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Abstract: We prove that any weakly symplectically fillable contact manifold is

tight. Furthermore we verify the strong Weinstein conjecture for contact mani-

folds that appear as the concave boundary of a directed symplectic cobordism

whose positive boundary satisfies the weak-filling condition and is overtwisted.

Similar results are obtained in the presence of bordered Legendrian open

books whose binding–complement has vanishing second Stiefel–Whitney class.

The results are obtained via polyfolds.

AMS Classification: 53D42; 53D40, 57R17, 53D45, 37J55, 34C25, 37C27

1 Introduction

In [22] Eliashberg introduced a dichotomy of closed contact 3-manifolds, the tight and

overtwisted contact structures. He established in [22] an ℎ-principle in the sense of
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Gromov [33] for overtwisted contact structures. The higher dimensional analogue was

defined by Borman–Eliashberg–Murphy [11]. One way to detect tight contact structures

on a 3-manifolds is to find a weak symplectic filling. In view of the filling–by–holomorphic–

discs technique such fillable contact manifolds cannot be overtwisted, see [23, 32] and

cf. [29, Corollary 3.8]. In higher dimensions obstructions to overtwistedness in terms of

semi-positive weak symplectic fillings were obtained by Niederkrüger [55] and Massot–

Niederkrüger–Wendl [50]. The aim of this work is to remove the assumption of being

semi-positive.

We consider not necessarily connected (2𝑛 − 1)-dimensional contact manifolds (𝑀, 𝜉)

and assume that there is a contact form 𝛼 on 𝑀 defining 𝜉, i.e. 𝜉 is the kernel of 𝛼. The

restriction of d𝛼 to 𝜉 is a symplectic form providing 𝜉 with the symplectic orientation

via (d𝛼)𝑛−1. The contact manifold (𝑀, 𝜉) is oriented by 𝛼 ∧ (d𝛼)𝑛−1. These notions are

independent of the choice of contact form as long as the contact form equals 𝑓𝛼 for a

positive smooth function 𝑓 on 𝑀.

A compact 2𝑛-dimensional symplectic manifold (𝑊,Ω) provided with the symplectic

orientation Ω𝑛 is called a weak symplectic filling of a given (2𝑛− 1)-dimensional contact

manifold (𝑀, 𝜉), if 𝜕𝑊 = 𝑀 as oriented manifolds, where 𝜕𝑊 carries the boundary orien-

tation, such that the following condition is satisfied: For all choices of positive contact

forms 𝛼 for 𝜉 the differential forms

𝛼 ∧ 𝜔𝑛−1 and 𝛼 ∧
(
d𝛼 + 𝜔

)𝑛−1
, where 𝜔 ∶= Ω|𝑇𝑀 ,

are positive volume forms on 𝑀, see [20, 50]. Fixing a contact form 𝛼 for 𝜉 the latter is

equivalent to

𝛼 ∧
(
𝑓d𝛼 + 𝜔

)𝑛−1
> 0

for all non-negative smooth functions 𝑓 on 𝑀. A contact manifold (𝑀, 𝜉) is weakly

symplectically fillable if it admits a weak symplectic filling.

If (𝑀, 𝜉) contains an overtwisted disc, then (𝑀, 𝜉) is called overtwisted; otherwise

(𝑀, 𝜉) is called tight, see [11] and Section 2.2.
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Theorem 1. Any weakly symplectically fillable contact manifold is tight.

Potentially, Theorem 1 can be obtained with Pardon’s [59] rigorously defined contact

homology. An argument is indicated in Remark 1 below. We will prove Theorem 1 along

the classical line of reasoning due to Gromov [32] and Eliashberg [23], cf. [69, 55, 50]. In

fact, Theorem 1, will follow as a special case of Theorem 5.1.2 (ii). For that we remark,

that a contact manifold, which contains an overtwisted disc, also contains a parallelisable

small plastikstufe whose core is a torus, see the discussion in Section 2.2 and Theorem

2.2.1. A plastikstufe is an example of a bordered Legendrian open book such that the book

fibration is trivial, the page is a product of an interval with the binding and the binding

is the core, see Section 2.1. Whenever a bordered Legendrian open book in an ambient

closed contact manifold is small, i.e. has a contractible neighbourhood, it was shown in

[50, Theorem 4.4] that no semi-positive weak symplectic filling can exists. The way in

which the theorem is formulated suggests the conjecture that the statement should be

true even without the assumption of semi-positivity. Here we prove:

Theorem 2. A contact manifold is not weakly symplectically fillable provided that it con-

tains a small bordered Legendrian open book such that the complement of the binding has

vanishing second Stiefel–Whitney class.

Theorem 2 implies Theorem 1 and directly follows from Theorem 5.1.2 (ii). The

examples of small bordered Legendrian open books given in [50, Proposition 5.9] all have

vanishing second Stiefel–Whitney class though they are sometimes not orientable and,

hence, are not spin, see Example 2.1.3. This leaves the question, whether there are contact

manifolds that are (i) weakly symplectically fillable (and therefore tight with Theorem 1)

and (ii) that admit a bordered Legendrian open book, whose binding–complement could

be orientable, but is not spin. Note that non of the potential weak symplectic fillings can

be semi-positive.

Restricting to weak symplectic fillings that are semi-positive for a moment Theorem 2

holds true also if the second Stiefel–Whitney class does not vanish. The reason is, that a

compact 1-dimensional manifold has an even number of boundary components which is
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used in a typical Gromov–Witten–invariant type argument performed in a potential weak

symplectic filling. Taking holomorphic discs with boundary on the bordered Legendrian

open book that intersect a given path connecting the binding with the boundary inside a

page yields a 1-dimensional moduli space. At the end of the path on the binding there is a

foliation by boundary circles of Bishop discs; at the other end, which corresponds to the

boundary of the page, no holomorphic disc homotopic to a Bishop disc does exist. After

perturbing the almost complex structure no bubbling off takes place for the relevant

moduli space in a semi-positive setting. In other words, the 1-dimensional moduli space

is compact with an odd number of boundary components. This is not possible thus

contradicts the presence of a weak symplectic filling.

Note that this is in contrast to the 1-dimensional branched manifolds that appear

in the non semi-positive setting. Namely, in general, the solution space of a perturbed

Cauchy–Riemann operator branches, because of the need of multisections near nodal

holomorphic discs with multiply covered sphere bubbles of negative first Chern number.

The vanishing assumption for the second Stiefel–Whitney class in the non semi-positive

setting allows to orient the solution space (see Remark 7.4.1) resulting in an oriented

compact 1-dimensional weighted branched manifold, which has an even number of

boundary components, i.e. yields the desired contradiction to weak symplectic fillability.

We remark, that moduli spaces of holomorphic discs in general are not orientable in

contrast to the case of spheres, see [26].

As a consequence of Theorem 2 we can verify the conjecture stated in [50, Theo-

rem 5.13 (a)] involving circular contactisations of Liouville domains also called Giroux

domaines:

Theorem 3. A contact manifold is not weakly symplectically fillable provided that it con-

tains a domain that is obtained from a Giroux domain with disconnected boundary, where

one boundary component is blown down via a contact cut.

The construction in Example 2.1.3 yields a small bordered Legendrian open book

whose binding–complement has trivial second Stiefel–Whitney class. Hence, Theorem 3
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follows from Theorem 2.

Theorem 5.1.2 also verifies instances of the Weinstein conjecture, which asks for the

existence of periodic Reeb orbits for all closed contact manifolds, see [65]. For a short

historical review see [21, Section 1]. Our approach, besides the usage of polyfolds, is

based on the work of Hofer [35], Albers–Hofer [6] and Niederkrüger–Rechtman [57], and

yields so-called Reeb links: A Reeb link is a finite collection of parametrised periodic

Reeb orbits each of which is oriented by the corresponding Reeb vector field and possibly

multiply covered, see [2]. A Reeb link is called null-homologous if the link components

counted multiplicity add up to zero in homology. The strong Weinstein conjecture as

formulated by Abbas–Cieliebak–Hofer in [2] asserts the existence of a null-homologous

Reeb link for all contact forms on all closed contact manifolds.

Theorem 4. The strong Weinstein conjecture holds true for all contact manifolds that

appear as the concave boundary of a directed symplectic cobordism whose positive end

satisfies the weak-filling condition and that are at least one of the following:

(i) an overtwisted contact manifold,

(ii) a contact manifold that contains a small bordered Legendrian open book such that

the complement of the binding has vanishing second Stiefel–Whitney class,

(iii) a contact manifold that contains a domain that is obtained from a Giroux domain

with disconnected boundary, where one boundary component is blown down via a

contact cut.

The relevant notions related to directed symplectic cobordisms can be found in Section

5.1. Theorem 4 follows from Theorem 5.1.2 together with the remarks made for Theorem

1 and 3 above.

For the proof of Theorem 5.1.2, which implies Theorem 2 and 4, we will use the

following alternative characterisation of weak symplectic fillability from [50]: A compact

symplectic manifold (𝑊,Ω) is a weak symplectic filling of a contact manifold (𝑀, 𝜉 = ker𝛼)

if 𝜕𝑊 = 𝑀 as oriented manifolds and if there exists an Ω-tamed almost complex structure
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𝐽 on 𝑊 such that 𝜉 is 𝐽-invariant and the restriction of d𝛼 to 𝜉 tames 𝐽. In this situation

(𝑊,Ω, 𝐽) is called a tamed pseudo-convex manifold, see [23] and cf. Section 4. This point

of view allows the use of holomorphic disc fillings in the sense of Bishop, see Section 3.

It turns out that fillability questions can be perfectly described in the language of

symplectic cobordisms, see Section 5. Assuming non-existence of Reeb links of the Reeb

flows that appear on the negative ends of the symplectic cobordism the Gromov–Witten–

invariant type polyfolds can be defined in the sense of Hofer–Wysocki–Zehnder [36, 37,

38, 39, 40, 41, 42, 43]. This was observed in [64] in the context of holomorphic spheres.

Necessary modifications for the usage of holomorphic discs instead are worked out

in Section 6 and 7. Special attention we pay to orientability questions. Similar to the

polyfold version of the Deligne–Mumford space we introduce a Riemann moduli space

of boundary un-noded stable discs with 3 ordered boundary marked points in Section

6. In Section 7 we define the relevant polyfold of stable boundary un-noded disc maps

motivated by the absence of boundary disc bubbling in the Gromov compactification of

the appearing moduli space of holomorphic discs.

Remark 1. Contact homology, as a formal concept, was introduced by Eliashberg–

Givental–Hofer in [24] as contact-manifold-invariant having functorial properties. Sym-

plectic cobordisms, which are directed from the negative to the positive end, induce

structure preserving maps (e.g. unital) from the contact homology at the positive end

to the contact homology at the negative end. To incorporate non-exact cobordisms and

weak-filling boundary conditions a change of coefficients to a Novikov completion of the

group ring of the second homology (or an adapted quotient thereof) of the symplectic

cobordism resp. contact manifold is necessary by compactness reasons, see Bourgeois–

van Koert [14, Section 1.1], Latschev–Wendl [49, Section 2], and Niederkrüger–Wendl

[58, Section 2.5]. Applying this, one gets that a contact manifold with vanishing contact

homology (i.e. with 1 being a boundary) cannot be weakly symplectically fillable (i.e.

symplectically null-cobordant with empty negative end), as the contact homology of

the empty contact manifold equals the coefficient ring and, therefore, never vanishes
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meaning 1 ≠ 0.

Combining Casals–Murphy–Presas’ [17, Theorem 1.1] and Bourgeois–van Koert’s [14,

Theorem 1.3] shows that on every overtwisted contact manifold there exists a non-

degenerate, defining contact form that admits a periodic Reeb orbit that bounds precisely

one finite energy plane, which additionally is Fredholm regular, implying the vanishing

of the contact homology. As Pardon rigorously defined contact homology in [59], this

implies, as stated on [59, p. 835/6], the vanishing of the contact homology of overtwisted

contact manifolds. Furthermore, after reworking [59] with group ring coefficients, this

yields symplectic non-fillability even in the weak sense, i.e. Theorem 1.

Similarly and removing the word ‘strong’, part (i) of Theorem 4 could follow along

the same line of reasoning because the vanishing of the contact homology implies the

Weinstein conjecture for the underlying contact manifold. To obtain the strong Weinstein

conjecture as verified in part (i) of Theorem 4 one could argue as above in the case of

non-degenerate contact forms. In order to handle degenerate contact forms one could use

an approximation argument as in [64, Section 6]. A filtered version of contact homology

might yield the required energy, resp., action bounds.

On [59, p. 836] Pardon addresses the vanishing of contact homology in the presence

of a small bordered Legendrian open book based on an idea of Bourgeois–Niederkrüger

[13, p. 69]. It would be of interest, whether Pardon’s approach to broken homolorphic

discs with boundary via orientation local systems could remove the assumption on the

second Stiefel–Whitney class, which we made in Theorem 2 and in part (ii) of Theorem 4

in order to make our approach via boundary un-noded stable holomorphic discs feasible.

The Deligne–Mumford space elaborated in Section 6 might represent a first step in this

direction.
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2 Singular Legendrian foliations

2.1 Legendrian open books

Following [50, 56] we define:

Definition 2.1.1. A relative open book decomposition (𝐵, 𝜗) of a connected manifold 𝑁

with boundary 𝜕𝑁 consists of

• a non-empty codimension 2 submanifold 𝐵 of Int𝑁, called the binding,

• and a smooth, locally trivial fibration 𝜗∶ 𝑁 ⧵ 𝐵 → 𝑆1, whose fibres 𝜗−1(𝜃), 𝜃 ∈ 𝑆1, are

called the pages,

such that the following conditions are satisfied:

(i) All pages intersect 𝜕𝑁 transversally.

(ii) The binding 𝐵 has a trivial tubular neighbourhood 𝐵 × 𝐷2 in 𝑁 in which 𝜗 is given by

the angular coordinate in the 𝐷2-factor.

The pages 𝜗−1(𝜃) in 𝑁 ⧵ 𝐵 are co-oriented by the orientation of 𝑆1, i.e. the linearisation 𝑇𝜗

maps positive normal vectors to positive tangent vectors of 𝑆1.

As in [50, Section 4] and [56, Section I.4] we define:

Definition 2.1.2. A connected compact 𝑛-dimensional submanifold 𝑁 with boundary 𝜕𝑁 of

a (2𝑛− 1)-dimensional contact manifold (𝑀, 𝜉) carries a bordered Legendrian open book

(𝐵, 𝜗) if (𝐵, 𝜗) is a relative open book decomposition of 𝑁 such that

• the pages of (𝐵, 𝜗) are Legendrian submanifolds of (𝑀, 𝜉) and

• the singular set of 𝑁 ⊂ (𝑀, 𝜉), i.e. the set of all points 𝑝 ∈ 𝑁 such that 𝑇𝑝𝑁 ⊂ 𝜉𝑝, is

equal to 𝐵 ∪ 𝜕𝑁.

In particular, the binding of a bordered Legendrian open book is an isotropic submanifold

of (𝑀, 𝜉); the boundary 𝜕𝑁 is Legendrian. The complement

𝑁∗ ∶= 𝑁 ⧵
(
𝐵 ∪ 𝜕𝑁

)

Arnold Mathematical Journal, Vol.11(2), 2025 8
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of 𝐵 ∪ 𝜕𝑁 in 𝑁 is the set of regular points of 𝑁 ⊂ (𝑀, 𝜉), i.e. the set of all points 𝑝 ∈ 𝑁

such that 𝑇𝑝𝑁 and 𝜉𝑝 intersect transversally. The characteristic distribution 𝑇𝑁∗ ∩ 𝜉

integrates by the Frobenius theorem to the so-called characteristic foliation on 𝑁∗. The

characteristic leaves, which by definition are the leaves of the characteristic foliation,

coincide with the pages of the open book (𝐵, 𝜗).

If, in addition, 𝜉 is co-oriented, then 𝜉|𝑁∗ puts a co-orientation to the pages 𝜗−1(𝜃) in

𝑁 ⧵ 𝐵. We will assume that this co-orientation coincides with the co-orientation induced

by 𝜗 by possibly composing 𝜗 with a reflection on 𝑆1 = 𝜕𝐷.

It follows from [56, Theorem I.1.3] or [44, Theorem 1.4] that the germ of a contact

structure (𝑀, 𝜉) is unique near a submanifold 𝑁 ⊂ (𝑀, 𝜉) (with boundary 𝜕𝑁) that carries

a bordered Legendrian open book (𝐵, 𝜗). The germ is uniquely determined by the sin-

gular characteristic distribution 𝜉 ∩ 𝑇𝑁 given by the open book decomposition on 𝑁

determined by (𝐵, 𝜗).

A bordered Legendrian open book (𝐵, 𝜗) is called small if the supporting submanifold

𝑁 ⊂ (𝑀, 𝜉) is contained in a ball inside 𝑀.

Example 2.1.3. (A non-spin bordered Legendrian open book) In [50, Proposition 5.9]

examples of contact manifolds (𝑀, 𝜉) are constructed that contain a submanifold𝑁, which

carries a small bordered Legendrian open book. Some of the in [50, Proposition 5.9]

constructed examples are indeed non-spin. In order to see this, we repeat the essential

construction steps here.

The construction starts with a cylindrical Lagrangian submanifold 𝐿 of an ideal Liou-

ville domain 𝑉 with disconnected boundary 𝜕𝑉 = 𝜕+𝑉 ∪ 𝜕−𝑉 (see [50, Theorem C]) such

that 𝐿 has disconnected boundary 𝜕𝐿 = 𝜕+𝐿 ∪ 𝜕−𝐿 with 𝜕±𝐿 ⊂ 𝜕±𝑉. A perturbation of 𝐿× 𝑆1

inside the interior of the circular contactisation 𝑉 × 𝑆1 of the ideal Liouville domain 𝑉 – a

so-called Giroux domain – followed by a contact cut along 𝜕−𝑉 × 𝑆1 (see [50, Section 5.1]),

say, yields a bordered Legendrian open book 𝑁. Gluing a Giroux domain along 𝜕+𝑉 × 𝑆1

with [50, Lemma 5.1] and eventually cutting remaining boundary components yields a

contact embedding of 𝑁 into a closed contact manifold (𝑀, 𝜉).

Arnold Mathematical Journal, Vol.11(2), 2025 9
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In the process, 𝐿 is the result of Polterovich surgery (see [60]) along, say, two transverse

intersection points of a Hamiltonian deformation of two boundary parallel Lagrangian

discs. If the dimension of 𝐿 is even, then the Polterovich surgery result 𝐿 necessarily is

homotopy equivalent to a 𝑛-dimensional Klein bottle with two points removed, see [60,

Paragraph 7]. Therefore, 𝑁∗ is not orientable with 𝑤2(𝑁∗) = 0. If the dimension of 𝐿 is

odd, one can choose orientations such that 𝐿 is homotopy equivalent to a 𝑛-dimensional

Klein bottle or to 𝑆1 × 𝑆𝑛−1 each time with two points removed.

2.2 Overtwistedness

A (2𝑛 − 1)-dimensional contact manifold (𝑀, 𝜉) is called overtwisted, if (𝑀, 𝜉) contains an

overtwisted disc, see [11]. For example ℝ3 equipped with the contact structure ker𝛼ot,

𝛼ot ∶= cos 𝑟 d𝑧 + 𝑟 sin 𝑟 d𝜃 ,

is overtwisted, as 𝐷2
ot ∶= {𝑧 = 0, 𝑟 ≤ 𝜋} is an overtwisted disc.

For a (𝑛 − 2)-dimensional closed smooth manifold 𝑄 we consider the contact manifold

ℝ3 × 𝑇∗𝑄 equipped with contact structure 𝜉𝑄 ∶= ker(𝛼ot + 𝜆𝑇∗𝑄), where we identify 𝑄 with

the zero section in 𝑇∗𝑄 and denote the Liouville 1-form of 𝑇∗𝑄 by 𝜆𝑇∗𝑄. Following [11,

Section 10] we define the model plastikstufe with core 𝑄 to be the subset 𝑃𝑄 ∶= 𝐷2
ot × 𝑄

of
(
ℝ3 × 𝑇∗𝑄, 𝜉𝑄

)
.

We will say that (𝑃𝑄, 𝜉𝑄) admits a contact embedding into a (2𝑛−1)-dimensional contact

manifold (𝑀, 𝜉) if a neighbourhood of 𝑃𝑄 in
(
ℝ3×𝑇∗𝑄, 𝜉𝑄

)
does. In this case the image 𝑁 of

the model 𝑃𝑄 is called a plastikstufe with core 𝑄 and carries the structure of a bordered

Legendrian open book with binding 𝑄 and pages corresponding to 𝐼𝜃 × 𝑄, where 𝐼𝜃 is the

straight line segment in 𝐷2
ot ⊂ ℝ2 connecting 0 and 𝜋ei𝜃. For the original definition of a

plastikstufe and the relation to bordered Legendrian open books we refer to [55, 56].

Theorem 2.2.1 (Borman–Eliashberg–Murphy [11]). Let 𝑄 be a (𝑛 − 2)-dimensional closed

smooth manifold, whose complexified tangent bundle is trivial. Then any (2𝑛−1)-dimensional

overtwisted contact manifold admits a small plastikstufe with core 𝑄.
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The assumption on 𝑄 is satisfied for any stably parallelisable manifold 𝑄, cf. [9, Section

1.1]. For the converse of Theorem 2.2.1 we note:

Theorem 2.2.2 (Huang [45]). If a contact manifold (𝑀, 𝜉) contains a plastikstufe, then

(𝑀, 𝜉) is overtwisted.

A forerunner version of this result, which is [45, Theorem 1.2], was given in [17].

Further, it is shown in [45, Theorem 1.3] that if (𝑀, 𝜉) admits a bordered Legendrian

open book and dim𝑀 = 5, then (𝑀, 𝜉) is overtwisted. In fact, a contact manifold (𝑀, 𝜉)

is overtwisted precisely if (𝑀, 𝜉) contains a bordered Legendrian open book with pages

diffeomorphic to 𝑃 × Σ, where 𝑃 is a closed manifold and Σ a compact surface with

boundary, see [45, Corollary 1.4].

2.3 Local model near the binding

Let (𝑀, 𝜉) be a contact manifold. We consider a bordered Legendrian open book decom-

position (𝐵, 𝜗) of a submanifold 𝑁 ⊂ (𝑀, 𝜉). By Definition 2.1.1 the binding 𝐵 ⊂ 𝑁 admits a

tubular neighbourhood 𝐵×𝐷2 on which the fibre projection 𝜗 is given by (𝑏, 𝑧 = 𝑟ei𝜃) ↦→ 𝜃.

By [55, Proposition 4] a neighbourhood of 𝐵 × 𝐷2 in (𝑀, 𝜉) is contactomorphic to a

neighbourhood of {0} × 𝐷2 × 𝐵 in
(
ℝ × ℂ × 𝑇∗𝐵, ker𝛼𝑜

)
, where

𝛼𝑜 ∶= d𝑡 + 1
2

(
𝑥d𝑦 − 𝑦d𝑥

)
+ 𝜆𝑇∗𝐵 ,

denoting by 𝑡, 𝑧 = 𝑥 + i𝑦 the coordinates on ℝ × ℂ and by 𝜆𝑇∗𝐵 the Liouville 1-form on 𝑇∗𝐵.

The contactomorphism restricts to (𝑏, 𝑧) ↦→ (0, 𝑧, 𝑏) on 𝐵 × 𝐷2. Again we identify 𝐵 with

the zero section in 𝑇∗𝐵.

2.4 Local model near the boundary

Consider a contact manifold (𝑀, 𝜉). Let 𝑁 ⊂ (𝑀, 𝜉) be a submanifold that supports a

bordered Legendrian open book (𝐵, 𝜗). By Definition 2.1.1 the restriction of 𝜗 to 𝜕𝑁 induces
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a locally trivial fibration over 𝑆1 with fibre 𝐹. Denoting the monodromy diffeomorphism

by 𝜑∶ 𝐹 → 𝐹 this fibration is equivalent to the mapping torus

𝑀(𝜑) =
[0, 2𝜋] × 𝐹

(2𝜋, 𝑓) ∼
(
0, 𝜑(𝑓)

)

of 𝜑. The induced diffeomorphism

𝜑∗ ∶= (𝑇𝜑−1)∗∶ 𝑇∗𝐹 → 𝑇∗𝐹

naturally preserves the Liouville 1-form 𝜆𝑇∗𝐹 so that the mapping torus

𝑀(𝜑∗) =
𝑇∗[0, 2𝜋] × 𝑇∗𝐹

(
(𝑟, 2𝜋), 𝑢

)
∼
(
(𝑟, 0), (𝑇𝜑−1)∗(𝑢)

)

carries the Liouville form 𝑟d𝜃 + 𝜆𝑇∗𝐹 and can be identified with 𝑇∗
(
𝑀(𝜑)

)
. The corre-

sponding Liouville vector field is of the form 𝑟𝜕𝑟 + 𝑌𝑇∗𝐹 and 𝑀(𝜑∗) fibres naturally over

(𝑇∗𝑆1, 𝑟d𝜃) with fibre projection map [(𝑟, 𝜃), 𝑢] ↦→ [(𝑟, 𝜃)].

We equip ℝ ×𝑀(𝜑∗) with the contact form 𝛼𝜑 induced by

𝛼𝜑 ≡ d𝑡 + 𝑟d𝜃 + 𝜆𝑇∗𝐹 .

By [50, Lemma 4.6] a neighbourhood of 𝜕𝑁 ⊂ (𝑀, 𝜉) is contactomorphic to a neighbour-

hood of

{0} ×𝑀(𝜑) ⊂
(
ℝ ×𝑀(𝜑∗), ker𝛼𝜑

)
,

so that
(
{0} × {𝑟 = 0, 𝑢 = 0}

)
≡ {0} ×𝑀(𝜑)

corresponds to 𝜕𝑁 and a neighbourhood of 𝜕𝑁 in 𝑁 ⊂ 𝑀 corresponds to the quotient of

the set {0}× {𝑟 ≤ 0, 𝑢 = 0} in {0}×𝑀(𝜑∗). We orient 𝑇∗𝑆1 ≡ ℝ×𝑆1 by d𝑟∧d𝜃. This matches the

co-orientation conventions for the singular distribution determined by 𝜉 and the pages

of (𝐵, 𝜗) in Section 2.1.
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3 Holomorphic discs

3.1 A germ of Bishop disc filling

Motivated by Section 2.3 we define a natural almost complex structure 𝐽 onℝ×(ℝ×ℂ×𝑇∗𝐵)

that allows a lifting of obvious holomorphic discs similar to cf. [30, Section 2].

For that choose a Riemannian metric 𝑔𝐵 on 𝐵. Denote by 𝐽𝑇∗𝐵 the almost complex

structure on 𝑇∗𝐵 that is induced by the Levi-Civita connection of 𝑔𝐵, see [55, Appendix

B] or [48, Section 5]. Observe that 𝐽𝑇∗𝐵 is compatible with the symplectic form d𝜆𝑇∗𝐵.

Furthermore denoting by 𝑔♭𝐵 the dual metric of 𝑔𝐵 the kinetic energy function on 𝑇∗𝐵 is

defined by 𝑘(𝑢) = 1
2
𝑔♭(𝑢, 𝑢), 𝑢 ∈ 𝑇∗𝐵, and satisfies 𝜆𝑇∗𝐵 = −d𝑘◦𝐽𝑇∗𝐵. In other words, 𝑘 is a

strictly plurisubharmonic potential in the sense of [28, Section 3.1].

On the Liouville manifold

(𝑉, 𝜆𝑉) ∶=
(
ℂ × 𝑇∗𝐵, 1

2

(
𝑥d𝑦 − 𝑦d𝑥

)
+ 𝜆𝑇∗𝐵

)

we consider the almost complex structure

𝐽𝑉 = i⊕ 𝐽𝑇∗𝐵 ,

which is compatible with the symplectic form d𝜆𝑉 . The function

𝜓(𝑧, 𝑢) ∶= 1
4
|𝑧|2 + 𝑘(𝑢)

is a strictly plurisubharmonic potential 𝜓 on (𝑉, 𝜆𝑉 , 𝐽𝑉) satisfying 𝜆𝑉 = −d𝜓◦𝐽𝑉 .

The contactisation (ℝ×𝑉, d𝑡+𝜆𝑉) of (𝑉, 𝜆𝑉) is given by (ℝ×ℂ×𝑇∗𝐵, 𝛼𝑜) and the contact

structure ker𝛼𝑜 is spanned by vectors of the form 𝑣 − 𝜆𝑉(𝑣)𝜕𝑡, 𝑣 ∈ 𝑇𝑉. Using coordinates 𝑠

on the first ℝ-factor of ℝ × (ℝ × 𝑉) we define 𝐽 by requiring 𝐽(𝜕𝑠) = 𝜕𝑡 and

𝐽
(
𝑣 − 𝜆𝑉(𝑣)𝜕𝑡

)
= 𝐽𝑉𝑣 − 𝜆𝑉(𝐽𝑉𝑣)𝜕𝑡

for all 𝑣 ∈ 𝑇𝑉. In other words, 𝐽 is a 𝑠-translation invariant almost complex structure on

ℝ × (ℝ × 𝑉) that preserves the contact distributions ker𝛼𝑜 on all slices {𝑠} ×ℝ × 𝑉.
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Remark 3.1.1. The form d(𝑠𝛼𝑜) = d𝑠 ∧ 𝛼𝑜 + 𝑠d𝛼𝑜 is symplectic on {𝑠 > 0} and compatible

with 𝐽. Therefore, the function (𝑠, 𝑡, 𝑧, 𝑢) ↦→ 1
2
𝑠2 is strictly plurisubharmonic on {𝑠 > 0}

because 𝛼𝑜 = −d𝑠◦𝐽.

By [55, Proposition 5] the Niederkrüger map

Φ(𝑠, 𝑡, 𝑧, 𝑢) =
(
𝑠 − 𝜓(𝑧, 𝑢) + i𝑡, 𝑧, 𝑢

)

is a biholomorphic map

Φ∶ (ℝ ×ℝ × ℂ × 𝑇∗𝐵, 𝐽) ,→ (ℂ2 × 𝑇∗𝐵, i⊕ 𝐽𝑇∗𝐵) ,

which maps the hypersurface {𝑠 = 0} onto {𝑠◦Φ−1 = 0} = {𝑥1 = −𝜓(𝑧, 𝑢)}. As in [55,

Proposition 3.2] we consider a (𝑛 − 1)-dimensional family of holomorphic discs

{−𝜀2} × 𝔻2𝜀 × {𝑏}

in (ℂ2 × 𝑇∗𝐵, i⊕𝐽𝑇∗𝐵) with parameters 𝜀 ∈ ℝ+, 𝑏 ∈ 𝐵. Here, we denote by 𝔻𝑟 ⊂ ℂ the closed

disc with radius 𝑟 and centre 0. Writing 𝔻 for the closed unit disc 𝔻1 the disc family can

be parametrised by

𝑣𝜀,𝑏(𝑧) =
(
− 𝜀2, 2𝜀 ⋅ 𝑧, 𝑏

)

for 𝑧 ∈ 𝔻. The lifts 𝑢𝜀,𝑏 = Φ−1◦𝑣𝜀,𝑏 via the Niederkrüger map are holomorphic maps

(𝔻, 𝜕𝔻) ,→
(
ℝ ×ℝ × ℂ × 𝑇∗𝐵, {0} × {0} × ℂ∗ × 𝐵

)

given by

𝑢𝜀,𝑏(𝑧) =
(
𝜀2
(
|𝑧|2 − 1

)
, 0, 2𝜀 ⋅ 𝑧, 𝑏

)
.

We will refer to the 𝑢𝜀,𝑏 as local Bishop discs.

From [55, Proposition 6] we get local uniqueness:

Lemma 3.1.2. For all simple 𝐽-holomorphic disc maps 𝑢∶ 𝔻 → ℝ × ℝ × ℂ × 𝑇∗𝐵 such

that 𝑢(𝜕𝔻) ⊂ {0} × {0} × ℂ∗ × 𝐵 there exist 𝜀 ∈ ℝ+, 𝑏 ∈ 𝐵 and a Möbius transformation

𝜑∶ (𝔻, 𝜕𝔻)→ (𝔻, 𝜕𝔻) such that 𝑢 = 𝑢𝜀,𝑏◦𝜑.
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Proof. Consider the Niederkrüger transform 𝑣 = Φ(𝑢) of 𝑢. The projection to the 𝑇∗𝐵-

factor is a 𝐽𝑇∗𝐵-holomorphic disc with boundary on the zero section 𝐵 and is therefore

constant as by Stokes theorem the symplectic energy vanishes. So we are left with a

holomorphic disc 𝑣 = (𝑓+ i𝑔, 𝑣2) in ℂ2 such that the restriction to 𝜕𝔻 satisfies 𝑓+ 1
4
|𝑣2|2 = 0

and 𝑔 = 0, because

Φ
(
{0} × {0} × ℂ∗ × 𝐵

)
=
{
𝑥1 = − 1

4
|𝑧|2, 𝑦1 = 0, 𝑢 = 0} .

The maximum and minimum principle implies that the harmonic function 𝑔 vanishes

identically so that 𝑓 must be constant according to the classical Cauchy–Riemann equa-

tions. Write 𝑓 = −𝜀2 for some 𝜀 > 0. Observe, that 𝜀 indeed cannot vanish as a constant

holomorphic disc is never simple. Hence, 1
2𝜀
𝑣2 is a holomorphic self-map of (𝔻, 𝜕𝔻). Again

by the simplicity assumption the degree of the restriction of 1
2𝜀
𝑣2 to the boundary must

be 1. The argument principle implies that 1
2𝜀
𝑣2 is an automorphism which is given by a

Möbius transformation.

We remark that the boundary circles

𝑢𝜀,𝑏(𝜕𝔻) = {0} × {0} × 𝜕𝔻2𝜀 × {𝑏}

of the local Bishop discs foliate {0}×{0}×ℂ∗×𝐵. Recall that a neighbourhood of {0}×{0}×{0}×𝐵

corresponds to a neighbourhood of the binding 𝐵 in 𝑁∗.

3.2 Pseudo-convexity

We consider a 2𝑛-dimensional almost complex manifold (𝑊, 𝐽) with non-empty boundary.

Denote by 𝑀 a boundary component 𝑀 ⊂ 𝜕𝑊 and by 𝜉 = 𝑇𝑀 ∩ 𝐽𝑇𝑀 the 𝐽-invariant

hyperplane distribution along 𝑀. Assume that there exists a smooth 1-form 𝛼 on 𝑀 such

that 𝜉 = ker𝛼 and that d𝛼 is 𝐽-positive on complex lines in 𝜉 in the sense that d𝛼(𝑣, 𝐽𝑣) > 0

for all 𝑣 ∈ 𝜉, 𝑣 ≠ 0. In other words, (𝑀, 𝜉) is a 𝐽-convex hypersurface of (𝑊, 𝐽) as defined

in [23].
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In this situation, 𝜉 is a contact structure with contact form 𝛼, cf. Remark 4.1.1. Denoting

by 𝑅 the Reeb vector field of 𝛼 we additionally assume that −𝐽𝑅 is outward pointing. In

other words, (𝑀, 𝜉) is a 𝐽-convex boundary component of (𝑊, 𝐽). Observe, that (𝑊, 𝐽) is

naturally oriented by the 𝑛-th power of any 𝐽-positive (and hence non-degenerate) 2-form

on 𝑊. Therefore, the contact orientation 𝛼 ∧ (d𝛼)𝑛−1 on 𝑀 and the boundary orientation

on 𝑀 ⊂ 𝜕𝑊 coincide.

Example 3.2.1. The almost complex manifold
(
(0, 1] × ℝ × ℂ × 𝑇∗𝐵, 𝐽

)
as constructed

in Section 3.1 has 𝐽-convex boundary with strictly plurisubharmonic function 1
2
𝑠2, see

Remark 3.1.1.

In fact, if 𝑀 is compact, then 𝑀 ⊂ 𝜕𝑊 is the regular zero-level set of a strictly plurisub-

harmonic function 𝜚 defined near 𝑀 that is negative on the complement of 𝑀, see [19,

Lemma 2.7]. The precomposition 𝜚◦𝑢 with a holomorphic map 𝑢∶ 𝐺 → (𝑊, 𝐽), 𝐺 ⊂ ℂ open

domain, is subharmonic where defined, and therefore satisfies the strong maximum

principle. So, for example, non-constant holomorphic spheres in (𝑊, 𝐽) are uniformly

bounded away from the boundary component 𝑀 ⊂ 𝜕𝑊, which we assumed to be compact.

Furthermore, in the case of a non-constant 𝐽-holomorphic disc 𝑢∶ (𝔻, 𝜕𝔻)→ (𝑊,𝑀), we

get 𝑢(Int𝔻) ⊂ 𝑊 ⧵𝑀 and the radial derivative

0 < d
(
𝜚◦𝑢

)
(𝜕𝑟) = −

(
d𝜚◦𝐽

)(
𝑇𝑢(𝜕𝜃)

)

is positive along 𝜕𝔻 by the boundary lemma of E. Hopf. Because

𝜉 = ker(d𝜚) ∩ ker
(
− d𝜚◦𝐽

)

is co-oriented by the Reeb vector field of any contact form defining 𝜉 as a co-oriented

hyperplane distribution this means that the curve 𝑢(𝜕𝔻) ⊂ 𝑀 is an immersion positively

transverse to 𝜉. In particular, any such holomorphic disc 𝑢 such that 𝑢|𝜕𝔻 is an embedding

must be simple, see [27, Lemma 4.5].
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3.3 Uniqueness of the germ near the binding

Consider a 2𝑛-dimensional almost complex manifold (𝑊, 𝐽) that has a compact 𝐽-convex

boundary component (𝑀, 𝜉) as described in Section 3.2. Assume that (𝑀, 𝜉) contains

a submanifold 𝑁 supporting a bordered Legendrian open book (𝐵, 𝜗). By Section 2.3 a

neighbourhood of the binding𝐵 ⊂ 𝑊 is diffeomorphic to a neighbourhood of {0}×{0}×{0}×𝐵

in (−∞, 0] ×ℝ×ℂ×𝑇∗𝐵 such that the restriction to the boundaries 𝑀 and {0} ×ℝ×ℂ×𝑇∗𝐵

induces a contactomorphism. In addition, assume that the almost complex structure 𝐽 of

𝑊 corresponds to the one constructed in Section 3.1 under the diffeomorphism.

From [55, Proposition 7] we get semi-global uniqueness:

Lemma 3.3.1. There exists a neighbourhood 𝑈𝐵 ⊂ 𝑊 of 𝐵 such that for all simple 𝐽-

holomorphic disc maps 𝑢∶ (𝔻, 𝜕𝔻) → (𝑊,𝑁∗) with 𝑢(𝔻) ∩ 𝑈𝐵 ≠ ∅ we have that 𝑢(𝔻) is

contained in 𝑈𝐵 and there exist 𝜀 ∈ ℝ+, 𝑏 ∈ 𝐵 and a Möbius transformation 𝜑∶ (𝔻, 𝜕𝔻)→

(𝔻, 𝜕𝔻) such that 𝑢 = 𝑢𝜀,𝑏◦𝜑.

Proof. Using the above diffeomorphism we describe such a neighbourhood𝑈𝐵 as subset of

(−∞, 0]×ℝ×ℂ×𝑇∗𝐵: For 𝑥1 < 0, 𝑦1 ∈ ℝ consider the complex hypersurfaces {𝑥1+i𝑦1}×ℂ×𝑇∗𝐵

in
(
ℂ2 × 𝑇∗𝐵, i ⊕ 𝐽𝑇∗𝐵

)
. The intersection with the real hypersurface {𝑥1 = −𝜓(𝑧, 𝑢)} is

the sphere bundle in ℂ ⊕ 𝑇∗𝐵 given by |𝑥1| =
1
4
|𝑧|2 + 1

2
𝑔♭(𝑢, 𝑢); the intersection with

{𝑥1 ≤ −𝜓(𝑧, 𝑢)}, therefore, is the corresponding disc bundle in ℂ⊕ 𝑇∗𝐵. Here ℂ denotes

the trivial complex line bundle over 𝐵. Hence, the complex hypersurfaces

𝐻𝑥1,𝑦1 ∶= Φ−1
(
{𝑥1 + i𝑦1} × ℂ × 𝑇∗𝐵

)
∩ {𝑠 ≤ 0}

foliate the complement of {0} ×ℝ× {0} ×𝐵 in
(
(−∞, 0] ×ℝ×ℂ× 𝑇∗𝐵, 𝐽

)
including a foliation

by their real boundaries. Then, by definition, 𝑈𝐵 corresponds to

𝑈𝐵 ∶=
(
{0} × (−𝛿, 𝛿) × {0} × 𝐵

)
∪

⋃

|𝑥1|,|𝑦1|<𝛿
𝐻𝑥1,𝑦1

for 𝛿 > 0 sufficiently small, under the above mentioned identifying diffeomorphism.

Consider a simple 𝐽-holomorphic disc 𝑢∶ (𝔻, 𝜕𝔻) → (𝑊,𝑁∗) and suppose that 𝐺 =

𝑢−1(𝑈𝐵) is not empty. Observe that 𝐺 ⊂ 𝔻 is open. Restricting to 𝐺 we write Φ(𝑢) =
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(𝑓+i𝑔, 𝑣2, 𝑣3). If 𝑔 is constant in a neighbourhood of a point in𝐺, then so is the holomorphic

function 𝑓 + i𝑔. With the identity theorem this implies that 𝑓 + i𝑔 is constant on 𝐺 ⧵ 𝜕𝔻

and, hence, on 𝐺. Denoting the constant by 𝑓𝑜 + i𝑔𝑜 this translates into 𝐺 = 𝑢−1(𝐻𝑓𝑜 ,𝑔𝑜) so

that 𝐺 ⊂ 𝔻 is closed also. Hence, 𝐺 = 𝔻 by an open–closed argument, i.e. 𝑢(𝔻) ⊂ 𝑈𝐵 and

the claim follows with Lemma 3.1.2.

It remains to show that the complementary case, namely that {d𝑔 = 0} has no interior

points, cannot occur. Indeed, otherwise the holomorphic disc 𝑢(𝔻) and the complex

hyperplane 𝐻𝑥∗1 ,𝑦
∗
1

intersect along finitely many points for 𝑥∗1 < 0, 𝑦∗1 ≠ 0. For that observe

with Section 3.2 and Example 3.2.1 (suitably shifted in the 𝑠-direction) that the intersection

is along interior points of 𝑢(𝔻). This follows because 𝐻𝑥∗1 ,𝑦
∗
1

and the boundary condition

𝑁∗ for the holomorphic disc 𝑢 are disjoint as

Φ
(
{0} × {0} × ℂ∗ × 𝐵

)
⊂ ℝ− × {𝑦1 = 0} × ℂ∗ × 𝐵 .

By positivity of local intersection numbers the total intersection number 𝑢 ∙ 𝐻𝑥∗1 ,𝑦
∗
1

is

positive. On the other hand this total intersection number is equal to the homological

intersection of [𝑢] ∈ 𝐻2(𝑊,𝑀) and [𝜕𝑐] ∈ 𝐻2𝑛−2𝑊, where the (2𝑛 − 1)-chain 𝑐 is given by

𝑐 =
⋃

𝑥∈[𝑥∗1 ,0]
𝐻𝑥,𝑦∗1

.

Indeed, the maximum principle implies that 𝑢(Int𝔻) does not intersect 𝑀 so that 𝑢(𝔻)

and 𝜕𝑐 ∩𝑀 are disjoint. Hence,

𝑢 ∙𝐻𝑥∗1 ,𝑦
∗
1
= [𝑢] ⋅ [𝜕𝑐] = 0 .

This is a contradiction. In other words, {d𝑔 = 0} has to have an interior point.

3.4 Holomorphic model near the boundary

As in Section 3.1 we define an almost complex structure on 𝑀(𝜑∗): Choose a Riemannian

metric 𝑔𝜃 on 𝐹 that smoothly depends on 𝜃 ∈ ℝ such that 𝑔2𝜋 = 𝑔𝜃 = 𝜑∗𝑔𝜃−2𝜋 for all

𝜃 ∈ (2𝜋 − 𝜀, 2𝜋 + 𝜀) and 𝜀 > 0 small. For each 𝜃 ∈ ℝ we define the kinetic energy on 𝑇∗𝐹 by

𝑘𝜃(𝑢) =
1
2𝑔

♭
𝜃(𝑢, 𝑢) , 𝑢 ∈ 𝑇∗𝐹 ,
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denoting by 𝑔♭𝜃 the dual metric of 𝑔𝜃. For each 𝜃 ∈ [0, 2𝜋] we construct an almost complex

structure 𝐽𝜃 on 𝑇∗𝐹 as on [48, Section 5.3] that is compatible with d𝜆𝑇∗𝐹 and turns 𝑘𝜃 into a

strictly plurisubharmonic potential on 𝑇∗𝐹 in the sense of [28, Section 3.1] meaning that

𝜆𝑇∗𝐹 = −d𝑘𝜃◦𝐽𝜃 .

The almost complex structure 𝐽𝜃 is uniquely determined by 𝑔𝜃 and d𝜆𝑇∗𝐹; therefore, 𝐽𝜃
depends smoothly on 𝜃 and satisfies 𝐽2𝜋 = 𝐽𝜃 = 𝜑∗𝐽𝜃−2𝜋 for 𝜃 ∈ (2𝜋 − 𝜀, 2𝜋 + 𝜀).

The metric on [0, 2𝜋] × 𝐹 obtained by taking the sum of the Euclidean metric and 𝑔𝜃

for each 𝜃 ∈ [0, 2𝜋] descents to a metric 𝑔 on the mapping torus 𝑀(𝜑). The induced kinetic

energy function on 𝑀(𝜑∗) is denoted by

𝜓(𝑟, 𝜃, 𝑢) = 1
2
𝑟2 + 𝑘𝜃(𝑢) .

The almost complex structure i⊕ 𝐽𝜃 on 𝑇∗[0, 2𝜋] × 𝑇∗𝐹 descents to a compatible almost

complex structure 𝐽𝑔 on 𝑀(𝜑∗) and

𝑟d𝜃 + 𝜆𝑇∗𝐹 ≡ −d𝜓◦𝐽𝑔

modulo second order terms in |𝑢|𝜃, 𝑢 ∈ 𝑇∗𝐹, in the sense of [54, Appendix E.5]. Indeed,

the derivative of 𝑘𝜃(𝑢) in 𝜃-direction contributes a term that locally is a quadratic form

in the coordinates of 𝑢 ∈ 𝑇∗𝐹. Consequently, the restriction of d𝑟 ∧ d𝜃 + d𝜆𝑇∗𝐹 to {𝑢 = 0}

in 𝑀(𝜑∗) is equal to −d
(
d𝜓◦𝐽𝑔

)
. As d𝑟 ∧ d𝜃 + d𝜆𝑇∗𝐹 is positive on (i⊕ 𝐽𝜃)-complex lines and

equals −d
(
d𝜓◦𝐽𝑔

)
modulo first order terms in |𝑢|𝜃, 𝑢 ∈ 𝑇∗𝐹, we conclude that 𝜓 is strictly

plurisubharmonic in a neighbourhood of {𝑢 = 0} in 𝑀(𝜑∗).

