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Foreword to the special issue

We are happy to present a special issue of Arnold Mathematical Journal; its topic is
finite-dimensional completely integrable system:s.

This special issue stemmed from the conference “Finite Dimensional Integrable Sys-
tems” (FDIS23) that took place in Antwerp, Belgium in summer of 2023. That was the 7th
in a series of biennial conferences, preceded by the following editions:

* 2011 in Jena, Germany,

* 2013 in Luminy, France,

* 2015 in Bedlewo, Poland,

» 2017 in Barcelona, Spain,

* 2019 in Shanghai, China,

» 2022 in Tel Aviv, Israel

» 2023 in Antwerp, Belgium

 and the 8th took place in 2025 in Guanajuato, Mexico.

FDIS is a major international event in the field of finite dimensional integrable sys-
tems and their ramifications. It attracts main players in this area, along with junior
researchers; its focus is on the theoretical development of the field and on its numerous
applications in mathematics and adjacent disciplines.

It has been a tradition to publish special issues of research journals originated in this
conference. These include Journal of Geometry and Physics January 2015, May 2017, and
April 2019; Philosophical Transactions of the Royal Society A, October 2018; and European
Journal of Mathematics, December 2022. The present issue continues this tradition.

The guest editors for this special issue are Misha Bialy (Tel Aviv University), Anton
Izosimov (University of Glasgow), and Sonja Hohloch (University of Antwerp).
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Sergey 1. Agafonov, Vladimir S. Matveev

1 Introduction

We work locally, on a smooth n-dimensional pseudo-Riemannian manifold (M, g) of any
signature. By geodesic flow we understand the Hamiltonian system on T*M generated by

the Hamiltonian
H(x,p) = %gijpipj-
We will study the situation when the geodesic flow admits », including the Hamilto-
nian, integrals

1 2 n
I(x,p)=2H, I(x,p), ..., I(x, p)

such that the following conditions are fulfilled:
a [o4 ij
1. The integrals are quadratic in momenta, that is, I(x,p) = K p;p;. In particular,
o i Qi
g’ = K . We assume without loss of generality that the (2,0)-tensor fields K are

symmetric in upper indexes.
2. At almost every point x € M, there exists a basis in T, M such that, for every a =
all
1,...,n, the matrix (K (x)) is diagonal.
3. The differentials of the integrals are linearly independent at least at one! point of
T*M.
In many publications on this topic, e.g. in [BCR02, Eis34, Kiy97], it is assumed that for
ald
almost every point x € M the restrictions of the tensor fieldsK ,a =1,...,n,to T, M are
linearly independent. Our main result, Theorem 1 below, shows that this assumptions
follows from conditions (1,2,3):
Theorem 1. Under the assumptions above, for almost every point x the restrictions of

all
the tensor fields K , « = 1,...,n, to T M are linearly independent. In particular, for a

1Using ideas of [KM16], is is easy to show that linear independence of the differentials of polynomial
in momenta integrals at one point implies their linear independence at almost every point, provided the

manifold is connected
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[e4
generic linear combination I = ZZ=2 /1@'1 of the integrals, the corresponding (1,1)-tensor
. . .. a lj
field K| := K¥ig,;, where K = > _,A.K , has n different eigenvalues.
In dimension n = 3, Theorem 1 and Corollary 1.1 below were proven in [Aga24,

Theorem 2] by other methods.

[e4
Corollary 1.1. Assume the integrals I satisfy the conditions (1,2,3) above and in addition
are in involution with respect to the standard Poisson bracket. Then, near almost every

point, the metric g and the integrals come from the Stdckel construction.

In view of Theorem 1, Corollary 1.1 follows from [KM80, Theorem 6], [Kiy97, Proposi-
tion 1.1.3], [BCR0O2, Theorem 8.6] or, possibly,2 from A. Thimm 1976. In these references,
it was shown that n quadratic functionally independent integrals in involution such that
the corresponding Killing tensors are simultaneously diagonalisable at every tangent
space and such that at least one of the Killing tensors with one index raised by the metric
has n different eigenvalues, come from the Stackel construction which we recall below.

