero, belongs to the space of the subrep-
resentation, and takes non-zero values at less than m points (since f(ts,t4,tg,...) = 0).
This contradicts the minimality of m. Thus, the space of the subrepresentation contains a
o-function, hence the subrepresentation coincides with the whole representation, hence this
whole representation is irreducible. This completes the proof of irreducibility of all basic
representations.

The construction of a general representation is described in Section 2.4. We fix an
ordered partition

n=n+Jje+ -+
of n and consider the projection (3)
Gn—>Gj1 XGj2 X Xij
(see Section 2.4). Then we fix basic orbits €y,, ...,y of the groups G;,,Gj,,...,Gj,
and corresponding representations mg,, 7q,, ..., To, of these groups. The space V; of the
representation g, is the space of complex-valued functions of {%} variables from F,. The

tensor product
V=heolhe -1V

becomes the space of representation mq of G;, x G, x --- x Gj,, and the projection (3)
turns it into a representation of GG,,; this is a construction of a general representation of
G,,. Let us prove that this representation is irreducible.

The basis of the space V; consists of d-functions. Hence the basis of the space V
consists of tensor productsf; ® fo ® --- ® fr,where f; is a delta-function from V;. Take
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a non-zero subrepresentation of this representation. We want to prove that the space W
of this subrepresentation contains a vector from the basis. Take a non-zero vector f of
this space. It is a linear combination of the vectors of the basis. Suppose that this linear
combination involves more than 1 basic vectors, say, it involves different f1 ® fo ® -+ ® fi
and f] ® f5 @ --- @ fi (where all f;, f/ are d-functions). Then f/ # f; for some i. We
have seen before that there is some g; € G;,, which takes every d-function into itself times
a non-zero coefficient and, in particular, mqo,(g;)fi = cfi,mq,(g:)fl = ¢ fi, ¢ # c¢. Let
g=(01,...,1,g,1...,1) € Gj;, x Gj, x --- x Gj,. Then mq(g)f —cf € W is a linear
combination of the same basic vectors as f except fi ® fo ® -+ ® fi, thus it involves one
less basic vectors than f. Repeating this operation, we arrive at a basic vector, which is
contained in W. Appropriate elements of G;, x G, x --- x G, take this basic vector into
all other basic vectors. Thus, W = V| and our representation is irreducible.

4.3.2 The list of irreducible representation is complete

To prove this, we need to check that the sum of the squares of dimension or the representa-
tions constructed is equal to the number of elements of the group G,,, that is, to ¢**~3. The
dimension of the representation corresponding to a 2k-dimensional orbit is ¢*, the number
of 2k-dimensional orbits was calculated in Section 2.2 (Theorem 2.1). Thus, we need to
prove the following equality:

(e () e
’;qwk—l(q— 1)k ((n—:— 1>q+ (n;ﬁI 1)) e N

Rzzqi“(q—l)k(i_z_l)

k>0

or

Put

(In particular, P, = ¢, P» = ¢°). Then the left hand side of the equality (8) is the sum of
P, and

an+k_1(q_1)k(n— _1) S g - ’f“( ‘:‘Q)qu—l)zﬂn_l

k>1 k>0

On the other hand,

pepr e () = e () (1)

k>0 k>0 k>1
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‘ ] k-3
_ ik, _ k(P ikt (g — 1)k — qP._ 3(g—1)P,_
VAR (A ED 3 ) = gP+ e - )P

k>0 £>0
From this:

Po+qlg—1)P1 = (qlg— 1)+ q)Poi + ¢*(q — 1) Prs =
q2Pn,1—|—q3(q—1)Pn,2:(qg(q—l)—i—q)n2—|—q(q )n3—
(*Poatq(q—1)Pis=("(¢—1)+¢")Pus +q" (¢ — 1) Pry =

q6Pn—3 + q7(q - 1)Pn—4 - - q2ZPn i+ q27’+1( 1>Pn i—1 = =

61271,—4P2 4 q2n—3<q o 1)Pl — q2n—2 + an 2( 1)

as was stated.

