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A word from the Editors.

Dear Readers, welcome to issue 1 of volume 11 of the Arnold Mathematical Journal. 
Our journal has changed the publisher: starting with this issue, it is published by 

the Association for Mathematical Research (AMR); it is still owned by the Institute for 
Mathematical Sciences (IMS) at the Stony Brook University. The journal is published 
electronically, following the model known as Diamond Open Access, that is, it is openly 
accessible to readers, authors, and libraries without charging fees to either.

We have also switched to EditFlow, the software service optimized to streamline 
managing the submission and peer review workflow.

We intend to continue publishing at the same rate as before: four issues a year, 
about 150 pages an issue; but if need be, we shall increase the rate to avoid backlogs. 
The papers accepted for publication will appear online right away. The full archive of 
the journal is available at the journal’s web site at IMS.

We have expanded the Editorial Board, and we also have new Advisors: Artur Avila, 
Etienne Ghys, and Dennis Sullivan.

The philosophy and the scope of the journal remain the same: we publish interesting 
results in all areas of mathematics in three categories: research contributions, research 
expositions, and problem contributions. For more detail, please visit the journal’s web 
site at https://armj.math.stonybrook.edu

Happy reading!
Sergei Tabachnikov, Editor-in-Chief Pennsylvania State University
Maxim Arnold, Managing Editor University of Texas, Dallas

amathr.org
https://armj.math.stonybrook.edu
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Abstract: We present a short, hopefully pedagogical construction of the field

and ring of Witt vectors. It uses a natural binary operation on polynomials of

one variable, which we call convolution.
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Introduction

Witt vectors form a field of characteristic 0 constructed out of a field of finite characteristic

𝑝. This construction suggested by E. Witt [Wit37] in 1936 generalizes the field ℚ𝑝 of 𝑝-adic

rationals. His construction has a reputation to be complicated and counter-intuitive. We

suggest a very concise version of construction of Witt vectors. It is inspired by a paper by

D.Kaledin [Kal12] who observed a relation between Witt vectors and the tame symbol in

disguise of the so-called Japanese cocycle.
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In the wikipedia article on Witt vectors (july 2024) it is indicated that "they have a

highly non-intuitive structure". The aim of this note is to refute this claim.

A very similar construction is essentially contained in the notes by Michiel Hazewinkel

[Haz09], mainly in the section 9 and the section 14. This review contains a lot of informa-

tion for further reading on the subject.

Convolution

We are going to define a binary operation on polynomials of one variable modifying the

definition of a resultant.

Let 𝑓(𝑡) = 1 + 𝑎1𝑡 +⋯ and 𝑔(𝑡) = 1 + 𝑏1𝑡 +⋯ belong to the multiplicative semi-group

1 + 𝑡𝔽[𝑡] of polynomials with coefficients in a field 𝔽 and the constant term equal to 1.

Define a convolution 𝑓 ⋆ 𝑔 as a polynomial with the constant term 1 and having as roots

the products of one root of 𝑓 and one of 𝑔. In other words, suppose that 𝑓(𝑡) =∏
𝑖(1 − 𝜆𝑖𝑡)

and 𝑔(𝑡) =
∏

𝑗(1 − 𝜇𝑗𝑡) with 𝜆𝑖, 𝜇𝑗 belonging to the algebraic closure of the field 𝔽. Then

𝑓 ⋆ 𝑔 (𝑡) =
∏

𝑖𝑗
(1 − 𝑡𝜆𝑖𝜇𝑗) =

∏

𝑖
𝑔(𝜆𝑖𝑡) =

∏

𝑗
𝑓(𝜇𝑗𝑡).

The convolution can also be expressed in term of the resultant, namely

𝑓 ⋆ 𝑔 (𝑡) = 𝚛𝚎𝚜𝑧(𝑓(𝑧), 𝑧deg 𝑔𝑔(𝑡∕𝑧)).

To give an equivalent definition, consider the ring 𝔽[𝑥, 𝑦]∕(𝑓(𝑥)) + (𝑔(𝑦)) and denote

by �̂�−1 and �̂�−1 the multiplication in this ring by 𝑥−1 and 𝑦−1, respectively. In the standard

basis they are given by matrices with entries in 𝔽. Then

𝑓 ⋆ 𝑔 (𝑡) = det(1 − 𝑡�̂�−1�̂�−1).

In this definition it is explicit that the coefficients of 𝑓 ⋆ 𝑔 are polynomial functions of

those of 𝑓 and 𝑔.

The fourth definition works for 𝔽 = ℂ and shows the relation to the tame symbol.

Consider a curve 𝛾 around zero on the complex plane sufficiently small in order not to
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surround any root of 𝑓(𝑧). The convolution can be defined by the formula (see P.Deligne

[Del91], formula 2.7.2)

𝑓 ⋆ 𝑔 (𝑡) = {𝑓(𝑧), 𝑔(𝑡∕𝑧)}𝛾 = exp (
1
2𝜋𝑖

∫
𝛾
ln𝑓(𝑧)𝑑 ln 𝑔(𝑡∕𝑧))

valid for 𝑡 so small that all roots of 𝑔(𝑡∕𝑧) are inside the curve 𝛾.

The convolution enjoys the following properties obvious from the definitions:

1. deg(𝑓 ⋆ 𝑔) = deg𝑓 deg 𝑔,

2. 𝑓 ⋆ 1 = 1,

3. 𝑓 ⋆ (1 − 𝑡) = 𝑓,

4. (1 − 𝑎𝑡) ⋆ (1 − 𝑏𝑡) = (1 − 𝑎𝑏𝑡),

5. 𝑓 ⋆ 𝑔 = 𝑔 ⋆ 𝑓,

6. 𝑓 ⋆ (𝑔1𝑔2) = (𝑓 ⋆ 𝑔1)(𝑓 ⋆ 𝑔2).

These properties imply that the semi-group 1 + 𝑡𝔽[𝑡] is a commutative semi-ring with

respect to the multiplication as a semi-ring addition and convolution as a semi-ring

multiplication. The multiplicativity property 6 is just the expression of the distributive

law of the semi-ring.

The following property is also an easy consequence of the definition:

• The set 1 + 𝑡𝑛𝔽[𝑡] is an ideal.

This property implies that the convolution can be extended to the group of formal power

series 1 + 𝑡𝔽[[𝑡]] providing it with a ring structure. This ring is called the ring of the

universal or big Witt vectors and is denoted by 𝑊(𝔽), see [Haz09], section 9.

Witt vectors

The aim of this paragraph is to give a concise definition of the Witt ring.

Arnold Mathematical Journal, Vol.11(1), 2025 3

http://dx.doi.org/10.56994/ARMJ


Vladimir Fock

For that we need just another property of the universal Witt ring obviously following

from the definition of the convolution:

• The set 1 + 𝑡𝑛𝔽[[𝑡𝑛]] is also an ideal.

Let 𝔽 be a field of characteristic 𝑝 and let 𝑊(𝔽) be the corresponding universal Witt

ring.

Define the Witt ring 𝑊𝔽 as a quotient

𝑊𝔽 =𝑊(𝔽)∕
∏

𝑛>1|𝑛≠𝑝𝑘
(1 + 𝑡𝑛𝔽[[𝑡𝑛]]).

Here we used the property and denoted the sum of ideals multiplicatively since it

corresponds to the product of the series.

Observe that any element of the group 1 + 𝑡𝔽[[𝑡]] can be presented either as a sum

1 + 𝛼1𝑡 + 𝛼2𝑡2 +⋯ or as a product (1 − 𝑎1𝑡)(1 − 𝑎2𝑡2)(1 − 𝑎3𝑡3)⋯.

Using the latter presentation the elements of the ring 𝑊𝔽 can be uniquely represented

as formal products

𝑓(𝑡) =
∞∏

𝑖=0
(1 − 𝑎𝑖𝑡𝑝

𝑖 ).

In this presentation certain properties of the Witt vectors become obvious. In par-

ticular, it follows from the property 4 that the correspondence 𝑎 ↦→ (1 − 𝑎𝑡) gives an

embedding of multiplicative groups 𝔽× → 𝑊×
𝔽 . The images of the elements of 𝔽× are

called their Teichmüller representatives. It is also obvious that the ring multiplication by

𝑝 in the ring 𝑊𝔽 amounts to the shift of the coefficients 𝑎𝑖 composed with the Frobenius

automorphism:
∞∏

𝑖=0
(1 − 𝑎𝑖𝑡𝑝

𝑖 ) ↦→
∞∏

𝑖=1
(1 − 𝑎𝑝𝑖−1𝑡

𝑝𝑖 ).

This property allows to identify the field of fractions of the ring 𝑊𝔽 with the expres-

sions of the form
∞∏

𝑖=𝑁
(1 − 𝑎𝑖𝑡𝑝

𝑖 )

with possibly negative 𝑁.
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Recall that for a field 𝔽𝑝 of 𝑝 elements the ring 𝑊𝔽 coincides with the ring ℤ𝑝 of 𝑝-adic

integers.

Relation to the standard definition of the Witt vectors

Consider the ring of formal series ℂ[[𝑡]]+◦ with respect to addition and coefficentwise

(Hadamard) multiplication denoted by ◦ defined as

(
∞∑

𝑘=0
𝑎𝑘𝑡𝑘)◦(

∞∑

𝑘=0
𝑏𝑘𝑡𝑘) =

∞∑

𝑘=0
𝑎𝑘𝑏𝑘𝑡𝑘

Clearly this ring is just a direct sum of infinitely many copies of the ring ℂ.

The map 𝑓 ↦→ −𝑓′∕𝑓 gives an isomorphism between the rings (1+ℂ[[𝑡]])⋅⋆ andℂ[[𝑡]]+◦.

Indeed

(−𝑓′∕𝑓)◦(−𝑔′∕𝑔) = (
∞∑

𝑘=1
(
∑

𝑖
𝜆𝑘𝑖 )𝑡

𝑘−1) ◦
⎛
⎜
⎝

∞∑

𝑘=0
(
∑

𝑗
𝜇𝑘𝑗 )𝑡

𝑘−1
⎞
⎟
⎠
=

=
⎛
⎜
⎝

∑

𝑘
(
∑

𝑖𝑗
𝜆𝑘𝑖 𝜇

𝑘
𝑗 )𝑡

𝑘−1
⎞
⎟
⎠
= −(𝑓 ⋆ 𝑔)′∕(𝑓 ⋆ 𝑔),

and obviously

−𝑓′∕𝑓 − 𝑔′∕𝑔 = −(𝑓𝑔)′∕(𝑓𝑔).

In the explicit coordinates we have

∏
(1 − 𝑎𝑖𝑡𝑖) ↦→

∑

𝑖

∑

𝑘
𝑎𝑘𝑖 𝑡

𝑖𝑘−1 =
∑

𝑙

∑

𝑖|𝑙
𝑖𝑎𝑙∕𝑖𝑖 𝑡𝑙−1.

The expressions

𝑆𝑙(𝑎1, 𝑎2,…) =
∑

𝑖|𝑙
𝑖𝑎𝑖∕𝑙𝑖

are called the universal Witt polynomials (P. Cartier [Car67] and [Haz09] section 9). We

see that each of the Witt polynomials gives a homomorphism from the universal Witt

ring to the ring of complex numbers and a collection of all such polynomials gives an
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isomorphism of the universal Witt ring to the infinite sum of complex numbers. The

standard construction uses this isomorphism to define the ring structure in terms of

the coefficients 𝑎𝑖. Then one proves that the product and the sum are in fact given by

algebraic expressions with integer coefficients and thus are defined over any field.
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Abstract: For a non-constant complex rational function 𝑃, the lemniscate

of 𝑃 is defined as the set of points 𝑧 ∈ ℂ such that |𝑃(𝑧)| = 1. The lemniscate

of 𝑃 coincides with the set of real points of the algebraic curve given by the

equation 𝐿𝑃(𝑥, 𝑦) = 0, where 𝐿𝑃(𝑥, 𝑦) is the numerator of the rational function

𝑃(𝑥+ 𝑖𝑦)𝑃(𝑥− 𝑖𝑦)−1. In this paper, we study the following two questions: under

what conditions two lemniscates have a common component, and under what

conditions the algebraic curve 𝐿𝑃(𝑥, 𝑦) = 0 is irreducible. In particular, we

provide a sharp bound for the number of complex solutions of the system

|𝑃1(𝑧)| = |𝑃2(𝑧)| = 1, where 𝑃1 and 𝑃2 are rational functions.
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S.Orevkov, F. Pakovich

1 Introduction

Let 𝑃 be a non-constant complex rational function on the Riemann sphere ℂ̂. The lemnis-

cate of 𝑃 is defined as

ℒ𝑃 = {𝑧 ∈ ℂ ∶ |𝑃(𝑧)| = 1}. (1)

The paper is devoted to two more or less independent problems concerning the lemnis-

cates. The first problem is to determine the maximal number of intersection points of

ℒ𝑃1 and ℒ𝑃2 , i.e., the number of solutions of the system of equations

|𝑃1(𝑧)| = |𝑃2(𝑧)| = 1, (2)

where 𝑃1 and 𝑃2 are rational functions of given degrees 𝑛1 and 𝑛2. The second problem is

to find out when a lemniscate (considered as a real algebraic curve in ℝ2) is irreducible.

Our result about the intersection of lemnisicates is the following statement.

Theorem 1.1. Let 𝑃1 and 𝑃2 be non-constant complex rational functions of degrees 𝑛1 and

𝑛2. The following three conditions are equivalent:

(i) ℒ𝑃1 and ℒ𝑃2 have more than 2𝑛1𝑛2 common points.

(ii) ℒ𝑃1 ∩ℒ𝑃2 is infinite.

(iii) 𝑃1 = 𝐵1◦𝑊 and 𝑃2 = 𝐵2◦𝑊 for some rational functions 𝑊, 𝐵1, 𝐵2 such that each of

𝐵1, 𝐵2 maps the unit circle 𝕋 to itself.

Furthermore, for any natural 𝑛1 and 𝑛2 there exist rational functions of degrees 𝑛1 and 𝑛2
such that ℒ𝑃1 and ℒ𝑃2 have exactly 2𝑛1𝑛2 intersection points.

We remark that for a rational function 𝐵, the condition 𝐵(𝕋) ⊂ 𝕋 can be written in the

form

𝐵(𝑧)𝐵(1∕𝑧) = 1 for all 𝑧 ∈ ℂ̂. (3)

Such functions are known in the complex analysis under the name of quotients of finite

Blaschke products.
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In a recent paper [13], the equivalence of conditions (i), (ii), (iii) was proven with a

weaker bound (𝑛1 + 𝑛2)2 instead of the bound 2𝑛1𝑛2. Notice that the result of [13] implies

the main result of the paper [1] by Ailon and Rudnick, which is equivalent to the following

statement: if 𝑃1 and 𝑃2 are complex polynomials, then

#
∞⋃

𝑘=1
{𝑧 ∈ ℂ ∶ 𝑃1(𝑧)𝑘 = 𝑃2(𝑧)𝑘 = 1} ≤ 𝐶(𝑃1, 𝑃2), (4)

for some constant 𝐶(𝑃1, 𝑃2) that depends only on 𝑃1 and 𝑃2, unless for some non-zero

integers 𝑚1 and 𝑚2 the equality

𝑃𝑚1
1 (𝑧)𝑃𝑚2

2 (𝑧) = 1 (5)

holds (see Section 2.4 below). In addition, the result of [13] answers the question of

Corvaja, Masser, and Zannier ([5]) about the intersection of an irreducible curve 𝒞 in

ℂ∗ × ℂ∗ with 𝕋 × 𝕋, in case 𝒞 has genus zero and is parametrized by rational functions

𝑃1, 𝑃2 (see [13] for more details). These applications of [13] stem from the fact that the

numbers 𝐶(𝑃1, 𝑃2) and #(𝒞 ∩ 𝕋 × 𝕋) obviously are bounded from above by the number

of solutions of (2). Thus, a sharp bound for the last number is of great interest, and our

Theorem 1.1 provides it.

In brief, our proof of Theorem 1.1 given in Section 2 goes as follows. If 𝑃 is a complex

rational function of degree 𝑛, then under the standard identification of ℂ with ℝ2 the

lemniscate ℒ𝑃 coincides with the set of real points of the affine algebraic curve of degree

2𝑛 given by the equation 𝐿𝑃(𝑥, 𝑦) = 0, where 𝐿𝑃(𝑥, 𝑦) is the numerator of the rational

function

𝑃(𝑥 + 𝑖𝑦)𝑃(𝑥 − 𝑖𝑦) − 1. (6)

After the linear change of variables 𝑧 = 𝑥+ 𝑖𝑦, 𝑤 = 𝑥− 𝑖𝑦 (in ℂ2) the Newton polygon of 𝐿𝑃
becomes the square 𝑛×𝑛. Thus, the Bézout Theorem for bihomogeneous polynomials ([14,

§4.2.1]), which is also a simplest case of the Bernstein-Kushnirenko Theorem [2], implies

that if (i) holds, then 𝐿𝑃1 and 𝐿𝑃2 have a common factor, i.e., the system 𝐿𝑃1 = 𝐿𝑃2 = 0

has infinitely many complex solutions. This is not yet (ii), but we prove a kind of “real”

version of the Bézout theorem (Proposition 1), which implies in particular that if (i) holds,

Arnold Mathematical Journal, Vol.11(1), 2025 9
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then the system 𝐿𝑃1 = 𝐿𝑃2 = 0 has infinitely many real solutions (Corollary 2(c)). This

gives us the implication (i) ⇒ (ii). In turn, the implication (ii) ⇒ (iii) is deduced from a

“rational” version of the Cartwrite Theorem [3] (Corollary 1). Finally, since (iii) implies

that ℒ𝑊 ⊂ ℒ𝑃1 ∩ℒ𝑃2 , the implication (iii) ⇒ (i) is obvious.

Notice that the equivalence of conditions (i), (ii), (iii) can be proven also by modifying

the approach of the paper [13] (see Section 2.3).

Another problem considered in this paper (in Section 3) is the following. Given a

rational function 𝑃, under what conditions the curve 𝐿𝑃(𝑥, 𝑦) = 0 is irreducible over

ℂ? It is not hard to see that the following “composition condition” is sufficient for the

reducibility: there exists a quotient of finite Blaschke products 𝐵 of degree at least 2 and

a rational function 𝑊 such that 𝑃 = 𝐵◦𝑊. Notice that if 𝑃 is a polynomial, the composition

condition reduces to the condition that 𝑃 = 𝑊𝑘 for some polynomial 𝑊 and 𝑘 ≥ 2. Its

necessity for the reducibility of 𝐿𝑃(𝑥, 𝑦) in the polynomial case was established by the first

author in [12] (notice that this result has found applications to complex dynamics, see

[11]). In Section 3.2, we show however that for rational 𝑃 the reducibility of 𝐿𝑃(𝑥, 𝑦) = 0

does not imply in general the composition condition.

Our approach to the problem of irreducibility of algebraic curves 𝐿𝑃(𝑥, 𝑦) = 0 is

based on the observation that a change of variables allows us to consider this problem

in the context of the more general problem of irreducibility of “separated variables"

curves 𝑃(𝑥) − 𝑄(𝑦) = 0, where 𝑃(𝑧) and 𝑄(𝑧) are rational functions. In particular, we

deduce our examples of reducible 𝐿𝑃(𝑥, 𝑦) for 𝑃 not satisfying the composition condition

from examples of reducible separated variables curves found in [4]. On the other hand,

modifying the arguments from [12], we provide a handy sufficient condition for the

irreducibility of separated variables curves in case one of rational functions 𝑃(𝑧) and 𝑄(𝑧)

is a polynomial (Theorem 3.4).
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2 Intersection of lemniscates

2.1 The Cartwright theorem

For a simple closed curve Γ in ℂ, we denote by ℳΓ the set of all non-constant func-

tions meromorphic on ℂ having modulus one on Γ. The following result was proved by

Cartwright in [3].

Theorem 2.1. Let Γ be a simple closed curve in ℂ such that ℳΓ is nonempty. Then there

exists a function 𝜑 ∈ℳΓ such that each function 𝑓 inℳΓ may be written in the form 𝑓 = 𝐵◦𝜑,

where 𝐵 is a quotient of finite Blaschke products.

A detailed discussion and generalizations of the Cartwright theorem can be found

in the papers [15], [16]. Below we need the following specialization of the Cartwright

theorem, where the notation ℛΓ stands for the set of all non-constant complex rational

functions on ℂ having modulus one on Γ.

Corollary 1. Let Γ be a simple closed curve in ℂ such that ℛΓ is nonempty. Then there

exists a rational function 𝑊 ∈ ℛΓ such that each function 𝑃 in ℛΓ may be written in the

form 𝑃 = 𝐵◦𝑊, where 𝐵 is a quotient of finite Blaschke products.

Proof. Applying Theorem 2.1, we conclude that there exists a meromorphic function

𝑊 ∈ℳΓ such that if 𝑃 ∈ ℛΓ, then 𝑃 = 𝐵◦𝑊 for some quotient of finite Blaschke products

𝐵. However, since the great Picard theorem implies that any non-rational function 𝑊

meromorphic on ℂ takes all but at most two values in ℂℙ1 infinitely often, this equality

implies that 𝑊 is rational.

2.2 A real version of the Bézout Theorem.

Let us recall that the classical Bézout theorem about intersections of curves inℂℙ2 implies

that the number of intersection points of two affine algebraic curves 𝐹(𝑥, 𝑦) = 0 and

𝐺(𝑥, 𝑦) = 0 of degrees 𝑚 and 𝑛 in ℂ×ℂ does not exceed 𝑚𝑛, unless the polynomials 𝐹(𝑥, 𝑦)
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and 𝐺(𝑥, 𝑦) have a non-constant common factor in ℂ[𝑥, 𝑦]. In case the bidegrees (𝑚1, 𝑚2)

and (𝑛1, 𝑛2) of 𝐹(𝑥, 𝑦) and 𝐺(𝑥, 𝑦) are relatively small with respect to 𝑚 and 𝑛, a better

bound can be obtained from the bihomogeneous Bézout theorem, which implies that the

number of intersection points of 𝐹(𝑥, 𝑦) = 0 and 𝐺(𝑥, 𝑦) = 0 does not exceed 𝑛1𝑚2 + 𝑛2𝑚1,

unless𝐹(𝑥, 𝑦) and𝐺(𝑥, 𝑦)have a non-constant common factor (see [14, §4.2.1]). In the proof

of Theorem 1.1, we will use a real version of this last bound provided by Corollary 2(c)

below.

Let 𝑋 be a compact non-singular complex algebraic (or analytic) variety. A real

structure on 𝑋 is an anti-holomorphic involution 𝜎 ∶ 𝑋 → 𝑋. We denote the variety 𝑋

endowed with the real structure 𝜎 by 𝑋𝜎. A point 𝑝 of 𝑋𝜎 is called real if 𝜎(𝑝) = 𝑝. The

set of real points of 𝑋𝜎 (the real locus of 𝑋𝜎) is denoted by ℝ𝑋𝜎. A basic example is a

projective variety in ℂℙ𝑛 defined by polynomial equations with real coefficients endowed

with the involution of complex conjugation. In this case ℝ𝑋𝜎 is the subset of ℝℙ𝑛 defined

by the same equations.

If 𝑋 = ℂℙ1 × ℂℙ1, then there are two non-isomorphic real structures on 𝑋:

𝜎ℎ ∶ (𝑥, 𝑦) ↦→ (�̄�, �̄�), 𝜎𝑒 ∶ (𝑥, 𝑦) ↦→ (�̄�, �̄�).

The real loci ℝ𝑋𝜎ℎ and ℝ𝑋𝜎𝑒 are, respectively, ℝℙ1 ×ℝℙ1 (a torus) and the image of ℂℙ1 in

𝑋 under the embedding 𝑧 ↦→ (𝑧, �̄�) (a sphere). Note that 𝑋𝜎ℎ and 𝑋𝜎𝑒 are isomorphic to

the complexifications of, respectively, hyperboloid and ellipsoid in ℂℙ3 endowed with

the usual complex conjugation:

𝑋𝜎ℎ ≅ {𝑧 ∣ 𝑧20 + 𝑧21 = 𝑧22 + 𝑧23}, 𝑋𝜎𝑒 ≅ {𝑧 ∣ 𝑧20 = 𝑧21 + 𝑧22 + 𝑧23};

here 𝑧 stands for (𝑧0 ∶ 𝑧1 ∶ 𝑧2 ∶ 𝑧3). Indeed, it is straightforward to check that the following

mapping 𝑋 → ℂℙ3 defines the required isomorphism:

(𝑥, 𝑦) ↦→ (𝑥0𝑦0 + 𝑥1𝑦1 ∶ 𝛼(𝑥0𝑦1 − 𝑥1𝑦0) ∶ 𝑥0𝑦0 − 𝑥1𝑦1 ∶ 𝑥0𝑦1 + 𝑥1𝑦0),

where 𝛼 = 1 for 𝜎ℎ and 𝛼 = 𝑖 for 𝜎𝑒; here 𝑥 and 𝑦 stand for (𝑥0 ∶ 𝑥1) and (𝑦0 ∶ 𝑦1).
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Let us recall that if 𝐶 is an irreducible curve on a smooth compact algebraic surface

𝑋, then by the genus formula (see e.g. [14, §4.4.1]) the number of singular points of 𝐶 is

bounded from above by its arithmetic genus 𝑝𝑎(𝐶), which in this case can be computed

by the formula

2𝑝𝑎(𝐶) = 2 + 𝐶 ⋅ (𝐶 + 𝐾𝑋),

where 𝐾𝑋 is the canonical class of 𝑋.

Proposition 1. Let 𝑋 be a smooth compact complex algebraic surface endowed with a real

structure 𝜎. Let 𝐴 and 𝐵 be 𝜎-invariant algebraic curves on 𝑋. Suppose that ℝ𝐴 ∩ ℝ𝐵 is

finite and 𝐶2 ≥ 𝑝𝑎(𝐶) for each irreducible component 𝐶 of 𝐴 ∪ 𝐵. Then

#(ℝ𝐴 ∩ℝ𝐵) ≤ 𝐴 ⋅ 𝐵. (7)

Proof. We say that a 𝜎-invariant curve 𝐶 on 𝑋 is 𝜎-irreducible if 𝐶 = 𝐷 ∪ 𝜎(𝐷) where 𝐷 is

irreducible.

Let us first consider the case when 𝐴 and 𝐵 are 𝜎-irreducible. If 𝐴 ≠ 𝐵, then 𝐴 and 𝐵

have no common components, and hence

#(ℝ𝐴 ∩ℝ𝐵) ≤ #(𝐴 ∩ 𝐵) ≤ 𝐴 ⋅ 𝐵.

Suppose now that 𝐴 = 𝐵. Let us show that ℝ𝐴 ⊂ Sing(𝐴), where Sing(𝐴) is the set of

singular points of 𝐴. Indeed, for any 𝑝 ∈ ℝ𝐴 one can choose local coordinates (𝑧, 𝑤) in a

neighborhood of 𝑝 such that ℝ𝑋 = {Im 𝑧 = Im𝑤 = 0} and 𝐴 = {𝑓(𝑧, 𝑤) = 0}, where 𝑓 is a

polynomial with real coefficients. Thus, if 𝐴 were non-singular at 𝑝, then ℝ𝐴 would be

infinite by the Implicit Function Theorem, which contradicts our hypothesis that ℝ𝐴∩ℝ𝐵

is finite. Thus, ℝ𝐴 ⊂ Sing(𝐴).

It follows that if 𝐴 = 𝐵 is irreducible (in the usual sense), we have

#(ℝ𝐴 ∩ℝ𝐵) = #ℝ𝐴 ≤ #Sing(𝐴) ≤ 𝑝𝑎(𝐴) ≤ 𝐴2 = 𝐴 ⋅ 𝐵.

On the other hand, if 𝐴 = 𝐵 is reducible, then 𝐴 = 𝐶 ∪ 𝜎(𝐶) where 𝐶 is irreducible and

𝜎(𝐶) ≠ 𝐶. Therefore, we have ℝ𝐴 ⊂ 𝐶 ∩ 𝜎(𝐶), and hence

#(ℝ𝐴 ∩ℝ𝐵) = #ℝ𝐴 ≤ 𝐶 ⋅ 𝜎(𝐶) ≤ 𝐶2 + 𝜎(𝐶)2 + 2𝐶 ⋅ 𝜎(𝐶) = 𝐴2 = 𝐴 ⋅ 𝐵.
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This completes the proof in the case where 𝐴 and 𝐵 are 𝜎-irreducible.

Now we proceed to the general case. Let 𝐴 = 𝐴1 ∪⋯ ∪ 𝐴𝑘 and 𝐵 = 𝐵1 ∪⋯ ∪ 𝐵𝑙 where

each 𝐴𝑖 and each 𝐵𝑗 is 𝜎-invariant and 𝜎-irreducible. Then

#(ℝ𝐴 ∩ℝ𝐵) ≤
∑

𝑖,𝑗
#(ℝ𝐴𝑖 ∩ℝ𝐵𝑗) ≤

∑

𝑖,𝑗
𝐴𝑖 ⋅ 𝐵𝑗 = 𝐴 ⋅ 𝐵. 2

Corollary 2. (a). Let 𝐹(𝑥1, 𝑥2) and 𝐺(𝑥1, 𝑥2) be polynomials with real coefficients of degrees

𝑚 and 𝑛. Then the number of real solutions of the system 𝐹 = 𝐺 = 0 is either infinite or

bounded above by 𝑚𝑛.

(b). Let 𝐹(𝑥1, 𝑥2) and𝐺(𝑥1, 𝑥2) be polynomials with real coefficients such that deg 𝑥𝑘𝐹 = 𝑚𝑘

and deg 𝑥𝑘𝐺 = 𝑛𝑘, 𝑘 = 1, 2. Then the number of real solutions of the system 𝐹 = 𝐺 = 0 is

either infinite or bounded above by 𝑚1𝑛2 +𝑚2𝑛1.

(c). Let 𝐹(𝑧, 𝑤) and 𝐺(𝑧, 𝑤) be polynomials with complex coefficients such that 𝐹(𝑧, 𝑤) =

𝐹(𝑤, 𝑧) and 𝐺(𝑧, 𝑤) = 𝐺(𝑤, 𝑧). Let deg 𝑧𝐹 = 𝑚 and deg 𝑧𝐺 = 𝑛. Then the number of solutions

of the system 𝐹 = 𝐺 = 0 belonging to the set {(𝑧, 𝑤) ∣ 𝑤 = �̄�} is either infinite or bounded

above by 2𝑚𝑛.

Proof. (a). We apply Proposition 1 to the curves in ℂℙ2 (with the standard real structure)

defined by the homogeneous equations

𝑥𝑚0 𝐹(𝑥1∕𝑥0, 𝑥2∕𝑥0) = 0, 𝑥𝑛0𝐺(𝑥1∕𝑥0, 𝑥2∕𝑥0) = 0,

and observe that, for a curve 𝐶 of degree 𝑑 in ℂℙ2, we have (see [14, §4.2.3])

𝑝𝑎(𝐶) = (𝑑 − 1)(𝑑 − 2)∕2 ≤ 𝑑2 = 𝐶2.

(b). We apply Proposition 1 to 𝑋 = ℂℙ1 × ℂℙ1 endowed with the real structure 𝜎ℎ (see

above) and to the curves defined by the bihomogeneous equations

𝑢𝑚1
1 𝑢𝑚2

2 𝐹(𝑥1∕𝑢1, 𝑥2∕𝑢2) = 0, 𝑢𝑛11 𝑢
𝑛2
2 𝐺(𝑥1∕𝑢1, 𝑥2∕𝑢2) = 0.

In this case, for a curve 𝐶 of bidegree (𝑑1, 𝑑2) in 𝑋, we have (see [14, §4.2.3])

𝑝𝑎(𝐶) = (𝑑1 − 1)(𝑑2 − 1) ≤ 2𝑑1𝑑2 = 𝐶2.
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(c). The same proof as in (b), but with 𝜎𝑒 instead of 𝜎ℎ. (Note that our hypothesis about 𝐹

and 𝐺 implies that their bidegrees are (𝑚,𝑚) and (𝑛, 𝑛) respectively.)

Notice that higher-dimensional analogs of Corollary 2 do not hold. Indeed, let 𝐹1 =

𝑃(𝑥) + 𝑃(𝑦), 𝐹2 = 𝐹3 = 𝑧, where 𝑃(𝑥) =∏𝑛
𝑘=1(𝑥 − 𝑘)

2, 𝑛 ≥ 3 (see [8, Example 13.6]). Then the

number of real solutions of the system of equations 𝐹1 = 𝐹2 = 𝐹3 = 0 is finite but greater

than ∏ deg𝐹𝑖.

2.3 Proof of Theorem 1.1

The implication (i) ⇒ (ii) immediately follows from Corollary 2(c), because the embedding

ℂ→ ℂ2, 𝑧 ↦→ (𝑧, �̄�) identifies ℒ𝑃𝑘 with

{(𝑧, 𝑤) ∶ 𝑃𝑘(𝑧)𝑃𝑘(𝑤) = 1} ∩ {(𝑧, 𝑤) ∶ 𝑤 = �̄�}, 𝑘 = 1, 2.

The implication (ii) ⇒ (iii) follows from Corollary 1. Indeed, suppose that the intersec-

tion ℒ𝑃1 ∩ℒ𝑃2 is infinite. Then the complexifications of ℒ𝑃1 and ℒ𝑃2 have a common real

component 𝐴 whose real locus ℝ𝐴 is also infinite. By composing 𝑃1 and 𝑃2 with a Möbius

transformation, we may assume that |𝑃𝑗(∞)| ≠ 1, 𝑗 = 1, 2, so that ℝ𝐴 is compact. Recall

that the real locus of a real algebraic curve in neighborhood of every its non-isolated

point is homeomorphic to a “star” with an even number of branches (see e.g. [9], p. 104).

Thus, the set of non-isolated points of ℝ𝐴 is homeomorphic to a graph in ℝ2, all of whose

vertices have even valency. Such a graph necessarily have a cycle 𝐷, and, by construction,

the rational functions 𝑃1 and 𝑃2 have modulus one on 𝐷. Applying now Corollary 1 to 𝐷,

we obtain (iii).

To prove (iii) ⇒ (i), it is enough to observe that if 𝐵 is a quotient of finite Blaschke

products, then 𝐵−1(𝕋) contains 𝕋. Thus, (iii) implies that both ℒ𝑃1 and ℒ𝑃2 contain the

infinite set ℒ𝑊 as a subset.

To prove the last part of the theorem, let us fix a Möbius transformation 𝜈 that maps

the real line to the unit circle, and observe that the lemniscate of 𝑃1 = 𝜈◦𝑧𝑛1 is a union

of 𝑛1 lines on ℂ passing through the origin. Under the identification of ℂ̂ with 𝑆2 via
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the stereographic projection, ℒ𝑃1 becomes a union of 𝑛1 big circles passing through

two antipodal points 𝑎1, 𝑏1. Let 𝛿 be a Möbius transformation of ℂ̂ corresponding to an

isometry of 𝑆2, and 𝑃2 = 𝜈◦𝑧𝑛2◦𝛿. Then ℒ𝑃2 is a union of 𝑛2 big circles passing through two

antipodal points 𝑎2, 𝑏2. Any two distinct big circles intersect at two points. Hence, if 𝛿 is

chosen generically (so that {𝑎1, 𝑏1} ∩ℒ𝑃2 = {𝑎2, 𝑏2} ∩ℒ𝑃1 = ∅), then #(ℒ𝑃1 ∩ℒ𝑃2) = 2𝑛1𝑛2.

Note that Theorem 1.1 can be proved somewhat shorter using the approach of the

paper [13], where instead of the intersection ℒ𝑃1 ∩ℒ𝑃2 an algebraic curve 𝒞 parametrized

by 𝑃1 and 𝑃2 is considered. Under this approach, the proof of Theorem 1.1 reduces to

proving that if an algebraic curve 𝒞 parametrized by rational functions 𝑃1 and 𝑃2 of

degrees 𝑛1 and 𝑛2 has more than 2𝑛1𝑛2 points whose coordinates have modulus one, then

it can be parametrized by some quotients of finite Blaschke products. On the other hand,

considering instead of the functions 𝑃1, 𝑃2 the functions

𝑃1 = 𝑇◦𝑃1◦𝑇−1, 𝑃2 = 𝑇◦𝑃2◦𝑇−1,

where

𝑇(𝑧) = 𝑖1 + 𝑧
1 − 𝑧 ,

one can easily see that the last statement is equivalent to the statement that if an algebraic

curve 𝒞 parametrized by rational functions 𝑃1 and 𝑃2 of degrees 𝑛1 and 𝑛2 has more than

2𝑛1𝑛2 real points, then it can be parametrized by some rational functions with real

coefficients. Finally, the last statement follows from the bihomogeneous Bézout Theorem

since if 𝒞 is not defined over ℝ, then the set

𝒞 ∩ℝ2 = 𝒞 ∩ 𝒞

is finite and contains at most 𝒞 ⋅ 𝒞 = 2𝑛1𝑛2 points (in [13] the usual version of the Bézout

Theorem was used).

Our proof of Theorem 1.1, while longer, considers the lemniscates directly and relates

the initial problem with a real version of the Bézout Theorem, which might have an

independent interest.
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2.4 Intersection of polynomial lemniscates

The polynomial version of Theorem 1.1 is the following statement.

Theorem 2.2. Let 𝑃1 and 𝑃2 be non-constant complex polynomials of degrees 𝑛1 and 𝑛2.

The following three conditions are equivalent:

(i) ℒ𝑃1 and ℒ𝑃2 have more than 2𝑛1𝑛2 common points.

(ii) ℒ𝑃1 ∩ℒ𝑃2 is infinite.

(iii)* 𝑃1 = 𝑃𝑛1 , 𝑃2 = 𝑐𝑃𝑛2 for some polynomial 𝑃, natural 𝑛1, 𝑛2, and 𝑐 ∈ ℂ with |𝑐| = 1.

Proof. It is clear that Condition (iii)* is a particular case of Condition (iii) for 𝐵1 = 𝑧𝑛1 ,

𝐵2 = 𝑐𝑧𝑛2 , and 𝑊 = 𝑃. Thus, in view of Theorem 1.1, it is enough to show that if 𝑃1 and 𝑃2
are polynomials, then (iii) reduces to (iii)*.

To prove the last statement, let us observe that if 𝑃1 and 𝑃2 are polynomials, then each

of the functions 𝐵1 and 𝐵2 has a unique pole, and this pole is common for 𝐵1 and 𝐵2. By

condition (3), each pole of 𝐵𝑘, 𝑘 = 1, 2, is symmetric with respect to 𝕋 to a zero of the same

multiplicity and vice versa. Therefore, there exists 𝑎 ∈ ℂ̂ ⧵ 𝕋 such that

𝐵1 = 𝑐1
( 𝑧 − 𝑎
1 − 𝑎𝑧

)𝑛1
, 𝐵2 = 𝑐2

( 𝑧 − 𝑎
1 − 𝑎𝑧

)𝑛2

for some 𝑛1, 𝑛2 ≥ 1 and 𝑐1, 𝑐2 ∈ ℂ with |𝑐1| = |𝑐2| = 1, implying that

𝑃1 = 𝑐1𝑃𝑛1 , 𝑃2 = 𝑐2𝑃𝑛2 , (8)

where

𝑃 = 𝑧 − 𝑎
1 − 𝑎𝑧

◦𝑊.

Finally, it is easy to see that 𝑃 is a polynomial and (iii)* holds for 𝑃 = 𝑐
1
𝑛1
1 𝑃 and 𝑐 = 𝑐2𝑐

−𝑛2∕𝑛1
1 .

Notice that in the paper [13] it is erroneously claimed that in the polynomial case

Condition (iii) of Theorem 1.1 simply reduces to the condition that 𝑃1 = 𝑃𝑚1 , 𝑃2 = 𝑃𝑚2 for
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some polynomial 𝑃. This inaccuracy however does not affect the main application of

results of [13] in the polynomial case: the result of Ailon and Rudnick mentioned in the

introduction. Indeed, if 𝑐 in (iii)* is not a root of unity, then the system

𝑃1(𝑧)𝑘 = 1, 𝑃2(𝑧)𝑘 = 1 (9)

has no solutions for any 𝑘 ≥ 1, since (iii)* and (9) imply that

𝑃𝑛1𝑛2𝑘(𝑧) = 𝑐𝑛1𝑘𝑃𝑛1𝑛2𝑘(𝑧) = 1.

On the other hand, if 𝑐𝑙 = 1, then (5) holds for 𝑚1 = 𝑛2𝑙 and 𝑚2 = −𝑛1𝑙.