As mentioned above, the difference between our conditions (1,2,3) and the assump-
tions used in [KM80, Theorem 6], [Kiy97, Proposition 1.1.3] or [BCR02, Theorem 8.6] is
as follows: in [KM80, Theorem 6], [Kiy97, Proposition 1.1.3] or [BCR02, Theorem 8.6] it
was assumed that one of the Killing tensors, with one index raised by the metric, has n
different eigenvalues. We do not have this condition as an assumption and prove that it
follows from other assumptions.

Let us recall the Stickel® construction following [Eis34, St1]. Take a non-degenerate
n X n matrix S = (S;;) with S;; being a function of the i-th variable x' only . Next, consider

a
the functions I, « = 1, ..., n, given by the following system of linear equations

Sl=P, 6y

By [K1i78, Note on page 185] the diploma thesis of A. Thimm 1976, which we were not able to find,

contains this result
3The construction appeared already in [Lio49, §§13-14], see also discussion in [L90, pp. 703-705]
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where [ = };; and P = (pf,pg,...,pﬁ)T. It is known that the functions I are in
involution. Taking one of them (say, the first one, provided the inverse matrix to S has no
zeros in the first raw) as twice the Hamiltonian of the metric, one obtains an integrable
geodesic flow whose integrals satisfy the conditions (1,2,3). Corollary 1.1 says that locally,
near almost every points, there exist no other examples of geodesic flows admitting n
independend quadratic in momenta integrals in involution, such that the corresponding
Killing tensors are simultaneously diagonalisable at almost every tangent space.

It is known that metrics coming from the Stdckel construction admit orthogonal sepa-
ration of variables in the Hamilton-Jacobi equations, so the equation for their geodesics
can be locally solved in quadratures [BKM25, KKM18]. Namely, J. Liouville [Lio49] and,
independently, P. Stdckel [St1] has shown that the metrics are precisely those admit-
ting othogonal separation of variables. L.P. Eisenhart, in his widely cited and very
influential paper [Eis34], has shown that locally the metrics coming from the Stackel
construction are precisely those whose geodesic flows admit » functionally independent
integrals in involution satisfying the following conditions: the integrals are quadratic in
momenta, the corresponding matrices are simultaneously diagonalisable in a coordinate
system, and at every point the corresponding matrices are linearly independent. In
[BCROZ, KM80, Kiy97] it was shown that the assumption that the integrals are simultane-
ously diagonalisable in a coordinate system may be replaced by a weaker assumption that
the matrices of the integrals are diagonalisable in a frame. Our result further improves
the result of Eisenhart and shows that the condition that the matrices of the integrals
are linearly independent at each point is not necessary as this assumption follows from

other conditions.

2 Proof of Theorem 1

Under the assumptions (1,2,3) from Section 1, near almost every point, there exist smooth

vector fields v,(x), ..., v,(x) € T,M such that they are linearly independent at every tangent
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all
space and such that the metric g and the matrices K are diagonal in the basis (vy, ..., v,).
After re-arranging and re-scaling the vectors v;, there exists m e N, m < n, ky, ...k, €N
with k; + --- + k,, = n and smooth local functions g;, ..,gm,Zl, ,;'ém, a €{2,...,n},on M such

a
that the Hamiltonian and the integrals I with a = 2,...,n are given by the formulas

2H = Vi4Vy+-+Vy
a a a a (2)
.l = plvl + p2V2 + - +,0me

In the formulas above, V; are the functions on the cotangent bundle given by

Vi o= )+ )P+ + (v, )25k1,
_ 2 2 2
Vo = (U 41) €41+ O g2) g2 + 0+ Uk 4k, ) € 4k, »
Vin = (Uk1+-~~+km,1+1)25k1+-~+km,1+1 + (Uk1+~~~+km,1+2)25k1+-~+km,1+2 + o+ (V) %en,

where v; is the linear function on the T*M generated by the vector field v; via the canonical
identification* TM = T**M, and ¢; € {—1,1}.
a
The Poisson bracket of H and I = I reads (we omit the index a since the equations

hold for any ? ):

0=0H,I}= ), ({(Vip}V;+pVi, V). (©)
ij=1

The right hand side of (3) is a cubic polynomial in momenta so all its coefficients are
zero. For every point x € M, this gives us a system of linear equations on the directional
derivatives vy(o;) with s € {1, ...,n} and j € {1,..., m}. The coefficients and free terms of this
system depend on p;(x), on the entries of the vector fields v, at x, and on the derivatives
of the entries of the vector fields v, at x. Let us show that all directional derivatives vy(p;)
can be reconstructed from this system. We will show this for the directional derivatives
v;(p,) and v,(p,), since this will cover two principle cases i = j and i # j; the proof for all

other v;(p;) is completely analogous.