5 Models

5.1 Introduction

For a finite group G, a model is a finite dimensional representation, whose decomposition
into irreducible representations contains an irreducible representation of every equivalence
class precisely once. The formal definition of a model (as well as the term model) was
first introduced by [.N.Bernstein, .M. Gelfand and S. I. Gelfand in their article [2]; its
significance for the representation theory was demonstrated later by .M. Gelfand and
A.V. Zelevinsky [3].

If we have a classification of irreducible representations of G' (which is the case for
G = G,,), then there is a ready construction of a model. What we are interested in here is
a “geometric” construction of a model for the group G,,, the meaning of which we describe
below. This description does not use any specific properties of the group G,,, so we are
speaking of an arbitrary group G.

We fix an ad-invariant (that is, consisting of whole classes) set M C G and consider the

union M = |J C, of 1-dimensional complex vector spaces C, = C. Then we fix a lifting of
yeM

the adjoint action of G in M to the action in M: fora g € G, the transformation g: MM
maps isomorphically C, onto C,,,-1. The space of the representation of G, which is the
goal of our construction is the space M of “twisted functions” f: M — M ,f(v) € C,.
The action of G in M is defined by formula gf(v) = gf(g 'vg). Our goal is to choose an
M C G, and the lifted action of GG,, in M in such a way that the representation of G,, in
M be a model for G,,.
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Return to the general case. There are two ways of understanding construction above:
algebraic and geometric.

The algebraic way, which we, actually, follow below, is the following. For every conju-
gacy class ¢ C M, choose a representative 7. € ¢ and consider the stabilizer Stab(c) = {g €
Glg7ve = Veg} of 7e. Then for g € Stab(c), g maps C,, into C,,_, forming a 1-dimensional

representation p. of Stab(c). For g € Stab(c), the map C,, 2y C,, is the multiplication by a
non-zero complex number y,, and the homomorphism x.: Stab(c) — C* is the character
of the representation p.. These y. determine (up to an isomorphism) the whole action

of Gin M , and the representation M becomes the direct sum € IndSGtab(c) p. of induced
cCM
representations.

The geometric way fits better the topological case. The union M = U C, may be
yeEM

regarded as a line bundle over M, and the action of G in M is a fiberwise lifting of the
action of G in M. Twisted functions are sections of the bundle, and the action is the
natural action.

This way of constructing a model was used by A. A. Klyachko [4] in his construction of a
model for the symmetric group S,,. For M C S,,, Klyachko used the set of all “involutions”
M = {s € S,|s* = 1}. (Later the significance of the manifold of involutions in the
representation theory was demonstrated by Anne Melnikov [5].) In our construction of a
model for the group G,,, we follow this idea: M C G, is precisely the set of involutions in
the case p = 2. For p > 2, there are no involutions in G, (besides the identity), and we
need to modify the definition of M. We do it in the section 5.2 below.

5.2 The case of G,: the set M, stabilizers and characters.

For the set M C G, (see Section 5.1) we take the set of matrices g(aq, ..., an;b1,...,b,1) €
G, with a;a;.1 =0 for i =1,...,n— 1. Thus, the subscripts ¢, for which a; # 0 must form
a sparse sequence in {1,...,n}. In other words, M is the union of all M-classes, which we
studied in details in Section 3.3. In Section 3.3.2, we formed unions of M-classes, which we
called containers. Containers correspond to sparse sequences I C {1,...,n}; the container
C(I) consists of those g(aq, ..., an;b1,...,b,_1), for which a; # 0 if and only if i € I. Every
M-class belongs to one container.The number of containers in GG, is the Fibonacci number
Fn+2-

Recall two useful definitions from Section 3.3. We denote by I~ the set of those 7, for
which either ¢ + 1 or ¢ — 1 belongs to I. It is obvious that I~ NI = (). The complement
{1,...,n},—I~ D I is denoted by I*. A class ¢ C C(I) is determined by |I| a-invariants
a; #0,i € I and |I*|—1 b-invariants, which are allowed to be 0 (see Sections 3.1 and 3.3.2).
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1] [IF]-1 n—|I+
g™l Ty

Thus, the container C'(I) contains (¢—1)
elements of G,,.