We consider the almost complex manifold (ℂ×𝑀(𝜑∗), i⊕𝐽𝑔) provided with the Liouville

form 𝑠d𝑡 + 𝑟d𝜃 + 𝜆𝑇∗𝐹 , where we denote the coordinates on ℂ by 𝑠 + i𝑡. Observe that the

almost complex structure

𝐽 = i⊕ 𝐽𝑔

is compatible with d𝑠 ∧ d𝑡 + d𝑟 ∧ d𝜃 + d𝜆𝑇∗𝐹 and that the function

Ψ(𝑠 + i𝑡, 𝑟, 𝜃, 𝑢) = 1
2
𝑠2 + 𝜓(𝑟, 𝜃, 𝑢)
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is strictly plurisubharmonic in a neighbourhood of {𝑢 = 0} inℂ×𝑀(𝜑∗). This holds because

𝑠d𝑡 + 𝑟d𝜃 + 𝜆𝑇∗𝐹 ≡ −dΨ◦𝐽

modulo second order terms in |𝑢|𝜃, 𝑢 ∈ 𝑇∗𝐹. Therefore, as above, the restriction of

d𝑠 ∧ d𝑡 + d𝑟 ∧ d𝜃 + d𝜆𝑇∗𝐹 to {𝑢 = 0} in ℂ ×𝑀(𝜑∗) is equal to −d
(
dΨ◦𝐽

)
.

By rescaling the metric 𝑔𝜃 on 𝐹 by a constant if necessary we can assume that Ψ is

strictly plurisubharmonic in a neighbourhood of {Ψ = 1
2
}. The hypersurfaces {Ψ = 1

2
} and

{𝑠 = 1} are transverse to 𝑠𝜕𝑠+𝑟𝜕𝑟+𝑌𝑇∗𝐹 , which is a Liouville vector field w.r.t. the symplectic

form d𝑠 ∧ d𝑡 + d𝑟 ∧ d𝜃 + d𝜆𝑇∗𝐹 . Therefore, the contraction into the symplectic form induces

contact forms on both hypersurfaces. The induced contact form on {𝑠 = 1} = {1}×iℝ×𝑀(𝜑∗)

is 𝛼𝜑; the one on {Ψ = 1
2
} is given by −dΨ◦𝐽 along {𝑢 = 0}.

A reparametrisation of the flow of the Liouville vector field 𝑠𝜕𝑠 + 𝑟𝜕𝑟 + 𝑌𝑇∗𝐹 yields a

contact embedding of {Ψ = 1
2
, 𝑠 > 0} onto {𝑠 = 1}w.r.t. the induced contact structures, see [10,

Appendix A.1]. The hypersurfaces {Ψ = 1
2
} and {𝑠 = 1} intersect along {𝑠 = 1, 𝑟 = 0, 𝑢 = 0},

on which the flow is stationary. Moreover, as we flow along the Liouville vector field

𝑠𝜕𝑠 + 𝑟𝜕𝑟 + 𝑌𝑇∗𝐹 we observe that the multi level set {Ψ = 1
2
, 𝑠 > 0, 𝑡 = 0, 𝑟 ≤ 0, 𝑢 = 0}

corresponds to {1} × {0} × {𝑟 ≤ 0, 𝑢 = 0} in {1} × iℝ ×𝑀(𝜑∗) under the contact embedding.

The latter set was used in Section 2.4 to describe the germ of contact structure near the

boundary of a bordered Legendrian open book; the boundary being {Ψ = 1
2
, 𝑠 > 0, 𝑡 =

0, 𝑟 = 0, 𝑢 = 0}, which corresponds to {1} × {0} × {𝑟 = 0, 𝑢 = 0}.

The hypersurface {Ψ = 1
2
} carries a second contact structure given by

ker
(
dΨ

)
∩ ker

(
− dΨ◦𝐽

)
,

which turns {Ψ = 1
2
} into a 𝐽-convex boundary of {Ψ ≤ 1

2
}. The induced singular charac-

teristic foliation on {Ψ = 1
2
, 𝑠 > 0, 𝑡 = 0, 𝑟 ≤ 0, 𝑢 = 0} coincides with the one described

in the preceding paragraph, where the contact distribution this time is taken w.r.t.

𝑠d𝑡 + 𝑟d𝜃 + 𝜆𝑇∗𝐹 ≡ −dΨ◦𝐽 along {𝑢 = 0}. By uniqueness of the germ of a contact struc-

ture formulated in [50, Lemma 4.6], a neighbourhood of {Ψ = 1
2
, 𝑠 > 0, 𝑡 = 0, 𝑟 ≤ 0, 𝑢 = 0} is

contactomorphic to the contact structure we considered first. In other words, given a
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contact manifold (𝑀, 𝜉) containing a submanifold 𝑁 that supports a bordered Legendrian

open book, we obtain an alternative description of the germ of contact structure near

the boundary 𝜕𝑁 presented in Section 2.4.

3.5 Holomorphically blocking boundary

Let (𝑊, 𝐽) be a 2𝑛-dimensional almost complex manifold so that a given contact manifold

(𝑀, 𝜉) is a compact 𝐽-convex boundary component of 𝑊, see Section 3.2. Let 𝑁 be a

submanifold of (𝑀, 𝜉) that supports a bordered Legendrian open book (𝐵, 𝜗). In view of

Section 3.4 we assume that a neighbourhood of the boundary 𝜕𝑁 ⊂ 𝑊 is diffeomorphic

to a neighbourhood of {1} × {0} × {𝑟 = 0, 𝑢 = 0} in {Ψ ≤ 1
2
, 𝑠 > 0} such that 𝑁 ⊂ 𝑊 and {Ψ =

1
2
, 𝑠 > 0, 𝑡 = 0, 𝑟 ≤ 0, 𝑢 = 0} correspond to each other diffeomorphically. Furthermore we

assume that under the diffeomorphism the almost complex structure 𝐽 of 𝑊 corresponds

to i⊕ 𝐽𝑔 on {Ψ ≤ 1
2
} in ℂ ×𝑀(𝜑∗) inducing contactomorphisms on the boundary.

Similarly to [50, Lemma 4.7] we obtain the blocking lemma:

Lemma 3.5.1. There exists a neighbourhood 𝑈𝜕𝑁 ⊂ 𝑊 of 𝜕𝑁 such that for all 𝐽-holomorphic

disc maps 𝑢∶ (𝔻, 𝜕𝔻)→ (𝑊,𝑁∗) with 𝑢(𝔻) ∩𝑈𝜕𝑁 ≠ ∅ are constant.

Proof. For |𝑠| < 1, 𝑡 ∈ ℝ consider the complex hypersurfaces

𝐻𝑠,𝑡 ∶=
(
{𝑠 + i𝑡} ×𝑀(𝜑∗)

)
∩ {Ψ ≤ 1

2
}

of {Ψ ≤ 1
2
} in (ℂ × 𝑀(𝜑∗), i ⊕ 𝐽𝑔). Modulo the above identifying diffeomorphism 𝑈𝜕𝑁

corresponds to

𝑈𝜕𝑁 ∶=
(
{1} × (−𝛿, 𝛿) ×𝑀(𝜑)

)
∪

⋃

1−𝑠,|𝑡|<𝛿
𝐻𝑠,𝑡

for 𝛿 > 0 sufficiently small.

Let 𝑢∶ (𝔻, 𝜕𝔻)→ (𝑊,𝑁∗) be a 𝐽-holomorphic disc such that the open set 𝐺 = 𝑢−1(𝑈𝜕𝑁)

is not empty. Write the restriction of 𝑢 to 𝐺 as 𝑢 = (𝑢1 = 𝑓 + i𝑔, 𝑢2) w.r.t. (ℂ ×𝑀(𝜑∗), i⊕ 𝐽𝑔).

An argument similar to the last paragraph of the proof of Lemma 3.3.1 (that utilises

𝐽-convexity and positivity of intersections with the complex hyperplanes 𝐻𝑠,𝑡) shows that
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{d𝑔 = 0} has an interior point. As in the second paragraph of the proof of Lemma 3.3.1

this shows that 𝑢1 = 𝑓𝑜 + i𝑔𝑜 is constant and that 𝐺 = 𝔻, i.e. 𝑢(𝔻) ⊂ 𝑈𝜕𝑁 .

The projection map 𝑀(𝜑∗) → 𝑇∗𝑆1 sends 𝑢2 to a smooth map 𝑣∶ 𝔻 → 𝑇∗𝑆1 such that

𝑣(𝜕𝔻) ⊂ {𝑟 ≤ 0} ≃ 𝑆1. In particular, the degree of 𝑣|𝜕𝔻 must be zero so that 𝑣(𝜕𝔻) is tangent to

a fibre of 𝑇∗𝑆1. Therefore, 𝑢(𝜕𝔻) admits a point of tangency with a page of the Legendrian

open book on 𝑁. In view of the maximum principle by E. Hopf, which implies the positive

transversality property formulated in Section 3.2, this implies that 𝑢 must be constant.

4 Tamed pseudo-convexity

Let (𝑊, 𝐽) be a 2𝑛-dimensional almost complex manifold that admits a compact 𝐽-convex

boundary component (𝑀, 𝜉), see Section 3.2. We assume that there exists a symplectic

form Ω on 𝑊 that is 𝐽-positive on complex lines in 𝑇𝑊, i.e. 𝐽 is tamed by Ω, cf. [23]. Define

an odd-symplectic form on 𝑀 by setting 𝜔 ∶= Ω|𝑇𝑀 .

4.1 Magnetic symplectisation

Let 𝛼 be a defining contact form for 𝜉 on 𝑀 such that d𝛼 is positive on complex lines in

(𝜉, 𝐽).

Remark 4.1.1. As 𝜔 is positive on complex lines in (𝜉, 𝐽), it follows that for all non-zero

𝑣 ∈ 𝜉 the contraction 𝜄𝑣𝜔 does not vanish. In other words, 𝜔 restricts to a symplectic form

on 𝜉. Choosing a symplectic basis for (𝜉, 𝜔) of the form 𝑣1, 𝐽𝑣1,… , 𝑣𝑛−1, 𝐽𝑣𝑛−1 yields that

𝜔𝑛−1 is a positive volume form on (𝜉, 𝐽). Furthermore the contact form 𝛼 does not vanish

on the characteristic foliation given by ker𝜔, i.e. 𝜉 and ker𝜔 intersect transversally. In

fact, according to our orientation conventions, 𝛼 ∧ 𝜔𝑛−1 is a positive volume form on 𝑀.

Observe, that the same reasoning applies to all 2-forms that are positive on complex

lines in (𝜉, 𝐽). This shows positivity of 𝛼 ∧ (d𝛼)𝑛−1 which was used implicitly in Section 3.2.

The symplectic neighbourhood theorem for hypersurfaces implies that there exist
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𝜀 > 0 and a symplectic embedding

(
(−𝜀, 0] ×𝑀, d(𝑠𝛼) + 𝜔

)
,→ (𝑊,Ω)

whose restriction to {0} ×𝑀 is the inclusion of 𝑀 = 𝜕𝑊 into 𝑊, cf. [52, Exercise 3.36] and

[50, Remark 2.7]. Observe that

(
d(𝑠𝛼) + 𝜔

)𝑛
=
(
d𝑠 ∧ 𝛼 + 𝑠d𝛼 + 𝜔

)𝑛
= 𝑛d𝑠 ∧ 𝛼 ∧

(
𝑠d𝛼 + 𝜔

)𝑛−1
.

Therefore, we find 𝜀 > 0 and a large positive constant 𝑠𝑜 such that, considered on (−𝜀,∞)×

𝑀, d(𝑠𝛼) + 𝜔 is symplectic on (−𝜀, 𝜀) × 𝑀 and (𝑠𝑜,∞) × 𝑀. In fact, using Remark 4.1.1,

𝛼 ∧
(
𝑠d𝛼 + 𝜔

)𝑛−1
is a positive volume form on 𝑀 for all positive 𝑠 because d𝛼 and 𝜔 are

positive on complex lines in (𝜉, 𝐽). Therefore, d(𝑠𝛼)+𝜔 is a symplectic form on (−𝜀,∞)×𝑀.

Via gluing along {0} ×𝑀 ≡ 𝑀 ⊂ 𝜕𝑊 using the above symplectic embedding we build a

symplectic manifold, the so-called magnetic completion,

(
𝑊, Ω̃

)
∶= (𝑊,Ω) ∪

(
[0,∞) ×𝑀, d(𝑠𝛼) + 𝜔

)
.

4.2 Truncating the magnetic completion

We continue the considerations in Section 4.1. In addition, let𝑁 ⊂ (𝑀, 𝜉) be a submanifold

that carries the structure of a bordered Legendrian open book decomposition (𝐵, 𝜗).

Choose contact embeddings of the model neighbourhood of the binding 𝐵 (see Section 2.3)

and of the alternative model neighbourhood of the boundary 𝜕𝑁 (see Section 3.4) into

(𝑀, 𝜉 = ker𝛼). The push forward of the respective contact forms 𝛼𝑜 and the restriction

of −dΨ◦𝐽 to the tangent spaces of {Ψ = 1
2
} are equal to eℎ𝛼 for a smooth function ℎ on

the images of the model neighbourhoods. Alter the contact form 𝛼 by cutting off ℎ to 0

near the boundary of these images, so that the considered contact embeddings – after

shrinking the model neighbourhoods a bit – are in fact strict. Observe that this conformal

change of the contact form 𝛼 does not effect the property of d𝛼 to be positive on complex

lines in (𝜉, 𝐽).
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Let 𝑠𝑜 be a positive real number and consider the truncation

(
�̂�, Ω̂

)
∶= (𝑊,Ω) ∪

(
[0, 2𝑠𝑜] ×𝑀, d(𝑠𝛼) + 𝜔

)
.

The resulting contact embeddings of the model neighbourhoods into {2𝑠𝑜} ×𝑀, which

are strict up to conformal factor 2𝑠𝑜 w.r.t. the contact form 2𝑠𝑜𝛼, extend along collar

directions to embeddings of the neighbourhood 𝑈𝐵 constructed in Lemma 3.3.1 and of

the neighbourhood 𝑈𝜕𝑁 constructed in Lemma 3.5.1 into (−∞, 2𝑠𝑜] ×𝑀 in the following

way: For the embedding of 𝑈𝐵 simply cross with the identity in the 𝑠-direction; for the

embedding of 𝑈𝜕𝑁 denote by 𝑌 the vector field on {Ψ ≤ 1
2
} obtained by multiplying the

Reeb vector field of the contact form −dΨ◦𝐽 on the level sets of Ψ with −𝐽 and follow the

flow lines of 𝑌 in backward time (taking time logarithmically). Observe that 𝑌 coincides

with the Liouville vector field 𝑠𝜕𝑠 + 𝑟𝜕𝑟 + 𝑌𝑇∗𝐹 along {𝑢 = 0}, see Section 3.4.

The images of the neighbourhoods are again denoted by 𝑈𝐵 and 𝑈𝜕𝑁 . Taking 𝑠𝑜

sufficiently large we achieve that 𝑈𝐵 ∪ 𝑈𝜕𝑁 fit into [𝑠𝑜, 2𝑠𝑜] × 𝑀. Push forward yields

an almost complex structure 𝐽𝑜 on 𝑈𝐵 ∪𝑈𝜕𝑁 that allows the conclusions of Lemmata 3.3.1

and 3.5.1. We remark that 𝐽𝑜 is invariant under translations in 𝑠-direction that shift off

𝑈𝐵; along [𝑠𝑜, 2𝑠𝑜] × 𝜕𝑁 the almost complex structure 𝐽𝑜 is independent of 𝑠.

Moreover, the symplectic form d(𝑠𝛼) is compatible with 𝐽𝑜 on 𝑈𝐵 and on 𝑈𝜕𝑁 , see

Remark 3.1.1 and Section 3.4, resp. Furthermore 𝐽𝑜 sends 𝜕𝑠 to the Reeb vector field and

preserves the contact distribution. Applying [52, Proposition 2.63(i)] to the symplectic

bundle
(
𝜉, d(𝑠𝛼)

)
,→ [𝑠𝑜, 2𝑠𝑜] ×𝑀

we extend 𝐽𝑜 to an almost complex structure on [𝑠𝑜, 2𝑠𝑜] ×𝑀 keeping the properties just

listed. In particular, {2𝑠𝑜} ×𝑀 is a 𝐽𝑜-convex boundary independently of the conformal

factor 2𝑠𝑜, see Section 3.2.

Placing the whole scenario to [𝑠𝑜, 2𝑠𝑜] ×𝑀 for 𝑠𝑜 sufficiently large we can additionally

assume that 𝐽𝑜 is also tamed by the symplectic form d(𝑠𝛼)+𝜔 on [𝑠𝑜, 2𝑠𝑜]×𝑀. This is possible

because for 𝑠𝑜 sufficiently large d(𝑠𝛼) = d𝑠∧𝛼+ 𝑠d𝛼 dominates d(𝑠𝛼)+𝜔 = d𝑠∧𝛼+(𝑠d𝛼+𝜔)
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on 𝐽𝑜-complex lines. With [52, Proposition 2.51] we extend 𝐽𝑜 to a tamed almost complex

structure 𝐽 on
(
�̂�, Ω̂

)
that restricts to 𝐽 on𝑊 and to 𝐽𝑜 on [𝑠𝑜, 2𝑠𝑜]×𝑀. Moreover, {2𝑠𝑜}×𝑀 ⊂

𝜕�̂� is a 𝐽-convex boundary component. We will refer to the construction of
(
�̂�, Ω̂, 𝐽

)
as

magnetic collar extension.

4.3 Deforming the Truncation

Assuming exactness of 𝜔|𝑇𝑁 in the situation of Sections 4.1 and 4.2 the symplectic form in

the magnetic collar extension
(
�̂�, Ω̂, 𝐽

)
can be assumed to satisfy

Ω̂ = 2𝑠𝑜d𝛼 on 𝑇
(
{2𝑠𝑜} ×𝑁

)

after deformation:

Write 𝜔 = d𝛽 in a neighbourhood of 𝑁 taking a neighbourhood that strongly deforma-

tion retracts to𝑁. Extend 𝛽 to a 1-form on𝑀 that vanishes outside a larger neighbourhood.

Define a 2-form 𝜂 ∶= 𝜔 − d(𝜚𝛽) on [𝑠𝑜, 2𝑠𝑜] ×𝑀, where 𝜚 is a smooth function that vanishes

on {𝑠 ≤ 𝑠𝑜}, equals 1 on {𝑠 ≥ 2𝑠𝑜}, and satisfies 0 ≤ 𝜚′ ≤ 2∕𝑠𝑜. We claim that for 𝑠𝑜 sufficiently

large
(
[𝑠𝑜, 2𝑠𝑜] ×𝑀, d(𝑠𝛼) + 𝜂

)

is symplectic. Indeed, spelling out the 𝑛-th power of d(𝑠𝛼) + 𝜂 we find

𝑛d𝑠 ∧
(
𝛼 − 𝜚′𝛽

)
∧
(
𝑠d𝛼 + 𝜔 − 𝜚d𝛽

)𝑛−1
.

For 𝑠𝑜 sufficiently large 𝛼 − 𝜚′𝛽 will be a contact form on all slices {𝑠} × 𝑀, 𝑠 ∈ [𝑠𝑜, 2𝑠𝑜],

so that, restricted to the related contact structures, (𝑠d𝛼)𝑛−1 is a positive volume form.

Making 𝑠𝑜 even larger (𝑠d𝛼)𝑛−1 dominates lower order terms in the (𝑛 − 1)-st power of

𝑠d𝛼 + 𝜔 − 𝜚d𝛽 restricted to the mentioned contact structures.

Starting with the deformed symplectic structure corresponding to d(𝑠𝛼) + 𝜂 the tamed

complex structure 𝐽 can be constructed as in Section 4.2. In order to achieve that d(𝑠𝛼)

dominates

d(𝑠𝛼) + 𝜂 = d𝑠 ∧
(
𝛼 − 𝜚′𝛽

)
+
(
𝑠d𝛼 + 𝜔 − 𝜚d𝛽

)
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on 𝐽𝑜-complex lines on [𝑠𝑜, 2𝑠𝑜] ×𝑀 simply choose 𝑠𝑜 sufficiently large.

We will refer to the construction of
(
�̂�, Ω̂, 2𝑠𝑜𝛼, 𝐽

)
as deformed magnetic collar

extension.

4.4 Gromov compactness

We consider a deformed magnetic collar extension of the Ω-tamed almost complex struc-

ture (𝑊, 𝐽) as in Section 4.3. The resulting tamed almost complex manifold together with

the choice of contact form on the 𝐽-convex boundary component is denoted by (𝑊,Ω, 𝛼, 𝐽).

In particular, the restriction of the 2-forms Ω and d𝛼 to the tangent spaces of the bordered

Legendrian open book (𝑁,𝐵, 𝜗) ⊂ (𝑀, 𝜉 = ker𝛼) are equal as 2-form on 𝑁.

Notice, that the regular set 𝑁∗ of 𝑁 (see Section 2.1) is a totally real submanifold of

(𝑊, 𝐽), i.e. 𝑇𝑁∗ ∩ 𝐽𝑇𝑁∗ is the zero section. Indeed, denoting by 𝐸 the real linear span of

𝑣, 𝐽𝑣 for a given tangent vector 𝑣 ∈ 𝑇𝑝𝑁∗ the only possibility for the complex line 𝐸 to be

tangent to 𝑁∗ ⊂ 𝑀 is to be tangent to the page of (𝐵, 𝜗) through 𝑝, which is Legendrian

w.r.t. 𝜉 = 𝑇𝑀 ∩ 𝐽𝑇𝑀. Positivity of d𝛼 on complex lines in (𝜉, 𝐽) implies the vanishing of 𝑣

because the pages of (𝐵, 𝜗) are Legendrian submanifolds, and, hence, have Lagrangian

tangent spaces inside (𝜉, d𝛼).

Via the neighbourhood 𝑈𝐵 ⊂ 𝑊 of the binding 𝐵 ⊂ 𝑁 constructed in Lemma 3.3.1 we

obtain an embedding relative boundary, a so-called local Bishop filling,

𝐹∶
(
(0, 𝛿) × 𝔻 × 𝐵, (0, 𝛿) × 𝜕𝔻 × 𝐵

)
,→ (𝑊,𝑁∗)

for some 𝛿 > 0 such that for all (𝜀, 𝑏) ∈ (0, 𝛿)×𝐵 the maps 𝑢𝜀,𝑏 = 𝐹(𝜀, . , 𝑏) are 𝐽-holomorphic

discs (𝔻, 𝜕𝔻)→ (𝑊,𝑁∗). Furthermore 𝐹 extends smoothly to a map defined on [0, 𝛿)×𝔻×𝐵

that maps {0} × 𝔻 × 𝐵 to 𝐵 via (𝜀, 𝑧, 𝑏) ↦→ 𝑏.

We consider the moduli space ℳ of 𝐽-holomorphic discs 𝑢∶ (𝔻, 𝜕𝔻) → (𝑊,𝑁∗) that

are homologous in 𝑊 relative 𝑁∗ to one of the Bishop discs 𝑢𝜀,𝑏. For all 𝑢 ∈ℳ we have

the following:

1. The degree of the map 𝜗◦𝑢∶ 𝜕𝔻→ 𝑆1, the so-called winding number of 𝑢, is equal
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to 1. The boundary lemma of E. Hopf implies, that 𝑢(𝜕𝔻) is an embedded curve in

𝑁∗ positively transverse to 𝜉. Hence, 𝑢 is simple, see Section 3.2.

2. We find a 2-chain 𝐶 in 𝑁 with boundary −𝑢(𝜕𝔻) such 𝑢(𝔻) + 𝐶 is null-homologous in

𝑊. Therefore, by applying Stokes theorem twice, we get that the symplectic energy

of 𝑢 satisfies

0 < ∫
𝔻
𝑢∗Ω = − ∫

𝐶
Ω = ∫

𝜕𝔻
𝑢∗𝛼 ,

as Ω = d𝛼 on 𝑇𝑁. Denote by d𝜗 the pullback of d𝜃 along 𝜗∶ 𝑁 ⧵ 𝐵 → 𝑆1. According

to our co-orientation convention in Section 2.1 and the local models in Sections

2.3 and 2.4 we observe that 𝛼|𝑇𝑁 = 𝑓d𝜗 for a non-negative function 𝑓 on 𝑁, that

vanishes precisely along the singular set 𝐵 ∪ 𝜕𝑁. Consequently, we get uniform

energy bounds

0 < ∫
𝔻
𝑢∗Ω = ∫

𝜕𝔻
𝑢∗𝑓 ⋅ (𝜗◦𝑢)∗d𝜃 ≤ 2𝜋max 𝑓 .

3. The restriction of 𝑢 to 𝜕𝔻 is uniformly bounded away from the boundary 𝜕𝑁

as the intersection of 𝑢(𝔻) with 𝑈𝜕𝑁 is empty by Lemma 3.5.1. Recall that if 𝑢(𝔻)

intersects the neighbourhood 𝑈𝐵 of the binding then 𝑢 is a reparametrisation of a

local Bishop disc 𝑢𝜀,𝑏, see Lemma 3.3.1. We truncate the moduli space ℳ (keeping

the notation) by removing all holomorphic discs that are reparametrisations of 𝑢𝜀,𝑏
for (𝜀, 𝑏) ∈ (0, 𝛿∕2) × 𝐵.

Remark 4.4.1. Under the assumption of uniform 𝐶0-bounds for ℳ, i.e. that there exists

a compact subset of 𝑊 that contains all holomorphic discs 𝑢(𝔻), 𝑢 ∈ℳ, we obtain: Any

sequence of holomorphic discs in ℳ admits a Gromov converging subsequence, see [25].

Observe that by 𝐽-convexity (see Section 3.2) no sequence of holomorphic discs 𝑢(𝔻),

𝑢 ∈ℳ, can escape the boundary component 𝑀 of 𝑊.

The total winding number of the Gromov limit 𝐮 must be 1 according to the properties

of Gromov convergence, see [25]. Moreover, all individual winding numbers of non-

constant disc bubbles of 𝐮 are positive by positive transversality, see the boundary lemma

to E. Hopf in Section 3.2. Therefore, 𝐮 contains precisely one disc component 𝑢0 that
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is necessarily simple and of winding number 1. In particular, 𝑢0|𝜕𝔻 is an embedding

positively transverse to 𝜉.

If the image of 𝐮 intersects 𝑈𝐵, then 𝐮 does it along the disc component 𝑢0 by the

maximum principle, see Section 3.2. This implies that 𝑢0 is one of the Bishop discs 𝑢𝜀,𝑏
by Lemma 3.3.1, so that there are in fact no bubbles in this situation. Indeed, potential

sphere bubbles must be null-homologous or subject to an argument using the maximum

principle. Therefore, any sequence of holomorphic discs in ℳ that Gromov converges to

𝐮 with 𝑢0(𝔻) intersecting 𝑈𝐵 converges in 𝐶∞ to 𝑢0 up to reparametrisation.

Consequently, ℳ can be compactified to ℳ by adding all Gromov limits to ℳ. The

resulting moduli spaceℳ is compact in the sense that any sequence inℳ admits a Gromov

converging subsequence. The resulting limit objects 𝐮 share the properties mentioned

in the proceeding remark. In particular, we obtain uniform gradient bounds near the

boundary w.r.t. a given background metric: There exists constants 𝜌 ∈ (0, 1) and 𝐶 > 0

such that for all 𝐮 in ℳ we have that |∇𝑢0| < 𝐶 restricted to 𝔻 ∩ {|𝑧| ≥ 𝜌}, where 𝑢0 is the

disc component of 𝐮 parametrised such that 𝜗◦𝑢0(i𝑘) = i𝑘 for 𝑘 = 0, 1, 2.

5 Symplectic cobordisms

A symplectic cobordism is a compact 2𝑛-dimensional symplectic manifold (𝑊,Ω) with

boundary 𝑀 ∶= 𝜕𝑊. We assume that (𝑊,Ω) is connected and oriented via Ω𝑛. The odd-

symplectic form 𝜔 ∶= Ω|𝑇𝑀 is closed and maximally non-degenerate with 1-dimensional

kernel ker𝜔. The line bundle ker𝜔 on 𝜕𝑊 is trivialised by the restriction of the Hamiltonian

vector field of a collar neighbourhood parameter to 𝑀 = 𝜕𝑊 ⊂ 𝑊. Therefore, one finds a

1-form 𝛼 on 𝑀 that does not vanish on ker𝜔. The sign of 𝛼 defines an orientation on each

component of 𝜕𝑊 via the volume form 𝛼 ∧ 𝜔𝑛−1. If the boundary orientation (induced by

the outward pointing normal) coincides with the one given by 𝛼 we call the components

of 𝑀 = 𝜕𝑊 positive, otherwise negative. We will write

𝜕(𝑊,Ω) = −(𝑀−, 𝜔−, 𝛼−) + (𝑀+, 𝜔+, 𝛼+)
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accordingly. Due to the symplectic neighbourhood theorem there exist collar neigh-

bourhoods [0, 𝜀) ×𝑀−, resp., (−𝜀, 0] ×𝑀+, such that the symplectic form Ω can be writ-

ten as d(𝑠𝛼∓) + 𝜔∓ with 𝑠 ∈ [0, 𝜀), resp., 𝑠 ∈ (−𝜀, 0]. This allows gluing of symplectic

cobordisms along boundary components of opposite sign that are orientation reversing

odd-symplectomorphic. The most prominent examples of symplectic cobordisms have

contact type boundary, i.e. the 1-form 𝛼 on 𝑀 can be chosen such that 𝜔 = d𝛼, see [51].

In the contact type context positive boundary components are called convex; negative

ones concave.

5.1 A directed symplectic cobordism

We consider a symplectic cobordism (𝑊,Ω). We assume that the boundary 𝜕(𝑊,Ω) de-

composes into concave boundary components, whose union we denote by (𝑀−, 𝜔−, 𝛼−),

and positive boundary components, whose union we denote by (𝑀+, 𝜔+, 𝛼+). In addition,

we require the weak-filling condition: 𝛼+ can be chosen to be a contact form, which

according to our conventions implies that 𝛼+ ∧ (d𝛼+)𝑛−1 and 𝛼+ ∧ 𝜔𝑛−1+ are positive, such

that

𝛼+ ∧
(
𝑓+d𝛼+ + 𝜔+

)𝑛−1
> 0

for all non-negative smooth functions 𝑓+ on 𝑀+. We call (𝑊,Ω) a directed symplectic

cobordism, cf. [24].

Remark 5.1.1. Observe that if 𝑀− is empty, (𝑊,Ω) will be a weak symplectic filling of the

contact manifold (𝑀+, 𝜉+) with contact structure 𝜉+ ∶= ker𝛼+. If additionally (𝑀+, 𝜉+) is

the convex boundary of the symplectic cobordism (𝑊,Ω) with 𝑀− = ∅ then (𝑊,Ω) is a

strong symplectic filling of (𝑀+, 𝜉+).

As in [28, 64] such symplectic cobordisms (𝑊,Ω) can be used to verify the strong

Weinstein conjecture for the contact manifold that appears as the concave boundary

component of (𝑊,Ω). The 3-dimensional variant is related to the ball theorem, see [29,

Theorem 2.2 and Corollary 3.8]:
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Theorem 5.1.2. Let (𝑊,Ω) be a directed symplectic cobordism. Assume that the contact

manifold (𝑀+, 𝜉+) contains a submanifold𝑁 with non-empty boundary such that𝑁 supports

a bordered Legendrian open book (𝐵, 𝜗) and such that 𝜔+|𝑇𝑁 is exact. Furthermore assume

that one of the following conditions is satisfied:

(i) The symplectic cobordism (𝑊,Ω) is semi-positive.

(ii) The second Stiefel–Whitney class 𝑤2(𝑇𝑁∗) of 𝑁∗ = 𝑁 ⧵ (𝐵 ∪ 𝜕𝑁) vanishes; or 𝑁∗ is

orientable and there exists a class in 𝐻2(𝑊;ℤ2) that restricts to 𝑤2(𝑇𝑁∗).

Then 𝑀− necessarily is non-empty and for any 𝜉−-defining contact form there exists a

null-homologous Reeb link.

Theorem 5.1.2 part (i) is contained in [50]. We include a variant of the argument

in Section 5.3 as guideline for the polyfold proof of part (ii). Following [54] we call a

2𝑛-dimensional symplectic manifold (𝑊,Ω) semi-positive if the first Chern class 𝑐1 of

(𝑊,Ω) satisfies the following condition: 𝑐1(𝐴) ≥ 0 for all spherical homology 2-classes 𝐴

of 𝑊 with 𝑐1(𝐴) ≥ 3 − 𝑛 and Ω(𝐴) > 0. If 2𝑛 ≤ 6 the condition is automatic. The proof of

part (ii) of Theorem 5.1.2 is postponed to Section 7.

We remark that the inclusion 𝑁∗ ⊂ 𝑊 induces in cohomology the restriction map

𝐻2(𝑊;ℤ2)→ 𝐻2(𝑁∗;ℤ2). The long exact cohomology sequence with ℤ2-coefficients yields,

that the restriction map is surjective if and only if the co-boundary operator 𝐻2(𝑁∗;ℤ2)→

𝐻3(𝑊,𝑁∗;ℤ2) vanishes. Furthermore the choice of an orientation on 𝑁∗ induces an

orientation on each page 𝜗−1(𝜃), 𝜃 ∈ 𝑆1, via the co-orientation induced by 𝜗. The binding

is oriented via the boundary orientation of a page. Therefore, 𝑁 is orientable if and only

if 𝑁∗ is.

Observe that the inclusion map 𝑓∶ 𝑁∗ ⊂ 𝑁 induces 𝑇𝑁∗ = 𝑓∗𝑇𝑁, so that naturality of

the Stiefel–Whitney classes implies 𝑤2(𝑇𝑁∗) = 𝑓∗𝑤2(𝑇𝑁). In particular, if 𝑤2(𝑇𝑁) vanishes

so does 𝑤2(𝑇𝑁∗). Further, if the fibration 𝜗 on 𝑁∗ is trivial (as it is the case for the

plastikstufe), e.g. a product of the page 𝜗−1(1) with 𝑆1, the second Stiefel–Whitney class

𝑤2(𝑇𝑁∗) is equal to 𝑤2
(
𝑇𝜗−1(1)

)
according to the Whitney cross product formula for the
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total Stiefel–Whitney class, cf. [16, Chapter 17]. In general, taking a connection on the

fibration 𝜗 we obtain a splitting of 𝑇𝑁∗ into the vertical ker𝑇𝜗 and horizontal subbundle.

As the horizontal subbundle is isomorphic to the trivial bundle 𝜗∗𝑇𝑆1 Whitney sum

formula for the total Stiefel–Whitney class implies 𝑤2(𝑇𝑁∗) = 𝑤2
(
ker𝑇𝜗

)
. The square

product of the 2-dimensional Klein bottle shows that the latter not always equals the

second Stiefel–Whitney class of a fibre.

Remark 5.1.3. Consider a symplectic cobordism (𝑊,Ω) that satisfies all the requirements

of Theorem 5.1.2. Notice that if 𝑀− = ∅, then (𝑊,Ω) would be a weak symplectic filling of

(𝑀+, 𝜉+). Hence, by Theorem 5.1.2 no such weak symplectic filling can exist.

Remark 5.1.4. The exactness requirement for 𝜔+|𝑇𝑁 in Theorem 5.1.2 is fulfilled e.g. if

(𝑀+, 𝜉+) is the convex boundary of (𝑊,Ω) or if the Legendrian open book 𝑁 is small.

5.2 Completing the cobordism

We consider the directed symplectic cobordism (𝑊,Ω) from Theorem 5.1.2. According to

the contact type boundary condition along the negative boundary components of (𝑊,Ω)

the symplectic neighbourhood theorem allows a description of a collar neighbourhood

of 𝑀− ⊂ 𝑊 as [0, 𝜀) ×𝑀− such that the symplectic form equals Ω = d(e𝑠𝛼−) with 𝑠 ∈ [0, 𝜀).

Therefore, a partial completion over the concave boundary of (𝑊,Ω) can be given by

(
(−∞, 0] ×𝑀−, d(e𝑠𝛼−)

)
∪ (𝑊,Ω)

via gluing along {0} ×𝑀− ≡ 𝑀−. Any other contact form defining 𝜉− = ker𝛼− on 𝑀− can be

realised as the restriction to the tangent spaces of a graph over 𝑀− inside (−∞, 𝜀) ×𝑀− up

to a positive constant factor, cf. [28, Section 3.3]. A change of (𝑊,Ω) by adding the super-

level set of the graph to the directed symplectic cobordism will allow the verification of

the strong Weinstein conjecture for a particular choice of contact form as announced

in Theorem 5.1.2. In fact, we will assume that 𝛼− is a generic perturbation of a given

𝜉−-defining contact form which allows an application of the Gromov–Hofer compactness
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theorem as formulated in [15]. This is justifiable with the Arzelà–Ascoli theorem, cf. [28,

Section 6.4] and [64, Section 6].

On the negative end
(
(−∞, 0]×𝑀−, d(e𝑠𝛼−)

)
we choose a shift invariant almost complex

structure 𝐽− that sends the Liouville vector field 𝜕𝑠 to the Reeb vector field of 𝛼− and leaves

𝜉− invariant such that 𝐽− is compatible with the symplectic structure induced by d𝛼− on

𝜉−. Extend 𝐽− to a tamed almost complex structure 𝐽 on (𝑊,Ω) such that 𝜉+ = 𝑇𝑀+ ∩ 𝐽𝑇𝑀+

and the positive boundary (𝑀+, 𝜉+) of (𝑊,Ω) is 𝐽-convex, see [50, Theorem D]. Further, we

glue the deformed magnetic collar extension constructed in Sections 4.2 and 4.3 along

𝑀+ ≡ {0} ×𝑀+ to build (keeping the notation) a symplectic manifold
(
�̂�, Ω̂

)
∶=

(
(−∞, 0] ×𝑀−, d(e𝑠𝛼−)

)
∪ (𝑊,Ω) ∪

(
[0, 2𝑠𝑜] ×𝑀+, d(𝑠𝛼+) + 𝜂

)
.

The resulting almost complex structure is denoted by 𝐽. Notice that 𝐽 equals 𝐽𝑜 on the

neighbourhoods 𝑈𝐵 and 𝑈𝜕𝑁 of 𝐵 and 𝜕𝑁, resp. Here we think of 𝐵 and 𝜕𝑁 as subsets of

𝑀+ ≡ {2𝑠𝑜} ×𝑀+. In particular, the results from Section 4.4 are available.

5.3 The semi-positivity case

We prove Theorem 5.1.2 under assumption (i). Recall the moduli space ℳ introduced

in Section 4.4. To cut out the Möbius reparametrisation group geometrically we define

the moduli space ℳ1,i,−1 to be the set of all holomorphic discs 𝑢 ∈ℳ such that 𝜗◦𝑢(i𝑘) = i𝑘

for 𝑘 = 0, 1, 2. This allows to fix the disc reparametrisations for sequences in ℳ1,i,−1 in the

compactness formulation in Remark 4.4.1.

We choose a base point 𝑏𝑜 of 𝐵 and an embedded curve 𝛾 inside the page 𝜗−1(1) that

connects 𝐵 and 𝜕𝑁 such that 𝛾 is given by {𝑏𝑜} ×
(
𝐷2 ∩ ℝ≥0

)
in the model description

in Section 2.3. We define the moduli space ℳ𝛾 to be the set of all holomorphic discs

𝑢 ∈ℳ1,i,−1 with 𝑢(1) ∈ 𝛾. In other words ℳ𝛾 consists of all 𝑢 ∈ℳ such that

𝑢(1) ∈ 𝛾 , 𝜗◦𝑢(i) = i , 𝜗◦𝑢(−1) = −1 .

The Maslov index of the Fredholm problem defined byℳ equals 2 (see [55, Proposition

8] or [27]). With [68, Theorem 4.4] there is a generic choice of 𝐽 such that with the
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first dimension formula in [68, Theorem 3.7] (successively taking relations 𝑅 = ∅, 𝑅 =

𝜗−1(1) × 𝜗−1(i) × 𝜗−1(−1), and 𝑅 = 𝛾 × 𝜗−1(i) × 𝜗−1(−1)) the moduli spaces ℳ, ℳ1,i,−1, and ℳ𝛾

are smooth manifolds of dimension 𝑛 + 2, 𝑛 − 1, and 1, resp. By [68, Remark 3.6] we can

assume that the generic perturbation of 𝐽 is supported in the complement of the union of

the negative end (−∞, 0] ×𝑀− of �̂� and 𝑈𝐵 ∪𝑈𝜕𝑁 . This is because all local Bishop discs

are Fredholm regular by [55, Proposition 9] and because all holomorphic discs that are

contained completely inside
(
(−∞, 0] ×𝑀−

)
∪𝑈𝐵 ∪𝑈𝜕𝑁 are the local Bishop discs.

Moreover, the boundary component of ℳ1,i,−1 that corresponds to the local Bishop

filling 𝐹 has a collar neighbourhood in ℳ1,i,−1 diffeomorphic to [0, 1)×𝐵 via 𝐹. This results

in a collar neighbourhood [0, 1) × {𝑏𝑜} in ℳ𝛾, see Section 4.4. By the blocking property of

𝑈𝜕𝑁 (see Section 3.5) the evaluation map ℳ𝛾 → 𝛾, 𝑢 ↦→ 𝑢(1), is not surjective. Invariance

of the mod-2 degree for proper maps, which counts the number of preimages modulo 2,

implies that ℳ𝛾 cannot be compact.

Proof of Theorem 5.1.2 part (i). Arguing by contradiction we suppose that there is a

compact subset 𝐾 of �̂� such that the holomorphic discs 𝑢(𝔻) are contained in 𝐾 for all

𝑢 ∈ℳ𝛾. In this situation ℳ𝛾 can be compactified in the sense of Gromov, see Remark 4.4.1.

Observe that Gromov limiting stable holomorphic discs are contained in 𝐾 also and have

precisely one disc component that in addition must be simple. With [68] we can assume by

an additional a priori perturbation of 𝐽 that the moduli spaces of simple stable maps that

cover the stable maps in the Gromov compactification of ℳ are cut out transversally. This

perturbation can be supported in the complement of the union of (−∞, 0]×𝑀− and𝑈𝐵∪𝑈𝜕𝑁

because no holomorphic sphere can stay inside
(
(−∞, 0] ×𝑀−

)
∪ 𝑈𝐵 ∪ 𝑈𝜕𝑁 completely

by the maximum principle. But, similarly to the computations in [28, Section 6.3], the

moduli spaces of the covering simple stable holomorphic discs are of negative dimensions,

hence, empty. This argument uses the semi-positivity assumption. Consequently, there

is no bubbling off for the moduli space ℳ𝛾; in other words ℳ𝛾 is compact. This is a

contradiction and therefore a compact subset 𝐾 of �̂� that contains all holomorphic discs

that belong to ℳ𝛾 cannot exists.
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Consequently, 𝑀− is necessarily non-empty. Moreover, for any choice of 𝜉−-defining

contact form 𝛼− there exists a null-homologous Reeb link by the remarks made in Section

5.2. The relevant formulation of Gromov–Hofer convergence is obtained by combining

the convergences statements in [36, 37] with [25].

6 A Deligne–Mumford type space

In Section 7 the proof of Theorem 5.1.2 under assumption (ii) will be given. In preparation

we discuss moduli spaces of stable nodal boundary un-noded discs. We follow [43, Section

2.1], [18, 42] and indicate modifications necessary in the presence of boundaries.

6.1 Boundary un-noded nodal discs

Let 𝑆 be an oriented surface that is equal to the disjoint union of one closed disc and a

(possibly empty) finite collection of spheres. All connected components of 𝑆 are provided

with the standard orientation. Let 𝑗 be an orientation preserving complex structure on 𝑆

turning (𝑆, 𝑗) into a Riemann surface with boundary, i.e. (𝑆, 𝑗) admits a holomorphic atlas

whose charts are given by open subsets of the closed upper half-plane.

We call a subset of Int(𝑆) consisting of two distinct points a nodal pair. Each finite

collection 𝐷 of pair-wise disjoint nodal pairs defines an equivalence relation on 𝑆 calling

two points equivalent if and only if they from a nodal pair. The set 𝑆∕𝐷 of equivalence

classes is provided with the quotient space topology.

Let 𝐷 be a finite collection of pair-wise disjoint nodal pairs such the quotient space

𝑆∕𝐷 is simply connected. We call (𝑆, 𝑗, 𝐷) a boundary un-noded nodal disc. A point of 𝑆

that belongs to a nodal pair in 𝐷 is called a nodal point. The set of nodal points is denoted

by |𝐷|. Observe that |𝐷| and 𝜕𝑆 are disjoint.

Let𝑚0, 𝑚1, 𝑚2 be pair-wise distinct marked points on the boundary 𝜕𝑆 ordered accord-

ing to the boundary orientation of 𝜕𝑆. We call
(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}

)
a marked boundary
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un-noded nodal disc. Two marked boundary un-noded nodal discs

(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}

)
and

(
𝑆′, 𝑗′, 𝐷′, {𝑚′

0, 𝑚
′
1, 𝑚

′
2}
)

are equivalent if there exists a diffeomorphism 𝜑∶ 𝑆 → 𝑆′ such that 𝜑∗𝑗′ = 𝑗, the injection

𝐷 → 𝐷′ defined by {𝜑(𝑥), 𝜑(𝑦)} ∈ 𝐷′ for all {𝑥, 𝑦} ∈ 𝐷 is onto, and 𝜑(𝑚𝑘) = 𝑚′
𝑘 for 𝑘 = 0, 1, 2.

Observe that 𝜑 necessarily preserves orientations.

6.2 Domain stabilisation

In Section 7.2 boundary un-noded nodal discs will appear as the domain of stable maps.

If the domain nodal discs have sphere components, the nodal discs will be unstable.

In order to obtain a natural groupoidal structure on the space of marked boundary

un-noded nodal discs we have to stabilise these by adding marked points. A point that is

a marked point or a nodal point is called special. We call a connected component 𝐶 of 𝑆

stable if the number of special points on 𝐶 is greater or equal than 3. In particular the

disc component of 𝑆 is stable.

We consider equivalence classes of stable discs
[
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝐴

]
where

(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}

)
is a marked boundary un-noded nodal disc as in Section 6.1 that

we provide with an additional finite set of auxiliary marked points 𝐴 ⊂ 𝑆⧵𝜕𝑆 in the com-

plement of |𝐷| so that #
(
(𝐴∪ |𝐷|) ∩𝐶

)
≥ 3 for each sphere component 𝐶 of 𝑆. In particular,

all components 𝐶 of 𝑆 are stable. The equivalence relation is given by diffeomorphisms

𝜑∶ 𝑆 → 𝑆′ as in Section 6.1 such that in addition 𝜑 maps 𝐴 bijectively onto 𝐴′.

The set of all equivalence classes ℛ is a nodal Riemann moduli space. Given a non-

negative integer𝑁 we denote byℛ𝑁 ⊂ ℛ the subset of stable nodal discs that are equipped

with precisely 𝑁 = #𝐴 auxiliary marked points so that ℛ is the disjoint union over all ℛ𝑁 ,

𝑁 ≥ 0. The elements in ℛ𝑁 can be represented by stable nodal discs
(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝐴

)

of different stable nodal type 𝜏, which is an isomorphism class of weighted rooted

trees. The vertices are given by the components of 𝑆, where the root corresponds to the

disc component. All vertices are weighted by the number of (auxiliary) marked points
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on the corresponding component of 𝑆. The edge relation is given by the nodes in 𝐷.

Observe that for given 𝑁 the number of stable nodal types corresponding to stable discs
(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝐴

)
with 𝑁 = #𝐴 is finite so that ℛ𝑁 is a finite disjoint union of subsets

of stable discs ℛ𝜏 ⊂ ℛ of the same stable nodal type 𝜏.