*In naive terms, we consider the vector field v = 3} v'9; as the linear function p ~— 3} v'p; on T*M. This
identification of vector fields on M and linear in momenta functions on the cotangent bundle is independent

of a coordinate system
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In order to extract v;(p,), note that the cubic in momenta component (vy ,;)*v; shows
up only in the addends {V, p,}V>, p1{V>, V1} and p,{V, V,}. In these addends, the coefficient
containing a derivative of one of the functions p, is v,(p,). Thus, equating the coefficient
of (vy,+1)*v; to zero gives us v, (p,) as a function of p,, p, and the entries of {V;,V,}.

Similarly, in order to extract v,(p,), we note that the cubic in momenta component
(v;)® shows up only in the addends {V;, p;}V; and p,{V, V,}. Its coefficient containing the
derivatives of p’s is v;(p;). Thus, equating the coefficient of (v, )? to zero gives us v,(p;) as
a function of p;.

Thus, all directional derivatives vy(o;) can be obtained from the system (3). Let us now
view the system (3) as a linear PDE-system on unknown functions p;. The coefficients of
this system come from the vector fields vg and are given by certain nonlinear expressions
in the components of v, and their derivatives. Since the directional derivatives of all
functions p; are expressed in the terms of the functions p;, the system can be solved with
respect to all derivatives of the functions p;. Therefore, the initial values of the functions
p; at one point x, determine the local solution of the system. This implies that the space of
solutions is at most m-dimensional. Finally, the linear vector space of the integrals ? is at
most m-dimensional. Since n of them are functionally independent by our assumptions,

n = m and Theorem 1 is proved.

Remark 1. The proof of Theorem 1 is motivated by [Ben92, proof of Lemma 1.2], [Kiy97,
§1.1] and [KKM24, §2].
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The Flapping Birds in the Pentagram Zoo

1 Introduction

1.1 Context

When you visit the pentagram zoo you should certainly make the pentagram map itself
your first stop. This old and venerated animal has been around since the place opened
up and it is very friendly towards children. When defined on convex pentagons, this
map has a very long history. See e.g. [15]. In modern times [19], the pentagram is defined
and studied much more generally. The easiest case to explain is the action on convex
n-gons. One starts with a convex n-gon P, for n > 5, and then forms a new convex n-gon
P’ by intersecting the consecutive diagonals, as shown Figure 1.1 below.

The magic starts when you iterate the map. One of the first things I proved in [19]
about the pentagram map is the successive iterates shrink to a point. Many years later, M.
Glick [3] proved that this limit point is an algebraic function of the vertices, and indeed

found a formula for it. See also [9] and [1].

Figure 1.1: The pentagram map iterated on a convex 7-gon P.

Forgetting about convexity, the pentagram map is generically defined on polygons
in the projective plane over any field except for Z/2. In all cases, the pentagram map
commutes with projective transformations and thereby defines a birational map on the
space of n-gons modulo projective transformations. The action on this moduli space has

a beautiful structure. As shown in [17] [18], and independently in [23], the pentagram
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map is a discrete completely integrable system when the ground field is the reals. ([23]
also treats the complex case.) Recently, M. Weinreich [24] generalized the integrability
result, to a large extent, to fields of positive characteristic.

The pentagram map has many generalizations. See for example [2], [14], [16], [10], [11],
[6]. The paper [2] has the first general complete integrability result. The authors prove the
complete integrability of the (k, 1) diagonal maps, i.e. the maps obtained by intersecting
successive k-diagonals. Figure 1.3 below shows the (3,1) diagonal map. (Technically, [2]
concentrates on what happens when these maps act on so-called corregated polygons in
higher dimensional Euclidean spaces.) The paper [6] proves an integrability result for a
very wide class of generalizations, including the ones we study below. (Technically, for the
maps we consider here, the result in [6] does not establish the algebraic independence
of invariants needed for complete integrability.) The pentagram map and its many
generalizations are related to a number of topics: alternating sign matrices [20], dimers
[5], cluster algebras [4], the KAV hierarchy [12], [13], spin networks [2], Poisson Lie groups
[8], Lax pairs [23], [10], [11], [6], [8], and so forth. The zoo has many cages and sometimes

you have to get up on a tall ladder to see inside them.