All g € C(I) have the same stabilizer, which we denote by Stab(I). We repeat the
description of Stab(/) from Section 3.3.2. Let I~ be the set of those 4, for which either i+ 1
or i — 1 belongs to I. It is obvious that I~ N1 = ). The complement {1,...,n},—1~ D I is
denoted by IT. The stabilizer Stab(I) consists of g(ay, ..., a,; b1, ..., b, 1) such that a; = 0
for ¢ € I~, that is, a; may be different from zero only for i € I't.

The group Stab(7) is normal, but may be non-commutative. Its commutator subgroup
consists of all g(ay,...,a,;b1,...,b,-1) with all a’s and b’s being zero, with a possible
exception of those b;, for which j,j 4+ 1 € I". Hence, every homomorphism x: Stab(/) —
C* has the form

X(g(ar, - an;bi, . bor)) = [ [ e(Aiar) - [[ e(Bjby). (9)

where A;,B; € F,, Ay =0fori e I, and B; =0, if j,j+1 € I". (Recall that e is a
fixed non-trivial homomorphism of the additive group of the field [F, into the multiplicative
group C* — see Section 4.) Thus, the construction of a model will involve a choice of the
coefficients A; and B; for every M-class. This choice will be done in Section 5.X.

In conclusion, we provide a formula for the character of the representation of GG,, induced
by a 1-dimensional representation of Stab(I) with the character (9).

According to the classical Frobenius formula, if x is the character of some finite-
dimensional representation of a subgroup H of a finite group G, then the character Y
of the induced representation of G is described by

)= = S xt s,

teGt—1steH

classes; every class in C'(I) contains ¢

If the subgroup H is normal (which is our case) then the description becomes

X(s) =0, if s ¢ H, and X(s ZX st), if se H

teG
The formulas for the group operations in G, (Section 1) imply the formula for the
conjugation:

g(@la"'aan;ﬂla--wﬁn 1) (ala---7an;b17"'abnfl)g(ala--wan;ﬂla--'vﬁnfl)

=g(ay,...,an; b1 + arae — agary, ... by1 + G104, — Ap0G—1).
In our case, the Frobenius formula gives (we use the notations @ = {ai,...,a,} and b =
{bl, NP ,bn_l}l
X(g(@,b)) = |Stab I Z (He (Aja;) He (bj + a0 41 — aj+1aj))) :
0,65
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The expression under Zai 5, does not depend on ’s and on «; with i € I'", so the formula
may be simplified:

X(g(@ b)) = x(9(@ b)) - [] D_el(Bj-r1a;-1 — Bjajir)ay).

JEI~ ajj

. g fx=0, . .
Since Z e(zy) = { 0. if z £ 0 ,we arrive at the final result:
Yy

(g(@.5)) = { ¢ Ix(g(a,b)), if }flor every j € I7,a; =0 and B;_ja,_1 = Bjaj;1,
’ 0 otherwise.

5.3 Flocks.
5.3.1 Introduction.

The construction of a model for the group G,,, which we outlined in Section 5.1, is sup-
posed to make every irreducible representation of GG,, an irreducible component of a certain
representation of G,, induced from a 1-dimensional representation of the stabilizer Stab(c)
of a certain M-class ¢ C G,,. This would determine a mapping

irreducible onto
representations | ——= | M -classes
of G,

This map, actually, will take irreducible representations related to one ordered partition
of n (see Section 4.3) into M-classes from one container (we will see in Section 5.X that
there will be one small exception to this rule), the mapping (10) will be a refinement of a
certain mapping

ord.eljed onto
partitions| ———= | Containers
of n

For every n, the number of containers is the Fibonacci number F},, 5, while the number
of partitions is 2"1. If n is large enough (n > 4), then 2"~ > F,, .5 (for example, for n = 6
these two numbers are 32 and 21, and for n = 10 they are 512 and 144). So, we must be
prepared to the fact that several partitions will be assigned to the same container. For the
sets of partitions, which are going to be assigned to one container, we will use the term
flocks. We will begin with a descriptions of flocks.
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5.3.2 Description of flocks.