2.5 On sharpness of the bound 2𝑛1𝑛2 in the polynomial case

The last statement of Theorem 1.1 states that the bound 2𝑛1𝑛2 is sharp if we speak of all

rational functions. However, it does not seem so when we restrict ourselves to polynomials

only. The maximal number of intersection points of two polynomial lemniscates that we

succeeded to realize, is given in the following statement.

Proposition 2. Let 1 ≤ 𝑛1 ≤ 𝑛2 and 𝑑 = gcd(𝑛1, 𝑛2). Then there exist polynomials 𝑃1 and 𝑃2
such that deg𝑃𝑘 = 𝑛𝑘, 𝑘 = 1, 2, and

#(ℒ𝑃1 ∩ℒ𝑃2) = 𝑀(𝑛1, 𝑛2) ∶= 𝑛1𝑛2 + 𝑛2 + 𝑑𝑒, 𝑒 =
⎧

⎨
⎩

0, if 𝑛1∕𝑑 is odd,

1, if 𝑛1∕𝑑 is even.

Proof. Let 𝑃𝑘(𝑧) = (𝑧∕𝑟𝑘)𝑛𝑘 −1, 𝑘 = 1, 2, where 𝑟𝑘 > 0. The lemniscate ℒ𝑃𝑘 is “flower-shaped”,

i.e. it is a union of 𝑛𝑘 loops (“petals”) outcoming from 0. It is clear that ℒ𝑃𝑘 tends to a

union of 𝑛𝑘 lines (we denote it by 𝐿𝑘) when 𝑟𝑘 →∞. Let us fix 𝑟1. It is not difficult to show

that for a suitably chosen rotation 𝑅 we have

#
(
𝐿2 ∩ 𝑅(ℒ𝑃1) ⧵ {0}) = 𝑛2 + 𝑑𝑒.

A further small shift of 𝑅(ℒ𝑃1) produces 𝑛1𝑛2 additional crossings near 0. Finally, we

approximate 𝐿2 by ℒ𝑃2 by choosing 𝑟2 ≫ 𝑟1.

Note that the number 𝑀(𝑛1, 𝑛2) in Proposition 2 coincides with the upper bound 2𝑛1𝑛2
given by Theorem 1.1 if and only if 𝑛1 = 1.
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3 Irreducibility of lemniscates

3.1 Irreducibility of separated variables curves and lemniscates

Let us recall that a separated variable curve is an algebraic curve in ℂ2 given by the equa-

tion 𝐸𝑃,𝑄(𝑥, 𝑦) = 0, where 𝐸𝑃,𝑄(𝑥, 𝑦) is the numerator of 𝑃(𝑥) − 𝑄(𝑦) for some non-constant

complex rational functions 𝑃(𝑧) and 𝑄(𝑧). The irreducibility problem for separated vari-

able curves is quite old and still widely open (see [7] for an introduction to the subject).

One of the most complete results in this direction is a full classification of reducible curves

𝐸𝑃,𝑄(𝑥, 𝑦) = 0 in the case when 𝑃 and 𝑄 are indecomposable polynomials. All possible

ramifications of such 𝑃 and 𝑄 were described by Fried in [6], and polynomials themselves

were found by Cassou-Noguès and Couveignes in [4]. For further progress, we refer the

reader to the recent paper [10] and the bibliography therein. Here and below, by the

irreducibility we always mean the irreducibility over ℂ.

Let us recall that 𝐿𝑃(𝑥, 𝑦) is the numerator of the rational function (6), and set

�̂�𝑃(𝑥, 𝑦) = 𝐸𝑃, 1∕𝑃(𝑥, 𝑦).

The irreducibility problem for curves 𝐿𝑃(𝑥, 𝑦) = 0 defining lemniscates is a particular

case of the irreducibility problem for separated variables curves due to the following

statement, which is immediate from the identity 𝐿𝑃(𝑥, 𝑦) = �̂�𝑃(𝑥 + 𝑖𝑦, 𝑥 − 𝑖𝑦).

Lemma 3.1. Let 𝑃 be a non-constant complex rational function. Then the curve 𝐿𝑃(𝑥, 𝑦) = 0

is irreducible if and only if the curve �̂�𝑃(𝑥, 𝑦) = 0 is irreducible.

The following theorem was proved in the paper [12].

Theorem 3.2. Let𝑃 and𝑄 be non-constant complex polynomials. Then the curve𝐸𝑃, 1∕𝑄(𝑧, 𝑤) = 0

is reducible if and only if

𝑃(𝑧) = 𝑃1(𝑧)𝑑 and 𝑄(𝑤) = 𝑄1(𝑤)𝑑

for some 𝑑 > 1 and polynomials 𝑃1(𝑧) and 𝑄1(𝑤).
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It is easy to see that combined with Lemma 3.1, Theorem 3.2 implies the following

result also proved in [12].

Theorem 3.3. Let 𝑃 be a non-constant complex polynomial. Then the polynomial 𝐿𝑃(𝑥, 𝑦) is

reducible if and only if

𝑃(𝑧) = 𝑃1(𝑧)𝑑

for some 𝑑 > 1 and polynomial 𝑃1(𝑧).

Notice that since |𝑃1(𝑧)𝑑| = 1⇔ |𝑃1(𝑧)| = 1, this theorem implies that any polynomial

lemniscate is the zero set of an irreducible polynomial in 𝑥 and 𝑦.

Definition 1. A complex rational function 𝑃(𝑧) satisfies the Composition Condition if there

exist a quotient of finite Blaschke products 𝐵 of degree at least two and a non-constant

rational function 𝑊 such that 𝑃 = 𝐵◦𝑊.

Theorem 3.3 shows that the Composition Condition is necessary and sufficient for

the reducibility of 𝐿𝑃(𝑥, 𝑦) in the polynomial case. Moreover, it is easy to see that the

Composition Condition is sufficient for the reducibility of 𝐿𝑃(𝑥, 𝑦) for any rational function

𝑃. Indeed, it follows from (3) that for any quotient of finite Blaschke products 𝐵 and a

rational function 𝑊 the equality 𝑊(𝑥) = 1∕𝑊(𝑦) for some 𝑥, 𝑦 ∈ ℂ implies the equality

𝑃(𝑥) = 𝐵(𝑊(𝑥)) = 1
𝐵(1∕𝑊(𝑥))

= 1
𝐵(𝑊(𝑦))

= 1
𝑃(𝑦)

.

Therefore, the curve �̂�𝑊(𝑥, 𝑦) = 0 is a component of the curve �̂�𝑃(𝑥, 𝑦) = 0, implying that

the latter curve is reducible since the considered curves have different degrees (in view

of the assumption deg𝐵 > 1). Thus, the curve 𝐿𝑃(𝑥, 𝑦) = 0 is reducible by Lemma 3.1.

In the next section, we show that Composition Condition is not necessary for the

reducibility of 𝐿𝑃, while in this section, modifying the idea of [12], we establish a sufficient

condition for the irreducibility of an algebraic curve 𝐸𝑃,𝑄(𝑥, 𝑦) = 0 in the case when one

of the rational functions 𝑃, 𝑄 is a polynomial.

Namely, we prove the following result.
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Theorem 3.4. Let 𝑃 be a polynomial of degree 𝑛 ≥ 1, and 𝑄 a rational function. Assume

that multiplicities 𝑞1, 𝑞2,… , 𝑞𝑙 of poles of 𝑄 satisfy the condition gcd(𝑞1, 𝑞2,… , 𝑞𝑙, 𝑛) = 1. Then

the curve 𝐸𝑃,𝑄(𝑥, 𝑦) = 0 is irreducible.

Notice that like Theorem 3.2, Theorem 3.4 easily implies Theorem 3.3.

First proof of Theorem 3.4 (cf. the proof of [12, Theorem 1]). Let 𝐶 be the closure of the

curve 𝐸𝑃,𝑄 = 0 in ℂℙ1 × ℂℙ1, that is, the curve defined by the bihomogeneous equation

𝑢𝑛𝑣𝑚𝐸𝑃,𝑄(𝑥∕𝑢, 𝑦∕𝑣) = 0, 𝑚 = deg𝑄. We identify ℂℙ1 with ℂ̂ denoting (𝑥 ∶ 1) by 𝑥 and (1 ∶ 0)

by ∞.

Suppose there exists a proper factor 𝐸′(𝑥, 𝑦) of 𝐸𝑃,𝑄. Let 𝐶′ be the corresponding subset

of 𝐶. Let 𝑦1,… , 𝑦𝑙 ∈ ℂℙ1 be the poles of 𝑄 of multiplicities 𝑞1,… , 𝑞𝑙 respectively. The germ

of 𝐶 at (∞, 𝑦𝑖) has the form 𝑈𝑛 = 𝑌𝑞𝑖 in some local analytic coordinates (𝑈,𝑌). Indeed, the

equation of 𝐶 in the affine coordinates 𝑈 = 𝑢∕𝑥, 𝑌 = 𝑦∕𝑣 − 𝑦𝑖 (𝑌 = 𝑣∕𝑦 if 𝑦𝑖 = ∞) has the

form

𝑈𝑛𝑓𝑖(𝑈) = 𝑌𝑞𝑖𝑔𝑖(𝑌), 𝑓𝑖(0)𝑔𝑖(0) ≠ 0,

thus it has the desired form in the local coordinates 𝑈 = 𝑈𝑓1∕𝑛𝑖 , 𝑌 = 𝑌𝑔1∕𝑞𝑖𝑖 for any choice

of single-valued branches of the roots of 𝑓𝑖 and 𝑔𝑖 near 0.

The binomial 𝑈𝑛 − 𝑌𝑞𝑖 factorizes as ∏𝑘𝑖
𝑗 (𝑈

𝑏𝑖 − 𝜔𝑗𝑌𝑎𝑖 ), where 𝑘𝑖 = gcd(𝑞𝑖, 𝑛), 𝑎𝑖 = 𝑞𝑖∕𝑘𝑖,

𝑏𝑖 = 𝑛∕𝑘𝑖, and 𝜔 is a primitive 𝑘𝑖-th root of unity. Thus the germ of 𝐶 at (∞, 𝑦𝑖) has 𝑘𝑖 local

analytic branches, which we denote by 𝛾𝑖𝑗, 𝑗 = 1,… , 𝑘𝑖. Let 𝑘′𝑖 be the number of those that

belong to 𝐶′.

Let 𝐿𝑖 = ℂℙ1 × {𝑦𝑖}. For local intersections, we have (𝛾𝑖𝑗 ⋅ 𝐿𝑖)(∞,𝑦𝑖) = 𝑏𝑖 for each 𝑖, 𝑗. Hence

𝑘′𝑖𝑏𝑖 = (𝐶′.𝐿𝑖)(∞,𝑦𝑖) = 𝑛′ ∶= deg 𝑥𝐸′, 𝑖 = 1,… , 𝑙,

and we obtain
𝑘′𝑖𝑎𝑖
𝑞𝑖

=
𝑘′𝑖
𝑘𝑖

=
𝑘′𝑖𝑏𝑖
𝑛 = 𝑛′

𝑛 , 1 ≤ 𝑖 ≤ 𝑙. (10)

Let 𝑑′∕𝑑 be the reduced form of this fraction, i.e., 𝑑′∕𝑑 = 𝑛′∕𝑛 and gcd(𝑑′, 𝑑) = 1. Then

𝑑 > 1 (because 𝑛′ < 𝑛) and 𝑑 divides all the denominators in (10), which implies that

gcd(𝑞1,… , 𝑞𝑙, 𝑛) > 1.
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Now we expose more or less the same proof using the language of field extensions.

The notations in both proofs are consistent. Of course, the proof of [12, Theorem 1] can

be reinterpreted similarly.

Second proof of Theorem 3.4. For a compact Riemann surface 𝐶, we denote the field of

meromorphic functions on 𝐶 by ℳ(𝐶). Given a meromorphic function 𝜃 ∶ 𝐶 → ℂℙ1, we

denote the local multiplicity of 𝜃 at the point 𝑧 by 𝑒𝜃(𝑧).

Assume that the curve 𝐸𝑃,𝑄(𝑥, 𝑦) = 0 is reducible, and let 𝐶 be a desingularization

of some of its components. Then there exist meromorphic functions 𝜑 ∶ 𝐶 → ℂℙ1 and

𝜓 ∶ 𝐶 → ℂℙ1 of degrees 𝑚′ < 𝑚 = deg𝑄 and 𝑛′ < 𝑛 such that

𝑃◦𝜑 = 𝑄◦𝜓 (11)

and the compositum of the fields 𝜑∗ℳ(ℂℙ1) ⊆ℳ(𝐶) and 𝜓∗ℳ(ℂℙ1) ⊆ℳ(𝐶) is the whole

field ℳ(𝐶). Furthermore, if 𝜃 ∶ 𝐶 → ℂℙ1 is a meromorphic function defined by any of the

sides of equality (11), then by the Abhyankar Lemma (see e. g. [17], Theorem 3.9.1) for

every point 𝑡0 of 𝐶 the following equality holds:

𝑒𝜃(𝑡0) = lcm
(
𝑒𝑃(𝜑(𝑡0)), 𝑒𝑄(𝜓(𝑡0))

)
(12)

Let 𝑄−1{∞} = {𝑦1, 𝑦2,… , 𝑦𝑙}, where 𝑒𝑄(𝑦𝑖) = 𝑞𝑖, 1 ≤ 𝑖 ≤ 𝑙, and

𝜓−1{𝑦𝑖} = {𝑧𝑖1, 𝑧12,… , 𝑧𝑖𝑘′𝑖 }, 1 ≤ 𝑖 ≤ 𝑙.

Let us set

𝑘𝑖 = gcd(𝑞𝑖, 𝑛), 𝑎𝑖 = 𝑞𝑖∕𝑘𝑖, 𝑏𝑖 = 𝑛∕𝑘𝑖.

Since 𝑃−1{∞} = ∞, by (12) we have

𝑒𝜃(𝑧𝑖𝑗) = lcm(𝑞𝑖, 𝑛), 1 ≤ 𝑗 ≤ 𝑘′𝑖 , 1 ≤ 𝑖 ≤ 𝑙.

Therefore,

𝑒𝜓(𝑧𝑖𝑗) =
lcm(𝑞𝑖, 𝑛)

𝑞𝑖
= 𝑏𝑖, 1 ≤ 𝑗 ≤ 𝑘′𝑖 , 1 ≤ 𝑖 ≤ 𝑙,

implying that, for each 𝑖 = 1,… , 𝑙, we have 𝑘′𝑖𝑏𝑖 = deg𝜓 = 𝑛′, whence we obtain the

equation (10) and conclude in the same way as in the first proof.
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3.2 A counterexample

In this subsection we show that the Composition Condition (see Definition 1) is not

necessary for reducibility of the curve 𝐿𝑃(𝑥, 𝑦) = 0. Let us set

𝑇(𝑧) = 𝑧 − 𝑖
𝑧 + 𝑖 . (13)

We recall that this Möbius transformation (called the Cayley transform) maps ℝ̂ ∶= ℝ∪{∞}

to the unit circle 𝕋.

Lemma 3.5. Let 𝑆 be a non-constant complex rational function. Then the curve �̂�𝑇◦𝑆(𝑥, 𝑦) = 0

is irreducible if and only if the curve 𝐸𝑆,𝑆(𝑥, 𝑦) = 0 is irreducible.

Proof. If 𝑆 = 𝑆1∕𝑆2, where 𝑆1 and 𝑆2 have no common roots, then

(𝑇◦𝑆)(𝑧) = 𝑆1(𝑧) − 𝑖𝑆2(𝑧)
𝑆1(𝑧) + 𝑖𝑆2(𝑧)

,

where 𝑆1(𝑧) − 𝑖𝑆2(𝑧) and 𝑆1(𝑧) + 𝑖𝑆2(𝑧) also have no common roots. Thus,

�̂�𝑇◦𝑆(𝑥, 𝑦) = (𝑆1(𝑥) − 𝑖𝑆2(𝑥))(𝑆1(𝑦) + 𝑖𝑆2(𝑦)) − (𝑆1(𝑥) + 𝑖𝑆2(𝑥))(𝑆1(𝑦) − 𝑖𝑆2(𝑦))

= 2𝑖(𝑆1(𝑥)𝑆2(𝑦) − 𝑆2(𝑥)𝑆1(𝑦)) = 2𝑖𝐸𝑆,𝑆(𝑥, 𝑦). 2

To show that the Composition Condition is not necessary for the reducibility of 𝐿𝑃(𝑥, 𝑦),

one can use examples of reducible curves of the form 𝐸𝑆,𝑆(𝑥, 𝑦) = 0 found in [4]. For

instance, we can take

𝑆(𝑧) = 1
11𝑧

11 − (𝑎 + 1)𝑧9 + 2𝑧8 + (3𝑎 − 9)𝑧7 − 16(𝑎 + 1)𝑧6 + (21𝑎 + 36)𝑧5

+ (30𝑎 − 90)𝑧4 − 63𝑎𝑧3 + (100𝑎 + 120)𝑧2 + (24𝑎 − 117)𝑧 − 18(𝑎 + 1),
(14)

where 𝑎 satisfies 𝑎2 + 𝑎 + 3 = 0. It is shown in [4] that for 𝑆(𝑧) the following conditions

hold. First, the curve 𝑆(𝑥) − 𝑆(𝑦) = 0 is reducible. Second,

𝑆(𝑧) ≠ 𝑆(𝑐𝑧 + 𝑏), (15)

for any 𝑐 ∈ ℂ∗, 𝑏 ∈ ℂ (the last condition makes this example non-trivial since every curve

of the form 𝑆(𝑥) − 𝑆(𝑐𝑦 + 𝑏) = 0 obviously has a factor 𝑥 − 𝑐𝑦 − 𝑏 = 0).
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Let us consider a rational function 𝑃 = 𝑇◦𝑆, where 𝑇 and 𝑆 are defined by (13) and (14).

By Lemma 3.5, the curve �̂�𝑃(𝑥, 𝑦) = 0 is reducible, implying by Lemma 3.1 that the curve

𝐿𝑃(𝑥, 𝑦) = 0 is also reducible. Since the degree of 𝑃 is a prime number, if the Composition

Condition were satisfied by 𝑃, we would have

𝑃 = 𝑇◦𝑆 = 𝐵◦𝜇 (16)

for some quotient of finite Blaschke products 𝐵 and Möbius transformation 𝜇. Let now 𝜈

be a Möbius transformation that maps ℝ̂ to 𝜇−1(𝕋). Then (𝜇◦𝜈)(ℝ̂) = 𝕋 and it follows from

(16) combined with the equalities 𝐵(𝕋) = 𝕋 and 𝑇(ℝ̂) = 𝕋 that

(𝑆◦𝜈)(ℝ̂) = (𝑆◦𝜇−1)(𝕋) = (𝑇−1◦𝐵)(𝕋) = 𝑇−1(𝕋) = ℝ̂. (17)

Therefore the rational function (𝑆◦𝜈) − (𝑆◦𝜈) identically vanishes on ℝ, and hence on ℂ.

Thus,

𝑆◦𝜈 = 𝑆◦𝜈 = 𝑆◦𝜈,

and denoting the Möbius transformation 𝜈◦𝜈−1 by 𝛿, we rewrite this equality as

𝑆 = 𝑆◦𝛿. (18)

Since 𝑆 is a polynomial, (18) implies that 𝛿 also is a polynomial. Moreover, deg 𝛿 = 1 (be-

cause 𝛿 is a Möbius transformation), thus (18) contradicts (15). The obtained contradiction

shows that 𝑃 does not satisfy the Composition Condition.
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1 Introduction

In this paper we construct a tropical analog of the classical Hodge theory for Kähler

manifolds. We study only the case of one-dimensional tropical varieties, it is a tropical

analog of the Hodge theory on smooth complex curves. The main purpose of this paper

is to show that the classical analytical construction of the Hodge theory via harmonic

forms, Laplace-Beltrami operator and related objects and methods can be translated to

the tropical case practically word by word. So it is mostly an illustration of application

the method, though some of the results, like a computation of cohomology group of a

tropical curve, can be obtained using much simpler technique.

Let us very briefly recall the classical Hodge theory for complex curves. For general

references on the Hodge theory see [4], [5]. Given a smooth compact complex curve 𝐶 of

genus 𝑛. Let ℰ𝑝,𝑞(𝐶) be the space of smooth (𝑝, 𝑞)−differential forms on 𝐶. The Dolbeault

cohomology 𝐻𝑝,𝑞
𝜕
(𝐶) is the cohomology group of the complex (ℰ𝑝,∗(𝐶), 𝜕), where 𝜕 is a

differential

𝜕 ∶ ℰ𝑝,𝑞(𝐶)→ ℰ𝑝,𝑞+1(𝐶).

Suppose 𝑔 is a hermitian metric on 𝐶 and 𝜔 is the corresponding Kähler form. The metric

𝑔 induces a scalar product on ℰ𝑝,𝑞(𝐶) and defines the Hodge star operator

∗∶ ℰ𝑝,𝑞(𝐶)→ ℰ1−𝑝,1−𝑞(𝐶).

Let 𝜕
∗

be a metric adjoint to 𝜕. The Laplace-Beltrami operator is defined as follows:

∆ = 𝜕
∗
𝜕 + 𝜕𝜕

∗
∶ ℰ𝑝,𝑞(𝐶)→ ℰ𝑝,𝑞(𝐶).

The space of harmonic forms ℋ𝑝,𝑞(𝐶) is by definition the kernel of ∆ ∶ ℰ𝑝,𝑞(𝐶)→ ℰ𝑝,𝑞(𝐶).
Our main goal is to prove a tropical analog of the following statement.

Theorem 1.1. Every harmonic form 𝜑 ∈ ℋ𝑝,𝑞(𝐶) is 𝜕−closed and, consequently, defines

a cohomology class [𝜑] ∈ 𝐻𝑝,𝑞
𝜕
(𝐶). The map 𝜑 → [𝜑] is an isomorphism between ℋ𝑝,𝑞(𝐶)

and 𝐻𝑝,𝑞
𝜕
(𝐶). The Hodge star operator is an isomorphism between the spaces of harmonics
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forms ∗∶ℋ𝑝,𝑞(𝐶) ≃ℋ1−𝑝,1−𝑞(𝐶). The dimensions of cohomology groups are equal to

dimℂ𝐻0,0
𝜕
(𝐶) = dimℂ𝐻1,1

𝜕
(𝐶) = 1,

dimℂ𝐻1,0
𝜕
(𝐶) = dimℂ𝐻0,1

𝜕
(𝐶) = 𝑛,

where 𝑛 is the genus of 𝐶.

A one-dimensional tropical variety is essentially a metric graph Γwith some additional

features. An analog of smooth (𝑝, 𝑞)−differential forms is a special class of tensor fields

on edges of Γ satisfying some boundary conditions at vertices. We denote this class of

tensor by ℰ𝑝,𝑞(Γ) and call it the space of regular tropical super of degree (𝑝, 𝑞). There is a

differential

𝑑′′ ∶ ℰ𝑝,𝑞(Γ)→ ℰ𝑝,𝑞+1(Γ)

and the cohomology group 𝐻𝑝,𝑞
𝑑′′ (Γ) of the complex (ℰ𝑝,∗, 𝑑′′).

For references on and tropical cohomologies see [7], [8], [9]: notion of tropical coho-

mologies was introduced in [7] using methods of algebraic topology, notion of tropical

superforms, which play in the tropical case the role of smooth differential forms, was

introduced in [9], and in [8] differential topological approach to tropical cohomologies

was developed, i.e., an analog of the de Rham or Dolbeault cohomology theory. In [6]

the de Rham cohomology of metric graphs is considered in a fashion quite similar to

our paper. In [10] metric graphs was studied as a tropical limits of a degeneration of a

family of complex holomorphic curves and tropical holomorphic forms were obtained

as tropical limits of usual holomorphic forms.

The space ℰ𝑝,𝑞(Γ), the operator 𝑑′′, and the cohomology group 𝐻𝑝,𝑞
𝑑′′ (Γ) play in the tropi-

cal case the same role as ℰ𝑝,𝑞(𝐶), 𝜕, and 𝐻𝑝,𝑞
𝜕
(𝐶) in the complex case. Actually, the space

of tropical superforms on the interval [𝑎, 𝑏] ⊂ ℝ can be identified with the space of

𝑈(1)−invariant differential forms on the complex annulus Log−1([𝑎, 𝑏]) ⊂ ℂ ⧵ {0}, see Sec-

tion 2.6. Various operations on this tropical space: integration, taking the differential, etc.,

can be interpreted in term of usual complex operations on this space of 𝑈(1)−invariant

differential forms.
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There are tropical analogs of a Kähler form and a hermitian metric on Γ. This tropical

Kähler form induces a scalar product on ℰ𝑝,𝑞(Γ). Let 𝑑′′∗ be the metric adjoint operator to

𝑑′′ with respect to this scalar product. Then we can define the Laplace-Beltrami operator

∆ = 𝑑′′𝑑′′∗ + 𝑑′′∗𝑑′′.

The space of harmonic forms ℋ𝑝,𝑞(Γ) is by definition the kernel of ∆.
The genus of tropical curve Γ is, by definition, the rank of 𝐻1(Γ), where 𝐻1(Γ) is the

usual topological cohomology group of the graph Γ. The main result of this paper is the

following

Theorem 1.2. Let Γ be a tropical curve of genus 𝑛. Every harmonic superform 𝜑 ∈ℋ𝑝,𝑞(Γ) is

𝑑′′−closed and, consequently, defines the cohomology class [𝜑] ∈ 𝐻𝑝,𝑞
𝑑′′ (Γ). The map 𝜑 → [𝜑]

is an isomorphism between ℋ𝑝,𝑞(Γ) and 𝐻𝑝,𝑞
𝑑′′ (Γ). The Hodge star operator maps harmonic

superform to harmonic superform and the map ∗∶ℋ𝑝,𝑞(Γ)→ℋ1−𝑝,1−𝑞(Γ) is an isomorphism.

There are isomorphisms

𝐻1,1(Γ) ≃ 𝐻0,0(Γ) ≃ 𝐻0(Γ,ℝ) ≅ ℝ

and

𝐻1,0(Γ) ≃ 𝐻0,1(Γ) ≃ 𝐻1(Γ,ℝ) ≅ ℝ𝑛.

We consider our results in the first place as a toy model and a proof of a concept

for the tropical Hodge theory, only then we consider it as a results about topology of

tropical curves. Indeed, one can compute cohomology of a tropical curve using much

simpler methods without any functional analysis or differential topology. In particular,

since, by definition, 𝐻0,𝑞(Γ) coincide with usual topological cohomologies of the graph

Γ and can be easily computed, one can apply the tropical Poincaré duality duality [8,

Theorem 4.33] and get 𝐻0,𝑞(Γ) ≃ 𝐻1,1−𝑞(Γ). Also the cohomologies 𝐻𝑝,𝑞(Γ) were computed

in [6, Proposition 2.4.2.] in terms of tropical differential forms using quite simple methods,

actually in that paper a bit more general case was consider, that case is a tropical analog

of curves with punctures.
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The actual problem is to construct the tropical Hodge theory in higher dimensions.

To do so one can follow the way of classical complex Hodge theory and methods of this

paper, but it seems that there are many technical obstacles in this way. The main source

of these obstacles are: nonsmoothness of tropical varieties, which are locally behave

like a polyhedral complexes, and complicated behavior of various analytical objects at

infinity, which is typical in 𝐿2−cohomology theories. Both problems are illustrated in

this paper: the proofs of Lemma 3.5, Theorem 3.10, Proposition 3.13 require us to do

a tedious analysis of the infinite length edges case, and in Theorem 3.10 we deal with

the combinatorial aspects of metric graphs. The article [11] on a PL-Hodge theory was a

great source of inspiration for our work.

The paper is organized as follows. In the second section we introduce the main objects

and work with differential-topological part of the problem. In the third section section

we develop methods related to the functional analysis and 𝐿2−cohomology theory. For

general references on 𝐿2−methods in the complex Hodge theory see, for example, [4,

Chapter VIII].

It is interesting that the topic of this paper is closely related to quantum graphs. The

main idea of quantum graphs is to study the Schrödinger equation and the Laplace

equation over a metric graph [2]. In this case various boundary conditions at vertices of

the graph arise. We do not know any source in the literature where methods of quantum

graphs were applied to the tropical geometry.

2 Tropical curves and tropical superforms

In this section we introduce main objects of our paper: Tropical curves, Tropical super-

forms, Tropical cohomologies, tropical Kähler form and operations on them. We study

their properties, and prove some results of differential-topological nature. Also, we show

the relation of this objects to the complex geometry.
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2.1 Tropical curves.

Definition 2.1. A compact connected tropical curve Γ is a connected metric graph with

the set of vertexes 𝑉 and the set of edges 𝐸 satisfying the following condition:

1. The sets 𝐸 and 𝐺 are finite and non-empty.

2. The length 𝑙(𝑒) of an edge 𝑒 ∈ 𝐸 is a positive real number or +∞.

3. The length 𝑙(𝑒) is equal to +∞ if and only if 𝑒 is incident on a degree one vertex.

4. A finite length edge 𝑒 is isometric to the closed interval [−𝑙(𝑒), 0] with the standard

Euclidean metric.

5. If an infinite length edge 𝑒 is incident to a degree one vertex and to a vertex of

a higher degree, then the edge is isometric to the closed interval [−∞, 0] with the

standard Euclidean metric, where −∞ is the image of the degree one vertex.

6. If an infinite length edge 𝑒 is incident to two degree one vertices, then this edge is

isometric to [−∞,+∞]. Since Γ is connected it have to be a graph with one edge and

two vertices and the whole graph is isometric to [−∞,+∞].

In this paper we will address a compact connected tropical curve as just a curve. The

genus of a curve Γ is defined as the rank of cohomology group 𝐻1(Γ).

Example 2.2. Let us consider several examples of curves.

• Any metric graph with finite-length edges such that all vertices has degree ≥ 2 can

be considered as a tropical curve.

• The closed interval [−∞,+∞] is an example of a genus 0 curve. We can consider

this curve as the tropical projective line 𝕋ℙ1 ∶= [−∞,+∞].

• A finite number of disjoint copies of [−∞, 0] glued together along 0

Γ = [−∞, 0] ⊔⋯ ⊔ [−∞, 0]∕ ∼

is another example of a genus 0 curve.
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Remark 2.3. Usually in tropical geometry a tropical variety is defined in terms of poly-

hedral complexes in 𝕋ℝ𝑛 = [−∞,+∞)𝑛. One can consider these polyhedral complexes as

varieties embedded to some ambient space. In our definition we do not use any ambient

space or embeddings. For any compact connected tropical curve Γ in the sense of our def-

inition one can construct an isomorphic tropical curve in terms of polyhedral complexes

in 𝕋ℝ𝑛. The similar approach to tropical curves via metric graphs were used in [10], [6].

Remark 2.4. We can consider 𝑆1 = ℝ∕𝑎ℤ, where 𝑎 ∈ (0,+∞), as an example of a tropical

curve of genus 1. Informally it is a metric graph with one edge and no vertexes and it

is not consistent with our definition of a curve. To resolve this problem one can put a

vertex to this curve and consider this as a metric graph with one vertex and one loop.

Another approach to deal with this problem is to extend the definition of a tropical curve

using the way similar to the definition a topological manifold in terms of charts and

transition maps. According to this approach a tropical curve is a space locally isomorphic

to a metric graph and transition maps are given by affine functions. We are not going to

use this approach in the paper.

2.2 Tropical superforms over ℝ.

Definition 2.5. A tropical superforms of degree (𝑝, 𝑞), 𝑝, 𝑞 = 0, 1, on ℝ is a smooth section

of the line bundle

Λ𝑝,𝑞𝑇∗ℝ ∶=
⋀𝑝

𝑇∗ℝ⊗
⋀𝑞

𝑇∗ℝ.

We denote the linear space of (𝑝, 𝑞)−tropical superforms by ℰ𝑝,𝑞(ℝ).

The notions of a tropical superform on ℝ𝑛 and related objects consider in this subsec-

tion were initially introduced in [9].

Here⋀0 𝑇∗ℝ is a trivial line bundle. In particular, (0, 0)-tropical superforms are smooth

functions on ℝ, the spaces of (1, 0) and (0, 1) tropical superforms can be identified with

differential 1−forms, i.e., with tensor fields of valency (0, 1), and (1, 1)-tropical superforms

can be identified with with tensor fields of valency (0, 2).
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Let 𝑥 be a cartesian coordinate on ℝ. We denote by 𝑑′𝑥 and by 𝑑′′𝑥 the differential

𝑑𝑥 which we consider, correspondingly, as a (1, 0)−tropical form or (0, 1)−tropical form,

and we denote by 𝑑′𝑥 ∧ 𝑑′′𝑥 the tensor field 𝑑𝑥 ⊗ 𝑑𝑥 which we consider as a (1, 1)−form.

Then any (0, 0), (1, 0), (0, 1), (1, 1)−tropical superform can be written, correspondingly, as

𝜑(𝑥), 𝜑(𝑥)𝑑′𝑥, 𝜑(𝑥)𝑑′′𝑥, 𝜑(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥 for some smooth function 𝜑(𝑥).
There is a natural wedge product

∧ ∶ ℰ𝑝,𝑞(ℝ)⊗ ℰ𝑝′,𝑞′(ℝ)→ ℰ𝑝+𝑝′,𝑞+𝑞′(ℝ).

The wedge product of the (1, 0)−tropical form 𝑑′𝑥 and the (0, 1)−form 𝑑′′𝑥 is defined to be

equal to the (1, 1)−form 𝑑′𝑥 ∧ 𝑑′′𝑥. The wedge product satisfies the alternation condition

𝑑′𝑥 ∧ 𝑑′′𝑥 = −𝑑′′𝑥 ∧ 𝑑′𝑥,

𝑑′𝑥 ∧ 𝑑′𝑥 = 𝑑′′𝑥 ∧ 𝑑′′𝑥 = 0.

There is the differential 𝑑′′ ∶ ℰ𝑝,𝑞(ℝ) → ℰ𝑝,𝑞+1(ℝ). It is defined on (0, 0)−forms, i.e.,

functions, as

𝑑′′(𝜑(𝑥)) = 𝜕𝜑(𝑥)
𝜕𝑥 𝑑′′𝑥

and on (1, 0)−forms as

𝑑′′(𝜑(𝑥)𝑑′𝑥) = 𝑑′′(𝜑(𝑥)) ∧ 𝑑′𝑥 = −𝜕𝜑(𝑥)𝜕𝑥 𝑑′𝑥 ∧ 𝑑′′𝑥,

In all other cases 𝑑′′ is equal to zero for dimensional reasons.

In the same way we define the differential operator

𝑑′ ∶ ℰ𝑝,𝑞(ℝ)→ ℰ𝑝+1,𝑞(ℝ) ∶

𝑑′(𝜑(𝑥)) = 𝜕
𝜕𝑥
𝜑(𝑥)𝑑′𝑥 and 𝑑′(𝜑(𝑥)𝑑′′𝑥) = 𝑑′(𝜑(𝑥)) ∧ 𝑑′′𝑥 = 𝜕

𝜕𝑥
𝜑(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥, in all other cases

𝑑′ is equal to zero.

The tropical integral over ℝ of a (1, 1)-forms 𝜑(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥 is defined as

∫
ℝ
𝜑(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥 = ∫

ℝ
𝜑(𝑥)𝑑𝑥,

where the right hand side is the usual integral. The integral over an interval 𝐼 of ℝ is

defined in the same way ∫𝐼 𝜑(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥 = ∫𝐼 𝜑(𝑥)𝑑𝑥.
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Remark 2.6. From an abstract point of view to define the tropical integral of (1, 1)-tropical

superform 𝜔 over a 1-dimensional ℝ−linear space 𝐿 we need to choose a volume form 𝜇
with a constant coefficient. We can identify this form with a non-zero element of 𝑇∗0𝐿,
since a constant section of 𝑇∗𝐿 is defined by its value at 0.

This tropical integral depends on the choice of 𝜇, we denote it by ∫(𝐿,𝜇) 𝜔. The form

𝜇 ⊗ 𝜇 defines a trivialization of 𝑇∗𝐿 ⊗ 𝑇∗𝐿. Hence any (1, 1)-tropical superforms 𝜔 can be

written as 𝜔 = 𝑓(𝑥)𝜇 ⊗ 𝜇 for some function 𝑓(𝑥) on 𝐿.
The integral is defined as

∫
(𝐿,𝜇)

𝜔 = ∫
𝐿
𝑓(𝑥)𝜇,

where the right-hand side is the usual integral of a differential form of the top degree

over an orientated linear space, the orientation of 𝐿 is induced by the form 𝜇.
Notice that for the form 𝜇′ = −𝜇 we obtain the same integral as for the form 𝜇. Indeed,

we have 𝜔 = 𝑓(𝑥)𝜇 ⊗ 𝜇 = 𝑓(𝑥)(−𝜇)⊗ (−𝜇) = 𝑓(𝑥)𝜇′ ⊗ 𝜇′ and the integrals

∫
(𝐿,𝜇)

𝜔 = ∫
𝐿
𝑓(𝑥)𝜇 = − ∫

𝐿
𝑓(𝑥)(−𝜇) = − ∫

𝐿
𝑓(𝑥)𝜇′ = ∫

𝐿
𝑓(𝑥)𝜇′ = ∫

(𝐿,𝜇′)
𝜔

are the same, where 𝐿 is the space 𝐿 with an opposite orientation, i.e., the orientation

induced by 𝜇′.
On the other hand, scaling of the volume form changes the value of the integral.

Indeed, if 𝜇′ = 𝑐𝜇, 𝑐 > 0, then 𝑓(𝑥)𝜇 ⊗ 𝜇 = 1
𝑐2
𝑓(𝑥)𝜇′ ⊗ 𝜇′. Thus we get

∫
(𝐿,𝜇)

𝜔 = ∫
𝐿
𝑓(𝑥)𝜇,

∫
(𝐿,𝜇′)

𝜔 = ∫
𝐿

1
𝑐2𝑓(𝑥)𝜇

′ = ∫
𝐿

1
𝑐 𝑓(𝑥)𝜇 =

1
𝑐 ∫(𝐿,𝜇)

𝜔.

Let Λ be a lattice in 𝐿, then it determines the form 𝜇 uniquely up to the sign by the

condition 𝜇(𝑒) = 1, where 𝑒 is a generator of Λ. Here 𝜇(𝑒) is a contraction of 𝜇 ∈ 𝑇∗0𝐿 and

𝑒 ∈ 𝑇0𝐿 ≃ 𝐿. Therefore the lattice Λ defines the tropical integral uniquely.

It the case 𝐿 = ℝ we choose Λ to be equal to ℤ and 𝜇 to be equal to the differential of

the cartesian coordinate 𝑑𝑥, this give us the initial definition of the tropical integral.
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2.3 Tropical superforms over tropical curve

Let 𝑒 be an edge of Γ then the space ℰ𝑝,𝑞(𝑒) of (𝑝, 𝑞)−tropical superforms over 𝑒 is defined

as the restriction of ℰ𝑝,𝑞(ℝ) to either [−𝑙(𝑒), 0] or (−∞, 0] or (−∞,+∞) if 𝑒 is, consequently,

isometric to [−𝑙(𝑒), 0] or [−∞, 0] or [−∞,+∞]. An integral ∫𝑒 𝜔 over the edge 𝑒 of a form

𝜔 ∈ ℰ1,1(𝑒) is defined as an tropical integral over the corresponding interval of ℝ.

Definition 2.7. The linear space ℰ̃𝑝,𝑞(Γ) of tropical superforms of degree (𝑝, 𝑞), 𝑝, 𝑞 = 0, 1
on a curve Γ is defined as follows

ℰ̃𝑝,𝑞(Γ) =
⨁

𝑒∈𝐸
ℰ𝑝,𝑞(𝑒).

We denote by 𝜔𝑒 the component over the edge 𝑒 of the form 𝜔 ∈ ℰ̃𝑝,𝑞(Γ).

The integral of a form 𝜔 ∈ ℰ̃1,1(Γ) over Γ is defined as the sum of the tropical integrals

over all edges:

∫
Γ
𝜔 =

∑

𝑒∈𝐸
∫
𝑒
𝜔𝑒.

Notice that for a form from ℰ̃𝑝,𝑞(Γ) there are no conditions over values of the form at

the ends of different edges which represent the same vertex of Γ. Actually, this space is

not an adequate analog of the smooth differential form on a Riemann surface and will

play supplementary role in the paper. The tropical analog of smooth forms is regular

tropical superforms which is defined below.