6.3 Groupoid as an orbit space

Let 𝜏 be a stable nodal type. In order to rewrite ℛ𝜏 as an orbit space we choose natural

representatives of the stable nodal marked discs
[
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝐴

]
in ℛ𝜏 as follows:

We fix the oriented diffeomorphism types of ℂ𝑃1 and 𝔻 for the components of 𝑆 including

the choice {1, i,−1} for the marked points {𝑚0, 𝑚1, 𝑚2}, i.e. 𝑚𝑘 = i𝑘, 𝑘 = 0, 1, 2. We denote by

𝜎 the area form on 𝑆 that is the Fubini–Study form on the ℂ𝑃1 components and equals

d𝑥 ∧ d𝑦 on 𝔻 taking conformal coordinates 𝑥 + i𝑦. Let 𝒥 ≡ 𝒥𝑆 be the space of orientation

preserving complex structures on 𝑆, which equals the space of almost complex structures

on 𝑆 tamed by 𝜎, cf. [1, 63]. Furthermore we fix a selection of special points |𝐷| and 𝐴. By

𝒢 ≡ 𝒢(𝑆, 𝐷, {1, i,−1}, 𝐴) we denote the group of orientation preserving diffeomorphisms of

𝑆 that preserve {1, i,−1} point-wise and inject 𝐴 onto 𝐴 and 𝐷 onto 𝐷, resp.

We identify the nodal Riemann moduli space ℛ𝜏 with the orbit space

ℛ𝜏 = 𝒥∕𝒢 via
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

]
≡ [𝑗] ,

cf. [61, p. 612] or [67, Section 4.2]. The action

𝒢 × 𝒥 ,→ 𝒥 , (𝜑, 𝑗) ↦,→ 𝜑∗𝑗 ,

of 𝒢 on 𝒥 is given by the pull back

𝜑∗𝑗 ∶= 𝑇𝜑𝜑−1◦𝑗𝜑◦𝑇𝜑

for 𝜑 ∈ 𝒢 and 𝑗 ∈ 𝒥. By [61, Lemma 7.5] or [67, Lemma 4.2.8] this action is proper, see

also Remark 6.3.2 below. The action is free if and only if all isotropy subgroups 𝒢𝑗, 𝑗 ∈ 𝒥,

of 𝑗-holomorphic maps in 𝒢 are trivial. The action is locally free because all isotropy

subgroups 𝒢𝑗 are finite by the following Remark 6.3.1:

Arnold Mathematical Journal, Vol.11(2), 2025 36

http://dx.doi.org/10.56994/ARMJ


Non-fillability of Overtwisted Contact Manifolds via Polyfolds

Remark 6.3.1. Each connected component of 𝑆 is provided with at least 3 special points,

see Section 6.2. Hence, all isotropy subgroups 𝒢𝑗 are finite:

To see this fix a biholomorphic identification of (𝑆, 𝑗) with the surface given by the

disjoint union of (𝔻, i) and an at most finite number of copies of (ℂ𝑃1, i). This is possible

by uniformisation, cf. [1] and [54, Theorem C.5.1], [63, Satz 5.33] for boundary regularity.

For the marked points we can assume that 𝑚𝑘 = i𝑘, 𝑘 = 0, 1, 2. Then any automorphism in

𝒢𝑗 conjugates to an i-holomorphic map that restricts to the identity on (𝔻, i) and defines

Möbius transformations of (ℂ𝑃1, i) corresponding to the maps induced between the not

necessarily identical sphere components. We get a finite number of possibilities to obtain

those Möbius transformations each of which is permuting the set of special points that

admits at least 3 points by the stability condition.

Remark 6.3.2. In order to describe the topology for fixed stable nodal type provide 𝒥

with the 𝐶∞-topology, which is metrisable, complete and locally compact by the Arzelà–

Ascoli theorem.

We provide ℛ𝜏 = 𝒥∕𝒢 with the quotient topology meaning that the open sets in 𝒥∕𝒢

are precisely those, whose preimage under the quotient map [ . ]∶ 𝒥 → 𝒥∕𝒢 is open. In

particular, [ . ] is continuous by definition. The quotient map [ . ] is open because for any

open subset 𝒦 of 𝒥 the [ . ]-preimage of [𝒦] is equal to the union of all 𝑔𝒦, 𝑔 ∈ 𝒢, which

is open. Hence, a neighbourhood base of the topology on 𝒥∕𝒢 is given by the family of

subsets whose elements [𝑗] can be represented by complex structures 𝑗 belonging to

an open subset of 𝒥. Therefore, 𝒥∕𝒢 is a second countable locally compact and, hence,

paracompact topological space.

In fact, ℛ𝜏 = 𝒥∕𝒢 is Hausdorff. This follows from the properness argument as follows:

Consider a sequence 𝑢𝜈 of equivalences

𝑢𝜈 ∶
(
𝑆, 𝑗𝜈, 𝐷, {1, i,−1}, 𝐴

)
,→

(
𝑆, 𝑘𝜈, 𝐷, {1, i,−1}, 𝐴

)

with 𝑗𝜈 → 𝑗 and 𝑘𝜈 → 𝑘 in 𝒥. We claim that 𝑢𝜈 has a 𝐶∞-convergent subsequence whose
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limit 𝑢 will be an equivalence

𝑢∶
(
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

)
,→

(
𝑆, 𝑘, 𝐷, {1, i,−1}, 𝐴

)

also, cf. [42, Proposition 3.25].

It suffices to proof 𝐶∞-convergence because the limit 𝑢 will be automatically an

equivalence as 𝑢 restricts to a degree 1 map on each component of 𝑆. Restricting 𝑢𝜈 to

the components of 𝑆 we obtain sequences of 𝑘𝜈-holomorphic diffeomorphisms 𝑣𝜈 one

sequence for each component of (𝑆, 𝑗𝜈). As the degree of each 𝑣𝜈 equals 1 viewed as

map onto its image, the area ∫𝐶 𝑣
∗
𝜈𝜎 = 𝜋, 𝐶 being 𝔻 or ℂ𝑃1, is uniformly bounded via the

transformation formula. Hence, we find a subsequence of 𝑢𝜈 so that all corresponding

sequences 𝑣𝜈 converge in the sense of Gromov, see [25]. Again using that the degree of all

𝑣𝜈 is 1 we see that only one of the potential bubbles of each Gromov limit can intersect

0 ∈ 𝐶; the remaining bubbles would be necessarily constant as their area vanish. In other

words, the chosen subsequence of 𝑢𝜈 converges in 𝐶∞, because the reparametrisations

by 𝑗𝜈-holomorphic diffeomorphisms are fixed, i.e. equal id, due to the stability condition.

We verify the Hausdorff property, cf. [42, Proposition 3.19]: Assume that any pair

of neighbourhoods of given points [𝑗] and [𝑘], resp., intersects non-trivially. Taking

shrinking neighbourhoods of the corresponding points 𝑗 and 𝑘 in 𝒥 we find 𝑗𝜈 → 𝑗 and

𝑘𝜈 → 𝑘 in 𝒥 such that [𝑗𝜈] = [𝑘𝜈] for all 𝜈. Then the above properness argument yields

[𝑗] = [𝑘].

6.4 Infinitesimal action

We assume the situation of Section 6.3. Denote by Ω0 the Lie algebra given by the tangent

space of 𝒢 at the identity diffeomorphism, which is the space of vector fields on (𝑆, 𝜕𝑆)

that are stationary on the set of all special points. In other words, Ω0 is the set of all

smooth sections of 𝑇𝑆 that are tangent to 𝜕𝑆 and vanish on |𝐷| ∪ {1, i,−1} ∪ 𝐴. We denote

by Ω0,1
𝑗 the space of all endomorphism fields of the tangent bundle of 𝑆 that anti-commute

with 𝑗. Linearising the equation 𝑗2 = −1 we see that Ω0,1
𝑗 is the tangent space of 𝒥 at 𝑗.
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Viewing Ω0,1
𝑗 as the set of all 𝑗-complex anti-linear 𝑇𝑆-valued differential forms on 𝑆, the

infinitesimal action is

Ω0 × Ω0,1
𝑗 ,→ Ω0,1

𝑗 , (𝑋, 𝑦) ↦,→ 𝐿𝑋𝑗 + 𝑦 .

A complex linear Cauchy–Riemann operator 𝐷 is a 𝑗-complex linear operator that

maps smooth vector fields of (𝑆, 𝑗) to Ω0,1
𝑗 such that 𝐷(𝑓𝑋) = �̄�𝑓 ⋅ 𝑋 + 𝑓𝐷𝑋 for all smooth

vector fields 𝑋 and smooth functions 𝑓, where �̄� is the composition of the exterior deriva-

tive with the projection of the space of smooth 1-forms onto those that anti-commute

with 𝑗, see [54, Appendix C.1]. Complex linearity can be expressed via 𝐷(𝑗𝑋) = 𝑗𝐷𝑋 for

all vector fields 𝑋 of 𝑆.

In order to compute the Lie derivative 𝐿𝑋𝑗 we denote by �̄�𝑗 the uniquely determined

complex linear Cauchy–Riemann operator of the holomorphic line bundle (𝑇𝑆, 𝑗) (ignoring

boundary points) that agrees with

�̄�𝑋 = 1
2

(
𝑇𝑋 + i◦𝑇𝑋◦i

)

in local holomorphic coordinates (ℂ, i), cf. [54, Remark C.1.1]. The local holomorphic

representation �̄� of �̄�𝑗 implies that �̄�𝑗 induces a real linear Cauchy–Riemann operator

on the bundle pair
(
(𝑇𝑆, 𝑇𝜕𝑆), 𝑗

)
taking local holomorphic coordinates in the closed upper

half-plane. Nevertheless the operator �̄�𝑗 ∶ Ω0 → Ω0,1
𝑗 is not complex linear because 𝑗

does not induce a complex linear vector space structure on Ω0. Indeed, 𝑗𝑋 is not tangent

to 𝜕𝑆 for all boundary points of 𝑆 for which 𝑋 ∈ Ω0 does not vanish.

With this preparation we compute

𝐿𝑋𝑗 =
d
d𝑡
|||||𝑡=0

𝜑∗𝑡 𝑗 ,

where 𝜑𝑡 is a smooth path in 𝒢 through 𝜑0 = id with

d
d𝑡
|||||𝑡=0

𝜑𝑡 = 𝑋 .

In local holomorphic coordinates 𝜑∗𝑡 𝑗 reads as

𝑇𝜑𝑡𝜑
−1
𝑡 ◦i◦𝑇𝜑𝑡 .
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Taking the time derivative at 𝑡 = 0 and using 𝜑−1𝑡 = 𝜑−𝑡 yields

−𝑇𝑋◦i + i◦𝑇𝑋 = i
(
i◦𝑇𝑋◦i + 𝑇𝑋

)
,

so that the Lie derivative is equal to

𝐿𝑋𝑗 = 2𝑗�̄�𝑗𝑋 .

Remark 6.4.1. Taking a path 𝜑𝑡 in the isotropy subgroup 𝒢𝑗 through 𝜑0 = id, meaning that

the path 𝜑𝑡 in 𝒢 satisfies 𝜑∗𝑡 𝑗 = 𝑗 for all 𝑡, we obtain 𝑋 ∈ ker �̄�𝑗 by taking time derivative.

Conversely, assuming �̄�𝑗𝑋 = 0 for a path 𝜑𝑡 in 𝒢 through 𝜑0 = id yields

d
d𝑡
(
𝜑∗𝑡 𝑗

)
= 𝜑∗𝑡

(
2𝑗�̄�𝑗𝑋

)
= 0 ,

i.e. that the path 𝜑∗𝑡 𝑗 in 𝒥 is constant, hence, equals 𝑗. In other words, the tangent space at

the identity of the group of all 𝑗-holomorphic maps in 𝒢

𝑇id𝒢𝑗 = ker �̄�𝑗

equals the space of all 𝑗-holomorphic vector fields in Ω0.

Remark 6.4.2. The Cauchy–Riemann operator is conformally invariant: Let 𝜑∶ (𝑆, 𝑗)→

(𝑆, 𝑘) be a holomorphic diffeomorphism. Then 𝜑∗◦�̄�𝑘 = �̄�𝑗◦𝜑∗. In particular, the Cauchy–

Riemann operator �̄�𝑗 commutes with the automorphisms of the Riemann surface with

boundary (𝑆, 𝑗).

Remark 6.4.3. Define a Riemannian metric 𝑔𝑗 on (𝑆, 𝑗) by setting

𝑔𝑗(𝑣, 𝑤) =
1
2

(
𝜎(𝑣, 𝑗𝑤) + 𝜎(𝑤, 𝑗𝑣)

)
, 𝑣, 𝑤 ∈ 𝑇𝑆 ,

where the area form 𝜎 is the one chosen in Section 6.3. In particular, the complex structure

𝑗 is orthogonal, so that the bilinear form 𝑔𝑗 is a Hermitian metric. As any 2-form on a

surface is closed the 2-form

𝜎𝑗 ∶=
1
2
(𝜎 + 𝑗∗𝜎)
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is symplectic and compatible with 𝑗. The latter means that 𝑔𝑗(𝑣, 𝑤) = 𝜎𝑗(𝑣, 𝑗𝑤) for all

𝑣, 𝑤 ∈ 𝑇𝑆, so that the symplectic form 𝜎𝑗 is compatible with 𝑗.

Denoting the Levi-Civita connection of 𝑔𝑗 by ∇ ≡ ∇𝑔𝑗 , [52, Lemma 4.15] says that

closedness of 𝜎𝑗 and integrability of 𝑗 together are equivalent to ∇𝑗 = 0, cf. Remark 6.4.4

below. In particular, ∇(𝑗𝑋) = 𝑗∇𝑋 for all vector fields 𝑋 of 𝑆, so that ∇ is a Hermitian

connection, i.e. ∇ is a complex linear metric connection. Hence,

(
∇𝑋

)0,1
∶= 1

2

(
∇𝑋 + 𝑗◦∇𝑋◦𝑗

)

defines a complex linear Cauchy–Riemann operator on (𝑇𝑆, 𝑗), cf. [54, Remark C.1.2]. In

local holomorphic coordinates we write ∇𝑋 = 𝑇𝑋 + Γ( . , 𝑋) with help of the Christoffel

symbols, so that the map 𝑋 ↦→ Γ( . , 𝑋) is i-complex linear. With symmetry of Γ we get

i◦Γ(i . , 𝑋) = i◦Γ(𝑋, i . ) = −Γ( . , 𝑋), so that
(
∇𝑋

)0,1
= �̄�𝑋. Therefore,

(
∇𝑋

)0,1
= �̄�𝑗𝑋 .

Furthermore we remark that the Hermitian connection ∇ is uniquely determined by this

equation, see [54, Remark C.1.2]. Consequently, 𝐿𝑋𝑗 = 2𝑗�̄�𝑗𝑋 can be obtained with the

computations on [54, Theorem C.5.1] or [61, p. 631] as well.

Remark 6.4.4. We give an alternative argument for the fact that 𝑗 is parallel, which we

used in Remark 6.4.3: For any non-vanishing tangent vectors 𝑣, 𝑤 at any given point of 𝑆

consider a curve 𝑐 tangent to 𝑣 and extend 𝑤 to a parallel vector field 𝑋 along 𝑐. As 𝑋 and

𝑗𝑋 are orthogonal and as the length of 𝑗𝑋 is constant ∇ being metric implies that ∇�̇�(𝑗𝑋)

is perpendicular to the span of {𝑋, 𝑗𝑋}, and hence vanishes. Therefore, with the Leibnitz

rule and parallelity of 𝑋 we get (∇�̇�𝑗)𝑋 = 0. Consequently, ∇𝑗 = 0.

Observe that the argument works for all metrics (and corresponding Levi-Civita

connections) for which 𝑗 is orthogonal.

Remark 6.4.5. All elements of 𝒢𝑗 are isometries of 𝑔𝑗. Indeed, by finiteness of 𝒢𝑗 one

finds for each 𝜓 ∈ 𝒢𝑗 a natural number 𝑘 such that 𝜓𝑘 = id. On the other hand 𝜓 pulls 𝑔𝑗
back to 𝑓𝑔𝑗 for some positive function 𝑓 on 𝑆 by the description in Remark 6.4.3 and the
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fact that all positive area forms on a surface are positively proportional. Therefore, the

conformal factor of the pull-back of 𝑔𝑗 by 𝜓𝑘 becomes 𝑓𝑘, which necessarily is 1. Hence,

𝑓 = 1.

Remark 6.4.6. Let (𝜑𝑡, 𝑗𝑡) be a smooth path in 𝒢 × 𝒥 through (𝜑0, 𝑗0) = (𝜓, 𝑗) and denote

the velocity vector field by

d
d𝑡
(𝜑𝑡, 𝑗𝑡) =

(
𝑋𝑡, 𝑦𝑡

)
∈ 𝑇𝜑𝑡𝒢 × 𝑇𝑗𝑡𝒥 .

The corresponding velocity vector field of 𝜑∗𝑡 𝑗𝑡 equals

d
d𝑡
(
𝜑∗𝑡 𝑗𝑡

)
= 𝜑∗𝑡

(
2𝑗𝑡�̄�𝑗𝑡𝑋𝑡 + 𝑦𝑡

)
∈ 𝑇𝜑∗𝑡 𝑗𝑡𝒥 .

If 𝜓 ∈ 𝒢𝑗 we obtain with (𝑋, 𝑦) = (𝑋0, 𝑦0) that

d
d𝑡
|||||𝑡=0

(
𝜑∗𝑡 𝑗𝑡

)
= 𝜓∗

(
2𝑗�̄�𝑗𝑋 + 𝑦

)
∈ 𝑇𝑗𝒥 ,

which is equal to

2𝑗�̄�𝑗
(
𝜓∗𝑋

)
+ 𝜓∗𝑦 .

Indeed, this follows with Remark 6.4.2 or with Gauß’s theorema egregium which gives

𝜓∗◦�̄�𝑗 = �̄�𝑗◦𝜓∗ because all 𝜓 ∈ 𝒢𝑗 are isometries of 𝑔𝑗, see Remark 6.4.5. Consequently, the

corresponding infinitesimal action reads as

𝑇𝜓𝒢 × Ω
0,1
𝑗 ,→ Ω0,1

𝑗 , (𝑋, 𝑦) ↦,→ 2𝑗�̄�𝑗
(
𝜓∗𝑋

)
+ 𝜓∗𝑦

for all 𝜓 ∈ 𝒢𝑗. Observe that the infinitesimal action 2𝑗�̄�𝑗 ⊕ 𝟏 at (id, 𝑗) sends
(
𝜓∗𝑋, 𝜓∗𝑦

)
∈

Ω0 × Ω0,1
𝑗 to the same element in Ω0,1

𝑗 .

6.5 A Fredholm index

We compute the Fredholm index of the𝑊1,3-Sobolev completed Cauchy–Riemann operator

�̄�𝑗 ∶ 𝑊1,3 → 𝐿3 induced by the Cauchy–Riemann operator from Section 6.4.

Ignoring zeros for the moment, for each component 𝐶 of 𝑆 the Fredholm index is

given by the Riemann–Roch [54, Theorem C.1.10] applied to the 𝑗-complex 1-dimensional
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bundle pair (𝑇𝐶, 𝑇𝜕𝐶). Namely, the Fredholm index is the sum of the Euler characteristic

of 𝐶 and the Maslov index of (𝑇𝐶, 𝑇𝜕𝐶). The Maslov index for 𝐶 = 𝔻 is 2 by normalisation;

for 𝐶 = ℂ𝑃1 twice the first Chern number, i.e. twice the Euler characteristic, which gives

4, see [54, Chapter C.3]. Hence, the Fredholm index is 3 restricted to the disc component

and 6 on the spheres.

Now we take the zeros into account. Component-wise, for each boundary zero we

have to subtract 1 from the computed Fredholm index; for each interior zero we subtract

2. Adding up, we obtain that ind �̄�𝑗 equals

3 − #{1, i,−1} − 2#
(
(|𝐷| ∪ 𝐴) ∩ 𝔻

)
+ 2

∑

𝐶

(
3 − #

(
(|𝐷| ∪ 𝐴) ∩ 𝐶

))
,

where the sum is taken over all sphere components 𝐶 of 𝑆. This gives

ind �̄�𝑗 = −2#|𝐷| − 2#𝐴 + 6
(
#{𝐶} − 1

)
,

where #{𝐶} = #𝐷 + 1 is the number of all components of 𝑆. Using #|𝐷| = 2#𝐷 we finally

obtain

ind �̄�𝑗 = 2
(
#𝐷 − #𝐴

)
.

On the other hand, by a boundary version of the argument principle (see [3, Theorem

A.5.4]), the Maslov index of (𝑇𝐶, 𝑇𝜕𝐶) for each component 𝐶 of 𝑆 is the weighted sum

of the number of zeros counted multiplicities of a non-zero element in the kernel of

�̄�𝑗, where interior zeros are counted twice. As the corresponding Maslov index is 2 on

the disc component and 4 on the spheres, the kernel of �̄�𝑗 is trivial due to the stability

condition that the number of special points on each component 𝐶 of 𝑆 is at least 3. This

argument uses elliptic regularity saying that the vector fields in ker �̄�𝑗 are smooth, see

[54]. Therefore, one can show triviality of ker �̄�𝑗 = 𝑇id𝒢𝑗 (see Remark 6.4.1) alternatively

using finiteness of 𝒢𝑗 under the stability condition, see Remark 6.3.1.

Using elliptic regularity as in [54] we see that the Cauchy–Riemann operator �̄�𝑗 ∶ Ω0 →

Ω0,1
𝑗 is injective. The image is closed and has codimension 2

(
#𝐴−#𝐷

)
, cf. [43, Proposition

2.5].
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6.6 Interlude: Cayley transformation

We provideΩ0,1
𝑗 with the norm |𝑦|𝑗 given by the maximum of point-wise operator norms of

𝑦w.r.t. the metric 𝑔𝑗. Because 𝑦 is self-adjoint w.r.t. 𝑔𝑗 the norm |𝑦|𝑗 is equal to the maximum

of the square-root of the point-wise eigenvalues of the 𝑗-complex linear endomorphism

field 𝑦◦𝑦. In particular, the resolvent (1 − 𝑦)−1 of 𝑦 at 1 is defined provided |𝑦|𝑗 < 1. We

obtain a homeomorphism

𝔦∶ Ω0,1
𝑗 ∩ 𝐵1(0) ,→ 𝒥 , 0 ↦,→ 𝑗 ,

defined on the open unit ball about zero via the conjugation

𝑦 ↦,→ (1 − 𝑦)𝑗(1 − 𝑦)−1 ,

whose inverse is given by the

𝑘 ↦,→ (𝑘 + 𝑗)−1(𝑘 − 𝑗) ,

cf. [7, Proposition 1.1.6], [53, Proposition 2.6.4] or [61, p. 634]. Because 𝒢𝑗 acts by isometries

of 𝑔𝑗 (see Remark 6.4.5) the conjugation map 𝔦 is 𝒢𝑗-equivariant.

We claim that 𝒥 is a submanifold of the space Ω1 of all endomorphism fields of the

tangent bundle of 𝑆 and that 𝔦 is a global chart. The case of almost complex structures

compatible with 𝜎 essentially follows with the expositions in the above cited literature

[7, 53, 61]. We will follow [31, Chapter I.7.3] taking the modifications for the case of almost

complex structures only tamed by 𝜎 into account:

We call a not necessarily symmetric endomorphism field 𝑥 ∈ Ω1 positive and write

𝑥 > 0 provided that for all non-zero tangent vectors 𝑣 ∈ 𝑇𝑆 the quadratic form 𝑔𝑗(𝑣, 𝑥𝑣) is

positive. As the kernel of a positive endomorphism field 𝑥 ∈ Ω1 is trivial we see that the

inverse 𝑥−1 ∈ Ω1 exists. Therefore, for positive 𝑥 ∈ Ω1 the endomorphism field 1 + 𝑥 is

positive as well such that the inverse (1 + 𝑥)−1 exists. In fact, the half space of all positive

endomorphism fields Ω1 ∩ {𝑥 > 0} is an open cone in Ω1 closed under taking inverses. As

above we provide Ω1 with the norm |𝑥|𝑗 given by the maximum of point-wise operator

norms of 𝑥 ∈ Ω1 w.r.t. the metric 𝑔𝑗.

Arnold Mathematical Journal, Vol.11(2), 2025 44

http://dx.doi.org/10.56994/ARMJ


Non-fillability of Overtwisted Contact Manifolds via Polyfolds

The Cayley transform

𝒞(𝑥) ∶= (1 − 𝑥)(1 + 𝑥)−1 =∶ �̃�

defines a map

Ω1 ∩ {𝑥 > 0} ,→ Ω1 ∩ 𝐵1(0) .

Indeed, setting 𝑣 = (1 + 𝑥)−1𝑤 polarisation yields 4𝑔𝑗(𝑣, 𝑥𝑣) = |𝑤|2𝑗 − |�̃�𝑤|2𝑗 , so that 𝑥 is

positive if and only if |�̃�|𝑗 < 1. We remark that there is an alternative formula

𝒞(𝑥) = (1 + 𝑥)−1(1 − 𝑥)

for the Cayley transform because 1 + 𝑥 and 1 − 𝑥 commute. Setting

𝒞(�̃�) ∶= (1 − �̃�)(1 + �̃�)−1

we obtain a map

𝒞∶ Ω1 ∩ 𝐵1(0) ,→ Ω1 ∩ {𝑥 > 0}

in the converse direction. Again, this uses polarisation and that |�̃�|𝑗 < 1 implies triviality

of the kernel of 1 + �̃�. Because the Cayley transform 𝒞 is involutive the map 𝒞∶ Ω1 ∩ {𝑥 >

0}→ Ω1 ∩ 𝐵1(0) is a diffeomorphism.

Extending the conjugation map 𝔦∶ �̃� ↦→ (1 − �̃�)𝑗(1 − �̃�)−1 to the open set Ω1 ∩ 𝐵1(0)

yields a smooth map Ω1 ∩ 𝐵1(0)→ Ω1. Observe, that 𝔦(�̃�) is a complex structure potentially

reversing orientation. Restricting 𝔦 to the 𝑗-complex anti-linear part Ω0,1
𝑗 of Ω1 we get

𝔦(𝑦) = 𝑗𝒞(−𝑦) for all 𝑦 ∈ Ω0,1
𝑗 ∩ 𝐵1(0). This defines an injection

𝔦 = 𝑗◦𝒞◦(−1)∶ Ω0,1
𝑗 ∩ 𝐵1(0) ,→ Ω1 .

In order to describe the image we observe that

𝒞◦(−1)∶ Ω0,1
𝑗 ∩ 𝐵1(0) ,→ Ω1 ∩ {𝑥 > 0} ∩ {𝑗𝑥 = 𝑥−1𝑗}

is a well defined homeomorphism with inverse (−1)◦𝒞. Additionally, the multiplication

map 𝑗∶ Ω1 → Ω1 is a diffeomorphism with inverse−𝑗 and restricts to the homeomorphism

𝑗∶ Ω1 ∩ {𝑥 > 0} ∩ {𝑗𝑥 = 𝑥−1𝑗} ,→ 𝒥 .
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Indeed, positivity of 𝑥 is equivalent to the positivity of 𝜎𝑗(𝑣, 𝑗𝑥𝑣) for all 𝑣 ∈ 𝑇𝑆. Moreover,

we find a smooth function 𝑓 on the surface 𝑆 such that the 2-forms 𝜎 and 𝜎𝑗 satisfy 𝜎 = 𝑓𝜎𝑗.

Because 𝜎(𝑤, 𝑗𝑤) = 𝑓|𝑤|2𝑗 is positive for all non-zero𝑤 ∈ 𝑇𝑆 the function 𝑓 must be positive.

Hence, positivity of 𝑥 is equivalent to the positivity of 𝜎(𝑣, 𝑗𝑥𝑣) for all 𝑣 ∈ 𝑇𝑆, as 𝜎𝑗 and

𝜎 are positively proportional. It follows that the complex structure 𝑗𝑥 is tamed by 𝜎, i.e.

preserves the orientation of the Riemann surface (𝑆, 𝑗). In total, the conjugation map

𝔦 = 𝑗◦𝒞◦(−1)∶ Ω0,1
𝑗 ∩ 𝐵1(0) ,→ 𝒥

is a well defined homeomorphism. The inverse is 𝑘 ↦→ −𝒞(−𝑗𝑘) = (𝑘 + 𝑗)−1(𝑘 − 𝑗),

where equality follows with the above alternative commuted formula for the Cayley

transform. Furthermore 𝔦 = 𝑗◦𝒞◦(−1) is the restriction of the diffeomorphism obtained

as the composite of 𝒞◦(−1)∶ Ω1 ∩ 𝐵1(0)→ Ω1 ∩ {𝑥 > 0} with 𝑗∶ Ω1 → Ω1 where defined. In

other words, the inverse (−1)◦𝒞◦(−𝑗) of 𝑗◦𝒞◦(−1) serves as a global submanifold chart of

𝒥 ⊂ Ω1 the model being Ω0,1
𝑗 ∩ 𝐵1(0) ⊂ Ω1.

In fact, 𝒥 is a complex manifold: A complex structure on the vector space Ω0,1
𝑗 is given

by 𝑦 ↦→ 𝑗𝑦. An almost complex structure on 𝒥 is given by

𝔦(𝑦) = (1 − 𝑦)𝑗(1 − 𝑦)−1

on the tangent space 𝑇𝔦(𝑦)𝒥 = Ω0,1
𝔦(𝑦) for all 𝑦 ∈ Ω0,1

𝑗 ∩𝐵1(0). Taking derivative of the equation

𝔦(𝑦)(1 − 𝑦) = (1 − 𝑦)𝑗

w.r.t. 𝑦 we get 𝑇𝑦𝔦(�̇�)(1 − 𝑦) − 𝔦(𝑦)�̇� = −�̇�𝑗 and, using −�̇�𝑗 = 𝑗�̇�, that

𝑇𝑦𝔦(�̇�) =
(
𝑗 + 𝔦(𝑦)

)
�̇�(1 − 𝑦)−1

for the linearisation of 𝔦 at 𝑦 ∈ 𝐵1(0) for all tangent vectors �̇� of 𝐵1(0) ⊂ Ω0,1
𝑗 . Using

𝔦(𝑦)
(
𝑗 + 𝔦(𝑦)

)
=
(
𝑗 + 𝔦(𝑦)

)
𝑗 we obtain

𝔦(𝑦)◦𝑇𝑦𝔦 = 𝑇𝑦𝔦◦𝑗 .

In other words, the linearisation 𝑇𝑦𝔦 is complex linear for all 𝑦 ∈ Ω0,1
𝑗 ∩ 𝐵1(0). Therefore,

𝔦∶ Ω0,1
𝑗 ∩ 𝐵1(0) ,→ 𝒥 is biholomorphism.
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Remark 6.6.1. With [5, Corollary 6.4] one finds a further action by conjugation via

𝑦 ↦→ e𝑦𝑗e−𝑦 for all 𝑦 ∈ Ω0,1
𝑗 defining a 𝒢𝑗-equivariant diffeomorphism Ω0,1

𝑗 → 𝒥: To see

this it is enough to argue fibre-wise. Identifying any given tangent space of 𝑆 with ℝ2 we

claim that the space of all orientation preserving complex multiplications 𝒥 on ℝ2 is the

homogeneous space PSl2(ℝ)∕ PSO2. Indeed, the group Gl+2 (ℝ) of orientation preserving

invertible linear maps on ℝ2 acts transitively on 𝒥 by conjugation 𝐴 ↦→ 𝐴i𝐴−1 and the

isotropy subgroup at i is isomorphic to Gl1(ℂ), cf. [52, Proposition 2.48]. Normalising

via the determinant and dividing out ±1 this action descents to a transitive and faithful

action of PSl2(ℝ) with isotropy subgroup PSO2, as a conformal linear map that preserves

the area necessarily preserves the metric. In particular, we see that 𝒥 is the hyperbolic

upper half-plane PSl2(ℝ)∕ PSO2, cf. [52, Exercise 4.17].

The Lie algebra of PSl2(ℝ) decomposes as a vector space into the Lie algebra of PSO2

and the set Ω0,1
i of all 2 × 2 matrices that anti-commute with i. Observe that the elements

of Ω0,1
i are symmetric and trace-free. Therefore, the exponential map of the tangent space

of PSl2(ℝ)∕ PSO2 at [1] can be written as

Ω0,1
i ,→ PSl2(ℝ)∕ PSO2 , 𝑌 ↦,→

[
e𝑌
]
.

This map is a diffeomorphism because any 𝐴 ∈ Sl2(ℝ) can be written uniquely as 𝐴 = e𝑆𝑅

for 𝑌 ∈ Ω0,1
i and 𝑅 ∈ SO2 by the polar form theorem. Therefore, the composition with

[𝐴] ↦→ 𝐴i𝐴−1

Ω0,1
i ,→ 𝒥 , 𝑌 ↦,→ e𝑌ie−𝑌 ,

is the diffeomorphism we wanted.

We remark that the composition with [𝐴] ↦→ 𝐴 ⋅ i, where 𝐴 ⋅ i denotes the action of

PSl2(ℝ) on the upper half-plane by Möbius transformations (which preserve the hyper-

bolic metric) is the exponential map 𝑌 ↦→ e𝑌 ⋅ i of the hyperbolic upper half-plane at

i.
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6.7 The Kodaira differential

We continue the considerations from Section 6.5. For all 𝑗 ∈ 𝒥 the operator 𝑗�̄�𝑗 ∶ Ω0 → Ω0,1
𝑗

is injective and

𝐻1
𝑗 ∶= Ω0,1

𝑗 ∕ Im(𝑗�̄�𝑗)

has real dimension 2
(
#𝐴 − #𝐷

)
. Moreover, the operator 𝑗�̄�𝑗 is 𝒢𝑗-equivariant by Remark

6.4.2. Alternatively, argue with the theorema egregium and with Remark 6.4.5 as done in

Remark 6.4.6. Therefore, conjugation

𝜓∗𝑦 ∶= 𝑇𝜓𝜓−1◦𝑦𝜓◦𝑇𝜓

by elements 𝜓 ∈ 𝒢𝑗 leaves Im(𝑗�̄�𝑗) invariant, so that 𝒢𝑗 induces an action on 𝐻1
𝑗 via

𝜓∗[𝑦] ∶= [𝜓∗𝑦].

Observe, that the complex structure 𝑦 ↦→ 𝑗𝑦 on Ω0,1
𝑗 introduced in Section 6.6 does

not descent to a complex structure on the quotient 𝐻1
𝑗 . The reason is that the subspace

Im(𝑗�̄�𝑗) of Ω0,1
𝑗 is not 𝑗-invariant as the operator 𝑗�̄�𝑗 ∶ Ω0 → Ω0,1

𝑗 is not complex linear, see

Section 6.4.

Choose a 𝒢𝑗-invariant complementary subspace 𝐸𝑗 ⊂ Ω0,1
𝑗 of Im(𝑗�̄�𝑗) so that the quotient

map 𝑦 ↦→ [𝑦] of Ω0,1
𝑗 onto 𝐻1

𝑗 restricts to a 𝒢𝑗-equivariant linear isomorphism 𝐸𝑗 → 𝐻1
𝑗 .

Example 6.7.1. A 𝒢𝑗-invariant complementary subspace 𝐸𝑗 can be defined as the orthog-

onal complement of Im(𝑗�̄�𝑗) w.r.t. to the 𝐿2-inner product on Ω0,1
𝑗 induced by a 𝒢𝑗-invariant

metric on 𝑆. Such a metric can be obtained via averaging any given metric over the

finite set 𝒢𝑗. The obtained 𝒢𝑗-invariant 𝐿2-inner product on Ω0,1
𝑗 can be symmetrised as

in Remark 6.4.3 so that the action of 𝑗 will be orthogonal in addition. Alternatively, a

natural choice for 𝒢𝑗-invariant metric on 𝑆 would be the following: The area form 𝜎𝑗

and the metric 𝑔𝑗, both being 𝒢𝑗-invariant, together determine a Hodge star operator on

𝑇𝑆-valued differential forms on 𝑆, namely, via 𝑦 ↦→ −𝑦◦𝑗. Restricting to elements 𝑦 ∈ Ω0,1
𝑗

this yields 𝑦 ↦→ 𝑗𝑦 so that we obtain a 𝒢𝑗-invariant 𝐿2-inner product on Ω0,1
𝑗 by

⟨𝑦1, 𝑦2⟩𝑗 ∶=
1
2 ∫𝑆

𝑦1 ∧ 𝑗𝑦2 .
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The wedge product of two 𝑇𝑆-valued differential forms is defined component-wise w.r.t.

local 𝑔𝑗-orthonormal frames. Using conformal coordinates one shows that the integrand

𝑦1 ∧ 𝑗𝑦2 equals 2ℜ(𝑦1◦𝑦2)𝜎𝑗, where, point-wise, ℜ(𝑦1◦𝑦2) denotes the real part of the

complex eigenvalue of the 𝑗-complex linear map 𝑦1◦𝑦2 ∈ Ω1 between complex lines. This

shows 𝑗- and 𝒢𝑗-invariance of the metric

⟨𝑦1, 𝑦2⟩𝑗 = ∫
𝑆
ℜ(𝑦1◦𝑦2)𝜎𝑗 ,

whose induced norm ‖𝑦‖𝑗 is given by the square-root of the integral of the point-wise

eigenvalues of the 𝑗-complex linear endomorphism field 𝑦◦𝑦 over 𝑆 against 𝜎𝑗. Neverthe-

less, the orthogonal complement 𝐸𝑗 of Im(𝑗�̄�𝑗) in Ω0,1
𝑗 of any 𝑗-invariant metric will not be

invariant under 𝑗 as Im(𝑗�̄�𝑗) is not invariant under 𝑗. In Section 6.9 we will construct a

complex linear complement 𝐸𝑗.

Consider a so-called deformation of
(
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

)
, which is a map

𝔧∶ (𝑉𝑗, 0) ,→ (𝒥, 𝑗) , 𝑦 ↦,→ 𝑗(𝑦) ,

defined on an open neighbourhood 𝑉𝑗 ⊂ 𝐸𝑗 of 0. If 𝔧 is an embedding whose image 𝔧(𝑉𝑗)

is transverse to the orbits of 𝒢, then the deformation 𝔧 is called effective, cf. the [67,

Definition 4.2.13] of a local slice through 𝑗. Transversality can be expressed via the

invertibility of the so-called Kodaira differential

[𝑇𝑦𝔧]∶ 𝐸𝑗 ,→ Ω0,1
𝑗(𝑦) ,→ 𝐻1

𝑗(𝑦)

for all 𝑦 ∈ 𝑉𝑗, which is the composition of the linearisation 𝑇𝑦𝔧 with the quotient map

[ . ]. Furthermore we call the deformation 𝔧 symmetric if 𝑉𝑗 is 𝒢𝑗-invariant (e.g. taking

metric balls about 0 ∈ 𝐸𝑗 w.r.t. to the 𝐿∞-norm | . |𝑗 from the beginning of Section 6.6 or

the 𝐿2-norm ‖ . ‖𝑗 induced by ⟨ . , . ⟩𝑗 from Example 6.7.1) and 𝔧 is 𝒢𝑗-equivariant. The latter

means that for all 𝑦 ∈ 𝑉𝑗 and 𝜓 ∈ 𝒢𝑗 we have that 𝜓∗
(
𝔧(𝑦)

)
= 𝔧(𝜓∗𝑦) so that

𝜓∶
(
𝑆, 𝑗(𝜓∗𝑦), 𝐷, {1, i,−1}, 𝐴

)
,→

(
𝑆, 𝑗(𝑦), 𝐷, {1, i,−1}, 𝐴

)
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is a holomorphic isomorphism. Finally, the deformation 𝔧 is called complex provided

that the complementary subspace 𝐸𝑗 ⊂ Ω0,1
𝑗 is invariant under 𝑗, i.e. is a complex linear

subspace, and that 𝔧 is holomorphic in the sense that the differential 𝑇𝔧 is complex linear,

i.e. 𝔧(𝑦)◦𝑇𝑦𝔧 = 𝑇𝑦𝔧◦𝑗 for all 𝑦 ∈ 𝑉𝑗 ⊂ 𝐸𝑗.

Example 6.7.2. The Cayley transformation from Section 6.6 or the conjugation by the

exponential map studied in Remark 6.6.1 yield symmetric effective deformations 𝔧 re-

stricting

𝑦 ↦,→ (1 + 𝑗𝑦)𝑗(1 + 𝑗𝑦)−1 or 𝑦 ↦,→ e𝑗𝑦𝑗e−𝑗𝑦

to 𝑉𝑗 = 𝐸𝑗 ∩ Ω
0,1
𝑗 ∩ 𝐵1(0) or to 𝑉𝑗 = 𝐸𝑗, resp. Indeed, the differentials at 0 ∈ 𝑉𝑗 in direction

of �̇� ∈ 𝐸𝑗 are given by �̇� ↦→ 2�̇�. For complex linear 𝐸𝑗 the corresponding deformation will

be complex.

Remark 6.7.3. The Kodaira differential is natural in the following sense: Consider

deformations 𝔧∶ 𝑉𝑗 ∋ 𝑦 ↦→ 𝑗(𝑦) and 𝔨∶ 𝑉𝑘 ∋ 𝑧 ↦→ 𝑘(𝑧) of
(
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

)
and

(
𝑆, 𝑘, 𝐷, {1, i,−1}, 𝐴

)
, resp. Choose a linear isomorphism 𝜁∶ 𝐸𝑗 → 𝐸𝑘, which we will write

as 𝜁∶ 𝑦 ↦→ 𝑧(𝑦). Let 𝑦 ↦→ 𝜑(𝑦) be a smooth family of diffeomorphisms

𝜑(𝑦)∶
(
𝑆, 𝑗(𝑦), 𝐷, {1, i,−1}, 𝐴

)
,→

(
𝑆, 𝑘

(
𝑧(𝑦)

)
, 𝐷, {1, i,−1}, 𝐴

)

defined on 𝑉𝑗 ∩ 𝜁−1(𝑉𝑘) and deforming the equivalence

𝜑 = 𝜑(0)∶
(
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

)
,→

(
𝑆, 𝑘, 𝐷, {1, i,−1}, 𝐴

)
.

Then the Kodaira differentials at 0 satisfy

[𝑇0𝔧] = 𝜑∗◦[𝑇0𝔨]◦𝜁 ,

cf. [42, Proposition 1.6]. In particular, 𝔧 is effective if and only if 𝔨 is.

Indeed, choose �̇� ∈ 𝐸𝑗 and write 𝔧𝑡 = 𝔧(𝑡�̇�), 𝜑𝑡 = 𝜑(𝑡�̇�), and 𝔨𝑡 = 𝔨
(
𝜁(𝑡�̇�)

)
for 𝑡 ∈ (−1, 1)

and take the Lie derivative of 𝔧𝑡 = 𝜑∗𝑡 𝔨𝑡. By conformal invariance of the Cauchy–Riemann

operator 𝜑∗◦𝑘�̄�𝑘 = 𝑗�̄�𝑗◦𝜑∗ (see Remark 6.4.2) we obtain

𝑇0𝔧(�̇�) = 2𝑗�̄�𝑗(𝜑∗𝑋) + 𝜑∗
(
𝑇0𝔨

(
𝜁(�̇�)

))
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similarly to Remark 6.4.6, where 𝑋 is the velocity vector of the path 𝑡 ↦→ 𝜑𝑡 in 𝒢 at 0.

As the restriction of 𝜑𝑡 to the special points in 𝐷 ∪ {1, i,−1} ∪ 𝐴 is constant by continuity

of 𝑡 ↦→ 𝜑𝑡 we obtain that 𝑋 ∈ Ω0. Hence, 𝜑∗𝑋 ∈ Ω0 and therefore 2𝑗�̄�𝑗(𝜑∗𝑋) represents

the zero class. The claim follows now because 𝜑 defines a well–defined isomorphism

𝜑∗∶ 𝐻1
𝑘 → 𝐻1

𝑗 via 𝜑∗[𝑦] ∶= [𝜑∗𝑦],

𝜑∗𝑦 ∶= 𝑇𝜑𝜑−1◦𝑦𝜑◦𝑇𝜑 ,

by the previous argument. Hence,

[𝑇0𝔧(�̇�)] = 𝜑∗
[
𝑇0𝔨

(
𝜁(�̇�)

)]

for all �̇� ∈ 𝐸𝑗.

If both deformations 𝔧 and 𝔨 are effective, then there is a tautological choice for an

isomorphism 𝜁 for the given diffeomorphism 𝜑, namely 𝜁 = [𝑇0𝔨]−1◦(𝜑∗)−1◦[𝑇0𝔧]. On the

other hand, in the situation of Example 6.7.1, where the local slices are constructed

via orthogonal complements, we get 𝜑∗𝐸𝑘 = 𝐸𝑗 because 𝑔𝑗 and 𝜑∗𝑔𝑘 are conformally

equivalent. This allows the choice (𝜑∗)−1∶ 𝐸𝑗 → 𝐸𝑘 for 𝜁 and yields

[𝑇0𝔧] = 𝜑∗◦[𝑇0𝔨]◦(𝜑∗)−1 .

6.8 Orbifold structure – fixed stable nodal type

In the situation of Section 6.7 we assume for the moment that the isotropy group 𝒢𝑗

is trivial. Invertibility of the Kodaira differential [𝑇𝑦𝔧] implies that the linear subspace

𝑇𝑦𝔧(𝐸𝑗) in Ω0,1
𝑗(𝑦) is complementary to Im

(
𝑗(𝑦)�̄�𝑗(𝑦)

)
. With the arguments from [61, p. 634/5]

and [67, Theorem 4.2.14] we obtain that

𝒢 × 𝑉𝑗 ,→ 𝒥 , (𝜑, 𝑦) ↦,→ 𝜑∗
(
𝑗(𝑦)

)
,

is a diffeomorphism onto a neighbourhood of the 𝒢-orbit of 𝑗 = id∗
(
𝑗(0)

)
for a sufficiently

small open neighbourhood 𝑉𝑗 ⊂ 𝐸𝑗 of 0. In other words, the map (id, 𝑦) ↦→ 𝑗(𝑦) induces a

homeomorphism

(id, 𝑦) ↦,→
[
𝑆, 𝑗(𝑦), 𝐷, {1, i,−1}, 𝐴

]
=
[
𝑗(𝑦)

]
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defined on 𝑉𝑗 onto a neighbourhood of
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

]
= [𝑗] in ℛ𝜏 = 𝒥∕𝒢. The inverse

serves as a chart of a smooth manifold structure on ℛ𝜏.

For 𝒢𝑗 non-trivial we give an equivariant version of the above construction: As-

suming the situation of Section 6.7 we consider a symmetric effective deformation

𝔧∶ (𝑉𝑗, 0) → (𝒥, 𝑗), which we also denote by 𝑦 ↦→ 𝑗(𝑦). We would like to find a 𝒢-

equivariant diffeomorphism

𝒢 ×𝒢𝑗 𝑉𝑗 ,→ 𝒥 , (𝜑, 𝑦) ↦,→ 𝜑∗
(
𝑗(𝑦)

)
,

onto a neighbourhood of the 𝒢-orbit of 𝑗 = id∗
(
𝑗(0)

)
, where 𝒢×𝒢𝑗 𝑉𝑗 is the quotient of 𝒢×𝑉𝑗

by the action (𝜑, 𝑦) ↦→
(
𝜓−1◦𝜑, 𝜓∗𝑦

)
, 𝜓 ∈ 𝒢𝑗.