In Section 2.3.2, we introduced a definition of two types of (ordered) partitions: even and
odd. Remind that an ordered partition n = ny + ny + - - - + n,, belongs to the even (odd)
type, if the first n; # 1 (if such n; exists) is even (odd). According to this definition, the
partition n =1+ 1+ ---+ 1 belongs to the both types.

Remind some useful notations from Section 2.3. The numbers of even and odd terms
in the partition of n are denoted, respectively, by u and v; the numbers n and v are of the
same parity, and number (n — v)/2 is denoted by k.

All the partitions within a flock will be of the same, even or odd, type. Accordingly, we
will speak of flocks of even or odd type. Every flock will be an interval with respect to the
partial ordering of partitions (see Section 2.3.1), that is, it has a head H and a tail 7 and
consists of all partitions P such that H <P < T.

The head of a partition of odd type must be a partition into v = n — 2k odd parts and
no even parts. The tail of a partition of odd type must have the first term greater than 1
(if there is any) equal to 3, and all the other terms equal to 1 or 2. To obtain the tail from
the head n = ny; + ny + - -- + n, we replace the first n; <3 by 3+ 2+ ---+ 2 and every
other n; by 1+2+4---+4+2. For example, if the head is 1+ 743+ 1+ 3, then the tail will be
1434+2424+1+2+1+1+ 2. Every partition n = n; + - - - +n,, of the odd type belongs

—— = e

to precisely one flock of the odd type. To obtain the head of this flock we need to combine
every odd n; with all even terms after it (and before the next odd term); to obtain the tail
of this partition, we need to replace the first odd term greater than 1 by 34+2 + .- 4+ 2,
every other odd term by 1 +2+ ...+ 2 and every even term by 2 +2 + --- 4 2.

The head of a partition of even type must begin with 1+ 1+ --- 4+ 1+ even term and
have all the terms after that odd. The tail of a partition of the even type must consist of
1’s and 2’s. To obtain the tail from the head, we replace the even term (if there is any) by
242+ --- 4 2 and replace every odd term by 1+ 2+ ---+ 2. For example, if the head is
1+1+443+5, then the tail willbe 1 +1+2+24+14+24+1+ 24 2. Every partition

—~ —~—~ ——

n = ny + ---+ n,, of the even type belongs to precisely one flock of the even type. To
obtain the tail of this flock, we need to replace every odd term by 1 + 2 + --- 4+ 2 and
every even term by 2+ 2+ --- 4+ 2. To obtain the head of this flock we keep the 1’s before
the first term greater than 1 unchanged, then combine the even terms after these 1’s and
before the next odd term, and then combine every odd term with all the even terms after
it (and before the next odd term. For example, the partition 1 +2 44 + 5+ 2+ 3 of the
even type belongs to the flock of the even type with the head 1 + 6 + 7 + 3 and the tail
14+242+24+14+2+24+24+142.

— —— —~—

Notice that the number v of odd terms (but not the number p of even terms!) and
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hence the number £ are fixed within the flock (of any type).

Notice also that it is convenient to count flocks of the odd type by heads and flocks
of the even type by tails. Namely, the number of flocks of the odd type is the number of
partitions of n into odd parts, which is F,, (Proposition 2.7). And the number of flocks on
the even type is the number of partitions of n into 1’s and 2’s, which is F,; (Proposition
2.6). Thus the whole number of flocks is F, + F,, 11 = F,, 42, which conveniently coincides
with the number of M-classes (see Section 3.3.1).

5.3.3 Pictures and examples

It is convenient to present this procedure on a picture.