Definition 2.8. The space of regular tropical superforms ℰ𝑝,𝑞(Γ) is a subspace of ℰ̃𝑝,𝑞(Γ).
Elements of ℰ𝑝,𝑞(Γ) should satisfy the following conditions:

1. Continuity. A (0, 0)-form 𝜑 ∈ ℰ0,0(Γ) is continuous if for any two edges 𝑒, 𝑒′ ∈ 𝐸
incident to the same vertex 𝑣, the values of 𝜑𝑒 and 𝜑𝑒′ at the points corresponding to

𝑣 coincide. In the other words, 𝜑 have to be a continuous function on the metric

graph Γ.

2. Kirchhoff’s law. Given a vertex 𝑣 ∈ 𝑉. Let 𝐸𝑣 ⊂ 𝐸 be a set of edges incident to

this vertex. Suppose that an edge 𝑒 ∈ 𝐸𝑣 is identified with the interval [−𝑙(𝑒), 0] and
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the point 0 ∈ [−𝑙(𝑒), 0] corresponds to the vertex 𝑣. Let 𝜑 ∈ ℰ̃1,0(Γ) be a (1, 0)-form,

𝜑𝑒 = 𝜑𝑒(𝑥)𝑑′𝑥. We say that the form 𝜑 satisfies Kirchhoff’s law at the vertex 𝑣 if

∑

𝑒∈𝐸𝑣
𝜑𝑒(0) = 0.

The form 𝜑 satisfies Kirchhoff’s law on the curve Γ if it satisfies Kirchhoff’s law at

every vertex of Γ of degree ≥ 2.

3. Regularity at infinity. We say that a superform 𝜔 is regular at infinity if for any

degree one vertex 𝑣 of Γ there is a neighborhood 𝑈 of 𝑣 such that the restriction

of 𝜔 to 𝑈 is a constant function if 𝜔 has degree (0, 0) and identically equal to zero

otherwise, i.e., if 𝜔 has degrees (1, 0), (0, 1), (1, 1).

Thus a form is regular if is regular at infinity and, in addition to this, is continuous in

case of (0, 0)−forms, or satisfies the Kirchhoff’s law in the case of (1, 0)−form.

Remark 2.9. Very similar but slightly different definition of smooth tropical forms were

introduced in [6]. It is more common to define tropical superforms on tropical varieties

as a restriction of tropical superforms form 𝕋ℝ𝑛 to charts in tropical varieties, the idea is

the same as in definition of smooth forms on a smooth manifold 𝑋 as pullback of smooth

forms on ℝ𝑛 via a embedding of 𝑋 to ℝ𝑛, this approach was used in [8]. In [6, Proposition

4.3.2] it was shown that both approaches are equivalent.

Proposition 2.10. The space of regular tropical superforms ℰ∗,∗(Γ) is closed under the

wedge product and the 𝑑′′-differential.

The proof is straightforward.

Theorem 2.11 (Stokes’ theorem). If 𝜔 ∈ ℰ1,0(Γ), then ∫Γ 𝑑′′𝜔 = 0. Consequently, if 𝜑 ∈ ℰ𝑝,0(Γ)
and 𝜓 ∈ ℰ1−𝑝,0(Γ), then

∫
Γ
𝑑′′𝜑 ∧ 𝜓 = (−1)𝑝+1 ∫

Γ
𝜑 ∧ 𝑑′′𝜓.

Here [8, Theorem 4.9], [6, Theorem 2.3.5] you can find practically the same theorem.
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Proof. Let 𝜔 be an element of ℰ1,0(Γ). Let 𝑒 be an edge of Γ and 𝜔𝑒(𝑥)𝑑′𝑥 be a restriction

of 𝜔 to 𝑒. Using the Newton-Leibniz formula we get ∫𝑒 𝑑′′(𝜔𝑒(𝑥)𝑑′𝑥) = −𝜔𝑒(0) + 𝜔𝑒(𝑙(𝑒)).
Since the integral over Γ is a sum of integrals over edges, combining the Newton-Leibniz

formula, the Kirchhoff’s law, and Regularity at infinity we obtain the first statement.

The second statement follows from the first statement and the Leibniz’s rule.

2.4 Tropical cohomologies

Remark 2.12. The notion of tropical homology was introduced in [7]. The de Rham (or

Dolbeault) approach to tropical cohomology was developed in [8], in this subsection

we repeat constructions from this article. This approach is a tropical rewriting of the

standard constructions of differential topology.

Let 𝑈 be an open set in Γ. We define ℰ𝑝,𝑞Γ (𝑈) as a linear space of smooth (𝑝, 𝑞)−forms

on 𝑈 regular in the sense of Definition 2.8. The correspondence 𝑈 → ℰ𝑝,𝑞Γ (𝑈) defines the

sheaf ℰ𝑝,𝑞Γ of smooth tropical regular superforms over Γ, the space ℰ𝑝,𝑞Γ (𝑈) is the space of

sections of ℰ𝑝,𝑞Γ over 𝑈.
Let Ω1

Γ be the subsheaf of 𝑑′′−closed forms the sheaf ℰ1,0Γ . Let us notice that (1, 0)−form

𝜑 is 𝑑′′−closed if its restriction to an edge 𝑒

𝜑𝑒(𝑥)𝑑′𝑥

has a locally constant coefficient 𝜑𝑒(𝑥).
Let us describe the sheaf Ω1

Γ more explicitly. Given a vertex 𝑣 of Γ of degree 𝑑 ≥ 2.
Consider a small 𝜀−neighborhood 𝑈𝜀 of 𝑣. It is isometric to

𝑈𝜀 =
⨆

𝑑-times
(−𝜀, 0]∕ ∼, (1)

where points 0 of different intervals are identified by the equivalence relation. The

equivalence class of 0 is identified with the vertex 𝑣. A section of Ω1
Γ over 𝑈𝜀 is a collection

of (1, 0)−forms with constant coefficient

𝜑𝑗𝑑′𝑥, 𝜑𝑗 ∈ ℝ, 𝑗 = 1,… , 𝑑,
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where the form 𝜑𝑗𝑑′𝑥 is defined on the 𝑗−th interval (−𝜀, 0] ⊂ 𝑈𝜀, and the coefficients

satisfy the Kirchhoff’s law:
𝑑∑

𝑗=1
𝜑𝑗 = 0.

Suppose 𝑣 is a degree 1 vertex its 𝜀−neighborhood 𝑈𝜀 is isometric to 𝑈𝜀 = [−∞,−𝜀),
since section of Ω1

Γ are regular at infinity, this section are identically equal to zero on 𝑈𝜀.
Let ℝΓ be a subsheaf of locally constant functions on Γ of the sheaf ℰ0,0Γ . Sections of ℝΓ

are locally constant functions over edges satisfying the continuity property at vertices.

Obviously, the subsheaf ℝΓ coincides with the subsheaf of 𝑑′′−closed functions the sheaf

ℰ0,0Γ .

Remark 2.13. The sheaves ℝΓ,Ω1
Γ,ℰ

𝑝,𝑞
Γ play in the tropical theory the same role as, cor-

respondingly, the sheaves of holomorphic functions 𝒪𝐶 , holomorphic 1−forms Ω1
𝐶 , and

smooth (𝑝, 𝑞)−differential forms ℰ𝑝,𝑞𝐶 on a smooth curve 𝐶 in the complex case. The

differential 𝑑′′ play the same role as the 𝜕 operator.

The space Ω1
Γ was introduced in [10, Definition 2.25, Tropical 1-form]. In that paper

it is related to degeneration of complex curves to tropical, and related degeneration of

holomorphic forms on curves.

Proposition 2.14. There are exact sequences of sheaves

0→ Ω1
Γ

𝑖,→ ℰ1,0Γ
𝑑′′,,→ ℰ1,1Γ → 0,

0→ ℝΓ
𝑖,→ ℰ0,0Γ

𝑑′′,,→ ℰ0,1Γ → 0,

where 𝑖 is the natural inclusion of subsheaves.

Proof. The map 𝑖 is injective by definition. The kernel of 𝑑′′ consists of forms with coeffi-

cients constant on edges. These are exactly forms either from Ω1
Γ or from ℝΓ. Therefore

im 𝑖 = ker𝑑′′.
The surjectivity of 𝑑′′ follows from the Newton-Leibniz formula. Let𝑈𝜀 be an 𝜀−neighborhood

of a vertex 𝑣 as defined in (1). Given a (1, 1)−form 𝜔. Let

𝜔𝑗(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥
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be a component of 𝜔 over the 𝑗−th edge of 𝑈𝜀. Let 𝜑𝑗(𝑥) = ∫ 0𝑥 𝜔𝑗(𝑡)𝑑𝑡 and 𝜑𝑗(𝑥)𝑑′𝑥 be a

component of the (1, 0)−form 𝜑 over 𝑗−th edge. The form 𝜑 is regular. Indeed, 𝜑𝑗(0) = 0,

therefore it satisfies the Kirchhoff’s law at 𝑣. We have 𝑑′′𝜑 = 𝜔.
Let 𝑈𝜀 = [−∞,−𝜀) be an 𝜀−neighborhood of a degree 1 vertex and 𝜔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥 be a

regular (1, 1)−form on 𝑈𝜀. Suppose

𝜑(𝑥) = − ∫
𝑥

−∞
𝜔(𝑡)𝑑𝑡

then 𝜑(𝑥)𝑑′𝑥 is a regular form on 𝑈𝜀. Indeed, since 𝜔 is regular at infinity it is zero at

some neighborhood of −∞. Hence the integral is convergent and 𝜑(𝑥) is equal to zero at

the same neighborhood of −∞.
For an interior point of an edge there is a neighborhood isometric to a bounded

interval 𝑈𝜀 = (−𝜀, 𝜀). The exactness of sequences over this neighborhood follows from

the Newton-Leibniz formula. Thus we checked all possible cases and proved that in a

neighborhood of any point 𝑥 ∈ Γ the operator 𝑑′′ is surjective.

The proof of the surjectivity of 𝑑′′ in the second sequences repeats the above arguments.

Let us define the bigraded cohomology group 𝐻𝑝,𝑞(Γ) of Γ as

𝐻1,𝑞(Γ) = 𝐻𝑞(Γ,Ω1
Γ),

𝐻0,𝑞(Γ) = 𝐻𝑞(Γ,ℝΓ).

Since ℝΓ is the sheaf of locally constant functions, the group 𝐻0,𝑞(Γ) is isomorphic to the

usual topological cohomology group 𝐻𝑞(Γ,ℝ) of the graph Γ.

Proposition 2.15. The sheaves ℰ𝑝,𝑞Γ are fine and acyclic. There is an isomorphism 𝐻𝑝,𝑞(Γ) ≅
𝐻𝑞(ℰ𝑝,∗(Γ), 𝑑′′), where 𝐻𝑞(ℰ𝑝,∗(Γ), 𝑑′′) is the cohomology group of the complex

0→ ℰ𝑝,0(Γ) 𝑑′′,,→ ℰ𝑝,1(Γ)→ 0.

Proof. The proof of this statement repeats the proof of acyclicity of the sheaf of smooth

forms on a smooth manifold and the Čech to de Rham isomorphism on a smooth manifold.
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For any open cover 𝔘 of Γ there is a smooth partition of unity for the sheaf of regular

tropical (0, 0)-superforms ℰ0,0Γ . Since the sheaf ℰ𝑝,𝑞Γ is an ℰ0,0Γ −module, there is a partition

of unity on it and ℰ𝑝,𝑞Γ is a fine sheaf and, consequently, is acyclic.

Let 𝔘 = {𝑈𝑖} be a finite acyclic open cover of Γ, i.e., 𝔘 such a cover that for any

intersection 𝑈 of elements of 𝔘 the sequences of section corresponding to the sequences

(2.14) of sheaves are exact. Using the standard construction of the Čech to de Rham

isomorphism we prove the proposition.

2.5 Kähler form, inner product and Hodge star operator.

Let 𝑔 = 𝑔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥 ∈ ℰ1,1(ℝ) be a positive tropical (1, 1)−superform over ℝ. We say that

form is positive if 𝑔(𝑥) > 0 for every 𝑥 ∈ ℝ. Since 𝑔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥 stands for 𝑔(𝑥)𝑑𝑥 ⊗ 𝑑𝑥,
we can consider 𝑔 as a Riemannian metric on ℝ. The Riemannian metric 𝑔 defines the

pointwise scalar product (𝜑, 𝜓)𝑔(𝑥) between elements of 𝜑, 𝜓 ∈ ℰ𝑝,𝑞(ℝ). Indeed, we can

consider elements of ℰ𝑝,𝑞(ℝ) as tensor fields, a Riemannian metric defines the pointwise

scalar product on tensor fields. Let us define the scalar product (𝜑, 𝜓)𝑔 between two forms

𝜑, 𝜓 ∈ ℰ𝑝,𝑞(ℝ) as

(𝜑, 𝜓)𝑔 = ∫
ℝ
(𝜑, 𝜓)𝑔(𝑥)𝑔,

where 𝑔 is consider as a tropical (1, 1)−form and the right-hand side is a tropical integral.

At this moment we are not concerned with convergence of this integral. Usually we will

omit subscript in (⋅, ⋅)𝑔 and write (⋅, ⋅) instead.

Let us describe the scalar product in coordinate terms for the various 𝑝, 𝑞 ∶

(𝑓(𝑥), ℎ(𝑥)) = ∫
ℝ
𝑔(𝑥)𝑓(𝑥)ℎ(𝑥)𝑑𝑥

(𝑓(𝑥)𝑑′𝑥, ℎ(𝑥)𝑑′𝑥) = (𝑓(𝑥)𝑑′′𝑥, ℎ(𝑥)𝑑′′𝑥) = ∫
ℝ
𝑓(𝑥)ℎ(𝑥)𝑑𝑥

(𝑓(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥, ℎ(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥) = ∫
ℝ

1
𝑔(𝑥)𝑓(𝑥)ℎ(𝑥)𝑑𝑥

The Hodge star operator

∗𝑔∶ ℰ𝑝,𝑞(ℝ)→ ℰ1−𝑝,1−𝑞(ℝ)
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is defined by the relation

∫
ℝ
𝜑∧ ∗𝑔 𝜓 = (𝜑, 𝜓)𝑔

for every 𝜑, 𝜓 ∈ ℰ𝑝,𝑞(ℝ). Usually we will omit the subscript in ∗𝑔 and write ∗ instead.

The Hodge star is an isometry, i.e., for any 𝜑, 𝜓 ∈ ℰ𝑝,𝑞(ℝ) holds

(𝜑, 𝜓) = (∗ 𝜑, ∗ 𝜓).

Also, for any 𝜓 ∈ ℰ𝑝,𝑞(ℝ) holds

∗∗ 𝜓 = (−1)𝑝+𝑞𝜓.

In terms of coordinate the Hodge star looks as follows:

∗ 𝑓(𝑥) = 𝑓(𝑥)𝑔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥,

∗ 𝑓(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥 = 1
𝑔(𝑥)𝑓(𝑥),

∗ 𝑓(𝑥)𝑑′𝑥 = 𝑓(𝑥)𝑑′′𝑥,

∗ 𝑓(𝑥)𝑑′′𝑥 = −𝑓(𝑥)𝑑′𝑥.

(2)

Remark 2.16. In the differential geometry a Riemannian metric defines the standard

scalar product on the space of sections of tensor fields. Since the form 𝑔 is a symmetric

tensor field of valence (0, 2) we can consider it as a Riemannian metric on ℝ. Also, we can

consider the space ℰ𝑝,𝑞(ℝ) as a space of tensor fields. Therefore, this Riemannian metric

induces the standard scalar product on the space ℰ𝑝,𝑞(ℝ), but this scalar product does not

coincide with the tropical scalar product defined above.

Indeed, let 𝑓(𝑥), ℎ(𝑥) be functions on ℝ then the standard scalar product on the space

of functions equals

(𝑓(𝑥), ℎ(𝑥)) = ∫
ℝ
𝑓(𝑥)ℎ(𝑥)

√
𝑔(𝑥)𝑑𝑥.

On the space of 1−forms which can be identified with ℰ1,0(ℝ) or ℰ0,1(ℝ) the standard scalar

is equal to

(𝑓(𝑥)𝑑𝑥, ℎ(𝑥)𝑑𝑥) = ∫
ℝ
𝑓(𝑥)ℎ(𝑥) 1√

𝑔(𝑥)
𝑑𝑥.
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The reason for this is that the tropical superforms overℝ correspond to the usual differen-

tial form over ℂ⧵ {0}, not on ℝ, and the scalar product on the space of tropical superforms

is consistent with the standard scalar product on ℂ⧵ {0}. This correspondence is described

in the next subsection.

If we identify an edge 𝑒 of Γ with an interval of ℝ, then a Kähler form on this interval

defines the scalar product (, ) and the Hodge star operator on this edge of Γ.

Definition 2.17. A Kähler form 𝑔 on the curve Γ is a (1, 1)−form 𝑔 ∈ ℰ̃𝑝,𝑞(Γ) such that

1. 𝑔 is positive, i.e., in local coordinates it is given by 𝑔 = 𝑔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥 with positive

𝑔(𝑥);

2. ∫Γ 𝑔 < +∞;

3. on any infinite length edge 𝑒 the integral ∫𝑒 𝑥2𝑔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥 converges.

We define the scalar product for 𝜑, 𝜓 ∈ ℰ̃𝑝,𝑞(Γ) as follows:

(𝜑, 𝜓)𝑔 = ∫
Γ
𝜑∧ ∗𝑔 𝜓.

Remark 2.18. The last condition in the definition, convergence of ∫𝑒 𝑥2𝑔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥, play

its role in the study of 𝐿2−theory in the next section. It allow us to get some estimates on

convergence of various integrals. It is not clear for us what is necessary and sufficient

condition here or how this condition can be weakened.

As Example 2.22 shows tropical Kähler forms that arises from the complex geometry

are, actually, have rapidly decreasing at infinity coefficients, which is, actually, much

higher rate of convergence that we required in the definition.

Remark 2.19. In the tropical setting a Kähler form 𝑔 plays the role of a Kähler form and

a hermitian metric in the classical complex geometry. Also the Kähler form 𝑔 defines a

Riemannian metric on each edge of Γ. Notice that, this Riemannian metric is unrelated to

the metric structure on Γ, i.e., to the length of the edges. In general, the Hodge star operator

does not preserve the regularity conditions, i.e., there is a regular form 𝜑 ∈ ℰ𝑝,𝑞(Γ) such
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that ∗ 𝜑 is not regular. This is important and unfortunate difference between the tropical

and the classical settings. Indeed, the Hodge star of a smooth from on a manifold is again

a smooth form.

We can summarize the results of this section as follows

Theorem 2.20. Let 𝑔 be a Kähler form on the curve Γ. Then ℰ𝑝,𝑞(Γ) is a differential bigraded

algebra with the nondegenerate pairing

⟨⋅, ⋅⟩ ∶ ℰ𝑝,𝑞(Γ)⊗ ℰ1−𝑝,1−𝑞(Γ)→ ℝ,

⟨𝜑, 𝜓⟩ = ∫
Γ
𝜑 ∧ 𝜓,

and the scalar product

(𝜑, 𝜓) = ∫
Γ
𝜑∧ ∗ 𝜓.

In this theorem the scalar product and and pairing are well-defined for all elements,

i.e., all integrals are convergent. The convergence follows from the regularity at infinity

condition for regular forms and the convergence of the tropical integral ∫Γ 𝑔 which is

required by the definition of the Kähler form 𝑔.

2.6 Tropical superforms and complex geometry

At the first glance the tropical superforms and related objects may seem to be a bit artificial

constructions. In this section we show that these objects can be naturally interpreted in

terms of the classical complex geometry.

The real line ℝ can be considered as a tropical analog of the complex torus ℂ∗. There

is the map

log |𝑧| ∶ ℂ∗ → ℝ

between them.

Let ℰ𝑝,𝑞(ℂ∗) be a space of smooth differential ℂ-valued forms of bidegree (𝑝, 𝑞) over

ℂ∗. Let us define the bigraded algebra homomorphism Θ ∶ ℰ𝑝,𝑞(ℝ) → ℰ𝑝,𝑞(ℂ∗). On the
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generators it is defined as follows

Θ(𝜑(𝑥)) = 𝜑(log |𝑧|), 𝜑(𝑥) ∈ ℰ0,0(ℝ),

Θ(𝑑′𝑥) = 1
2
√
𝜋
𝑑𝑧
𝑧 , Θ(𝑑

′′𝑥) = 𝑖
2
√
𝜋
𝑑𝑧
𝑧
.

Since ℰ𝑝,𝑞(ℝ) is an ℝ−algebra, we consider Θ as an ℝ−algebra homomorphism.

Consider the unitary group 𝑈(1) = {𝑡 ∈ ℂ ∶ |𝑡| = 1} and the standard action 𝑈(1) ×
ℂ∗ → ℂ∗, i.e., (𝑡, 𝑧) → 𝑡 ⋅ 𝑧. This action induces action of 𝑈(1) on ℰ𝑝,𝑞(ℂ∗). The image of

ℰ𝑝,𝑞(ℝ) under Θ is an ℝ-linear subspace in the space ℰ𝑝,𝑞𝑈(1)(ℂ
∗) of 𝑈(1)−invariant forms.

Its complexification Θ(ℰ𝑝,𝑞(ℝ))⊗ℝ ℂ coincides with ℰ𝑝,𝑞𝑈(1)(ℂ
∗).

Let 𝑔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥 be a tropical Kähler form. One can check that its image

Θ(𝑔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥) = 𝑖
4𝜋𝑔(log |𝑧|)

𝑑𝑧 ∧ 𝑑𝑧
|𝑧|2

is a Kähler form on ℂ∗. A Kähler form 𝜔 = 𝑖
2
ℎ(𝑧)𝑑𝑧 ∧ 𝑑𝑧 determines the hermitian metric

ℎ = ℎ(𝑧)𝑑𝑧 ⊗ 𝑑𝑧 on ℂ∗. Thus for the Kähler form 𝜔 = Θ(𝑔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥) the corresponding

hermitian metric is

ℎ = 1
2𝜋

𝑔(log |𝑧|)
|𝑧|2 𝑑𝑧 ⊗ 𝑑𝑧.

Let ∗ℎ be the Hodge star operator and (, )ℎ be the scalar product on ℰ𝑝,𝑞(ℂ∗) corre-

sponding to the metric ℎ.

Proposition 2.21. Suppose 𝜑, 𝜓 ∈ ℰ𝑝,𝑞(ℝ), then the following relations hold:

∗ℎ Θ = Θ ∗𝑔,

(Θ𝜑,Θ𝜓)ℎ = (𝜑, 𝜓)𝑔,

Θ(𝑑′′𝜑) = 𝑖√
𝜋
𝜕Θ(𝜑),

Θ(𝑑′𝜑) = 1√
𝜋
𝜕Θ(𝜑).

Let 𝜔 ∈ ℰ1,1(ℝ), then

∫
ℝ
𝜔 = ∫

ℂ∗
Θ(𝜔).
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The tropical integral ∫𝐼 𝜔 over an interval 𝐼 = (𝑎, 𝑏) is equal to the integral of ∫𝑈 Θ(𝜔) over

the annulus 𝑈 = {𝑧 ∈ ℂ∗ ∶ 𝑒𝑎 < |𝑧| < 𝑒𝑏}.

The proof is a straightforward computation.

Thus tropical superform can be reinterpreted as an ℝ−subalgebra of 𝑈(1)−invariant

forms of the algebra ℰ𝑝,𝑞(ℂ∗).

Example 2.22. Let us consider the Fubini-Study metric and its Kähler form

𝜔 = 𝑖
2𝜋𝜕𝜕 log(1 + |𝑧|2) = 𝑖

2𝜋
𝑑𝑧 ∧ 𝑑𝑧
(1 + |𝑧|2)2

on ℂ∗ ⊂ ℂℙ1.
There is the tropical form

𝜔′ = 2 𝑒2𝑥
(1 + 𝑒2𝑥)2𝑑

′𝑥 ∧ 𝑑′′𝑥

such that Θ(𝜔′) = 𝜔. Moreover, 𝜔′ = 1
2
𝑑′𝑑′′ log(1 + 𝑒2𝑥) thus

𝜔 = Θ(12𝑑
′𝑑′′ log(1 + 𝑒2𝑥)) = 1

2
1√
𝜋
𝜕 𝑖√

𝜋
𝜕 log(1 + |𝑧|2).

Since 𝜔′ satisfies all condition of Definition 2.17, we can consider 𝜔′ as a Kähler from on

the tropical projective space 𝕋ℙ1 = [−∞,+∞].

Remark 2.23. The tropical form 𝜔′ from the example above is not a regular tropical form

according to our definition of regularity since the regularity at infinity condition does

not hold. On the other hand, the form Θ𝜔′ can be extended to a smooth form on ℂℙ1. Let

us also notice that the coefficient 𝑒2𝑥

(1+𝑒2𝑥)2
of the form 𝜔′ is a rapidly decreasing function

on ℝ in the sense of Schwartz space.

Moreover, since the coefficients of any Kähler form 𝑔 a curve Γ are everywhere positive,

a Kähler form 𝑔 fails to be regular at infinity if there are infinite length edges on Γ. On the

other hand, its coefficients should decrease fast enough near infinity since we require

the convergence of the integral ∫Γ 𝑔.

Also, notice that the map

log |𝑧| ∶ ℂ∗ → ℝ
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can be extend to the map

log |𝑧| ∶ ℂ→ ℝ ∪ {−∞}

These observations lead us to the idea to extend the notion of regularity at infinity as

follows. We may call a tropical form 𝜑 ∈ ℰ𝑝,𝑞(ℝ) regular at infinity if Θ𝜑 ∈ ℰ𝑝,𝑞(ℂ∗) can be

extended to a smooth form over whole ℂ. This extension seems to be consistent but we

do not develop this idea further in this paper.

3 𝐿2-theory, Laplace-Beltrami operator and harmonic form

In this section we prove the main statements of the paper. We introduce the notions

of tropical superforms with 𝐿2-coefficients, weak 𝑑′′−differential, the Laplace-Beltrami

operator, and harmonic tropical superforms. Main methods of this parts are in style of

𝐿2−cohomology theory: functional analysis, unbounded differential operators, distribu-

tions, Sobolev spaces, various analytical estimations. For reference, the way how the

Hodge on PL-manifolds was treated via 𝐿2-cohomology theory in [11] is ideologically very

close to our paper, [4, Chapter VIII] can be used as a general reference in 𝐿2-methods in

complex geometry.

Let us note that the main source of complications in our work is a treatment of infinite

length edges which require to use some tedious analysis.

3.1 Tropical superforms with 𝐿2-coefficients and weak 𝑑′′−differential.

Let Γ be a tropical curve with a Kähler from 𝑔. Let us denote by ℒ𝑝,𝑞(Γ) the Hilbert space of

(𝑝, 𝑞)−form on Γwith 𝐿2-coefficients with the scalar product (⋅, ⋅)𝑔 defined in the subsection

2.5. This space is the metric completion of ℰ̃𝑝,𝑞(Γ). Obviously, the space of regular form

ℰ𝑝,𝑞(Γ) is a subspace of ℒ𝑝,𝑞(Γ), and ℒ𝑝,𝑞(Γ) is also the metric completion of ℰ𝑝,𝑞(Γ).
There is a continuous linear extension of the Hodge star operator ∗ from ℰ̃𝑝,𝑞(Γ) to

ℒ𝑝,𝑞(Γ) which we also denote by ∗ . The Hodge star operator is an isometry between

ℒ𝑝,𝑞(Γ) and ℒ1−𝑝,1−𝑞(Γ).
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Definition 3.1. A form 𝜔 ∈ ℒ𝑝,1(Γ) is called the weak 𝑑′′−differential of a form 𝜓 ∈ ℒ𝑝,0(Γ)
if for any regular form 𝜑 ∈ ℰ1−𝑝,0(Γ) holds

∫
Γ
𝜔 ∧ 𝜑 = (−1)𝑝+1 ∫

Γ
𝜓 ∧ 𝑑′′𝜑. (3)

We denote the weak 𝑑′′−differential of a form 𝜓 by 𝑑′′𝜓.

Obviously, the 𝑑′′−differential of a regular form is also the weak 𝑑′′−differential.

The weak 𝑑′′−differential of a from 𝜓 is unique if it exists. Indeed, suppose there is

two such differentials 𝜔1 and 𝜔2. Then using (3) we obtain

∫
Γ
(𝜔1 − 𝜔2) ∧ 𝜑 = (−1)𝑝+1 ∫

Γ
(𝜓 − 𝜓) ∧ 𝑑′′𝜑 = 0

.

∫
Γ
(𝜔1 − 𝜔2) ∧ 𝜑 = ± ∫

Γ
∗∗ (𝜔1 − 𝜔2) ∧ 𝜑 = ±(∗ (𝜔1 − 𝜔2), 𝜑) = 0

Since it holds for any 𝜑 ∈ ℰ1−𝑝,0(Γ) and ℰ1−𝑝,0(Γ) is dense in ℒ1−𝑝,0(Γ), we get the equality

𝜔1 = 𝜔2.
Thus, there is the densely defined unbounded operator

𝑑′′ ∶ ℒ𝑝,0(Γ)→ ℒ𝑝,1(Γ).

We denote its domain by 𝒟(𝑑′′) or by 𝒟𝑝,0(Γ).
In the sequel we denote the domain of an unbounded operator 𝐴 by 𝒟(𝐴).

3.2 Presheaves ℒ𝑝,𝑞 and 𝒟𝑝,0.

Definition 3.2. Restrictions of ℒ𝑝,𝑞(Γ) to an open subsets of Γ defines the presheaf ℒ𝑝,𝑞

of (𝑝, 𝑞)−superform with 𝐿2-coefficients on Γ. Let us define the subpresheaf 𝒟𝑝,0 of the

presheaf ℒ𝑝,0. For an open subset 𝑈 ⊂ Γ the (𝑝, 0)−form 𝜓 ∈ ℒ𝑝,0(𝑈) belongs to 𝒟𝑝,0(𝑈) if

there is 𝜔 ∈ ℒ𝑝,1(𝑈) such that for any 𝜑 ∈ ℰ1−𝑝,0(Γ) with a compact support on 𝑈 holds the

equation (3).
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Example 3.3. In the definition above the from 𝜑 has a compact support in the open set 𝑈.
Let us clarify the structure of topology on the infinite edges and what is considered to be

a compact support in that case. Consider the tropical projective space 𝕋ℙ1 = [−∞,+∞].
Then, for example, 𝑈 = [−∞,∞) is an open subset of 𝕋ℙ1, the set [−∞, 𝑎], 𝑎 ∈ ℝ is a

compact subset of 𝑈 and the set [𝑎,+∞), 𝑎 ∈ ℝ is not compact.

Remark 3.4. We should warn that the sheafification ofℒ𝑝,𝑞 is the sheafℒ𝑝,𝑞
𝑙𝑜𝑐 of (𝑝, 𝑞)−superform

with locally 𝐿2-coefficients on Γ, i.e., sections ofℒ𝑝,𝑞
𝑙𝑜𝑐 (𝑈) over an open set𝑈 are (𝑝, 𝑞)−superform

such that their coefficients are 𝐿2-integrable functions over every compact set of 𝑈. Since

Γ is compact, we have ℒ𝑝,𝑞
𝑙𝑜𝑐 (Γ) = ℒ𝑝,𝑞(Γ). To avoid complications related to the locally

𝐿2-coefficients we will work with the presheaf ℒ𝑝,𝑞.

In the other hand, ℒ𝑝,𝑞 and 𝒟𝑝,0 are almost sheaves, to be sheaves they have to satisfy

Locality and Gluing axioms. Let us recall these axioms for a sheaf ℱ.

(Locality) Suppose 𝑈 is an open set, {𝑈𝑖}𝑖∈𝐼 is an open cover of 𝑈, and 𝑠, 𝑡 ∈ ℱ(𝑈) are

sections. If 𝑠|𝑈𝑖 = 𝑡|𝑈𝑖 for all 𝑖 ∈ 𝐼, then 𝑠 = 𝑡.

(Gluing) Suppose 𝑈 is an open set, {𝑈𝑖}𝑖∈𝐼 is an open cover of 𝑈, and {𝑠𝑖 ∈ ℱ(𝑈𝑖)}𝑖∈𝐼 is a

family of sections. If all pairs of sections agree on the overlap of their domains, that is, if

𝑠𝑖|𝑈𝑖∩𝑈𝑗 = 𝑠𝑗|𝑈𝑖∩𝑈𝑗 for all 𝑖, 𝑗 ∈ 𝐼, then there exists a section 𝑠 ∈ ℱ(𝑈) such that 𝑠|𝑈𝑖 = 𝑠𝑖 for

all 𝑖 ∈ 𝐼.

Presheaves ℒ𝑝,𝑞,𝒟𝑝,0 satisfy Locality axiom for any open cover and Gluing axiom only

for finite covers. Indeed, if {𝑈𝑖}𝑖∈𝐼 is an infinite cover of 𝑈, then it may happen that the

norms of restriction to each 𝑈𝑖 are finite but the norm of the element on 𝑈 is infinite,

therefore it does not belong to ℒ𝑝,𝑞(𝑈).

It is possible to glue sections of 𝒟𝑝,0, because there is partition of unity in the space of

regular tropical (0, 0)−forms. Using that partition of unity one can check that the equation

(3) holds for the glued section.

Indeed, suppose 𝑈 is an open set, {𝑈𝑖}𝑖∈𝐼 is an open finite cover of 𝑈, and {𝜓𝑖 ∈
𝒟𝑝,0(𝑈𝑖)}𝑖∈𝐼 is a family of sections such that 𝜓𝑖|𝑈𝑖∩𝑈𝑗 = 𝜓𝑗|𝑈𝑖∩𝑈𝑗 for all 𝑖, 𝑗 ∈ 𝐼. Then there is

a section 𝜓 ∈ ℒ𝑝,0(𝑈) such that 𝜓|𝑈𝑗 = 𝜓𝑗. Since forms 𝜔𝑖 = 𝑑′′𝜓𝑗 ∈ ℒ𝑝,1(𝑈𝑖) agree on the
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overlaps of their domains, we can glue them to the global form 𝜔 ∈ ℒ𝑝,1(𝑈). Let us show

that 𝜓 is an element of 𝒟𝑝,0(𝑈), that is, for any 𝜑 ∈ ℰ1−𝑝,0(Γ) with a compact support on 𝑈
holds:

∫
𝑈
𝜔 ∧ 𝜑 = (−1)𝑝+1 ∫

𝑈
𝜓 ∧ 𝑑′′𝜑.

Let 𝜌𝑖 ∈ ℰ0,0(Γ), 𝑖 ∈ 𝐼 be a partition of unity subordinate to the open cover {𝑈𝑖}𝑖∈𝐼 . Then

∫
𝑈
𝜔 ∧ 𝜑 =

∑

𝑖∈𝐼
∫
𝑈𝑖

𝜔 ∧ 𝜌𝑖𝜑 =

because 𝜌𝑖𝜑 has a compact support on 𝑈𝑖, we get

= (−1)𝑝+1
∑

𝑖∈𝐼
∫
𝑈𝑖

𝜓 ∧ 𝑑′′(𝜌𝑖𝜑) = (−1)𝑝+1 ∫
𝑈
𝜓 ∧ 𝑑′′𝜑.

3.3 The main technical lemma.

Lemma 3.5. Let 𝑈 ≅ [−∞, 𝑎) be an open neighborhood of a degree 1 vertex of Γ, the vertex

is identified with the point −∞. Given a form 𝜔 ∈ ℒ𝑝,1(𝑈).

1. If 𝑝 = 0 and 𝜔 = 𝜔(𝑥)𝑑′′𝑥, let us define a (0, 0)−form 𝜓 = 𝜓(𝑥), i.e., a function as follows:

𝜓(𝑥) = − ∫
𝑎

𝑥
𝜔(𝑡)𝑑𝑡.

The function 𝜓 is well-defined and belongs to ℒ0,0(𝑈), and the following estimates

holds:

|𝜓(𝑥)| ≤
√
𝑎 − 𝑥||𝜔(𝑥)𝑑′′𝑥||.

2. If 𝑝 = 1 and 𝜔 = 𝜔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥, let us define a (1, 0)−form 𝜓 = 𝜓(𝑥)𝑑′𝑥 as follows:

𝜓(𝑥) = − ∫
𝑥

−∞
𝜔(𝑡)𝑑𝑡.

The form 𝜓 is well-defined and belongs to ℒ0,1(𝑈), and the following estimates holds:

|𝜓(𝑥)| ≤

√
√√√∫

𝑥

−∞
𝑔(𝑡)𝑑𝑡||𝜔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥||.
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3. The map 𝜔 → 𝜓 is a bounded linear operator from ℒ𝑝,1(𝑈) to 𝒟𝑝,0(𝑈) and 𝑑′′𝜓 = 𝜔. Let

us denote this operator 𝑇𝑈 .

4. Suppose there is a form 𝜓 ∈ 𝒟𝑝,1(𝑈) such that 𝑑′′𝜓 = 𝜔. Then, if 𝑝 = 1, 𝜓 = 𝜓, and, if

𝑝 = 0, 𝜓 = 𝐶 + 𝜓, 𝐶 ∈ ℝ.

Remark 3.6. In other words, this lemma says that starting from a form 𝜔 ∈ ℒ𝑝,1(𝑈) we can

find a form 𝜓 ∈ ℒ𝑝,1(𝑈) such that 𝑑′′𝜓 = 𝜔. The value and the norm of 𝜓 can be estimated

using the norm of 𝜔. Also, the form 𝜓 is a unique form such that 𝑑′′𝜓 = 𝜔 if 𝑝 = 1, or

unique up to addition of a constant if 𝑝 = 0.

Proof. Let us consider the case of (1, 1)−form. Let 𝐼≤𝑥 be the indicator function of the

set [−∞, 𝑥]. Given a form 𝜔 = 𝜔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥 ∈ ℒ1,1(𝑈). Then the (0, 1)−form 𝜓 = 𝜓(𝑥)𝑑′𝑥 is

defined as follows:

𝜓(𝑥) = − ∫
𝑈
𝐼≤𝑥(𝑡)𝜔(𝑡)𝑑𝑡.

This integral is well-defined, indeed, it can be written using the scalar product on the

space ℒ1,1(𝑈) ∶
∫
𝑈
𝐼≤𝑥(𝑡)𝜔(𝑡)𝑑𝑡 = −(𝜔, 𝐼≤𝑥𝑔),

and the form 𝐼≤𝑥𝑔 is an element of ℒ1,1(𝑈).
We have to show that 𝜓 ∈ ℒ1,0(𝑈). In particular, that

||𝜓||2 = ∫
𝑈
𝜓2(𝑥)𝑑𝑥 < +∞.

Recall that

||𝜔||2 = ∫
𝑈

1
𝑔(𝑥)𝜔

2(𝑥)𝑑𝑥

Using the Cauchy-Schwarz inequality we get

|𝜓(𝑥)| =
|||||||
∫
𝑈
𝐼≤𝑥(𝑡)𝜔(𝑡)𝑑𝑡

|||||||
=
|||||||
∫
𝑈

√
𝑔(𝑡)𝐼≤𝑥(𝑡)

1√
𝑔(𝑡)

𝜔(𝑡)𝜓
|||||||
≤ ||𝜔||

√
∫
𝑈
𝑔(𝑡)𝐼≤𝑥(𝑡)𝑑𝑡.

So we obtained the estimation:

|𝜓(𝑥)| ≤ ||𝜔||

√
√√√∫

𝑥

−∞
𝑔(𝑡)𝑑𝑡.
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Then

||𝜓||2 = ∫
𝑎

−∞
𝜓2(𝑥)𝑑𝑥 ≤ ||𝜔||2 ∫

𝑎

−∞
𝑑𝑥(∫

𝑥

−∞
𝑔(𝑡)𝑑𝑡) =

changing the order of integration we get

= ||𝜔||2 ∫
𝑎

−∞
𝑔(𝑡)𝑑𝑡(∫

𝑎

𝑡
𝑑𝑥) = ||𝜔||2 ∫

𝑎

−∞
(𝑎 − 𝑡)𝑔(𝑡)𝑑𝑡

By the definition of the Kähler metric (Definition 2.17) the integral ∫ 𝑎−∞(𝑎 − 𝑡)𝑔(𝑡)𝑑𝑡 con-

verges. Thus

||𝜓|| ≤ 𝐶||𝜔||

and the constant 𝐶 does not depend on the choice of 𝜔. So there is a bounded linear

operator

𝑇𝑈 ∶ ℒ1,1(𝑈)→ 𝒟1,0(𝑈)

such that 𝑇𝑈𝜔 = 𝜓.
Let us check that 𝑑′′𝜓 is equal to 𝜔. It means that for any for regular (0, 0)−form 𝜑 with

the compact support in 𝑈 holds:

∫
𝑈
𝜔 ∧ 𝜑 = ∫

𝑈
𝜓 ∧ 𝑑′′𝜑.