In order to do so we would like to find an isomorphism

𝜑∶
(
𝑆, 𝑗(𝑦), 𝐷, {1, i,−1}, 𝐴

)
,→

(
𝑆, 𝑘, 𝐷, {1, i,−1}, 𝐴

)

for given 𝑘 ∈ 𝒥 sufficiently close to 𝑗 ∈ 𝒥 and for some 𝑦 ∈ 𝑉𝑗. Holomorphicity of 𝜑

translates to 𝜑∗𝑘 = 𝑗(𝑦). In other words, (𝜑, 𝑦, 𝑘) is a zero of the non-linear Cauchy-

Riemann operator

𝐹(𝜑, 𝑦, 𝑘) ∶= 1
2

(
𝑇𝜑 + 𝑘◦𝑇𝜑◦𝑗(𝑦)

)
,

which is a section into the bundle ℰ → 𝒢 ×𝑉𝑗 × 𝒥, whose fibre ℰ(𝜑,𝑦,𝑘) is the vector space of

sections of the bundle of complex anti-linear bundle homomorphisms from
(
𝑇𝑆, 𝑗(𝑦)

)
to

(𝑇𝑆, 𝑘).

Setting 𝐹𝑘 ∶= 𝐹( . , . , 𝑘) we will write the solutions (𝜑, 𝑦) of 𝐹𝑘(𝜑, 𝑦) = 0 as a function of

𝑘 via the implicit function theorem. The linearisation

𝑇(id,0)𝐹𝑗 ∶ Ω0 × 𝐸𝑗 ,→ Ω0,1
𝑗

of (𝜑, 𝑦) ↦→ 𝐹𝑗(𝜑, 𝑦) at (id, 0) equals

(𝑋, �̇�) ↦,→ �̄�𝑗𝑋 + 1
2
𝑗 ⋅
(
𝑇0𝔧

)
(�̇�) .

With Sections 6.5 and 6.7 the operator

−2𝑗 ⋅ 𝑇(id,0)𝐹𝑗 = −2𝑗�̄�𝑗 ⊕ 𝑇0𝔧
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is an isomorphism.

The implicit function theorem combined with an intermediate Sobolev completion

and a subsequent elliptic regularity argument as in [61, p. 634/5] or in [67, Theorem 4.2.14]

implies: There exists an open neighbourhood 𝒦 ⊂ 𝒥 of 𝑗, a possibly smaller 𝒢𝑗-invariant

open neighbourhood 𝑉𝑗 ⊂ 𝐸𝑗 of 0, an open neighbourhood ℋ ⊂ 𝒢 of id such that the sets

𝜓∗ℋ are pair-wise disjoint for all 𝜓 ∈ 𝒢𝑗, and a unique map

Φ∶
(
𝒦, 𝑗

)
,→

(
ℋ × 𝑉𝑗, (id, 0)

)

such that

𝐹𝑘(𝜑, 𝑦) = 0 ⇐⇒ (𝜑, 𝑦) = Φ(𝑘) ,

whenever (𝜑, 𝑦, 𝑘) ∈ ℋ × 𝑉𝑗 ×𝒦. Notice, that uniqueness implies Φ
(
𝑗(𝑦)

)
= (id, 𝑦) for all

𝑦 ∈ 𝑉𝑗.

For all 𝜓 ∈ 𝒢𝑗 define a map

Φ𝜓 ∶
(
𝒦, 𝑗

)
,→

(
𝜓∗ℋ × 𝑉𝑗, (𝜓, 0)

)

setting

Φ𝜓(𝑘) ∶= 𝜓∗
(
Φ(𝑘)

)
.

Observe that Φ𝜓
(
𝑗(𝑦)

)
=
(
𝜓, 𝜓∗𝑦

)
for all 𝑦 ∈ 𝑉𝑗. Moreover, by symmetry of the deformation

𝔧, which reads as 𝜓∗◦𝔧 = 𝔧◦𝜓∗ for all 𝜓 ∈ 𝒢𝑗, we get 𝜓∗◦𝐹𝑘 = 𝐹𝑘◦𝜓∗, and hence 𝐹𝑘
(
Φ𝜓(𝑘)

)
= 0

for all 𝑘 ∈ 𝒥 and 𝜓 ∈ 𝒢𝑗. In other words, for all 𝜓 ∈ 𝒢𝑗 there exists a unique map Φ𝜓 with

the above properties such that

𝐹𝑘(𝜑, 𝑦) = 0 ⇐⇒ (𝜑, 𝑦) = Φ𝜓(𝑘) ,

whenever (𝜑, 𝑦, 𝑘) ∈ 𝜓∗ℋ × 𝑉𝑗 ×𝒦.

We get the following global uniqueness statement: There exists potentially smaller

neighbourhoods 𝑉𝑗 and 𝒦 such that for all solutions (𝜑, 𝑦, 𝑘) ∈ 𝒢 × 𝑉𝑗 ×𝒦 of 𝐹(𝜑, 𝑦, 𝑘) = 0

there exists a unique 𝜓 ∈ 𝒢𝑗 such that 𝜑 ∈ 𝜓∗ℋ and (𝜑, 𝑦) = Φ𝜓(𝑘). This follows arguing by

contradiction with properness of the action 𝒢 × 𝒥 → 𝒥, (𝜙, 𝑗) ↦→ 𝜙∗𝑗, see Remark 6.3.2.
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Based on the current results of the implicit function theorem an orbifold chart

about 𝑗 ∈ 𝒥 can be obtained as follows: Let 𝒰𝑗 be the image of 𝒦 under the projection

[ . ]∶ 𝒥 → ℛ𝜏 = 𝒥∕𝒢, i.e.

𝒰𝑗 = [𝒦] ,

so that, in particular, 𝒰𝑗 is open according to the quotient topology described in Remark

6.3.2. With help of Φ we find 𝜑 ∈ℋ and 𝑦 ∈ 𝑉𝑗 for each given 𝑘 ∈ 𝒦 such that 𝜑∗𝑘 = 𝑗(𝑦).

Hence, [𝑘] =
[
𝑗(𝑦)

]
, so that 𝒰𝑗 is the set of all isomorphism classes

[
𝑆, 𝑗(𝑦), 𝐷, {1, i,−1}, 𝐴

]
=

[
𝑗(𝑦)

]
with 𝑦 ∈ 𝑉𝑗.

The isotropy group 𝒢𝑗 acts linearly on𝑉𝑗 by conjugation. In view of the metric obtained

by restriction of the metric described in Example 6.7.1 this action is orthogonal. Hence,

the action is effective, i.e. only for id ∈ 𝒢𝑗 all points of 𝑉𝑗 are fixed points. The map

𝔭𝑗 ∶ 𝑉𝑗∕𝒢𝑗 ,→ 𝒰𝑗 , [𝑦] ↦,→
[
𝑗(𝑦)

]

is well-defined by symmetry of the deformation 𝔧; 𝔭𝑗 is continuous because the defor-

mation 𝔧 is and the respective quotient maps are open and continuous as explained in

Remark 6.3.2.

We claim that

𝒰𝑗 ,→ 𝑉𝑗∕𝒢𝑗 , [𝑘] ↦,→
[
Φ2(𝑘)

]
,

is the inverse map of 𝔭𝑗, where Φ2(𝑘) denotes the second component of Φ(𝑘). First of all

the map is well-defined by the following compatibility condition for uniformisers:

Write
[
𝑗(𝑦1)

]
= [𝑘] =

[
𝑗(𝑦2)

]
for 𝑦1, 𝑦2 ∈ 𝑉𝑗 and choose an isomorphism

𝜙∶
(
𝑆, 𝑗(𝑦1), 𝐷, {1, i,−1}, 𝐴

)
,→

(
𝑆, 𝑗(𝑦2), 𝐷, {1, i,−1}, 𝐴

)
,

whose existence is guaranteed by the definition of the equivalence relation. We claim

that

𝜙 ∈ 𝒢𝑗 and 𝑦1 = 𝜙∗𝑦2 .

Indeed, we get 𝐹
(
𝜙, 𝑦1, 𝑗(𝑦2)

)
= 0, so that we find a unique 𝜓 ∈ 𝒢𝑗 such that 𝜙 ∈ 𝜓∗ℋ

and (𝜙, 𝑦1) = Φ𝜙
(
𝑗(𝑦2)

)
by the above global uniqueness statement. Because of Φ𝜙

(
𝑗(𝑦2)

)
=
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(𝜓, 𝜓∗𝑦2) we obtain 𝜙 = 𝜓 ∈ 𝒢𝑗 and 𝑦1 = 𝜓∗𝑦2. Being well-defined follows now with the

equation Φ
(
𝑗(𝑦)

)
= (id, 𝑦) for 𝑦 ∈ {𝑦1, 𝑦2}. Similarly, in order to verify the two-sided inverse

property we obtain

[𝑦] ↦,→
[
𝑗(𝑦)

]
↦,→

[
Φ2(𝑗(𝑦)

)]
= [𝑦]

and, writing 𝜑∗𝑘 = 𝑗(𝑦) for 𝑦 ∈ 𝑉𝑗,

[𝑘] ↦,→
[
Φ2(𝑘)

]
= [𝑦] ↦,→

[
𝑗(𝑦)

]
= [𝑘] .

Therefore, the assignment [𝑘] ↦→
[
Φ2(𝑘)

]
is the inverse map 𝔭−1𝑗 ∶ 𝒰𝑗 ,→ 𝑉𝑗∕𝒢𝑗. The

inverse 𝔭−1𝑗 is continuous as well. This follows because 𝑘 ↦→ Φ2(𝑘) is is continuous and

the involved quotient maps are open and continuous, cf. Remark 6.3.2. Consequently, the

𝒢𝑗-invariant map

[𝔧]∶ 𝑉𝑗 ,→ 𝒰𝑗

induces a homeomorphism 𝔭𝑗 form 𝑉𝑗∕𝒢𝑗 onto 𝒰𝑗. In other words,
(
𝑉𝑗,𝒢𝑗,𝔭−1𝑗

)
is an orb-

ifold chart for ℛ𝜏 about [𝑗] =
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

]
and

(
𝐸𝑗,𝒢𝑗, 𝑉𝑗,𝒰𝑗, [𝔧]

)
is a 𝜏-uniformiser

by definition.

Remark 6.8.1. By the above implicit function theorem we find 𝑘-holomorphic maps 𝜑 ∈ 𝒢

defined on
(
𝑆, 𝑗(𝑦)

)
, where 𝑘 ∈ 𝒦 and 𝑦 ∈ 𝑉𝑗, so that (𝜑, 𝑦) is a solution of 𝐹𝑘 = 0. By global

uniqueness and a potential precomposition with the inverse of an element in 𝒢𝑗 making

use of the symmetry property of 𝔧 we can assume that 𝜑 ∈ℋ and write Φ(𝑘) = (𝜑, 𝑦). By

local uniqueness and 𝒢𝑗-invariance of the solution set we obtain that {𝐹𝑘 = 0} is equal to

the set of all
(
𝜓∗𝜑, 𝜓∗𝑦

)
, 𝜓 ∈ 𝒢𝑗. Hence, for 𝑦 = Φ2(𝑘) the solution set

{
𝐹𝑘( . , 𝑦) = 0

}
is given

by {𝜓∗𝜑 |𝜓 ∈ 𝒢𝑗,𝑦}, where 𝒢𝑗,𝑦 denotes the stabiliser at 𝑦 ∈ 𝑉𝑗 of the induced action by 𝒢𝑗

on 𝐸𝑗. For that we will also write

𝒢𝑗,𝑦 ∶=
(
𝒢𝑗|𝐸𝑗

)
𝑦

Notice that 𝒢𝑗,0 = 𝒢𝑗.

For all �̂� ∈ 𝒢𝑘 we have that 𝐹𝑘(�̂�◦𝜑, 𝑦) = 𝑇�̂�◦𝐹𝑘(𝜑, 𝑦), so that the set
{
�̂�◦𝜑 | �̂� ∈ 𝒢𝑘

}
is

contained in {𝜓∗𝜑 |𝜓 ∈ 𝒢𝑗,𝑦}. For the converse observe that 𝜑◦𝜓◦𝜑−1, 𝜓 ∈ 𝒢𝑗,𝑦, is an element
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of 𝒢𝑘 and
(
𝜑◦𝜓◦𝜑−1

)
◦𝜑 = 𝜓∗𝜑. Therefore, we obtain two descriptions

{
�̂�◦𝜑 |||| �̂� ∈ 𝒢𝑘

}
=
{
𝜓∗𝜑 | 𝜓 ∈ 𝒢𝑗,𝑦

}

for the solution set
{
𝐹𝑘( . , 𝑦) = 0

}
and

𝒢𝑗,𝑦 ,→ 𝒢𝑘 , 𝜓 ↦,→ 𝜑◦𝜓◦𝜑−1

is an isomorphism of isotropy groups with inverse �̂� ↦→ 𝜑−1◦�̂�◦𝜑.

In order to describe the transformation behaviour of orbifold charts we con-

sider symmetric effective deformations 𝔧∶ 𝑉𝑗 ∋ 𝑦 ↦→ 𝑗(𝑦) and 𝔨∶ 𝑉𝑘 ∋ 𝑧 ↦→ 𝑘(𝑧)

of
(
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

)
and

(
𝑆, 𝑘, 𝐷, {1, i,−1}, 𝐴

)
, resp. About the respective 𝜏-uniformiser

(
𝐸𝑗,𝒢𝑗, 𝑉𝑗,𝒰𝑗, [𝔧]

)
and

(
𝐸𝑘,𝒢𝑘, 𝑉𝑘,𝒰𝑘, [𝔨]

)
we assume that 𝒰𝑗 ∩𝒰𝑘 = ∅. Hence, we find 𝜑 ∈ 𝒢

such that 𝜑∗𝑘 = 𝑗.

We claim that we can assume that 𝑗 = 𝑗(0) = 𝑘(0) = 𝑘. Indeed, define a deformation

𝔨′∶ 𝑉𝑘′ ∋ 𝑧 ↦→ 𝑘′(𝑧),

𝑘′(𝑧) = 𝜑∗
(
𝑘
(
(𝜑−1)∗𝑧

))
,

of
(
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

)
, whose domain is the subset 𝑉𝑘′ ∶= 𝜑∗𝑉𝑘 of the complementary

space 𝐸𝑘′ ∶= 𝜑∗𝐸𝑘. For the latter use that 𝑔𝑘′ and 𝜑∗𝑔𝑘 are conformally equivalent. By the

naturality of the Kodaira differential we have

[𝑇0𝔨′] = 𝜑∗◦[𝑇0𝔨]◦(𝜑−1)∗ ,

so that 𝔨′ is effective, see Remark 6.7.3. In view of Remark 6.8.1 the deformation 𝔨′

is symmetric because for all 𝜓 ∈ 𝒢𝑘, for which we have 𝜓∗◦𝔨 = 𝔨◦𝜓∗, it follows that
(
𝜑−1◦𝜓◦𝜑

)∗
◦𝔨′ = 𝔨′◦

(
𝜑−1◦𝜓◦𝜑

)∗
.

Therefore, we consider deformations 𝔧 and 𝔨 such that 𝑗 = 𝑗(0) = 𝑘(0) = 𝑘. In view of

the implicit function theorem above there exists a 𝑘(𝑧)-holomorphic map 𝜑(𝑧) ∈ 𝒢 close to

id ∈ 𝒢𝑗 defined on
(
𝑆, 𝑗

(
𝑦(𝑧)

))
via the locally unique smooth mapΦ

(
𝑘(𝑧)

)
=
(
𝜑(𝑧), 𝑦(𝑧)

)
such

that Φ(𝑗) = (id, 0). Switching the roles results into a 𝑗(𝑦)-holomorphic map �̂�(𝑦) ∈ 𝒢 close
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to id ∈ 𝒢𝑗 defined on
(
𝑆, 𝑘

(
𝑧(𝑦)

))
via the locally unique smooth map Φ

(
𝑗(𝑦)

)
=
(
�̂�(𝑦), 𝑧(𝑦)

)

such that Φ(𝑗) = (id, 0). Comparing both solutions using uniqueness yields

�̂�
(
𝑦(𝑧)

)
=
(
𝜑(𝑧)

)−1

as well as 𝑧 = 𝑧
(
𝑦(𝑧)

)
and 𝑦 = 𝑦

(
𝑧(𝑦)

)
. Therefore, after shrinking the domains according

to the implicit function theorem if necessary, which results into 𝒰𝑗 = 𝒰𝑘, we obtain maps

𝑉𝑗 ,→ 𝑉𝑘 , 𝑦 ↦,→ 𝑧(𝑦) and 𝑉𝑘 ,→ 𝑉𝑗 , 𝑧 ↦,→ 𝑦(𝑧) ,

which are smooth and inverse to each other such that [𝔨]◦
(
𝑦 ↦→ 𝑧(𝑦)

)
= �̂�(𝑦)∗[𝔧]. This

results into a coordinate change of an orbifold structure because the construction is done

in a 𝒢𝑗-equivariant fashion: For that use Remark 6.8.1 and observe that the solution set
{
𝐹𝑘(𝑧)( . , 𝑦) = 0

}
is given by

{
�̂�◦𝜑(𝑧) |||| �̂� ∈ 𝒢𝑘(𝑧)

}
=
{
𝜓∗𝜑(𝑧) | 𝜓 ∈ 𝒢𝑗,𝑦

}
.

As for manifolds we obtain:

Proposition 6.8.2. The above constructed orbifold charts provide the nodal Riemann moduli

space ℛ𝜏 for the stable nodal type 𝜏 with the structure of an orbifold of real dimension

2
(
#𝐴 − #𝐷

)
, whose isotropy groups at [𝑗] ∈ ℛ𝜏 are given by 𝒢𝑗 up to conjugation.

Referring to the current situation we define

𝐓𝑗,𝑘 ∶=
{
(𝜑, 𝑦, 𝑧) |||| 𝐹𝑘(𝑧)(𝜑, 𝑦) = 0

}
⊂ 𝒢 × 𝑉𝑗 × 𝑉𝑘

provided with the subspace topology and call the projection 𝑠∶ 𝐓𝑗,𝑘 → 𝑉𝑗 onto 𝑉𝑗 the

source map; the the projection 𝑡∶ 𝐓𝑗,𝑘 → 𝑉𝑘 onto 𝑉𝑘 the target map. These maps come

with inverses 𝑦 ↦→
(
�̂�−1(𝑦), 𝑦, 𝑧(𝑦)

)
and 𝑧 ↦→

(
𝜑(𝑧), 𝑦(𝑧), 𝑧

)
, resp., where �̂�

(
𝑦(𝑧)

)
=
(
𝜑(𝑧)

)−1

as above. Hence, 𝑠 and 𝑡 are homeomorphisms providing 𝐓𝑗,𝑘 with the structure of a

smooth manifold of dimension 2
(
#𝐴 − #𝐷

)
, and 𝑡◦𝑠−1 and 𝑠◦𝑡−1 correspond to the above

transition maps 𝑦 ↦→ 𝑧(𝑦) and 𝑧 ↦→ 𝑦(𝑧), resp. By the properness argument in Remark

6.3.2 the map 𝑠 × 𝑡∶ 𝐓𝑗,𝑘 → 𝑉𝑗 × 𝑉𝑘 is proper.
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In other words, we obtain an étale proper Lie groupoid (𝑅𝜏,𝐑𝜏), which means the

following: Take a sequence of 𝜏-uniformisers
(
𝐸𝑗𝜈 ,𝒢𝑗𝜈 , 𝑉𝑗𝜈 ,𝒰𝑗𝜈 , [𝔧𝜈]

)
such that ⋃𝜈 𝒰𝑗𝜈 covers

ℛ𝜏. The objects are given by

𝑅𝜏 ∶=
⨆

𝜈
𝑉𝑗𝜈

and the morphisms are

𝐑𝜏 ∶=
⨆

𝜈,𝜇
𝐓𝑗𝜈 ,𝑗𝜇 .

Morphisms can be composed whenever the corresponding target and source coincide.

The resulting composition is smooth, has a unit and each morphism admits a smooth

inverse. Furthermore all mentioned structure maps are smooth. The nodal Riemann

moduli space ℛ𝜏 for the stable nodal type 𝜏 appears now as orbit space

ℛ𝜏 = 𝑅𝜏∕∼ ,

where two objects between which there exists a morphism are considered to be equiva-

lent.

6.9 Skyscraper deformation

A symmetric effective deformation 𝔧 is called a skyscraper deformation if there exists a

𝒢𝑗-invariant neighbourhood 𝑈 ⊂ 𝑆 of 𝜕𝑆 together with the special points |𝐷| ∪ {1, i,−1} ∪𝐴

on which the deformation is stationary, i.e. if 𝑗(𝑦) = 𝑗 restricted to 𝑈 for all 𝑦 ∈ 𝑉𝑗. In

view of the examples of symmetric effective deformations in Section 6.6 and Remark

6.6.1 skyscraper deformations can be obtained by restriction of symmetric effective

deformations to a complementary 𝒢𝑗-invariant vector space 𝐸𝑗 of Im(𝑗�̄�𝑗) whose elements

vanish on 𝑈.

In order to construct such a vector space 𝐸𝑗 we denote by 𝒳 the space of all smooth

vector fields on 𝑆 that are tangent to the boundary along 𝜕𝑆 and admit 3 zeros on each

connected component of 𝑆 equal to special points in |𝐷| ∪ {1, i,−1} ∪ 𝐴; on the disc com-

ponent the zeros are required to be 1, i,−1. The operator 𝑗�̄�𝑗 restricted to 𝒳 induces an

isomorphism 𝒳 → Ω0,1
𝑗 .
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We begin with the un-isotropic situation 𝒢𝑗 = {id}. In order to construct a complement

of Ω0 in 𝒳 we write 𝑧𝑘 for the elements of |𝐷| ∪ 𝐴 and choose local holomorphic charts

(ℂ, i) for (𝑆, 𝑗) about the special points 𝑧𝑘. We require that the chart domains are mutually

disjoint and contained in 𝑆 ⧵ 𝜕𝑆. Let 𝑓𝑘 be smooth cut off functions on 𝑆 that have their

supports in the interior of 𝑟-disc neighbourhoods about 𝑧𝑘 w.r.t. 𝑔𝑗 contained in the chosen

chart domains; the 𝑓𝑘 are required to by constantly 1 on the 𝑟∕2-disc neighbourhoods

about 𝑧𝑘. Given 𝑋 ∈ 𝒳 we define vector fields 𝑋𝑘 on 𝑆. We require that the 𝑋𝑘 are given

by 𝑋(𝑧𝑘)𝑓𝑘 in the chosen charts extended by zero to 𝑆. Observe that the 𝑋𝑘 vanish for

special points that correspond to the zeros defining 𝒳. Moreover, the 𝑋𝑘 are holomorphic

on the 𝑟∕2-discs.

Let 𝑃∶ 𝒳 → 𝒳 be the projector, i.e. 𝑃2 = 𝑃, given by

𝑃(𝑋) ∶= 𝑋 −
∑

𝑘
𝑋𝑘 .

Observe that 𝑃 restricts to the identity on 𝑃(𝒳) = Ω0. The desired complement of Ω0 in

𝒳 is (1 − 𝑃)(𝒳) as 1 − 𝑃 is a projector as well. The elements of 𝑗�̄�𝑗(1 − 𝑃)(𝒳) vanish on a

neighbourhood of all special points |𝐷| ∪ {1, i,−1} ∪ 𝐴 and of 𝜕𝑆. Moreover, the dimension

of (1 − 𝑃)(𝒳) equals

2
(
#𝐴 − #𝐷

)

by the result of the computation of Section 6.5 multiplied by −1.

Finally we set 𝐸𝑗 ∶= 𝑗�̄�𝑗(1 − 𝑃)(𝒳). The elements of 𝐸𝑗 vanish on a neighbourhood of

the union of the special points |𝐷| ∪ {1, i,−1} ∪ 𝐴 and of the boundary 𝜕𝑆. Furthermore

the isomorphism 𝑗�̄�𝑗 ∶ 𝒳 → Ω0,1
𝑗 sends the splitting (1 − 𝑃)(𝒳)⊕ Ω0 of 𝒳 to the splitting

𝐸𝑗 ⊕ Im(𝑗�̄�𝑗) of Ω0,1
𝑗 .

We treat the case of a non-vanishing isotropy group 𝒢𝑗, which acts by permutations

on {𝑧𝑘} = |𝐷| ∪ 𝐴. It suffices to change the above projector 𝑃 by replacing the vector fields

𝑋𝑘 by 𝒢𝑗-invariant vector fields �̂�𝑘. For that denote by 𝐵𝑟(𝑧𝑘), 𝑟 > 0, the interior of the

above 𝑟-discs. Observe that the disjoint union of the 𝐵𝑟(𝑧𝑘) is 𝒢𝑗-invariant as 𝒢𝑗 acts by

isometries on (𝑆, 𝑔𝑗).
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For each 𝑧𝑘 we assign a partner point 𝑤𝑘 ∈ 𝐵𝑟∕2(𝑧𝑘) ⧵ {𝑧𝑘} requiring that the 𝜓(𝑤𝑘) are

pair-wise distinct for all 𝜓 ∈ 𝒢𝑗 and all 𝑘. Notice, that the distance between 𝑧𝑘 and its

partner 𝑤𝑘 is 𝒢𝑗-invariant for all 𝑘. We choose 𝜀 > 0 such that 𝐵𝜀(𝑤𝑘) ⊂ 𝐵𝑟∕2(𝑧𝑘) ⧵ {𝑧𝑘} for

all 𝑘. Furthermore, we reqiure that the 𝜓
(
𝐵𝜀(𝑤𝑘)

)
are pair-wise disjoint for all 𝜓 ∈ 𝒢𝑗 and

for all 𝑘. Modify the cut off functions 𝑓𝑘 so that 𝑓𝑘 has support in

𝐵𝑟(𝑧𝑘) ⧵
⨆

𝓁≠𝑘 and 𝜓∈𝒢𝑗

𝜓
(
𝐵𝜀∕2(𝑤𝓁)

)

and is equal to 1 on

𝐵𝑟∕2(𝑧𝑘) ⧵
⨆

𝓁≠𝑘 and 𝜓∈𝒢𝑗

𝜓
(
𝐵𝜀(𝑤𝓁)

)
.

In particular, for all 𝑘, we get 𝑓𝑘(𝑤𝑘) = 1 and 𝑓𝑘
(
𝜓(𝑤𝓁)

)
= 0 for all 𝓁 ≠ 𝑘 and 𝜓 ∈ 𝒢𝑗. With

the cut off functions 𝑓𝑘 modified we define 𝑋𝑘 for given 𝑋 ∈ 𝒳 as in the un-isotropic case.

We define the symmetrisations via

�̂�𝑘 ∶=
∑

𝜓∈𝒢𝑗

𝜓∗𝑋𝑘 .

We have 𝜙∗�̂�𝑘 = �̂�𝑘 for all 𝜙 ∈ 𝒢𝑗 and for all 𝑘 because 𝒢𝑗 acts on itself via composition

permuting 𝒢𝑗. The �̂�𝑘 that are assigned to the zeros 𝑧𝑘 of 𝒳 vanish; the remaining �̂�𝑘 span

a 2
(
#𝐴 − #𝐷

)
-dimensional vector space because

�̂�𝑘(𝑤𝓁) = 𝑋𝓁(𝑤𝓁)

for all 𝑘,𝓁. A basis can be obtained by taking 𝑋 ∈ 𝒳 with 𝑋(𝑧𝑘) non-zero, so that the

corresponding partners 𝑋𝑘(𝑤𝑘) do not vanish.

Remark 6.9.1. Observe that the elements of (1 − 𝑃)(𝒳), which are linear combinations of

the vector fields �̂�𝑘 constructed above, are vector fields on 𝑆 that vanish on the boundary

𝜕𝑆. Therefore, the complex structure 𝑗 on 𝑆 preserves (1 − 𝑃)(𝒳) and defines a complex

structure on 𝐸𝑗 = �̄�𝑗(1 − 𝑃)(𝒳) as �̄�𝑗 commutes with 𝑗, so that 𝐸𝑗 is a complex vector space

of complex dimension #𝐴 − #𝐷. Consequently taking the complex deformations form

Example 6.7.2 w.r.t. 𝐸𝑗 yields holomorphic skyscraper deformations.
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Remark 6.9.2. In the above construction the radii 𝑟𝑘 of the discs

𝐷𝑟𝑘∕2(𝑧𝑘) ∶= 𝐵𝑟𝑘∕2(𝑧𝑘)

are necessarily constant on the orbits of the 𝒢𝑗-action on the points 𝑧𝑘 ∈ |𝐷| ∪ 𝐴 because

𝒢𝑗 acts on the discs 𝐷𝑟𝑘∕2(𝑧𝑘) by isometries of (𝑆, 𝑔𝑗); but the radii are allowed to vary on

distinct orbits 𝒢𝑗𝑧𝑘. For a selection of orbit-wise constant radii 𝑟𝑘 denoted by 𝐫 and the

disjoint union

𝐃𝑗,𝐫 ∶=
⨆

𝑧𝑘∈|𝐷|∪𝐴
𝐷𝑟𝑘∕2(𝑧𝑘)

a skyscraper deformation 𝔧 that is stationary on 𝐃𝑗,𝐫 can be constructed by the above

arguments. Given a neighbourhood 𝑈 of |𝐷| ∪ 𝐴 one can choose 𝐫 so small such that

𝐃𝑗,𝐫 ⊂ 𝑈. This yields an example of a small disc structure 𝐃𝑗, which by definition is a

𝒢𝑗-invariant disjoint union of discs 𝐷𝑧, 𝑧 ∈ |𝐷|∪𝐴, contained in a given neighbourhood of

|𝐷| ∪ 𝐴 such that 𝑧 ∈ 𝐷𝑧 for all 𝑧 ∈ |𝐷| ∪ 𝐴. Furthermore the 𝐷𝑧 are the image of a smooth

embedding of the closed unit disc 𝔻 into 𝑆. Observe that a 𝑘-holomorphic map 𝜑 ∈ 𝒢

defined on (𝑆, 𝑗) sends 𝐃𝑗,𝐫 diffeomorphically onto a small disc structure 𝐃𝑘 on which the

𝜑-push-forward skyscraper deformation 𝔨 of 𝔧 is stationary.

Using small disc structures 𝐃𝑗 orbifold charts
(
𝑉𝑗,𝒢𝑗,𝔭−1𝑗

)
and 𝜏-uniformiser

(
𝐸𝑗,𝒢𝑗, 𝑉𝑗,𝒰𝑗, [𝔧]

)
for ℛ𝜏 about [𝑗] =

[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

]
can be constructed as in Section 6.8

using skyscraper deformations 𝔧 that are stationary on𝐃𝑗 exclusively. The transformation

behaviour encoded in the 𝐓𝑗,𝑘 is compatible with skyscraper deformations which are

stationary on disc structures. Correspondingly, a neighbourhood base of the topology on

ℛ𝜏 = 𝒥∕𝒢 described in Remark 6.3.2 can be given by the family of subsets whose elements

[𝑘] can be represented by complex structures 𝑘 that belong to an open subset of 𝒥 and

that satisfy 𝑘 = 𝑗 restricted to some small disc structure 𝐃𝑗. This follows with the implicit

function theorem formulated in Section 6.8.

Remark 6.9.3. In view of the proceeding Remarks 6.9.1 and 6.9.2 the orbifold structure on

ℛ𝜏 ensured in Proposition 6.8.2 and the subsequently described étale proper Lie groupoid

structure admit subatlases generated by complex skyscraper deformations, so that the
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respective substructures are complex. For that one needs to verify that the transition

maps 𝑡◦𝑠−1 and 𝑠◦𝑡−1 are holomorphic. In terms of complex skyscraper deformations

𝔧∶ 𝑉𝑗 ∋ 𝑦 ↦→ 𝑗(𝑦) and 𝔨∶ 𝑉𝑘 ∋ 𝑧 ↦→ 𝑘(𝑧) of
(
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

)
and

(
𝑆, 𝑘, 𝐷, {1, i,−1}, 𝐴

)
,

resp., such that there exists 𝜑 ∈ 𝒢 with 𝜑∗𝑘 = 𝑗 the transition maps are given by 𝑦 ↦→ 𝑧(𝑦)

and 𝑧 ↦→ 𝑦(𝑧), resp. With the description before Proposition 6.8.2 we get [𝔨]◦
(
𝑦 ↦→

𝑧(𝑦)
)
= �̂�(𝑦)∗[𝔧] and [𝔧]◦

(
𝑧 ↦→ 𝑦(𝑧)

)
= 𝜑(𝑧)∗[𝔨] for smooth maps 𝑉𝑘 → 𝒢, 𝑧 ↦→ 𝜑(𝑧), and

𝑉𝑗 → 𝒢, 𝑦 ↦→ �̂�(𝑦), with 𝜑(0) = 𝜑 and �̂�(0) = 𝜑−1. By symmetry it will be sufficient

to verify holomorphicity in the first situation: Taking the derivative w.r.t. 𝑦 ∈ 𝑉𝑗 in

𝑘
(
𝑧(𝑦)

)
= �̂�(𝑦)∗𝑗(𝑦) we obtain

𝑇𝑧(𝑦)𝔨◦𝑇𝑦𝑧(�̇�) = 2𝑘
(
𝑧(𝑦)

)
⋅ �̄�𝑘(𝑧(𝑦))

(
�̂�(𝑦)∗

(
𝑇𝑦�̂�(�̇�)

))
+ �̂�(𝑦)∗

(
𝑇𝑦𝔧(�̇�)

)

as in Remark 6.7.3. Replacing �̇� by 𝑗�̇� and composing with −𝑘
(
𝑧(𝑦)

)
from the left yields

−𝑇𝑧(𝑦)𝔨◦𝑘◦𝑇𝑦𝑧(𝑗�̇�) = 2 ⋅ �̄�𝑘(𝑧(𝑦))
(
�̂�(𝑦)∗

(
𝑇𝑦�̂�(𝑗�̇�)

))
+ �̂�(𝑦)∗

(
𝑇𝑦𝔧(�̇�)

)
.

The second summand on the right stays the same because 𝑘
(
𝑧(𝑦)

)
= �̂�(𝑦)∗𝑗(𝑦) and 𝔧(𝑦)◦𝑇𝑦𝔧 =

𝑇𝑦𝔧◦𝑗 by complexitiy, see Remark 6.9.1. Similarly, to deal with the left hand side use

𝔨(𝑧)◦𝑇𝑧𝔨 = 𝑇𝑧𝔨◦𝑘. On the right hand side, the first summend is an element in

Im
(
𝑘
(
𝑧(𝑦)

)
⋅ �̄�𝑘(𝑧(𝑦))

)

because 𝑗�̇� vanishes along the boundary 𝜕𝑆, so that the vector field �̂�(𝑦)∗
(
𝑇𝑦�̂�(𝑗�̇�)

)
vanishes

along 𝜕𝑆 as well, and because on boundary vanishing vector fields on (𝑆, 𝜕𝑆) the Cauchy–

Riemann operator is complex linear, cf. Section 6.4. Effectivity of 𝔨 yields the algebraic

splitting

Ω0,1
𝑘(𝑧(𝑦)) = 𝑇𝑧(𝑦)𝔨 (𝐸𝑘) ⊕ Im

(
𝑘
(
𝑧(𝑦)

)
⋅ �̄�𝑘(𝑧(𝑦))

)
.

Modding out the contributions to the second summand the above two equations compare

to

𝑇𝑧(𝑦)𝔨◦𝑇𝑦𝑧(�̇�) = −𝑇𝑧(𝑦)𝔨◦𝑘◦𝑇𝑦𝑧(𝑗�̇�) .

As 𝑇𝑧(𝑦)𝔨 is injective this yields

𝑇𝑦𝑧(�̇�) = −𝑘◦𝑇𝑦𝑧(𝑗�̇�) ,
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i.e. 𝑘◦𝑇𝑦𝑧 = 𝑇𝑦𝑧◦𝑗 meaning that 𝑦 ↦→ 𝑧(𝑦) is holomorphic.

Consequently, we obtain a complex version of Proposition 6.8.2, so that, in particular,

ℛ𝜏 is orientable.

Proposition 6.9.4. The nodal Riemann moduli space ℛ𝜏 admits the structure of a complex

orbifold of complex dimension #𝐴 − #𝐷.

Remark 6.9.5. In order to derive Proposition 6.9.4 we fixed in Section 6.3 the combinato-

rial data
(
𝑆, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝐴

)
to represent stable nodal marked discs

[
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝐴

]

and used deformations of 𝑗. A direct way to obtain a complex orbifold structure would

be to change the roles. Apply uniformisation as in Remark 6.3.1 in order to represent the

classes
[
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝐴

]
by nodal discs whose disc component equals

(
𝔻, i, {1, i,−1}

)

and whose sphere components are given by (ℂ𝑃1, i). The complex orbifold structure can

be read off from variations of the configurations of the nodal points 𝐷 and the marked

points 𝐴 as such, resp.

6.10 Varying the stable nodal type via desingularisation

For a complex number 𝑎 of modulus |𝑎| ≤ 1 we consider the intersection of the planar

algebraic curve {𝑧𝑤 = 𝑎} ⊂ ℂ × ℂ with the polydisc 𝔻 × 𝔻. For 𝑎 = 0 this curve is the

union of the discs {𝑧 = 0} = {0} × 𝔻 and {𝑤 = 0} = 𝔻 × {0} that intersect in the singularity

of the curve. For 𝑎 ≠ 0 the equation 𝑧𝑤 = 𝑎 can be solved by 𝑤 = 𝑎∕𝑧 so that we obtain

a cylinder that has no singularities: The restriction of the projection (𝑧, 𝑤) ↦→ 𝑧 to the

curve {𝑧𝑤 = 𝑎} yields a biholomorphism onto the annulus {|𝑎| ≤ |𝑧| ≤ 1} in the first

coordinate plane. Interchanging 𝑧 and 𝑤 yields a biholomorphism onto {|𝑎| ≤ |𝑤| ≤ 1}.

Both biholomorphisms constitute holomorphic charts of {𝑧𝑤 = 𝑎}. The transition map

from the first annulus to the second is

𝑧 ↦,→ 𝑎
𝑧 .
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Taking positive and negative holomorphic polar coordinates (𝑧, 𝑤) ↦→ − ln 𝑧 and

(𝑧, 𝑤) ↦→ ln𝑤, resp., i.e. writing

𝑧 = e−(𝑠+i𝑡) and 𝑤 = e𝑢+i𝑣 ,

the transition map gets

[
0,− ln |𝑎|

]
× 𝑆1 ,→

[
ln |𝑎|, 0

]
× 𝑆1 , (𝑠, 𝑡) ↦,→

(
𝑠 + ln |𝑎|, 𝑡 + arg 𝑎

)
,

where 𝑆1 = 𝜕𝔻. For the complex logarithm we use the main branch.

Observe that rotations 𝑧 ↦→ e−i𝜃+𝑧 and 𝑤 ↦→ ei𝜃−𝑤 for 𝜃+, 𝜃− ∈ 𝑆1 of the coordinate

planes, which correspond to

(𝑠, 𝑡) ↦,→
(
𝑠, 𝑡 + 𝜃+

)
and (𝑠, 𝑡) ↦,→

(
𝑠, 𝑡 + 𝜃−

)

w.r.t. positive and negative holomorphic polar coordinates, resp., result into a change of

the defining equation to

𝑧𝑤 = e−i(𝜃+−𝜃−)𝑎

as the pull back along (𝑧, 𝑤) ↦→
(
e−i𝜃+𝑧, ei𝜃−𝑤

)
yields 𝑧𝑤 = 𝑎. The coresponding transition

map is

(𝑠, 𝑡) ↦,→
(
𝑠 + ln |𝑎|, 𝑡 + arg 𝑎 −

(
𝜃+ − 𝜃−

))
.

A switch of the coordinates (𝑧, 𝑤) ↦→ (𝑤, 𝑧) does not effect the proceeding consideration.

Given
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

]
∈ ℛ𝜏 we describe a similar desingularisation about a nodal

pair {𝑧0, 𝑤0} ∈ 𝐷 in terms of parametrised connected sum. Choose a small disc structure

𝐃𝑗 on
(
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

)
. Denote the corresponding discs about the nodal points 𝑧0, 𝑤0 ∈

|𝐷| by 𝐷𝑧0 and 𝐷𝑤0
, resp., and choose boundary points 𝑧𝜕 ∈ 𝜕𝐷𝑧0 and 𝑤𝜕 ∈ 𝜕𝐷𝑤0

. We call

the pair {𝑧𝜕, 𝑤𝜕} a decoration of the nodal pair {𝑧0, 𝑤0}. By [54, Theorem C.5.1] there exists

unique biholomorphic identifications of
(
(𝐷𝑧0 , 𝑧0, 𝑧𝜕), 𝑗

)
and

(
(𝐷𝑤0

, 𝑤0, 𝑤𝜕), 𝑗
)
, resp., with

(
(𝔻, 0, 1), i

)
.

For given gluing parameter 𝑎 ∈ 𝔻, 𝑎 ≠ 0, replace − ln |𝑎| by the modulus

𝑅 = e1∕|𝑎| − e
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in the discussion about the planar algebraic curve {𝑧𝑤 = 𝑎}. Identify the first annulus

{e−𝑅 ≤ |𝑧| ≤ 1} with the second {e−𝑅 ≤ |𝑤| ≤ 1} via the transition map

𝑧 ↦,→ e−𝑅+i arg(𝑎)

𝑧 ,

which w.r.t. positive and negative holomorphic polar coordinates reads as

[0, 𝑅] × 𝑆1 ,→ [−𝑅, 0] × 𝑆1 , (𝑠, 𝑡) ↦,→
(
𝑠 − 𝑅, 𝑡 + arg 𝑎

)
.

We obtain a surface 𝑆𝑎 from 𝑆 ⧵
(
Int(𝐷𝑧0) ∪ Int(𝐷𝑤0

)
)

by gluing the finite cylinder 𝑍𝑎 ∶=

[0, 𝑅] × 𝑆1, which is identified with [−𝑅, 0] × 𝑆1 via the above transition map, along the

respective boundary circles via the restrictions of the biholomorphic identifications of

𝐷𝑧0 and 𝐷𝑤0
, resp, with 𝔻.

The construction of the surface 𝑆𝑎 defines a complex structure 𝑗𝑎 that coincides with 𝑗

on 𝑆 ⧵
(
Int(𝐷𝑧0) ∪ Int(𝐷𝑤0

)
)

and with i on the cylinder 𝑍𝑎 of modulus 𝑅. This results into an

element
[
𝑆𝑎, 𝑗𝑎, 𝐷𝑎, {1, i,−1}, 𝐴

]
of ℛ𝜏′ with stable nodal type 𝜏′, which necessarily differs

from 𝜏. The respective special points are given by

𝐷𝑎 ∶= 𝐷 ⧵
{
{𝑧0, 𝑤0}

}
,

{1, i,−1}, and 𝐴 under the inclusion of 𝑆 ⧵
(
Int(𝐷𝑧0) ∪ Int(𝐷𝑤0

)
)

into 𝑆𝑎.

A change of biholomorphic identifications of 𝐷𝑧0 and 𝐷𝑤0
with 𝔻 is given by a rotation

of the boundary points 𝑧𝜕 and 𝑤𝜕, resp., which in coordinates reads as 𝑧 ↦→ e−i𝜃+𝑧 and

𝑤 ↦→ ei𝜃−𝑤, say. Gluing with the rotated identifications yields a biholomorphic copy
(
𝑆𝑏, 𝑗𝑏, 𝐷𝑏, {1, i,−1}, 𝐴

)
of
(
𝑆𝑎, 𝑗𝑎, 𝐷𝑎, {1, i,−1}, 𝐴

)
, where

𝑏 = e−i(𝜃+−𝜃−)𝑎 .

To obtain a biholomorphic map take the identity map on 𝑆 ⧵
(
Int(𝐷𝑧0) ∪ Int(𝐷𝑤0

)
)

and the

rotated transition map 𝑍𝑎 → 𝑍𝑏 given by

(𝑠, 𝑡) ↦,→
(
𝑠 − 𝑅, 𝑡 + arg 𝑎 −

(
𝜃+ − 𝜃−

))

on 𝑍𝑎.
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Such rotations naturally appear when a automorphism 𝜓 ∈ 𝒢𝑗 for which the nodal

points 𝑧0 and 𝑤0 are fixed-points, i.e. 𝜓(𝑧0) = 𝑧0 and 𝜓(𝑤0) = 𝑤0, acts on 𝑆. Indeed, 𝜓

preserves the complement of 𝐷𝑧0 ∪ 𝐷𝑤0
in 𝑆 and induces rotations on 𝐷𝑧0 ∪ 𝐷𝑤0

. The

rotations are measured by the change of decorations from {𝑧𝜕, 𝑤𝜕} to 𝜓
(
{𝑧𝜕, 𝑤𝜕}

)
in terms

of angles −𝜃+ and 𝜃−, say. Therefore, we get a holomorphic diffeomorphism

(
𝑆𝑎, 𝑗𝑎, 𝐷𝑎, {1, i,−1}, 𝐴

)
,→

(
𝑆𝑏, 𝑗𝑏, 𝐷𝑏, {1, i,−1}, 𝐴

)

as above which this time coincides with 𝜓 on 𝑆 ⧵
(
Int(𝐷𝑧0) ∪ Int(𝐷𝑤0

)
)
.

We denote by

𝔻𝐷

the set of all maps from the set of nodal points 𝐷 to the set 𝔻 of complex numbers of

modulus less than or equal to 1. Choose a small disc structure 𝐃𝑗 on
(
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

)

together with a decoration for each disc in 𝐃𝑗. The choice of decorations determine

holomorphic diffeomorphisms of all discs of the disc structure with 𝔻 such that the nodal

point is mapped to 0 ∈ 𝔻 and the decoration to 1 ∈ 𝔻. Given 𝐚 ∈ 𝔻𝐷 we perform the

described parametrised connected sum about each nodal pair {𝑧, 𝑤} ∈ 𝐷 with gluing

parameter

𝑎{𝑧,𝑤} ∶= 𝐚
(
{𝑧, 𝑤}

)
.

This is done by replacing the node {𝑧, 𝑤} with the cylinder 𝑍{𝑧,𝑤}𝑎{𝑧,𝑤} . In the case of a vanishing

gluing parameter 𝑎{𝑧,𝑤} formally

𝑍{𝑧,𝑤}0 ∶= 𝐷𝑧 ⊔ 𝐷𝑤

is given by the disjoint union of half-infinite cylinders [0,∞)×𝑆1 and (−∞, 0]×𝑆1 of infinite

modulus after removing the nodal points 𝑧 and 𝑤. In other words, if 𝑎{𝑧,𝑤} = 0 we do

nothing and keep the nodal pair {𝑧, 𝑤} ∈ 𝐷𝐚 , so that 𝐷𝐚 arises from 𝐷 by removing all

nodal pairs {𝑧, 𝑤} with 𝑎{𝑧,𝑤} ≠ 0. The resulting surface is denoted by

(
𝑆𝐚 , 𝑗𝐚 , 𝐷𝐚 , {1, i,−1}, 𝐴

)
.
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Starting off with a skyscraper deformation 𝑉𝑗 ∋ 𝑦 ↦→ 𝑗(𝑦) and a small disc structure of

sufficiently small discs we will get

(
𝑆𝐚 , 𝑗(𝑦)𝐚 , 𝐷𝐚 , {1, i,−1}, 𝐴

)

by the same construction.

In order to describe the effect of the 𝒢𝑗-action of
(
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

)
on the desingu-

larisation we denote by 𝜅𝑧,𝑤, {𝑧, 𝑤} ∈ 𝐷, the complex anti-linear map 𝑇𝑤𝑆 → 𝑇𝑧𝑆 that

conjugated with the linearisations of the biholomorphic identifications of the discs 𝐷𝑤
and𝐷𝑧 with𝔻 is equal to the complex conjugation map 𝑥+i𝑦 ↦→ 𝑥−i𝑦 onℂ. Interchanging

the role of 𝑧 and 𝑤 replaces 𝜅𝑧,𝑤 by its inverse 𝜅𝑤,𝑧 = (𝜅𝑧,𝑤)−1. We call 𝜅𝑧,𝑤 a compatible

nodal identifier. Given 𝜓 ∈ 𝒢𝑗 and {𝑧, 𝑤} ∈ 𝐷 we define the phase function

Θ{𝑧,𝑤}(𝜓)∶ 𝑇𝑧𝑆 ,→ 𝑇𝑧𝑆

by

Θ{𝑧,𝑤}(𝜓) ∶= 𝜅𝑧,𝑤◦𝑇𝜓(𝑤)(𝜓)−1◦𝜅𝜓(𝑤),𝜓(𝑧)◦𝑇𝑧𝜓 .