Figure 1.2: The (3,1)-diagonal map acting on 8-gons.

The algebraic side of the pentagram zoo is extremely well developed, but the geometric

side is hardly developed at all. In spite of all the algebraic results, we don’t really know,
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geometrically speaking, much about what the pentagram map and its relatives really do

to polygons.

Geometrically speaking, there seems to be a dichotomy between convexity and non-
convexity. The generic pentagram orbit of a projective equivalance class of a convex
polygon lies on a smooth torus, and you can make very nice animations. What you will
see, if you tune the power of the map and pick suitable representatives of the projective
classes, is a convex polygon sloshing around as if it were moving through water waves.
If you try the pentagram map on a non-convex polygon, you see a crazy erratic picture
no matter how you try to normalize the images. The situation is even worse for the other
maps in the pentagram zoo, because these generally do not preserve convexity. Figure 1.2
shows how the (3,1)-diagonal map does not necessarily preserve convexity, for instance.

See [21], [22] for more details.

If you want to look at pentagram map generalizations, you have to abandon convexity.
However, in this paper, I will show that sometimes there are geometrically appealing
replacements. The context for these replacements is the (k + 1, k)-diagonal map, which
I call Ay, acting on what I call k-birds. A, starts with the polygon P and intersects the
(k + 1)-diagonals which differ by k clicks. (We will give a more formal definition in the
next section.) Ay is well (but not perfectly) understood algebraically [6]. Geometrically it

is not well understood at all.

1.2 The Maps and the Birds

Definition of a Polygon: For us, a polygon is a choice of both vertices and the edges
connecting them. Each polygon P we consider will all be planar, in the sense that there is
some projective transformation that maps P, both vertices and edges, to the affine patch.

Our classical example is a regular n-gon, with the obvious short edges chosen.

The Maps: Given a polygon P, let P, denote the (a)th vertex of P. Let P,;, be the line

Arnold Mathematical Journal, Vol.11(4), 2025 13
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through P, and P,. The vertices of A, (P) are
Pjjretr O Pjyj k- (@)

Here the indices are taken mod n. Figure 1.3 shows this for (k,n) = (2,7). The polygons in

Figure 1.3 are examples of a concept we shall define shortly, that of a k-bird.

Figure 1.3: A, acting on 2-birds.

We should say a word about how the edges are defined. In the case for the regular n-gon
we make the obvious choice, discussed above. In general, we define the class of polygons
we consider in terms of a homotopy from the regular n-gon. So, in general, we make the

edge choices so that the edges vary continuously.

The Birds: Given an n-gon P, we let P, ;, denote the line containing the vertices P, and P,,.

We call P k-nice if n > 3k, and P is planar, and the 4 lines

Pii_k—1» Piiks Piivk> Piitks1 (2)

are distinct for all i. It is not true that the generic n-gon is k-nice, because there are open
sets of non-planar polygons. (Consider a neighborhood of P, where P the regular 100-gon
with the opposite choice of edges.) However, the generic perturbation of a planar n-gon
is also k-nice.

We call P a k-bird if P is the endpoint of a path of k-nice n-gons that starts with the

regular n-gon. We let By, be the subspace of n-gons which are k-birds. Note that By,

Arnold Mathematical Journal, Vol.11(4), 2025 14
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contains the set of convex n-gons, and the containment is strict when k > 1. As Figure 1.3
illustrates, a k-bird need not be convex for k > 2. We will show that k-birds are always
star-shaped, and in particular embedded. As we mentioned above, we use the homotopic

definition of a k-bird, to define the edges of A, (P) when P is a k-bird.