Consider the right hand side of the equality

∫
𝑈
𝜓 ∧ 𝑑′′𝜑 = ∫

𝑈
𝜓(𝑥)𝜑′(𝑥)𝑑𝑥 = ∫

𝑎

−∞
(− ∫

𝑥

−∞
𝜔(𝑡)𝑑𝑡)𝜑′(𝑥)𝑑𝑥 =

changing the order of integration we get

= ∫
𝑎

−∞
(− ∫

𝑎

𝑡
𝜑′(𝑥)𝑑𝑥)𝜔(𝑡)𝑑𝑡 =

by the Newton-Leibniz formula, since 𝜑(𝑥) is equal to zero in a neighborhood of 𝑎, we

obtain

= ∫
𝑎

−∞
𝜑(𝑡)𝜔(𝑡)𝑑𝑡 = ∫

𝑈
𝜔 ∧ 𝜑.

Thus, 𝜓 belongs to 𝒟1,0(𝑈) and 𝑑′′𝜓 = 𝜔.
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Let us consider the case of (0, 1)−forms. This case is quite similar to the previous one,

but there are some minor differences. Given a form

𝜔 = 𝜔(𝑥)𝑑′′𝑥 ∈ ℒ0,1(𝑈).

Let 𝐼𝑥≤ be the indicator function of the set [𝑥, 𝑎). Consider the function

𝜓(𝑥) = − ∫
𝑈
𝐼𝑥≤(𝑡)𝜔(𝑡)𝑑𝑡.

This integral is well-define since it is equal to the scalar product of two elements in

ℒ0,1(𝑈) ∶
𝜓(𝑥) = −(𝜔, 𝐼𝑥≤(𝑡)𝑑′′𝑥).

We have to show that 𝜓 ∈ ℒ0,0(𝑈), thus we need to check that

||𝜓||2 = ∫
𝑈
𝑔(𝑥)𝜓2(𝑥)𝑑𝑥 < +∞.

Since

||𝜔||2 = ∫
𝑈
𝜔2(𝑥)𝑑𝑥

using the Cauchy-Schwarz inequality we get

|𝜓(𝑥)| =
|||||||
∫
𝑈
𝐼𝑥≤(𝑡)𝜔(𝑡)𝑑𝑡

|||||||
≤ ||𝜔||

√
∫
𝑈
𝐼𝑥≤(𝑡)𝑑𝑡 = ||𝜔||

√
𝑎 − 𝑥.

Then

||𝜓||2 = ∫
𝑈
𝑔(𝑥)𝜓2(𝑥)𝑑𝑥 ≤ ||𝜔|| ∫

𝑎

−∞
(𝑎 − 𝑥)𝑔(𝑥)𝑑𝑥

By the definition of Kähler metric (Definition 2.17) the integral ∫ 𝑎−∞(𝑎−𝑥)𝑔(𝑥)𝑑𝑥 converges.

Thus

||𝜓|| ≤ 𝐶||𝜔||

and the constant does not depends on the choice of 𝜔. So there is a bounded linear

operator

𝑇𝑈 ∶ ℒ0,1(𝑈)→ 𝒟0,0(𝑈)

such that 𝑇𝑈𝜔 = 𝜓.
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Let us check that 𝑑′′𝜓 is equal to𝜔. It means that for any regular (1, 0)−form 𝜑 = 𝜑(𝑥)𝑑′𝑥
with the compact support in 𝑈 holds:

∫
𝑈
𝜔 ∧ 𝜑 = − ∫

𝑈
𝜓 ∧ 𝑑′′𝜑.

Consider the right hand side of the equality:

− ∫
𝑈
𝜓 ∧ 𝑑′′𝜑 = − ∫

𝑎

−∞
(− ∫

𝑎

𝑥
𝜔(𝑡)𝑑𝑡)(−𝜑′(𝑥))𝑑𝑥 =

changing the order of integration we obtain

= − ∫
𝑎

−∞
(∫

𝑡

−∞
𝜑′(𝑥)𝑑𝑥)𝜔(𝑡)𝑑𝑡 =

Since 𝜑 is regular it equal to zero in a neighborhood of −∞. Thus, applying the Newton-

Leibniz formula we obtain

= − ∫
𝑎

−∞
𝜑(𝑡)𝜔(𝑡)𝑑𝑡 = ∫

𝑈
𝜔 ∧ 𝜑.

Thus, 𝜓 belongs to 𝒟0,0(𝑈).

Suppose there is a form 𝜓 ∈ 𝒟𝑝,0(𝑈) such that 𝑑′′𝜓 = 𝜔. Then 𝑑′′(𝜓 − 𝜓) = 0, hence the

coefficient of 𝜓 − 𝜓 should be constant, i.e., 𝜓 − 𝜓 is equal, if 𝑝 = 1, to 𝑐𝑑′′𝑥, or, if 𝑝 = 0, to 𝑐
where 𝑐 ∈ ℝ. In the case 𝑝 = 1,

||𝑐𝑑′′𝑥||2 = ∫
𝑎

−∞
𝑐2𝑑𝑥 = +∞,

hence 𝑐 = 0 and 𝜓 = 𝜓. In the case 𝑝 = 0, the integral

||𝑐||2 = ∫
𝑎

−∞
𝑐2𝑔(𝑥)𝑑𝑥

converges by the definition of the Kähler form (Definition 2.17) and 𝑐 can be any real

number.
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3.4 Relation to the Sobolev space.

Lemma 3.7. Suppose 𝑈 is an open subsets of Γ and it is isometric to an open interval of

the finite length 𝑈 ≅ (𝑎, 𝑏). Given a form 𝜓 ∈ 𝒟𝑝,0(𝑈), in terms of coordinates it is equal

either to 𝜓 = 𝜓(𝑥)𝑑′𝑥 or to 𝜓 = 𝜓(𝑥). Then the coefficient 𝜓(𝑥) belongs to the Sobolev space

𝐻1(𝑈) = 𝐻1(𝑎, 𝑏).

Proof. Suppose 𝜓 ∈ 𝒟0,0(𝑈). Let 𝜔 = 𝜔(𝑥)𝑑′′𝑥 = 𝑑′′𝜓. Then the norms of these elements

are equal:

||𝜓||2 = ∫
𝑏

𝑎
𝜓2(𝑥)𝑔(𝑥)𝑑𝑥,

||𝜔||2 = ∫
𝑏

𝑎
𝜔2(𝑥)𝑑𝑥.

Since 𝑔(𝑥) is a nonnegative continuous function on the closure of 𝑈, there are constants

0 < 𝑐, 𝐶 such that 𝑐 < 𝑔(𝑥) < 𝐶 for any 𝑥 ∈ 𝑈. Therefore, the norm on ℒ0,0(𝑈) is equivalent

to the standard norm on 𝐿2(𝑎, 𝑏) ∶

𝑐 ∫
𝑏

𝑎
𝜓2(𝑥)𝑑𝑥 < ||𝜓||2 < 𝐶 ∫

𝑏

𝑎
𝜓2(𝑥)𝑑𝑥.

The norm of the (1, 1)−form 𝜔 ∈ ℒ0,1(𝑈) is equal to the standard norm on 𝐿2(𝑎, 𝑏) of its

coefficient the function 𝜔(𝑥).
Consider equation (3):

∫
𝑈
𝜔 ∧ 𝜑 = − ∫

𝑈
𝜓 ∧ 𝑑′′𝜑.

Since 𝜓 ∈ 𝒟0,0(𝑈), it holds for any regular from 𝜑 = 𝜑(𝑥)𝑑′𝑥 with a compact support on 𝑈.
Therefore, the coefficient 𝜑(𝑥) ∈ 𝐶∞0 (𝑈) is a smooth function with a compact support on

the interval 𝑈 = (𝑎, 𝑏). In the terms of coefficient the equation looks like:

∫
𝑏

𝑎
𝜔(𝑥)𝜑(𝑥) = − ∫

𝑏

𝑎
𝜓(𝑥)𝜑′(𝑥),

where 𝜓(𝑥), 𝜔(𝑥) ∈ 𝐿2(𝑎, 𝑏), and 𝜑(𝑥) ∈ 𝐶∞0 (𝑎, 𝑏). It is exactly the definition of the Sobolev

space, hence 𝜔(𝑥) is the weak derivative of 𝜓(𝑥), and the function 𝜓(𝑥) belongs to the

Sobolev space 𝐻1(𝑈).
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Corollary 3.8. Given a form 𝜓 ∈ 𝒟𝑝,0(Γ) and a vertex 𝑣 of Γ of degree ≥ 2. There are

well-defined boundary values of the coefficients of 𝜓 at 𝑣 along the edges incident to 𝑣.

Proof. Let 𝑒 be an edge of Γ incident to 𝑣. Let 𝑈 be a finite open interval such that 𝑈 ⊂ 𝑒
and the closure of 𝑈 contains 𝑣. Then by Lemma 3.7 the coefficient of the restriction 𝜓|𝑈
is a function from the Sobolev space 𝐻1(𝑈), and, therefore, has a well-defined trace at

the boundary of 𝑈, in particular, at 𝑣.

3.5 𝑑′′ is a closed.

Proposition 3.9. The operator 𝑑′′ is a closed operator.

Proof. An operator is closed if its graph is closed. Suppose 𝜔𝑛 ∈ 𝒟𝑝,0(𝑑′′), 𝜔𝑛 → 𝜔 in ℒ𝑝,0(Γ)
and 𝑑′′𝜔𝑛 → 𝜓 in ℒ𝑝,1(Γ). Then the relation

∫
Γ
𝑑′′𝜔𝑛 ∧ 𝜑 = (−1)𝑝+1 ∫

Γ
𝜔𝑛 ∧ 𝑑′′𝜑

holds for any 𝜑 ∈ ℰ1−𝑝,0(Γ).
Since ∗∗= (−1)𝑝+𝑞Id on the space of (𝑝, 𝑞)−forms and (𝛼, 𝛽) = ∫Γ 𝛼∧ ∗ 𝛽, we get

∫
Γ
𝑑′′𝜔𝑛 ∧ 𝜑 = (−1)𝑝−1 ∫

Γ
𝑑′′𝜔𝑛∧ ∗∗ 𝜑 = (−1)𝑝−1(𝑑′′𝜔𝑛, ∗ 𝜑),

and

(−1)𝑝+1 ∫
Γ
𝜔𝑛 ∧ 𝑑′′𝜑 = − ∫

Γ
𝜔𝑛∧ ∗∗ 𝑑′′𝜑 = −(𝜔𝑛, ∗ 𝑑′′𝜑).

Thus

(−1)𝑝(𝑑′′𝜔𝑛, ∗ 𝜑) = (𝜔𝑛, ∗ 𝑑′′𝜑).

Taking limit as 𝑛 →∞ we get

(−1)𝑝(𝜓, ∗ 𝜑) = (𝜔, ∗ 𝑑′′𝜑).

This equation is equivalent to

∫
Γ
𝜓 ∧ 𝜑 = (−1)𝑝+1 ∫

Γ
𝜔 ∧ 𝑑′′𝜑.

Hence, 𝜓 is the weak 𝑑′′−differential of 𝜔.
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3.6 𝐿2-cohomology and the Čech to de Rham isomorphism.

Let 𝐻𝑞(ℒ𝑝,∗(Γ), 𝑑′′) be the cohomology group of the complex

0→ 𝒟𝑝,0(Γ)→ ℒ𝑝,1(Γ)→ 0,

where 𝒟𝑝,0(Γ) ⊂ ℒ𝑝,0(Γ) is the domain of the operator 𝑑′′.

Theorem 3.10. For a sufficiently small neighborhood 𝑈 of a point 𝑥 ∈ Γ there are exact

sequences:

0→ ℝΓ(𝑈)
𝑖,→ 𝒟0,0(𝑈) 𝑑′′,,→ ℒ0,1(𝑈)→ 0,

0→ Λ1
Γ(𝑈)

𝑖,→ 𝒟1,0(𝑈) 𝑑′′,,→ ℒ1,1(𝑈)→ 0,
(4)

where 𝑖 is a natural inclusion of subpresheaves.

Proof. Firstly, we will prove the following statement.

Lemma 3.11. Let 𝑈 be a sufficiently small neighborhood of a point in Γ then there is a

bounded operator

𝑇𝑈 ∶ ℒ𝑝,1
Γ (𝑈)→ 𝒟𝑝,0

Γ (𝑈)

such that 𝑑′′𝑇𝑈 = Id.

Proof. To prove the statement we will consider several distinct cases: the neighborhood

𝑈 can be a neighborhood of a degree 1 vertex, or of a degree 𝑛 ≥ 2 vertex, or of an internal

point of an edge; 𝑝 can be equal to 0 or 1.
Let 𝑈 ≃ [−∞, 𝑎) be a neighborhood of a degree 1 vertex. We identify −∞ with this

vertex. In this case the required operator 𝑇𝑈 ∶ ℒ𝑝,1
Γ (𝑈) → 𝒟𝑝,0

Γ (𝑈) was constructed in

Lemma 3.5.

Given a vertex 𝑣 of Γ of degree 𝑑 ≥ 2. Consider a neighborhood 𝑈 of 𝑣 ∶

𝑈 =
⨆

𝑑-times
(−𝑎, 0]∕ ∼,

where points 0 of the different intervals are all identified by the equivalence relation ∼ .
The class of 0 is identified with the vertex 𝑣.
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Given a form 𝜔 ∈ ℒ1,1(𝑈). Suppose 𝑒𝑖 ≃ (−𝑎, 0] ⊂ 𝑈, 𝑖 = 1,… , 𝑑 is the 𝑖−th edge of 𝑈 and

𝜔𝑖 = 𝜔𝑖(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥 is the restriction of 𝜔 to 𝑒𝑖. Let us define 𝜓 = 𝑇𝑈𝜔, where 𝜓𝑖 = 𝜓𝑖(𝑥)𝑑′𝑥
is the restriction of 𝜓 to 𝑒𝑖, as follows:

𝜓𝑖(𝑥) = ∫
0

𝑥
𝜔𝑖(𝑡)𝑑𝑡.

These functions 𝜓𝑖(𝑥) are well-defined since they can be expressed as a scalar product

𝜓𝑖(𝑥) = (𝜔, 𝐼𝑖,𝑥𝑔),

where 𝜔, 𝐼𝑖,𝑥𝑔 ∈ ℒ1,1(𝑈), and 𝐼𝑖,𝑥 is the indicator function of the set [𝑥, 0] ⊂ 𝑒𝑖.
Since 𝜓𝑖(0) = 0, 𝑖 = 1,… , 𝑑, the Kirchhoff’s law holds for 𝜓. Using the same arguments

as in Lemma 3.5 we can check that 𝜓 ∈ 𝒟1,0(𝑈), 𝑑′′𝜓 = 𝜔, and 𝑇𝑈 is bounded.

Finally, if 𝜔 ∈ ℒ0,1(𝑈), and 𝜔𝑖 = 𝜔𝑖(𝑥)𝑑′′𝑥 is the restriction of 𝜔 to 𝑒𝑖. Let us define

𝜓 = 𝑇𝑈𝜔, where 𝜓𝑖 = 𝜓𝑖(𝑥) is the restriction of 𝜓 to 𝑒𝑖, as follows:

𝜓𝑖(𝑥) = − ∫
0

𝑥
𝜔𝑖(𝑡)𝑑𝑡.

Since 𝜓𝑖(0) = 0, the Continuity property hold at the vertex 𝑣. Again, using the same

arguments as above we can check that 𝜓 ∈ 𝒟0,0(𝑈), 𝑑′′𝜓 = 𝜔, and 𝑇𝑈 is bounded.

The case of a neighborhood of an internal point of an edge is equivalence to the case

of a neighborhood of degree 2 vertex.

Let 𝑈 be a sufficiently small neighborhood of a point in Γ. The kernel of 𝑑′′ ∶ 𝒟𝑝,0
Γ (𝑈)→

ℒ𝑝,1
Γ (𝑈) coincides with ℝΓ(𝑈) or Λ1

Γ(𝑈). By Lemma 3.11 the map 𝑑′′ ∶ 𝒟0,0
Γ (𝑈)→ ℒ0,1

Γ (𝑈) is

surjective. Therefore, the sequences (4) are exact.

Proposition 3.12. There is an isomorphism

𝐻𝑝,𝑞(Γ) ≅ 𝐻𝑞(ℒ𝑝,∗(Γ), 𝑑′′).

Proof. Using the exact sequences (4) we can repeat the proof of the Proposition 2.15.
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3.7 Integration by parts for weakly 𝑑′′−differentiable forms.

Proposition 3.13. If 𝜓 ∈ 𝒟0,0(Γ) and 𝜑 ∈ 𝒟1,0(Γ) are two weakly 𝑑′′−differentiable froms,

then the equation of integration by parts holds:

∫
Γ
𝑑′′𝜓 ∧ 𝜑 = − ∫

Γ
𝜓 ∧ 𝑑′′𝜑. (5)

Proof. Firstly, let us notice that both integrals in (5) are well-defined, i.e., convergent.

Indeed, consider the integral ∫Γ 𝑑′′𝜓 ∧ 𝜑, using the property of the Hodge star ∗∗= ±Id we

can rewrite it as − ∫Γ 𝑑′′𝜓∧ ∗∗ 𝜑. Thus, it is equal to −(𝑑′′𝜓, ∗ 𝜑). Since 𝑑′′𝜓 ∈ ℒ0,1(Γ) and

the Hodge star is, in this case, is an isomorphisms between ℒ1,0(Γ) and ℒ0,1(Γ), this scalar

product is well-defined and, consequently, the integral is well-defined. We can apply the

same argument for the second integral.

Let us choose a function 𝜌0 ∈ ℰ0,0(Γ) such that

1. its values between 0 and 1;

2. it is equal to 1 on each finite-length edge and in a neighborhood of any vertex of

degree ≥ 2;

3. it is equal to 0 on a neighborhood of any vertex of degree 1, i.e., in neighborhoods

of infinite tails of the tropical curve.

Let us denote 𝜌1 = 1 − 𝜌0. These two function, 𝜌0, 𝜌1 give us a partition of unity such that

one of them is nonzero on a finite part of the curve another on the infinite tails.

Consider the integral

∫
Γ
𝜓 ∧ 𝑑′′𝜑 = ∫

Γ
𝜌0𝜓 ∧ 𝑑′′𝜑 + ∫

Γ
𝜌1𝜓 ∧ 𝑑′′𝜑.

The support of 𝜌0 is a union of finite-length edges and compact parts of infinite-length

edges. Using Lemma 3.7 we obtain that 𝜓 and 𝜑 has 𝐻1−coefficients in a neighborhood of

supp 𝜌0. For the 𝐻1−function we can apply integration by parts and the boundary terms

at vertices vanish by the same reasons as in Stokes’ Theorem (Theorem 2.11).

Arnold Mathematical Journal, Vol.11(1), 2025 59

http://dx.doi.org/10.56994/ARMJ


Yury Eliyashev

The second integral ∫Γ 𝜌1𝜓∧𝑑′′𝜑 is a sum of integrals over infinite-length edges. Suppose

an infinite-length edge 𝑒 is isomorphic to 𝑒 ≅ [−∞, 0], the function 𝜌1 is equal to 0 at a

neighborhood of the point 0 and equal to 1 at a neighborhood of −∞. From this moment

let write 𝜓 instead of 𝜌1𝜓. We are going to prove that

∫
[−∞,0]

𝑑′′𝜓 ∧ 𝜑 = − ∫
[−∞,0]

𝜓 ∧ 𝑑′′𝜑.

Then we can take a sum over all infinite-length edges this will prove the statement of the

proposition.

The tropical integrals by definition equals:

∫
𝑒
𝜓 ∧ 𝑑′′𝜑 = − ∫

0

−∞
𝜓(𝑡)𝜑′(𝑡)𝑑𝑡

and

∫
𝑒
𝑑′′𝜓 ∧ 𝜑 = − ∫

0

−∞
𝜓
′
(𝑡)𝜑(𝑡)𝑑𝑡.

Therefore, we have to show that

∫
0

−∞
𝜓(𝑡)𝜑′(𝑡)𝑑𝑡 = − ∫

0

−∞
𝜓
′
(𝑡)𝜑(𝑡)𝑑𝑡. (6)

Let us split both parts of the equality to sums of integrals:

∫
0

𝑥
𝜓(𝑡)𝜑′(𝑡)𝑑𝑡 + ∫

𝑥

−∞
𝜓(𝑡)𝜑′(𝑡)𝑑𝑡 = − ∫

0

𝑥
𝜓
′
(𝑡)𝜑(𝑡)𝑑𝑡 − ∫

𝑥

−∞
𝜓
′
(𝑡)𝜑(𝑡)𝑑𝑡,

where 𝑥 ∈ (−∞, 0]. Since our initial integrals are convergent, we have

lim
𝑥→−∞

∫
𝑥

−∞
𝜓(𝑡)𝜑′(𝑡)𝑑𝑡 = 0

and

lim
𝑥→−∞

∫
𝑥

−∞
𝜓
′
(𝑡)𝜑(𝑡)𝑑𝑡 = 0.

By Lemma 3.7 the restrictions of 𝜓(𝑥), 𝜑(𝑥) to any interval (𝑥, 0) ⊂ [−∞, 0] ≅ 𝑒, 𝑥 ∈ ℝ
are functions form the Sobolev space 𝐻1(𝑥, 0). Thus, we can apply integration by parts on

(𝑥, 0):

∫
0

𝑥
𝜓(𝑡)𝜑′(𝑡)𝑑𝑡 = 𝜓(𝑡)𝜑(𝑡)|0𝑥 − ∫

0

𝑥
𝜓
′
(𝑡)𝜑(𝑡)𝑑𝑡.
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Consider the term 𝜓(𝑡)𝜑(𝑡)|0𝑥 = 𝜓(0)𝜑(0)−𝜓(𝑥)𝜑(𝑥). The first summand 𝜓(0) = 𝜌1(0)𝜓(0) =
0 is equal to zero. We are going to show that

lim
𝑥→−∞

𝜓(𝑥)𝜑(𝑥) = 0.

Consider the forms 𝜔 = 𝑑′′𝜑 and 𝜏 = 𝑑′′𝜓. In the local coordinates we have:

𝜓 = 𝜓(𝑥), 𝜑 = 𝜑(𝑥)𝑑′𝑥, 𝜔 = 𝜔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥, 𝜏 = 𝜏(𝑥)𝑑′′𝑥.

Suppose 𝑈 = [−∞, 0) ⊂ 𝑒. The operator

𝑇𝑈 ∶ ℒ𝑝,1
Γ (𝑈)→ 𝒟𝑝,0

Γ (𝑈)

was defined in Lemma 3.11. It has the following properties 𝑑′′𝑇𝑈 = Id, 𝑇𝑈𝑑′′𝜑 = 𝑇𝑈𝜔 = 𝜑,
and 𝑇𝑈𝑑′′𝜓 = 𝑇𝑈𝜏 = 𝜓 + 𝑐 where 𝑐 is some constant. By the definition of 𝑇𝑈 we get:

𝜓(𝑥) + 𝑐 = 𝑇𝑈𝜏 = − ∫
0

𝑥
𝜏(𝑡)𝑑𝑡,

and

𝜑(𝑥)𝑑′𝑥 = 𝑇𝑈𝜔 = −(∫
𝑥

−∞
𝜔(𝑡)𝑑𝑡)𝑑′𝑥.

Since 𝜓(0) = 𝜌1(0)𝜓(0) = 0 and 𝜓(0) + 𝑐 = ∫ 00 𝜏(𝑡)𝑑𝑡, the constant 𝑐 is equal to 0, and 𝜓 = 𝑇𝑈𝜏.
The the following estimates was proven for 𝑇𝑈 ∶

|𝜑(𝑥)| ≤ ||𝜔||

√
√√√∫

𝑥

−∞
𝑔(𝑡)𝑑𝑡,

|𝜓(𝑥)| ≤ ||𝜏||
√
|𝑥|

By definition of Kähler metric (Definition 2.17) the integral ∫ 0−∞ 𝑡2𝑔(𝑡)𝑑𝑡 converges

which is equivalent to

lim
𝑥→−∞

∫
𝑥

−∞
𝑡2𝑔(𝑡)𝑑𝑡 = 0.

For 𝑡 ≤ 𝑥 < 0 we have 𝑥2𝑔(𝑡) ≤ 𝑡2𝑔(𝑡) and

𝑥2 ∫
𝑥

−∞
𝑔(𝑡)𝑑𝑡 ≤ ∫

𝑥

−∞
𝑡2𝑔(𝑡)𝑑𝑡
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which is equivalent to

∫
𝑥

−∞
𝑔(𝑡)𝑑𝑡 ≤ 1

𝑥2 ∫
𝑥

−∞
𝑡2𝑔(𝑡)𝑑𝑡.

Finally, combining all our estimates we get

|𝜑(𝑥)𝜓(𝑥)| ≤ ||𝜔|| ⋅ ||𝜏||
√
|𝑥|

√
√√√∫

𝑥

−∞
𝑔(𝑡)𝑑𝑡 ≤ ||𝜔|| ⋅ ||𝜏|| 1√

|𝑥|
∫

𝑥

−∞
𝑡2𝑔(𝑡)𝑑𝑡.

The right hand side tends to 0 as 𝑥 tends to −∞.

3.8 The adjoint of 𝑑′′.

Let us consider the adjoint operator

𝑑′′∗ ∶ ℒ𝑝,1(Γ)→ ℒ𝑝,0(Γ).

By definition, 𝑑′′∗𝜔 = 𝜓 if for any 𝜑 ∈ 𝒟𝑝,0(Γ) holds

(𝑑′′𝜑, 𝜔) = (𝜑, 𝜓).

Proposition 3.14. The adjoint operator

𝑑′′∗ ∶ ℒ𝑝,1(Γ)→ ℒ𝑝,0(Γ)

is densely defined and closed. It is equal to

𝑑′′∗ = − ∗ 𝑑 ∗ .

In particular, 𝜓 ∈ 𝒟(𝑑′′∗) if and only if

∗ 𝜓 ∈ 𝒟1−𝑝,0(Γ).

Its adjoint 𝑑′′∗∗ equals 𝑑′′.

Proof. From the general properties of unbounded operators follows that the adjoint 𝐴∗

of a closed densely defined operator 𝐴 is a closed densely defined operator and its adjoint

𝐴∗∗ equals𝐴, [1, Theorem 3.1 and Theorem 3.3]. Thus we have to prove that 𝑑′′∗ = − ∗ 𝑑 ∗ .
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If 𝐴 ∶ 𝐻1 → 𝐻2 is an unbounded operator with a domain 𝒟(𝐴) ⊂ 𝐻1 then its adjoint 𝐴∗

is an unbounded operator 𝐴∗ ∶ 𝐻1 → 𝐻2 such that for any 𝑥 ∈ 𝒟(𝐴) ⊂ 𝐻1 holds

(𝑥,𝐴∗𝑦)𝐻1 = (𝐴𝑥, 𝑦)𝐻2 ,

the domain of 𝐴∗ is a maximal subspace of elements in 𝐻2 satisfying that relation, i.e.,

𝒟(𝐴∗) = {𝑥 ∈ 𝐻2 ∶ ∃𝑧 ∈ 𝐻1,∀𝑦 ∈ 𝒟(𝐴) ∶ (𝑦, 𝑧)𝐻1 = (𝐴𝑦, 𝑥)𝐻2}.

Suppose a form 𝜓 ∈ ℒ𝑝,1(Γ) is in the domain of 𝑑′′∗, 𝜓 ∈ 𝒟(𝑑′′∗) and 𝜔 = 𝑑′′∗𝜓. Then

by the definition of the adjoint operator for any form 𝜑 ∈ 𝒟𝑝,0(Γ) the following equality

holds:

(𝜑, 𝜔) = (𝑑′′𝜑, 𝜓).

We can rewrite it as follows:

∫
Γ
𝜑∧ ∗ 𝜔 = ∫

Γ
𝑑′′𝜑∧ ∗ 𝜓.

Since ℰ𝑝,0(Γ) is a subspace of 𝒟𝑝,0(Γ) this equality hold for any regular form 𝜑 ∈ ℰ𝑝,0(Γ).
Hence, by the definition, ∗ 𝜓 is 𝑑′′−weakly differentiable form and its differential is equal

to

𝑑′′ ∗ 𝜓 = (−1)𝑝+1 ∗ 𝜔.

Applying the Hodge star operator to both parts of the previous equality we get

∗ 𝑑′′ ∗ 𝜓 = (−1)𝑝+1 ∗∗ 𝜔 = −𝜔.

Hence

𝑑′′∗𝜓 = 𝜔 = − ∗ 𝑑′′ ∗ 𝜓.

At this moment we proved that if 𝜓 ∈ 𝒟(𝑑′′∗) then ∗ 𝜓 is 𝑑′′−weakly differentiable. Let

us prove the converse: if ∗ 𝜓 is 𝑑′′−weakly differentiable then 𝜓 ∈ 𝒟(𝑑′′∗). By Proposition

3.13, we can integrate by parts a product of two 𝑑′′−weakly differentiable forms, i.e., if

form ∗ 𝜓 is 𝑑′′−weakly differentiable, then for any form 𝜑 ∈ 𝒟𝑝,0(Γ) holds:

∫
Γ
𝑑′′𝜑∧ ∗ 𝜓 = (−1)𝑝+1 ∫

Γ
𝜑 ∧ 𝑑′′ ∗ 𝜓 = ∫

Γ
𝜑∧ ∗ (− ∗ 𝑑′′ ∗ 𝜓).
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That equality can be written as

(𝑑′′𝜑, 𝜓) = (𝜑,− ∗ 𝑑′′ ∗ 𝜓).

Thus we proved that the domain of 𝒟(𝑑′′∗) coincides with the space of forms such that

theirs Hodge stars are 𝑑′′−weakly differentiable.

3.9 The Laplace-Beltrami operator and harmonic tropical superforms.

Let us define the Laplace-Beltrami operator as follows

∆ = 𝑑′′𝑑′′∗ + 𝑑′′∗𝑑′′ ∶ ℒ𝑝,𝑞(Γ)→ ℒ𝑝,𝑞(Γ).

It’s domain equals

𝒟(∆) = {𝜔 ∈ ℒ𝑝,𝑞(Γ) ∶ 𝜔 ∈ 𝒟(𝑑′′∗), 𝜔 ∈ 𝒟(𝑑′′), (𝑑′′𝜔) ∈ 𝒟(𝑑′′∗), (𝑑′′∗𝜔) ∈ 𝒟(𝑑′′)}.

By the dimensional reasons one of the summands in ∆ is identically equal to zero, so ∆ is

either equals ∆ = 𝑑′′𝑑′′∗ or ∆ = 𝑑′′∗𝑑′′.

Proposition 3.15. Let 𝜔 be an element of ℒ𝑝,𝑞(Γ), then ∆𝜔 = 0 if and only if 𝑑′′𝜔 = 0 and

𝑑′′∗𝜔 = 0.

Proof. Suppose ∆𝜔 = 0. If 𝜔 ∈ 𝒟(∆), then 𝜔 ∈ 𝒟(𝑑′′∗) ∩𝒟(𝑑′′). By Proposition 3.14 we have

𝑑′′∗∗ = 𝑑′′. From the definition of an adjoint operator we get

0 = (∆𝜔, 𝜔) = (𝑑′′𝑑′′∗ + 𝑑′′∗𝑑′′𝜔, 𝜔) = (𝑑′′∗𝜔, 𝑑′′∗𝜔) + (𝑑′′𝜔, 𝑑′′∗∗𝜔) = (𝑑′′∗𝜔, 𝑑′′∗𝜔) + (𝑑′′𝜔, 𝑑′′𝜔).

Hence ||𝑑′′∗𝜔|| = 0, ||𝑑′′𝜔|| = 0, and 𝑑′′∗𝜔 = 𝑑′′𝜔 = 0. The converse follows directly from

the definition of the Laplace-Beltrami operator.

Definition 3.16. Let us denote the kernel of the Laplace-Beltrami operator ∆ ∶ ℒ𝑝,𝑞(Γ)→
ℒ𝑝,𝑞(Γ) by ℋ𝑝,𝑞(Γ). We call this space ℋ𝑝,𝑞(Γ) the space of harmonic tropical superform of

degree (𝑝, 𝑞) on Γ.
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By Proposition 3.15 any harmonic superform is closed, hence there is the map 𝑖 ∶
ℋ𝑝,𝑞(Γ)→ 𝐻𝑝,𝑞(Γ), that maps any harmonic form to its class in the cohomology group.

Proposition 3.17. The map 𝑖 ∶ℋ𝑝,𝑞(Γ)→ 𝐻𝑝,𝑞(Γ) is an isomorphism.

Proof. Let 𝜔 be an element of 𝒟𝑝,0(Γ). By Proposition 3.15, 𝑑′′𝜔 = 0 if and only if ∆𝜔 = 0.
Thus, 𝐻𝑝,0(Γ) = ker𝑑′′ =ℋ𝑝,0(Γ).

Lemma 3.18. The range im 𝑑′′ of 𝑑′′ is closed.

Proof. Let 𝔘 = {𝑈𝑖}𝑖 be a cover of Γ. Let us denote 𝑈𝑖𝑗 = 𝑈𝑖 ∩𝑈𝑗.

Since Γ is compact, we may choose 𝔘 in such a way that:

1. 𝔘 is finite cover;

2. the sequences of sections (4) are exact over any 𝑈𝑖 and 𝑈𝑖𝑗 = 𝑈𝑖 ∩𝑈𝑗;

3. there is bounded operator 𝑇𝑈 as in Lemma 3.11 for any 𝑈𝑖 and 𝑈𝑖𝑗 = 𝑈𝑖 ∩𝑈𝑗.

Let 𝐶𝑖(𝒮) be the Čech complex of a presheaf 𝒮 and the cover 𝔘 with the differential 𝛿.
In particular,

𝐶0(𝒮) =
⨁

𝑖
𝒮(𝑈𝑖), 𝐶1 =

⨁

𝑖<𝑗
𝒮(𝑈𝑖𝑗),

and 𝛿 ∶ 𝐶0(𝒮)→ 𝐶1(𝒮).

Since 𝐶𝑖(ℒ𝑝,𝑞) is a direct sum of ℒ𝑝,𝑞(𝑈) it has a structure of a Hilbert space induced

from the summands. Then 𝛿 is a continuous linear operator. The kernel ker𝛿 ∶ 𝐶0(ℒ𝑝,𝑞)→
𝐶1(ℒ𝑝,𝑞) coincides with ℒ𝑝,𝑞(Γ). Actually, the norm on this kernel does not coincide with

the norm on ℒ𝑝,𝑞(Γ), but these two norms are equivalent. Since ℒ𝑝,𝑞(Γ) is the kernel of

a bounded operator, it is a closed subspace of 𝐶0(ℒ𝑝,𝑞). We will consider ℒ𝑝,𝑞(Γ) as a

subspace of 𝐶0(ℒ𝑝,𝑞)

The bounded operator 𝑇𝑈 ∶ ℒ𝑝,1(𝑈) → ℒ𝑝,0(𝑈) was defined in Lemma 3.11. Let 𝑇 ∶
𝐶0(ℒ𝑝,1) → 𝐶0(ℒ𝑝,0) be a direct sum of 𝑇𝑈𝑖 . The composition of operators 𝛿𝑇 ∶ ℒ𝑝,1(Γ) →
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𝐶1(ℒ𝑝,0) is a continuous linear operator. Combining the facts that 𝑑′′𝑇𝜑 = 𝜑, the operator

𝛿 commutes with 𝑑′′, and ker𝛿 = ℒ𝑝,𝑞(Γ), for any 𝜔 ∈ ℒ𝑝,1(Γ) we get

𝑑′′𝛿𝑇𝜔 = 𝛿𝑑′′𝑇𝜔 = 𝛿𝜔 = 0.

Therefore 𝛿𝑇 is a bounded operator from ℒ𝑝,1(Γ) to the kernel of

𝑑′′ ∶ 𝐶1(ℒ𝑝,0)→ 𝐶1(ℒ𝑝,1),

which is equal to either 𝐶1(ℝΓ) or 𝐶1(Λ1
Γ). Both spaces 𝐶1(ℝΓ) and 𝐶1(Λ1

Γ) are finite dimen-

sional. There are the quotient maps

𝜀 ∶ 𝐶1(ℝΓ)→ 𝐻1(Γ,ℝΓ) = 𝐶1(ℝΓ)∕𝛿𝐶0(ℝΓ)

and

𝜀 ∶ 𝐶1(Λ1
Γ)→ 𝐻1(Γ,Λ1

Γ) = 𝐶1(Λ1
Γ)∕𝛿𝐶0(Λ1

Γ).

These maps are continuous because these are linear maps between finite-dimensional

vector spaces.

The kernel of 𝜀𝛿𝑇 coincides with im 𝑑′′ in ℒ𝑝,1(Γ). Indeed, assume 𝜔 ∈ ℒ0,1(Γ) and

𝜀𝛿𝑇𝜔 = 0, then there is a cochain 𝜓 ∈ 𝐶0(ℝΓ) such that 𝛿𝑇𝜔 = 𝛿𝜓. Since 𝛿(𝑇𝜔−𝜓) = 0,we get

𝑇𝜔 − 𝜓 ∈ ℒ0,0(Γ) and 𝑑′′(𝑇𝜔 − 𝜓) = 𝜔. The same arguments works for the case 𝜔 ∈ ℒ1,1(Γ).
Since 𝜀𝛿𝑇 is continuous, the kernel is closed, and, consequently, im 𝑑′′ is closed.

Since im 𝑑′′ is closed, there is the decomposition

ℒ𝑝,1(Γ) = im 𝑑′′ ⊕ (im 𝑑′′)⟂.

Hence

𝐻1(ℒ𝑝,∗(Γ), 𝑑′′) = ℒ𝑝,1(Γ)∕im 𝑑′′ ≅ (im 𝑑′′)⟂

The kernel of a closed densely defined operator coincides with the orthogonal complement

of the range of the adjoint. Thus by Proposition 3.14 we get (im 𝑑′′)⟂ = ker𝑑′′∗. By
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Proposition 3.15 an element 𝜔 ∈ ℒ𝑝,1(Γ) is harmonic if and only if 𝑑′′∗𝜔 = 0, thus ℋ𝑝,1(Γ) =
ker𝑑′′∗ and 𝑖 ∶ℋ𝑝,1(Γ)→ 𝐻1(ℒ𝑝,∗(Γ), 𝑑′′) is an isomorphism. Also we proved that

ℒ𝑝,1(Γ) =ℋ𝑝,1(Γ)⊕ im 𝑑′′. (7)

Theorem 3.19. The Laplace-Beltrami operator is a self-adjoint operator.

Proof. By the dimensional reasons the operator ∆ is equal to either ∆ = 𝑑′′𝑑′′∗ or ∆ =
𝑑′′∗𝑑′′. By von Neumann theorem for any closed densely operator 𝐴 the operator 𝐴∗𝐴 is a

self-adjoint operator [1, Theorem 7.3]. Thus by Proposition 3.14 both 𝑑′′𝑑′′∗ and 𝑑′′∗𝑑′′ are

self-adjoint.

Remark 3.20. Let us describe the operator ∆ in terms of local coordinates. Let 𝑥 be a

local coordinate on an edge of Γ and the Kähler form 𝑔 is locally given by the equation

𝑔 = 𝑔(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥. Then by straightforward computation we obtain

∆(𝑓(𝑥)) = − 1
𝑔(𝑥)

𝜕2𝑓(𝑥)
𝜕𝑥2 ,

∆(𝑓(𝑥)𝑑′𝑥) = − 1
𝑔(𝑥)

𝜕2𝑓(𝑥)
𝜕𝑥2 + 1

𝑔2(𝑥)
𝜕𝑓(𝑥)
𝜕𝑥

𝜕𝑔(𝑥)
𝜕𝑥 𝑑′𝑥,

∆(𝑓(𝑥)𝑑′′𝑥) = − 1
𝑔(𝑥)

𝜕2𝑓(𝑥)
𝜕𝑥2 + 1

𝑔2(𝑥)
𝜕𝑓(𝑥)
𝜕𝑥

𝜕𝑔(𝑥)
𝜕𝑥 𝑑′′𝑥,

∆(𝑓(𝑥)𝑑′𝑥∧𝑑′′𝑥) = − 1
𝑔(𝑥)

𝜕2𝑓(𝑥)
𝜕𝑥2 + 2

𝑔2(𝑥)
𝜕𝑓(𝑥)
𝜕𝑥

𝜕𝑔(𝑥)
𝜕𝑥 + 2

𝑔2(𝑥)
𝜕2𝑔(𝑥)
𝜕𝑥2 𝑓(𝑥)− 2

𝑔3(𝑥) (
𝜕𝑔(𝑥)
𝜕𝑥 )2𝑓(𝑥)𝑑′𝑥∧𝑑′′𝑥.