Taking positive and negative holomorphic polar coordinates about 𝑧 and 𝑤, resp., so that

𝜓 acts in coordinates by multiplication with e−i𝜃+ and ei𝜃− , resp., we get

(
Θ{𝑧,𝑤}(𝜓)

)
(𝑣) = e−i(𝜃+−𝜃−)𝑣

for all 𝑣 ∈ 𝑇𝑧𝑆, which we simply declare to a multiplication operator

Θ{𝑧,𝑤}(𝜓) ≡ e−i(𝜃+−𝜃−) .

This shows independence of the phase function

Θ∶ 𝐷 × 𝒢𝑗 ,→ 𝑆1 ,
(
{𝑧, 𝑤}, 𝜓

)
↦,→ Θ{𝑧,𝑤}(𝜓) ,

of the chosen ordering of {𝑧, 𝑤} in the definition of Θ{𝑧,𝑤}(𝜓) and of the chosen parity of

the holomorphic polar coordinates about 𝜓(𝑧) and 𝜓(𝑤). This results in a 𝒢𝑗-action on 𝔻𝐷

defined by 𝜓∗𝐚 = 𝐛 via

𝑏{𝜓(𝑧),𝜓(𝑤)} ∶= Θ{𝑧,𝑤}(𝜓) ⋅ 𝑎{𝑧,𝑤}
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for all {𝑧, 𝑤} ∈ 𝐷. Consequently, for any skyscraper deformation 𝑉𝑗 ∋ 𝑦 ↦→ 𝑗(𝑦), a small

disc structure of sufficiently small discs, and 𝜓 ∈ 𝒢𝑗 we get an isomorphism

𝜓𝐚 ∶
(
𝑆𝐚 , 𝑗(𝜓∗𝑦)𝐚 , 𝐷𝐚 , {1, i,−1}, 𝐴

)
,→

(
𝑆𝜓∗𝐚 , 𝑗(𝑦)𝜓∗𝐚 , 𝐷𝜓∗𝐚 , {1, i,−1}, 𝐴

)

by the gluing construction and symmetry of 𝑦 ↦→ 𝑗(𝑦).

6.11 Topology and orbifold structure – variable stable nodal type

A neighbourhood base of a second countable paracompact Hausdorff topology on ℛ𝑁 ,

𝑁 ≥ 0, is given by the family of subsets of ℛ𝑁 , whose elements are of the form

[
𝑆𝐚 , 𝑘𝐚 , 𝐷𝐚 , {1, i,−1}, 𝐴

]

with𝑁 = #𝐴, which are obtained from a nodal disc
(
𝑆, 𝑘, 𝐷, {1, i,−1}, 𝐴

)
by the parametrised

connected sum construction with given decorated small disc structure 𝐃𝑗, with gluing

parameter 𝐚 ∈ 𝔻𝐷 with |𝐚| < 𝜀 for some 𝜀 ∈ (0, 1), with complex structures 𝑘 that belong

to an open neighbourhood of 𝑗 in 𝒥 such that 𝑘 = 𝑗 restricted to 𝐃𝑗. This follows as in [43,

Proposition 2.4] and [42, Theorem 2.15 and Theorem 5.13] because no extra argument

for boundary un-noded nodal discs is needed caused by absence of boundary nodes. The

Hausdorff property follows with Gromov compactness for stable holomorphic discs, see

[25].

The induced topology on ℛ𝜏 in ℛ𝑁 agrees with the one on ℛ𝜏 previously defined in

Remark 6.3.2. The induced notion of convergence of sequences in ℛ𝑁 coincides with

Gromov convergence as described in [1, Chapter 1], [66, Appendix B] or in [15, Section

4], [46, Chapter IV] after Schwartz reflection along the boundary of the nodal discs for

example.

In order to obtain an orbifold structure on ℛ𝑁 we consider desingularisations

(
𝑆𝐚 , 𝑗(𝑦)𝐚 , 𝐷𝐚 , {1, i,−1}, 𝐴

)

of
(
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

)
as described in Section 6.10. For 𝐚0 ∈ 𝔻𝐷 consider the set 𝐷 ⧵ 𝐷𝐚0 of
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all nodal pairs {𝑧, 𝑤} ∈ 𝐷 on which the map 𝐚0 is non-zero. Define a deformation

𝔧𝐚0 ∶ 𝑉𝑗𝐚0 × 𝔻
𝐷⧵𝐷𝐚0 ,→ 𝒥𝑆𝐚0 , (𝑦,𝐛) ↦,→ 𝑗(𝑦)𝐚0+𝐛 ,

of
(
𝑆𝐚0 , 𝑗(𝑦)𝐚0 , 𝐷𝐚0 , {1, i,−1}, 𝐴

)

by setting 𝐚 = 𝐚0 + 𝐛. For small deformation parameter 𝐛 the deformed family of surfaces

equals
(
𝑆𝐚0+𝐛, 𝑗(𝑦)𝐚0+𝐛, 𝐷𝐚0+𝐛, {1, i,−1}, 𝐴

)
.

The nodal discs family is isomorphic to
(
𝑆𝐚0 , 𝑗

′(𝑦)𝐛, 𝐷𝐚0 , {1, i,−1}, 𝐴
)

with corresponding deformation

𝔧′𝐛∶ 𝑉𝑗𝐚0 × 𝔻
𝐷⧵𝐷𝐚0 ,→ 𝒥𝑆𝐚0 , (𝑦,𝐛) ↦,→ 𝑗′(𝑦)𝐛 ,

via an isomorphism that is the identification map on the complement of the respective

small disc structure, so that the deformation is given by rotations and stretchings of the

cylindrical neck regions that correspond to the nodes, on which 𝐚0 not vanishes. The

partial Kodaira differential of 𝔧′𝐛 at (𝑦, 0) is

[
𝑇(𝑦,0)𝔧′𝐛

]
∶ 𝐸𝑗𝐚0 × ℂ

𝐷⧵𝐷𝐚0 ,→ Ω0,1
𝑗(𝑦)𝐚0

,→ 𝐻1
𝑗(𝑦)𝐚0

.

Similarly to [43, Theorem 2.13] one constructs uniformisers of an orbifold structure

on ℛ𝑁 as the above desingularisations stay away from the boundary of the nodal discs in

ℛ𝑁 . For given
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

]
∈ ℛ𝑁 such a uniformiser is a deformation

𝒱 ∋ (𝑦, 𝐚) ↦,→
(
𝑆𝐚 , 𝑗(𝑦)𝐚 , 𝐷𝐚 , {1, i,−1}, 𝐴

)

of
(
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

)
for an open subset 𝒱 of 𝑉𝑗 × 𝔻𝐷 such that the following holds:

• The union of all equivalence classes
[
𝑆𝐚 , 𝑗(𝑦)𝐚 , 𝐷𝐚 , {1, i,−1}, 𝐴

]
over all (𝑦, 𝐚) ∈ 𝒱 is an

open subset of ℛ𝑁 .
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• The map 𝒱 → 𝒰 that assigns to (𝑦, 𝐚) the class
[
𝑆𝐚 , 𝑗(𝑦)𝐚 , 𝐷𝐚 , {1, i,−1}, 𝐴

]
descends to a

homeomorphism 𝒱∕𝒢𝑗 → 𝒰.

• An isomorphism between the classes belonging to (𝑦, 𝐚), (𝑧,𝐛) ∈ 𝒱 is given by 𝜓𝐚 for

𝜓 ∈ 𝒢𝑗 and (𝑧,𝐛) =
(
𝜓∗𝑦, 𝜓∗𝐚

)
.

• For all points in 𝒱 the partial Kodaira differential is an isomorphism.

Compatibility of uniformisers is expressed via the sets

𝐓𝑗,𝑘 ∶=
{(
𝜑, (𝑦, 𝐚), (𝑧,𝐛)

)}
⊂ 𝒢 × (𝑉𝑗 × 𝔻𝐷) × (𝑉𝑘 × 𝔻𝐷)

corresponding to all isomorphisms

𝜑∶
(
𝑆𝐚 , 𝑗(𝑦)𝐚 , 𝐷𝐚 , {1, i,−1}, 𝐴

)
,→

(
𝑆𝐛, 𝑘(𝑧)𝐛, 𝐷𝐛, {1, i,−1}, 𝐴

)
,

which are smooth manifolds of dimension 2#𝐴, so that ℛ𝑁 supports an étale proper Lie

groupoid structure as formulated after Proposition 6.8.2. This follows with the (anti-

)gluing construction ([43, Section 2.4]) for the non-linear Cauchy–Riemann operator

along the nodes (which take place away from the boundary) known from Floer theory,

cf. [43, Theorem 2.16] and [42, Theorem 2.24]. Similarly, the universal property of the

construction stated in [43, Theorem 2.16] translates into the present situation. The in-

volved variation of marked points can be treaded as in [42, Remark 3.17]. Finally, using

convex interpolation between the exponential gluing profile e1∕𝑟 −e we used in the gluing

construction and the logarithmic gluing profile − ln 𝑟 that appeared in the desingularisa-

tion of the complex algebraic curve at the beginning of Section 6.10 naturally yields an

orientation on ℛ𝑁 that extends the complex orientation on ℛ𝜏 given in Proposition 6.9.4,

see [42, Section 2.3.2].

Theorem 6.11.1. The nodal Riemann moduli space ℛ𝑁 of stable nodal boundary un-noded

discs with 𝑁 = #𝐴 interior marked points admits a naturally oriented orbifold structure of

dimension 2#𝐴.
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7 Polyfold perturbations

We prove Theorem 5.1.2 under assumption (ii). For that we place ourselves into the

situation of Section 5.3 and follow the line of reasoning of the proof of Theorem 5.1.2

part (i). As we will not assume semi-positivity this time regularity of relevant moduli

spaces can only be achieved for simple nodal holomorphic discs via perturbing the almost

complex structure, cf. Section 5.3. For non-simple nodal holomorphic discs we will use

additional abstract polyfold perturbations as introduced in [43].

7.1 Boundary un-noded stable disc maps

We consider the tame almost complex manifold
(
�̂�, Ω̂, 𝐽

)
defined in Section 5.2. For

boundary un-noded nodal discs (𝑆, 𝑗, 𝐷) as introduced in Section 6.1 we consider smooth

maps

𝑢∶ (𝑆, 𝜕𝑆) ,→ (�̂�,𝑁∗)

that descend to continuous maps on 𝑆∕𝐷. If 𝐷 is empty we call 𝑢 un-noded. If in addition

𝑇𝑢◦𝑗 = 𝐽(𝑢)◦𝑇𝑢 we call 𝑢 a nodal holomorphic disc map. Observe that we do not need

to consider nodal points on the boundary due to the Gromov compactification described

in Remark 4.4.1.

More generally, we consider continuous maps 𝑢∶ (𝑆, 𝜕𝑆) → (�̂�,𝑁∗) defined on a

marked boundary un-noded nodal disc
(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}

)
(see Section 6.1) such that

𝑢 descends to a continuous map on the quotient 𝑆∕𝐷 and such that 𝑢
(
Int 𝑆

)
⊂ Int �̂�.

Moreover, we require that 𝑢 is contained in the Sobolev space of square integrable maps

𝐻3,𝜎(𝑆, 𝑗) ≡ 𝐻3,𝜎(𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}
)

following [43, Definition 1.1]: We require that 𝑢 is of class 𝑢 ∈ 𝐻3
loc

(
𝑆 ⧵ |𝐷|

)
and that w.r.t.

positive holomorphic polar coordinates [0,∞) × 𝑆1, 𝑆1 = ℝ∕2𝜋ℤ, about the nodal points

|𝐷| (see Section 6.10) the map 𝑢 is of weighted Sobolev class 𝐻3,𝜎. The weights are given

by e𝜎𝑠, 𝑠 ∈ [0,∞), for some 𝜎 ∈ (0, 1). In other words, 𝑢 is contained in 𝐻3,𝜎 precisely if
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all weak derivatives 𝐷𝛼𝑢, |𝛼| ≤ 3, of 𝑢 on [0,∞) × 𝑆1 exist and all 𝐷𝛼𝑢 ⋅ e𝜎𝑠, |𝛼| ≤ 3, are

square integrable on [0,∞) × 𝑆1. The latter is equivalent to 𝑢 e𝜎𝑠 ∈ 𝐻3 on [0,∞) × 𝑆1. In

particular, by Sobolev embedding, 𝑢 is 𝐶1 (up to the boundary 𝜕𝑆) restricted to 𝑆 ⧵ |𝐷|. But

in general 𝑢 is not differentiable at the nodal points |𝐷| on 𝑆. Consider for example the

continuous function 𝑢(𝑧) = |𝑧|
1+𝜎
2 in holomorphic coordinates 𝑧 ∈ ℂ, which w.r.t. positive

holomorphic polar coordinates reads as (𝑠, 𝑡) ↦→ e−
1+𝜎
2
𝑠.

The space 𝐻3,𝜎(𝑆, 𝑗) is well defined, i.e. invariant under coordinate changes after

possibly shrinking the chart domains. Away from the nodes |𝐷| this follows as for 𝐻3
loc

(
𝑆 ⧵

|𝐷|
)

via [4, Theorem 3.41]. Near the nodes we observe that the area form e2𝜎𝑠d𝑡 ∧ d𝑠

w.r.t. positive holomorphic polar coordinates corresponds to the singular area form

|𝑧|−2(1+𝜎) i
2
d𝑧 ∧ d�̄� in holomorphic coordinates about the nodal point 0 ∈ ℂ. The area

form i
2
d𝑧 ∧ d�̄� transforms under biholomorphic coordinate changes via a conformal

factor, which we can assume to be bounded above and away from zero by shrinking

the chart domains if necessary. The coordinate change itself is of the form 𝑧 ↦→ 𝑧ℎ(𝑧),

where 0 corresponds to a nodal point. Here ℎ is a holomorphic function, whose absolute

value can be assumed to be bounded above and away from zero also. Consequently, the

singular area form |𝑧|−2(1+𝜎) i
2
d𝑧 ∧ d�̄� transforms via a bounded above and away from

zero conformal factor also. Hence, the same holds true for e2𝜎𝑠d𝑡 ∧ d𝑠. In fact, the above

coordinate change becomes

(𝑠, 𝑡) ↦,→ (𝑠, 𝑡) − ln
(
ℎ
(
e−(𝑠+i𝑡)

))
,

whose derivatives are bounded above and whose first derivative is bounded away from

zero. Therefore, invariance under coordinate changes near the nodes follows as in [4,

Theorem 3.41]. By the same arguments we see that locally defined norms on 𝐻3
loc and

𝐻3,𝜎 transform via the respective coordinate changes to equivalent norms. This defines

a topology on 𝐻3,𝜎(𝑆, 𝑗); a neighbourhood base is given by the set of those maps that

restricted to one of the above charts belong to an open set in 𝐻3
loc and 𝐻3,𝜎, resp.
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To each 𝑢 ∈ 𝐻3,𝜎(𝑆, 𝑗) we assign the symplectic energy integral

∫
𝑆
𝑢∗Ω̂

by approximating the continuous map 𝑢 by a 𝐶1-map 𝑣 and defining the symplectic

energy integral via ∫𝑆 𝑢∗Ω̂ ∶= ∫𝑆 𝑣
∗Ω̂. This is well defined and, in fact, by Stokes theorem,

independent of the choice of representative of the homology class [𝑢] in �̂� relative

𝑢(𝜕𝑆) ⊂ 𝑁∗. This can be seen as follows: Taking approximations 𝑣 of 𝑢 that are equal to 𝑢

restricted to the complement of disc like neighbourhoods 𝐵𝑟(0) in 𝑆 of the nodal points

0 ∈ |𝐷| the symplectic energy integral is given by ∫𝑆⧵|𝐷| 𝑢
∗Ω̂. Indeed, take 𝑟 > 0 so small

such that the 𝐵𝑟(0) are contained in pair-wise disjoint chart domains of 𝑆 about the nodal

points 0 in |𝐷| and such that the 𝑢
(
𝐵𝑟(0)

)
are contained in pair-wise disjoint ball like chart

domains of �̂�. By Stokes theorem decomposing 𝐵𝑟(0) =
(
𝐵𝑟(0) ⧵ 𝐵𝜀(0)

)
∪ 𝐵𝜀(0) it suffices to

show that the integrals

∫
𝐵𝜀(0)

𝑢∗Ω̂ and ∫
𝜕𝐵𝜀(0)

𝑢∗𝜆

converge to zero as 𝜀 ∈ (0, 𝑟) tends to 0, where 𝜆 is a local primitive of Ω̂ defined on the

ball like neighbourhoods of 𝑢(|𝐷|) in �̂�. By the transformation formula we can compute

the integrals w.r.t. positive holomorphic polar coordinates via

∫
(𝑅,∞)×𝑆1

Ω̂(𝑢𝑠, 𝑢𝑡) d𝑠 ∧ d𝑡 and ∫
{𝑅}×𝑆1

𝜆(𝑢𝑡) d𝑡

for 𝑅 = − ln 𝜀. By the Sobolev inequality the 𝐶1-norm of 𝑢 e𝜎𝑠 on [0,∞) × 𝑆1 is bounded by

‖𝑢‖3,𝜎, so that up to a positive constant the absolute value of the integrals is bounded by

‖𝑢‖23,𝜎 ∫
∞

𝑅
e−2𝜎𝑠d𝑠 and ‖𝑢‖3,𝜎 e−𝜎𝑅 ,

resp. In both cases the first factor is bounded by assumption; the second tends to zero for

𝑅 →∞ and the claim follows, namely, that ∫𝑆 𝑢∗Ω̂ is well defined.

Remark 7.1.1. The above arguments show that 𝑢 ↦→ ∫𝑆 𝑢
∗Ω̂ is a continuous function on

𝐻3,𝜎(𝑆, 𝑗).
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We call
(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝑢

)
a nodal disc map provided that the following conditions

are satisfied (cf. Section 5.3):

1. 𝑢 ∈ 𝐻3,𝜎(𝑆, 𝑗),

2. the symplectic energy integral restricted to a connected component 𝐶 of 𝑆

∫
𝐶
𝑢∗Ω̂ ≥ 0

is non-negative for all spherical components 𝐶 of 𝑆; positive on the disc component,

3. the continuous map on 𝑆∕𝐷 induced by 𝑢 is homologous to a local Bishop discs 𝑢𝜀,𝑏𝑜
relative 𝑁∗, so that [𝑢(𝑆)] = [𝑢𝜀,𝑏𝑜(𝔻)] in 𝐻2(�̂�,𝑁∗), and

4. 𝑢(𝑚0) ∈ 𝛾 and 𝜗◦𝑢(𝑚𝑘) = i𝑘 for 𝑘 = 1, 2.

For given
(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}

)
the space

ℋ3,𝜎(𝑆, 𝑗)

of nodal disc maps is called the space of admissible maps.

It follows that the degree of the 𝐶1-map 𝜗◦𝑢∶ 𝜕𝑆 → 𝑆1 equals 1 for all nodal disc maps
(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝑢

)
. With the properties of the symplectic energy integral discussed

above we obtain as in item (2) of Section 4.4 that

∫
𝑆
𝑢∗Ω̂ = ∫

𝜕𝑆
𝑢∗𝑓 ⋅ (𝜗◦𝑢)∗d𝜃 ,

where 𝑓 is a smooth function on 𝑁 that is positive on 𝑁∗ and vanishes on 𝐵 ∪ 𝜕𝑁. As 𝑢

takes values in 𝑁∗ along the boundary 𝜕𝑆 we get that

∫
𝑆
𝑢∗Ω̂ ∈

(
0, 2𝜋max 𝑓

]

for all nodal disc maps
(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝑢

)
. By non-negativity of the symplectic en-

ergy integral on each connected component 𝐶 of 𝑆 we get that ∫𝐶 𝑢∗Ω̂ takes values in
[
0, 2𝜋max 𝑓

]
. Moreover, as ∫𝐶 𝑢∗Ω̂ only depends on the homology class represented by
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𝑢(𝐶) for the spherical components 𝐶 of 𝑆 assumption (2) puts an open condition to the

space defined via 𝐻3,𝜎(𝑆, 𝑗) and the constraints given by (3) and (4), so that the space of

admissible maps ℋ3,𝜎(𝑆, 𝑗) is an open subset.

In fact,ℋ3,𝜎(𝑆, 𝑗) is a Hilbert manifold whose tangent spaceℋ3,𝜎(𝑢∗𝑇�̂�
)

at 𝑢 ∈ℋ3,𝜎(𝑆, 𝑗)

is the space of 𝐻3,𝜎-sections into 𝑢∗𝑇�̂� that descent to continuous sections on 𝑆∕𝐷, that

are tangent to 𝑁∗ along 𝜕𝑆 as well as tangent to 𝛾 at 𝑚0 and to the page 𝜗−1(i𝑘) at 𝑚𝑘 for

𝑘 = 1, 2. This follows with the exponential map taken w.r.t. a metric on �̂� for which each

of the submanifolds 𝑁, 𝜗−1(i𝑘), 𝑘 = 1, 2, and 𝛾 is totally geodesic. The requirement for the

sections to be of class 𝐻3,𝜎 is understood as in Section 7.1, so that a norm on ℋ3,𝜎(𝑢∗𝑇�̂�
)

as on [43, p. 66] can be defined. This turns ℋ3,𝜎(𝑆, 𝑗) into a Riemannian Hilbert manifold.

By removal of singularities (see [54]) a holomorphic 𝑢 ∈ 𝐻3,𝜎(𝑆, 𝑗), which is continuous

and has finite symplectic energy by the above discussion, is holomorphic on 𝑆. Therefore,

𝑢 is smooth up to the boundary including all nodal points |𝐷| so that holomorphicity

coincides with the notion of holomorphicity from the beginning of this section.

Given a nodal disc map
(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝑢

)
we call a connected component 𝐶 of 𝑆

with vanishing symplectic energy integral a ghost bubble. Observe that a holomorphic

nodal disc map restricted to a ghost bubble is constant. If
(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝑢

)
is any

nodal disc map such that each ghost bubble admits at least 3 nodal points, then we call
(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝑢

)
a stable nodal disc map.

7.2 Boundary un-noded stable discs

We call two stable nodal disc maps

(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝑢

)
and

(
𝑆′, 𝑗′, 𝐷′, {𝑚′

0, 𝑚
′
1, 𝑚

′
2}, 𝑢

′)

equivalent if there exists a diffeomorphism 𝜑∶ 𝑆 → 𝑆′ such that 𝜑∗𝑗′ = 𝑗, the injection

𝐷 → 𝐷′ defined by {𝜑(𝑥), 𝜑(𝑦)} ∈ 𝐷′ for all {𝑥, 𝑦} ∈ 𝐷 is surjective, 𝜑(𝑚𝑘) = 𝑚′
𝑘 for 𝑘 = 0, 1, 2,

and 𝑢′◦𝜑 = 𝑢. The discussions in Section 7.1 about 𝐻3,𝜎(𝑆, 𝑗) imply that this equivalence
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relation is well defined. The equivalence classes

𝐮 =
[
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝑢

]

are called stable nodal discs in
(
�̂�, Ω̂

)
relative 𝑁∗. The space of all equivalence classes

is denoted by 𝒵.

Fixing the diffeomorphism type of 𝑆 and the combinatorial data
(
𝐷, {1, i,−1}

)
of

(
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝑢

)
as at the beginning of Section 6.3 we can write

𝒵 =
{
𝐮 = [𝑗, 𝑢] stable ||||| [𝑢(𝑆)] = [𝑢𝜀,𝑏𝑜(𝔻)] , 𝑢(1) ∈ 𝛾 , 𝜗◦𝑢(i𝑘) = i𝑘 , 𝑘 = 1, 2

}

for the space of all stable nodal discs

𝐮 =
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝑢

]
≡ [𝑗, 𝑢] , 𝑢 ∈ℋ3,𝜎(𝑆, 𝑗) ,

in
(
�̂�, Ω̂

)
relative 𝑁∗.

We define the nodal type 𝜏 of
(
𝑆, 𝐷, {1, i,−1}

)
as in Section 6.2. Namely, the nodal type

is the isomorphism class of the rooted tree given as follows: The vertices correspond

to the components of 𝑆. The root is given by the disc component. The edge relation is

induced by the nodes in 𝐷. As this time there are no auxiliary marked points all vertices

different from the root are not weighted; the root has weight 3. The induced nodal type 𝜏

is necessarily unstable provided that there is at least one sphere component. Indeed, in

this case, any end of a branch admits only one special point.

We denote by 𝒵𝜏 the space of all stable nodal discs of nodal type 𝜏, so that 𝒵 is the

disjoint union of the 𝒵𝜏 where 𝜏 ranges over all nodal types just described. Each of the

subspaces 𝒵𝜏 of 𝒵 is the quotient of the total space of the fibration over 𝒥 ≡ 𝒥(𝑆) with fibre

ℋ3,𝜎(𝑆, 𝑗) over 𝑗 ∈ 𝒥 by the action 𝜑 ↦→ (𝜑∗𝑗, 𝑢◦𝜑) of the group of orientation preserving

diffeomorphisms 𝜑 of 𝑆 preserving
(
𝐷, {1, i,−1}

)
, cf. Section 6.3. This puts a topology to 𝒵𝜏

similarly to Remark 6.3.2.

Notice that the stabiliser of the action is finite by the stability condition formulated

at the end of Section 7.1: Each automorphism of 𝐮 acts via the identity map on the disc

component due to the ordered boundary marked points {1, i,−1}. If ∫𝐶 𝑢∗Ω̂ = 0 for a
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connected component 𝐶 of 𝑆, then the number of nodal points 𝐶 ∩ |𝐷| on 𝐶 is at least

3. Furthermore, the automorphisms of 𝐮 preserve those ghost components due to the

transformation formula. If ∫𝐶 𝑢∗Ω̂ > 0, one finds 𝑧 ∈ 𝐶 ⧵ |𝐷| such that 𝑢 is immersive on

𝐶∩𝑢−1
(
𝑢(𝑧)

)
defining finitely many local branches via 𝐶∩𝑢−1

(
𝐵𝑟
)
⊂ 𝐶⧵|𝐷| for a sufficiently

small ball 𝐵𝑟 ⊂ Int �̂� around 𝑢(𝑧). In fact, due to the positivity of the symplectic energy

integral we can find 𝑧 ∈ 𝐶 ⧵ |𝐷| and 𝑟 > 0 sufficiently small such that 𝑢∗Ω̂ is a positive

area form on the branch through 𝑧, which is oriented via 𝑗. Observe that 𝑢∗Ω̂ is a positive

area form on all branches through the points of the orbit (of the automorphism group of

𝐮) defined by 𝑧. Identifying the sphere components with (ℂ𝑃1, i) as in Remark 6.3.1 the

identity theorem yields that an automorphism of 𝐮 acts by a permutation on the local

branches. This proves finiteness of the stabiliser.

In the following we describe a polyfold structure on 𝒵 that glues the components 𝒵𝜏
together. For any 𝐮 =

[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝑢

]
in 𝒵 one can choose a so-called stabilisation,

which is a finite set of auxiliary marked points 𝐴 ⊂ 𝑆 disjoint from the special points

𝐷 ∪ {1, i,−1} such that the nodal disc
(
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

)
is stable in the sense of Section

6.2. Due to the stability condition there is no need to provide the ghost bubbles with an

auxiliary markt point. In addition one can assume, that the automorphisms of 𝐮 preserve

𝐴, 𝑢(𝐴) is disjoint from the 𝑢-image of 𝐷 ∪ {1, i,−1}, and the following two conditions hold:

1. Whenever 𝑧, 𝑤 ∈ 𝐴 are mapped to the same point 𝑢(𝑧) = 𝑢(𝑤) in �̂�, then there exists

an automorphism of 𝐮 sending 𝑧 to 𝑤.

2. For all 𝑧 ∈ 𝐴 the 2-form (𝑢∗Ω̂)𝑧 is positive on (𝑇𝑧𝑆, 𝑗𝑧).

This follows with [43, Lemma 3.2] ignoring the disc component, which already is stable:

Namely, successively select finite orbits of the action of the automorphism group of 𝐮 on

local branches similarly to the above finiteness argument until all components are stable.

Consequently, the underlying stable nodal disc
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

]
possesses a uniformiser

as described in Section 6.11.

As in Section 5.3 we wish to achieve an index-1 Fredholm problem. In view of Theorem
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6.11.1 we compensate the stabilising auxiliary marked points 𝐴 index-wise as follows:

We choose a finite collection of pairwise disjoint codimension-2 symplectic discs in

(Int �̂�, Ω̂) that intersect 𝑢(𝑆) along 𝑢(𝐴) transversally. This is possible by condition (2)

above. Namely, the image of 𝑇𝑢 at each auxiliary marked point in 𝐴 is a symplectic plane

in 𝑇�̂�. Integrating the respective symplectic normal subspaces one finds symplectic

embeddings of small discs of codimension 2 that are normal to 𝑢(𝑆) at the images of

the auxiliary marked points 𝑢(𝐴). We call the union of the discs 𝐻𝑢,𝐴 local transversal

constraints if the intersection of 𝑢(𝑆) and 𝐻𝑢,𝐴 equals 𝑢(𝐴) and if each component of 𝐻𝑢,𝐴

intersects 𝑢(𝑆) in a single point.

We denote by

𝐸𝑢,𝐴 ⊂ℋ3,𝜎(𝑢∗𝑇�̂�
)

the subspace of sections that are tangent to 𝐻𝑢,𝐴 at the stabilising auxiliary points in 𝐴,

which is scale-linear w.r.t. to (3 + 𝜈, 𝜎𝜈), 𝜈 ∈ ℕ0, for a strictly increasing sequence 𝜎𝜈 in

(0, 1) with 𝜎0 = 𝜎, see [43, Section 2.6]. Uniformiser about any 𝐮 =
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝑢

]
in

𝒵 of the desired polyfold structure are obtained as in [43, Section 3.1/3.2]. To adapt to

our situation start off with uniformisers for the stabilised domain
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝐴

]
∈ ℛ

from Section 6.11 and consider the deformation

(𝑦, 𝐚, 𝜂) ↦,→
(
𝑆𝐚 , 𝑗(𝑦)𝐚 , 𝐷𝐚 , {1, i,−1}, ⊕𝐚 exp𝑢(𝜂)

)
,

where (𝑦, 𝐚) ∈ 𝒱 for an open subset𝒱 of 𝑉𝑗×𝔻𝐷 , 𝜂 ∈ 𝐸𝑢,𝐴 is a sufficiently small section that

is a fixed point of the splicing projection 𝜋𝐚 and ⊕𝐚 exp𝑢(𝜂) denotes the gluing operation

both introduced in [43, Section 2.4/2.5]. Choosing 𝑢 to be a smooth approximation of

an element in 𝐻3,𝜎(𝑆, 𝑗) we obtain scale-smooth gluing maps w.r.t. to the scale (3 + 𝜈, 𝜎𝜈),

see [43, Section 2.2/2.6]. Using Remark 6.3.2, Section 6.11 and [43, Section 3.3/3.4] one

obtains a natural second countable paracompact Hausdorff topology on 𝒵 similarly to

[43, Theorem 1.6]. In the same way using this time modifications in [43, Section 3.5] the

space 𝒵 carries the structure of a polyfold as formulated in [43, Theorem 1.7] with a

scale-smooth evaluation map 𝒵→ 𝛾 sending 𝐮 to 𝑢(1), cf. [43, Theorem 1.8].
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7.3 A nodal moduli space

We call 𝐮 a stable nodal holomorphic disc if 𝐮 can be represented by a stable nodal

holomorphic disc map 𝑢. Notice, that all stable nodal disc maps 𝑢 that represent a stable

nodal holomorphic disc 𝐮 are holomorphic. Denote by

𝒩 ∶=
{
𝐮 ∈ 𝒵 ||||𝐮 is holomorphic

}

the nodal moduli space of all stable nodal holomorphic discs.

Using uniformisation it is convenient to represent the classes 𝐮 ∈𝒩 by holomorphic

maps 𝑢 ∈ℋ3,𝜎(𝑆, 𝑗) whose disc component has domain
(
𝔻, i, {1, i,−1}

)
and for which the

sphere components are given by (ℂ𝑃1, i), cf. Remark 6.3.1. If 𝐮 is un-noded, then we obtain

𝐮 =
[
𝔻, i, ∅, {1, i,−1}, 𝑢

]
. We abbriviate the elements 𝐮 = [i, 𝑢] ∈ 𝒩 (noded or un-noded)

simply by [𝑢] for the following discussion:

The boundary conditions for ℋ3,𝜎(𝑆, 𝑗) formulated in Section 7.1 are the boundary

conditions used in Sections 4.4 and 5.3. In particular, all properties formulated in the

un-noded case for holomorphic discs in Section 4.4 continue to hold in the noded case,

hence, for all 𝐮 = [𝑢] ∈𝒩 in the following sense:

1. The winding number of 𝐮 = [𝑢] ∈ 𝒩, which by definition is the degree of the

map 𝜗◦𝑢∶ 𝜕𝑆 → 𝑆1, is equal to 1. In particular, 𝑢(𝜕𝑆) is an embedded curve in 𝑁∗

positively transverse to 𝜉 and the restriction of 𝑢 to the disc component of 𝑆 is a

simple holomorphic map.

2. The symplectic energy ∫𝑆 𝑢
∗Ω̂ of 𝐮 = [𝑢] ∈𝒩, which is well defined and positive by

Section 7.1, is uniformly bounded.

3. The boundary circle 𝑢(𝜕𝑆) of 𝐮 = [𝑢] ∈𝒩 is disjoint from 𝑈𝜕𝑁 because the restriction

of 𝑢 to the disc component of 𝑆 must be disjoint from 𝑈𝜕𝑁 by Lemma 3.5.1. If 𝑢(𝑆)

intersects𝑈𝐵 then 𝐮 is un-noded and equivalent to a local Bishop disc 𝑢𝜀,𝑏𝑜 by Lemma

3.3.1 combined with the final paragraph of Remark 4.4.1.
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The local Bishop discs 𝑢𝜀,𝑏𝑜 , 𝜀 ∈ (0, 𝛿), represent elements

𝐮𝜀,𝑏𝑜 =
[
𝔻, i, ∅, {1, i,−1}, 𝑢𝜀,𝑏𝑜

]

in 𝒩. The corresponding local Bishop filling can be identified with (0, 𝛿). We truncate the

nodal moduli space 𝒩 via

𝒩cut =𝒩 ⧵ (0, 𝛿∕2) .

Remark 7.3.1. If there exists a compact subset 𝐾 of �̂� such that 𝐮(𝑆) is contained in 𝐾

for all 𝐮 ∈𝒩, then the Gromov compactification of ℳ𝛾 can be identified with a subset of

𝒩 by taking equivalence classes, see [25].

7.4 Cauchy–Riemann section

The moduli space 𝒩 is the zero set

𝒩 =
{
𝐮 ∈ 𝒵 |||| �̄�𝐽𝐮 = 𝟎

}

of the Cauchy–Riemann operator �̄�𝐽 , which appears as a section into the bundle

𝑝∶ 𝒲 ,→ 𝒵

over 𝒵. The fibre of 𝑝 over 𝐮 =
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝑢

]
∈ 𝒵 consists of equivalence classes

𝝃 =
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝑢, 𝜉

]
of continuous sections 𝜉 of Hom

(
𝑇𝑆, 𝑢∗𝑇�̂�

)
so that for each

𝑧 ∈ 𝑆 the map 𝜉(𝑧)∶ 𝑇𝑧𝑆 → 𝑇𝑢(𝑧)�̂� is complex anti-linear with respect to 𝑗(𝑧) and 𝐽
(
𝑢(𝑧)

)
.

Moreover, 𝜉 is of Sobolev class 𝐻2
loc on 𝑆 ⧵ |𝐷| and of weighted Sobolev class 𝐻2,𝜎 near

|𝐷| similarly to the description at the beginning of Section 7.1, see [43, Section 1.2].

Two such sections
(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝑢, 𝜉

)
and

(
𝑆′, 𝑗′, 𝐷′, {𝑚′

0, 𝑚
′
1, 𝑚

′
2}, 𝑢

′, 𝜉′
)

are equiva-

lent, if there exists an equivalence 𝜑 of stable nodal disc maps
(
𝑆, 𝑗, 𝐷, {𝑚0, 𝑚1, 𝑚2}, 𝑢

)
and

(
𝑆′, 𝑗′, 𝐷′, {𝑚′

0, 𝑚
′
1, 𝑚

′
2}, 𝑢

′) as described at the beginning of Section 7.2 such that 𝜉′◦𝑇𝜑 = 𝜉.

By adapting [43, Theorem 1.9] to the situation of the current Sections 6 and 7 we obtain

a natural second countable paracompact Hausdorff topology on the total space 𝒲 and

the bundle projection 𝑝∶ 𝒲 → 𝒵 that maps
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝑢, 𝜉

]
to

[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝑢

]
is
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continuous. Furthermore 𝑝∶ 𝒲 → 𝒵 constitutes a strong polyfold bundle in view of [43,

Theorem 1.10].

The Cauchy–Riemann operator �̄�𝐽 is the section of 𝑝 given by

�̄�𝐽𝐮 ∶=
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝑢, 1

2

(
𝑇𝑢 + 𝐽(𝑢)◦𝑇𝑢◦𝑗

)]

for all 𝐮 =
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝑢

]
∈ 𝒵. For a representative we write �̄�𝐽𝑢 also. As in [43,

Theorem 1.11] the Cauchy–Riemann operator �̄�𝐽 ∶ 𝒵→𝒲 is a scale-smooth component-

proper Fredholm section that admits a natural orientation which we describe in Remark

7.4.3 below. The Fredholm index of �̄�𝐽 ∶ 𝒵→𝒲 is 1 by the index computation in Section

5.3 taking local transversal constraints from Section 7.2 in view of Theorem 6.11.1 into

account. As in [64, Section 5.3] the vertical differential of a local representation of �̄�𝐽 near

the local Bishop discs 𝐮𝜀,𝑏𝑜 , 𝜀 ∈ (0, 𝛿) has a right-inverse. The same holds true for all simple

stable nodal holomorphic discs in 𝒵 due to the generic choice of 𝐽, see Section 5.3.

Remark 7.4.1. Preparing the orientation considerations in Remark 7.4.3 we will establish

homotopically unique trivialisations under the assumption that the second Stiefel–

Whitney class of 𝑁∗ vanishes. This approach requires to build up the spaces ℋ3,𝜎(𝑆, 𝑗)

with continuous maps on 𝑆∕𝐷 homotopic in (�̂�,𝑁∗) to a local Bisphop disc, see item (3) in

Section 7.1. As the relative homotopy class is preserved under Gromov convergence (see

[25]) this is not a restriction.

Consider the space of continuous maps (𝔻, 𝜕𝔻)→
(
�̂�,𝑁∗) sending the marked points

{1} and {i𝑘} into 𝛾 and 𝜗−1(i𝑘), 𝑘 = 1, 2, resp. Denote by 𝒞 the connected component of the

Bishop disc 𝑢0 = 𝑢𝛿∕2,𝑏𝑜 . We claim that for all 𝑢 ∈ 𝒞 the pull back bundle 𝑢∗𝑇𝑁∗ has a

canonical trivialisation.

In order to specify what is meant by this we describe the situation for 𝑢0. By Section

3.1 the base point 𝑢0 of 𝒞 is the map

(𝔻, 𝜕𝔻) ,→
(
(−∞, 0] ×ℝ × ℂ × 𝑇∗𝐵, {0} × {0} × ℂ∗ × 𝐵

)

given by

𝑢0(𝑧) =
(𝛿2
4

(
|𝑧|2 − 1

)
, 0, 𝛿 ⋅ 𝑧, 𝑏𝑜

)
.
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in the local model 𝑈𝐵. The embedded path 𝛾 corresponds to {0} × {0} ×ℝ+ × {𝑏𝑜} as oriented

curve and the pages 𝜗−1(i𝑘), 𝑘 = 1, 2, correspond to {0} × {0} × ℝ+i𝑘 × 𝐵, resp. The co-

orientation of the pages 𝜗−1(i𝑘), 𝑘 = 1, 2, given in Section 2.1 is represented by the normal

vectors (0, 0, i𝑘+1, 0), resp. The local model defines a local frame 𝜕𝑠, 𝜕𝑡, 𝜕𝑥, 𝜕𝑦, 𝜕𝐩, 𝜕𝐪 of the

tangent bundle 𝑇�̂� near (−∞, 0]×ℝ×ℂ×{𝑏𝑜} inducing a trivialisation Φ∶ 𝑢∗0𝑇�̂� → 𝔻×ℝ2𝑛

of the pull back bundle 𝑢∗0𝑇�̂�. The trivialisation Φ restricts to a trivialisation Φ∶ 𝑢∗0𝑇𝑁
∗ →

𝜕𝔻 × ℝ𝑛 of 𝑢∗0𝑇𝑁
∗, which corresponds to the sub-frame 𝜕𝑥, 𝜕𝑦, 𝜕𝐩. Further, Φ restricts to

isomorphismsΦ∶ 𝑇𝑢0(1)𝛾 → {1}×ℝ via the vector field 𝜕𝑥 andΦ∶ 𝑇𝑢0(i𝑘)
(
𝜗−1(i𝑘)

)
→ {i𝑘}×ℝ𝑛−1,

𝑘 = 1, 2, via the sub-frames 𝜕𝑦∕−𝜕𝑥, 𝜕𝐩. The co-orientations of the pages 𝜗−1(i𝑘) correspond

to −𝜕𝑥∕− 𝜕𝑦, resp. We remark that Φ is not a complex trivialisation of the complex bundle

pair
(
𝑢∗0𝑇�̂�, 𝑢∗0𝑇𝑁

∗) as used to compute the Maslov index to be 2, see [55, Proposition 8].

Given any 𝑢 ∈ 𝒞 we claim that the pull back bundle 𝑢∗𝑇𝑁∗ admits a homotopically

unique trivialisation Φ𝑢 with the properties listed for Φ𝑢0 ∶= Φ|𝑢∗0𝑇𝑁∗ . To see this let

𝑢𝜏, 𝜏 ∈ [0, 1], be a path in 𝒞 connecting 𝑢0 with 𝑢1 = 𝑢 and define 𝑈∶ [0, 1] × 𝜕𝔻 → �̂�

by 𝑈(𝜏, 𝑧) ∶= 𝑢𝜏(𝑧). By [47, Corollary 3.4.5] there exists a trivialisation Φ𝑈 ∶ 𝑈∗𝑇𝑁∗ →
(
[0, 1]×𝜕𝔻

)
×ℝ𝑛 that extends Φ𝑢0 . As above we denote the coordinates of ℝ𝑛 by (𝑥, 𝑦,𝐩). We

can assume that Φ𝑈 restricts to isomorphisms Φ𝑈 ∶
(
𝑈( . , 1)

)∗
𝑇𝛾 →

(
[0, 1] × {1}

)
×ℝ with ℝ

provided with the coordinate 𝑥 as well as Φ𝑈 ∶
(
𝑈( . , i𝑘)

)∗
𝑇
(
𝜗−1(i𝑘)

)
→

(
[0, 1] × {i𝑘}

)
×ℝ𝑛−1,

𝑘 = 1, 2, with ℝ𝑛−1 provided with coordinates (𝑦∕𝑥,𝐩) and co-oriantations −𝜕𝑥∕ − 𝜕𝑦, resp.

The claimed trivialisation Φ𝑢 is Φ𝑢1 = Φ𝑈|{1}×𝜕𝔻.

It remains to show homotopic uniqueness of Φ𝑢, i.e. that Φ𝑢 is independent of the

chosen path 𝑢𝜏 up to homotopy: We consider a loop 𝑢𝜏 in 𝒞 for 𝜏 ∈ 𝑇1 = ℝ∕2ℤ extending

a path 𝑢𝜏, 𝜏 ∈ [0, 1], in 𝒞 as above and define �̂�∶ 𝑇1 × 𝜕𝔻 → �̂� by �̂�(𝜏, 𝑧) ∶= 𝑢𝜏(𝑧). The

claim will follow by constructing a trivialisation Φ�̂� that shares the triviality properties

established for Φ𝑈 .

Restricted to [0, 1] × 𝜕𝔻 we define Φ�̂� to be equal to Φ𝑈 . As �̂�(𝑇1 × {1}) is a subset of

the embedded interval 𝛾 = [0, 1] and the tangent bundle 𝑇𝑁∗ is trivialised by 𝜕𝑥, 𝜕𝑦, 𝜕𝐩

along 𝛾 ∩ 𝑈𝐵 there exists by [47, Corollary 3.4.8] a trivialisation Φ𝛾 ∶ 𝑇𝛾𝑁∗ → [0, 1] × ℝ𝑛
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that extends the canonical trivialisation over 𝛾 ∩𝑈𝐵 such that (𝑥, 𝑦,𝐩) are coordinates on

ℝ𝑛 and such that Φ𝛾 ∶ 𝑇𝛾 → [0, 1] ×ℝ is provided with the fibre coordinate 𝑥.

Gluing the trivialisations Φ�̂� and Φ𝛾 via the identity along the overlap we obtain

a trivialisation (still denoted by) Φ�̂� over
(
[0, 1] × 𝜕𝔻

)
∪
(
𝑇1 × {1}

)
. In other words, Φ�̂�

trivialises �̂�∗𝑇𝑁∗ over the boundary of the 2-disc

(
𝑇1 × 𝜕𝔻

)
⧵
((
[0, 1] × 𝜕𝔻

)
∪
(
𝑇1 × {1}

))
.

By the assumption that the second Stiefel–Whitney class of 𝑁∗ vanishes this trivialisation

extends to a trivialisation of �̂�∗𝑇𝑁∗, see [34, p. 75 and Section 3.3]. Hence, Φ�̂� ∶ �̂�∗𝑇𝑁∗ →
(
𝑇1 × 𝜕𝔻

)
× ℝ𝑛 is a trivialisation with fibre coordinates (𝑥, 𝑦,𝐩). By construction we

have a trivialisation Φ�̂� ∶
(
�̂�( . , 1)

)∗
𝑇𝛾 →

(
𝑇1 × {1}

)
× ℝ with fibre coordinate 𝑥. Further,

because a co-oriented linear subspace ofℝ𝑛 of codimension 1 is determined by the normal

vector and 𝑆𝑛−1, 𝑛 ≥ 3, is simply connected we can assume that we have trivialisations

Φ�̂� ∶
(
�̂�( . , i𝑘)

)∗
𝑇
(
𝜗−1(i𝑘)

)
→

(
𝑇1 × {i𝑘}

)
×ℝ𝑛−1, 𝑘 = 1, 2, with fibre coordinates (𝑦∕𝑥,𝐩) and

co-oriantations −𝜕𝑥∕ − 𝜕𝑦, resp.

Consequently, 𝑢∗1𝑇𝑁
∗ shares the same triviality properties as 𝑢0 independently of the

chosen path 𝑢𝑡 such that Φ𝑢1 is homotopically unique as claimed.

Remark 7.4.2. If the second Stiefel–Whitney class 𝑤2(𝑇𝑁∗) of 𝑁∗ is not trivial a variant

of Remark 7.4.1 gives homotopically unique stable trivialisations assuming 𝑁∗ to be

orientable and that 𝑤2(𝑇𝑁∗) lifts to a class in 𝐻2(�̂�;ℤ2).