Example: The homotopy part of our definition looks a bit strange, but it is necessary. To
illustrate this, we consider the picture further for the case k = 1. In this case, a 1-bird must
be convex, though the 1-niceness condition just means planar and locally convex. Figure
1.4 shows how we might attempt a homoropy from the regular octagon to a locally convex
octagon which essentially wraps twice around a quadrilateral. The little grey arrows
give hints about how the points are moved. At some times, the homotopy must break
the 1-niceness condition. The two grey polygons indicate failures and the highlighted
vertices indicate the sites of the failures. There might be other failures as well; we are

taking some jumps in our depiction.

o€
CGTA

Figure 1.4: A homotopy that cannot stay 1-nice.

One could make similar pictures when k > 1, but the pictures might be harder to

understand.
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1.3 The Main Result

Given an embedded planar polygon P, let P! denote the interior of region bounded by P.
We say that P is strictly star shaped with respect to x € P! if each ray emanating from x
intersects P exactly once. More simply, we say that P is strictly star shaped if it is strictly

star shaped with respect to some point x € P!. Here is the main result.
Theorem 1.1. Let k > 2 and n > 3k and P € By ,. Then

1. P is strictly star-shaped, and in particular embedded.
2. A(P) Cc PL.

3. Ak(Bin) = B

Remark: The statement that n > 3k is present just for emphasis. B, is by definition
empty when n < 3k. The restriction n > 3k is necessary. Figure 1.5 illustrates what would
be a counter-example to Theorem 1.1 for the pair (k,n) = (3,9). The issue is that a certain
triple of 4-diagonals has a common intersection point. This does not happen for n > 3k.

See Lemma 3.6.
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Figure 1.5: A; acting on a certain convex 9-gon.

1.4 The Energy

We will deduce Statements 1 and 2 of Theorem 1.1 in a geometric way. The key to proving
Statement 3 is a natural quantity associated to a k-bird. We let o, , be the slope of the line

P, and we define the cross ratio

_(@a=-b)c—d)
x(a,b,c,d) = CEECEr 3)
We define .
xc(P) = [ [ xG. k. P), Xk, P) = x(0i ks Oii—k—1>Tiitk+1> Oi,i+k) (4)

i=1
Here we are taking the cross ratio the slopes the lines involved in our definition of k-nice.
When k = 1 this is the familiar invariant y; = OE for the pentagram map A,. See [19],
[20], [17], [18]. When n = 3k + 1, a suitable star-relabeling of our polygons converts A, to
A; and y to 1/x;. So, in this case y;oA, = x,. Figure 1.5 illustrates this for (k,n) = (3, 10).
Note that the polygons suggested by the dots in Figure 1.5 are not convex. Were we to

add in the edges we would get a highly non-convex pattern.

Figure 1.6: A star-relabeling converts A; to A; and 1/y; to y;.

In general, y, is not as clearly related to y,. Nonetheless, we will prove
Theorem 1.2. y;o0A; = xi.
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Theorem 1.2 is meant to hold for all n-gons, as long as all quantities are defined. There

is no need to restrict to birds.

1.5 The Collapse Point

When it is understood that P € B, it is convenient to write
P’ = Ay(P) ©)

We also let P denote the closed planar region bounded by P. Figure 1.7 below shows

P =P° P',P?, P3 P* for some P € By .

Figure 1.7: A, and its iterates acting on a member of B, ;5.

Define

Po=(P, Po={JP. (6)
teZ teZ

Theorem 1.3. IfP € By, then P, is a point and P_, is an affine plane.

Our argument will show that P € By, is strictly star-shaped with respect to all points
in P". In particular, all polygons in the orbit are strictly star-shaped with respect to the

collapse point P,.. See Corollary 7.3.
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One might wonder if some version of Glick’s formula works for the P, in general. I
discovered experimentally that this is indeed the case for n = 3k + 1 and n = 3k + 2. See

§9.2 for a discussion of this and related matters.

Here is a corollary of our results that is just about convex polygons.

Corollary 1.4. Suppose that n > 3k and P is a convex n-gon. Then the sequence {Ai(P)}
shrinks to a point as ¢ — oo, and each member of this sequence if strictly star-shaped with

respect to the collapse point.

1.6 The Triangulations

In §7.1 we associate to each k-bird P a triangulation 7, C P, the projective plane. Here
7p 1S an embedded degree 6 triangulation of P_ — P,,. The edges are made from the

segments in the §-diagonals of P and its iterates for § = 1,k,k + 1.