First we draw n heavy dots in line. Then we put dividers between some dots, so the
line is divided into parts, and this partition is the head of a flock. To obtain the tail, we
should add some dividers, and we draw them as dotted lines. The description of flocks
given above provides an instruction for choosing places for dotted dividers. Namely, for
flocks of the even type, we divide every even part into 242+ - - -+2 and every odd part into
1+ 2+ ---+ 2. For the flocks of the odd type, the rules are the same with one exception:
we divide the leftmost (odd) part of length > 3 into 3+ 2 + --- 4 2. It easy to prove (we
leave this to the reader) that the number of dotted lines will be k£ — 1. All the partitions
in our flock are obtained by using all solid dividers and some subset of the set of dotted
dividers. Since the set of k — 1 dotted dividers have 2! subset, our flock will contain 2+~!
partitions.

Two examples of this construction are shown below (n = 12, odd type, and k = 4 in
the picture on the left, and n = 11, even type, and k = 4 in the picture on the right.

odd even
3+1+5+3 1+4+3+3
.....i. .i...i.. ...i...i...i..
34+14+14+24+24+1+2 1+2+2+1+2+1+2
3153 1433
31323 [31143] [31512] (12233 [14123] [14312
[311223| (313212 [311412] [122123| [122312| (141212
3112212 1221212
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Below, we show this splitting of the set of partition into flocks for n =6 and n = 7.

5.3.4 The casesn = 6 and 7

n = 6, odd type

Bira] [1311] 1131 113 | [1r111d]
C(1,3) C(1,4) C(1,5) C(1,6) | C(1)
C(1,4,6) C(1,3,6) C(1,3,5)

n = 6, even type

k=3

6, [123] [213] [231]
. T

[122]  [1221] [2211] 212 [2112]  |2121]

C(22,2i6) C(4,6) C(3,5) C(2,4) C(3,6) C(2,6) C(2,5)
k=1 k=0
lor111]  [i2111]  [i2nn]  [ri2n] i1
C(2) C(3) C(4) C(5) C(6) C()
n = 7, odd type
k=3 .
T
[1132] [1321] 13211] [1312] |3112| ;
C(1.5,7) C(1.4,6) C(1,3,5) C(1,4,7) C(1,3,7) C(1,3,6)
C(1,3,5,7) -1 k=0
31111 [(13111] [11311] [11131] 11113 1111111
C(1,3) C(1,4) C(1,5) C(1,6) C(1,7) C(1)
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n = 7, even type

|1222| |2122| |2212| |2221|

C(3,5,7) C(2,5,7) C(2,4,7) C(2,4,6)

114 [1141]  [1411]  Jran] pa2sl [1213]  [1231]  [2113  [2131]  [2311]

n1129 (1221 [2211] p2111] [11212] (12112 12121 R1112] 1121 21211
C(5,7) C(4,6) C(3,5) C(2,4) C(4,7) C(3,7) C3,6) C(2,7) C(2,6) C(2,5)

k=1 k=0
[211111] [121111] [112111] [111211] [111121] [111112] 1111111
C(2) C(33) C(4) C(5 C(6) C(T7) C()

Notice that the partition n =141+ --- 4+ 1 belongs to both even and odd types and is
considered as two flocks. Notice also that the numbers of partitions of the odd and even
type (8 and 13 for n = 6 and 13 and 21 for n = 7) agree with the computations in the end
of Section 5.3.2.

In the diagrams above, each flock is accompanied by the indication of the container,
which is assigned to this flock; we will explain a way to determine this container in the
next section.

5.3.5 The correspondence containers «+— flocks.

For every flock, we need to assign a container C'(I) with some sparse sequence [ =
{i1,...,im}. We do this in the following way.

First of all, to flocks of the odd (even) type, we will assign a sparse sequence, which
contains 1 (which does not contain 1).

If the flock is of even type, then its closing partitions consists of 1’s and 2’s. More
precisely, there are n — 2k 1’s and k 2’s. Let i1,...,7; be the numbers of parts equal
to 2 (we assume that iy < --- < 4;). Then the container corresponding to this flock is
C(iy +1,...,ix + k). (Notice that the total number of parts is (n — 2k) + k = n — k, so
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mg +k <n.)