Proposition 3.21. The Hodge star operator commutes with the Laplace-Beltrami operator,

i.e., ∗ ∆ = ∆ ∗ and 𝜑 ∈ 𝒟(∆ ∶ ℒ𝑝,𝑞(Γ) → ℒ𝑝,𝑞(Γ)) if and only if ∗ 𝜑 ∈ 𝒟(∆ ∶ ℒ1−𝑝,1−𝑞(Γ) →
ℒ1−𝑝,1−𝑞(Γ)).

Proof. Firstly, let us check that 𝜑 ∈ 𝒟(∆ ∶ ℒ𝑝,𝑞(Γ) → ℒ𝑝,𝑞(Γ)) if and only if ∗ 𝜑 ∈ 𝒟(∆ ∶
ℒ1−𝑝,1−𝑞(Γ)→ ℒ1−𝑝,1−𝑞(Γ)).

The domain of ∆ equals either

𝒟(∆ ∶ ℒ𝑝,0(Γ)→ ℒ𝑝,0(Γ)) = {𝜔 ∶ 𝜔 ∈ 𝒟(𝑑′′), 𝑑′′𝜔 ∈ 𝒟(𝑑′′∗)},
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or

𝒟(∆ ∶ ℒ𝑝,1(Γ)→ ℒ𝑝,1(Γ)) = {𝜔 ∶ 𝜔 ∈ 𝒟(𝑑′′∗), 𝑑′′∗𝜔 ∈ 𝒟(𝑑′′)}.

By Proposition 3.14 𝜔 ∈ 𝒟(𝑑′′) if and only if ∗ 𝜔 ∈ 𝒟(𝑑′′∗), and 𝑑′′∗ = − ∗ 𝑑′′ ∗ . Thus,

𝑑′′𝜔 ∈ 𝒟(𝑑′′∗) if and only if ∗ 𝑑′′𝜔 ∈ 𝒟(𝑑′′). Using the equality

∗ 𝑑′′ = ± ∗ 𝑑′′ ∗∗= ±𝑑′′∗ ∗

and the previous statement we get 𝑑′′𝜔 ∈ 𝒟(𝑑′′∗) if and only if 𝑑′′∗ ∗ 𝜔 ∈ 𝒟(𝑑′′). Thus

𝜔 ∈ 𝒟(𝑑′′) and 𝑑′′𝜔 ∈ 𝒟(𝑑′′∗) if and only if ∗ 𝜔 ∈ 𝒟(𝑑′′∗) and 𝑑′′∗ ∗ 𝜔 ∈ 𝒟(𝑑′′) which is

equivalent to

𝜔 ∈ 𝒟(∆) ⇐⇒∗ 𝜔 ∈ 𝒟(∆).

Now, let us check the commutativity ∗ ∆ = ∆ ∗ . The equality ∗ ∆ = ∆ ∗ can be written

as

∗ ∆ = − ∗ 𝑑′′ ∗ 𝑑′′ ∗ − ∗∗ 𝑑′′ ∗ 𝑑′′ = −𝑑′′ ∗ 𝑑′′ ∗∗ − ∗ 𝑑′′ ∗ 𝑑′′ ∗= ∆ ∗ .

Since ∗∗= (−1)𝑝+𝑞Id, as an operator on ℒ𝑝,𝑞(Γ), we get

− ∗ 𝑑′′ ∗ 𝑑′′ ∗ +(−1)𝑝+𝑞+1𝑑′′ ∗ 𝑑′′ = (−1)𝑝+𝑞+1𝑑′′ ∗ 𝑑′′− ∗ 𝑑′′ ∗ 𝑑′′ ∗ .

Thus the equality ∗ ∆ = ∆ ∗ holds.

Proposition 3.22. There are the following decompositions:

ℒ𝑝,1(Γ) =ℋ𝑝,1(Γ)⊕ im 𝑑′′,

ℒ0,𝑞(Γ) =ℋ0,𝑞(Γ)⊕ im 𝑑′′∗.

Proof. The first decomposition was already proved (7). Since the Hodge star is an isometry

we get

ℒ0,𝑞(Γ) =∗ ℒ1−𝑞,1(Γ) =∗ℋ1−𝑞,1(Γ)⊕ ∗ im 𝑑′′

By Proposition 3.21 we have ℋ0,𝑞(Γ) =∗ℋ1−𝑞,1(Γ). By Proposition 3.14 we have 𝑑′′∗ = − ∗
𝑑′′ ∗, thus ∗ im 𝑑′′ = im 𝑑′′∗. Combining these facts we obtain the second decomposition.
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3.10 The main result.

The main result of this paper is the following

Theorem 3.23. Let Γ be a tropical curve of genus 𝑛. The Hodge star operator maps harmonic

superform to harmonic superform and the map ∗∶ℋ𝑝,𝑞(Γ)→ℋ1−𝑝,1−𝑞(Γ) is an isomorphism,

and, consequently, 𝐻𝑝,𝑞(Γ) ≃ 𝐻1−𝑝,1−𝑞(Γ). In particular,

𝐻1,1(Γ) ≃ 𝐻0,0(Γ) ≃ 𝐻0(Γ,ℝ) ≅ ℝ

and

𝐻1,0(Γ) ≃ 𝐻0,1(Γ) ≃ 𝐻1(Γ,ℝ) ≅ ℝ𝑛.

Proof. By Proposition 3.21 if 𝜔 is an element of ℋ𝑝,𝑞(Γ), then ∗ 𝜔 is also a harmonic form,

∗ 𝜔 ∈ ℋ1−𝑝,1−𝑞(Γ). Since ∗∗= ±Id, we get that ∗ is an isomorphism between ℋ𝑝,𝑞(Γ) and

ℋ1−𝑝,1−𝑞(Γ). Thus, by Proposition 3.17 we get 𝐻𝑝,𝑞(Γ) ≃ 𝐻1−𝑝,1−𝑞(Γ). Since by definition

𝐻0,𝑞(Γ) is the cohomology group of the sheaf ℝΓ of locally constant functions, 𝐻0,𝑞(Γ) is

isomorphic to the usual topological cohomology group 𝐻𝑞(Γ,ℝ).

The space 𝐻0,0(Γ) is generated by a nonzero constant function. Since the Hodge star of

a constant function is proportional to the Kähler form 𝑔, the class of 𝑔 is a generator of

𝐻1,1(Γ). The space ℋ1,0(Γ) is the space of differential forms with coefficients constant on

edges and satisfying the Kirchhoff’s law and the Regularity at infinity conditions. Since

∗ 𝑑′𝑥 = 𝑑′′𝑥, the group ℋ0,1(Γ) ≅ 𝐻0,1(Γ) is generated by essentially the same differential

forms which are considered as (0, 1)−forms.

Remark 3.24. Theorem 3.23 is a tropical analog of the Hodge theory on a compact Riemann

surface. We proved this theorem using methods of the Hodge theory, but one can prove

that there is an isomorphism 𝐻𝑝,𝑞(Γ) ≃ 𝐻1−𝑝,1−𝑞(Γ) using quite simple combinatorial

methods. For example, since, by definition, ℋ0,𝑝(Γ) coincides with usual topological

cohomologies and can be easily computed, one can apply the tropical Poincaré duality

duality [8, Theorem 4.33] and get ℋ0,𝑝(Γ) ≃ℋ1,1−𝑝(Γ). Also in the case of tropical curves

in a bit more general situation, which is a tropical analog of curve with punctures, the
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cohomologies were computed in [6, Proposition 2.4.2.] using quite simple methods. So

for the purpose of this result our paper is overcomplicated. One can consider this paper

as a proof of concept for the Hodge theory on higher dimensional tropical varieties.

3.11 Relation between cycles and harmonic tropical superforms.

Suppose some orientation of edges of a metric graph Γ is chosen. We can consider Γ as

a CW-complex, where edges of the graph are 1−cells and vertices are 0−cells. Consider

the group of 1−chains 𝐶1(Γ,ℝ) of Γ with coefficients in ℝ. An element 𝛽 of this group is a

linear combination of edges

𝛽 =
∑

𝑒∈𝐸
𝛽𝑒𝑒, 𝛽𝑒 ∈ ℝ.

There is the boundary operator 𝜕 on edges, 𝜕𝑒 = 𝑣1 − 𝑣0, where 𝑣1, 𝑣0 are, consequently,

inward and outward vertices of the edge 𝑒. Denote by 𝑍1(Γ,ℝ) the groups of cycles of Γ
with coefficients ℝ. By definition, a cycle 𝛽 is a chain such that its boundary is equal to

zero, i.e., 𝜕𝛽 = 0. Obviously, 𝑍1(Γ,ℝ) is isomorphic to homology group 𝐻1(Γ,ℝ).
Let us define the linear map

𝜑 ∶ 𝐶1(Γ,ℝ)→ ℰ̃0,1(Γ)

as follows, an image 𝜑(𝑒) of an edge 𝑒 ∈ 𝐸 is a (0, 1)−tropical form such that its restriction

to any edge 𝑒′ ≠ 𝑒 equals 0 and its restriction to the edge 𝑒 ≅ [−𝑙(𝑒), 0] equals 𝑑′′𝑥.

Proposition 3.25. The map 𝜑 is an isomorphism between 𝑍1(Γ,ℝ) and ℋ0,1(Γ). Moreover,

suppose 𝛽 ∈ 𝐶1(Γ,ℝ) and 𝜔 ∈ ℰ1,0(Γ), then

∫
𝛽
𝜔 = ∫

Γ
𝜔 ∧ 𝜑(𝛽),

where the integral on the left hand side is the integral of a usual differential 1−form

over 1−chain, we identify the tropical (1, 0)−superform 𝜔 with the corresponding differ-

ential 1−form, and on the right hand side there is the tropical integral of the tropical

(1, 1)−superform over the tropical curve Γ.
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Proof. Recall that the Hodge star is an isomorphism between ℋ1,0(Γ) and ℋ0,1(Γ), and

ℋ1,0(Γ) consists of closed regular forms. Therefore, these forms are forms with coefficients

constants on each edge, regular at infinity, in this case it means equal to zero at each

infinite length edge, and satisfying the Kirchhoff’s law at each vertex.

In the other hand, the image 𝜑(𝛽) of a chain 𝛽 is a form with coefficients constants

on each edge. Suppose that 𝛽 is a cycle. It can’t have infinite length edges because

an infinite length edge is incident to a vertex of valence 1 and this vertex will appear

as a nonvanishing term in the boundary, hence 𝜑(𝛽) is regular at infinity. It is easy to

understand that condition 𝜕𝛽 = 0 is equivalent to the Kirchhoff’s law. Therefore, 𝜑 is an

isomorphism between 𝑍1(Γ,ℝ) and ℋ0,1(Γ).

Consider a chain

𝛽 =
∑

𝑒∈𝐸
𝛽𝑒𝑒.

On the edge 𝑒 the form 𝜑(𝛽) is equal to 𝛽𝑒𝑑′′𝑥. Consider a (1, 0)−tropical from 𝜔. Its restric-

tion to the edge 𝑒 ≅ [−𝑙(𝑒), 0] is equal to 𝜔𝑒(𝑥)𝑑′𝑥.

Let us show that

∫
𝛽
𝜔 = ∫

Γ
𝜔 ∧ 𝜑(𝛽).

Indeed,

∫
𝛽
𝜔 =

∑

𝑒∈𝐸
𝛽𝑒 ∫

0

−𝑙(𝑒)
𝜔𝑒(𝑥)𝑑𝑥 =

∑

𝑒∈𝐸
∫
𝑒
𝛽𝑒𝜔𝑒(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥 = ∫

Γ
𝜔 ∧ 𝜑(𝛽).

3.12 Pair of examples.

𝑣1 𝑣2 𝑣3
𝑒1
𝑒2
𝑒3

𝑒4

Figure 1:
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Example 3.26. Consider the graph Γ with three vertices 𝑣1, 𝑣2, 𝑣3 and four edges 𝑒1,… , 𝑒4,
see Figure 1. The edges 𝑒1, 𝑒2, 𝑒3 are incident to the vertices 𝑣1 and 𝑣2, and the edge 𝑒4 is

incident the vertices 𝑣2 and 𝑣3. Therefore, its genus equals 2. Edges are isometric to the

intervals 𝑒𝑖 ≃ [−𝑙𝑖, 0], 0 < 𝑙𝑖 < +∞, 𝑖 = 1, 2, 3 and, since 𝑒4 is incident to degree 1 vertex,

𝑒4 ≃ [−∞, 0]. Let us assume that 0 of each interval corresponds to the vertex 𝑣2. Let 𝜔 be a

Kähler form on Γ, this form have to satisfy the conditions from Definition 2.17. Consider

restriction of this form to edges 𝜔|𝑒𝑖 = 𝜔𝑖(𝑥)𝑑′𝑥 ∧ 𝑑′′𝑥, then 𝜔𝑖(𝑥), 𝑖 = 1, 2, 3 have to be

smooth positive function on the corresponding interval 𝑒𝑖 ≃ [−𝑙𝑖, 0], and 𝜔4(𝑥) is a smooth

positive function on (−∞, 0] such that ∫ 0−∞ 𝑥2𝜔4(𝑥)𝑑𝑥 < +∞. In particular, we can choose

𝜔𝑖(𝑥) ≡ 𝑉𝑖 > 0, 𝑖 = 1, 2, 3 to be any positive constants and 𝜔4(𝑥) = 2 𝑒2𝑥

(1+𝑒2𝑥)2
, this 𝜔4(𝑥) is the

analog of Fubini-Study form from Example 2.22. One can check that

∫
Γ
𝜔 = 𝑉1𝑙1 + 𝑉2𝑙2 + 𝑉3𝑙3 +

1
2 .

The space ℋ0,0(Γ) is the space of constant functions on Γ, and ℋ1,1(Γ) is a linear span

of the Kähler form 𝜔. The space ℋ1,0(Γ) consists of forms 𝜓 such that

𝜓|𝑒𝑖 = 𝐶𝑖𝑑′𝑥, 𝐶𝑖 ∈ ℝ, 𝑖 = 1, 2, 3, 𝐶1 + 𝐶2 + 𝐶3 = 0, 𝜓|𝑒4 = 0.

Indeed, because (1, 0)−harmonic forms are closed they must have constant coefficients

on each edge. These forms have to satisfy conditions of Definition 2.8. Since they have

to be regular at infinity we get 𝜓|𝑒4 = 0, and the Kirchhoff’s law condition at the vertex

𝑣2 or, equivalently, 𝑣1 give us 𝐶1 + 𝐶2 + 𝐶3 = 0. Since the Hodge star is an isomorphism

between ℋ1,0(Γ) and ℋ0,1(Γ), the space ℋ0,1(Γ) is defined by the same condition but with

𝑑′′𝑥 instead of 𝑑′𝑥.
Consider the basis 𝜓1 and 𝜓2 of ℋ1,0(Γ), where

𝜓1|𝑒1 = 𝑑′𝑥, 𝜓1|𝑒2 = −𝑑′𝑥, 𝜓1|𝑒3 = 0, 𝜓1|𝑒4 = 0;
𝜓2|𝑒1 = 0, 𝜓2|𝑒2 = 𝑑′𝑥, 𝜓2|𝑒3 = −𝑑′𝑥, 𝜓2|𝑒4 = 0,

then

∫
Γ
𝜓1∧ ∗ 𝜓1 = 𝑙1 + 𝑙2, ∫

Γ
𝜓2∧ ∗ 𝜓2 = 𝑙2 + 𝑙3, ∫

Γ
𝜓1∧ ∗ 𝜓2 = ∫

Γ
𝜓2∧ ∗ 𝜓1 = −𝑙2.
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𝑣1𝑣2

𝑣3
𝑣4

𝑣5

Figure 2:

Example 3.27. Now we are going to consider an example of a tropical curve defined

by a tropical polynomial, it is more standard approach in the tropical geometry, for

details see [3, Section 2]. We can think that ℝ2 is the tropical analog of (ℂ ⧵ {0})2, and its

compactification

ℝ2 ⊂ [−∞,+∞] × [−∞,+∞] = 𝕋ℙ1 × 𝕋ℙ1

is the analog of ℂℙ1 ×ℂℙ1. We can take the sum of Fubini-Study forms from Example 2.22

𝜔 = 2 𝑒2𝑥
(1 + 𝑒2𝑥)2𝑑

′𝑥 ∧ 𝑑′′𝑥 + 2 𝑒2𝑦
(1 + 𝑒2𝑦)2𝑑

′𝑦 ∧ 𝑑′′𝑦

as an (1, 1)−form Kähler on 𝕋ℙ1 × 𝕋ℙ1.
Consider the tropical polynomial

𝑃(𝑥, 𝑦) = ε3 + 2 ⋅ (𝑥 + 𝑦 + 𝑥−1 + 𝑦−1) + 0 ⋅ (𝑥𝑦 + 𝑥𝑦−1 + 𝑥−1𝑦 + 𝑥−1𝑦−1)ε,

this notation means that

𝑃(𝑥, 𝑦) = max(3, 2 + 𝑥, 2 + 𝑦, 2 − 𝑥, 2 − 𝑦, 𝑥 + 𝑦, 𝑥 − 𝑦,−𝑥 + 𝑦,−𝑥 − 𝑦),

it is a convex piecewise linear function. This tropical polynomial defines a tropical curve

Γ of genus 1 in 𝕋ℙ1 × 𝕋ℙ1, this curve is the corner locus of the function 𝑃(𝑥, 𝑦), see Figure

2.

The length of an edge of Γ should be measured with respect to the minimal integer

tangent vector to this edge. For example, the length of the edge (𝑣1, 𝑣5) equals 1 since the
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minimal integer tangent vector is (1, 1). For the edge (𝑣1, 𝑣2) the length is equal to 2 and

the minimal integer tangent vector is (−1, 0).

The restriction of 𝜔 to Γ is a Kähler form on Γ and its linear span is the space of

harmonic (1, 1)−forms ℋ1,1(Γ).

Suppose edges 𝑒1 = (𝑣1, 𝑣2), 𝑒2 = (𝑣2, 𝑣3), 𝑒3 = (𝑣3, 𝑣4), 𝑒4 = (𝑣4, 𝑣1) are orientated in the

cyclic order, these edges are isometric to the interval [−2, 0]. Let 𝜓 be a (1, 0)−form equal

to 𝑑′𝑥 on these edges and to 0 at all other edges. Since this form is closed and regular it is

harmonic and it is a basis of ℋ1,0(Γ). Its Hodge star ∗ 𝜓, which is equal to 𝑑′′𝑥 on 𝑒1,… , 𝑒4,
is a basis of ℋ0,1(Γ).

Since

𝜔 = 1
2𝑑

′𝑑′′(log(1 + 𝑒2𝑥) + log(1 + 𝑒2𝑦))

using Stokes’ theorem argument one can show that ∫Γ 𝜔 = 4. Also one can show that

∫Γ 𝜓∧ ∗ 𝜓 = 8.

3.13 Final remarks.

Remark 3.28. Now we would like to discuss the relation of our paper to the quantum

graphs.

The research in quantum graphs is mostly devoted to the study of the Schrödinger

equation on metric graphs. This study usually based on study of stationary states, i.e.,

eigenfunctions of the Laplace operator. For the Laplace operator to be self-adjoint some

boundary conditions at the vertexes of a graph are needed. There are a variety of such

boundary conditions, some of them resembles our boundary conditions.

There is a difference between out approach and the standard quantum graph theory.

Usually only functions are considered, but we also consider differential forms and tensor

fields. We use harmonic forms as a tool to compute some cohomologies and the Laplace-

Beltrami operator arise from the chain complex. Usually quantum graphs are not related

to the study of cohomologies and chain complexes. In the quantum graphs setting the
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whole spectrum of the Laplace operator is studied, but we are only working with harmonic

functions and forms, i.e., with zero-eigenvectors.

In our case there is a Riemannian metric 𝑔 on Γ which we consider as an analog of a

Kähler form. This metric is unrelated to the metric structure on Γ, i.e., to the length of

edges, but if we take 𝑔 to be trivial

𝑔 = 𝑑′𝑥 ∧ 𝑑′′𝑥 ≃ 𝑑𝑥 ⊗ 𝑑𝑥,

then the length 𝑙(𝑒) of an edge 𝑒, the function 𝑙(𝑒) is a part of initial data for the metric

graph Γ, coincides with the length with respect to the Riemannian metric 𝑔. In this case

our theory is practically identical to the standard quantum graph theory, at least if we

work with functions only.

Also, in our case we require that all infinite-length edges should have finite length

with respect to the Riemannian metric 𝑔, otherwise we would get a different behavior

of harmonic forms. For example, constant functions are harmonic on Γ, but if there is

an infinite-length edge and 𝑔 is the trivial metric, a non-zero constant function does not

belong 𝐿2 since it has infinite norm. So if there are infinite-length edges, than the trivial

Riemannian metric is not a viable option for our purpose.

Remark 3.29. It would be interesting to study spectral properties (like asymptotics of

eigenvalues, Weyl law, and so on) of the Laplace-Beltrami operator and compare them

with spectral properties of complex curves and quantum graphs.
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Abstract: In this work the confined domains for a point-like particle propagat-

ing within the boundary of an ideally reflecting paraboloid mirror are derived.

Thereby it is proven that all consecutive flight parabola foci points lie on the

surface of a common sphere of radius 𝑅. The main results are illustrated in

various limiting cases and are compared to its one-dimensional counterpart.

In the maximum angular momentum configuration we explicitly state the

coordinates of the particle at any time 𝑡 within the cavity.
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1 Introduction

Over the last decades, the dynamics of a point-like particle confined to some domain

under the influence of a constant gravitational force, shortly called gravitational billiards,
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has been studied from various perspectives. Starting from [LM86] who first performed a

numerical study of the simplest imaginable system, the wedge, showing that the system

can be integrable for certain angles of the wedge. Further study of the system have

e.g. been performed in [And22, KJ99]. Extensions to other one dimensional boundaries

(circular, elliptic, oval) or potentials have been performed in e.g. [dCDL15, KL91], who

showed that for the quadratic and Coulomb potential the system becomes integrable.

Generalizations to the motion in general high dimensional quadrics under the influence

of a harmonic, isotropic potential have been performed by Fedorov in [Fed01]. Thereby

it has been shown that the trajectories again are tangent to confocal quadrics. This

result is consistent with our results derived in Section 4 in presence of a homogeneous

gravitational field. Note that similar results (see e.g. [Ves88]) already were obtained for

the force free system of a particle bouncing in a higher-dimensional ellipsoid. Also for

these systems the trajectories are tangent to confocal quartics. The explicit theta-function

solutions for these problems were given e.g in [Ves88], who studied the system using a

discrete Lagrangian approach.

In 2015, the first study of the dynamics in a two-dimensional cone were performed by

[LM15, Lan15] showing that certain quantities of the one-dimensional framework map

one-to-one to the embedded surface in ℝ3.

In general, the motion of the particle is highly non-trivial and a neat expression for

the trajectory at each time is not accessible. For this reason, following [Mas14, Mas20],

the confined domains for a point like particle bouncing in a parabolic, one-dimensional

cavity under the influence of a homogeneous gravitational force were derived through

a geometric-analytic approach. In particular the author showed in [Mas20] that the

geometric interpretation of the integrable system is that the foci of consecutive flight

parabolae all lie on a common circle of fixed radius with center being the focus of the

parabolic mirror.

Recently associated foci curves and confined domains for a particle ideally bouncing

inside general one-dimensional boundaries were obtained in [Jau23a]. As a generalization
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Galavotti and Jauslin [GJ20] considered the so called Boltzman system (a particle under

the influence of a Keplerian potential being reflected along a straight line within ℝ2).

They showed that this system, in contrast to the belief of Boltzman himself, is integrable

and that the second foci of the associated Kepler ellipses lie on a common circle with

center being the mirror point of the center of the gravitational force with respect to the

hard wall line. Following this work Felder [Fel21] proved that for this system one can

associated an elliptic curve for the family of consecutive flight ellipses. Gasiorek and

Radnovic̀ used the result of Felder in order to derive periodicity conditions for the orbits,

generalizing Poncelet Porims to the case of a Keplerian force [GR23] with a straight line

boundary. In a recent study [JZ24] it has been shown that a particle under the influence of

a Keplerian force centered at one focus of a conic section in two dimensions is integrable

and that the second foci of the flight trajectories also lie on a common circle centered at

the second focus of the conic boundary. In particular the authors derived via a conformal

transformation (Kepler-Hooke-Duality) the corresponding "foci curve" (as they denote it)

in the case of a Hooke potential with conic section boundaries. These curves, on which

all consecutive foci lie, correspond to Cassini ovals.

In the work of Borisov et al. [ABM19] the frictionless motion of a point mass on an

elliptic (or hyperbolic) paraboloid 𝑈 = {𝑧 = 𝑥2

𝑎
+ 𝑦2

𝑏
} in presence of a constant gravitational

force parallel to the 𝑧−axis was considered. Already in [Cha33] the authors showed that

the system is separable in parabolic coordinates and therefore integrable. The geometric

interpretation of integrability is that the particle trajectory is tangent to two other confocal

paraboloids. When one of the parameters, 𝑎 or 𝑏, tends to zero, one recovers the situation

studied by [Mas14].

In the following the confined domains for a particle bouncing inside a rotational

symmetric paraboloid under the influence of a constant gravitational force parallel to

the axis of symmetry is studied. Our analysis will show that some one-dimensional

features obtained e.g. in [Mas20, Jau23a, Jau23b] will carry over (in some cases) to the

two-dimensional scenario. Due to the additional rotational movement associated to
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conserved angular momentum along the 𝑧−direction further restrictions compared to

the one-dimensional boundary case will emerge.

The structure of this work presents as follows: in Section 2 we will briefly introduce all

necessary assumptions and general ideas that we will benefit from in our later analysis.

Before diving into a general analysis, Section 3 will show that under certain restrictions

the two-dimensional particle motion can be reduced to the one-dimensional force free

case within a circle. For this case, corresponding to maximal angular momentum, we give

a neat expression for the particles position within the cavity at any time 𝑡. In particular we

again obtain the same result of the trajectories lying along a common confocal paraboloid

resembling similar results as obtained in [Ves88, Fed01] for the free billiard and the

billiard with harmonic potential. In Section 4, we will first show that all consecutive flight

parabola foci points lie on a sphere of radius 𝑅. This result can be seen as a limiting case

of [Fed01] and as the generalization of [Mas20] to the next dimension. With this result,

we derive general formulas for the confined regions depending on the system parameters.

For a deeper understanding of the general results and related physics, Section 5 will

derive the associated envelope curves and therefore two-dimensional sections of the

rotational confined regions for different values of the sphere radius 𝑅 as well as (reduced)

angular momentum 𝑙𝑧. Finally a conclusion and outlook on possible future research

topics related to this work is made in Section 6.

2 Generalities for the paraboloid billiard

Here some general results for the motion of an particle under the influence of a constant

gravitational force within a cavity are stated. All obtained results are direct generaliza-

tions from the one-dimensional case already discussed in e.g. [Mas20, Jau23a].

We are considering the movement for a particle of mass 𝑚 propagating inside a

paraboloid mirror under the influence of the constant gravitational force �⃗� = −𝑚𝑔𝑒𝑧

parallel to the 𝑧−axis. The equation for the boundary of the paraboloid in Cartesian

Arnold Mathematical Journal, Vol.11(1), 2025 81

http://dx.doi.org/10.56994/ARMJ


Daniel Jaud

coordinates (𝑥, 𝑦, 𝑧) reads

𝑀(𝑥, 𝑦, 𝑧) = 𝑧 −
𝑥2 + 𝑦2

4𝑓𝑀
+ 𝑓𝑀 = 0. (1)

The focus of the paraboloid is centered at the origin of the coordinate system and 𝑓𝑀

denotes the focal length of this ideally reflecting mirror (see Figure 1).

Figure 1: Visualization of main quantities for the paraboloid gravitational billiard.

For a general point 𝑃(𝑥, 𝑦, 𝑧) along the mirror boundary, the associated normalized

normal-vector pointing inside the mirror domain is given by

𝑛0|𝑃 =
1

|∇⃗𝑀|
∇⃗𝑀|𝑃 =

1
√
1 + 𝑥2+𝑦2

4𝑓2𝑀

⎛
⎜
⎜
⎜
⎝

− 𝑥
2𝑓𝑀

− 𝑦
2𝑓𝑀

1

⎞
⎟
⎟
⎟
⎠

. (2)

As usual, the trajectory of one specific flight parabola can be written as a function of time

𝑡 via

𝑟(𝑡) = −12𝑔𝑡
2𝑒𝑧 + 𝑣𝑡 + 𝑟0, (3)

where 𝑣𝑇 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧). All flight parabolas posses a focal length 𝐹 associated with the

velocity components in 𝑥− and 𝑦−direction by

𝐹 =
𝑣2𝑥 + 𝑣2𝑦
2𝑔 . (4)
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Note that for a given flight parabola 𝑣𝑥, 𝑣𝑦 are constant along the motion and thus 𝐹 is

well defined. Conservation of energy 𝐸 = 𝑚
2
𝑣2 +𝑚𝑔𝑧 yields a maximal reachable height 𝐻

for all flight parabolas within the paraboloid. Considering the velocities 𝑣𝑇𝑆 = (𝑣𝑥, 𝑣𝑦, 0)

and associated heights 𝑧𝑆 at the vertex of a flight parabola we find

𝐻 = 𝐸
𝑚𝑔 =

𝑣2𝑆
2𝑔 + 𝑧𝑆 = 𝑐𝑜𝑛𝑠𝑡.. (5)

In analogy to the one-dimensional case (see [Mas20, Jau23a]) 𝐻 refers to the flight

parabola vertex plane (see Figure 1). As a direct consequence, the 𝑧−coordinate of

the flight parabola focus point �⃗� fulfills 𝐹𝑧 = 𝐻 − 2𝐹. In Section 4 we will make use of this

relation.

As a last component we state the law of reflection in vector form whenever the particle

hits the boundary of the mirror at a point 𝑃 and gets ideally reflected. For the velocities 𝑣

before and 𝑣′ after the reflection holds

𝑣′ = 𝑣 − 2(𝑛0◦𝑣) ⋅ 𝑛0|𝑃 = 𝑣 − 2

|∇⃗𝑀|2
(𝑣◦∇⃗𝑀) ⋅ ∇⃗𝑀|𝑃. (6)

A direct consequence of the law of reflection is stated in the following Lemma which in

Section 4 will be used in order to reduce the number free parameters of our system.

Proposition 1. Angular momentum per unit mass about the 𝑂𝑧−axis, i.e. 𝑙𝑧 = 𝐿𝑧∕𝑚, in

the further course to be called reduced angular momentum, is a conserved quantity in

particular at any point 𝑃 of reflection.

Proof. It is sufficient to proof the statement at some general point of reflection 𝑃 associated

with the vector 𝑟. Using the law of reflection (6) for reduced angular momentum in

𝑧−direction results in:

𝑙′𝑧 = (𝑟 × 𝑣′)𝑧 = (𝑟 × 𝑣)𝑧 −
2

|∇⃗𝑀|2
(𝑣◦∇⃗𝑀) ⋅ (𝑟 × ∇⃗𝑀)𝑧 = (𝑟 × 𝑣)𝑧 = 𝑙𝑧.

Here we used in the last step the fact, that (𝑟×∇⃗𝑀)𝑧 = 0 in 𝑃. Therefore 𝑙′𝑧 = 𝑥0𝑣𝑦−𝑦0𝑣𝑥 =

𝑥0𝑣′𝑦 − 𝑦0𝑣′𝑥 = 𝑙𝑧 is conserved. Note that 𝑙𝑧 conservation along the flight parabola is a direct

consequence by the properties of the cross product.
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3 Special orbits with reflections along the same circle

In this section first we want to discuss the simplified case in which all consecutive points of

reflection 𝑃𝑖 lie on a common circle of radius 𝑟0 (and consequently height 𝑧0 =
1

4𝑓𝑀
𝑟20 − 𝑓𝑀)

with respect to the 𝑧−axis. Naturally for this section polar coordinates are chosen to

describe the dynamics. When viewed from above, the system can uniquely be described

by the angle 𝜗 enclosed by two consecutive points of reflection and the ’origin’ at height

𝑧0 (see Figure 2). Without loss of generality our starting position may be chosen in polar

coordinates at 𝑃0(𝑟0, 0, 𝑧0) and consequently 𝑃𝑖(𝑟0, 𝑖 ⋅ 𝜗, 𝑧0). We choose our particle, when

viewed from above, traveling in counter-clockwise direction. The velocity values for the

new flight parabola at the point of reflections are given by (𝑣𝑟,𝑖, 𝑣𝜑,𝑖, 𝑣𝑧,𝑖). We will use in

later sections the index 𝑖 to label the 𝑖−th consecutive flight parabola.

From our setup it is clear that the allowed values for (𝑣𝑟,𝑖, 𝑣𝜑,𝑖, 𝑣𝑧,𝑖) are restricted by

the condition that all point of reflection 𝑃𝑖 have to lie on the same circle. In particular,

such kind of behavior can only exist if the associated flight parabolas are each a copy of

the same fundamental, symmetric, parabola up to an rotation by 𝜗 spanned by the two

initial reflection points 𝑃0 and 𝑃1.

Figure 2: Projection to the parallel 𝑥−𝑦−plane at height 𝑧0 with relevant system parameter

𝜗 associated to force free billiards inside the circle.
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Due to rotational symmetry it thus is sufficient to determine the restrictions on

(𝑣𝑟,0, 𝑣𝜑,0, 𝑣𝑧,0) =∶ (𝑣𝑟, 𝑣𝜑, 𝑣𝑧). Applying the law of reflection (6) at 𝑃0 yields expressions

(𝑣′𝑟, 𝑣′𝜑, 𝑣′𝑧) right before the reflection. Those velocity values correspond to the flight

parabola starting at 𝑃−1 propagating to 𝑃0. For all flight parabolas being the same copy

one thus obtains the restriction

|𝑣𝑟| = |𝑣′𝑟| and |𝑣𝑧| = |𝑣′𝑧|. (7)

Both conditions are fulfilled if

𝑣𝑟𝑒𝑟 + 𝑣𝑧𝑒𝑧 ∥ ∇⃗𝑀|𝑃0 , (8)

i.e. the (𝑟, 𝑧)−components of the velocity vector stand perpendicular on the tangent plane

at the point of reflection. The flight time 𝑡 = 2𝑣𝑧
𝑔

for reaching the initial height 𝑧0 again is

uniquely determined by the motion in 𝑧−direction. Within this time the particle starting

at 𝑃0 has to reach 𝑃1. In the 𝑥 − 𝑦−plane, the angle 𝜗 between two consecutive points of

reflection (see Figure 2) is related to the velocity values (𝑣𝑟, 𝑣𝜑) via

𝜗 = 𝜋 − 2 arctan (
|||||||

𝑣𝜑
𝑣𝑟

|||||||
) . (9)

Demanding for the reflection points all to lie on the same circle of radius 𝑟0 gives a further

restriction on the system within the given flight time 𝑡 from 𝑃𝑖 to 𝑃𝑖+1. Direct calculation

shows that the allowed velocity components are completely determined by the angle 𝜗,

the radius 𝑟0 of the common reflection points circle as well as the focal length 𝑓𝑀 of the

paraboloid mirror:

𝑣𝑟 = −
𝑟0
2𝑓𝑀

⋅
√
𝑔𝑓𝑀 ⋅ [1 − cos (𝜗)], (10)

𝑣𝜑 =
𝑟0
2𝑓𝑀

⋅
√
𝑔𝑓𝑀 ⋅ [1 + cos (𝜗)], (11)

𝑣𝑧 =
√
𝑔𝑓𝑀 ⋅ [1 − cos (𝜗)]. (12)

Depending on the values for 𝜗 (see. e.g. [Roz18, Jau23b]) we obtain periodic or non-

periodic orbits, where all flight parabolas lie on a common rotational surface around
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the 𝑧−axis (see Figure 3) whose radial function is purely determined by the mirror

parameters

𝑔(𝑟) =
𝑟20
4𝑓𝑀

−
𝑓𝑀 ⋅ 𝑟2

𝑟20
, with 𝑟 ∈ [𝑟0 cos(𝜗∕2); 𝑟0]. (13)

As mentioned before in the introduction, this result is consistent with former studies,

e.g. [Fed01, Ves88], where the trajectories inside a general quadric are tangent to other

confocal quadrics.

Considering the flight parabolas dividing the rotational flight surface 𝑔(𝑟) consecutively

into smaller sub regions, one can map this to the circle case as shown in [Jau23b] that for

specific values of 𝜗 the surface division sequence is given by an integer series.

As a remark for 𝜗 = 𝜋 the 𝜑−velocity component equals zero, i.e. 𝑣𝜑 = 0. For this case

there is no rotational motion (angular momentum being zero) and the particle bounces

along 𝑔(𝑟) forming a two periodic orbit reproducing one-dimensional results obtained in

e.g. [KL91, Jau23a]. Again this can be interpreted as the limiting case of [Fed01], where

one axis tends to infinity and the harmonic potential, in this limit, resembling a constant

force leading to two confocal, parabolic envelop curves for the motion.

The trajectory of the particle in our szenario now is completely determined by the

parameters (𝑟0, 𝜗). In particular the explicit coordinates at a given time read

⎛
⎜
⎜
⎜
⎝

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

𝑣𝑟 ⋅ (𝑡 − ⌊ 𝑡
𝑇
⌋𝑇) ⋅ cos

(
⌊ 𝑡
𝑇
⌋𝜗
)
− 𝑣𝜑 ⋅ (𝑡 − ⌊ 𝑡

𝑇
⌋𝑇) ⋅ sin

(
⌊ 𝑡
𝑇
⌋𝜗
)

𝑣𝑟 ⋅ (𝑡 − ⌊ 𝑡
𝑇
⌋𝑇) ⋅ sin

(
⌊ 𝑡
𝑇
⌋𝜗
)
+ 𝑣𝜑 ⋅ (𝑡 − ⌊ 𝑡

𝑇
⌋𝑇) ⋅ cos

(
⌊ 𝑡
𝑇
⌋𝜗
)

− 1
2
𝑔 ⋅

(
𝑡 − ⌊ 𝑡

𝑇
⌋𝑇
)2
+ 𝑣𝑧 ⋅

(
𝑡 − ⌊ 𝑡

𝑇
⌋𝑇
)

⎞
⎟
⎟
⎟
⎠

, (14)

where the particle at time 𝑡 = 0 starts from (𝑟0, 0,
𝑟20
4𝑓𝑀

− 𝑓𝑀) and

𝑇 =

√
8𝑓𝑀
𝑔 sin(𝜗∕2), (15)

corresponds to the propagation time between two consecutive point of reflections.
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Figure 3: left: Example for 3-periodic orbit (𝜗 = 2𝜋
3

) along the same circle. right: Swept

out flight parabola surface (light red) for non-periodic case and 𝜗 ≠ 𝜋.

4 General flight parabola domain

In this section now we want to derive the confined domains which the particle at a given

initial condition can not leave during its motion. We will use the same notations as

introduced in Section 2. It is clear that for certain choices of initial conditions the actual

flight orbits will not fill out the entire confined domains. In particular we are considering

non periodic orbits in which the swept out region becomes dense. A main component for

obtaining expressions for the confined domains is stated in the following theorem.

Theorem 2. For each initial conditions, the foci �⃗�𝑖 of all flight parabolas of the billiard

trajectory lie on the same sphere with radius 𝑅 centered at the origin 𝑂, i.e. the focus of the

paraboloid.