Figure 1.8 shows this tiling associated to a member of B; ;4. In this figure, the interface
between the big black triangles and the big white triangles is some A (P) for some smallish
value of ¢. (I zoomed into the picture a bit to remove the boundary of the initial P.) The
picture is normalized so that the line P__ is the line at infinity. When I make these kinds

of pictures (and animations), I normalize so that the ellipse of inertia of P is the unit disk.
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Figure 1.8: The triangulation associated to a member of Bs .

1.7 Paper Organization

This paper is organized as follows.
* In §2 we prove Theorem 1.2.
* In §3 we prove Statement 1 of Theorem 1.1.
* In §4 we prove Statement 2 of Theorem 1.1.

* In §5 we prove a technical result called the Degeneration Lemma, which will help

with Statement 3 of Theorem 1.1.
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* In §6 we prove Statement 3 of Theorem 1.1.

* In §7 we introduce the triangulations discussed above. Our Theorem 7.2 will help

with the proof of Theorem 1.3.

* In §8 we prove Theorem 1.3.

In §9, an appendix, we sketch an alternate proof of Theorem 1.2 which Anton Izosi-
mov kindly explained. We also discuss Glick’s collapse formula and star relabelings

of polygons.

1.8 Visit the Flapping Bird Exhibit

Our results inject some more geometry into the pentagram zoo. Our results even have
geometric implications for the pentagram map itself. See §9.3. There are different ways
to visit the flapping bird exhibit in the zoo. You could read the proofs here, or you might
just want to to look at some images:
http://www.math.brown.edu/~reschwar/BirdGallery

You can also download and play with the software I wrote:
http://www.math.brown.edu/~reschwar/Java/Bird.TAR

The software has detailed instructions. You can view this paper as a justification for why

the nice images actually exist.

2 The Energy

The purpose of this chapter is to prove Theorem 1.2. The proof, which is similar to what I
do in [19], is more of a verification than a conceptual explanation. My computer program
allows the reader to understand the technical details of the proof better. The reader might
want to just skim this chapter on the first reading. In §9 I will sketch an alternate proof,
which I learned from Anton Izosimov. Izosimov’s proof also uses the first two sections of

this chapter.
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2.1 Projective Geometry

Let P denote the real projective plane. This is the space of 1-dimensional subspaces of R’.
The projective plane P contains R* as the affine patch. Here R* corresponds to vectors of
the form (x, y, 1), which in turn define elements of P.

Let P* denote the dual projective plane, namely the space of lines in P. The elements
in P* are naturally equivalent to 2-dimensional subspaces of R’. The line in P such a
subspace II defines is equal to the union of all 1-dimensional subspaces of II.

Any invertible linear transformation of R® induces a projective transformation of P,
and also of P*. These form the projective group PSL;(R). Such maps preserve collinear
points and coincident lines.

A duality from P to P* is an analytic diffeomorphism P — P* which maps collinear
points to coincidence lines. The classic example is the map which sends each linear
subspace of R’ to its orthogonal complement.

A PolyPoint is a cyclically ordered list of points of P. When there are »n such points,
we call this an n-Point. A PolyLine is a cyclically ordered list of lines in P, which is the
same as a cyclically ordered list of points in P*. A projective duality maps PolyLines to
PolyPoints, and vice versa.

Each n-Point determines 2" polygons in P because, for each pair of consecutive points,
we may choose one of two line segments to join them. As we mentioned in the introduction,
we have a canonical choice for k-birds. Theorem 1.2 only involves PolyPoints, and our
proof uses PolyPoints and PolyLines.

Given a n-Point P, we let P j be its jth point. We make a similar definition for n-Lines.

We always take indices mod n.

2.2 Factoring the Map

Like the pentagram map, the map A, is the product of 2 involutions. This factorization
will be useful here and in later chapters.

Given a PolyPoint P, consisting of points P, ..., P,, we define Q = D,,(P) to be the
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PolyLine whose successive lines are Py ,, P ,,+1, €tc. Here P, ,, denotes the line through

P, and P,,, etc. We labed the vertices so that

Q_m—i = Piiym- )

This is a convenient choice. We define the action of D,, on PolyLines in the same way,
switching the roles of points and lines. For PolyLines, P, ,, is the intersection of the line
P, with the line P,,. The map D,, is an involution which swaps PolyPoints with PolyLines.