If the flock is of odd type, then in its closing partition the first part greater than 1 is 3,
and all the subsequent parts are 1’s and 2’s. Thus, in this partition n — 2k — 1 parts are
1’s, k — 1 parts are 2’s, and one part is 3. Let 1; be the number of the part 3, and is, .. .,
are numbers of parts equal to 2 (again we assume that m; < --- < my). The container
corresponding to this flock will be C'(1,1;+2,15+3,..., 1+ (k+1)).(Notice that the total
number of parts is (n —2k — 1)+ (k—1)+1=n—k-1,so my + (k+1) <n.)

(We should remark that the partition 1+ 1+ ---+ 1 appears as both a flock of the odd
type and a flock of the even type. As such, it is assigned to the container C'(1) and to the
container C'( ).)

It is easy to check that the choice of containers in the cases n = 6 and n = 7 shown in
the diagrams in Section 5.3 agrees with the rules described here.

5.4 Characters of the representations in a flock.

The main idea is that for partitions from the same flock, the characters of corresponding
irreducible representations look almost the same. We will explain this on the examples
considered in Section 5.3.2.

5.4.1 The case of the even type.

We begin with the example of the even type flock with the head 11 =144+ 3+ 3 and the
tail 11 =1424+24+14+2+1+4+2 (n =11,k = 4) from Section 5.3.3. Let us supplement
the dots/dividers diagram corresponding to this flock with the notations ay, o, ..., aq;
(corresponding to the dots) and Sy, B, ..., S0 (corresponding to the spaces between the
dots):

‘ar an as , 04 Qs 04_6, Q7 Qg 04_9,0610 a1

Gy B s B Gy Bo Br Py By B

The characters of representations corresponding to the partitions from this flock were
computed in Section 4.2. The formula begins with the factor ¢ = ¢*, contain the factors
e(x;«;) for first « at every odd term in the head partition (ay, ag, and a7 in our example,
overlined in the diagram and e(y;3; for all 8’s except those corresponding to the solid
dividers (marked with crosses in the diagram). Also, in the diagram we underlined the
B’s, which correspond to the dotted dividers; they may disappear in the characters of
representations, corresponding to non-head partitions in the flocks. It is convenient to
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assume that the underlined y’s are allowed to be zero, while the terms not underlined must
be different from zero. So, here is the character:

q4e($1061)8(366046)6(959049)8@252)e(y?,ﬁ?))8(9454)e(9656)3@757)e(y9ﬁ9)e(yloﬁlo)

if g = a3 = a4 = a7 = ap = 0 and ag: ag = yr: Y, Q91 Q11 = Y10: Yo, and is zero
otherwise. It is worth noticing that we underline every second term with 5.

The transition from the example to the general case is straightforward. We will only
add the formulas for the numbers of the terms with a’s and underlined and not underlined
terms with (’s.

The number of overlined o’ s (same as the number of factors with a’s in the formula)
is the number of odd terms in the partitions of the flock: it is n — 2k.

The number of crossed ’s is the number of solid dividers, which is one less that the
number of terms in the head partition; so, it is also n — 2k. Thus the number of 8’s in the
formula for the character is (n — 1) — (n — 2k) = 2k — 1.

The number of underlined S-factors is the number of dotted dividers is k—1 (see Section
5.3.3). Hence, the number of g-factors not underlined is (2k — 1) — (k — 1) = k.