Proof. Without loss of generality consider let the point of reflection being located in

Cartesian coordinates at 𝑃(𝑟0, 0, 𝑧0) and the associated velocity vector right before the

reflection take the form 𝑣 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)𝑇. The flight parabola focus then is given by

�⃗� =

⎛
⎜
⎜
⎜
⎝

𝑟0

0

2𝑧0 −𝐻

⎞
⎟
⎟
⎟
⎠

+
𝑣𝑧
𝑔

⎛
⎜
⎜
⎜
⎝

𝑣𝑥

𝑣𝑦

𝑣𝑧

⎞
⎟
⎟
⎟
⎠

. (16)
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Applying the law of reflection in 𝑃 yields the velocity vector 𝑣′ after the reflection and

consequently �⃗�′. A direct but lengthy calculation shows that

|�⃗�|2 = |�⃗�′|2 = 𝑅2 = 𝑐𝑜𝑛𝑠𝑡.,

i.e. both foci lie on a common sphere of radius 𝑅. Due to rotational symmetry of the

system, conservation of energy as well as reduced angular momentum conservation

in 𝑧−direction, all consecutive foci lie on the same sphere of radius 𝑅. Since 𝑟0 and the

initial velocity 𝑣0 have been chosen arbitrarily (under assumption of same total energy)

all consecutive foci have to saturate this equality. Note that this is a direct generalization

of the one-dimensional case. As a reminder we state that similar one-dimensional results

recently have been obtained for other mirror geometries [Jau23a, GJ20, Fel21, GR23, JZ24].

Now we are in the position to reduce the six-dimensional phase space with the knowl-

edge of Theorem 2, conservation of energy and reduced angular momentum as well as

rotational invariance, to two free parameters corresponding to confined domains which

the particle at given values (𝐻, 𝑙𝑧, 𝑅) cannot leave.

The vertex 𝑆 of each flight parabola in spherical coordinates thus can be written as

𝑆(𝑅, 𝜑, 𝜗) = �⃗�(𝑅, 𝜑, 𝜗) + 𝐹𝑒𝑧 = 𝑅

⎛
⎜
⎜
⎜
⎝

cos(𝜑) sin(𝜗)

sin(𝜑) sin(𝜗)

cos(𝜗)

⎞
⎟
⎟
⎟
⎠

+ 𝐹𝑒𝑧 =

⎛
⎜
⎜
⎜
⎝

𝑅 cos(𝜑) sin(𝜗)

𝑅 sin(𝜑) sin(𝜗)
𝐻+𝑅 cos(𝜗)

2

⎞
⎟
⎟
⎟
⎠

. (17)

Thereby we used that for the focal length of Section 2 holds 𝐹 = 𝐻−𝑅 cos(𝜗)
2

. Note that 𝜗 in

this case corresponds to the polar angle (compare Figure 4) in contrast to the definition

for 𝜗 of Section 3. Energy conservation yields an expression for the absolute value of the

velocity |𝑣𝑆| at the vertex

𝐻 =
𝑣2𝑆
2𝑔 + 𝑧𝑆 ↔ 𝑣𝑆 = |𝑣𝑆| =

√
2𝑔(𝐻 − 𝑧𝑆) =

√
𝑔(𝐻 − 𝑅 cos(𝜗), (18)

where𝐻 is the height of the directrix plane and 𝑧𝑆 is the associated vertex height (consider

Figure 4). We choose 𝑣𝑆 to be positive; negative values simply correspond to a time
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inverted system. Since the orientation of 𝑣𝑆 is not fixed by the equation above we may take

a general ansatz 𝑣𝑆 = 𝑣𝑆(cos(𝜑′), sin(𝜑′), 0)𝑇. Reduced angular momentum conservation

along the 𝑧−axis (compare Lemma 1)

𝑙𝑧 = (𝑆 × 𝑣𝑆)𝑧 = 𝑅
√
𝑔(𝐻 − 𝑅 cos(𝜗)) ⋅ sin(𝜗) ⋅ sin(𝜑′ − 𝜑) = 𝑐𝑜𝑛𝑠𝑡., (19)

restricts the allowed values for the orientation of 𝑣𝑆 related to the rotation angle 𝜑′ as

follows

𝜑′ = 𝜑 + arcsin (
𝑙𝑧

𝑅 sin(𝜗) ⋅
√
𝑔(𝐻 − 𝑅 cos(𝜗))

) . (20)

Figure 4: Flight parabola setup.

Due to rotational symmetry it is sufficient to consider the case 𝜑 = 0 from here on.

The corresponding allowed flight parabolas

𝑟(𝑡, 𝜗) =

⎛
⎜
⎜
⎜
⎜
⎝

𝑅 sin(𝜗) + 𝑡 ⋅
√
𝑔(𝐻 − 𝑅 cos(𝜗)) − 𝑙2𝑧

𝑅2 sin2(𝜗)

𝑡 ⋅ 𝑙𝑧
𝑅 sin(𝜗)

− 1
2
𝑔𝑡2 + 𝐻+𝑅 cos(𝜗)

2

⎞
⎟
⎟
⎟
⎟
⎠

, (21)
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at fixed (𝐻, 𝑙𝑧, 𝑅) form a one-parameter family of curves inℝ3. Note that the 𝑥−component

velocity term restricts the allowed values for 𝜗 at a given value of 𝑙𝑧 according to (compare

Figure 5)

𝐽(𝐻,𝑅, 𝜗) = 𝑔𝑅2 sin2(𝜗) ⋅ (𝐻 − 𝑅 cos(𝜗)) ≥ 𝑙2𝑧 ↔ 𝜗 ∈ [𝜗0;𝜗1]. (22)

Clearly 𝑙𝑧 is the main limiting factor to 𝜗 with large 𝑙𝑧 associated to a motion farther

away from the 𝑧−axis as in the case for 𝑙𝑧 being small, resulting in the possibility of

approaching the 𝑧−axis. Further 𝑙𝑧 is bound from above by the maximum of 𝐽(𝐻,𝑅, 𝑙𝑧)

which is saturated for

cos(𝜗𝑚𝑎𝑥) =
𝐻 −

√
𝐻2 + 3𝑅2
3𝑅 , (23)

and therefore takes the value

𝐽(𝐻,𝑅, 𝜗𝑚𝑎𝑥) =
2
27𝑔

(√
𝐻2 + 3𝑅2 + 2𝐻

) (
𝐻
(√

𝐻2 + 3𝑅2 −𝐻
)
+ 3𝑅2

)
. (24)

J J

Figure 5: Qualitative restriction of allowed 𝜗 values at given 𝑙2𝑧 . left for 𝐻 > 𝑅 > 0 and

right for 0 < 𝐻 < 𝑅.

Theorem 3. The rotational symmetric allowed propagation heights ℎ of the particle at a

given radial distance 𝑟 and angle 𝜗 are given by

ℎ±(𝑟, 𝜗) =
𝐻+𝑅 cos(𝜗)

2
− 𝑔

2
(
√
𝑟2⋅𝑔(𝐻−𝑅 cos(𝜗))−𝑙2𝑧±

√
𝑅2 sin2(𝜗)⋅𝑔(𝐻−𝑅 cos(𝜗))−𝑙2𝑧

𝑔(𝐻−𝑅 cos(𝜗))
)
2

,

with the restriction on the radius 𝑟 ≥ 𝑙𝑧√
𝑔(𝐻−𝑅 cos(𝜗))

.
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Proof. Equation (21) defines possible trajectories at given (𝐻,𝑅, 𝑙𝑧). Considering the asso-

ciated radial distance 𝑟2 = 𝑥(𝑡, 𝜗)2 + 𝑦(𝑡, 𝜗)2 one can express the 𝑡 variable in terms of 𝑟

and 𝜗. Inserting this expression into the 𝑧−component of (21) yields the expression for

the allowed heights ℎ±, where the two different solutions correspond to the left and right

parabola arc measured from the minimal distance 𝑟𝑚𝑖𝑛 = 𝑙𝑧∕
√
𝑔(𝐻 − 𝑅 cos(𝜗)).

In order to obtain expressions for the associated envelope curves we define a new

quantity

𝐾(𝑧, 𝑟, 𝜗,𝐻, 𝑅, 𝑙𝑧) ∶= 𝑧 − ℎ±(𝑟, 𝜗). (25)

The envelope curves restricting the confined domains then are obtained eliminating 𝜗 by

solving the following system of equations (see [BG92])

𝐾(𝑧, 𝑟, 𝜗,𝐻, 𝑅, 𝑙𝑧) = 0 and 𝜕𝐾
𝜕𝜗

= 0. (26)

A computer animated picture of allowed flight parabolas is shown in Figure 6. In the

next section our obtained results will be illustrated in various extremal limits.

Figure 6: Computer animated flight trajectories.
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5 Discussion of limiting cases

In this section four limiting cases in terms of the reduced angular momentum 𝑙𝑧 are

discussed. For all cases we determine the associated height function from Theorem 3

and calculate, if possible, the corresponding envelope curves restricting the motion of

the particle, in general, to a rotational symmetric region. All results of this section are

displayed in Figure 7 for illustrative purposes.

5.1 The 𝑙𝑧 = 0 case

In the simplest case of no reduced angular momentum (𝑙𝑧 = 0) the height functions of

Theorem 3 significantly simplify to

ℎ±(𝑟, 𝜗) =
𝐻 + 𝑅 cos(𝜗)

2 −
(𝑟 ± 𝑅 sin(𝜗))2

2(𝐻 − 𝑅 cos(𝜗))
. (27)

Solving the system (26) yields the envelope curves denoted by 𝑐±

𝑐±(𝑟) =
𝐻 ± 𝑅
2 − 𝑟2

2(𝐻 ± 𝑅)
. (28)

This reproduces the results obtained geometrically in [Mas20] and analytically in [Jau23a].

Since the motion lies in a common plane containing the 𝑧−axis it is clear that 𝑟 can take

values in ℝ.

5.2 The small 𝑙𝑧 case

For 𝑙𝑧 small the deviation from the 𝑙𝑧 = 0 case is marginal. Thus one can conclude that in

first approximation one obtains the same envelope curves 𝑐±(𝑟) as before. An additional

restriction comes from the fact that the allowed values for 𝑟 are bound from below by

𝑟 ≥ 𝑙𝑧√
𝑔(𝐻−𝑅 cos(𝜗))

. If this inequality is saturated, i.e. we consider the case of minimal radial

distance in terms of 𝜗, one can solve 𝑟 = 𝑙𝑧√
𝑔(𝐻−𝑅 cos(𝜗))

for cos(𝜗) and insert this expression

into the height functions of Theorem 3 yielding one additional (approximate) envelope
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curve associated with the angular momentum barrier as

𝑐0(𝑟) =
(𝐻2 − 𝑅2)𝑔

2𝑙2𝑧
⋅ 𝑟2 +

𝑔𝑟4

2𝑙4𝑧
. (29)

This envelope curve is reminiscent of the Higgs-potential in particle physics, in which in

the cases 𝑅 > 𝐻 one obtains the well known Mexican-hat like function.

5.3 The large 𝑙𝑧 case

In the large 𝑙𝑧 limit the second square root appearing in the height functions of Theorem

3 in lowest order can be neglected since 𝑙2𝑧 ≈ 𝐽(𝐻,𝑅, 𝜗𝑚𝑎𝑥). The associated envelope curves

thus approximately resemble the height functions for small variations of 𝜗

𝑐± =
𝐻 + 𝑅 cos(𝜗)

2 −
𝑟2 − 𝑅2 sin2(𝜗𝑚𝑎𝑥)
2(𝐻 − 𝑅 cos(𝜗))

, (30)

where 𝜗 ∈ [𝜗𝑚𝑎𝑥 − 𝛿;𝜗𝑚𝑎𝑥 + 𝛿] for 𝛿 small.

5.4 The maximal 𝑙𝑧 case

The maximal value for 𝑙𝑧 follows from (24) and is given by

𝑙𝑧 =
√
𝐽(𝐻,𝑅, 𝜗𝑚𝑎𝑥). (31)

In these cases, the second square root for the height function of Theorem 3 vanishes,

resulting in a single height function for 𝜗 = 𝜗𝑚𝑎𝑥 as

𝑑(𝑟) =
𝐻 + 𝑅 cos(𝜗𝑚𝑎𝑥)

2 −
𝑟2 − 𝑅2 sin2(𝜗𝑚𝑎𝑥)
2(𝐻 − 𝑅 cos(𝜗𝑚𝑎𝑥))

, (32)

with 𝑟 ≥ 𝑅 sin(𝜗𝑚𝑎𝑥). Note that for 𝑅 < 𝐻 this reproduces the results of Section 3. For 𝑅 > 𝐻

it depends on the mirror boundary if the condition 𝑟 ≥ 𝑅 sin(𝜗𝑚𝑎𝑥) can be saturated, cases

exist in which the maximal 𝑙𝑧−value is not accessible due to the mirror boundary.
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Figure 7: Two-dimensional section of confined domains associated to the four discussed

limiting cases. The three-dimensional confined regions are obtained by rotation around

the 𝑧−axis.

6 Conclusion and Outlook

In this work the rotational symmetric confined domains of a point-like particle bouncing

inside a paraboloid cavity under the influence of a homogeneous gravitational field in

terms of the directrix height 𝐻, reduced angular momentum 𝑙𝑧 and foci sphere radius 𝑅

were derived. It has been shown that some one-dimensional results map one to one to

the 3D case. In addition, reduced angular momentum conservation (absent in 2D) yields

some additional physics in 3D.

For future works it would be interesting to generalize our results to other rotational

symmetric domains. Also, the motion in a non-constant, e.g. Keplerian-field, would be of

interest, generalizing e.g. the results obtained in [Fed01, JZ24].

Arnold Mathematical Journal, Vol.11(1), 2025 94

http://dx.doi.org/10.56994/ARMJ


Gravitational Billiard

Acknowledgments

We would like to thank Dan Reznik for the inspiring conversation leading to this work.

Also we thank the anonymous reviewer for careful reading of the manuscript and the

many insightful comments and suggestions.

Declarations

For this work no funding has been received nor is there any conflict of interest.

References

[ABM19] A.A. Kilin A.V. Borisov and I.S. Mamaev. A parabolic chaplygin pendulum and

a paul trap: Nonintegrability, stability, and boundedness. Regul. Chaot. Dyn.,

24:329–352, 2019. 80

[And22] K.D. Anderson. Dynamics of a rotated orthogonal gravitational wedge billiard.

https://doi.org/10.48550/arXiv.2206.04997, 2022. 79

[BG92] J. W. Bruce and P. J. Giblin. Curves and Singularities: A Geometrical Introduction

to Singularity Theory. Cambridge University Press, 2 edition, 1992. 91

[Cha33] S.A. Chaplygin. On a paraboloid pendulum, complete collection of works. Izd.

Akad. Nauk SSSR, 1:194–199, 1933. 80

[dCDL15] D.R. da Costa, C.P. Dettmann, and E.D. Leonel. Circular, elliptic and oval billiards

in a gravitational field. Communications in Nonlinear Science and Numerical

Simulation, 22(1-3):731–746, 2015. 79

[Fed01] Yu N. Fedorov. An ellipsoidal billiard with a quadratic potential. Funct. Anal.

Appl., 35(3):199–208, 2001. 79, 81, 86, 94

Arnold Mathematical Journal, Vol.11(1), 2025 95

https://doi.org/10.48550/arXiv.2206.04997
http://dx.doi.org/10.56994/ARMJ


Daniel Jaud

[Fel21] Giovanni Felder. Poncelet property and quasi-periodicity of the integrable

boltzmann system. Letters in Mathematical Physics, 111(1), feb 2021. 80, 88

[GJ20] Giovanni Gallavotti and Ian Jauslin. A theorem on ellipses, an integrable

system and a theorem of boltzmann, 2020. 80, 88

[GR23] Sean Gasiorek and Milena Radnović. Periodic trajectories and topology of the

integrable boltzmann system, 2023. 80, 88

[Jau23a] Daniel Jaud. Gravitational billiards bouncing inside general domains - foci

curves and confined domains. Journal of Geometry and Physics, 194:104998,

2023. 79, 80, 81, 83, 86, 88, 92

[Jau23b] Daniel Jaud. Integer sequences from circle divisions by rational billiard tra-

jectories. In Liang-Yee Cheng, editor, ICGG 2022 - Proceedings of the 20th

International Conference on Geometry and Graphics, pages 95–106, Cham, 2023.

Springer International Publishing. 80, 85, 86

[JZ24] Daniel Jaud and Lei Zhao. Geometric properties of integrable kepler and hooke

billiards with conic section boundaries, 2024. 80, 88, 94

[KJ99] H. J. Korsch and H.-J. Jodl. Gravitational Billiards: The Wedge, pages 67–88.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. 79

[KL91] H J Korsch and J Lang. A new integrable gravitational billiard. Journal of

Physics A: Mathematical and General, 24(1):45, jan 1991. 79, 86

[Lan15] Cameron K. Langer. Nonlinear dynamics of two and three dimensional gravi-

tational billiard systems, thesis, 2015. 79

[LM86] H.E. Lehihet and B.N. Miller. Numerical study of a billiard in a gravitational

field. Physica D, 21:93–104, 1986. 79

[LM15] Cameron K. Langer and Bruce N. Miller. A three dimensional gravitational

billiard in a cone, 2015. 79

Arnold Mathematical Journal, Vol.11(1), 2025 96

http://dx.doi.org/10.56994/ARMJ


Gravitational Billiard

[Mas14] S. Masalovich. A remarkable focusing property of a parabolic mirror for

neutrons in the gravitational field: Geometric proof. Nuclear instruments &

methods in physics research / A, 763:517 – 520, 2014. 79, 80

[Mas20] S. Masalovich. Billiards in a gravitational field: A particle bouncing on a

parabolic and right angle mirror. https://doi.org/10.48550/arXiv.2007.

04730, 2020. 79, 80, 81, 83, 92

[Roz18] Utkir A. Rozikov. An introduction to mathematical billiards. World Scientific,

New Jersey, 2018. Includes bibliographical references and index; English. 85

[Ves88] A. Veselov. Integrable discrete-time systems and difference operators. Funct.

Anal. Appl., 22(2):83–93, 1988. 79, 81, 86

AUTHOR

Daniel Jaud,

Gymnasium Holzkirchen

Jörg-Hube-Strasse 4,

Holzkirchen, 83607, Germany

email: Daniel.Jaud.PhD@gmail.com

Arnold Mathematical Journal, Vol.11(1), 2025 97

https://doi.org/10.48550/arXiv.2007.04730
https://doi.org/10.48550/arXiv.2007.04730
http://dx.doi.org/10.56994/ARMJ


IMS
Stony 
Brook

Arnold Mathematical Journal

Volume 11, Issue 1, 2025

Contact geometry of Hill’s

approximation in a spatial restricted

four-body problem

Cengiz Aydin

Received 10 Mar 2024; Accepted 10 Oct 2024

Abstract: It is well-known that the planar and spatial circular restricted

three-body problem (CR3BP) is of contact type for all energy values below the

first critical value. Burgos-Garcia and Gidea extended Hill’s approach in the

CR3BP to the spatial equilateral CR4BP, which can be used to approximate

the dynamics of a small body near a Trojan asteroid of a Sun–planet system.

Our main result in this paper is that this Hill four-body system also has the

contact property. In other words, we can “contact” the Trojan. Such a result

enables to use holomorphic curve techniques and Floer theoretical tools in

this dynamical system in the energy range where the contact property holds.

© 2025 Cengiz Aydin
DOI: 10.56994/ARMJ.011.001.005

http://amathr.org/publications/journals/
http://armj.math.stonybrook.edu
http://dx.doi.org/10.56994/ARMJ
http://armj.math.stonybrook.edu/
https://orcid.org/
http://dx.doi.org/10.56994/ARMJ.011.001.005


Contact geometry of Hill’s approximation in a spatial restricted four-body problem

AMS Classification: 70G45, 70F10, 53D35

Key words and phrases: four-body problem, Hill’s approximation, celestial mechanics,

contact geometry

1 Introduction

Astronomical significance. One of the first triumphs in celestial mechanics was the La-

grange central configuration, one of the first explicit solutions to the three-body problem

discovered by Lagrange [29] in 1772. It consists of three bodies, not necessarily of equal

masses, forming the vertices of an equilateral triangle, each moving on a specific Kepler

orbit. The triangular configuration of the bodies is maintained throughout the entire

motion. A special type of Lagrange’s solution is the rigid circular motion of the three

bodies around their center of mass. It is common to use the term “Trojan” to describe

a small body, an asteroid or a natural satellite, that lies in such equilateral triangular

configuration together with the Sun and a planet, or with a planet and a moon. In other

words, such small bodies remain near triangular points 60° ahead of or behind the orbit

of a planet or a moon. Such triangular points correspond to the two equilateral Lagrange

points, 𝐿4 (leading) and 𝐿5 (trailing), of a Sun–planet or a planet–moon system. Since the

discovery of the first Trojan asteroid, 588 Achilles, near Jupiter’s Lagrange point 𝐿4 by

Max Wolf of the Heidelberg Observatory in 1906 (see [37]), such configurations have

not only deserved attention in theory, but have also gained tremendous astronomical

significance. By now many other examples of Trojan-like asteroids in our solar system

have become known. Jupiter has thousands of Trojans [44]; Mars [17] and Neptune [2]

also have some; only two Earth Trojans have been discovered so far [41]. Meanwhile

it is known [36] that the Saturn–Tethys system has two Trojans, Telesto (𝐿4-Trojan) and

Calypso (𝐿5-Trojan), and the Saturn–Dione system has two as well, Helene (𝐿4-Trojan) and

Polydeuces (𝐿5-Trojan). A twelve-year space probe to several Jupiter Trojans is currently

being operated by NASA’s Lucy mission, which was launched on 16 October 2021 as the

first mission to the Jupiter Trojans (see e.g., [38] for a recent research result). Outside the
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solar system there exists also the possibility of a Trojan planet associated to extrasolar

systems, formed by a star with similar mass as the Sun and a giant gas planet. Although

such Trojan planets only play a fictitious role at the moment, their dynamics are already

being analyzed theoretically [43].

In order to describe conveniently the dynamics of small bodies attracted by the grav-

itational field of three bodies in such a triangular central configuration, a restricted

four-body problem (R4BP) becomes necessary. There are plenty of results on various

models of the R4BP, such as [3], [8], [9], [13, 11, 12], [19], [22], [28], [31], [35], [42], [45].

Relevant for this work is the spatial equilateral circular one, in which three primaries

circle around their common center of mass and forming an equilateral triangular con-

figuration. In view of astronomical data associated to such configurations in the solar

system, the mass of one of the primaries (the Trojan) is much smaller than the other two

primaries. If one equates the mass of the Trojan to zero, the system represents the circular

restricted three-body problem (CR3BP). Therefore, to study the dynamics in the vicinity

of the Trojan, a practical and intelligent concept is to perform a Hill’s approximation in

the equilateral circular R4BP.

Hill’s approximation. In 1878 Hill [24] introduced a limiting case of the CR3BP, as

an approach to solve the motion of the Moon in the Sun–Earth problem. As a first ap-

proximation, the infinitesimal body (Moon) moves in the vicinity of the smaller primary

(Earth) and, by a symplectic rescaling of coordinates, the remaining primary (Sun) is

pushed infinitely far away in a way that it acts as a velocity independent gravitational

perturbation of the rotating Kepler problem formed by the Earth and the Moon.

Extending Hill’s concept to the equilateral circular R4BP was performed by Burgos-

García and Gidea [12], which is the central system in this paper. This problem studies the

dynamics near the Trojan and pushes the two remaining primaries (e.g., Sun and Jupiter)

to infinity, and depends on two parameters, the energy of the system and the mass ratio

𝜇 ∈ [0, 1
2
] of the two primaries at infinity (system is symmetric with respect to 𝜇 = 1

2
).
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The case 𝜇 = 0 corresponds to the classical Hill 3BP, therefore this Hill four-body model

generalizes the classical Hill’s approach. It is worth noting that this system is different as

the one introduced by Scheeres [42], in which the motion of a spacecraft in the Sun per-

turbed Earth–Moon system is studied. Moreover, this Hill four-body system was extended

in [11] as a problem with oblate bodies modeling the Sun–Jupiter–Hektor–Skamandrios

system.

Why we care about contact property. One of Hill’s main contributions was the dis-

covery of one periodic solution with a period of one synodic month of the Moon. Hill’s

lunar theory was, as Wintner said [47, p. 1], “considered by Poincaré as representing a

turning point in the history of celestial mechanics”. Poincaré sought to make periodic

solutions central in the study of the global dynamics, a focus that has persisted since his

pioneering work [39]. Inspired by Poincaré’s concept of using global surface of sections

for proving existence results of periodic orbits in the CR3BP [40], Birkhoff conjectured

[10] that retrograde periodic orbits in the CR3BP bound a disk-like global surface of

section (retrograde means that the motion of the orbit is in opposite direction as the

coordinate system is rotating; direct is the one that rotates in the same direction). Due to

preservation of an area form with finite total area, one can apply Brouwer’s translation

theorem to the Poincaré return map associated to the disk-like global surface of section

and find at least one fixed point that should correspond to a direct periodic orbit. The

direct orbit is astronomically more significant, since our Moon moves in a direct motion

around the Earth, whose existence is based so far on numerical computations, as Hill’s

lunar orbit. Such fixed point approaches related to existence results of periodic orbits

are sources of inspiration that have laid the fruitful fundamental principles of powerful

abstract methods and important breakthroughs in symplectic and contact geometry, such

as the work by Floer [20] on the Arnold conjecture, by Hofer [25] and Taubes [46] on

the Weinstein conjecture, and by Hofer–Wysocki–Zehnder [26] on the construction of

Arnold Mathematical Journal, Vol.11(1), 2025 101

http://dx.doi.org/10.56994/ARMJ


Cengiz Aydin

disk-like global surface of sections with the help of holomorphic curves. The assumption

that energy level sets are of contact type enable to use holomorphic curve and Floer theo-

retical techniques in the energy range where the contact property holds. Especially, many

recent deep results associated with the dynamics of low-dimensional contact manifolds

have been proved: In the 3-dimensional case, [16] proved the existence of supporting

broken book decompositions, [15] showed how to use these broken book decompositions

to construct Birkhoff sections or global surfaces of section, [18] gave a detailed description

of the dynamics when there are exactly two simple Reeb orbits, and [27] described an

abstract framework for proving strong closing properties based on the smooth closing

lemma for Reeb flows; in the 5-dimensional case, [33] showed the relation between the

spatial dynamics of the CR3BP and iterated open book decompositions. We also refer

to [21] for a profound introduction to holomorphic techniques and their use in celes-

tial mechanics, particularly focused on the CR3BP and the above Birkhoff’s conjecture.

Another dynamical consequence of the contact property of energy level sets, discussed

in the latter reference, is that blue sky catastrophes cannot occur. On a practical level,

Floer theoretic bifurcation tools have recently been applied to numerical investigations

of periodic orbits [4], [6], [32].

Main result. For the planar CR3BP it is well-known that below the first critical value,

the two bounded components of the energy level sets, after Moser regularization, are of

contact type [1]. Each component corresponds to the unit cotangent bundle of 𝑆2 with the

standard contact structure, meaning that each contact manifold corresponds to (𝑆∗𝑆2, 𝜉𝑠𝑡).

The same result for the spatial case was shown in [14], where each contact manifold

corresponds to (𝑆∗𝑆3, 𝜉𝑠𝑡). We note that [21, Chapter 6.1] proved the same result for the

classical planar Hill 3BP.

The Hill four-body system we consider has four Lagrange points, where 𝐿1 is symmetric

to 𝐿2 (lying on the 𝑥-axis), and 𝐿3 is symmetric to 𝐿4 (lying on the 𝑦-axis). If the energy

value 𝑐 is below the first critical value 𝐻(𝐿1∕2), then the energy level set has one bounded
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component (where the origin is contained), which we denote by Σ𝑏𝑐 . This component

is non-compact because of a singularity at the origin corresponding to collision. After

performing Moser regularization, we obtain a compact 5-dimensional manifold, which

we denote by Σ̃𝑏𝑐 . The spatial system is invariant under a symplectic involution 𝜎 which is

induced by the reflection at the ecliptic. The restriction of the spatial problem to the fixed

point set Fix(𝜎) corresponds to the planar problem. In fact, we can restrict the whole

procedure to Fix(𝜎) and obtain a compact 3-dimensional manifold, which we denote by

Σ̃𝑏𝑐 |Fix(𝜎). Our main result in this paper is the following theorem.

Theorem 1.1. For any given 𝜇 ∈ [0, 1
2
] it holds that

Σ̃𝑏𝑐 ≅ (𝑆∗𝑆3, 𝜉𝑠𝑡), if 𝑐 < 𝐻(𝐿1∕2),

Σ̃𝑏𝑐 |Fix(𝜎) ≅ (𝑆∗𝑆2, 𝜉𝑠𝑡), if 𝑐 < 𝐻(𝐿1∕2).

Our method to prove Theorem 1.1 is the same as in [1], [14], namely we find a Liouville

vector field on the cotangent bundle which is transverse to Σ̃𝑏𝑐 whenever 𝑐 < 𝐻(𝐿1∕2). This

transversality result implies the contact property. The Liouville vector field we use is

inspired by Moser regularization, which first interchanges the roles of position and

momenta, and then uses the stereographic projection. In this setting, the Liouville vector

field is the natural one (i.e., the radial vector field in fiber direction) on the new cotangent

bundle structure after switching position and momenta. Therefore, our transversality

result implies in particular fiberwise starshapedness.

Organization of the paper. In Section 2 we discuss the Hamiltonian, its linear symme-

tries, Lagrange points and Hill’s regions. The goal of Section 3 is to prove Theorem 1.1. We

first recall some basic definitions and notations from contact geometry, and then show

transversality in the non-regularized case. After this, we perform Moser regularization

and prove therein the transversality property.
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2 Hill’s approximation in the spatial equilateral circular R4BP

2.1 Hamiltonian

We consider three point masses (primaries), 𝐵1, 𝐵2 and 𝐵3, moving in circular periodic

orbits in the same plane with constant angular velocity around their common center of

gravity fixed at the origin, while forming an equilateral triangle configuration (see Figure

1). A fourth body 𝐵4 is significantly smaller than the other three and thus a negligible

effect on their motion. We set 𝐵1 on the negative 𝑥-axis at the origin of time and assume

that the corresponding three masses are𝑚1 ≥ 𝑚2 ≥ 𝑚3. It is convenient to choose the units

of mass, distance and time such that the gravitational constant is 1, and the period of the

circular orbits is 2𝜋. In these units the side length of the equilateral triangle configuration

is normalized to be one, and 𝑚1 +𝑚2 +𝑚3 = 1. Moreover, it is convenient to use a rotating

frame of reference that rotates with an angular velocity of the orbital angular rate

of the primaries. Then, the dynamics of the infinitesimal body 𝐵4 is described by the

Hamiltonian

𝐻(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) =
1
2
(
𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧

)
−
𝑚1
𝑟1

−
𝑚2
𝑟2

−
𝑚3
𝑟3

+ 𝑝𝑥𝑦 − 𝑝𝑦𝑥,

which is a first integral of the system. An equivalent first integral is the Jacobi integral 𝐶

defined by 𝐶 = −2𝐻. Notice that 𝑟𝑖 indicates the corresponding distance from 𝐵4 to 𝑖-th

primary, for 𝑖 = 1, 2, 3. The general expressions of the position coordinates (𝑥𝑖, 𝑦𝑖, 0) can

be seen in [9]. If 𝑚3 = 0 and 𝑚2 = 𝜇, then one recovers the constellation of the CR3BP

associated to 𝐵1 and 𝐵2, where 𝐵3 is located at the equilateral Lagrange point 𝐿4. Moreover,

the phase space is the trivial cotangent bundle 𝑇∗
(
ℝ3 ⧵ {𝐵1, 𝐵2, 𝐵3}

)
=
(
ℝ3 ⧵ {𝐵1, 𝐵2, 𝐵3}

)
×ℝ3,

endowed with the standard symplectic form 𝜔 =
∑
𝑑𝑝𝑘 ∧ 𝑑𝑘 (𝑘 = 𝑥, 𝑦, 𝑧). The flow of the

Hamiltonian vector field 𝑋𝐻 , defined by 𝑑𝐻(⋅) = 𝜔(⋅, 𝑋𝐻), is equivalent to the equations of

motion, {�̇� = 𝜕𝐻
𝜕𝑝𝑘

, �̇�𝑘 = − 𝜕𝐻
𝜕𝑘
} (𝑘 = 𝑥, 𝑦, 𝑧).

We now briefly recall the fundamental steps of Hill’s approximation, as performed

in [12] where the details can be seen. Let 𝐵3 be the primary (the Trojan), whose mass is

much smaller than the other two primaries. The first step is to set the Trojan to the origin.
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Figure 1: Equilateral circular restricted four-body problem. Left: Case of 𝑚1 > 𝑚2 > 𝑚3.

Right: Case of𝑚2 = 𝑚3 in a rotating frame of reference; 𝐵2 and𝐵3 are located symmetrically

with respect to 𝐵1.

The second step rescales symplectically the coordinates depending on 𝑚1∕3
3 . The third

step makes use of a Taylor expansion of the gravitational potential of the Hamiltonian in

powers of 𝑚1∕3
3 . Finally, the limiting case for 𝑚3 → 0 yields the Hamiltonian

𝐻(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) =
1
2
(
𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧

)
+ 𝑝𝑥𝑦 − 𝑝𝑦𝑥 −

1
𝑟 +

1
8𝑥

2 −
3
√
3

4 (1 − 2𝜇)𝑥𝑦 − 5
8𝑦

2 + 1
2𝑧

2,

where 𝑟 =
(
𝑥2 + 𝑦2 + 𝑧2

) 1
2 , 𝑚1 = 1 − 𝜇 and 𝑚2 = 𝜇. Notice that if one expands the Hamilto-

nian of the CR3BP centered at the equilateral Lagrange point 𝐿4, then the quadratic part

corresponds to 𝐻 + 1∕𝑟.

Furthermore, after applying a rotation in the 𝑥𝑦-plane, the system is equivalent with the

system characterized by the Hamiltonian

𝐻(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) =
1
2
(
𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧

)
+ 𝑝𝑥𝑦 − 𝑝𝑦𝑥 −

1
𝑟 + 𝑎𝑥2 + 𝑏𝑦2 + 1

2𝑧
2, (1)

where

𝑎 = 1
2(1 − 𝜆2), 𝑏 = 1

2(1 − 𝜆1), 𝜆1 =
3
2(1 − 𝑑), 𝜆2 =

3
2(1 + 𝑑), 𝑑 =

√
1 − 3𝜇 + 3𝜇2.

Since 𝑑(1 − 𝜇) = 𝑑(𝜇), we can assume that 𝜇 ∈ [0, 1
2
]. Notice that 𝜆1 and 𝜆2 are the eigenval-

ues corresponding to the rotation transformation in the 𝑥𝑦-plane. The quantities 𝑎, 𝑏, 𝜆1, 𝜆2
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Figure 2: The quantities 𝑎 (red), 𝑏 (green), 𝜆1, 𝜆2 (both blue) and 𝑑 (black).

and 𝑑 are plotted in Figure 2. The Hamiltonian (1) consists of the rotating Kepler problem

(formed by the Trojan and the infinitesimal body) with a velocity independent gravita-

tional perturbation produced by the two remaining massive primaries (the degree 2 term

𝑎𝑥2 + 𝑏𝑦2 + 1
2
𝑧2) which are sent at infinite distance. By introducing the effective potential

𝑈∶ ℝ3 ⧵ {0}→ ℝ, (𝑥, 𝑦, 𝑧) ↦→ −1𝑟 −
1
2
(
𝜆2𝑥2 + 𝜆1𝑦2 − 𝑧2

)
, (2)

the Hamiltonian (1) can be written as

𝐻(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) =
1
2
(
(𝑝𝑥 + 𝑦)2 + (𝑝𝑦 − 𝑥)2 + 𝑝2𝑧

)
+𝑈(𝑥, 𝑦, 𝑧), (3)

and the equations of motion are given by

�̈� − 2�̇� = −𝜕𝑈
𝜕𝑥

= (𝜆2 −
1
𝑟3
)𝑥

�̈� + 2�̇� = −𝜕𝑈
𝜕𝑦

= (𝜆1 −
1
𝑟3
) 𝑦 (4)

�̈� = −𝜕𝑈
𝜕𝑧

= − (1 + 1
𝑟3
) 𝑧.

In particular, the case 𝜇 = 0 recovers the classical Hill 3BP. While the Hill 3BP depends

only on the energy of the orbit, this systems depends on two parameters, the mass ratio
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𝜇 and the energy of the system. Specific 𝜇-values of practical interest are for example

𝜇 = 0.00095, which approximates the Sun–Jupiter mass ratio, and 𝜇 = 0.00547, which

corresponds to the extrasolar system associated to the Sun-like star HD 28185 and its

Jupiter-like exoplanet HD 28185 b.

2.2 Linear symmetries

A “symmetry” 𝜎 is, by definition, a symplectic or anti-symplectic involution of the phase

space which leaves the Hamiltonian invariant, i.e.,

𝐻◦𝜎 = 𝐻, 𝜎2 = id, 𝜎∗𝜔 = ±𝜔. (5)

Anti-symplectic symmetries denote time-reversal symmetries in the Hamiltonian context,

see e.g., [30]. A periodic solution 𝐱 ≡ (𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) is symmetric with respect to an

anti-symplectic symmetry 𝜌 if 𝐱(𝑡) = 𝜌 (𝐱(−𝑡)) for all 𝑡, and symmetric with respect to a

symplectic one 𝜎 if 𝐱(𝑡) = 𝜎 (𝐱(𝑡)) for all 𝑡.

The reflection at the ecliptic {𝑧 = 0} gives rise to a linear symplectic symmetry of (1),

denoted by

𝜎(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = (𝑥, 𝑦,−𝑧, 𝑝𝑥, 𝑝𝑦,−𝑝𝑧), (6)

whose fixed point set Fix(𝜎) = {(𝑥, 𝑦, 0, 𝑝𝑥, 𝑝𝑦, 0)} corresponds to the planar problem. Other

linear symplectic symmetries are −𝜎 and ±id, where −𝜎 corresponds to the 𝜋-rotation

around the 𝑧-axis, hence the 𝑧-axis is invariant under −𝜎. Linear anti-symplectic symme-

tries are determined by

• 𝜌1(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = (𝑥,−𝑦,−𝑧,−𝑝𝑥, 𝑝𝑦, 𝑝𝑧) (𝜋-rotation around the 𝑥-axis),

• 𝜌2(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = (𝑥,−𝑦, 𝑧,−𝑝𝑥, 𝑝𝑦,−𝑝𝑧) (reflection at the 𝑥𝑧-plane),

• 𝜌3(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = (−𝑥, 𝑦,−𝑧, 𝑝𝑥,−𝑝𝑦, 𝑝𝑧) (𝜋-rotation around the 𝑦-axis),

• 𝜌4(𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = (−𝑥, 𝑦, 𝑧, 𝑝𝑥,−𝑝𝑦,−𝑝𝑧) (reflection at the 𝑦𝑧-plane).

Together with the previous linear symplectic symmetries, they form the groupℤ2×ℤ2×ℤ2.

If one restrict the system to Fix(𝜎), linear anti-symplectic symmetries for the planar

problem are given by
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• 𝜌𝑥(𝑥, 𝑦, 0, 𝑝𝑥, 𝑝𝑦, 0) = (𝑥,−𝑦, 0,−𝑝𝑥, 𝑝𝑦, 0) (reflection at the 𝑥-axis),

• 𝜌𝑦(𝑥, 𝑦, 0, 𝑝𝑥, 𝑝𝑦, 0) = (−𝑥, 𝑦, 0, 𝑝𝑥,−𝑝𝑦, 0) (reflection at the 𝑦-axis),

that together with the linear symplectic ones {±id} form a Klein-four group ℤ2 ×ℤ2. These

symmetries show that it is not possible to say which of the two primaries at infinity we

are moving to or away from.

Remark 2.1. In [7] it shown that the Hill 3BP (𝜇 = 0) has two special properties.

i) The spatial linear symmetries already determine the planar ones. The same phe-

nomenon is also true for all 𝜇 ∈ [0, 1
2
]. To see this, let us denote by Σ𝑠 and Σ𝑝 each set

of spatial and planar linear symmetries. Consider the projection map given by the

restriction to Fix(𝜎),

𝜋∶ Σ𝑠 → Σ𝑝, 𝜌 ↦→ 𝜌|Fix(𝜎).

If 𝜌 ∈ Σ𝑠, then 𝜌|Fix(𝜎) ∈ Σ𝑝 with the corresponding (anti-)symplectic property. While

𝜋 is not injective (since 𝜋(𝜌1) = 𝜋(𝜌2)), it is surjective. If 𝜌 ∈ Σ𝑝 is symplectic (or

anti-symplectic), then a symplectic (or anti-symplectic) extension is given by 𝑧 ↦→ 𝑧

and 𝑝𝑧 ↦→ 𝑝𝑧 (or 𝑧 ↦→ −𝑧 and 𝑝𝑧 ↦→ 𝑝𝑧).

ii) There are no other linear symmetries. This statement also holds for all 𝜇 ∈ [0, 1
2
].