Following [26, Chapter 8.1] we choose a triangulation of �̂� such that 𝑁 will be a

subcomplex and 𝐵 ∪ 𝜕𝑁 a subcomplex of 𝑁. The assumptions made allow the choice of a

relative spin structure on (�̂�,𝑁∗) which is a choice of orientation on 𝑁∗, an oriented

vector bundle 𝑉 over the 3-skeleton �̂�[3] of �̂� such that 𝑤2(𝑉) restricts to 𝑤2(𝑇𝑁∗), and a

spin structure on the vector bundle 𝑇𝑁∗ ⊕𝑉 over the 2-skeleton 𝑁∗
[2] of 𝑁∗. Such a choice

of a spin structure is possible because 𝑤2 of 𝑇𝑁∗ ⊕𝑉 over 𝑁∗
[2] vanishes, see [12].

As in Remark 7.4.1 we consider the space of continuous maps (𝔻, 𝜕𝔻) →
(
�̂�,𝑁∗)

that map {1} and {i𝑘} into 𝛾 and 𝜗−1(i𝑘), 𝑘 = 1, 2, resp. By simplicial approximation (see
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[16, Theorem IV.22.10]) we can replace all maps and homotopies of maps by simplicial

representatives 𝑢 and 𝑢𝑡 up to homotopy. Therefore, the proof of [26, Theorem 8.1.1]

yields homotopically unique trivialisations of 𝑢∗(𝑇𝑁∗ ⊕𝑉) and 𝑢∗𝑉. Similarly to Remark

7.4.1 we can achieve that 𝑇𝛾 and 𝑇
(
𝜗−1(i𝑘)

)
, 𝑘 = 1, 2, correspond to {1} ×ℝ and {i𝑘} ×ℝ𝑛−1,

resp., in the trivialisation 𝔻×ℝ𝑛+𝑣 of 𝑢∗(𝑇𝑁∗⊕𝑉), where 𝑣 denotes the rank of the vector

bundle 𝑉. Moreover, by possibly changing the spin structure on 𝑇𝑁∗⊕𝑉 over 𝑁∗
[2] we can

assume that the obtained trivialisation of 𝑢∗0(𝑇𝑁
∗⊕𝑉) for the Bishop disc 𝑢0 is homotopic

to the canonical one induced by Φ𝑢0 , see Remark 7.4.1.

Remark 7.4.3. The canonical trivialisations of the involved pull back bundles in Remark

7.4.1 and 7.4.2 orient the Cauchy–Riemann section �̄�𝐽 ∶ 𝒵→𝒲 in a natural way. This is

based on [26, Lemma 8.1.4].

Namely, given a complex bundle pair (𝐸, 𝐹) over (𝔻, 𝜕𝔻) such that the real sub-bundle

𝐹 is trivial over 𝜕𝔻 each trivialisation orients the associated linear Cauchy–Riemann

operator. The complexification of the trivialisation extends to a complex trivialisation

of 𝐸 over an annulus neighbourhood of 𝜕𝔻. Collapsing the inner boundary component

of a slightly smaller annulus neighbourhood of 𝜕𝔻 yields a complex bundle pair over

a one-noded disc. Over the sphere component the Cauchy–Riemann operator admits

the complex orientation, which is canonical. Over the disc component the Cauchy–

Riemann operator is onto with kernel consisting of constant sections. Hence, the kernel

is isomorphic to an Euclidean space canonically, so that the Cauchy–Riemann operator

is canonically oriented over the disc component. Incorporating the matching condition

of the bundles over the two components the functoriality properties of the determinant

line bundle canonically determine an orientation of the Cauchy–Riemann operator on

(𝐸, 𝐹), see [26, Lemma 8.1.4] and cf. [43, Section 5.10].

Observe that this construction is compatible with point-wise boundary conditions

and also allows to begin with a complex bundle pair (𝐸, 𝐹) with matching conditions over

a noded disc.

In order to orient the linearised Cauchy–Riemann operator at an un-noded element 𝑢
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of ℋ3,𝜎(𝑆, 𝑗) apply the above construction to the complex bundle pair
(
𝑢∗𝑇�̂�, 𝑢∗𝑇𝑁∗) in

the context of Remark 7.4.1 (restricting to the connected component of discs homotopic

to a local Bishop disc), and to the complex bundle pairs
(
𝑢∗(𝑇�̂� ⊕ 𝑉ℂ), 𝑢∗(𝑇𝑁∗ ⊕𝑉)

)
and

(𝑢∗𝑉ℂ, 𝑢∗𝑉), where 𝑉ℂ ∶= 𝑉 ⊗ ℂ, in the context of Remark 7.4.2, resp. For the latter use

the arguments in the proof of [26, Theorem 8.1.1] and the observation that the noded

discs in ℋ3,𝜎(𝑆, 𝑗) are at least of codimension 2. In fact, we obtain canonical orientations

of the linearised Cauchy–Riemann operator at noded elements of ℋ3,𝜎(𝑆, 𝑗) also with the

above construction.

With the proceeding remarks a canonical orientation of the Cauchy–Riemann section

�̄�𝐽 ∶ 𝒵 →𝒲 is obtained as in [43, Section 5.11]. Simply, replace the complex orientation

of the sphere case by the canonical orientation induced by boundary trivialisations of

pull back bundles in the arguments of [43, Section 5.11]. Furthermore observe that

preservation of orientations of the partial Kodaira differentials on the Riemann moduli

spaces is ensured by Theorem 6.11.1, 𝒵𝜏 is at least of codimension 2 for all non-trivial

nodal types 𝜏 by Proposition 6.9.4, automorphisms of nodal discs in 𝒵 restrict to the

identity on the disc component as well as that we can collapse the interior boundary

component of a small collar annulus in [26, Lemma 8.1.4] such that auxiliary marked

points are contained on the resulting sphere components exclusively.

Proof of Theorem 5.1.2 part (ii). We place ourselves in to the situation of Section 5.2

and 5.3; but this time we do not assume semi-positivity as in Theorem 5.1.2 part (i). Instead,

we assume the vanishing of 𝑤2(𝑇𝑁∗) or the relative spin condition as formulated in

Theorem 5.1.2 part (ii) so that Remark 7.4.3 applies. The aim is to derive a contradiction to

the existence of a compact subset𝐾 of �̂� such that 𝑢(𝑆) ⊂ 𝐾 for all 𝐮 =
[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝑢

]
∈

𝒩. Theorem 5.1.2 part (ii) will then follow as in the proof of part (i).

We argue by contradiction assuming that such a compact subset 𝐾 as above exists.

The arguments form Remark 4.4.1 under the assumed 𝐶0-bounds on 𝒩 combined with

Section 7.3 show compactness of 𝒩cut, see Remark 7.3.1. Let 𝑊𝐾 be a relative compact

open neighbourhood of 𝐾 in �̂�. Using Sobolev embedding we choose a neighborhood
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𝒰 ⊂ 𝒵 of 𝒩cut such that 𝑢(𝑆) ⊂ 𝑊𝐾 ⧵
(
𝑈′
𝐵 ∪𝑈𝜕𝑁

)
for all 𝐮 =

[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝑢

]
in 𝒰, where

𝑈′
𝐵 ⊂ 𝑈𝐵 is defined as 𝑈𝐵 but with 𝛿 replaced by 𝛿∕2 in the proof of Lemma 3.3.1.

Let 𝜆∶ 𝒲 → ℚ ∩ [0,∞) be a scale+-multisection of 𝑝∶ 𝒲 → 𝒵, i.e. 𝜆 is a groupoidal

functor which in a local presentation is given by finitely many weighted local scale+-

sections (𝑠𝑖, 𝑤𝑖), 𝑤𝑖 ∈ ℚ ∩ (0,∞), of total weight ∑𝑤𝑖 = 1 such that 𝜆(𝝃 ) is the sum of those

weights 𝑤𝑖 for which the corresponding sections 𝑠𝑖 satisfy 𝑠𝑖
(
𝑝(𝝃 )

)
= 𝝃 ; we set 𝜆(𝝃 ) = 0 if

there is no such section among the 𝑠𝑖, cf. [40, Definition 3.34]. The support of 𝜆 is the

smallest closed set in 𝒵 outside which 𝜆 is trivial in the sense that 𝜆(0𝐮) = 1 for these 𝐮 ∈ 𝒵,

see [40, Definition 3.35]. The solution set

𝒮 =
{
𝐮 ∈ 𝒵

||||| 𝜆
(
�̄�𝐽𝐮

)
> 0

}

of the pair
(
�̄�𝐽 , 𝜆

)
is the set of all 𝐮 =

[
𝑆, 𝑗, 𝐷, {1, i,−1}, 𝑢

]
∈ 𝒵 for which in a local presentation

of 𝜆 there exist at least one 𝑠𝑖 such that �̄�𝐽𝑢 = 𝑠𝑖(𝑢) and 𝜆
(
�̄�𝐽𝐮

)
is the sum of all the weights

𝑤𝑖 for which the corresponding 𝑠𝑖 satisfy such an equation. The solution set 𝒮 is equipped

with the weight function

𝜆�̄�𝐽 ∶ 𝒵 ,→ ℚ ∩ (0,∞) , 𝐮 ↦,→ 𝜆
(
�̄�𝐽𝐮

)
,

see [40, Section 4.3].

With [40, Theorem 4.17] we choose 𝜆 such that the support of 𝜆 is contained in 𝒰 and

that
(
�̄�𝐽 , 𝜆

)
is transverse. The latter means that the vertical differentials

(
�̄�𝐽
)′
(𝑢) − 𝑠′𝑖 (𝑢)

of local presentations �̄�𝐽𝑢 of �̄�𝐽𝐮 and 𝑠𝑖 of 𝜆 are surjective for all 𝐮 ∈ 𝒮 and for all (the

finitely many) 𝑖, see [40, Definition 4.7(1)]. If
(
�̄�𝐽
)′
(𝑢) is onto for an un-noded 𝐮 ∈𝒩, which

is representable by a necessarily simple holomorphic disc map, we choose 𝜆 to be a single

local section 𝑠1 that is identically 0 in a neighbourhood of 𝐮 in 𝒵. This is possible in view

of the proof of [40, Theorem 4.17]. In particular, 𝜆 is trivial over those 𝐮. As observed

right before Remark 7.4.1 this applies to all local Bishop discs 𝐮𝜀,𝑏𝑜 , 𝜀 ∈ [𝛿∕2, 𝛿), so that 𝜆 is
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trivial over all local Bishop discs 𝐮𝜀,𝑏𝑜 . Consequently, the truncated solution set

𝒮cut = 𝒮 ⧵ (0, 𝛿∕2)

of
(
�̄�𝐽 , 𝜆

)
is a 1-dimensional oriented compact branched suborbifold with boundary 𝜕𝒮cut

given by the single Bishop disc 𝐮𝛿∕2,𝑏𝑜 , see [40, Theorem 4.17] or [43, Section 1.4]. A collar

neighbourhood of 𝜕𝒮cut in 𝒮cut is equal to a collar neighbourhood of 𝜕𝒩cut in 𝒩cut given

by the local Bishop discs 𝐮𝜀,𝑏𝑜 , 𝜀 ∈ [𝛿∕2, 𝛿).

Furthermore observe that by compactness of 𝒮cut the intersection 𝒮cut∩𝒵𝜏 is not empty

only for finitely many nodal types 𝜏. Therefore, we choose
(
�̄�𝐽 , 𝜆

)
to be transverse along

the subpolyfolds 𝒵𝜏 for these nodal types 𝜏 turning the subsets 𝒮cut ∩ 𝒵𝜏 into suborbifolds

of 𝒮. As the codimensions will be at least 2 whenever the nodal type 𝜏 is non-trivial, the

resulting suborbifolds 𝒮cut ∩ 𝒵𝜏 have negative dimension, hence, are empty. Therefore,

all elements in 𝒮cut are un-noded and have trivial isotropy as they can be represented

by un-noded stable nodal disc maps with trivial automorphism group. In other words,

𝒮cut is a 1-dimensional oriented compact branched manifold with precisely one boundary

point, which has weight 1. This contradicts the fact that by [62, Lemma 5.11] the oriented

sum of the weights taken over all boundary points vanishes.

Remark 7.4.4. We give an alternative argument to obtain a contradiction which does

not use the classification of 1-dimensional oriented compact branched manifolds with

boundary given in [62, Section 5.4]: We identify 𝛾 with the interval [0, 3𝛿] such that (0, 𝛿)

corresponds to the local Bishop family and [2𝛿, 3𝛿] is not contained in the image of the

evaluation map ev ∶ 𝒮→ 𝛾 that evaluates 𝐮 at the first boundary marked point 1. Let 𝑓 be

a smooth function on [0, 3𝛿] with support in (𝛿∕2, 𝛿) such that ∫ 3𝛿0 𝑓(𝑥)d𝑥 = 1. Because ev

restricts to a degree 1 map on the local Bishop discs,

∫
(𝒮cut,𝜆�̄�)

ev∗(𝑓d𝑥) = 1

writing 𝜆�̄� for the weight function 𝜆�̄�𝐽 . Denote by 𝑓1 the function obtained from 𝑓 by shifting

𝑓 by 2𝛿 and observe that the closed 1-form (𝑓−𝑓1)d𝑥 has a primitive 𝑔(𝑥) = ∫ 𝑥0
(
𝑓(𝑡)−𝑓1(𝑡)

)
d𝑡
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with support in (𝛿∕2, 3𝛿). Hence, ev∗
(
(𝑓 − 𝑓1)d𝑥

)
has primitive ev∗ 𝑔 and

∫
(𝒮cut,𝜆�̄�)

ev∗(𝑓1d𝑥) = 0

as the support of 𝑓1 is contained in (5𝛿∕2, 3𝛿). With Stokes theorem [41, Theorem 1.27]

for weighted integrals

1 = ∫
(𝒮cut,𝜆�̄�)

ev∗
(
(𝑓 − 𝑓1)d𝑥

)
= ∫

(𝜕𝒮cut,𝜆�̄�)
ev∗ 𝑔 = 𝑔(𝛿∕2) .

As 𝑔(𝛿∕2) = 0 we reach the desired contradiction.
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1 Introduction

The Kustaanheimo-Stiefel transformation was introduced in [10, 11] using spinors as

a way to regularize the three-dimensional Kepler problem. This transformation also

admits formulation with quaternions [26, 20, 27], and can be regarded as an unfolding

of the Levi-Civita regularization [13, 14] of the planar Kepler problem through the theory

of Levi-Civita planes [19, 27].

The use of the conformal Levi-Civita transformation [15, 5, 14] to study planar integrable

mechanical billiards defined with the Hooke and Kepler problems has been first pointed

out in [16] and extended in [22].

In the first part of this note, we discuss some consequences of the K.S. (Kustaanheimo-

Stiefel) transformation on integrable four-dimensional Hooke and integrable three-

dimensional Kepler billiards. An 𝑛-dimensional mechanical billiard system is integrable

if there exist 𝑛 first integrals of the underlying natural mechanical system that satisfy the

following conditions: they are functionally independent, in involution, and they remain

invariant under reflections at the reflection wall (c.f. [24]). It is widely known that for the

four-dimensional Hooke problem, a centered quadric reflection wall gives an integrable

billiard system [6], [4]. We shall show that when this reflection wall is invariant under

an 𝑆1-symmetry of the K.S. transformation, then its image under the Hopf mapping is

one of five special type of quadrics, with the Kepler center as a focus. This is consistent

with the results of [23] and provides a partial explanation of why we conjecture that only

these quadrics appear in three-dimensional integrable Kepler billiards. This conjecture

is closely related to the analogue of Birkhoff-Poritsky conjecture [17] of the planar case

in the setting of Kepler billiards. We can think that the restriction on the type of quadrics

is forced by the 𝑆1-invariance of the centered quadric reflection wall lying on the four-
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dimensional Hooke side. This generalizes the studies in the planar case [22], [16], [21],

[28] to the spatial case of Kepler billiards based on the Levi-Civita transformation. (See

also [7], [8], [9] for some other studies of integrable mechanical billiards in the plane)

This way we obtain

Thoerem A. Consider a surface of revolution in ℝ3, by revolving a conic with a focus at the

origin about its principal axis. Then reflecting spatial Kepler orbits (attracted to/repelled

from the origin) off such a surface of revolution gives rise to an integrable mechanical

billiard.

This reproves the three-dimensional version of Theorem 14 in [23]. Moreover, though

we shall not discuss this aspect in this article, the method provides a transformation that

maps the orbits of one system to another, in such a way that the reflection law of the first

system on an energy surface corresponds to that of the second system on its image. This

method is not limited to integrable mechanical billiard systems.

The Kustaanheimo-Stiefel transformation has been extended to a transformation

which simultaneously regularizes both double collisions in the spatial two-center problem

first announced in a 1-page note of Stiefel-Waldvogel [18], which generalized the trans-

formation of Birkhoff used in the planar case. The thesis of Waldvogel [25] provided a

much more extensive geometrical study of this transformation. In particular, the relation

between this transformation and the Kustaanheimo-Stiefel transformation has been

clarified. Waldvogel later illustrated this theory again in [26] with the use of quaternions.

In this article, we provide a quaternionic formulation of this Birkhoff-Waldvogel trans-

formation in the spatial case, largely inspired by the studies of Waldvogel as well as

combining the symplectic viewpoint of [27]. We investigate in part an analogous theory

of Levi-Civita planes in this setting, consisting of planes and spheres in the space of

quaternions ℍ ≅ ℝ4 and a reduction of this transformation to a dense open subset of

𝕀ℍ ≅ ℝ3, which already regularizes the double collisions without increasing the dimension

of the space. With this we link integrable billiards on both sides, which illustrates some

results in [23] with a different method.
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Thoerem B. Consider a surface of revolution in ℝ3 by revolving a conic with foci at the

two Kepler centers around the axis joining the centers. Then reflecting orbits of the spatial

two-center problem off such a surface of revolution is an integrable mechanical billiard.

Moreover, taking a finite combination of these surfaces does not destroy the integrability of

the resulting two-center mechanical billiard systems.

This provides an alternative proof of Theorem 14 in [23] for the spatial two-center

case.

We organize this article as follows: In Section 2, we recall the theory of Kustaanheimo-

Stiefel regularization, which largely follows [27]. Then we apply this transformation to

link integrable mechanical billiards in Section 3. The theory of Birkhoff-Waldvogel trans-

formation and the corresponding link on integrable mechanical billiards are discussed

in Section 4.

2 The Kustaanheimo-Stiefel Transformation

In this section, we discuss the Kustaanheimo-Stiefel transformation. We follow the

quaternionic formulation of [27].

A quaternion is represented as

𝑧 = 𝑧0 + 𝑧1𝑖 + 𝑧2𝑗 + 𝑧3𝑘, 𝑧0, 𝑧1, 𝑧2, 𝑧3 ∈ ℝ

in which

𝑖2 = 𝑗2 = 𝑘2 = −1, 𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖, 𝑘𝑖 = −𝑖𝑘 = 𝑗.

Addition and multiplication of quaternions are then naturally defined. With these

operations, the quaternions form a non-commutative normed division algebra which we

denote by ℍ. For a quaternion 𝑧 = 𝑧0 + 𝑧1𝑖 + 𝑧2𝑗 + 𝑧3𝑘, its real part is given by

𝑅𝑒(𝑧) = 𝑧0

and its imaginary part is given by

𝐼𝑚(𝑧) = 𝑧1𝑖 + 𝑧2𝑗 + 𝑧3𝑘.
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Furthermore, the conjugation of 𝑧 is defined as

�̄� = 𝑧0 − 𝑧1𝑖 − 𝑧2𝑗 − 𝑧3𝑘.

The norm of 𝑧 is defined as |𝑧| ∶=
√
𝑧 ⋅ �̄�.

We denote the set of purely imaginary quaternions by

𝕀ℍ = {𝑧 ∈ ℍ ∣ 𝑅𝑒(𝑧) = 0}.

We identify ℍ with ℝ4 and denote by 𝒮3 the unit sphere

{𝑧 ∈ ℍ ∣ |𝑧|2 = 𝑧20 + 𝑧21 + 𝑧22 + 𝑧23 = 1} ⊂ ℍ.

Also, we identify 𝕀ℍ with ℝ3. The unit sphere 𝒮2 therein is

{𝑧 ∈ 𝕀ℍ ∣ |𝑧|2 = 𝑧21 + 𝑧22 + 𝑧23 = 1} ⊂ 𝕀ℍ.

To introduce the Kustaanheimo-Stiefel transformation, we first recall the Levi-Civita

transformation [14]

𝑇∗(ℂ ⧵ {0})→ 𝑇∗(ℂ ⧵ {0}), (𝑧, 𝑤) ↦→ (𝑞 = 𝑧 ⋅ 𝑧, 𝑝 = 𝑧
2|𝑧|2

⋅ 𝑤) .

It is well-known that this transformation is canonical, and transforms the planar Kepler

problem into the planar Hooke problem after making a proper time reparametrization on

an energy level. To see this, we start with the shifted Hamiltonian of the Kepler problem

and consider its zero-energy level:

|𝑝2|
2 + 𝑚

|𝑞|
−𝑓 = 0.

The Levi-Civita transformation pulls this system back to

|𝑤2|
8|𝑧|2

+ 𝑚
|𝑧|2

−𝑓 = 0.

We may now multiply this transformed Hamiltonian by |𝑧|2, which only reparametrizes

the flow on this energy-level. We obtain

|𝑤2|
8 +𝑚−𝑓|𝑧|2 = 0.
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which is the restriction of the Hamiltonian of the planar Hooke problem |𝑤2|
8
−𝑓|𝑧|2 on its

(−𝑚)-energy hypersurface.

The whole construction is based on the complex square mapping

ℂ ⧵ {0} ↦→ ℂ ⧵ {0}, 𝑧 ↦→ 𝑧2,

which is a 2-to-1 conformal mapping.

A generalization of the complex square mapping with quaternions is the following

Hopf mapping

ℍ→ 𝕀ℍ, 𝑧 ↦→ �̄�𝑖𝑧.

Note that this mapping is well-defined, since

𝑅𝑒(�̄�𝑖𝑧) = 0,∀𝑧 ∈ ℍ.

This mapping is “𝑆1-to-1”, namely the circle

{exp(𝑖𝜃)𝑧 ∣, 𝑧 ∈ ℍ ⧵ {0}, 𝜃 ∈ ℝ∕2𝜋ℤ} ⊂ ℍ

is mapped under the Hopf mapping to the same point �̄�𝑖𝑧 ∈ 𝕀ℍ.

Moreover, this mapping restricts to a mapping 𝒮3 → 𝒮2. This is a mapping with 𝑆1-fibres,

and induces the non-trivial Hopf fibration

𝑆1 → 𝒮3 → 𝒮2.

Associated to the Hopf mapping, the Kustaanheimo-Stiefel mapping is defined as

𝑇∗(ℍ ⧵ {0})→ 𝕀ℍ × ℍ, (𝑧, 𝑤) ↦→ (𝑄 = �̄�𝑖 ⋅ 𝑧, 𝑃 = �̄�𝑖
2|𝑧|2

⋅ 𝑤) .

The fibers of the mapping are the circle orbits of the 𝑆1-Hamiltonian action

𝜃⋅(𝑧, 𝑤) ↦→ (exp(𝑖𝜃)𝑧, exp(𝑖𝜃)𝑤)

on the cotangent bundle 𝑇∗ℍ. The bilinear function

𝐵𝐿(𝑧, 𝑤) ∶= 𝑅𝑒(�̄�𝑖𝑤)
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is the associated moment map.

We define

Σ ∶= {(𝑧, 𝑤)|𝐵𝐿(𝑧, 𝑤) = 0} ⊂ 𝑇∗ℍ ≅ ℍ × ℍ,

and

Σ1 = Σ ⧵ {𝑧 = 0}.

Both are invariant under this 𝑆1-Hamiltonian action.

We define the restricted K.S. mapping as

𝐾𝑆 ∶= 𝐾.𝑆.|Σ1 ∶ Σ
1 → 𝑇∗(𝕀ℍ∖{0}).

For the following lemma from [27], we present an alternative, simpler proof.

Lemma 1. For the restricted Kustaanheimo-Stiefel mapping 𝐾𝑆 ∶ Σ1 → 𝑇∗(𝕀ℍ∖{0}) we have

𝐾𝑆∗(𝑅𝑒(𝑑�̄� ∧ 𝑑𝑄)) = 𝑅𝑒(𝑑�̄� ∧ 𝑑𝑧)|Σ1 .

Proof. We shall show

𝐾𝑆∗𝑅𝑒(�̄�𝑑𝑄) = 𝑅𝑒(�̄�𝑑𝑧)|Σ1 . (1)

which then implies the assertion of this lemma by taking differentials on both sides.

To see (1), we compute

�̄�𝑑𝑄 = − �̄�𝑖�̄�
−1

2 ((𝑑�̄�)𝑖𝑧 + �̄�𝑖𝑑𝑧)

= (−�̄�𝑖�̄�−1(𝑑�̄�)𝑖𝑧 + �̄�𝑑𝑧)∕2.
(2)

The condition

𝐵𝐿(𝑧, 𝑤) = 𝑅𝑒(�̄�𝑖𝑤) = 0

is equivalent to

𝑅𝑒(𝑧−1𝑖𝑤) = 0.

Consequently, we also have

𝑅𝑒(�̄�𝑖�̄�−1) = 0.
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This implies

𝑅𝑒(�̄�𝑖�̄�−1(𝑑�̄�)𝑖𝑧) = 𝑅𝑒(�̄�𝑖�̄�−1 ⋅ 𝐼𝑚((𝑑�̄�)𝑖𝑧)).

Since

𝐼𝑚((𝑑�̄�)𝑖𝑧) = −𝐼𝑚(�̄�(−𝑖)𝑑𝑧),

we have

𝑅𝑒(�̄�𝑖�̄�−1(𝑑�̄�)𝑖𝑧) = −𝑅𝑒(�̄�𝑖�̄�−1 ⋅ 𝐼𝑚(�̄�(−𝑖)𝑑𝑧)) = −𝑅𝑒(�̄�𝑖�̄�−1�̄�(−𝑖)𝑑𝑧) = −𝑅𝑒(�̄�𝑑𝑧), (3)

where in the second equation, we have used

𝑅𝑒(�̄�𝑖�̄�−1) = 0.

The assertion (1) is thus obtained by combining the equations (2) and (3).

On Σ1, the orbits of the 𝑆1-action mentioned above lie in the direction of the one-

dimensional kernel distribution of the 2-form 𝑅𝑒(𝑑�̄� ∧ 𝑑𝑧). By the theory of symplectic

reduction, the 2-form 𝑅𝑒(𝑑�̄� ∧ 𝑑𝑧) of Σ1 gives rise to the reduced symplectic form 𝜔1 on

the quotient space 𝑉1 of Σ1 by the 𝑆1-action. Thus, the Kustaanheimo-Stiefel mapping

induces a symplectomorphism

𝐾𝑆𝑟𝑒𝑑 ∶ (𝑉1, 𝜔1)→ (𝑇∗(𝕀ℍ∖{0}), 𝑅𝑒(𝑑�̄� ∧ 𝑑𝑄)).

We have

𝐾𝑆 = 𝐾𝑆𝑟𝑒𝑑◦𝜙

in which 𝜙 ∶ Σ1 → 𝑉1 is the quotient map.

Proposition 2. Any zero-energy orbit of the four-dimensional Hooke problem with the

shifted Hamiltonian
‖𝑤‖2

8 −𝑓‖𝑧‖2 +𝑚

in Σ1 is sent via 𝐾𝑆 to a zero-energy orbit of the three-dimensional Kepler Problem in

𝑇∗(𝕀ℍ∖{0}) with Hamiltonian
‖𝑃‖2

2 + 𝑚
‖𝑄‖

−𝑓.

after a proper time reparametrization.
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Proof. We first observe that the function 𝐵𝐿 is a first integral of the system

(𝑇∗ℍ, 𝑅𝑒(𝑑�̄� ∧ 𝑑𝑧), 𝐻 =
‖𝑤‖2

8 −𝑓‖𝑧‖2 +𝑚) .

This follows either from a direct verification, or alternatively from the invariance of 𝐻

under the above mentioned (Hamiltonian) 𝑆1-action. Consequently, the set Σ1 is invariant

under its flow.

We consider the restriction of this system on Σ1. Any orbit of this restricted system

descends to an orbit in the quotient system in (𝑉1, 𝜔1, 𝐻1) so that

𝜙∗𝐻1 = 𝐻,

which is consequently sent to an orbit via 𝐾𝑆𝑟𝑒𝑑 in the system

(𝑇∗𝕀ℍ, 𝑅𝑒(𝑑�̄� ∧ 𝑑𝑞), 𝐾)

such that

𝐾𝑆∗𝑟𝑒𝑑 𝐾 = 𝐻1.

Applying 𝜙∗ to both sides of this identity, we get

𝐻 = 𝜙∗𝐾𝑆∗𝑟𝑒𝑑 𝐾 = 𝐾𝑆∗ 𝐾.

From this we deduce

𝐾 =
‖𝑃‖2‖𝑄‖

2 +𝑚−𝑓‖𝑄‖.

Now we restrict the system to {𝐾 = 0} = {𝐻 = 0}. We observe that the restricted flow

can now be time reparametrized (with factor ‖𝑄‖−1) into the restricted flow on the

zero-energy hypersurface of the three-dimensional Kepler Hamiltonian

‖𝑃‖2

2 + 𝑚
‖𝑄‖

−𝑓.
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The link between Kustaanheimo-Stiefel transformation and the Levi-Civita transfor-

mation is given by the Levi-Civita planes. These are planes in ℍ generated by two unit

quaternions 𝑣1, 𝑣2 such that 𝑣1 ≠ ±𝑣2 and satisfy

𝐵𝐿(𝑣1, 𝑣2) = 0.

The key property of such a plane is that its image is a plane in 𝕀ℍ and in relevant basis

the restriction of the Hopf mapping is equivalent to the complex square mapping

ℂ→ ℂ, 𝑧 ↦→ 𝑧2.

Therefore 𝐾.𝑆. is restricted to 𝐿.𝐶. on the tangent bundle of such a plane. We proceed

with the details.

Definition 3. A Levi-Civita plane is a plane in ℍ spanned by two linearly independent unit

quarternions 𝑣1, 𝑣2 ∈ ℍ satisfying 𝐵𝐿(𝑣1, 𝑣2) = 0.

Proposition 4. The Hopf mapping

ℍ→ 𝕀ℍ, 𝑧 ↦→ �̄�𝑖𝑧

sends a Levi-Civita plane to a plane passing through the origin in 𝕀ℍ. On the other hand,

any plane in 𝕀ℍ passing through the origin is the image of a 𝒮1-family of Levi-Civita planes.

Proof. Let 𝑉 be a Levi-Civita plane spanned by two unit, orthogonal quaternions 𝑣1 and

𝑣2 in ℍ: This means that we have

|𝑣1| = |𝑣2| = 1, 𝐵𝐿(𝑣1, 𝑣2) = 0and ⟨𝑣1, 𝑣2⟩ = 0.

Then, we have

𝑣1𝑖𝑣1 = −𝑣2𝑖𝑣2,

which follows from the computation

2𝑣1𝑖𝑣1 + 2𝑣2𝑖𝑣2 = (𝑣2𝑣1 + 𝑣1𝑣2)(𝑣1𝑖𝑣2 + 𝑣2𝑖𝑣1)

= 2⟨𝑣1, 𝑣2⟩(𝑣1𝑖𝑣2 + 𝑣2𝑖𝑣1)

= 0.

(4)
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For the first equation in (4) we used the following fact: The condition

𝐵𝐿(𝑣1, 𝑣2) = 0

is equivalent to

𝑣1𝑖𝑣2 − 𝑣2𝑖𝑣1 = 0.

Thus

(𝑣1𝑣2 − 𝑣2𝑣1)(𝑣1𝑖𝑣2 − 𝑣2𝑖𝑣1) = 0

which is equivalent to

𝑣1𝑖𝑣1 + 𝑣2𝑖𝑣2 = 𝑣1𝑣2𝑣1𝑖𝑣2 + 𝑣2𝑣1𝑣2𝑖𝑣1.

Thus the quaternion 𝑣1 + 𝑣2 in 𝑉 is sent via the Hopf mapping to the quaternion

𝑣1𝑖𝑣1 + 𝑣1𝑖𝑣2 + 𝑣2𝑖𝑣1 + 𝑣1𝑖𝑣1 = 2𝑣1𝑖𝑣2.

As a vector in 𝕀ℍ, it is linearly independent of the vector 𝑣1𝑖𝑣1, which follows from 𝑣1𝑖 ≠ 0

and the linear independency of 𝑣1 and 𝑣2.

As a consequence, the image of 𝑉 is the plane passing through the origin, linearly

spanned by 𝑣1𝑖𝑣1 and 𝑣1𝑖𝑣2.

On the other hand, for any unit quaternion 𝑤 ∈ 𝕀ℍ, there exists a 𝑆1-family of unit

vectors {𝑒𝑖𝜃𝑣} in ℍ whose image under the Hopf map is 𝑤. Take a plane 𝑊 in 𝕀ℍ passing

through the origin spanned by two linearly independent unit vectors 𝑤1 and 𝑤2. We can

choose the pre-images of 𝑣1 and 𝑣2 in ℍ of 𝑤1 and 𝑤2 to be such that 𝐵𝐿(𝑣1, 𝑣2) = 0. Indeed,

for 𝑣1𝑖𝑣2 = 𝑧0 + 𝑧1𝑖 + 𝑧2𝑗 + 𝑧4𝑘, we have

𝑅𝑒(𝑒𝑖𝜃𝑣1𝑖𝑣2) = 𝑧0 cos 𝜃 − 𝑧1 sin 𝜃,

thus we can take 𝑒𝑖𝜃1𝑣1 such that 𝑧0 cos 𝜃1 − 𝑧1 sin 𝜃1 = 0 in the place of 𝑣1. Thus we get the

family of Levi-Civita planes span{𝑒𝑖𝜃𝑣1, 𝑒𝑖𝜃𝑣2}, 𝜃 ∈ ℝ∕2𝜋ℤ which are sent to 𝑊.

Proposition 5. There exists an identification with ℂ of a Levi-Civita plane 𝑉 together with

its image under the Hopf mapping, such that under this identification, the restriction of the
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K.S. mapping to 𝑇∗𝑉 is given by

𝑇∗ℂ→ 𝑇∗ℂ, (𝑧, 𝑤) ↦→ (𝑧2, 𝑧
2|𝑧|2

⋅ 𝑤)

which is the Levi-Civita transformation.

Proof. Let 𝑣1 and 𝑣2 be orthogonal unit vectors in 𝑉, which allows us to identify 𝑉 with ℂ.

We write 𝑧 = 𝑎𝑣1 + 𝑏𝑣2 and 𝑤 = 𝑐𝑣1 + 𝑑𝑣2. Then K.S. sends (𝑧, 𝑤) into

((𝑎2 − 𝑏2)𝑣1𝑖𝑣1 + 2𝑎𝑏𝑣1𝑖𝑣2,
(𝑎𝑐 − 𝑏𝑑)𝑣1𝑖𝑣1 + (𝑎𝑑 + 𝑏𝑐)𝑣1𝑖𝑣2

2(𝑎2 + 𝑏2)
).

From the orthogonality of 𝑣1 and 𝑣2, we obtain

⟨𝑣1𝑖𝑣1, 𝑣1𝑖𝑣2⟩ =
𝑣1𝑣2 + 𝑣2𝑣1

2 = ⟨𝑣1, 𝑣2⟩ = 0.

Hence we just need to identify 𝑣1𝑖𝑣1 and 𝑣1𝑖𝑣2 with the standard orthogonal basis of ℂ.

The conclusion follows after both 𝑉 and its image have been identified to ℂ.

3 Application to integrable Hooke and Kepler billiards

We extend the correspondence shown above to the corresponding billiard systems. This

generalizes the correspondence of Hooke and Kepler billiards in the plane [16], [22] to

the spatial (Kepler) case.

A centered quadric inℍ ≅ ℝ4 is called 𝑆1-invariant, if it is invariant under the 𝑆1-action

𝑆1 ↷ ℍ, 𝜃 ⋅ 𝑧 ↦→ exp(𝑖𝜃)𝑧.

Equivalently, these are quadrics which are pre-images of subsets in 𝕀ℍ under the Hopf

mapping.

A centered quadric in ℍ is called non-singular if it does not contain the origin.

For an unbounded non-singular centered quadric in ℝ4 given by

𝐹(𝑧0, 𝑧1, 𝑧2, 𝑧3) = 1
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where 𝐹 is a quadratic homogeneous function of 𝑧 = (𝑧0, 𝑧1, 𝑧2, 𝑧3) ∈ ℍ, we define its dual

quadric by

−𝐹(𝑧0, 𝑧1, 𝑧2, 𝑧3) = 1.

In normal form, for the quadric
3∑

𝑖=0
𝜎𝑖
�̂�2𝑖
𝑎2𝑖

= 1,

where 𝜎𝑖 ∈ {1,−1}, 𝑎𝑖 ∈ ℝ and {�̂�0}3𝑖=0 is an orthonormal basis in ℝ4, its dual is

3∑

𝑖=0
−𝜎𝑖

�̂�2𝑖
𝑎2𝑖

= 1.

Indeed for a quadric homogeneous function 𝐹(𝑧0, 𝑧1, 𝑧2, 𝑧3) there exists a real symmetric

4 × 4 matrix 𝐴 and a real orthogonal matrix 𝑄 such that 𝑧𝑇𝐴𝑧 = 𝐹 and 𝑄𝑇𝐴𝑄 is diagonal,

thus its normal form is given by (𝑄𝑧)𝑇𝐴𝑄𝑧 = 1. Clearly, we have 𝑧𝑇(−𝐴)𝑧 = −𝐹 and

(𝑄𝑧)𝑇(−𝐴)𝑄𝑧 = −(𝑄𝑧)𝑇𝐴𝑄𝑧.

Lemma 6. For an unbounded non-singular centered quadric ℰ and its dual quadric ℰ̃ in

ℍ, we denote their images in 𝕀ℍ by the Hopf mapping by ℱ and ℱ̃ respectively. Let 𝑃 ∈ ℱ

be the point of ℱ with the least distance from 𝑂 ∈ 𝕀ℍ. Let �̃� ∈ ℱ̃ be the point of ℱ̃ with the

least distance from 𝑂 ∈ 𝕀ℍ. Then the three points 𝑂, 𝑃, �̃� are collinear.

Proof. Consider a plane contains𝑂, 𝑃, �̃� such that the intersection ofℱ is unbounded. Then

the intersection of ℱ̃ is unbounded as well. If ℰ is non-degenerate, then the intersections of

ℱ and ℱ̃ with this plane are either two centrally symmetric parallel lines or two branches

of a focused hyperbola, since they are the images of a pair of dual hyperbolae in the

corresponding Levi-Civita plane by the complex square mapping, see [22, Thm. 4]. In the

case of parallel lines, these two lines are centrally symmetric, therefore the three points

𝑂, 𝑃, �̃� are collinear. In the case of hyperbola, the points 𝑃 and �̃� lie on different branches

of the hyperbola, and 𝑃�̃� is its major axis which necessarily contains 𝑂. When the quadric

ℰ is degenerate, we may have a parabola as an intersection of ℱ with the plane as well. A

parabola is obtained as the image of a line by the complex square mapping [22], and the

dual line is sent to the same parabola. In this case, we have 𝑃 = �̃�.
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Proposition 7. The image of any 𝑆1-invariant, non-singular, centered quadric in ℍ under

the Hopf mapping is either a plane, or a centered sphere, or a spheroid, or a sheet of a

two-sheeted circular hyperboloid, or a paraboloid in 𝕀ℍ, with always a focus at the origin

𝑂 ∈ 𝕀ℍ in the latter three cases. These surfaces correspond precisely to those obtained by

revolving a Kepler orbit (a conic with focus at 𝑂) about its principal axis.

Proof. We take an 𝑆1-invariant, non-singular, centered quadric ℰ inℍ and denote its image

in 𝕀ℍ by ℱ. The quadrics ℰ and ℱ are bounded away from the origin 𝑂. We intersect ℱ

with a plane trough 𝑂 ∈ 𝕀ℍ. By the above theory of Levi-Civita planes, this plane is the

image of an 𝑆1-family of Levi-Civita planes on each of them the Hopf mapping restricts to

the complex square mapping. The intersection of any of these Levi-Civita planes with

the centered quadric in ℍ is a centered conic section. The image of this centered conic

section is thus a branch of a conic section in the plane through the origin 𝑂 in 𝕀ℍ. In case

that this branch is neither a line nor a circle, then 𝑂 is a focus of it [22].

We first assume that ℰ is bounded in ℍ. Then its image ℱ is also bounded in 𝕀ℍ. If

all points from ℱ have the same distance to the origin, then ℱ is a centered sphere in

𝕀ℍ. Otherwise, there exist a point 𝑃1 with least distance, and another distinct point 𝑃2
with most distance from 𝑂. We consider the line passing through these two points and

take a plane in 𝕀ℍ containing both this line and the origin. By the above discussion on

Levi-Civita planes, the intersection of this plane with the image ℱ is an ellipse focused

at 𝑂. Consequently the indicated line passes through the origin, since for an ellipse this

line is the major axis and passes through the foci. So the distance |𝑃1𝑃2| is the major axis

length of this ellipse.

We consider the family of planes passing through this line. If we take such a plane

close to the plane we first took, then by continuity, the intersection of ℱ on this plane

is again an ellipse focused at 𝑂 and the points 𝑃1 and 𝑃2 lie on the ellipse as pericenter

and as apocenter respectively. Thus the ellipses obtained as intersection of ℱ on nearby

planes from the family are related by a rotation around the line 𝑃1𝑃2. Consequently ℰ is a

spheroid with the line 𝑃1𝑃2 as the symmetric axis.
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This argument can be refined to the following local rigidity for (eccentric) ellipses,

without assuming that ℱ is bounded: Consider the line 𝑃1𝑂 and a plane through this line

such that the intersection of ℱ with it is an ellipse. Then the intersection of ℱ with nearby

planes through 𝑃1𝑂 are also ellipses, and these ellipses are obtained from each other by

rotations along the axis 𝑃1𝑂. Indeed all these ellipses need to intersect 𝑃1𝑂 at the same

point 𝑃2, which necessarily is the apocenter for all of them. This implies this local rigidity

for ellipses.

Now we consider the case that ℰ is not bounded, thus ℱ is not bounded as well. We

take a point 𝑃1 ∈ ℱ which has the least distance from 𝑂. Since the centered quadric ℰ is

not given by a positive-definite quadric form, its dual quadric ℰ̃ is non-empty in ℍ. The

image in 𝕀ℍ of the dual ℰ̃ is ℱ̃. We take the point �̃�1 ∈ ℱ̃ which has the least distance from

𝑂 ∈ 𝕀ℍ. From Lemma 6, the three points 𝑂, 𝑃1, �̃�1 lie on the same line. We consider the

family of planes passing through this line. Since ℱ is unbounded, there exists a plane in

this family which has unbounded intersection with ℱ. Thus the intersection of ℱ ∪ ℱ̃ with

this plane is either a pair of two centrally symmetric parallel lines, a pair of branches of

a hyperbola with its focus at 𝑂, or a parabola with its focus at 𝑂.

In the case of a hyperbola, note that we have the local rigidity just as in the elliptic

case: In a nearby plane from this family, the intersection of ℱ ∪ ℱ̃ is again a hyperbola

focused at 𝑂, with 𝑃1 and 𝑃2 as vertices at each branch. We conclude that ℱ is a branch of

a circular two-sheeted hyperboloid with a focus at 𝑂.

In the case of parallel lines, this local rigidity implies that ℱ intersects nearby planes

in lines with 𝑃1 being the closed point from these lines to 𝑂. We conclude ℱ is a plane

perpendicular to the line 𝑂𝑃1.

The only left case is when the intersection of ℱ with a plane containing 𝑂𝑃1 is a

parabola. This happens when the original quadric ℰ is unbounded and degenerate. From

the local rigidity of ellipses and hyperbolae, we conclude that if the intersection with a

plane passing through 𝑂𝑃1 is a parabola, then the intersections of ℱ with nearby planes

passing through 𝑂𝑃1, we again obtain parabolae. These parabolae are focused at 𝑂 and
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have 𝑃1 as the vertex. Thus, ℱ intersects the nearby planes from this family in parabolae

with the focus and the vertex in common. Thus in this case the image ℱ is a paraboloid

with a focus at 𝑂.

Corollary 8. Any combination of confocal 𝒮1-invariant centered spheroids or two-sheeted

circular hyperboloids in ℍ is sent to a combination of confocal spheroid or a sheet of a

two-sheeted circular hyperboloid.

Proof. This follows from the fact that any confocal family of conic sections on a plane is

sent to a confocal family of conic sections by the complex square mapping ( [22, Thm.

4] ) and the rotational symmetry of the images of centered quadrics with respect to the

symmetry axis shown in Proposition 7.

Proposition 9. If a centered quadric in ℍ is invariant under the 𝒮1-action on ℍ given by

𝜃 ⋅ 𝑧 ↦→ exp(𝑖𝜃)𝑧, 𝑧 ∈ ℍ, (5)

then it is a centered quadric given in the non-degenerate case by the normal form equation

𝑢21
𝐴2 ±

𝑢22
𝐵2

+
𝑢23
𝐴2 ±

𝑢24
𝐵2

= 1, 𝐴, 𝐵 > 0 (6)

or in the degenerate case by the normal form equation

𝑢21
𝐴2 +

𝑢23
𝐴2 = 1, 𝐴 > 0. (7)

The image under the Hopf mapping 𝑧 ↦→ 𝑄 = �̄�𝑖 ⋅𝑧 of such a centered quadric is a spheroid/a

sheet of a circular hyperboloid in the non-degenerate case, including the sphere and plane

as degeneracies, and a circular paraboloid in the degenerate case.

Proof. By Proposition 7, the image of an 𝑆1-invariant centered quadric is either a spheroid,

or a sheet of a two-sheeted circular hyperboloid, or a paraboloid, all with a focus at the

origin, or otherwise a centered sphere or a plane. We shall only discuss the case that this

image is a spheroid. The other cases are similar.
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The proof is computational. Up to normalization, a spheroid in 𝕀ℍ focused at the origin

is given by an equation of the form

𝑞21 −
√
𝐶2 − 𝐷2

𝐶2
+
𝑞22
𝐷2 +

𝑞23
𝐷2 − 1 = 0, 𝐶 > 𝐷 > 0.

The mapping 𝑧 ↦→ 𝑄 = �̄�𝑖 ⋅ 𝑧 pulls this equation back to

𝐺1 ⋅ 𝐺2 = 0

where the factors are

𝐺1 ∶= 𝐶𝑧21 + 𝐶𝑧22 + 𝐶𝑧23 + 𝐶𝑧24 − 2
√
𝐶2 − 𝐷2𝑧1𝑧3 − 2

√
𝐶2 − 𝐷2𝑧2𝑧4 − 𝐷2

and

𝐺2 ∶= 𝐶𝑧21 + 𝐶𝑧22 + 𝐶𝑧23 + 𝐶𝑧24 + 2
√
𝐶2 − 𝐷2𝑧1𝑧3 + 2

√
𝐶2 − 𝐷2𝑧2𝑧4 + 𝐷2.

It is readily seen that the equation 𝐺2 = 0 does not admit any real solutions.

In the rotated coordinates (𝑢1, 𝑢2, 𝑢3, 𝑢4) defined as

𝑧1 =
𝑢1 + 𝑢2√

2
, 𝑧2 =

𝑢3 + 𝑢4√
2

, 𝑧3 =
𝑢1 − 𝑢2√

2
, 𝑧4 =

𝑢3 − 𝑢4√
2

,

we write

𝐺1 = (𝐶 −
√
𝐶2 − 𝐷2)𝑢21 + (𝐶 +

√
𝐶2 − 𝐷2)𝑢22 + (𝐶 −

√
𝐶2 − 𝐷2)𝑢23 + (𝐶 +

√
𝐶2 − 𝐷2)𝑢24 − 𝐷2 = 0

and thus by a further normalization we get the desired form (6).