5.4.2 The case of the odd type.

Again, we begin with the example of the odd type flock from Section 5.3.3. The head and
the tail of this flock are 12 =3+ 1+5+3 and 12 =3+ 1+ 1+2+ 2+ 1+ 2 (thus,
n =12,k =4). We consider the dots/dividers diagram similar to that in Section 5.4.1.

ap Qg Q3 Q4 Q5 Qg Q7 Qg Qg Qg 11 K2
[ ] : [ ] ® 1 ©® [ ] [ ] : [ ] [ ]

i B Br B Gy P

A

[ J
Ba B3 fa
>x< X
The formula for the character is obtain according to he same rules as in the even case:
4

qg*e(riay)e(rsay)e(Tsas)e(rioap)- (11)

e(y151)e(y252)e(ysBs)e(yesBs)e(yrB7)e(ysBs)e(yioBio)e(yi1 i),

ifay =05 =ag=oa;; =0and az: oy = y1: Y2, 7: a5 = Y5 Ye, Q9> Q7 = Y71 Yg, Ay2: Qg =
Y10 Y11, and is zero otherwise.

The number of overlined «’s is the same as in the even case: n — 2k (it is the number
of odd terms in the partition).

The number of crossed (’s is again the number of solid dividers, thus it it one less than
the number of terms in the partition. But now it is n — 2k, so the number of crossed (s is
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n—2k—1. Thus the number of ’s in the formula for the characters is (n—1)—(n—2k—1) =
2k .

The number of underlined [-factors is again the number of dotted dividers is k& — 1.
Hence, the number of S-factors not underlined is 2k — (k — 1) = k + 1.

5.5 The end of the construction of a model.

It remains to specify the one-dimensional representations (the characters) of the stabilizer
of the classes within the container corresponding to a flock. Again, we will give the details
of the construction for the examples of Section 5.3.3 and then discuss the general case.

5.5.1 The case of the even type; the example.

Again, we begin with the example of the flock with the head 11 = 1+ 4 4+ 3 + 3 and the
taill 11 = 14+2+2+ 14+ 2+ 1+ 2 from Section 5.3.3. According to Section 5.3.5, the
container corresponding to this section is C'(I), where I = {3,5,8,11}. In the notations of
Section 3.3.2, I~ = {2,4,6,7,9,10} and I = {1,3,5,8,11}. The classes in this container
are characterized by

4 a-invariants, as, as, as, a1 € Fy; — 0 and

4 b-invariants, by, bsas + byas, bg, by € Fy.

The characters of representations induced by 1-dimensional representations of the com-
mon stabilizer

Sta‘b(l) = {g(ah 07 asg, 07 Qs, 07 07 Qas, 07 07 a1, 517 s ;510)}

of classes in C(I) are

(@, B), — ¢°e(Aran)(Azas)(Asas) (Asas) (Arranr)e(BiB1) . . . e(Biof), (10)

ifforie I, a; =0 and B; 1041 = B;a;11 and 0 otherwise.
The characters of representations corresponding to our flock are

q4e($10¢1)e(xb‘@ﬁ)e<x9a9)e(y262)e(y363)e(y4ﬁ4)e(y656)e(y767)e<99ﬁ9)e(leBlo)a (11)

where x’s and y’s are element of F,, different from 0 for y’s not underlined. We need
to choose values for A’s and B’s in terms of a- and b-invariants to accommodate the
formulas (10) and (11). For values of By, By, By, B1g we take (in any order) the a-invariants
as, as, as, ay;. For Bs, Bg, By, we take (in any order) three of the four b-invariants, say,
bsas + byas, b, bg. The remaining b-invariant, by, we take for the value of A; (taking into
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consideration the fact that «; appears in both formulas (10) and (11)). For the remaining
A;’s and B;’s in (10) we assume zero values.

Still two discrepancies in the formulas (10) and (11) remain. First, the first factors in
(10) and (11) are different: ¢® and ¢*. Second, (11) contains terms with ag and ag, while
(10) does not. Both can be eliminated by the following move. We remove the conditions

ag = ag = 0 and replace ¢® = ¢* - ¢® by ¢* - (ZAGG]FQ Aﬁaﬁ) . (ZAQE]Fq A9a9>. Then

the character (10) (of capacity ¢%) becomes the sum of characters (11) of ¢*-dimensional
representations labelled by Ag, Ay € F,.