Its proof uses the equations (5) and the properties of linear symplectic and anti-

symplectic involutions. Since the exact same computations work for (1) for all

𝜇 ∈ [0, 1
2
], we forgo its proof in this paper.

2.3 Lagrange points and Hill’s region

From the third equation in (4) it is obvious that all Lagrange points are located at the

ecliptic {𝑧 = 0}. Using the projection onto the configuration space given by

𝜋∶ ℝ3 ⧵ {0} ×ℝ3 → ℝ3 ⧵ {0}, (𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) ↦→ (𝑥, 𝑦, 𝑧), (7)

there is a one-to-one correspondence between critical points of the Hamiltonian (3) and

the effective potential (2), determined by
(
𝜋|crit(𝐻)

)−1
(𝑥, 𝑦, 0) = (𝑥, 𝑦, 0,−𝑦, 𝑥, 0). In [12] it is
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shown that (2) has four critical points, whose coordinates are given explicitly in terms of

𝜇,

𝐿1 = (
1

3
√
𝜆2
, 0, 0) , 𝐿2 = (−

1
3
√
𝜆2
, 0, 0) , 𝐿3 = (0,

1
3
√
𝜆1
, 0) , 𝐿4 = (0,−

1
3
√
𝜆1
, 0) .

Note that 𝐿1∕2 are related to each other by 𝜌𝑦 (reflection at the 𝑦-axis), and 𝐿3∕4 are related

to each other by 𝜌𝑥 (reflection at the 𝑥-axis). The classical Hill 3BP (𝜇 = 0) only has 𝐿1∕2,

and especially, if 𝜇 → 0 then 𝜆1 → 0, which means that 𝐿3 and 𝐿4 are sent to infinity.

Therefore, the presence of a second primary at infinity for 𝜇 ∈ (0, 1
2
] produces the two

additional Lagrange points 𝐿3∕4. Since 𝜆2 > 𝜆1, we have for the critical values

𝐻(𝐿1∕2) = −32
3
√
𝜆2 < −32

3
√
𝜆1 = 𝐻(𝐿3∕4), for all 𝜇 ∈ (0, 12].

We now consider the energy level set Σ𝑐 ∶= 𝐻−1(𝑐), for 𝑐 ∈ ℝ. In view of the footpoint

projection (7), the “Hill’s region” of Σ𝑐 is defined as

K𝑐 ∶= 𝜋(Σ𝑐) ⊂ ℝ3 ⧵ {0},

which means that the Hill’s region of the energy level set is its shadow under the footpoint

projection. Since the first three terms in (3) are quadratic and hence non-negative, we

can obtain the Hill’s region by

K𝑐 =
{
(𝑥, 𝑦, 𝑧) ∈ ℝ3 ⧵ {0} ∣ 𝑈(𝑥, 𝑦, 𝑧) ≤ 𝑐

}
.

The topology of the Hill’s region depends on the energy level. If 𝑐 < 𝐻(𝐿1∕2), then the Hill’s

region has two connected components, one bounded and one unbounded (see Figure 3).

We denote the bounded component by K 𝑏
𝑐 and abbreviate by

Σ𝑏𝑐 ∶= 𝜋−1(K 𝑏
𝑐 ) ∩ Σ𝑐 (8)

the corresponding connected component of Σ𝑐.
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Figure 3: Hill’s region (gray shaded domains) for planar problem {𝑧 = 0} for 𝜇 = 0.2. White

domains correspond to forbidden regions. Red dots indicate 𝐿1∕2; blue dots indicate 𝐿3∕4.

Right: For 𝑐 < 𝐻(𝐿1∕2). Left: For 𝐻(𝐿1∕2) < 𝑐 < 𝐻(𝐿3∕4). In the Hill 3BP (𝜇 = 0), when 𝐿3∕4

are sent to infinity, below the critical value the Hill’s region consists of one bounded

component and two unbounded components.

3 Contact property - Proof of Theorem 1.1

3.1 Basic notations

We now recall some basic definitions and notations from contact geometry, and refer for

details to [23].

Definition 3.1. Let 𝑀 be a smooth manifold of odd dimension 2𝑛+1. A “contact form” on

𝑀 is a 1-form 𝛼 ∈ Ω1(𝑀) such that 𝛼 ∧ (𝑑𝛼)∧𝑛 ≠ 0. Given a contact form 𝛼, the hyperplane

field 𝜉 = ker𝛼 ⊂ 𝑇𝑀 is oriented by 𝑑𝛼, and this oriented codimension-1 field is called the

“contact structure”. The pair (𝑀, 𝜉) is called “contact manifold”. The “Reeb vector field”

𝑅𝛼 is the unique vector field defined by the equations 𝑑𝛼(𝑅𝛼, ⋅) = 0 and 𝛼(𝑅) = 1, whose

flow is called “Reeb flow”.
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Definition 3.2. A “Liouville vector field” 𝑋 on a symplectic manifold (𝑀,𝜔) is a vector

field satisfying L𝑋𝜔 = 𝜔, where L denotes the Lie derivative, i.e., the Lie derivative along

𝑋 preserves 𝜔.

By Cartan’s formula and the closedness of the symplectic form 𝜔, we have L𝑋𝜔 =

𝑑 (𝜄𝑋𝜔) + 𝜄𝑋𝑑𝜔 = 𝑑 (𝜄𝑋𝜔) and therefore, we can write the Liouville condition as 𝑑 (𝜄𝑋𝜔) = 𝜔,

where 𝜄𝑋𝜔(⋅) = 𝜔(𝑋, ⋅).

Example 3.3. The cotangent bundle 𝑇∗𝑄 of a smooth manifold 𝑄 of dimension 𝑛 is

endowed with the so-called “Liouville one-form”. In local coordinates (𝑞1, ..., 𝑞𝑛) on 𝑄

and dual coordinates (𝑝1, ..., 𝑝𝑛) on the fibers of 𝑇∗𝑄, the Liouville one-form is defined by

𝜆𝑐𝑎𝑛 =
∑𝑛

𝑖=1 𝑝𝑖𝑑𝑞𝑖. Since the standard symplectic form is characterized by 𝜔𝑐𝑎𝑛 = 𝑑𝜆𝑐𝑎𝑛 =
∑𝑛

𝑖=1 𝑑𝑝𝑖 ∧ 𝑑𝑞𝑖, the “natural Liouville vector field” 𝑋 on 𝑇∗𝑄 associated to 𝜆𝑐𝑎𝑛 is defined by

𝜄𝑋𝜔𝑐𝑎𝑛 = 𝜆𝑐𝑎𝑛. In local coordinates,

𝑋 =
𝑛∑

𝑖=1
𝑝𝑖

𝜕
𝜕𝑝𝑖

,

that is, the radial vector field in fiber direction.

Hypersurfaces of contact type. Let𝑋 be a Liouville vector field on a 2𝑛+2 dimensional

symplectic manifold (𝑀,𝜔). Then 𝛼 ∶= 𝜄𝑋𝜔|Σ is a contact form on any hypersurface Σ ⊂ 𝑀

transverse to 𝑋 (i.e., with 𝑋 nowhere tangent to Σ). Such hypersurfaces are said to be

of “contact type”. To see this, let 𝑥 ∈ Σ and let {𝑣1, ..., 𝑣2𝑛+1} be a basis of 𝑇𝑥Σ. By using the

Liouville condition we have,

𝛼 ∧ (𝑑𝛼)∧𝑛(𝑣1, ..., 𝑣2𝑛+1) = 𝜄𝑋𝜔 ∧ 𝜔∧𝑛(𝑣1, ..., 𝑣2𝑛+1) =
1
𝑛𝜔

∧(𝑛+1)(𝑋, 𝑣1, ..., 𝑣2𝑛+1). (9)

Since {𝑋, 𝑣1, ..., 𝑣2𝑛+1} is a basis of 𝑇𝑥𝑀 (due to transversality) and 𝜔∧(𝑛+1) is a volume form

on 𝑀, we obtain that (9) is non-zero, i.e., the contact condition is satisfied.

Any hypersurface Σ ⊂ 𝑀 has a characteristic foliation 𝐿 which is a rank 1 foliation

with 𝐿𝑥 = ker
(
𝜔|𝑇𝑥Σ

)
, for 𝑥 ∈ Σ. If Σ is a energy level set of a Hamiltonian 𝐻∶ 𝑀 → ℝ,
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then for 𝑥 ∈ Σ we have that 𝑋𝐻(𝑥) ∈ 𝐿𝑥. If Σ is of contact type, then 𝑅𝛼(𝑥) ∈ 𝐿𝑥, i.e., the

Reeb flow of 𝛼 is a reparametrization of the Hamiltonian flow. In the case of 𝑀 = 𝑇∗𝑄,

if the contact form on Σ ⊂ 𝑇∗𝑄 is induced by the transversality of the natural Liouville

vector field 𝑋 on 𝑇∗𝑄, then the contact structure is called the “standard contact structure”

determined by

𝜉𝑠𝑡 = ker𝛼𝑐𝑎𝑛, 𝛼𝑐𝑎𝑛 ∶= 𝜄𝑋𝜔𝑐𝑎𝑛|Σ = 𝜆𝑐𝑎𝑛|Σ.

Moreover, in this case the energy hypersurface Σ ⊂ 𝑇∗𝑄 is “fiberwise starshaped”, i.e., for

each point 𝑞 ∈ 𝑄 the intersection Σ∩𝑇∗𝑞𝑄 bounds a starshaped domain in the linear space

𝑇∗𝑞𝑄, which means that the natural Liouville vector field is transverse to each Σ ∩ 𝑇∗𝑞𝑄.

3.2 Proof of transversality in non-regularized case

We now consider the Liouville vector field on 𝑇∗ℝ3 given by

𝑋 = 𝑥 𝜕
𝜕𝑥

+ 𝑦 𝜕
𝜕𝑦

+ 𝑧 𝜕
𝜕𝑧
. (10)

Proposition 3.4. For any given 𝜇 ∈ [0, 1
2
] assume that 𝑐 < 𝐻(𝐿1∕2) = − 3

2
3
√
𝜆2. Then the

bounded component Σ𝑏𝑐 of the energy level set, as defined by (8), is transverse to 𝑋.

As a consequence of Proposition 3.4, 𝜄𝑋𝜔|Σ𝑏𝑐 defines a contact form on Σ𝑏𝑐 . In order to

prove Proposition 3.4, we need some properties of the effective potential (2), which we

formulate in three lemmas and discuss in spherical coordinates,

𝑥 = 𝜌 cos 𝜃 sin𝜑

𝑦 = 𝜌 sin 𝜃 sin𝜑

𝑧 = 𝜌 cos𝜑

where 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜑 ≤ 𝜋. Since we consider energy level sets below the first critical

value, the radius 𝜌 is always smaller than the distance from 𝐿1∕2 to the origin, which is

1∕ 3
√
𝜆2 and always less than 1. Therefore, we assume that the radius 𝜌 is smaller than 1.

Now the effective potential (2) reads

𝑈(𝜌, 𝜃, 𝜑) = −1𝜌 −
1
2𝜌

2(𝜆2 cos2 𝜃 sin
2 𝜑 + 𝜆1 sin

2 𝜃 sin2 𝜑 − cos2 𝜑),
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which is 𝜋-periodic in the variables 𝜃 and 𝜑.

Lemma 3.5. For fixed radius 𝜌 ∈ (0, 1) the function 𝑈𝜌 ∶= 𝑈(𝜌, ⋅, ⋅) has its minimum at

(𝜃, 𝜑) = (0, 𝜋
2
).

Proof. The differential is given by

𝑑𝑈𝜌(𝜃, 𝜑) = 𝜌2(𝜆2 − 𝜆1) cos 𝜃 sin 𝜃 sin
2 𝜑𝑑𝜃 + 𝜌2 sin𝜑 cos𝜑(𝜆2 cos2 𝜃 + 𝜆1 sin

2 𝜃 + 1)𝑑𝜑.

Since 𝜆2 > 𝜆1, and the term 𝜆2 cos2 𝜃 + 𝜆1 sin
2 𝜃 + 1 is strictly positive, we find four critical

points at (0, 0), (0, 𝜋
2
), (𝜋

2
) and (𝜋

2
, 𝜋
2
). The corresponding Hessians are given by

𝐻𝑈𝜌
(0, 0) =

⎛
⎜
⎝

0 0

0 −𝜌2(𝜆2 + 1)

⎞
⎟
⎠
, 𝐻𝑈𝜌

(0, 𝜋2 ) =
⎛
⎜
⎝

𝜌2(𝜆2 − 𝜆1) 0

0 𝜌2(𝜆2 + 1)

⎞
⎟
⎠

𝐻𝑈𝜌
(𝜋2 , 0) =

⎛
⎜
⎝

0 0

0 −𝜌2(𝜆1 + 1)

⎞
⎟
⎠
, 𝐻𝑈𝜌

(𝜋2 ,
𝜋
2 ) =

⎛
⎜
⎝

−𝜌2(𝜆2 − 𝜆1) 0

0 𝜌2(𝜆1 + 1)

⎞
⎟
⎠
.

Therefore, the function 𝑈𝜌 attains its minimum at (𝜃, 𝜑) = (0, 𝜋
2
).

We denote by 𝑟 ∶= 1∕ 3
√
𝜆2 the distance from 𝐿1∕2 to the origin and introduce

𝐵𝑟(0) ∶= {(𝑥, 𝑦, 𝑧) ∈ ℝ3∶ 𝑥2 + 𝑦2 + 𝑧2 ≤ 𝑟2}

the ball of radius 𝑟 centered at the origin.

Corollary 3.6. The bounded part of Hill’s region, K 𝑏
𝑐 , is contained in 𝐵𝑟(0).

Proof. Let (𝜌, 𝜃, 𝜑) ∈ 𝜕𝐵𝑟(0), i.e., 𝜌 = 𝑟 = 1∕ 3
√
𝜆2. Then, by Lemma 3.5,

𝑈(𝑟, 𝜃, 𝜑) ≥ 𝑈(𝑟, 0, 𝜋2 ) = −1𝑟 −
1
2𝑟

2𝜆2 = −32
3
√
𝜆2 = 𝐻(𝐿1∕2) > 𝑐. (11)

Therefore, (𝑟, 𝜃, 𝜑) does not lie in K 𝑏
𝑐 , and hence, 𝜕𝐵𝑟(0) ∩K 𝑏

𝑐 = ∅. Since K 𝑏
𝑐 is connected

and contains the origin in its closure, K 𝑏
𝑐 is contained in 𝐵𝑟(0).

Lemma 3.7. For every (𝜌, 𝜃, 𝜑) ∈ 𝐵𝑟(0) with 𝜌 ∈ (0, 𝑟) it holds that 𝜕𝑈
𝜕𝜌
(𝜌, 𝜃, 𝜑) > 0.
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Proof. Let (𝜌, 𝜃, 𝜑) ∈ 𝐵𝑟(0) with 𝜌 ∈ (0, 𝑟). Since 𝜆2 > 𝜆1 we have the following equivalences

(𝜆1 − 𝜆2) sin
2 𝜃 ≤ 0 ⇔ 𝜆2(cos2 𝜃 − 1) + 𝜆1 sin

2 𝜃 ≤ 0 ⇔ 𝜆2 cos2 𝜃 + 𝜆1 sin
2 𝜃 ≤ 𝜆2. (12)

By using (12), we estimate

𝜕𝑈
𝜕𝜌

= 1
𝜌2

− 𝜌
(
𝜆2 cos2 𝜃 sin

2 𝜑 + 𝜆1 sin
2 𝜃 sin2 𝜑 − cos2 𝜑

)
≥ 1
𝜌2

− 𝜆2𝜌 > 0. (13)

The last strict inequality holds since the function 𝑓∶ (0, 𝑟) → ℝ, 𝑥 ↦→ 1
𝑥2
− 𝜆2𝑥 is strictly

positive on its domain.

Lemma 3.8. For every (𝜌, 𝜃, 𝜑) ∈ 𝐵𝑟(0) with 𝜌 > 0 it holds that 𝜕2𝑈
𝜕𝜌2

(𝜌, 𝜃, 𝜑) ≤ −sin2 𝜑.

Proof. Let (𝜌, 𝜃, 𝜑) ∈ 𝐵𝑟(0) with 𝜌 > 0. Since the function 𝑓∶ (0, 𝑟]→ ℝ, 𝑥 ↦→ − 1
𝑥3

takes the

maximal value at 𝑥 = 𝑟, and because 𝜆2 ≥ 2, we estimate

𝜕2𝑈
𝜕𝜌2

= − 2
𝜌3

+ cos2 𝜑 − sin2 𝜑
(
𝜆2 cos2 𝜃 + 𝜆1 sin

2 𝜃
)
≤ − 2

𝑟3
+ 1 = −2𝜆2 + 1 ≤ −3 ≤ −sin2 𝜑.

Proof of Proposition 3.4. We show that

𝑑𝐻(𝑋)|Σ𝑏𝑐 > 0. (14)

The differential of the Hamiltonian (1) is given by

𝑑𝐻 =𝑝𝑥𝑑𝑝𝑥 + 𝑝𝑦𝑑𝑝𝑦 + 𝑝𝑧𝑑𝑝𝑧 + 𝑝𝑥𝑑𝑦 + 𝑦𝑑𝑝𝑥 − 𝑝𝑦𝑑𝑥 − 𝑥𝑑𝑝𝑦 (15)

+ 2𝑎𝑥𝑑𝑥 + 2𝑏𝑦𝑑𝑦 + 𝑧𝑑𝑧 + 𝑥
𝑟3
𝑑𝑥 +

𝑦
𝑟3
𝑑𝑦 + 𝑧

𝑟3
𝑑𝑧.

By inserting the Liouville vector field (10) into (15) we obtain

𝑑𝐻(𝑋) = 𝑝𝑥𝑦 − 𝑝𝑦𝑥 + 2𝑎𝑥2 + 2𝑏𝑦2 + 𝑧2 + 1
𝑟 . (16)

Recall that 𝑎 = 1
2
(1 − 𝜆2) and 𝑏 = 1

2
(1 − 𝜆1). In spherical coordinates the Liouville vector

field (10) becomes

𝑋 = 𝜌 𝜕
𝜕𝜌
,
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and (16) reads

𝑑𝐻(𝑋) =𝑝𝑥𝜌 sin 𝜃 sin𝜑 − 𝑝𝑦𝜌 cos 𝜃 sin𝜑 + (1 + 𝜆2)𝜌2 cos2 𝜃 sin
2 𝜑 (17)

+ (1 − 𝜆1)𝜌2 sin
2 𝜃 sin2 𝜑 + 𝜌2 cos2 𝜑 + 1

𝜌 .

In view of 𝜕𝑈
𝜕𝜌

from (13), we write (17) in the form

𝑑𝐻(𝑋) = 𝜌 sin 𝜃 sin𝜑(𝑝𝑥 + 𝜌 sin 𝜃 sin𝜑) − 𝜌 cos 𝜃 sin𝜑(𝑝𝑦 − 𝜌 cos 𝜃 sin𝜑) + 𝜌𝜕𝑈
𝜕𝜌

,

which we estimate by using the Cauchy–Schwarz inequality,

𝑑𝐻(𝑋) ≥ 𝜌𝜕𝑈
𝜕𝜌

− 𝜌 sin𝜑
√
(𝑝𝑥 + 𝜌 sin 𝜃 sin𝜑)2 + (𝑝𝑦 − 𝜌 cos 𝜃 sin𝜑)2

= 𝜌𝜕𝑈
𝜕𝜌

− 𝜌 sin𝜑
√
2(𝐻 −𝑈) − 𝑝2𝑧

≥ 𝜌𝜕𝑈
𝜕𝜌

− 𝜌 sin𝜑
√
2(𝐻 −𝑈).

Therefore, we have

𝑑𝐻(𝑋)|Σ𝑏𝑐 ≥ 𝜌 (𝜕𝑈
𝜕𝜌

− sin𝜑
√
2(𝑐 −𝑈)) .

Since the right hand side is independent of the momentum coordinates, to prove (14) it is

suffices to show that

(𝜕𝑈
𝜕𝜌

− sin𝜑
√
2(𝑐 −𝑈))

|||||||K 𝑏
𝑐

> 0. (18)

Let (𝜌, 𝜃, 𝜑) ∈ K 𝑏
𝑐 . In particular, 𝑈(𝜌, 𝜃, 𝜑) ≤ 𝑐. By Corollary 3.6, we have 𝜌 < 𝑟, and by (11)

it holds that 𝑈(𝑟, 𝜃, 𝜑) > 𝑐. Therefore, it exists 𝜏 ∈ [0, 𝑟 − 𝜌) such that

𝑈(𝜌 + 𝜏, 𝜃, 𝜑) = 𝑐.
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By using Lemma 3.7 and Lemma 3.8 we obtain

(𝜕𝑈
𝜕𝜌

(𝜌, 𝜃, 𝜑))
2
= (𝜕𝑈

𝜕𝜌
(𝜌 + 𝜏, 𝜃, 𝜑))

2
− ∫

𝜏

0

𝑑
𝑑𝑡

(𝜕𝑈
𝜕𝜌

(𝜌 + 𝑡, 𝜃, 𝜑))
2
𝑑𝑡

> −2 ∫
𝜏

0

𝜕𝑈
𝜕𝜌

(𝜌 + 𝑡, 𝜃, 𝜑)𝜕
2𝑈
𝜕𝜌2

(𝜌 + 𝑡, 𝜃, 𝜑)𝑑𝑡

≥ 2 sin2 𝜑 ∫
𝜏

0

𝜕𝑈
𝜕𝜌

(𝜌 + 𝑡, 𝜃, 𝜑)𝑑𝑡

= 2 sin2 𝜑 (𝑈(𝜌 + 𝜏, 𝜃, 𝜑) −𝑈(𝜌, 𝜃, 𝜑))

= 2 sin2 𝜑 (𝑐 −𝑈(𝜌, 𝜃, 𝜑)) .

Therefore, by using Lemma 3.7 once more, we imply

𝜕𝑈
𝜕𝜌

(𝜌, 𝜃, 𝜑) > sin𝜑
√
2 (𝑐 −𝑈(𝜌, 𝜃, 𝜑)),

which shows (18) and thereby the proposition.

3.3 Moser-regularized energy level set and proof of transversality near the
origin

The Hamiltonian (1) has a singularity at the origin corresponding to collisions, thus the

bounded component Σ𝑏𝑐 of the energy level set is non-compact. Moser [34] observed that

the regularized Kepler problem coincides with the geodesic flow on the sphere endowed

with its standard metric by interchanging the roles of position and momenta. To remove

the singularity in our problem, we use the same concept as introduced by Moser.

We abbreviate by 𝐗 = (𝑥, 𝑦, 𝑧) and 𝐏 = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) the corresponding position and

momentum coordinates. We use a new time parameter 𝑠 and define for an energy value

𝑐 < 𝐻(𝐿1∕2) = − 3
2

3
√
𝜆2 a new Hamiltonian by

𝑠 = ∫ 𝑑𝑡
|𝐗|

, 𝐾𝑐(𝐗,𝐏) ∶= |𝐗| (𝐻(𝐗,𝐏) − 𝑐) ,

Notice that the flow of 𝐻 at energy level 𝑐 corresponds to the flow of 𝐾𝑐 at energy level 0.

Now we interchange the roles of position and momenta by the symplectic transformation
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mapping (𝐗,𝐏) to (−𝐏,𝐗). For simplicity of notation, we replace the new coordinates 𝐗′ =

−𝐏 and 𝐏′ = 𝐗 by 𝐗 and 𝐏. Then, the new transformed Hamiltonian 𝐾𝑐(𝐗,𝐏) = 𝐾𝑐(−𝐏,𝐗)

is explicitly given by

𝐾𝑐(𝐗,𝐏) =
1
2 |𝐗|

2|𝐏| + |𝐏|(𝑝𝑥𝑦 − 𝑝𝑦𝑥) − 1 + |𝐏|(𝑎𝑝2𝑥 + 𝑏𝑝2𝑦 +
1
2𝑝

2
𝑧) − |𝐏|𝑐 (19)

= 1
2
(
|𝐗|2 + 1

)
|𝐏| + (𝑝𝑥𝑦 − 𝑝𝑦𝑥)|𝐏| − 1 + (𝑎𝑝2𝑥 + 𝑏𝑝2𝑦 +

1
2𝑝

2
𝑧)|𝐏| − (𝑐 + 1

2)|𝐏|.

The next step is to use the stereographic projection which induces a symplectic trans-

formation between 𝑇∗ℝ3 and 𝑇∗𝑆3 that extends 𝐾𝑐 to a Hamiltonian on 𝑇∗𝑆3. Let 𝜉 =

(𝜉0, 𝜉1, 𝜉2, 𝜉3) ∈ ℝ4 with norm 1. We write a tangent vector 𝜂 ∈ 𝑇𝜉𝑆3 as 𝜂 = (𝜂0, 𝜂1, 𝜂2, 𝜂3),

with inner product (𝜉, 𝜂) = 0. We identify 𝑇𝑆3 with 𝑇∗𝑆3 ⊂ 𝑇∗ℝ4 by using the standard

metric on 𝑆3. Then, the symplectic transformation is given by

𝑥 =
𝜉1

1 − 𝜉0
, 𝑦 =

𝜉2
1 − 𝜉0

, 𝑧 =
𝜉3

1 − 𝜉0
, (20)

𝑝𝑥 = 𝜂1(1 − 𝜉0) + 𝜉1𝜂0, 𝑝𝑦 = 𝜂2(1 − 𝜉0) + 𝜉2𝜂0, 𝑝𝑧 = 𝜂3(1 − 𝜉0) + 𝜉3𝜂0.

Notice that here (𝑥, 𝑦, 𝑧) represents the momentum and (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) the position compared

to the original picture before switching their roles. After this transformation, going to

the North pole (where the momentum becomes infinite) corresponds to collision in

the original picture (where the position becomes zero). Dynamically, at collision (going

through the North pole) it bounces back. Therefore, Moser regularization is characterized

by adding the fiber over the North pole. Moreover, the inverse transformation is given by

𝜉0 =
|𝐗|2 − 1
|𝐗|2 + 1

, 𝜉1 =
2𝑥

|𝐗|2 + 1
, 𝜉2 =

2𝑦
|𝐗|2 + 1

, 𝜉3 =
2𝑧

|𝐗|2 + 1
,

𝜂0 = ⟨𝐗,𝐏⟩, 𝜂1 =
|𝐗|2 + 1

2 𝑝𝑥 − ⟨𝐗,𝐏⟩𝑥, 𝜂2 =
|𝐗|2 + 1

2 𝑝𝑦 − ⟨𝐗,𝐏⟩𝑦, 𝜂3 =
|𝐗|2 + 1

2 𝑝𝑧 − ⟨𝐗,𝐏⟩𝑧,

and, in addition, we have the relation

|𝜂| = 1
2(|𝐗|

2 + 1)|𝐏| = |𝐏|
1 − 𝜉0

. (21)

By inserting (20) and (21) into (19), the transformed Hamiltonian on 𝑇∗𝑆3, which we

denote by the same letter, is given by

𝐾𝑐(𝜉, 𝜂) = |𝜂|𝑓(𝜉, 𝜂) − 1, (22)
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where

𝑓(𝜉, 𝜂) ∶= 1 + (𝜂1𝜉2 − 𝜂2𝜉1)(1 − 𝜉0) + (𝑎𝑔21 + 𝑏𝑔22 +
1
2𝑔

2
3)(1 − 𝜉0) − (𝑐 + 1

2)(1 − 𝜉0),

𝑔𝑘 ∶= 𝑔𝑘(𝜉, 𝜂) ∶= 𝜂𝑘(1 − 𝜉0) + 𝜉𝑘𝜂0, 𝑘 = 1, 2, 3.

By shifting and squaring the Hamiltonian (22) we obtain the new smooth Hamiltonian

𝑄(𝜉, 𝜂) on a subset of 𝑇∗𝑆3,

𝑄(𝜉, 𝜂) = 1
2 |𝜂|

2𝑓(𝜉, 𝜂)2. (23)

The level set 𝐻−1(𝑐) = 𝐾−1
𝑐 (0) is compactified to the level set 𝑄−1( 1

2
). Since 𝑄 is smooth near

this level set, we consider 𝑄−1( 1
2
) as the regularized problem. Since the only problem in

compactness of Σ𝑏𝑐 comes from collisions with the origin, we consider points near the

origin, i.e., in view of (21), points (𝜉, 𝜂) satisfying

|𝐏| = |𝜂|(1 − 𝜉0) < 𝜀. (24)

Proposition 3.9. For 𝜀 > 0 small enough, the natural Liouville vector field on 𝑇∗𝑆3 given by

𝑋 =
3∑

𝑖=0
𝜂𝑖

𝜕
𝜕𝜂𝑖

, (25)

is transverse to 𝑄−1( 1
2
) over points (𝜉, 𝜂) satisfying (24).

Notice that the Liouville vector field (10) on 𝑇∗ℝ3 that we used for transversality in

the unregularized case is mapped, via the composition of the symplectic transformation

(20) with the symplectic switch map, to the natural Liouville vector field (25) on 𝑇∗𝑆3.

Proof of Proposition 3.9. We show that for 𝜀 > 0 small enough it holds that

𝑑𝑄(𝑋)|𝑄−1( 1
2
) > 0. (26)

The computation of 𝑑𝑄(𝑋), in view of (23) and (25), yields

𝑑𝑄(𝑋) = |𝜂|2𝑓(𝜉, 𝜂)2 + |𝜂|2𝑓(𝜉, 𝜂)
3∑

𝑖=0

𝜕𝑓
𝜕𝜂𝑖

(𝜉, 𝜂)𝜂𝑖

= 2𝑄 + |𝜂|2𝑓(𝜉, 𝜂)(1 − 𝜉0)(𝜂1𝜉2 − 𝜂2𝜉1 + 2𝑎𝑔21 + 2𝑏𝑔22 + 𝑔23).
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In order to prove (26), we first show that we can choose 𝜀 > 0 so small such that

|𝑓(𝜉, 𝜂)| ≥ 1
2 . (27)

Since the energy value 𝑐 < 𝐻(𝐿1∕2) = − 3
2

3
√
𝜆2 is negative, and in fact less then − 3

2
, the

quantity 𝑐 + 1
2

is negative as well. Notice from Figure 2 that 𝑎 < 0, |𝑎| ≤ 1 and 𝑏 > 0.

Therefore, 𝑏𝑔22 +
1
2
𝑔23 − (𝑐 + 1

2
) is positive. By using these, we estimate

|𝑓(𝜉, 𝜂)| =
||||||
1 + (𝜂1𝜉2 − 𝜂2𝜉1)(1 − 𝜉0) + (𝑎𝑔21 + 𝑏𝑔22 +

1
2𝑔

2
3)(1 − 𝜉0) − (𝑐 + 1

2)(1 − 𝜉0)
||||||

=
||||||
1 + (𝑏𝑔22 +

1
2𝑔

2
3 − (𝑐 + 1

2))(1 − 𝜉0) + (𝜂1𝜉2 − 𝜂2𝜉1)(1 − 𝜉0) + 𝑎𝑔21(1 − 𝜉0)
||||||

≥ 1 − |𝜂1𝜉2 − 𝜂2𝜉1|(1 − 𝜉0) − |𝑎|𝑔21(1 − 𝜉0)

≥ 1 − |𝜂1𝜉2 − 𝜂2𝜉1|(1 − 𝜉0) − 𝑔21(1 − 𝜉0).

Furthermore, |𝜂1𝜉2 − 𝜂2𝜉1| ≤ |𝜂||𝜉|, and because |𝜉| = 1, we have in view of (24),

|𝜂1𝜉2 − 𝜂2𝜉1|(1 − 𝜉0) ≤ |𝜂|(1 − 𝜉0) < 𝜀. (28)

This implies,

|𝑓(𝜉, 𝜂)| ≥ 1 − 𝜀 − 𝑔21(1 − 𝜉0).

If 𝜀 approaches 0, then 𝜉0 → 1, which means that we can choose 𝜀 so small such that

(27) holds. By using the level set condition 𝑄−1( 1
2
) together with the lower bound (27) for

|𝑓(𝜉, 𝜂)|, we find
1
2 = 𝑄(𝜉, 𝜂) = 1

2 |𝜂|
2𝑓(𝜉, 𝜂)2 ≥ 1

2 |𝜂|
2 1
2 ,

which gives an upper bound for |𝜂|, i.e.,

|𝜂| ≤ 2. (29)

We may write

𝑑𝑄(𝑋) ≥ 2𝑄 − |𝜂|2 |||𝑓(𝜉, 𝜂)|||
||||(1 − 𝜉0)

(
𝜂1𝜉2 − 𝜂2𝜉1 + 2𝑎𝑔21 + 2𝑏𝑔22 + 𝑔23

)|||| .

Notice that by (29) we obtain

|𝜂||𝜂||𝑓(𝜉, 𝜂)| ≤ 2
√
2𝑄(𝜉, 𝜂) = 2

√
212 = 2,
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which implies, together with (28),

𝑑𝑄(𝑋) ≥ 1 − 2
(|||(1 − 𝜉0)(𝜂1𝜉2 − 𝜂2𝜉1)||| +

||||(1 − 𝜉0)(2𝑎𝑔21 + 2𝑏𝑔22 + 𝑔23)
||||
)

≥ 1 − 2𝜀
(
1 + |2𝑎𝑔21 + 2𝑏𝑔22 + 𝑔23|

)
.

Since the latter term can be bounded by some constant 𝐴 on a compact set away from

the origin, we obtain

𝑑𝑄(𝑋) ≥ 1 − 2𝜀(1 + 𝐴).

Now we choose 𝜀 sufficiently small such that 𝑑𝑄(𝑋) > 0, which proves (26).

We have seen that for 𝑐 < 𝐻(𝐿1∕2) the bounded component Σ𝑏𝑐 of the energy level set

can be Moser-regularized to form a compact 5-dimensional manifold Σ̃𝑏𝑐 ⊂ 𝑇∗𝑆3 which

is diffeomorphic to 𝑆∗𝑆3. Since the Liouville vector field (10) on 𝑇∗ℝ3 and the natural

one (25) on 𝑇∗𝑆3 coincide after Moser regularization, we obtain a Liouville vector field

that is defined near the whole regularized level set, and in fact, it is the natural one. By

the transversality results from Proposition 3.4 and Proposition 3.9 we obtain that the

natural Liouville vector field on 𝑇∗𝑆3 is transverse to Σ̃𝑏𝑐 , which means that Σ̃𝑏𝑐 is fiberwise

starshaped, and moreover, Σ̃𝑏𝑐 ≅ (𝑆∗𝑆3, 𝜉𝑠𝑡).

For the planar problem, one can of course perform the same computation to obtain

the same result. But since the planar problem corresponds to the restriction of the spatial

system to the fixed point set of the symplectic symmetry 𝜎 from (6), the transversality

result in the planar case follows immediately. This consequence is based on a general

construction from [5]. Namely, if a energy level set Σ is of contact type and the entire

system has a symplectic symmetry 𝜎, such as (6), then the restriction of the contact form

on Σ to Σ|Fix(𝜎|Σ) is a contact form on Σ|Fix(𝜎|Σ). Therefore, we have the same result in the

planar problem, in which we denote the Moser-regularized compact 3-dimensional man-

ifold by Σ̃𝑏𝑐 |Fix(𝜎) ≅ 𝑆∗𝑆2 ⊂ 𝑇∗𝑆2. This completes the proof of Theorem 1.1.
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all manifolds that admit flows of considered class, find complete invariant
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representative flow. This work continues the series of such articles. We con-

sider the class of NMS-flows with unique saddle orbit, under the assumption

that it is twisted, on closed orientable 4-manifolds and prove that the only
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1 Introduction and main results

In the present paper we consider NMS-flows 𝑓𝑡, namely non-singular (without fixed points)

Morse-Smale flows which are defined on orientable-manifold 𝑀4. Non-wandering set of

such flow consist of a finite number of hyperbolic periodic orbits. Asimov proved [Asi75]

that ambient manifold of such flow is a union of round handles. However, if the number

of orbits is small, topology of the ambient manifold can be specified. For instance, in

dimension 3 only lens spaces admit NMS-flows with two periodic orbits. Moreover, it was

shown in [PS22a] that each lens space (closed orientable manifold obtained by gluing two

solid tori along boundaries) admit exactly two classes of topological equivalence except

for 3-sphere 𝕊3 and projective space ℝP3 which both admit the unique equivalence class.

Moreover only two 4-manifolds 𝕊3 × 𝕊1, 𝕊3×̃𝕊1 admit such flows and each admits exactly

two topological equivalence classes.

Campos et al. [CCMAV04] argued that lens spaces are the only prime (a manifold that

cannot be expressed as a non-trivial connected sum of two manifolds) 3-manifolds that

are ambient for NMS-flow with unique saddle periodic orbit, but this is not so. There

exists infinite series of mapping tori non-homeomorphic to lens spaces which admit

such flows [Shu21]. Moreover, necessary and sufficient conditions for topological equiv-

alence of such flows were obtained in [PS22b]. Finally, any 3-manifold admitting such

flows is a lens space or connected sum1 of two lens spaces or a small Seifert fibered2

3-manifold [PS22c]. The invariants constructed in these works are different from known

ones, for example scheme of the flow constructed by Umanskii [Uma90] for Morse-Smale
1A connected sum of two 𝑛-dimensional manifolds is a manifold formed by deleting a ball inside each

manifold and gluing together the resulting boundary spheres.
2A Seifert fibered space is a closed orientable 3-manifold that can be ecomposed into a disjoint union of

circles (fibers) such that each fiber has a neigbourhood that is fiber-wise homeomorphic to standart fibered

torus.
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flows with finite number of singular trajectories (closed orbits, fixed points and hetero-

clinic orbits).

In the present paper we establish the topology of orientable 4-manifolds that are

ambient for NMS-flows with exactly one saddle orbit assuming that it is twisted (its

invariant manifolds are non-orientable). Remarkably, all such flows are suspensions

over Morse-Smale diffeomorphisms on 3-manifolds, which are classified in [BGP19].

3-diffeomorphisms are known to posess wild separatrices [Pix77], which complicates

their classification. Pixton constructed an example of 3-diffeomorphism with one saddle

orbit having wild unstable separatrice. Bonatti and Grines classified the class of sphere

diffeomorphisms that have non-wandering set consisting of four fixed points: two sinks,

a source, and a saddle [BG00]. They showed that the Pixton class contains a countable

set of pairwise topologically non-conjugate diffeomorphisms.

As was shown in [PS20b] suspensions over Pixton diffeomorphisms also have wild un-

stable separatrices and such class contains a countable family of pairwise non-equivalent

flows. However, in this case the saddle orbit of the flow is non-twisted. Surprisingly, there

are no flows with unique saddle orbit that is twisted and having wild separatrix. Besides,

the number of equivalence classes of such flows appear to equal 8.

Let us proceed to the formulation of the results.

Let 𝑀4 be connected closed orientable 4-manifold. Flow 𝑓𝑡 ∶ 𝑀4 → 𝑀4 is called Morse-

Smale flow if (a) its chain-recurrent set3 consist of finite number of periodic orbits and

fixed points and (b) the unstable manifold of each chain-recurrent set component has

transversal intersection with the stable manifold of any other chain-recurrent set compo-

nent. Let 𝑓𝑡 be NMS-flow (Morse-Smale flow without fixed points) and 𝒪 be its periodic

orbit. There exists tubular neighborhood 𝑉𝒪 homeomorphic to 𝔻3 × 𝕊1 such that the

flow is topologically equivalent to the suspension over a linear diffeomorphism of the

plane defined by the matrix which determinant is positive and eigenvalues are different

3Point 𝑥 ∈ 𝑀 is called chain-recurrent for the flow 𝑓𝑡 if for any 𝑇, 𝜀 > 0 there exist points 𝑥1, …𝑥𝑛 ∈ 𝑀 and

real numbers 𝑡0, … 𝑡𝑛 > 𝑇 such that 𝑥 = 𝑥0 = 𝑥𝑛 and 𝑑(𝑓𝑡𝑖 (𝑥𝑖), 𝑥𝑖+1) < 𝜀, where 𝑑 is a metric on 𝑀
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from ±1 (see. Proposition 1). If absolute values of both eigenvalues are greater (less) than

one, the corresponding periodic orbit is attracting (repelling), otherwise it is saddle. The

saddle orbit is called twisted if both eigenvalues are negative and non-twisted otherwise.