In [16], it is noticed that conformal transformations between mechanical systems

preserves billiard trajectories. A generalization of this observation to our current situation

is the following:

Proposition 10. Let ℛ be an 𝑆1-invariant hypersurface in ℍ ⧵𝑂 and ℛ̃ ⊂ 𝕀ℍ its image under

the Hopf mapping. Let 𝑣1 be an incoming vector at a point 𝑧 ∈ ℛ such that (𝑧, 𝑣1) ∈ Σ1 with

the outgoing vector 𝑣2 after reflection. Then (𝑧, 𝑣2) ∈ Σ1. Assume that the Hopf mapping

pushes (𝑣1, 𝑣2) into (𝑣1, 𝑣2). Then 𝑣1 is reflected to 𝑣2 by the reflection at 𝑞 = �̄�𝑖𝑧 off ℛ̃.
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In the opposite direction, if 𝑣1 is reflected to 𝑣2 by the reflection at 𝑞 off ℛ̃ ⊂ ℍ ⧵ 𝑂, then

for any 𝑧 such that 𝑞 = �̄�𝑖𝑧, there exists based vectors 𝑣1, 𝑣2 at 𝑧 such that (𝑧, 𝑣1), (𝑧, 𝑣2) ∈ Σ1

which is pushed-forward into (𝑣1, 𝑣2) by the Hopf mapping, such that 𝑣1 is reflected to 𝑣2 at

𝑧 off the pre-image ℛ of ℛ̃.

Proof. By assumption, we have

𝐵𝐿(𝑧, 𝑣1) = 0.

Consider the normal vector 𝑁𝑧 to ℛ at 𝑧. Since ℛ is 𝑆1-invariant, we have that 𝑁𝑧 is

orthogonal to the 𝑆1-symmetric direction, which is given by 𝑖𝑧. Consequently, we have

𝐵𝐿(𝑧,𝑁𝑧) = 𝑅𝑒(�̄�𝑖𝑁𝑧) = −⟨𝑖𝑧, 𝑁𝑧⟩ = 0.

Since 𝐵𝐿 is linear in its second variable, we conclude that

𝐵𝐿(𝑧, 𝑣2) = 0

as well.

The second assertion follows as long as we show that the push-forward of 𝑁𝑧 is

orthogonal to ℛ̃ at 𝑞 = �̄�𝑖𝑧. The push-forward of a vector 𝑣 ∈ Σ is 2�̄�𝑖𝑣 . Thus

⟨�̄�𝑖𝑣, �̄�𝑖𝑁𝑣⟩ = |𝑧|2⟨𝑣,𝑁𝑣⟩, (8)

meaning that the angle between 𝑣 and 𝑁𝑣 is preserved. Applying this for any vector

𝑣 ∈ Σ ∩ 𝑇𝑧ℛ we conclude that �̄�𝑖𝑁𝑣 is orthogonal to ℛ̃ at 𝑞.

For the opposite direction, if 𝑣 is a vector at 𝑞 ≠ 0 and 𝑧 ∈ ℍ ⧵ 𝑂 such that 𝑞 = �̄�𝑖𝑧, then

the vector 𝑣 such that �̄�𝑖𝑣 = 𝑣 is a vector at 𝑧 which is pushed-forward to 𝑣. With this

construction we get at each 𝑧 a pair of vectors {𝑣1, 𝑣2} from the pair of vectors {𝑣1, 𝑣2} at 𝑞.

There follows directly that

(𝑧, 𝑣1), (𝑧, 𝑣2) ∈ Σ1.

Moreover it follows from the angle-preservation relationship (8) that if 𝑣1 is reflected to

𝑣2, then 𝑣1 is reflected to 𝑣2.
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As part of the proof, we have shown that if an orbit of the four-dimensional Hooke

problem satisfies the bilinear relation, then so is its reflection. Therefore we may say

that a billiard orbit satisfies the bilinear relation. As only this type of orbits are related to

the spatial Kepler problem, we propose the following definition.

Definition 11. The subsystem of a four-dimensional Hooke billiard consisting only of orbits

satisfying the bilinear relation is called the restricted four-dimensional Hooke billiard.

Definition 12. A spatial Kepler billiard and a four-dimensional Hooke billiard are called

in correspondence, if the reflection wall of the Hooke problem in ℍ is the pre-image of the

reflection wall of the Kepler problem in 𝕀ℍ by the Hopf map.

With these definitions we get the following theorem, which generalizes the planar

Hooke-Kepler billiard correspondence as has been investigated in [16] and [22].

Theorem 13. Any billiard orbit of the spatial Kepler billiard is the image of an 𝑆1-family

of billiard orbits of the corresponding restricted four-dimensional Hooke billiard. In the

opposite direction, the image of any orbit of the restricted four-dimensional Hooke billiard

under the Hopf mapping is an orbit of the corresponding spatial Kepler billiard.

This theorem is not limited to the integrable case and thus may be useful to understand

the dynamics of non-integrable four-dimensional Hooke and three-dimensional Kepler

billiards.

For the integrable case, we know that a four-dimensional Hooke billiard with a

centered quadric reflection wall is integrable [6], [4]. We directly obtain the following

result, established in [23] via a completely different approach.

Thoerem A. Consider a surface of revolution in ℝ3, by revolving a conic with a focus at the

origin about its principal axis. Then reflecting spatial Kepler orbits (attracted to/repelled

from the origin) off such a surface of revolution gives rise to an integrable mechanical

billiard.
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The first integrals for the three-dimensional integrable Kepler billiards can be obtained

from the first integrals of the four-dimensional Hooke billiards. On the other hand the

explicit representations of the first integrals are already obtained in [23]. We here recall:

𝐸 =
�̇�2 + �̇�2 + �̇�2

2 + 𝑚
√
𝑥2 + 𝑦2 + 𝑧2

,

𝐿𝑦𝑧 = �̇�𝑧 − �̇�𝑦,

�̃�𝑠𝑝ℎ =
1
2

(
(1 + 𝑎2)�̇�2 + �̇�2 + �̇�2 + ((

√
1 + 𝑎2𝑥 + 𝑎)�̇� −

√
1 + 𝑎2𝑦�̇�)2

)

+ 1
2

(
(𝑦�̇� − 𝑧�̇�)2 + (

√
1 + 𝑎2𝑧�̇� − (

√
1 + 𝑎2𝑥 + 𝑎)�̇�)2

)

+
𝑚(1 + 𝑎2 + 𝑎

√
1 + 𝑎2𝑥)

√
𝑥2 + 𝑦2 + 𝑧2

,

where 𝑎 is the half distance between the two foci.

4 The two-center problem and integrable billiards

In this section, we consider the spatial two-center problem, which describes the motion

of a particle in ℝ3 moving under the gravitational attraction of two fixed centers. In the

plane, this system is known to be integrable due to the works of Euler and Lagrange

[3], [12]. The system is also integrable in ℝ3. It is considered as a simplification of the

planar or spatial circular restricted three-body problem with the Coriolis force and the

centrifugal force ignored.

In [1], Birkhoff designed a way to simultaneously desingularize the two double

collisions of the particle with the two centers in the planar problem. This has been

subsequently generalized to the spatial problem as first announced in Stiefel and Waldvogel

[18]. In [25], Waldvogel explained that the construction is analogous to the observation

that on the Riemann sphere, Birkhoff’s mapping is conjugate to the complex square

mapping via a Möbius transformation. The approach was then subsequently applied to

the spatial problem. The use of quaternions was introduced in [26].

The goal of this section is to discuss this transformation in the spatial case with the
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language of the quaternions and symplectic geometry, with the hope of clarifying the

geometry of this transformation even further. Subsequently we apply this transformation

to the problem of integrable billiards. The main fact we will use is that for a separable

2-degree of freedom Hamiltonian system of the form:

𝐻 =
𝑎(𝑥)𝑃2𝑥 + 𝑏(𝑥)𝑃2𝑦

2 + 𝐴(𝑥) + 𝐵(𝑦) (9)

any coordinate line as a reflection wall results in an integrable mechanical billiard.

Indeed one has the independent integrals
𝑎(𝑥)𝑃2𝑥

2 +𝐴(𝑥) and
𝑏(𝑥)𝑃2𝑦
2 + 𝐵(𝑦) constant along

orbits and under reflections at a coordinate line. The same result can be obtained by

considering the spatial two-center problem in spheroidal elliptic coordinates, as this

approach leads to the same class of the separated system after reduction by rotations

around the axis containing the centers. However, it is worth mentioning that the method

used here does not require elliptic coordinates; instead, it utilizes spherical coordinates

through Birkhoff-Waldvogel’s Transformation.

We first recall Waldvogel’s view of Birkhoff transformation of the planar two-center

problem from [26]. See also [2] for a discussion on the geometry of this transformation.

Consider the mappings

𝜑1 ∶ ℂ ∪ {∞} ↦→ ℂ ∪ {∞}, 𝑧 ↦→ 𝛼 = 1 − 2
1 − 𝑧 ,

𝐿.𝐶. ∶ ℂ ∪ {∞} ↦→ ℂ ∪ {∞}, 𝛼 ↦→ 𝑞 = 𝛼2,

𝜑2 ∶ ℂ ∪ {∞} ↦→ ℂ ∪ {∞}, ↦→ 𝑥 = 1 − 2
1 − 𝑞 .

The mappings 𝜑1 and 𝜑2 are Möbius transformations on the Riemann sphere ℂ∪ {∞}. The

mapping 𝐿.𝐶. is the complex square mapping, branched at 0,∞ on the Riemann sphere.

The composition of these mappings in the natural order gives rise to

𝜑2◦𝐿.𝐶.◦𝜑1 ∶ ℂ ∪ {∞} ↦→ ℂ ∪ {∞}, 𝑧 ↦→ 𝑥 = 𝑧+𝑧−1

2 .

This is Birkhoff’s transformation, used to simultaneously regularize both double collisions

with two Kepler centers placed at −1, 1 ∈ ℂ.
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This suggests the following construction for the spatial two-center problem.

We define the base Birkhoff-Waldvogel mapping as the composition

𝜙2◦Hopf◦𝜙1 ∶ℍ ∪ {∞} ↦→ 𝕀ℍ ∪ {∞},

𝑧 ↦→ 𝑥 = 𝑖 − 4‖𝑧 − 𝑖‖4
(
(𝑧 − �̄� − 2𝑖)‖𝑧 − 𝑖‖2 + 2(𝑧 − 𝑖)𝑖(�̄� + 𝑖)

)−1

where

𝜙1 ∶ℍ ∪ {∞} ↦→ ℍ ∪ {∞},

𝑧 ↦→ 𝛼 = 𝑖 − 2
𝑧 − 𝑖

,

Hopf ∶ℍ ∪ {∞} ↦→ 𝕀ℍ ∪ {∞}

𝛼 ↦→ 𝑞 = �̄�𝑖𝛼

and

𝜙2 ∶𝕀ℍ ∪ {∞}→ 𝕀ℍ ∪ {∞},

𝑞 ↦→ 𝑥 = 𝑖 − 2
𝑞 − 𝑖

.

In coordinates, we have

𝑥1 =
1
2 (𝑧1 +

𝑧1(𝑧20 + 1)

𝑧21 + 𝑧22 + 𝑧23
)

𝑥2 =
1
2 (𝑧2 +

𝑧2(𝑧20 − 1) + 2𝑧0𝑧3
𝑧21 + 𝑧22 + 𝑧23

)

𝑥3 =
1
2 (𝑧3 +

𝑧3(𝑧20 − 1) − 2𝑧0𝑧2
𝑧21 + 𝑧22 + 𝑧23

) .

(10)

By restriction and properly lifting the mappings to the cotangent bundles, we get the

unrestricted Birkhoff-Waldvogel mapping

𝐵.𝑊. ∶= Φ2◦𝐾.𝑆.◦Φ1 ∶(ℍ ⧵ {𝑖,−𝑖}) × ℍ→ (ℍ ⧵ {𝑖,−𝑖}) × ℍ, (𝑧, 𝑤) ↦→ (𝑥, 𝑦)

where

Φ1 ∶(ℍ ⧵ {𝑖,−𝑖}) × ℍ→ (ℍ ⧵ {0, 𝑖}) × ℍ,

(𝑧, 𝑤) ↦→ (𝛼 = 𝑖 − 2
𝑧 − 𝑖

, 𝛽 =
(𝑧 − 𝑖)𝑤(𝑧 − 𝑖)

2 ) ,
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𝐾.𝑆. ∶(ℍ ⧵ {0, 𝑖}) × ℍ→ (ℍ ⧵ {0, 𝑖}) × ℍ

(𝛼, 𝛽) ↦→ (𝑞 = �̄�𝑖𝛼, 𝑝 =
�̄�𝑖𝛽
2|𝛼|2

) ,

Φ2 ∶(ℍ ⧵ {0, 𝑖}) × ℍ→ (ℍ ⧵ {𝑖,−𝑖}) × ℍ

(𝑞, 𝑝) ↦→ (𝑥 = 𝑖 − 2
𝑞 − 𝑖

, 𝑦 =
(𝑞 − 𝑖)𝑝(𝑞 − 𝑖)

2 ) .

Explicitly, the unrestricted Birkhoff-Waldvogel mapping 𝐵.𝑊. is given by (𝑧, 𝑤) ↦→ (𝑥, 𝑦)

with
𝑥 = 𝑖 − |𝑧 − 𝑖|2(2|𝑧 − 𝑖|−2(𝑧𝑖�̄� + �̄� − 𝑧 + 𝑖) − �̄� + 𝑧 − 2𝑖)−1

𝑦 = 1
|𝑖 − 2(𝑧 − 𝑖)−1|2

× ((𝑧 − 𝑖)−1(�̄� + 𝑖)−1𝑖(�̄� + 𝑖) − 𝑖(�̄� + 𝑖)−1 + (𝑧 − 𝑖)−1𝑖 + 2(𝑧 − 𝑖)−1(�̄� + 𝑖)−1)

× 𝑤(1 − (�̄� + 𝑖)(𝑧 − 𝑖)−1 + 2𝑖(𝑧 − 𝑖)−1).

The mappings Φ1,Φ2 are constructed in a way that the transformations on positions

are natural generalizations of 𝜙1, 𝜙2, while the transformations on momenta are obtained

as contragradients. The mapping 𝐾.𝑆. is the usual Kustaanheimo-Stiefel transformation.

In (ℍ ⧵ {𝑖}) × ℍ we define the subsets

Λ̂ ∶= {(𝑧, 𝑤) ∈ (ℍ ⧵ (ℝ ∪ {𝑖}∪{−𝑖})) × ℍ ∣ 𝑅𝑒((�̄� − 𝑖)𝑤(�̄� + 𝑖)) = 0}

and

Σ̂ ∶= {(𝛼, 𝛽) ∈ (ℍ ⧵ ({𝑒𝑖𝜃}∪{0})) × ℍ ∣ 𝐵𝐿(𝛼, 𝛽) = 𝑅𝑒(�̄�𝑖𝛽) = 0}.

Then we have the following:

Lemma 14. The image of the mapping Φ1 with the restricted domain Λ̂ is Σ̂. Additionally,

the image of the mapping Φ2 restricted to (𝕀ℍ ⧵ {𝑖, 0}) × 𝕀ℍ is (𝕀ℍ ⧵ {𝑖,−𝑖}) × 𝕀ℍ.

To show this we first show

Lemma 15. 𝜙−11 ({𝑒𝑖𝜃}) = ℝ.

Since 𝐾.𝑆.({𝑒𝑖𝜃}) = 𝑖 and 𝜙2(𝑖) = ∞, this shows in particular that ℝ ⊂ ℍ represents

physical infinity of the physical space 𝕀ℍ.
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Proof. The pre-image of 𝛼 = 𝑒𝑖𝜃 is

𝑧 = 𝑖 − 2
𝛼 − 𝑖

= 𝑖 − 2
cos 𝜃 − 𝑖(1 − sin 𝜃)

= 𝑖 −
2(cos 𝜃 + 𝑖(1 − sin 𝜃))

(cos 𝜃 − 𝑖(1 − sin 𝜃))(cos 𝜃 + 𝑖(1 − sin 𝜃))

= 𝑖 −
cos 𝜃 + 𝑖(1 − sin 𝜃)

1 − sin 𝜃

= cos 𝜃
sin 𝜃 − 1

.

We thus have

{𝑧 = cos 𝜃
sin 𝜃 − 1

∣ 𝜃 ∈ ℝ∕2𝜋ℤ} = ℝ.

Proof. (of Lemma 15 ) The image Φ1(Λ̂) is contained in Σ̂, since

𝑅𝑒(�̄�𝑖𝛽) = 0⇔ 𝑅𝑒 (−𝑖 − 2
�̄� + 𝑖

) 𝑖 (
(�̄� + 𝑖)𝑤(�̄� + 𝑖)

2 ) = 0

⇔ 𝑅𝑒((1 − 2(�̄� + 𝑖)−1𝑖)(�̄� + 𝑖)𝑤(�̄� + 𝑖))= 0

⇔ 𝑅𝑒((�̄� + 𝑖)−1(�̄� + 𝑖 − 2𝑖)(�̄� + 𝑖)𝑤(�̄� + 𝑖))= 0

⇔ 𝑅𝑒((�̄� − 𝑖)𝑤(�̄� + 𝑖)) = 0.

(11)

On the other hand, for any (𝛼, 𝛽) ∈ Σ̂, its pre-image (𝑧, 𝑤) ∈ Λ̂ byΦ1 is given by the formulas

𝑧 = 2
𝑖 − 𝛼

+ 𝑖

and

𝑤 = 2(�̄� + 𝑖)−1𝛽(�̄� + 𝑖)−1 = 2𝛼𝛽𝛼.

Thus, the first part of the lemma follows.

For (𝑞, 𝑝) ∈ (𝕀ℍ ⧵ {𝑖}) × 𝕀ℍ, the conjugation of its image (𝑥, 𝑦) by Φ2 is obtained as

�̄� = −𝑖 − 2
−𝑞 + 𝑖

= −(𝑖 − 2
𝑞 − 𝑖

) = −𝑥

and

�̄� = −
(𝑞 − 𝑖)𝑝(𝑞 − 𝑖)

2 = −
(−𝑞 + 𝑖)𝑝(−𝑞 + 𝑖)

2 = −
(𝑞 − 𝑖)𝑝(𝑞 − 𝑖)

2 = −𝑦,
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thus (𝑥, 𝑦) ∈ (𝕀ℍ ⧵ {𝑖}) × 𝕀ℍ.

On the other hand, for any (𝑥, 𝑦) ∈ (𝕀ℍ ⧵ {𝑖}) × 𝕀ℍ, the conjugate of its pre-image (𝑝, 𝑞) is

obtained as

�̄� = 2
−𝑖 + 𝑥

+ 𝑖 = − ( 2
𝑖 − 𝑥

+ 𝑖) = −𝑞

and

�̄� = −2𝑥𝑦𝑥 = −𝑝,

thus the pre-image (𝑝, 𝑞) belongs again to (𝕀ℍ ⧵ {𝑖}) × 𝕀ℍ.

Lemma 16. The image of the 𝐾.𝑆 mapping restricted to Σ̂ is (𝕀ℍ ⧵ {𝑖, 0}) × 𝕀ℍ.

Proof. The image 𝐾.𝑆.(Σ̂) is included in 𝕀ℍ × 𝕀ℍ since �̄�𝑖𝛼 ∈ 𝕀ℍ for any 𝛼 ∈ ℍ and

𝐵𝐿(𝛼, 𝛽) = 0⇔ 𝑅𝑒(�̄�𝑖𝛽) = 𝑅𝑒(𝑝) = 0.

On the other hand, for any (𝑞, 𝑝) ∈ (𝕀ℍ⧵{𝑖})×𝕀ℍ, we can take (𝛼, 𝛽) ∈ Σ̂ such that𝐾.𝑆.(𝛼, 𝛽) =

(𝑞, 𝑝). Indeed,for any (𝑞, 𝑝) ∈ 𝕀ℍ × 𝕀ℍ, there exists an 𝑆1-family {(𝑒𝑖𝜃1𝛼, 𝑒𝑖𝜃1𝛽)} satisfying

𝐵𝐿(𝛼, 𝛽) = 0.

From these lemmas, we obtain the following proposition:

Proposition 17. The restricted Birkhoff-Waldvogel mapping

𝐵.𝑊. ∶ Λ̂→ (𝕀ℍ ⧵ {𝑖,−𝑖}) × 𝕀ℍ (𝑧, 𝑤) ↦→ (𝑥, 𝑦),

where

𝑥 = 𝑖 − |𝑧 − 𝑖|2(2|𝑧 − 𝑖|−2(𝑧𝑖�̄� + �̄� − 𝑧 + 𝑖) − �̄� + 𝑧 − 2𝑖)−1

𝑦 = 1
|𝑖 − 2(𝑧 − 𝑖)−1|2

((𝑧 − 𝑖)−1(�̄� + 𝑖)−1𝑖(�̄� + 𝑖) − 𝑖(�̄� + 𝑖)−1 + (𝑧 − 𝑖)−1𝑖 + 2(𝑧 − 𝑖)−1(�̄� + 𝑖)−1)

× 𝑤(1 − (�̄� + 𝑖)(𝑧 − 𝑖)−1 + 2𝑖(𝑧 − 𝑖)−1)

is surjective.
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The following proposition describes the symplectic property of the restricted Birkhoff-

Waldvogel mapping:

Proposition 18. 𝐵.𝑊.∗(𝑅𝑒(𝑑�̄� ∧ 𝑑𝑥)) = 𝑅𝑒(𝑑�̄� ∧ 𝑑𝑧)|Λ̂.

Proof. We compute the 1-form:

Φ∗
1(𝑅𝑒(𝛽𝑑𝛼)) = 𝑅𝑒 (

(𝑧 − 𝑖)�̄�(𝑧 − 𝑖)
2 ⋅ (−2𝑑(𝑧 − 𝑖)−1))

= 𝑅𝑒 (
(𝑧 − 𝑖)�̄�(𝑧 − 𝑖)

2 ⋅ 2(𝑧 − 𝑖)−1(𝑑(𝑧 − 𝑖))(𝑧 − 𝑖)−1)

= 𝑅𝑒(�̄�𝑑𝑧)

Similarly, we get

Φ∗
2(𝑅𝑒(�̄�𝑑𝑥)) = 𝑅𝑒(�̄�𝑑𝑞).

We now recall the fact

𝐾.𝑆.|∗Σ(𝑅𝑒(�̄�𝑑𝑞)) = 𝑅𝑒(𝛽𝑑𝛼).

Since Σ̂ ⊂ Σ, we have

𝐾.𝑆.|∗
Σ̂
(𝑅𝑒(�̄�𝑑𝑞)) = 𝑅𝑒(𝛽𝑑𝛼).

By combining these facts, we obtain

𝐵.𝑊.∗(𝑅𝑒(�̄�𝑑𝑥)) = 𝑅𝑒(�̄�𝑑𝑧).

We now apply this mapping to the two center problem inℝ3 ≅ 𝕀ℍ, with the two centers

at ±𝑖 ∈ 𝕀ℍ. We start with the shifted-Hamiltonian of the two-center problem

𝐻 − 𝑓 =
|𝑦|2

2 +
𝑚1

|𝑥 − 𝑖|
+

𝑚2
|𝑥 + 𝑖|

− 𝑓

and consider its 0-energy hypersurface. By multiplying the above equation by |𝑥− 𝑖||𝑥+ 𝑖|,

we obtain

|𝑥 − 𝑖||𝑥 + 𝑖|(𝐻 − 𝑓) =
|𝑦|2|𝑥 − 𝑖||𝑥 + 𝑖|

2 +𝑚1|𝑥 + 𝑖| +𝑚2|𝑥 − 𝑖| − 𝑓|𝑥 − 𝑖||𝑥 + 𝑖|.
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With the following identities

𝐵.𝑊.∗(|𝑥 − 𝑖|) = |𝑧 − 𝑖|2

|�̄� − 𝑧|

𝐵.𝑊.∗(|𝑥 + 𝑖|) = |𝑧 + 𝑖|2

|�̄� − 𝑧|

𝐵.𝑊.∗(|𝑦|2) = |�̄� − 𝑧|4|𝑤|2

4|𝑧 − 𝑖|2|𝑧 + 𝑖|2

we obtain

�̃� = |𝑤|2|�̄� − 𝑧|2

8 +𝑚1
|𝑧 + 𝑖|2

|�̄� − 𝑧|
+𝑚2

|𝑧 − 𝑖|2

|�̄� − 𝑧|
− 𝑓 |𝑧 − 𝑖|2|𝑧 + 𝑖|2

|�̄� − 𝑧|2
= 0, (12)

which can be put in the standard form of a natural mechanical system in the plane by a

further multiplication of |�̄� − 𝑧|−2: In this way we get

𝐾 ∶= |𝑤|2

8 +𝑚1
|𝑧 + 𝑖|2

|�̄� − 𝑧|3
+𝑚2

|𝑧 − 𝑖|2

|�̄� − 𝑧|3
− 𝑓 |𝑧 − 𝑖|2|𝑧 + 𝑖|2

|�̄� − 𝑧|4
= 0. (13)

Note that the Hamiltonian (13) is regular at the physical double collisions {𝑧 = ±𝑖}. The

physical collisions are therefore regularized. Its singular set {𝑧 ∈ ℝ} corresponds to ∞ of

the original system, and is not contained in any finite energy level (Lem. 15).

Proposition 19. Consider a plane in 𝕀ℍ containing the 𝑖-axis given by the equation

𝑘2𝑥2 + 𝑘3𝑥3 = 0 (14)

with (𝑘1, 𝑘2) ∈ ℝ2 ⧵ 𝑂. The pre-image of this plane by the B.W. mapping is the family of

two-dimensional spheres and planes given by

⎧

⎨
⎩

(sin 𝜃𝑧0 − cos 𝜃)2 + (𝑧21 + 𝑧22 + 𝑧23) sin
2 𝜃 = 1

𝑘2(𝑧2 cos 𝜃 + 𝑧3 sin 𝜃) + 𝑘3(𝑧3 cos 𝜃 − 𝑧2 sin 𝜃) = 0.
(15)

For each 𝜃 ≢ 0, 𝜋 (𝑚𝑜𝑑 2𝜋), Equation (15) describes a two-dimensional sphere as the

intersection of a three-dimensional sphere with a hyperplane in ℍ. We call them Birkhoff

spheres. We denote them by 𝑆𝜃,𝜅 respectively.
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For 𝜃 ≡ 0, 𝜋 (𝑚𝑜𝑑 2𝜋), Equation (15) describes the plane

⎧

⎨
⎩

𝑧0 = 0

𝑘2𝑧2 + 𝑘3𝑧3 = 0,
(16)

which we call a Birkhoff plane and we denote it by 𝜋𝜅. In both cases, the angle 𝜅 is the

unique angle which satisfies

cos 𝜅 = 𝑧2, sin 𝜅 = 𝑧3.

Moreover, the mapping 𝐵.𝑊. is restricted to the Birkhoff mapping on the cotangent bundle

of a Birkhoff plane.

Proof. The pre-image of the plane (14) by the mapping 𝜙2 is a plane given by

𝑘1𝑞2 + 𝑘2𝑞3 = 0

in 𝕀ℍ. The pre-image of this plane by the Hopf map is the family of Levi-Civita planes

given by

⎧

⎨
⎩

𝛼0 cos 𝜃 + 𝛼1 sin 𝜃 = 0

𝑘2(𝛼2 cos 𝜃 + 𝛼3 sin 𝜃) + 𝑘3(𝛼3 cos 𝜃 − 𝛼2 sin 𝜃) = 0
(17)

in which 𝜃 ∈ ℝ∕2𝜋ℤ is an angle parametrizing the 𝑆1-symmetry of the Hopf mapping.

The pre-image of this family of Levi-Civita planes by 𝜙1 is

⎧

⎨
⎩

cos 𝜃(−𝑧0) + sin 𝜃
(
𝑧1 − 1 + (𝑧20 + (𝑧1 − 1)2 + 𝑧22 + 𝑧23)

2∕2
)
= 0,

𝑘2(cos 𝜃𝑧2 + sin 𝜃𝑧3) + 𝑘3(cos 𝜃𝑧3 − sin 𝜃𝑧2) = 0,
(18)

which is equivalent to Eq. 15. For the last assertion, the restriction of the 𝐵.𝑊. mapping

to a Birkhoff plane is the composition of planar mappings each of them can be identified

with 𝜑2, 𝐿.𝐶., 𝜑1 respectively. Indeed, the restriction of 𝜙1 to the 𝑖𝑗-plane is obtained as

𝜙1(𝑧1𝑖 + 𝑧2𝑗) = (1 − 2((𝑧1 − 1)2 + 𝑧2)−1(1 − 𝑧1))𝑖 + 2((𝑧1 − 1)2 + 𝑧2)−1𝑧2𝑗

which is equivalent to the Möbius transformation on ℂ ∪ {∞} given by

𝜑1(𝑧0 + 𝑧1𝑖) = 1 − 2((𝑧0 − 1)2 + 𝑧21)
−1(1 − 𝑧0) − 2(𝑧0 − 1)2 + 𝑧21)

−1𝑧1𝑖
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up to some basis changes. One can generalize this identification to any planes in 𝕀ℍ

containing the 𝑖-axis by rotating the plane with respect to the 𝑖-axis. Analogously, we

can identify the restriction of 𝜙2 to a plane in 𝕀ℍ containing the 𝑖-axis. Finally, we recall

the argument from Proposition 5 and use the equivalence between the restriction of the

Hopf mapping to the 𝑖𝑗−plane in 𝕀ℍ and the complex square mapping. The conclusion

follows.

It is desirable to relate 𝑆𝜃,𝜅 and 𝜋𝜅, as they are related by the symmetry of the Birkhoff-

Waldvogel mapping. We also would like to introduce natural coordinates to analyze the

transformed system. For this purpose, we have the following lemma:

Lemma 20. Let 𝑧 ∈ 𝜋𝜅 be expressed as

𝑧 = (𝑟 cos𝜓) 𝑖 + (𝑟 sin𝜓 cos 𝜅) 𝑗 + (𝑟 sin𝜓 sin 𝜅) 𝑘,

and 𝑧𝜃 ∈ 𝑆𝜃,𝜅 be related to 𝑧 by the action of the 𝑆1-symmetry of the Birkhoff-Waldvogel

mapping by shifting the corresponding angle by 𝜃. Then we have

𝑧𝜃 =
(1 − 𝑟2) sin 𝜃 + 2𝑟 cos𝜓𝑖 + 2𝑟 sin𝜓 cos(𝜃 + 𝜅)𝑗 + 2𝑟 sin𝜓 sin(𝜃 + 𝜅)𝑘

(𝑟2 + 1) − (𝑟2 − 1) cos 𝜃
. (19)

Proof. The mapping 𝜋𝜅 → 𝑆𝜃,𝜅, 𝑧 ↦→ 𝑧𝜃 is computed as 𝑧𝜃 = 𝜙−11 (𝑒𝑖𝜃𝜙1(𝑧)). This leads to the

formula above.

We may thus use (𝑟, 𝜓, 𝜅, 𝜃) as coordinates for points in ℍ ⧵ 𝑂 with the help of Eq. (19).

The mapping (𝑟, 𝜓, 𝜅, 𝜃) ↦→ 𝑧 ∶= 𝑧𝜃 is seen to be 2-to-1, as both (𝑟, 𝜓, 𝜅, 𝜃) and (𝑟, 𝜓, 𝜅, 𝜃 + 𝜋)

is sent to the same point 𝑧 ∈ ℍ.

We compute �̃� in Eq. (12) with these coordinates. We denote by (𝑃𝑟, 𝑃𝜓, 𝑃𝜅, 𝑃𝜃) the

corresponding conjugate momenta. We set 𝑃𝜃 = 0, which is equivalent to the condition

𝑅𝑒((�̄� + 𝑖)𝑤(�̄� − 𝑖)) = 0. This follows from Eq.(11). We then obtain after this restriction the
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formula

�̃� =
𝑟2𝑃2𝑟
2 +

𝑃2𝜓
2 +

𝑃2𝜅
2 sin2 𝜓

−
2𝑟2𝑃2𝜅

(𝑟2 − 1)2
(20)

+ 4𝑓 cos2 𝜓 + (𝑚1 −𝑚2) cos𝜓 +
(𝑓𝑟2 − (𝑚1 +𝑚2)𝑟∕2 + 𝑓)(𝑟2 + 1)

𝑟2
. (21)

This can be considered as the reduced system with respect to the 𝑆1-symmetry in the

direction of 𝜃.

We have

�̃� = �̃�1 + �̃�2, (22)

with

�̃�1(𝑟, 𝑃𝑟, 𝑃𝜅) =
𝑟2𝑃2𝑟
2 −

2𝑟2𝑃2𝜅
(𝑟2 − 1)2

+
(𝑓𝑟2 − (𝑚1 +𝑚2)𝑟∕2 + 𝑓)(𝑟2 + 1)

𝑟2
;

�̃�2(𝜓, 𝑃𝜓, 𝑃𝜅) =
𝑃2𝜓
2 +

𝑃2𝜅
2 sin2 𝜓

+ 4𝑓 cos2 𝜓 + (𝑚1 −𝑚2) cos𝜓.
(23)

The angle 𝜅 does not appear in this formula, reflecting the rotational invariance of

the system around the axis of centers in 𝕀ℍ. We may thus fix 𝑃𝜅 = 𝐶. The further reduced

Hamiltonian is

�̃�𝑟𝑒𝑑 = �̃�𝑟𝑒𝑑,1 + �̃�𝑟𝑒𝑑,2, (24)

with

�̃�𝑟𝑒𝑑,1(𝑟, 𝑃𝑟) =
𝑟2𝑃2𝑟
2 − 2𝑟2𝐶2

(𝑟2 − 1)2
+
(𝑓𝑟2 − (𝑚1 +𝑚2)𝑟∕2 + 𝑓)(𝑟2 + 1)

𝑟2
;

�̃�𝑟𝑒𝑑,2(𝜓, 𝑃𝜓) =
𝑃2𝜓
2 + 𝐶2

2 sin2 𝜓
+ 4𝑓 cos2 𝜓 + (𝑚1 −𝑚2) cos𝜓.

(25)

Both �̃�𝑟𝑒𝑑,1(𝑟, 𝑃𝑟), �̃�𝑟𝑒𝑑,2(𝜓, 𝑃𝜓) are 1 degree of freedom systems. The theory of [22]

applies. Any finite combination of coordinate lines {𝑟 = 𝑐𝑠𝑡.} and {𝜓 = 𝑐𝑠𝑡.} in the (𝑟, 𝜓)-

plane are integrable reflection walls.

It follows from Eq. (19) that each fibre of the 𝐵.𝑊.-mapping intersects the subspace 𝕀ℍ

in two points when 𝑟 ≠ 1, and lie completely in this subspace when 𝑟 = 1. In this latter
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case, only the combination of the angles 𝜃+𝜅 appears in the formula, meaning that in this

case the 𝜅-orbit is the same as the 𝜃-orbit. This is reflected in the formula (20) for �̃�, which

is singular at {𝑟 = 1} if 𝐶 ≠ 0. Indeed it is not hard to check that this set corresponds to the

𝑖-axis in the physical space 𝕀ℍ. This follows from Eq.(10). Otherwise, it is also singular at

𝜓 = 0, 𝜋 (𝑚𝑜𝑑 2𝜋), corresponding again to the 𝑖−axis. With this in mind, we consider the

restriction of the system to the set

�̃� = {𝑧 = 𝑧1𝑖 + 𝑧2𝑗 + 𝑧3𝑘 ∈ 𝕀ℍ⧵ ∶ |𝑧| ≠ 0, 1, (𝑧2, 𝑧3) ≠ (0, 0)}

with (orthogonal) spherical coordinates (𝑟, 𝜓, 𝜅), given by Eqs. (22), (23).

Proposition 21. A mechanical billiard system in 𝕀ℍ, defined by the restriction of �̃� and any

finite combination of concentric spheres and any cones symmetric around the 𝑖-axis with

the vertex at the origin is integrable.

Proof. The spherical coordinates (𝑟, 𝜓, 𝜅) are orthogonal. At a point of reflection we

decompose the velocity as 𝑣𝑟 𝑒𝑟 + 𝑣𝜓 𝑒𝜓 + 𝑣𝜅 𝑒𝜅. We consider a sphere centered at the origin

𝑂 or a cone symmetric around the 𝑖-axis with a vertex at 𝑂 as reflection wall. Due to the

symmetry of the wall with respect to the 𝑖-axis, the 𝜅-component of the velocity, thus

the 𝑃𝜅 does not change under reflections. Also, the intersection of the wall and a plane

containing the 𝑖-axis is a circle centered at the origin or a line passing through the origin,

thus the argument in [22, Lemma 3] applies and we see that both 𝑃2𝑟 and 𝑃2𝜓 are conserved.

Therefore, we conclude that �̃�1 and �̃�2 are conserved.

By a quadric of class R in 𝕀ℍ we mean a spheroid or a circular hyperboloid of two

sheets there-in with foci at the two Kepler centers±𝑖 following [23]. Restricting the system

in 𝕀ℍ to the Birkhoff planes and making use of [22], we obtain that the above mentioned

system is equivalent to the two-center billiards in ℝ3 with any combinations of quadrics

of class R as reflection walls.

Theorem 22. The above-mentioned mechanical billiard system is equivalent to the two-

center billiards in ℝ3 with any combinations of quadrics of class R as reflection walls.
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Thoerem B. Consider a surface of revolution in ℝ3 by revolving a conic with foci at the

two Kepler centers around the axis joining the centers. Then reflecting orbits of the spatial

two-center problem on such a surface of revolution R is an integrable mechanical billiard.

Moreover, taking a finite combination of these surfaces does not destroy the integrability of

the resulting two-center mechanical billiard systems.

This provides an alternative way to show the integrability of these two-center billiards,

and generalizes [22] to dimension 3.

Remark 23. The Lagrange problem in ℝ3 is given by the Hamiltonian

𝐻 = |𝑤|2

2 +𝑚0|𝑧|2 +
𝑚1

|𝑧 − 𝑖|
+

𝑚2
|𝑧 + 𝑖|

,

with 𝑚0, 𝑚1, 𝑚2 ∈ ℝ as parameters.

The same procedure shows that this system is separable after reduction in the same

coordinates as above. Consequently, Thm. 22 also holds with the Lagrange problem as the

underlying system, as well as for other similar systems separable after reduction in these

coordinates.

We here recall the explicit representation of the first integrals for the integrable

Lagrange billiard obtained in [23]:

𝐸 =
�̇�2 + �̇�2 + �̇�2

2 +𝑚0(𝑥2 + 𝑦2 + 𝑧2) +
𝑚1√

(𝑥 − 1) + 𝑦2 + 𝑧2
+

𝑚2√
(𝑥 + 1) + 𝑦2 + 𝑧2

,

𝐿𝑦𝑧 = �̇�𝑧 − �̇�𝑦,

𝐸𝑠𝑝ℎ =
1
2

(
2�̇�2 + �̇�2 + �̇�2 + ((

√
2𝑥 + 1)�̇� −

√
2𝑦�̇�)2 + (

√
2𝑧�̇� − (

√
2𝑥 + 1)�̇�)2 + (𝑦�̇� − 𝑧�̇�)2

)

+𝑚0(2𝑥2 + 𝑦2 + 𝑧2) +
𝑚1(1 +

√
2𝑥)

√
(𝑥 − 1∕

√
2)2 + 𝑦2 + 𝑧2

+
𝑚2(1 −

√
2𝑥)

√
(𝑥 + 1∕

√
2)2 + 𝑦2 + 𝑧2

.

Setting 𝑚0 = 0 yields the first integrals of the two-center problem stated in Theorem B.
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1 Introduction

It is well known (see Proposition 5.1 below for references) that the field of meromorphic

functions on a 2-dimensional neighborhood of the Riemann sphere with positive self-

intersection is a finitely generated extension of ℂ, of transcendence degree at most 2. In
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recent papers [5, 6, 8] examples of such neighborhoods were constructed for which this

transcendence degree assumes all values from 0 through 2 (in particular, examples of

non-algebraizable neighborhoods with transcendence degree 2 were found).

Now it seems natural to ask what fields may occur as such fields of meromorphic

functions (in the case of transcendence degree 1 or 2, of course). It turns out that the

answer to this question is simple and somehow disappointing. To wit, the main results of

the paper are as follows.

Proposition 1.1. Suppose that 𝐹 is a non-singular connected complex surface and that

there exists a curve 𝐶 ⊂ 𝐹, 𝐶 ≅ ℙ1, such that (𝐶 ⋅ 𝐶) > 0. Let ℳ be the field of meromorphic

functions on 𝐹.

If the transcendence degree of ℳ over ℂ is at least 2, then ℳ ≅ ℂ(𝑇1, 𝑇2) (the field of

rational functions).

Proposition 1.2. Suppose that 𝐹 is a non-singular connected complex surface and that

there exists a curve 𝐶 ⊂ 𝐹, 𝐶 ≅ ℙ1, such that (𝐶 ⋅ 𝐶) > 0. Let ℳ be the field of meromorphic

functions on 𝐹.

If the transcendence degree of ℳ over ℂ is 1, then ℳ ≅ ℂ(𝑇) (the field of rational

functions).

Summing up, if 𝐹 is a smooth and connected complex surface contaning a copy of the

Riemann sphere with positive self-intersetion, then the field of meromorphic functions

on 𝐹 is isomorphic to either ℂ or ℂ(𝑇) or ℂ(𝑇1, 𝑇2).

Thus, the field of meromorphic functions without any additional structure cannot

serve as an invariant that would help to classify neighborhoods of rational curves with

positive self-intersection.

Proposition 1.2 agrees with the example from [6, Section 3.2].

The proofs of Propositions 1.1 and 1.2 are based on the study of (embedded) defor-

mations of the curve 𝐶 ⊂ 𝐹. Properties of such deformations are well known in the

algebraic context; the classical paper [7] implies a complete description of deformations
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of rational curves on arbitrary smooth complex surfaces, but this paper does not contain

a description of deformations of rational curves passing through given points; I prove

the necessary facts (Propositions 3.1 and 3.2) in the ad hoc manner, using a result of

Savelyev [11].

The paper is organized as follows. In Section 2 we recall, following Douady [4], general

facts on deformations of compact analytic subspaces in a given analytic space. In Section 3

we prove some pretty natural results on deformations of smooth rational curves in smooth

(and not necessarily compact) complex surfaces; the results of this section do not claim

much novelty. In Section 4 we establish some more specific properties of deformations

of rational curves on surfaces. Finally, in Section 5 (resp. 6) we prove Proposition 1.1

(resp. 1.2).
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Notation and conventions

All topological terms refer to the classical topology unless specified otherwise. By coherent

sheaves we mean analytic coherent sheaves.

If 𝑋 is a connected complex manifold, then ℳ(𝑋) is the field of meromorphic functions

on 𝑋.

If 𝑌 is a complex submanifold of a complex manifold 𝑋, then the normal bundle to 𝑌

in 𝑋 is denoted by 𝒩𝑋|𝑌 .

Our notation for the 𝑛-dimensional complex projective space is ℙ𝑛.

The projectivization ℙ(𝐸) of a linear space 𝐸 is the set of lines in 𝐸, not of hyperplanes.

If 𝐶1 and 𝐶2 are compact Riemann surfaces embedded in a smooth complex surface 𝐹,

then their intersection index is denoted by (𝐶1 ⋅ 𝐶2).
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If 𝐶 is a Riemann surface isomorphic to ℙ1 and 𝑛 ∈ ℤ, then 𝒪𝐶(𝑛) stands for the line

bundle aka invertible sheaf of degree 𝑛 on 𝐶.

By Veronese curve 𝐶𝑑 ⊂ ℙ𝑑 we mean the image of the mapping ℙ1 → ℙ𝑑 defined by the

formula (𝑧0 ∶ 𝑧1) ↦→ (𝑧𝑑0 ∶ 𝑧
𝑑−1
0 𝑧1 ∶⋯ ∶ 𝑧𝑑1 ).

Analytic spaces are allowed to have nilpotents in their structure sheaves (however,

analytic spaces with nilpotents will be acting mostly behind the scenes). If 𝑋 is an analytic

space, then the analytic space obtained from 𝑋 by quotienting out the nilpotents is

denoted by 𝑋red.

If 𝑋 is an analytic space and 𝑥 ∈ 𝑋, then 𝑇𝑥𝑋 is the Zariski tangent space to 𝑋 at 𝑥 (i.e.,

𝑇𝑥𝑋 = (𝔪𝑥∕𝔪2
𝑥)∗, where 𝔪𝑥 is the maximal ideal of the local ring 𝒪𝑋,𝑥).

In the last two sections we use meromorphic mappings (which will be denoted by

dashed arrows). For the general definition we refer the reader to [2, page 75] (one

caveat: a meromorphic function on a smooth complex manifold 𝑋 is not, in general,

a meromorphic mapping from 𝑋 to ℂ); for our purposes it suffices to keep in mind

two facts concerning them. First, if 𝐹∶ 𝑋 ⤏ 𝑌 is a meromorphic mapping, where 𝑋

is a complex manifold, then the indeterminacy locus of 𝐹 is an analytic subset in 𝑋 of

codimension at least 2. Second, if 𝑋 is a connected complex manifold and 𝑓0,… , 𝑓𝑛 are

meromorphic functions on 𝑋 of which not all are identically zero, then the formula

𝑥 ↦→ (𝑓0(𝑥) ∶ …𝑓𝑛(𝑥)) defines a meromorphic mapping from 𝑋 to ℙ𝑛.

2 Deformations: generalities

In this section we recall (briefly and without proofs) the general theory (see [4] for details).

Suppose that 𝐹 is an analytic space (in the applications we have in mind 𝐹 will be a smooth

complex surface). Then there exists the Douady space 𝑫(𝐹), which parametrizes all the

compact analytic subspaces of 𝐹. This means the following.

For any analytic space 𝐵, a family of compact analytic subspaces of 𝐹 with the base 𝐵

is a closed analytic subspace ℌ ⊂ 𝐵 × 𝐹 that is proper and flat over 𝐵. Now the Douady
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space 𝑫(𝐹) comes equipped with the universal family ℌ(𝐹) ⊂ 𝑫(𝐹) × 𝐹 of subspaces of 𝐹

over 𝑫(𝐹), which satisfies the following property: for any family over an analytic space 𝐵

there exists a unique morphism 𝐵 → 𝑫(𝐹) such that the family over 𝐵 is induced, via this

morphism, from the universal family over 𝑫(𝐹). Applying this definition to the case in

which 𝐵 is a point (hence, a family over 𝐵 is just an individual compact analytic subspace

of 𝐹), one sees that there is a 1–1 correspondence between compact analytic subspaces

of 𝐹 and fibers of the projection ℌ(𝐹)→ 𝑫(𝐹).

At this point one has to say that the Douady space is not an analytic space: it is a

more general object, which Douady calls a Banach analytic space. However, every point

𝑎 ∈ 𝑫(𝐹) has a neighborhood ∆ ∋ 𝑎 that is isomorphic to an analytic space in the usual

sense.