5.5.2 The case of the odd type; the example.

Now we consider the flock with the with the head 12 = 34+ 1 + 5 + 3 and the tail 12 =
3+14+1+2+2+1+2 (see Section 5.3.3). According to Section 5.3.5, the container
corresponding to this section is C'(I), where I = {1,3,7,9,12}. In the notations of Section
3.3.2, I~ ={2,4,6,8,10,11} and I™ = {1,3,5,7,9,12}. The classes in this container are
characterized by

5 a-invariants, ay, as, ar, ag, a2 € F,; — 0 and

5 b-invariants, bya; + baag, by, bs, brar + bsag, big € Fy.

The formulas similar to (10) and (11) are

q6e(A1a1)e(Agag)e(A5a5)e(A7a7)e(A90z9)e(Aualg)e(BlBl) . e(B11B11> (12)

and

q4e(x1a1)e(x4oz4)e(x5a5)e(x10a10)-

e(y151)e(y232)e(ysBs)e(vs 36 )e(yrBr)e(ys Bs)e(yio i) e(yi1 fi1)

The coefficients y in the non-underlined factors in (13) must be non-zero, so we used for
them the a-invariants: aq,as, a7, a9, a1o for By, Bs, Bg, Bs, B11. For Bs, By, B1g, we use
the b-invariants, say, bs, bra; + bgag, b1g, and the remaining b-invariants we assign to the
coefficients Ay, A5 in the terms with «; and as, which appear in the both formulas (12)
and (13). All the other coefficients A and B in (12) are assumed to be zero.

The last step repeats the last step in the previous case: we remove the conditions

ay = ajg = 0 and replace ¢° in (12) by ¢* - ( 3 A4a4> . ( > Aloaw) )

(13)

Ay €Fy A10€]Fq

5.5.3 (General case

Let us consider in the general case the construction of the character of the stabilizer which
was described above for examples.
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First we take the non-underlined factors e(y/3) in the formulas like (11) and (13) and
assign for their coeficients the a-invariants. But the numbers of non-underlined terms and
a-invariants agree: they both are k for the even type and k + 1 for the odd type. Thus,
this step works in the general case.

Next we use b-invariants for the underlined factors e(y/3). The number of these factors
is |I| — 1 in the even case and |I| —2 in the odd case, while the total number of b-invariants
is always [IT| — 1. But It D I, so [IT| > |I|, hence there are sufficient quantity of b-
invariants. Moreover, |IT| — |I| b-invariants in the even case and |I7| — || 4 1 b-invariants
in the odd case and remain for the next step.

Next step consists in assigning the remaining b-invariants to the coefficients to «y,
which appear both characters we consider. We need to check that the numbers of these
b-invariants and these «; are the same. The cases of the even and odd types are slightly
different. In the even type case the number of remaining b-invariants is |I* — I|. The
elements of [T — I correspond to those 1’s ion the tail partition, which do not follow 2;
the same 1’s correspond to the common «’s in the two characters. The only difference in
the odd type case is that 1 belongs to I, and hence not to I™ — I, while a;; appears in
the both characters. This leads to the additional 1 in the expression |IT — I| 4+ 1 for the
number of common «;’s in the two characters.

And the last step: the difference between |I~| and k in the two characters should be
compensated by the unused part of the number of a; in the character of the representations
in the flock |IT —I| = |IT| — k. In is easy:

(n—2k)—(It|—k)=n—-2k—|IT|+k=n—-2k—(n—|["|)+k=|"|—k.

5.5.4 The possible non-commutativity of the stabilizer does not matter.

If the stabilizer Stab(/) is not commutative, then some S-factors in the formula for the
character of the stabilizer (like (10) or (12)) may be missing. But this does not affect our
construction. The reason is that this missing 5’s appear, when there are gaps in [ of the
length 3 or more (even 4 or more, if this gap inside I, not in one of the ends). In this
case, there are at least two 1’s in a row in the tail partition of the flock, they have to be
separated by a solid divider (there are at most one 1 between any two successive dividers),
and the corresponding 3 is missing also in the character of the representation in the flock
(formula like (11) or (13)).
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