Consider the class 𝐺−
3 (𝑀

4) of NMS-flows 𝑓𝑡 ∶ 𝑀4 → 𝑀4 with unique saddle orbit which

is twisted. Since the ambient manifold 𝑀4 is the union of stable (unstable) manifolds

of its periodic orbits, the flow 𝑓𝑡 ∈ 𝐺−
3 (𝑀

4) has at least one attracting and at least one

repelling orbit. In Section 2 the following fact is established.

Lemma 1. The non-wandering set of any flow 𝑓𝑡 ∈ 𝐺−
3 (𝑀

4) consists of exactly three periodic

orbits 𝑆,𝐴, 𝑅, saddle, attracting and repelling, respectively.

Unstable manifold os saddle orbit 𝑆 of the flow 𝑓𝑡 ∈ 𝐺−
3 (𝑀

4) can be either 3- or 2-

dimensional; let 𝐺−1
3 (𝑀4), 𝐺−2

3 (𝑀4) denote corresponding subclasses of 𝐺−
3 (𝑀

4). Obviously,

since dimension of unstable manifold is invariant under an equivalence homeomorphism

no flow in 𝐺−1
3 (𝑀4) is topologically equivalent to any flow in 𝐺−2

3 (𝑀4). Furthermore,

𝐺−2
3 (𝑀4) = {𝑓−𝑡 ∶ 𝑓𝑡 ∈ 𝐺−1

3 (𝑀4)} and the flows 𝑓𝑡, 𝑓′𝑡 are topologically equivalent if and

only if 𝑓−𝑡, 𝑓′−𝑡 are topologically equivalent. This immediately implies that classification

in the class 𝐺−
3 (𝑀

4) reduces to classification in the subclass 𝐺−1
3 (𝑀4).

Let 𝑓𝑡 ∈ 𝐺−1
3 (𝑀4). Since the flow 𝑓𝑡 in some tubular neighborhood of is topologically

equivalent to the suspension over linear diffeomorphism of the plane, the topology of

periodic orbits 𝐴, 𝑆, 𝑅 stable and unstable manifolds is:

• 𝑊𝑢
𝑆 ≅ ℝ2×̃𝕊1 (open solid Klein bottle);

• 𝑊𝑠
𝑆 ≅ ℝ×̃𝕊1 (open Möbius band);

• 𝑊𝑠
𝐴 ≅𝑊𝑢

𝑅 ≅ ℝ3 × 𝕊1 (open solid torus);

• 𝑊𝑢
𝐴 ≅𝑊𝑠

𝑅 ≅ 𝕊1 (circle).

Let𝒪 ∈ {𝑆,𝐴, 𝑅}. Choose the generator 𝒢𝒪 of boundary 𝑇𝒪 = 𝜕𝑉𝒪 ≅ 𝕊2×𝕊1 fundamental

group which is homologous to𝒪 in𝑉𝒪 ≅ 𝔻3×𝕊1. By definition the manifold 𝑇𝑆 is secant for

all flow trajectories except the periodic ones. Since the flow in some tubular neighborhood
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of 𝑆 is topologically equivalent to suspension, the set 𝐾𝑆 = 𝑊𝑢
𝑆 ∩ 𝑇𝑆 is homeomorphic

to the Klein bottle. Let 𝜆𝑆, 𝜇𝑆 be the knots (simple closed curves), which are generators

of the fundamental group 𝜋1(𝐾𝑆) with relation [𝜆𝑆 ∗ 𝜇𝑆] = [𝜇−1𝑆 ∗ 𝜆𝑆]. We will call the

curve 𝜇𝑆 meridian and the curve 𝜆𝑆 longitude. By virtue of Proposition 3 the Klein bottle

longitude embedded in 𝕊2 × 𝕊1 is a generator of fundamental group 𝜋1(𝕊2 × 𝕊1). Consider

the longitude 𝜆𝑆 be oriented in such way that its homotopy type ⟨𝜆𝑆⟩ in 𝑇𝑆 coincide with

type ⟨𝒢𝑆⟩. So, the set 𝐾𝐴 =𝑊𝑢
𝑆 ∩𝑇𝐴 is the Klein bottle with longitude 𝜆𝐴 which is pointwise

transferred along the flow 𝑓𝑡 orbits from 𝜆𝑆.

Since the flow in some tubular neighborhood of 𝑆 is topologically equivalent to sus-

pension the set 𝛾𝑆 =𝑊𝑠
𝑆 ∩ 𝑇𝑆 is a knot in 𝑇𝑆, wrapping around 𝒢𝑆 twice. We will assume

that the knot 𝛾𝑆 is oriented in such way that its homotopy type ⟨𝛾𝑆⟩ on 𝑇𝑆 coincides with

homotopy type of 2⟨𝒢𝑆⟩. So the set 𝛾𝑅 = 𝑊𝑠
𝑆 ∩ 𝑇𝑅 is a knot in 𝑇𝑅 and its orientation is

induced by the flow 𝑓𝑡 from 𝛾𝑆.

Lemma 2. Let 𝑓𝑡 ∈ 𝐺−1
3 (𝑀4) then the following conditions hold:

1. ⟨𝜆𝐴⟩ = 𝛿𝐴⟨𝒢𝐴⟩, 𝛿𝐴 ∈ {−1,+1} in 𝑇𝐴;

2. ⟨𝛾𝑅⟩ = 𝛿𝑅⟨𝒢𝑅⟩, 𝛿𝑅 ∈ {−1,+1} in 𝑇𝑅.

Let

𝐶𝑓𝑡 = (𝛿𝐴, 𝛿𝑅).

Theorem 1. Flows 𝑓𝑡, 𝑓′𝑡 ∈ 𝐺−1
3 (𝑀4) are topologically equivalent if and only if 𝐶𝑓𝑡 = 𝐶𝑓′𝑡 .

Theorem 2. For any element 𝐶 ∈ 𝕊0 ×𝕊0 there exists a flow 𝑓𝑡 ∈ 𝐺−1
3 (𝑀4) such that 𝐶 = 𝐶𝑓𝑡 .

Theorem 3. The only 4-manifold that is ambient for a flow of the class 𝐺−
3 (𝑀

4) is 𝕊3 × 𝕊1.

Moreover 𝐺−
3 (𝕊

3 × 𝕊1) consists of eight classes of topological equivalence.

Note that weakening the saddle orbit twistedness condition fundamentally changes

the picture. For example, in [PS20a] non-singular flows that are suspensions over Pixton

diffeomorphisms on a three-dimensional sphere are considered. It is proved that in the
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class under consideration there exist flows with wildly embedded invariant manifolds

of the saddle orbit. Moreover, there are an infinite number of topological equivalence

classes for such flows.

Acknowledgements. This work was performed at the Saint Petersburg Leonhard

Euler International Mathematical Institute and supported by the Ministry of Science and

Higher Education of the Russian Federation (agreement no. 075-15-2022-287).

2 Flows of the class 𝐺−1
3 (𝑀4)

2.1 Structure of periodic orbits

This section is devoted to proof of Lemma 1: non-wandering set of any flow 𝑓𝑡 ∈ 𝐺−1
3 (𝑀4)

consists of three periodic orbits 𝑆,𝐴, 𝑅, saddle, attracting and repelling respectively.

Proof. The proof is based on the following representation of the ambient manifold 𝑀4 of

the NMS-flow 𝑓𝑡 with the set of periodic orbits 𝑃𝑒𝑟𝑓𝑡 (see, for example, [Sma67])

𝑀4 =
⋃

𝒪∈𝑃𝑒𝑟𝑓𝑡
𝑊𝑢

𝒪 =
⋃

𝒪∈𝑃𝑒𝑟𝑓𝑡
𝑊𝑠

𝒪, (1)

as well as the asymptotic behavior of invariant manifolds

cl(𝑊𝑢
𝒪) ⧵𝑊

𝑢
𝒪 =

⋃

�̃�∈𝑃𝑒𝑟𝑓𝑡 ∶ 𝑊𝑢
�̃�∩𝑊

𝑠
𝒪≠∅

𝑊𝑢
�̃�, (2)

cl(𝑊𝑠
𝒪) ⧵𝑊

𝑠
𝒪 =

⋃

�̃�∈𝑃𝑒𝑟𝑓𝑡 ∶ 𝑊𝑠
�̃�∩𝑊

𝑢
𝒪≠∅

𝑊𝑠
�̃�. (3)

In particular, it follows from eq. (1) that any NMS-flow has at least one attracting orbit

and at least one repulsive one. Moreover, if an NMS-flow has a saddle periodic orbit, then

the basin of any attracting orbit has a non-empty intersection with an unstable manifold

of at least one saddle orbit (see Proposition 2.1.3 [GMP16]) and a similar situation with

the basin of a repulsive orbits.
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Now let 𝑓𝑡 ∈ 𝐺−1
3 (𝑀3) and 𝑆 be its only saddle orbit. It follows from eq. (2) that 𝑊𝑢

𝑆 ⧵ 𝑆

intersects only basins of attracting orbits. Since the set 𝑊𝑢
𝑆 ⧵ 𝑆 is connected and the basins

of attracting orbits are open, then 𝑊𝑢
𝑆 intersects exactly one such basin. Denote by 𝐴 the

corresponding attracting orbit. Since there is only one saddle orbit, there is only one

attracting orbit. Similar reasoning for 𝑊𝑠
𝑆 leads to the existence of a unique repulsive

orbit 𝑅.

2.2 Canonical neighborhoods of periodic orbits

Recall the definition of a suspension. Let𝜑∶ 𝑀3 → 𝑀3 be a diffeomorphism of a 3-manifold.

We define the diffeomorphism 𝑔𝜑 ∶ 𝑀3 ×ℝ1 → 𝑀3 ×ℝ1 by the formula

𝑔𝜑(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝜑(𝑥1, 𝑥2, 𝑥3), 𝑥4 − 1).

Then the group {𝑔𝑛𝜑} ≅ ℤ acts freely and discontinuously on 𝑀3 × ℝ1, whence the orbit

spaceΠ𝜑 = 𝑀3×ℝ1𝑔𝜑 is a smooth 4-manifold, and the natural projection 𝑣𝜑 ∶ 𝑀3×ℝ1 → Π𝜑

is a covering. At the same time, the flow 𝜉𝑡 ∶ 𝑀3 ×ℝ1 → 𝑀3 ×ℝ1, given by the formula

𝜉𝑡(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥1, 𝑥2, 𝑥3, 𝑥4 + 𝑡),

induces the flow [𝜑]𝑡 = 𝑣𝜑𝜉𝑡𝑣−1𝜑 ∶ Π𝜑 → Π𝜑. The flow [𝜑]𝑡 is called the suspension of the

diffeomorphism 𝜑.

We define the diffeomorphisms 𝑎0, 𝑎1, 𝑎2, 𝑎3∶ ℝ3 → ℝ3 by the formulas

𝑎3(𝑥1, 𝑥2, 𝑥3) = (2𝑥1, 2𝑥2, 2𝑥3), 𝑎0 = 𝑎−13 ,

𝑎±1(𝑥1, 𝑥2, 𝑥3) = (±2𝑥1,±1∕2𝑥2, 1∕2𝑥3), 𝑎±2 = 𝑎−1±1 .

Let

𝑉0 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ ℝ4| 4𝑥4𝑥21 + 4𝑥4𝑥22 + 4𝑥4𝑥23 ⩽ 1},

𝑉±1 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ ℝ4| 4−𝑥4𝑥21 + 4𝑥4𝑥22 + 4𝑥4𝑥23 ⩽ 1},

𝑉±2 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ ℝ4| 4−𝑥4𝑥21 + 4−𝑥4𝑥22 + 4𝑥4𝑥23 ⩽ 1},

𝑉3 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ ℝ4| 4−𝑥4𝑥21 + 4−𝑥4𝑥22 + 4−𝑥4𝑥23 ⩽ 1}.

Arnold Mathematical Journal, Vol.11(1), 2025 133

http://dx.doi.org/10.56994/ARMJ


Vladislav Galkin Olga Pochinka Danila Shubin

For 𝑖 ∈ {0,±1,±2, 3} we set 𝑣𝑖 = 𝑣𝑎𝑖 , 𝑇𝑖 = 𝜕𝑉𝑖 and 𝕍𝑖 = 𝑣𝑖(𝑉𝑖), 𝕋𝑖 = 𝑣𝑖(𝑇𝑖).

The following statement, proved by M. Irwin [Irw70], describes the behavior of flows

in a neighborhood of hyperbolic periodic orbits.

Proposition 1 (M. Irwin [Irw70]). If 𝒪 is a hyperbolic orbit of a flow 𝑓𝑡 ∶ 𝑀4 → 𝑀4 defined

on an orientable 4-manifold 𝑀4, then there exists a tubular neighborhood 𝑉𝒪 of the orbit 𝒪

such that the flow 𝑓𝑡||||𝑉𝒪 is topologically equivalent, by means of some homeomorphism 𝐻𝒪,

to one of the following streams:

• [𝑎0]𝑡|𝕍0 if 𝒪 is an attracting orbit;

• [𝑎1]𝑡|𝕍1 if 𝒪 is a non-twisted saddle orbit with a two-dimensional unstable manifold

𝑊𝑢
𝒪;

• [𝑎−1]𝑡|𝕍−1 if 𝒪 is a twisted saddle orbit with a two-dimensional unstable manifold 𝑊𝑢
𝒪 ;

• [𝑎2]𝑡|𝕍2 if 𝒪 is a non-twisted saddle orbit with an unstable 3-manifold 𝑊𝑢
𝒪;

• [𝑎−2]𝑡|𝕍−2 if 𝒪 is a twisted saddle orbit with an unstable 3-manifold 𝑊𝑢
𝒪 ;

• [𝑎3]𝑡|𝕍3 if 𝒪 is a repelling orbit.

The neighborhood 𝑉𝒪 = 𝐻𝒪(𝕍𝑖), 𝑖 ∈ {0,±1,±2, 3} described in Proposition 1 is called

canonical neighborhood of the periodic orbit 𝒪.

When proving topological equivalence, we will use the following fact, which fol-

lows from the proof of Theorem 4 and Lemma 4 in [PS22a], and can also be found

in [Uma90] (Theorem 1.1).

Proposition 2. A homeomorphism ℎ𝑖 ∶ 𝜕𝕍𝑖 → 𝜕𝕍𝑖 for 𝑖 ∈ {0, 3} extends to a homeomorphism

𝐻𝑖 ∶ 𝕍𝑖 → 𝕍𝑖 realizing the equivalence of the flows [𝑎𝑖]𝑡 with itself if and only if the induced

isomorphism ℎ𝑖∗∶ 𝜋1(𝜕𝕍𝑖)→ 𝜋1(𝜕𝕍𝑖) is identical.
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2.3 Trajectory mappings

Consider a flow 𝑓𝑡 ∶ 𝑀4 → 𝑀4 from the set 𝐺−1
3 (𝑀3). Then 𝑉𝐴 = 𝐻𝐴(𝕍0), 𝑉𝑅 = 𝐻𝑅(𝕍3), 𝑉𝑆 =

𝐻𝑆(𝕍−2). Let Γ = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝑇−2| 4𝑥4𝑥23 = 1∕2}, Γ𝑢 = 𝑂𝑥2𝑥3𝑥4 ∩𝑇−2, Γ𝑠 = 𝑂𝑥1𝑥4 ∩𝑇−2. By

construction, the set 𝑇−2 is homeomorphic to 𝕊2×ℝ, the set Γ consists of two surfaces, each

of which is homeomorphic to 𝕊1 ×ℝ , dividing 𝑇−2 into three connected components, one

of which 𝑁𝑢 contains the cylinder Γ𝑢 ≅ 𝕊1 ×ℝ, and the union 𝑁𝑠 the other two contains a

pair of Γ𝑠 ≅ 𝕊0 ×ℝ curves, one curve in each component. Then on 𝑇𝑆

• 𝐾𝑆 = 𝐻𝑆(𝑣−2(Γ𝑢))) is a Klein bottle;

• 𝛾𝑆 = 𝐻𝑆(𝑣−2(Γ𝑠))) is a knot winding twice around the generator 𝒢𝑆;

• 𝑁𝑢
𝑆 = 𝐻𝑆(𝑣−2(cl(𝑁𝑢))) is a tubular neighborhood of 𝐾𝑆;

• 𝑁𝑠
𝑆 = 𝐻𝑆(𝑣−2(cl(𝑁𝑠))) is a tubular neighborhood of 𝛾𝑆;

• 𝜕𝑁𝑢
𝑆 = 𝜕𝑁𝑠

𝑆 = 𝐻𝑆(𝑣−2((Γ))) is a two-dimensional torus.

Let

𝑁𝑠
𝑅 =

⎛
⎜
⎝

⋃

𝑡>0, 𝑤∈𝑁𝑠
𝑆

𝑓−𝑡(𝑤)
⎞
⎟
⎠
∩ 𝑇𝑅, 𝑁𝑢

𝑅 = 𝑇𝑅 ⧵𝑁𝑠
𝑅,

𝑁𝑢
𝐴 =

⎛
⎜
⎝

⋃

𝑡>0, 𝑤∈𝑁𝑢
𝑆

𝑓𝑡(𝑤)
⎞
⎟
⎠
∩ 𝑇𝐴, 𝑁𝑠

𝐴 = 𝑇𝐴 ⧵𝑁𝑢
𝐴

and introduce the following mappings:

• using Poincaré map between 𝑁𝑢
𝑅 ⊂ 𝑇𝑅 and 𝑁𝑠

𝑆 we define a continuous function

𝜏𝑅 ∶ 𝑁𝑢
𝑅 → ℝ+ so that 𝑓𝜏𝑅(𝑟)(𝑟) ∈ 𝑁𝑠

𝑆 for 𝑟 ∈ 𝑁𝑠
𝑅. Next, we continuously extend it to

𝜏𝑅 ∶ 𝑇𝑅 → ℝ+ and define the set𝒯 = ⋃
𝑟∈𝑁𝑢

𝑅

𝑓𝜏𝑅(𝑟)(𝑟)which does not intersect the torus 𝑇𝐴

if𝑉𝐴 is small enough. We set𝒯𝑅 = 𝒯∪𝑁𝑠
𝑆 and define a homeomorphism 𝜓𝑅 ∶ 𝑇𝑅 → 𝒯𝑅

by the formula 𝜓𝑅(𝑟) = 𝑓𝜏𝑅(𝑟)(𝑟), denote by𝒱𝑅 the closure of the connected component

of the set 𝑀4 ⧵𝒯𝑅 , containing 𝑅;
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• we set 𝒯𝐴 = 𝒯 ∪𝑁𝑢
𝑆 . Since future orbits, that intersect 𝒯 go towards 𝐴 a continuous

function 𝜏𝐴 ∶ 𝑇𝐴 → ℝ+ such that 𝑓−𝜏𝐴(𝑎)(𝑎) ∈ 𝒯𝐴 for 𝑎 ∈ 𝑇𝐴 is uniquily defined; note

that 𝜕𝒯 = 𝜕𝑁𝑢
𝑆 = 𝜕𝑁𝑠

𝑆 . So, we define a homeomorphism 𝜓𝐴 ∶ 𝑇𝐴 → 𝒯𝐴 by the formula

𝜓𝐴(𝑎) = 𝑓−𝜏𝐴(𝑎)(𝑎), denote by 𝒱𝐴 the closure of the connected component of the set

𝑀4 ⧵𝒯𝐴 containing 𝐴.

We will call the introduced homeomorphisms 𝜓𝑅, 𝜓𝐴 trajectory maps. Note that the

ambient manifold 𝑀4 is represented as

𝑀4 = 𝒱𝐴 ∪ 𝑉𝑆 ∪ 𝒱𝑅.

Note that

𝒱𝐴 ∩ 𝒱𝑅 = 𝒯, 𝛾𝑆 ⊂ 𝑁𝑢
𝑆 = 𝒱𝐴 ∩ 𝑉𝑆, 𝐾𝑆 ⊂𝒩𝑠

𝑆 = 𝑉𝑅 ∩ 𝑉𝑆. (4)

Moreover, in the manifolds 𝒱𝐴 and 𝒱𝑅 the flow 𝑓𝑡 is topologically equivalent to the

suspensions [𝑎0]𝑡 and [𝑎3]𝑡, respectively.

3 Homotopy types of knots 𝜆𝐴, 𝛾𝑅

In this section, we will prove Lemma 2. To do this, we first describe the properties of the

embedding of the Klein bottle into the manifold 𝕊2 × 𝕊1.

Recall that the Klein bottle 𝕂 is the square [0, 1] × [0, 1] with sides glued by the relation

(𝑥, 0) ∼ (𝑥, 1), (0, 𝑦) ∼ (0, 1 − 𝑦).

Let 𝑣∶ [0, 1] × [0, 1]→ 𝕂 be the natural projection, then the curves

𝜆 = 𝑣([0, 1] × {1∕2}), 𝜇 = 𝑣({0} × [0, 1])

are generators of the fundamental group 𝜋1(𝕂) with relation

[𝜆 ∗ 𝜇] = [𝜇−1 ∗ 𝜆],

where the curve 𝜆 is called longitude and the curve 𝜇 is called meridian.
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It is well known that the Klein bottle does not embed into ℝ3, however, it can be

embeddable into 𝕊2×𝕊1, for example by defining the embedding 𝑒0∶ [0, 1]×[0, 1]→ 𝕊2×𝕊1

by the formula

𝑒0(𝑥, 𝑦) =
(
sin𝜋𝑥 cos 2𝜋𝑦, cos𝜋𝑥 cos 2𝜋𝑦, sin 2𝜋𝑦, 𝑒2𝜋𝑖𝑥

)

and noticing that 𝑒0(𝑥, 𝑦) = 𝑒0(𝑥′, 𝑦′) ⇐⇒ (𝑥, 𝑦) ∼ (𝑥′, 𝑦′). Then (see, for example, [Kos80,

Chapter 5])

𝑒0 = 𝑒0𝑣−1∶ 𝕂→ 𝕊2 × 𝕊1

is the desired embedding of the Klein bottle in 𝕊2 × 𝕊1. Let

𝐾0 = 𝑒0(𝕂).

S 2×S 1K

N(K)

Figure 1: Bottle of Klein in 𝕊2 × 𝕊1

Proposition 3 (Proposition 1.4, [BGP02]). Let 𝑒∶ 𝕂→ 𝕊2×𝕊1 be an embedding Klein bottles

𝕂, 𝐾 = 𝑒(𝕂), 𝑁(𝐾) ⊂ 𝕊2 × 𝕊1 be a tubular neighborhood of 𝐾 and 𝑉(𝐾) = 𝕊2 × 𝕊1 ⧵ int𝑁(𝐾)

(see Figure 1). Then:
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1) the curve 𝑒(𝜆) is a generator of the fundamental group 𝜋1(𝕊2 × 𝕊1);

2) the set 𝑉(𝐾) is a solid torus whose meridian is homotopic to the curve 𝑒(𝜇);

3) there exists an orientation-preserving homeomorphism ℎ∶ 𝕊2 × 𝕊1 → 𝕊2 × 𝕊1 such

that ℎ(𝐾) = 𝐾0 and ℎ∗ = 𝑖𝑑∶ 𝜋1(𝕊2 × 𝕊1)→ 𝜋1(𝕊2 × 𝕊1).

Proposition 4 (Proposition 4.2, [GMP16]). A knot 𝛾 in manifold 𝕊2 ×𝕊1 is trivial if and only

if there exists tubular neighbourhood 𝑁(𝛾) in 𝕊2 × 𝕊1 such that the manifold (𝕊2 × 𝕊1) ⧵𝑁(𝛾)

is homeomorphic to solid torus.

It remains to prove Lemma 2. To do this, recall that we have chosen 𝑇𝒪 = 𝜕𝑉𝒪 ≅

𝕊2 × 𝕊1, 𝒪 ∈ {𝐴, 𝑆, 𝑅} generator 𝒢𝒪 of the fundamental group of 𝑇𝒪, homologous in 𝑉𝒪 ≅

𝔻3 × 𝕊1 orbit 𝒪. Due to the fact that canonical neighborhoods of periodic orbits can be

chosen so that 𝑀4 = 𝒱𝐴 ∪ 𝑉𝑆 ∪ 𝒱𝑅 (see Section 2.3), everywhere below we assume that

𝑉𝐴 = 𝒱𝐴, 𝑉𝑅 = 𝒱𝑅.

We also established (see eq. (4)) that the set𝐾𝑆 =𝑊𝑢
𝑆 ∩𝑇𝑆 is a Klein bottle on 𝑇𝑆 ≅ 𝕊2×𝕊1

and oriented its parallel 𝜆𝑆 so that ⟨𝜆𝑆⟩ = ⟨𝒢𝑆⟩ on 𝑇𝑆. Since the set 𝐾𝐴 =𝑊𝑢
𝑆 ∩ 𝑇𝐴 coincides

with 𝐾𝑆, then 𝜆𝐴 = 𝜆𝑆. We also established that the set 𝛾𝑆 = 𝑊𝑠
𝑆 ∩ 𝑇𝑆 is a knot on 𝑇𝑆 and

oriented so that ⟨𝛾𝑆⟩ = 2⟨𝒢𝑆⟩ to 𝑇𝑆. Since the set 𝛾𝑅 = 𝑊𝑠
𝑆 ∩ 𝑇𝑅 coincides with 𝛾𝑆, then

𝛾𝑅 = 𝛾𝑆.

Let us show that the knots 𝜆𝐴, 𝛾𝑅 are generators in the fundamental groups of the

manifolds 𝑇𝐴, 𝑇𝑅, respectively.

Proof. Since 𝑇𝐴 is homeomorphic to the manifold 𝕊2 × 𝕊1 and 𝜆𝐴 is a parallel of the

Klein bottle 𝐾𝐴 ⊂ 𝑇𝐴, then item 1) of Proposition 3 implies that 𝜆𝐴 is a generator in the

fundamental group of 𝑇𝐴, that is, on 𝑇𝐴

⟨𝜆𝐴⟩ = 𝛿𝐴⟨𝒢𝐴⟩

for 𝛿𝐴 ∈ {−1,+1}. The set 𝑁(𝐾𝐴) = 𝑁𝑢
𝑆 is a tubular neighborhood of the Klein bottle 𝐾𝐴 in

𝑇𝐴. It follows from item 2) of Proposition 3 that the set 𝑉(𝐾𝐴) = 𝑇𝐴 ⧵ int𝑁(𝐾𝐴) is a solid

torus. The set 𝑁(𝛾𝑅) = 𝑁𝑠
𝑆 is a tubular neighborhood of the knot 𝛾𝑅 in 𝑇𝑅. On the other
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hand 𝑇𝑅 ⧵ int𝑁(𝛾𝑅) = 𝑉(𝐾𝐴). Thus, the complement to the tubular neighborhood of 𝛾𝑅 in

𝑇𝑅 is a solid torus. By Proposition 4, 𝛾𝑅 is a generator in 𝑇𝑅 and, therefore,

⟨𝛾𝑅⟩ = 𝛿𝑅⟨𝒢𝑅⟩

for 𝛿𝑅 ∈ {−1,+1}.

4 Classification of flows of the set 𝐺−1
3 (𝑀4)

In this section, we will prove Theorem 1.

Proof.

Necessity. Let flows 𝑓𝑡 and 𝑓′𝑡 have invariants 𝐶𝑓𝑡 = (𝛿𝐴, 𝛿𝑅), 𝐶𝑓′𝑡 = (𝛿𝐴′ , 𝛿𝑅′) and are

topologically equivalent by the homeomorphism𝐻∶ 𝑀4 → 𝑀4. Let us show that 𝐶𝑓𝑡 = 𝐶𝑓′𝑡 .

Let ℎ𝐴 = 𝐻||||𝑇𝐴 and 𝑇𝐴′ = ℎ(𝑇𝐴). Then by Proposition 2

⟨𝒢𝐴′⟩ = ℎ𝐴∗⟨𝒢𝐴⟩.

It follows from item 3) of Proposition 3 that 𝜆𝐴′ = ℎ𝐴(𝜆𝐴) is the parallel of the Klein bottle

𝐾𝐴′ . Since the longitude 𝜆𝐴 of the Klein bottle is oriented consistent with the saddle orbit

𝑆 and 𝐻 transforms the orbit 𝑆 into the orbit 𝑆′ with orientation preservation, then 𝜆𝐴′ is

oriented consistent with the saddle orbit 𝑆′. On the other side, by Lemma 2,

⟨𝜆𝐴⟩ = 𝛿𝐴⟨𝒢𝐴⟩, ⟨𝜆𝐴′⟩ = 𝛿𝐴′⟨𝒢𝐴′⟩,

whence, by virtue of a simple chain of equalities

𝛿𝐴′⟨𝒢𝐴′⟩ = ℎ𝐴∗(𝛿𝐴⟨𝒢𝐴⟩) = 𝛿𝐴⟨𝒢𝐴′⟩,

we get that 𝛿𝐴 = 𝛿𝐴′ . It is proved similarly that 𝛿𝑅 = 𝛿𝑅′ . Thus 𝐶𝑓𝑡 = 𝐶𝑓′𝑡 .

Sufficiency. Let the flows 𝑓𝑡 and 𝑓′𝑡 have equal invariants 𝐶𝑓𝑡 = (𝛿𝐴, 𝛿𝑅), 𝐶𝑓′𝑡 = (𝛿𝐴′ , 𝛿𝑅′).

Let us show that the flows 𝑓𝑡 and 𝑓′𝑡 are topologically equivalent.
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Proposition 1 implies that the homeomorphism

𝐻||||𝑉𝑆 = 𝐻𝑆′𝐻
−1
𝑆 ∶ 𝑉𝑆 → 𝑉𝑆′

is topological equivalence homeomorphism of the flows 𝑓𝑡||||𝑉𝑆 and 𝑓′𝑡||||𝑉𝑆′ . It remains to

extend this homeomorphism to 𝒱𝐴 and 𝒱𝑅.

The homeomorphism 𝐻 is already defined on the set 𝒯𝐴 ∩ 𝑇𝑆, which is a tubular

neighborhood 𝑁(𝐾𝐴) of the Klein bottle 𝐾𝐴. By item 2) of Proposition 3 the set 𝑉(𝐾𝐴) =

𝑇𝐴 ⧵ int𝑁(𝐾𝐴) is a solid torus whose meridian is homotopic to the meridian 𝜇𝐴 of the

Klein bottle 𝐾𝐴 to 𝑁(𝐾𝐴). It follows from the properties of the homeomorphism 𝐻 that

𝐾𝐴′ = 𝐻(𝐾𝐴) and 𝑁(𝐾𝐴′) = 𝐻(𝑁(𝐾𝐴)) is a tubular neighborhood of the Klein bottle 𝐾𝐴′ . By

point 2) of Proposition 3 the set 𝑉(𝐾𝐴′) = 𝑇𝐴′ ⧵ int𝑁(𝐾𝐴′) is a solid torus whose meridian

is homotopic to the meridian 𝜇𝐴′ of the Klein bottle 𝐾𝐴′ in 𝑁(𝐾𝐴′). Since any homeomor-

phism of the Klein bottle does not change the homotopy class of the meridian (see, for ex-

ample, [Lic63, Lemma 5]), the homeomorphism 𝐻∶ 𝜕𝑉(𝐾𝐴) → 𝜕𝑉(𝐾𝐴′) extends to the

homeomorphism 𝐻∶ 𝑉(𝐾𝐴)→ 𝑉(𝐾𝐴′) (see, for example, [Rol03, Exercise 2E5]). Thus 𝐻 is

defined on 𝒯𝐴 and 𝒯𝑅.

Since the parallel 𝜆𝐴 (𝜆𝐴′) of the Klein bottle is oriented consistent with the saddle

orbit 𝑆 (𝑆′) and 𝐻 transforms the orbit 𝑆 into the orbit 𝑆′ orientation-preserving, then

𝐻∗(⟨𝜆𝐴⟩) = ⟨𝜆𝐴′⟩. Since 𝛿𝐴 = 𝛿𝐴′ , then 𝐻∗(𝛿𝐴⟨𝜆𝐴⟩) = 𝛿𝐴′⟨𝜆𝐴′⟩ and hence 𝐻∗(⟨𝒢𝐴⟩) = ⟨𝒢𝐴′⟩.

By Proposition 2 the homeomorphism 𝐻||||𝒯𝐴
extends to 𝒱𝐴 by a homeomorphism realizing

the equivalence of flows 𝑓𝑡||||𝒱𝐴 and 𝑓′𝑡||||𝒱𝐴′ . Similarly, 𝐻 can be extended to 𝒱𝑅. Thus, the

homeomorphism 𝐻 is defined on the whole 𝑀4 and realizes the equivalence of the flows

𝑓𝑡, 𝑓′𝑡.

5 Realization of flows by admissible set

In this section, we will prove Theorem 2: for any element 𝐶 ∈ 𝕊0 × 𝕊0 there is a flow

𝑓𝑡 ∈ 𝐺−1
3 (𝑀4) such that 𝐶 = 𝐶𝑓𝑡 .
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Proof. Let us construct the flow 𝑓𝑡 ∶ 𝕊2 × 𝕊1 → 𝕊2 × 𝕊1 with the invariant 𝐶𝑓𝑡 = (+1,+1) as

a suspension over the sphere diffeomorphism 𝜁∶ 𝕊2 → 𝕊2 with three periodic orbits. To

do this, we describe the construction of the diffeomorphism 𝜁.

Let 𝜒𝑡 ∶ ℝ3 → ℝ3 be the flow defined by system of equations:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

�̇� = −𝑥

�̇� = −𝑦

�̇� = −𝑧(𝑧 − 1)(𝑧 + 1).

and the diffeomorphism 𝑞∶ ℝ3 → ℝ3 be defined by the formula:

𝑞(𝑥, 𝑦, 𝑧) = (𝑥,−𝑦,−𝑧).

��

�1�

�2�

Figure 2: Flow 𝜒𝑡 phase portrait

Using stereographic projection (see Figure 3) 𝜗∶ 𝕊3 ⧵ {𝑁} → ℝ3 (𝑁 = (0, 0, 0, 1), 𝑆 =
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(0, 0, 0,−1)) by the given formula:

𝜗(𝑥1, 𝑥2, 𝑥3, 𝑥4) = ( 𝑥1
1 − 𝑥4

, 𝑥2
1 − 𝑥4

, 𝑥3
1 − 𝑥4

) .

project the diffeomorphism 𝑞𝜒1 onto 𝕊3:

N

x

θ(x)

Figure 3: Stereographic projection

𝑓(𝑥) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜗−1𝑞𝜒1𝜗(𝑥), 𝑥 ∉ {𝑁, 𝑆}

𝑆, 𝑥 = 𝑁,

𝑁, 𝑥 = 𝑆

Non-wandering set of diffeomorphism 𝑓 consists of four periodic points:

• hyperbolic sink orbit 𝜔1, 𝜔2 of period 2: 𝜔1 = 𝜗−1(0, 0, 1), 𝜔2 = 𝜗−1(0, 0, −1);

• hyperbolic saddle 𝜎 = 𝜗−1(0, 0, 0);

• hyperbolic sourse 𝛼 = 𝑁.

Then the flow 𝑓𝑡 = [𝑓]𝑡 belongs to the class 𝐺−1
3 (𝑀3) and 𝐶𝑓𝑡 = (+1,+1). By construction,

𝑓 is an orientation-preserving diffeomorphism of the 3-sphere, and hence the ambient

manifold of the suspension [𝑓]𝑡 is homeomorphic to 𝕊3 × 𝕊1.
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We construct the rest of the flows of class 𝐺−1
3 (𝑀4) by modifying the constructed flow

𝑓𝑡 in neighborhoods of attracting and repelling orbits such that its their stability does

not change but the orbits go in opposite direction.

Let 𝒪 be an attractive or repelling periodic orbit of 𝑓𝑡 and 𝑉𝒪 = 𝑉0
𝒪 be its canonical

neighborhood, 𝑉𝑡
𝒪 = 𝑓𝑡(𝑉0

𝒪). Without loss of generality, we assume that 𝑉−1
𝐴 ∩ 𝑉1

𝑅 = ∅. Let

𝑣(𝑥) denote the vector field induced by the flow 𝑓𝑡 on 𝕊3 × 𝕊1.

Recall that 𝑉𝒪 ≅ ℝ3 × 𝕊1. For points 𝑥 that belong to the basin of the orbit 𝒪. Let 𝑛𝒪(𝑥)

denote the field of unit outward normals to the hypersurfaces 𝜕𝑉𝑡
𝒪∩{(𝑥, 𝑦) ∈ 𝑉𝒪 | 𝑦 = 𝑐𝑜𝑛𝑠𝑡}

in {(𝑥, 𝑦) ∈ 𝑉𝒪 | 𝑦 = 𝑐𝑜𝑛𝑠𝑡} and let 𝑠𝒪(𝑥) ∈ ℝ be the time such that 𝑓𝑠𝒪(𝑥)(𝑥) ∈ 𝜕𝑉0
𝒪. We define

the vector field 𝑣′(𝑥) on 𝕊3 × 𝕊1 by the formulas

𝑣′(𝑥) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(1 − 𝑠2𝐴(𝑥))𝑛(𝑥) + 𝑠2𝐴(𝑥)𝑣(𝑥), 𝑥 ∈ 𝑉−1
𝐴 ⧵ 𝑉1

𝐴

(1 − 𝑠2𝑅(𝑥))𝑛(𝑥) + 𝑠2𝑅(𝑥)𝑣(𝑥), 𝑥 ∈ 𝑉1
𝑅 ⧵ 𝑉

−1
𝑅

𝑣(𝑥), otherwise

and denote by 𝑓′𝑡 the flow it induces on 𝕊3 × 𝕊1.

Recall, that flow 𝑓′𝑡||||𝑉𝒜 (𝑓′𝑡||||𝑉ℛ) is congugated to [𝑎0]𝑡
||||𝕍0 ([𝑎3]𝑡

||||𝕍3) by a homeomorphism

ℎ𝐴(ℎ𝑅). For 𝛿 ∈ {−1,+1} we define the diffeomorphism �̄�𝛿 ∶ ℝ3 → ℝ3 by the formula:

�̄�𝛿(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (4𝑥4𝑥1, 4𝑥4𝑥2, 4𝑥4𝑥3,−𝑥4) .

Note, that �̄�𝛿 preserve 𝑉0 and 𝑉3. Next, define diffeomorphisms

𝑤𝐴
𝛿 = ℎ𝐴�̄�𝛿ℎ−1𝐴 , 𝑤𝑅

𝛿 = ℎ𝑅�̄�𝛿ℎ−1𝑅

Note, that 𝑣′ in invariant under 𝑤𝐴
𝛿 , 𝑤𝑅

𝛿 .

For 𝐶 = (𝛿𝐴, 𝛿𝑅) ∈ 𝕊0 × 𝕊0 we induce the flow 𝑓𝑡𝐶 on 𝕊3 × 𝕊1 by vector field

𝑣𝐶(𝑥) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(𝑑𝑤𝐴
𝛿𝐴
)𝑣′𝑤𝐴

𝛿𝐴
(𝑥), 𝑥 ∈ 𝑉𝐴

(𝑑𝑤𝑅
𝛿𝑅
)𝑣′𝑤𝑅

𝛿𝑅
(𝑥), 𝑥 ∈ 𝑉𝑅

𝑣′(𝑥), otherwise.

It is easy to see that the flow’s 𝑓𝑡𝐶 invariant is 𝐶 and its ambient manifold is 𝕊3 × 𝕊1.
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6 Ambient manifolds of the flow of class 𝐺−
3 (𝑀4)

In this section, we prove Theorem 3: the only 4-manifold admitting 𝐺−
3 (𝑀

4) flows is

𝕊3 × 𝕊1. Moreover, the set 𝐺−
3 (𝕊

3 × 𝕊1) consists of exactly eight equivalence classes of the

considered flows.

Proof. Assume that 𝑓𝑡 ∈ 𝐺−
3 (𝑀

4) then by Theorem 1 𝑓𝑡 is topologically equivalent to either

the flow 𝑓𝑡𝐶 or flow 𝑓−𝑡𝐶 for some 𝐶 ∈ 𝕊0 × 𝕊0. And since the topological equivalence of

flows implies the homeomorphism of their ambient manifolds, the supporting manifold

of the flow 𝑓𝑡 is homeomorphic to 𝕊3 × 𝕊1.

Since the elements of the set 𝐶 ∈ 𝕊0 × 𝕊0 correspond one-to-one to the equivalence

classes of flows from 𝐺−1
3 (𝑀4), the family 𝐺−

3 (𝑀
4) = 𝐺−2

3 (𝑀4)⊔𝐺−1
3 (𝑀4) contains 8 topologi-

cal equivalence classes.
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