We have the compositions
Ay = DyoDyy1, At = Dygq0Dy. 8)

The energy y, makes sense for n-Lines as well as for n-Points. The quantities y, oD, (P)
and y; oDy, ,(P) can be computed directly from the PolyPoint P. Figure 2.1 shows schemat-
ically the 4-tuples associated to x(0,k,Q) for Q = P and D, (P) and D, ,(P). In each case,
x1(Q)1is a product of n cross ratios like these. If we want to compute the factor of y, (D, (P))
associated to index i we subtract (rather than add) i from the indices shown in the middle

figure. A similar rule goes for D, ,(P).

s -2k-1

Figure 2.1: Computing the k-energy.

Theorem 1.2 follows from the next two results.
Lemma 2.1. y,oD; = yy.
Lemma 2.2. y;oD;.; = xi-
These results have almost identical proofs. We consider Lemma 2.1 in detail and then

explain the small changes needed for Lemma 2.2.
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2.3 Proof of the First Result

We study the ratio

R(P) = M_ 9)

Xk(P)
We want to show that R(P) equals 1 wherever it is defined. We certainly have R(P) = 1

when P is the regular n-Point.
Given a PolyPoint P we choose a pair of vertices a, b with |a — b| = k. We define P(¢) to

be the PolyPoint obtained by replacing P, with
(1 — )P, + tPy,. (10)

Figure 2.2 shows what we are talking about, in case k = 3. We have rotated the picture so

that P, and P, both lie on the X-axis.

Figure 2.2: Connecting one PolyPoint to another by sliding a point.

The two functions

F©) = x(P)), 8(t) = xioDk(P(1)) (11)

are each rational functions of t. Our notation does not reflect that f and g depend on
P,a,b.
A linear fractional transformation is a map of the form

at + 8
_)

m, a,B,7,6 €ER, ad — By #0.

Lemma 2.3 (Factor I). Ifn > 4k + 2 and P is a generically chosen n-Point, then f(t) and g(t)
are each products of 4 linear fractional transformations. The zeros of f and g occur at the

same points and the poles of f and g occur at the same points. Hence f /g is constant.
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The only reason we choose n > 4k + 2 in the Factor Lemma is so that the various
diagonals involved in the proof do not have common endpoints. The Factor Lemma I
works the same way for all k and for all choices of (large) n. We write P « Q if we can
choose indices a,b and some t € R such that Q = P(¢). The Factor Lemma implies that
when P, Q are generic and P « Q we have R(P) = R(Q). The result for non-generic choices

of P follows from continuity. Any n-Point Q can be included in a finite chain
Py Py oo Py =0Q,

where P, is the regular n-Point. Hence R(Q) = R(P,) = 1. This shows that Lemma 2.1 holds
for (k,n) where k > 2 and n > 4k + 2. (The case k = 1 is a main result of [19], and by now

has many proofs.)

Lemma 2.4. If Lemma 2.1 is true for all large values of n, then it is true for all values of n.

Proof: If we are interested in the result for small values of n, we can replace a given
PolyPoint P with its m-fold cyclic cover mP. We have y,(mP) = y,(P)" and y,(Dy(mP)) =

xx(Dr(p))™. Thus, the result for large n implies the result for small n. &

In view of Equation 4 we have

(@) = f1()...f (D), [ = x(, k, P(1)). (12)

Thus f(t) is the product of n “local” cross ratios. We call an index j asleep if none of the
lines involved in the cross ratio f;(t) depend on ¢. In other words, the lines do not vary at
all with ¢. Otherwise we call j awake.

As we vary t, only the diagonals P, change for h = —k,—k — 1,k + 1, k. From this fact,

it is not surprising that there are precisely 4 awake indices. These indices are
jo = O, jl = k + 1, j2 == —k - 1, j3 = —k (13)
The index k is not awake because the diagonal P, (t) does not move with ¢.
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We define a chord of P(t) to be a line defined by a pair of vertices of P(t). The point
Py(t) moves at linear speed, and the 4 lines involved in the calculation of fcj(t) are distinct
unless Py(t) lies in one of the chords of P(t). Thus fcj(t) only has zeros and poles at the
corresponding values of ¢. It turns out that only the following chords are involved.