This construction can be generalized as follows. If ℰ is a coherent analytic sheaf on

𝐹, then there exists a Banach analytic space 𝑫𝒐𝒖(ℰ) parametrizing coherent subsheaves

𝒮 ⊂ ℰ such that the quotient ℰ∕𝒮 has compact support. To be more precise, a family of

subsheaves of ℰ with base 𝐵 is a coherent subsheaf 𝛴 ⊂ pr∗2 ℰ on 𝐵 × 𝐹 such that pr∗2 ℰ∕𝛴 is

flat over𝐵 and supp(pr∗2 ℰ∕𝛴) is proper over𝐵, and there is a universal family of subsheaves

of ℰ over 𝑫𝒐𝒖(ℰ).

The space 𝑫𝒐𝒖(ℰ) is also locally isomorphic to an analytic space. If one puts ℰ = 𝒪𝐹 in

this construction, one obtains a canonical isomorphism 𝑫(𝐹) ≅ 𝑫𝒐𝒖(𝒪𝐹).

If 𝑎 ∈ 𝑫𝒐𝒖(ℰ) is a point corresponding to the subsheaf 𝒮 ⊂ ℰ, then one can define the

Zariski tangent space 𝑇𝑎𝑫𝒐𝒖(ℰ) to 𝑫𝒐𝒖(ℰ) at 𝑎 as 𝑇𝑎∆, where ∆ ⊂ 𝑫𝒐𝒖(ℰ) is any neighbor-

hood of 𝑎 that is isomorphic to an analytic space. This Zariski tangent space is canonically

isomorphic to Hom(𝒮,ℰ∕𝒮) (see [4, Section 9.1, Remarque 3]).

If a coherent sheaf ℰ is a subsheaf of a coherent sheaf ℱ and if ℱ∕ℰ has compact

support, then 𝑫𝒐𝒖(ℰ) is naturally embedded in 𝑫𝒐𝒖(ℱ) (a subsheaf of ℰ can be regarded

as a subsheaf of ℱ). This embedding induces injective homomorphisms of Zariski tangent

spaces. Indeed, let Specℂ[𝜀]∕(𝜀2) be the analytic space consisting of one point such that the

ring of functions is ℂ[𝜀]∕(𝜀2). Then 𝑇𝑎𝑫𝒐𝒖(ℰ), as a set, is canonically bijective to the set of
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families of subsheaves of ℰ over the base Specℂ[𝜀]∕(𝜀2) (ibid.). If supp(ℱ∕ℰ) is compact, any

family of subsheaves of ℰ (over an arbitrary base) is automatically a family of subsheaves

of ℱ, and different families of subsheaves of ℰ, being different subsheaves of pr∗2 ℰ, are

ipso facto different subsheaves of pr∗2 ℱ.

In the sequel we will be using the following notation.

Notation 2.1. If 𝐹 is a complex manifold and 𝑎 ∈ 𝑫(𝐹), then 𝐶𝑎 stands for the analytic

subspace of 𝐹 corresponding to 𝑎.

Similarly, if ℰ is a coherent sheaf on a complex manifold and 𝑎 ∈ 𝑫𝒐𝒖(ℰ), then 𝒮𝑎 is

the subsheaf in ℰ corresponding to 𝑎.

3 Deformations of rational curves

In this section we state and prove two auxiliary results concerning deformations of

smooth rational curves on complex surfaces. These results are well known for deforma-

tions of curves on which no restrictions are imposed. For example, Proposition 3.1 below

follows immediately from the main result of [7], and its algebraic-geometric counterpart

(for smooth algebraic surfaces over a field of characteristic zero) follows immediately

from the theorem in Lecture 23 of [9]. However, I did not manage to find a suitable

reference for deformations of curves passing through given points.

We will be using the general theory from Section 2 in the following setting. 𝐹 will

always be a smooth and connected complex surface, 𝐶 ⊂ 𝐹 will be a complex sub-

manifold isomorphic to ℙ1 (the Riemann sphere), and we will always assume that the

self-intersection index 𝑑 = (𝐶 ⋅𝐶) is non-negative. By 𝑫(𝐹, 𝐶) we will mean an unspecified

open subset of 𝑫(𝐹) that contains the point corresponding to 𝐶 ⊂ 𝐹 and is isomorphic to

an analytic space. The reader will check that this indeterminacy of definition does not

affect the arguments that follow.

Moreover, suppose that 𝑆 = {𝑝1,… , 𝑝𝑚} ⊂ 𝐶 is a subset of cardinality 𝑚 ≤ 𝑑 = (𝐶 ⋅ 𝐶).

Let ℐ𝑆 ⊂ 𝒪𝐹 be the ideal sheaf of the analytic subset 𝑆 ⊂ 𝐹. If ℐ ⊂ ℐ𝑆 is a coherent subsheaf,
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then it follows from the exact sequence

0→ ℐ𝑆∕𝐼 → 𝒪𝐹∕ℐ → 𝒪𝐹∕ℐ𝑆 → 0

that supp(𝒪𝐹∕ℐ) = supp(ℐ𝑆∕𝐼) ∪ 𝑆, so supp(ℐ𝑆∕𝐼) is compact if and only if supp(𝒪𝐹∕ℐ) is

compact. Hence, the Douady space 𝑫𝒐𝒖(ℐ𝑆) parametrizes the (ideal sheaves of) compact

analytic subspaces of 𝐹 containing the subset 𝑆. An unspecified open subset of 𝑫𝒐𝒖(ℐ𝑆)

containing the point corresponding to 𝐶 (strictly speaking, to the ideal sheaf of 𝐶, which

is a subsheaf of ℐ𝑆) and isomorphic to an analytic space, will be denoted by 𝑫(𝐹, 𝐶, 𝑆). In

view of the natural embedding of 𝑫𝒐𝒖(ℐ𝑆) into 𝑫𝒐𝒖(𝒪𝐹) = 𝑫(𝐹) we will always assume

that 𝑫(𝐹, 𝐶, 𝑆) ⊂ 𝑫(𝐹, 𝐶).

Extending Notation 2.1, we will denote by 𝐶𝑎 ⊂ 𝐹 the analytic subspace of 𝐹 corre-

sponding to the point 𝑎 ∈ 𝑫(𝐹, 𝐶, 𝑆).

Let 𝑎 ∈ 𝑫(𝐹, 𝐶) be the point corresponding to 𝐶 ⊂ 𝐹, and let ℐ𝐶 ≅ 𝒪𝐹(−𝐶) be the ideal

sheaf of 𝐶 ⊂ 𝐹. According to the general theory, the Zariski tangent space to 𝑫(𝐹, 𝐶) at 𝑎 is

𝑇𝑎𝑫(𝐹, 𝐶) = Hom𝒪𝐹
(ℐ𝐶 ,𝒪𝐹∕ℐ𝐶) ≅ Hom𝒪𝐶

(ℐ𝐶∕ℐ2𝐶 ,𝒪𝐶) =𝒩𝐹|𝐶 ≅ 𝒪𝐶(𝑑) (1)

(here and below, Hom refers to the space of global homomorphisms, not to theHom sheaf).

Similarly, taking into account that ℐ𝐶 ⊂ ℐ𝑆 and denoting by 𝑏 ∈ 𝑫(𝐹, 𝐶, 𝑆) the point

corresponding to 𝐶, one has

𝑇𝑏𝑫(𝐹, 𝐶, 𝑆) ≅ Hom𝒪𝐹
(ℐ𝐶 , ℐ𝑆∕ℐ𝐶) ≅ Hom𝒪𝐶

(ℐ𝐶∕ℐ2𝐶 , ℐ𝑆) ≅ 𝒩𝐹|𝐶 ⊗ 𝒪𝐶(−𝑆) ≅ 𝒪𝐶(𝑑 − 𝑚).

The main results about deformations of 𝐶 ⊂ 𝐹 that we need are as follows.

Proposition 3.1. Suppose that 𝐹 is a smooth and connected complex surface, 𝐶 ⊂ 𝐹

is a complex submanifold isomorphic to ℙ1, and 𝑑 = (𝐶 ⋅ 𝐶) ≥ 0. Then there exists a

neighborhood ∆ ∋ 𝑎 of the point 𝑎 ∈ 𝑫(𝐹, 𝐶) corresponding to 𝐶 such that the analytic space

∆ is a smooth complex manifold of dimension 𝑑 + 1 and, for any 𝑏 ∈ ∆, 𝐶𝑏 ≅ ℙ1.

A similar result, of which Proposition 3.1 is a particular case, holds for 𝑫(𝐹, 𝐶, 𝑆).
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Proposition 3.2. In the above setting, suppose that 𝑆 = {𝑝1,… , 𝑝𝑚} ⊂ 𝐶 is a subset of

cardinality 𝑚 ≤ 𝑑. Then there exists a neighborhood ∆ ∋ 𝑎 of the point 𝑎 ∈ 𝑫(𝐹, 𝐶, 𝑆)

corresponding to 𝐶 such that the analytic space ∆ is a smooth complex manifold of dimen-

sion 𝑑 −𝑚 + 1 and, for any 𝑏 ∈ ∆, 𝐶𝑏 ≅ ℙ1.

We begin with a particular case, which is essentially contained in [11] (and which

follows from the main result of [7]).

Lemma 3.3. Proposition 3.1 holds if 𝑑 = 0.

Proof. Let 𝑎 ∈ 𝑫(𝐹, 𝐶) be the point corresponding to 𝐶 ⊂ 𝐹. Since 𝑑 = 0, one has𝒩𝐹|𝐶 ≅ 𝒪𝐶 ,

so it follows from (1) that dim𝑇𝑎𝑫(𝐹, 𝐶) = 1. But, according to the main result of [11],

there exist a neighborhood 𝑊 ⊃ 𝐶 and an isomorphism 𝜑∶ 𝑊 → 𝐷 × 𝐶, where 𝐷 is the

unit disk in ℂ, such that 𝜑(𝑝) = (0, 𝑝) for any 𝑝 ∈ 𝐶. If one puts

𝔊 = {(𝑧, 𝑥) ∈ 𝐷 × 𝐹∶ 𝑥 ∈𝑊, pr1(𝜑(𝑥)) = 𝑧},

then the family 𝔊 induces a morphism Φ∶ 𝐷 → 𝑫(𝐹, 𝐶) such that Φ(0) = 𝑎 (the point corre-

sponding to 𝐶) andΦ is 1–1 onto its image. Hence, dim𝑎 𝑫(𝐹, 𝐶) ≥ 1. Since dim𝑇𝑎𝑫(𝐹, 𝐶) = 1,

one concludes that𝑫(𝐹, 𝐶) is a smooth 1-dimensional complex manifold in a neighborhood

of 𝑎.

To prove Proposition 3.2 in full generality, we will need two simple lemmas.

Lemma 3.4. If 𝑝∶ ℌ→ 𝐷, where 𝐷 is the unit disk in ℂ, is a proper and flat morphism of

analytic spaces, and if the fiber 𝑝−1(0) is reduced and isomorphic to ℙ1, then there exists an

𝜀 ∈ (0; 1) such that the fiber 𝑓−1(𝑎) is also reduced and isomorphic to ℙ1 whenever |𝑎| < 𝜀.

Sketch of proof. It is easy to see that there exists an 𝜀 > 0 such that 𝑝−1(𝐷𝜀)→ 𝐷𝜀 is a proper

submersion of complex manifolds. Hence, topologically it is a locally trivial bundle, so all

the fibers are homeomorphic to 𝑆2, whence the result.

Lemma 3.5. Suppose that𝑋 is an analytic space, 𝑎 ∈ 𝑋, and dim𝑇𝑎𝑋 = 𝑛. Then the following

two assertions are equivalent.
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(1) 𝑋 is a smooth 𝑛-dimensional complex manifold in a neighborhood of the point 𝑎.

(2) There exists a non-empty Zariski open subset 𝑉 ⊂ ℙ(𝑇𝑎𝑋) such that for any 1-

dimensional linear subspace 𝓁 ⊂ 𝑇𝑎𝑋 corresponding to a point of 𝑉 there exists a smooth 1-

dimensional locally closed complex submanifold 𝑌 ⊂ 𝑋 such that 𝑌 ∋ 𝑎 and 𝑇𝑎𝑌 = 𝓁 ⊂ 𝑇𝑎𝑋.

Proof. Only the implication (2) ⇒ (1) deserves a proof.

Observe that 𝑋 is a complex manifold near 𝑎 if and only if dim𝑎 𝑋 = 𝑛 = dim𝑇𝑎𝑋.

Furthermore, the question being local, we may and will assume that 𝑋 is a closed analytic

subspace of a polydisc 𝐷 ⊂ ℂ𝑁 . Let �̄� be the blowup of 𝐷 at 𝑎, and let �̄� be the strict trans-

form of 𝑋red. If 𝜎∶ �̄� → 𝐷 is the blowdown morphism and 𝐸 = 𝜎−1(𝑎) is the exceptional

divisor, then �̄� ∩ 𝐸 is a projective submanifold of 𝐸 ≅ ℙ𝑁−1, dim �̄� ∩ 𝐸 = dim𝑎 𝑋 − 1, and

�̄� ∩ 𝐸 ⊂ ℙ(𝑇𝑎𝑋) ⊂ 𝐸.

Now if 𝑌 ⊂ 𝑋 is a locally closed 1-dimensional complex submanifold such that 𝑌 ∋ 𝑎

and if 𝓁 = 𝑇𝑎𝑌 ⊂ 𝑇𝑎𝑋, then the point of ℙ(𝑇𝑎(𝑋)) corresponding to 𝓁 belongs to �̄� ∩𝐸; thus,

it follows from (2) that �̄� ∩ 𝐸 contains a non-empty Zariski open subset of ℙ(𝑇𝑎𝑋), hence

�̄� ∩ 𝐸 = ℙ(𝑇𝑎𝑋), hence dim𝑎 𝑋 = 𝑛, and we are done.

Proof of Proposition 3.2. Choose 𝑑 − 𝑚 distinct points 𝑞1,… , 𝑞𝑑−𝑚 ∈ 𝐶 ⧵ 𝑆. Let �̄� be the

blowup of 𝐹 at the points 𝑝1,… , 𝑝𝑚, 𝑞1,… , 𝑞𝑑−𝑚, let 𝜎∶ �̄� → 𝐹 be the corresponding blow-

down morphism, and let �̄� ⊂ �̄� be the strict transform of 𝐶. One has �̄� ≅ ℙ1 and (�̄�, �̄�) = 0.

Let �̄� ∈ 𝑫(�̄�, �̄�) be the point corresponding to �̄�, and let 𝑎 ∈ 𝑫(𝐹, 𝐶, 𝑆) be the point corre-

sponding to 𝐶.

Applying Lemma 3.3 to the pair (�̄�, �̄�), one concludes that there exists a family ℌ̄0 ⊂

𝐷 × �̄�, where 𝐷 is the unit disk in the complex plane, such that its fiber over 0 is �̄� ⊂ �̄�

and, for the induced mapping �̄�∶ 𝐷 → 𝑫(�̄�, �̄�), its derivative 𝐷�̄�(0)∶ 𝑇0𝐷 → 𝑇�̄�𝑫(�̄�, �̄�) is

non-degenerate.

If we put ℌ0 = (id × 𝜎)(ℌ̄0) ⊂ 𝐷 × 𝐹, then ℌ0 is a family of analytic subspaces in 𝐹

containing 𝑆; its fiber over 0 is 𝐶. Let 𝜑∶ 𝐷 → 𝑫(𝐹, 𝐶, 𝑆) be the mapping induced by this

family.
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It is clear that the diagram

𝑇�̄�𝑫(�̄�, �̄�) 𝐻0(𝒩�̄�|�̄�)

𝐷𝜎

��

𝑇0𝐷

𝐷�̄�(0)
99

𝐷𝜑(0) %%

�̄�

33

𝛼

++
𝑇𝑎𝑫(𝐹, 𝐶, 𝑆) 𝐻0(𝒩𝐹|𝐶(−𝑆)),

where the vertical arrow is induced by the natural homomorphism 𝒩�̄�|�̄� → 𝜎∗𝒩𝐹|𝐶 ,

is commutative. It follows from (the proof of) Lemma 3.3 that �̄�(𝜕∕𝜕𝑧), where 𝑧 is the

coordinate on 𝐷, is a nowhere vanishing section of 𝒩�̄�|�̄� ≅ 𝒪�̄�; since the derivative of

the mapping 𝜎 is non-degenerate outside 𝜎−1{𝑝1,… , 𝑝𝑚, 𝑞1,… , 𝑞𝑑−𝑚}, the section 𝛼(𝜕∕𝜕𝑧) =

𝐷𝜎(�̄�(𝜕∕𝜕𝑧)) is not identically zero. Hence, 𝜑 induces an embedding of a possibly smaller

disk 𝐷𝜀 ⊂ 𝐷 in 𝑫(𝐹, 𝐶, 𝑆).

Moreover, since 𝜎 maps each of the curves 𝜎−1(𝑝𝑖), 𝜎−1(𝑞𝑗) to a point, and since each

of these curves is transverse to �̄�, the section 𝛼(𝜕∕𝜕𝑧) vanishes at 𝑝1,… , 𝑝𝑚, 𝑞1,… , 𝑞𝑑−𝑚, so

𝛼(𝜕∕𝜕𝑧) spans the 1-dimensional linear space

𝐻0(𝒩𝐹|𝐶(−𝑆)(−𝑞1 −⋯ − 𝑞𝑑−𝑚)) ⊂ 𝐻0(𝒩𝐹|𝐶(−𝑆)) = 𝑇𝑎𝑫(𝐹, 𝐶, 𝑆). (2)

In the argument that follows we will assume that 𝑑 −𝑚 ≥ 2, so that the words about

Veronese curves in ℙ𝑑 and ℙ𝑑−𝑚 make sense; we leave it to the reader to modify the

wording for the case 𝑑 −𝑚 = 1.

Keeping the above in mind, identify 𝐶 with ℙ1 and 𝒩𝐹|𝐶 with 𝒪ℙ1(𝑑) = 𝒪𝐶(𝑑), embed 𝐶

in ℙ𝑑 with the complete linear system |𝒪𝐶(𝑑)| to obtain a Veronese curve 𝐶𝑑 ⊂ ℙ𝑑, and

project 𝐶𝑑 from ℙ𝑑 to ℙ𝑑−𝑚, the center of projection being the linear span of the images of

the points 𝑝1,… , 𝑝𝑚. The image of this projection will be a Veronese curve 𝐶𝑑−𝑚 ⊂ ℙ𝑑−𝑚;

denote the resulting isomorphism between 𝐶 and 𝐶𝑑−𝑚 by 𝜑∶ 𝐶 → 𝐶𝑑−𝑚.

One has

ℙ𝑑−𝑚 = ℙ((𝐻0(𝒩𝐹|𝐶(−𝑆))∗);
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for any 𝑑−𝑚 distinct points 𝑞1,… , 𝑞𝑑−𝑚 ∈ 𝐶⧵𝑆 the points𝜑(𝑞1),… , 𝜑(𝑞𝑑−𝑚) span a hyperplane

in ℙ𝑑−𝑚, and the linear span ⟨𝜑(𝑞1),… , 𝜑(𝑞𝑑−𝑚)⟩ is the projectivization of

Ann(𝐻0(𝒩𝐹|𝐶(−𝑆)(−𝑞1 −⋯ − 𝑞𝑑−𝑚))) ⊂ 𝐻0(𝒩𝐹|𝐶(−𝑆))∗.

Now the hyperplanes in ℙ𝑑−𝑚 that are transverse to 𝐶𝑑−𝑚 form a non-empty Zariski

open subset in (ℙ𝑑−𝑚)∗ = ℙ(𝐻0(𝒩𝐹|𝐶(−𝑆))) and any such hyperplane intersects 𝐶𝑑−𝑚 at

𝑑 −𝑚 distinct points that are of the form 𝜑(𝑞1),… , 𝜑(𝑞𝑑−𝑚), where 𝑞1,… , 𝑞𝑑−𝑚 ∈ 𝐶 ⧵ 𝑆. Thus,

the linear subspaces of the form (2) fill a non-empty Zariski open subset in ℙ(𝑇𝑎𝑫(𝐹, 𝐶, 𝑆))

as we vary 𝑞1,… , 𝑞𝑑−𝑚 ∈ 𝐶 ⧵ 𝑆, so the hypotheses of Lemma 3.5 are satisfied if one puts

𝑌 = 𝜑(𝐷), hence the smoothness is established. Now the assertion to the effect that the

fibers are isomorphic to ℙ1 follows from Lemma 3.4.

4 Good neighborhoods

Suppose that 𝐹 is a smooth and connected complex surface and 𝐶 ⊂ 𝐹 is a curve that is

isomorphic to ℙ1 and (𝐶 ⋅ 𝐶) ≥ 0. In the definition below we use Notation 2.1.

Definition 4.1. We will say that an open subset 𝑊 ⊂ 𝐹, 𝑊 ⊃ 𝐶 is a good neighborhood

of 𝐶 if there exists a connected open subset ∆ ⊂ 𝑫(𝐹, 𝐶) such that 𝑊 =
⋃

𝑏∈∆ 𝐶𝑏 and each

𝐶𝑏 for 𝑏 ∈ ∆ is a smooth curve isomorphic to ℙ1.

Proposition 4.2. In the above setting, there exists a fundamental system of good neighbor-

hoods of 𝐶.

Proof. If 𝑑 = 0, it follows immediately from Lemma 3.3. Suppose that 𝑑 > 0.

Let 𝑎 ∈ 𝑫(𝐹) be the point corresponding to 𝐶, and let ∆ ∋ 𝑎, ∆ ⊂ 𝑫(𝐹, 𝐶) be the

neighborhood whose existence is asserted by Proposition 3.1. We denote by ℌ ⊂ ∆ × 𝐹

the family of analytic subspaces of 𝐹 induced by the embedding ∆ → 𝑫(𝐹, 𝐶) (informally

speaking, ℌ = {(𝑏, 𝑥) ∈ ∆ × 𝐹∶ 𝑥 ∈ 𝐶𝑏}). Since all the 𝐶𝑏’s are smooth 1-dimensional

complex submanifolds of 𝐹 and the base ∆ is a smooth complex manifold as well, ℌ is a

smooth complex manifold.
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I claim that the projection 𝑞∶ ℌ→ 𝐹 is a submersion; once we have established this

fact, it will follow that 𝑞(ℌ) ⊂ 𝐹 is a good neighborhood of 𝐶.

To check this submersivity, consider an arbitrary point (𝑏, 𝑥) ∈ ℌ (i.e., 𝑥 ∈ 𝐶𝑏); we

are to show that the derivative 𝐷𝑞(𝑏, 𝑥)∶ 𝑇(𝑏,𝑥)ℌ→ 𝑇𝑥𝐹 is surjective. To that end, pick 𝑑

distinct point 𝑝1,… , 𝑝𝑑 ∈ 𝐶𝑏 ⧵ {𝑥}, where 𝑑 = (𝐶 ⋅ 𝐶) = (𝐶𝑏 ⋅ 𝐶𝑏), and put {𝑝1,… , 𝑝𝑑} = 𝑆.

Let 𝑖∶ 𝑫(𝐹, 𝐶, 𝑆) → 𝑫(𝐹, 𝐶) be the natural embedding, and let 𝛽 ∈ 𝑫(𝐹, 𝐶, 𝑆) be the point

corresponding to the curve 𝐶𝑏 (so 𝐶𝛽 and 𝐶𝑏 are the same curve in 𝐹, and 𝑖(𝛽) = 𝑏).

Let ∆0 ⊂ 𝑫(𝐹, 𝐶𝑏, 𝑆), ∆0 ∋ 𝛽 be a neighborhood whose existence is asserted by Proposi-

tion 3.2; we may and will assume that ∆0 ⊂ 𝑖−1(∆). Finally, let ℌ0 ⊂ ∆0 × 𝐹 be the family of

analytic subspaces of 𝐹 (containing 𝑆) induced by the inclusion ∆0 → 𝑫(𝐹, 𝐶, 𝑆), and let

𝑞0∶ ℌ0 → 𝐹 be the projection. The inclusion ∆0 ⊂ 𝑫(𝐹, 𝐶) induces an inclusion ℌ0 → ℌ,

and one has the following obvious commutative diagram:

𝐹

ℌ0
� � //

𝑞0

77

��

ℌ
𝑞

??

��
∆0
� � 𝑖 // ∆

(3)

Observe that if 𝑐 ∈ 𝑖(∆0) ⊂ ∆ and 𝑦 ∈ 𝐶𝑐 ⧵ 𝑆 then there exists a unique 𝛾 ∈ ∆0 such that

𝑦 ∈ 𝐶𝛾. Indeed, if 𝑦 ∈ 𝐶𝛾 ∩ 𝐶𝛾1 , 𝛾, 𝛾1 ∈ ∆0, then 𝐶𝛾 ∩ 𝐶𝛾1 ⊃ {𝑦} ∪ 𝑆, whence (𝐶𝛾 ⋅ 𝐶𝛾1) ⩾ 𝑑 + 1,

which contradicts the fact that

(𝐶𝛾 ⋅ 𝐶𝛾1) = (𝐶 ⋅ 𝐶) = 𝑑.

Hence, there exists a neighborhood 𝔙 ∋ (𝛽, 𝑥) in ℌ0 such that the restriction of 𝑞0 to 𝔙 is

1–1 onto its image.

Since, according to Proposition 3.2, the Douady space 𝑫(𝐹, 𝐶𝑏, 𝑆) is 1-dimensional

and smooth in a neighborhood of the point 𝛽 corresponding to 𝐶𝑏 ⊂ 𝐹, and since a

holomorphic mapping of complex manifolds of the same dimension that is 1–1 onto its

image is an open embedding, it follows now that 𝑞0(𝔙) is open in 𝐹 and 𝑞0|𝔙∶ 𝔙→ 𝑞0(𝔙)
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is a biholomorphism. In particular, 𝐷𝑞0(𝛽, 𝑥)∶ 𝑇(𝛽,𝑥)ℌ0 → 𝑇𝑥𝐹 is an isomorphism. Now it

follows from the diagram (3) that 𝐷𝑞(𝑏, 𝑥)∶ 𝑇(𝑏,𝑥)ℌ→ 𝑇𝑥𝐹 is a surjection.

This proves the submersivity of the projection 𝑞∶ ℌ → 𝐹, so 𝑞(ℌ) ⊂ 𝐹 is a good

neighborhood of 𝐶, and, for any open and connected ∆′ ⊂ ∆, ∆′ ∋ 𝑎, the set 𝑞(𝑝−1(∆′)) ⊃ 𝐶,

where 𝑝∶ ℌ→ ∆ is the projection, is a good neighborhood of𝐶 as well. The neighborhoods

𝑞(𝑝−1(∆′)), for various such∆′, form a fundamental system of good neighborhoods of𝐶.

Proposition 4.3. Suppose that 𝐶 ⊂ 𝐹, where 𝐹 is a smooth complex surface, is a curve that

is isomorphic to ℙ1, and that (𝐶 ⋅ 𝐶) = 𝑑 > 0. If 𝑊 ⊂ 𝐹 is a good neighborhood of 𝐶 in the

sense of Definition 4.1, then for any 𝑥 ∈𝑊 there exist two curves 𝐶1, 𝐶2 ∋ 𝑥, 𝐶1, 𝐶2 ⊂ 𝑊 such

that 𝐶1 ≅ 𝐶2 ≅ ℙ1 and the curves 𝐶1 and 𝐶2 are transverse at 𝑥.

Proof. Since𝑊 is a good neighborhood, there exists a curve 𝐶𝑏 ∋ 𝑥, where 𝑏 ∈ ∆. Pick 𝑑−1

distinct points 𝑝1,… , 𝑝𝑑−1 ∈ 𝐶𝑏⧵{𝑥} and put 𝑆 = {𝑥, 𝑝1,… , 𝑝𝑑−1}. According to Proposition 3.2,

one has dim𝛽 𝑫(𝐹, 𝐶𝑏, 𝑆) = 1, where 𝛽 is the point of 𝑫(𝐹, 𝐶𝑏, 𝑆) corresponding to 𝐶𝑏. Let

∆0 ∋ 𝛽, ∆0 ⊂ 𝑫(𝐹, 𝐶𝑏, 𝑆) be the neighborhood whose existence is asserted by Proposition 3.2,

and let 𝛾1, 𝛾2 ∈ ∆0 be two distinct points. I claim that the curves 𝐶1 ∶= 𝐶𝛾1 and 𝐶2 ∶= 𝐶𝛾2
are transverse at 𝑥. Indeed, if this not the case, then the local intersection index of 𝐶1
and 𝐶2 at 𝑥 is at least 2, whence

(𝐶 ⋅ 𝐶) = (𝐶1 ⋅ 𝐶2) ≥ 𝑑 − 1 + 2 ≥ 𝑑 + 1,

contrary to the fact that (𝐶 ⋅ 𝐶) = 𝑑. This contradiction proves the required transversality.

5 Transcendence degree 2

In this section we prove Proposition 1.1. We begin with two simple observations.

Proposition 5.1. If 𝐹 is a smooth connected complex surface that contains a curve 𝐶 ⊂ ℙ1

such that (𝐶 ⋅ 𝐶) > 0, then the field of meromorphic functions ℳ(𝐹) is finitely generated

over ℂ and tr. degℂℳ(𝐹) ≤ 2.
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Proof. Theorem 2.1 from [10] asserts that there exists a pseudoconcave neighborhood

𝑈 ⊃ 𝐶. According to [1, Théorème 5], the field ℳ(𝑈) is finitely generated over ℂ and

tr. degℂℳ(𝑈) ≤ 2. Observe that ℳ(𝐹) embeds in ℳ(𝑈) as an extension of ℂ; since any

sub-extension of a finitely generated extension of fields is also finitely generated and the

transcendence degree is additive in towers, we are done.

Lemma 5.2. Suppose that 𝐹 is a connected complex surface such that tr. degℂℳ(𝐹) ≥ 2. If

there exists a connected open set 𝑈 ⊂ 𝐹 such that ℳ(𝑈) ≅ ℂ(𝑇1, 𝑇2), then ℳ(𝐹) ≅ ℂ(𝑇1, 𝑇2).

Proof. Since ℳ(𝐹) embeds into ℳ(𝑈), it follows immediately from the two-dimensional

Lüroth theorem.

(Recall that the two-dimensional Lüroth theorem asserts that if 𝐾 ⊂ ℂ(𝑇1, 𝑇2) is a

subfield containing ℂ and tr. degℂ 𝐾 = 2, then 𝐾 ≅ ℂ(𝑇1, 𝑇2); this fact follows immediately

from the existence of a smooth projective model for any finitely generated extension of ℂ

and from Theorem 3.5 in [3, Chapter VI].)

Now we may begin the proof of Proposition 1.1. Thus, let 𝐹 be a smooth connected

complex surface such that tr. degℂℳ(𝐹) ≥ 2 and let 𝐶 ≅ ℙ1 be a curve (one-dimensional

complex submanifold) such that (𝐶 ⋅𝐶) = 𝑑 > 0. Let 𝑊 ⊂ 𝐹 be a good neighborhood of 𝐶 in

the sense of Definition 4.1. We are to prove that ℳ(𝐹) ≅ ℂ(𝑇1, 𝑇2); by virtue of Lemma 5.2

it suffices to prove that ℳ(𝑊) ≅ ℂ(𝑇1, 𝑇2).

Since tr. degℂℳ(𝐹) ≤ 2 by virtue of Proposition 5.1 and tr. degℂℳ(𝐹) ≥ 2 by hypoth-

esis, one has tr. degℂℳ(𝐹) = 2. Now ℳ(𝐹) is isomorphic to a subfield of ℳ(𝑊), so

tr. degℂℳ(𝑊) ≥ 2. Since Proposition 5.1 implies that tr. degℂℳ(𝑊) ≤ 2 and ℳ(𝐹) is finitely

generated over ℂ, one concludes that ℳ(𝑊) is a finitely generated extension of ℂ, of

transcendence degree 2. Hence, ℳ(𝑊) = ℂ(𝑓, 𝑔, ℎ), where the meromorphic functions 𝑓

and 𝑔 are algebraically independent over ℂ and ℎ is algebraic over ℂ(𝑓, 𝑔) (of course, if

one may set ℎ = 0, there is nothing to prove). Denote by 𝑃 an irreducible polynomial in

three independent variables 𝐹, 𝐺, and 𝐻 such that 𝑃(𝑓, 𝑔, ℎ) is identically zero.
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Now let 𝑌 ⊂ ℂ3 be the affine algebraic surface that is the zero locus of 𝑃, and let 𝑋 ⊂ ℙ𝑁

be a smooth projective model of 𝑌.

Denote by 𝑉 ⊂ 𝑊 the open subset on which each of the meromorphic functions 𝑓, 𝑔,

and ℎ is well defined and consider the holomorphic mapping Φ∶ 𝑉 → 𝑌 defined by the

formula 𝑥 ↦→ (𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥)). The mapping Φ extends to a meromorphic mapping from

𝑊 to �̄� ⊂ ℙ3, where �̄� is the closure of 𝑌; composing this meromorphic mapping with a

birational mapping �̄� ⤏ 𝑋, one obtains a meromorphic mapping Φ1∶ 𝑊 ⤏ 𝑋.

Lemma 5.3. There exists a non-empty open subset 𝑂 ⊂ 𝑊 such that Φ1 is defined on 𝑂 and

the derivative 𝐷Φ1(𝑥) is non-degenerate for any 𝑥 ∈ 𝑂.

Assuming this lemma for a while, let us finish the proof of Proposition 1.1.

Our construction of the surfaces 𝑋 and 𝑌 implies that ℳ(𝑋) ≅ℳ(𝑊); hence, to prove

Proposition 1.1 it suffices to show that ℳ(𝑋) ≅ ℂ(𝑇1, 𝑇2). We will derive this fact from the

Castelnuovo rationality criterion (see for example [3, Chapter VI, 3.4]), which may be

stated as follows.

Theorem 5.4 (Castelnuovo). Suppose that 𝑋 is a smooth projective surface over ℂ. Then

ℳ(𝑋) ≅ ℂ(𝑇1, 𝑇2) if and only if 𝐻0(𝑋,Ω1
𝑋) = 0 and 𝐻0(𝑋,𝜔⊗2𝑋 ) = 0.

Here, 𝐻0(𝑋,Ω1
𝑋) is the space of holomorphic 1-forms on 𝑋 and 𝐻0(𝑋,𝜔⊗2𝑋 ) is the space

of holomorphic 2-forms of weight 2 on 𝑋; we are to check that, for our surface 𝑋, both

these linear spaces do not contain non-zero elements.

To begin with, observe that if 𝜂 is a holomorphic covariant tensor field on 𝑋 that

is not identically zero, then Φ∗
1𝜂 is a holomorphic tensor field on 𝑊 ⧵ 𝐼, where 𝐼 is the

indeterminacy locus of Φ1, and, in view of Lemma 5.3, Φ∗
1𝜂 is not identically zero. Since 𝐼

is a discrete subset of the complex surface𝑊, Φ∗
1𝜂 extends to a tensor field on the entire𝑊.

Thus, to show that 𝐻0(𝑋,Ω1
𝑋) = 0 and 𝐻0(𝑋,𝜔⊗2𝑋 ) = 0 it suffices to show that 𝐻0(𝑊,Ω1

𝑊) = 0

and 𝐻0(𝑊,𝜔⊗2𝑊 ) = 0, that is, that there are no non-trivial holomorphic 1-forms or 2-forms

of weight 2 on 𝑊. We deal with these two types of tensor fields separately.

The absence of holomorphic 1-forms. This is just the following lemma, which will

be used in Section 6 as well.
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Lemma 5.5. Suppose that 𝐹 is a non-singular complex surface, 𝐶 ⊂ 𝐹 is a curve such that

𝐶 ≅ ℙ1 and (𝐶 ⋅ 𝐶) > 0, and 𝑊 is a good neighborhood of 𝐶. Then any holomorphic 1-form

on 𝑊 is identically zero.

Proof. Suppose that 𝜔 is such a form. Proposition 4.3 implies that, for any 𝑥 ∈𝑊 there

exist curves 𝐶1, 𝐶2 ⊂ 𝑊, 𝐶1 ≅ 𝐶2 ≅ ℙ1 such that 𝐶1 ∩ 𝐶2 ∋ 𝑥 and 𝐶1 and 𝐶2 are transverse

at 𝑋. Since there are no non-zero holomorphic 1-forms on the Riemann sphere, the

restriction of 𝜔 to both 𝐶1 and 𝐶2 is identically zero. Hence, the linear functional 𝜔𝑥 that

𝜔 induces on 𝑇𝑥𝑊 is zero on 𝑇𝑥𝐶1, 𝑇𝑥𝐶2 ⊂ 𝑇𝑥𝑊. Since 𝐶1 and 𝐶2 are transverse at 𝑥, these

two linear spaces span the entire 𝑇𝑥𝑊, so 𝜔𝑥 = 0. Since 𝑥 ∈𝑊 was arbitrary, 𝜔 = 0 and

we are done.

The absence of holomorphic 2-forms of weight 2. Recall that differential 2-forms

of weight 2 on a surface 𝐺 have, in local coordinates (𝑧, 𝑤), the form 𝑓(𝑧, 𝑤)(𝑑𝑧 ∧ 𝑑𝑤)2. If

𝜔 is such a form, then, for any point 𝑥 ∈ 𝐺, 𝜔𝑥 is a mapping from 𝑇𝑥𝐺 × 𝑇𝑥𝐺 to ℂ; this

mapping is uniquely determined by its value at a given pair of linearly independent

tangent vectors.

Lemma 5.6. If 𝐺 = 𝑈 × ℙ1, where 𝑈 is an open subset of ℂ, then there is no non-trivial

holomorphic 2-form of weight 2 on 𝐺.

Proof. Suppose that 𝜔 is such a form. If 𝑧 is the coordinate on 𝑈 ⊂ ℂ, then there exists a

nowhere vanishing holomorphic vector field 𝜕∕𝜕𝑧 on 𝐺. For any 𝑏 ∈ 𝑈, put 𝐶𝑏 = {𝑏} × ℙ1.

To show that 𝜔 = 0 it suffices to show that for any 𝑏 ∈ 𝑈 and 𝑥 ∈ 𝐶𝑏 one has 𝜔𝑥(𝜕∕𝜕𝑧, 𝑣) = 0,

where 𝑣 ∈ 𝑇𝑥𝐶𝑏 is a nonzero tangent vector.

Consider the tensor field 𝜂 = 𝑖𝜕∕𝜕𝑧𝜔 (the contraction of 𝜔 with 𝜕∕𝜕𝑧), which is a family

of functions 𝜂𝑥 ∶ 𝑇𝑥𝐺 → ℂ for all 𝑥 ∈ 𝐺, 𝜂𝑥(𝑤) = 𝜔𝑥(𝜕∕𝜕𝑧, 𝑤) for 𝑤 ∈ 𝑇𝑥𝐺. The field 𝜔 is a

holomorphic section of Sym2Ω1
𝐺 , and its restriction to each 𝐶𝑏 is a section of 𝜔⊗2𝐶𝑏 , i.e., a

quadratic differential on 𝐶𝑏, i.e., a section of 𝒪𝐶𝑏(−4); such a holomorphic section must

be identically zero, so, for any 𝑥 ∈ 𝐶𝑏 and any 𝑣 ∈ 𝑇𝑥𝐶𝑏, 𝜔𝑥(𝜕∕𝜕𝑧, 𝑣) = 𝜂(𝑣) = 0, and we are

done.
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Now suppose that 𝜔 is a differential 2-form of weight 2 on 𝑊. To show that 𝜔 = 0, pick

𝑑 distinct points 𝑝1,… , 𝑝𝑑 ∈ 𝐶, where 𝑑 = (𝐶 ⋅ 𝐶), and let �̄� be the blowup of 𝑊 at 𝑝1,… , 𝑝𝑑
and �̄� ⊂ �̄� be the strict transform of 𝐶. It suffices to show that 𝜎∗𝜔 = 0, where 𝜎∶ �̄� →𝑊

is the blowdown morphism, and it will suffice to show that 𝜎∗𝜔 = 0 on a non-empty open

subset of �̄�. Since �̄� ≅ ℙ1 and (�̄� ⋅ �̄�) = 0, it follows from the main result of Savelyev’s

paper [11] that a neighborhood of �̄� in �̄� is isomorphic to 𝑈 × ℙ1, where 𝑈 is an open

subset of ℂ. Now Lemma 5.6 applies.

This completes the proof of Proposition 1.1 modulo Lemma 5.3.

Proof of Lemma 5.3. It suffices to prove this assertion for Φ∶ 𝑉 → 𝑌 ⊂ ℂ3 instead of Φ1.

Moreover, if 𝜋∶ 𝑌 → ℂ2 is the projection defined by forgetting the third coordinate, then

the derivative of 𝜋 is non-degenerate on a non-empty Zariski open subset of the smooth

locus of 𝑌; hence, it suffices to establish the existence of such a set 𝑂 for the mapping

Ψ = 𝜋◦Φ∶ 𝑉 → ℂ2, Ψ∶ 𝑥 ↦→ (𝑓(𝑥), 𝑔(𝑥)).

The mapping Ψ extends to a meromorphic mapping 𝑊 ⤏ ℙ2 defined, in the homo-

geneous coordinates, by 𝑥 ↦→ (1 ∶ 𝑓(𝑥) ∶ 𝑔(𝑥)); abusing the notation, we will denote

this meromorphic mapping by Ψ as well. The indeterminacy locus of the meromorphic

mapping Ψ is a discrete subset of 𝑊.

If there exists at least one point 𝑥 ∈𝑊 whereΨ is defined and𝐷Ψ(𝑥) is non-degenerate,

we are done. Assume now that the derivative of Ψ is degenerate at any point where Ψ is

determined; we will show that this assumption leads to a contradiction.

Let ∆ ⊂ 𝑫(𝐹, 𝐶) be the open subset such that 𝑊 = 𝑞(𝑝−1(∆)), where 𝑝∶ ℌ → 𝑫(𝐹) and

𝑞∶ ℌ→ 𝐹 are the canonical projections of the restriction of the universal family ℌ; recall

that the curve 𝑞(𝑝−1(𝑏)) ⊂ 𝐹, where 𝑏 ∈ ∆, is denoted by 𝐶𝑏.

Observe that the restriction of Ψ to any 𝐶𝑏 is a meromorphic, hence holomorphic,

mapping from 𝐶𝑏 to ℙ2. For any 𝑏1, 𝑏2 ∈ ∆, (𝐶𝑏1 ⋅ 𝐶𝑏2) = (𝐶 ⋅ 𝐶) > 0, hence 𝐶𝑏1 ∩ 𝐶𝑏2 ≠ ∅.

Thus, if the restriction of Ψ to each 𝐶𝑏 is constant, then Ψ is constant, which is nonsense.

Hence, we may and will pick a 𝑏 ∈ ∆ such that the restriction of Ψ to 𝐶𝑏 is not constant.

Put Ψ(𝐶𝑏) = 𝑍 ⊂ ℙ2; it follows from the Chow theorem that 𝑍 is a projective algebraic
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curve.

Observe as well that the set of points 𝑥 ∈ 𝑊 where Ψ is defined and 𝐷Ψ(𝑥) = 0

must have empty interior (otherwise Ψ would be constant). Hence, there exists a closed

analytic subset 𝐷 with empty interior such that, for any 𝑥 ∈𝑊 ⧵ 𝐷, Ψ is defined at 𝑥 and

rank𝐷Ψ(𝑥) = 1. Hence, all the fibers of the restriction Ψ|𝑊⧵𝐷 are smooth analytic curves

in 𝑊 ⧵ 𝐷.

Cb′

Cb U

fibers of Ψ|U︷ ︸︸ ︷

Figure 1: To the proof of Lemma 5.3.

Pick a point 𝑥 ∈ 𝐶𝑏 ⧵ 𝐷 such that 𝑇𝑥𝐶𝑏 is not contained in Ker𝐷Ψ(𝑥). There exists an

open set 𝑈 ∋ 𝑥, 𝑈 ⊂ 𝑊 ⧵ 𝐷 such that for any 𝑦 ∈ 𝐶𝑏 ∩ 𝑈 the set Ψ−1(Ψ(𝑦)) is a smooth

analytic curve transverse to 𝐶 at 𝑦. Now for any 𝑏′ ∈ ∆ that is close enough to 𝑏 there

exists a non-empty open set 𝑉 ⊂ 𝐶𝑏′ ∩ 𝑈 such that for any 𝑥′ ∈ 𝑉 there exists a point

𝑦′ ∈ 𝐶𝑏 ∩𝑈 such that Ψ−1(Ψ(𝑦′)) ∩ 𝐶𝑏′ contains 𝑥′ (see Fig. 1).

Hence, Ψ(𝑉) ⊂ Ψ(𝐶𝑏); since 𝑉 is a non-empty open subset of 𝐶𝑏′ , one concludes that

Ψ(𝐶𝑏′) = Ψ(𝐶𝑏) = 𝑍 ⊂ ℙ2. Since the curves 𝐶𝑏′ , for all 𝑏′ close enough to 𝑏, sweep, by

virtue of Proposition 4.2, an open subset of 𝑊, one concludes that Ψ(𝑊) ⊂ 𝑍. Since 𝑍 is

an algebraic curve in ℙ2 and Ψ is defined by the formula 𝑥 ↦→ (1 ∶ 𝑓(𝑥) ∶ 𝑔(𝑥)), it follows

that the meromorphic functions 𝑓 and 𝑔 are algebraically dependent, which yields the

desired contradiction.
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6 Transcendence degree 1

In this section we prove Proposition 1.2. Its proof is similar to that of Proposition 1.1, but

simpler.

To wit, by virtue of Proposition 5.1 the field ℳ(𝐹) is finitely generated over ℂ. Since

tr. degℂℳ(𝐹) = 1, one has ℳ(𝐹) = ℂ(𝑓, 𝑔), where the meromorphic functions 𝑓 and 𝑔 are

algebraically dependent over ℂ (if ℳ(𝐹) is generated by one function, there is nothing

to prove). Denote by 𝑃 an irreducible polynomial in two independent variables 𝐹 and 𝐺

such that 𝑃(𝑓, 𝑔) = 0; let 𝑌 ⊂ ℂ2 be the affine curve that is the zero locus of 𝑃, and let 𝑋 be

the smooth projective curve (aka compact Riemann surface) for which ℳ(𝑋) ≅ℳ(𝑌).

Denote by 𝑉 ⊂ 𝐹 the open subset on which both 𝑓 and 𝑔 are well defined and consider

the holomorphic mapping Φ∶ 𝑉 → 𝑌 defined by the formula 𝑥 ↦→ (𝑓(𝑥), 𝑔(𝑥)). The

mapping Φ extends to a meromorphic mapping from 𝐹 to �̄� ⊂ ℙ2, where �̄� is the closure

of 𝑌; composing this meromorphic mapping with a birational mapping �̄� ⤏ 𝑋, one

obtains a meromorphic mapping Φ1∶ 𝐹 ⤏ 𝑋. Since, by our construction, ℳ(𝐹) ≅ℳ(𝑋), it

suffices to show that 𝑋 ≅ ℙ1, or, equivalently, that there are no non-trivial holomorphic

1-forms on 𝑋.

To that end, let 𝐼 ⊂ 𝐹 be the indeterminacy locus of Φ1; it is a discrete subset of 𝐹.

Choose a good neighborhood 𝑊 ⊃ 𝐶; since Φ1 is not constant, there exists a non-empty

open subset 𝑂 ⊂ 𝑊 ⧵ 𝐼 such that rank𝐷Φ1(𝑥) = 1 for any 𝑥 ∈ 𝑂. Now if 𝜔 ≠ 0 is a

holomorphic form on 𝑋, then (Φ1|𝑊⧵𝐼)∗𝜔 is a holomorphic form such that its restriction

to 𝑂 is not identically zero. Extending it to 𝑊, one obtains a holomorphic 1-form on

𝑊 which is not identically zero. This contradicts Lemma 5.5, and this contradiction

completes the proof of Proposition 1.2.
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