—k —k —k -k k-1 —-k-1 k+1 k+1
k-1 k+1 1 -2k -1 -1 —2k -1 1 2k+1

(14)

We call these c,, ..., c;. For instance, ¢, is the line through P_, and P_;_,. Let ¢; denote the
value of ¢ such that P(¢;) € c;.

The PolyPoint Q(t) = D, (P(t)) has the same structure as P(t). Up to projective transfor-
mations Q(¢) is also obtained from the regular PolyPoint by moving a single vertex along
one of the k-diagonals. The pattern of zeros and poles is not precisely the same because
the chords of Q(t) do not correspond to the chords of P(¢) in a completely straightfor-
ward way. The k-diagonals of Q(¢) correspond to the vertices of P(t) and vice versa. The
(k + 1) diagonals of Q(¢) correspond to the vertices of A L(P(r)). This is what gives us our
quadruples of points in the middle picture in Figure 2.1.

We now list the pattern of zeros and poles. We explain our notation by way of example.

The quadruple (f,2,4,5) indicates that f. has a simple zero at f, and a simple pole at ¢s.
(f,0,0,1), (f,1,6,7), (f,2,4,5), (f,3,2,3). (15)

(g: 07 6’ 5)’ (g’ 170’ 3)7 (g; 2, 27 1)’ (g7 35 47 7)' (16)

Since these functions have holomorphic extensions to C with no other zeros and poles,
these functions are linear fractional transformations. This pattern establishes the Factor
Lemma I.

Checking that the pattern is correct is just a matter of inspection. We give two example

checks.
* To see why f, has a simple zero at ¢, we consider the quintuple
(—k—1,-2k —1,-2k — 2,0, —1).
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At t, the two diagonals P_,_; , and P_,_; _; coincide. In terms of the cross ratios of
the slopes we are computing y(a, b,c,d) with a = b. The point Py(t) is moving with

linear speed and so the zero is simple.

* To see why g., has a simple pole at ¢, we consider the 4 points

Porojr2 N Priy1s Pryrs Pis Prgpr NP_gp. (17)

These are all contained in the k-diagonal P, ;,;, which corresponds to the vertex
(—k — 1) of Di(P). At t = t, the three points Py(t) and P_; and P, are collinear. This
makes the 2nd and 4th listed point coincided. In terms of our cross ratio y(a, b, c,d)
we have b = d. This gives us a pole. The pole is simple because the points come

together at linear speed.
The other explanations are similar. The reader can see graphical illustrations of these
zeros and poles using our program.
2.4 Proof of the Second Result

The proof of Lemma 2.2 is essentially identical to the proof of Lemmma 2.1. Here are the
changes. The Factor Lemma II has precisely the same statement as the Factor Lemma I,

except that
* When defining P(t) we use points P, and P, with |a — b| = k + 1.
* We are comparing P(t) with D, ,(P(t)).

This changes the definition of the functions f and g. With these changes made, the Factor
Lemma I is replaced by the Factor Lemma II, which has an identical statement. This time

the chords involved are as follows.

k-1 —-k-1 —-k-1 —-k-1 -k —k k k
-k k -1 -2k -1 1 —2k—-1 -1 2k+1

(18)
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This time the 4 awake indices are:
Jo=0, ji=k, jo=-k-1, j;=-k (19)

Here is the pattern of zeros and poles.
(f,0,1,0), (f,1,7,6), (f,2,3,2), (f,3,5,4). (20)

(g: 0’ 57 6)’ (g’ 17 3’ O)a (g; 2’ 75 4)’ (g, 35 1’ 2)' (21)

The pictures in these cases look almost identical to the previous case. The reader can see
these pictures by operating my computer program. Again, the zeros of f and g are located
at the same places, and likewise the poles of f and g are located at the same places. Hence

f/g is constant. This completes the proof the Factor Lemma II, which implies Lemma 2.2.

3 The Soul of the Bird

3.1 Goal of the Chapter

Given a polygon P c R?, let P be the closure of the bounded components of R* — P and let
P! be the interior of P. (Eventually we will see that birds are embedded, so P will be a
closed topological disk and P’ will be an open topological disk.)

Suppose now that P(¢t) for ¢t € [0,1] is a pathin B, starting at the regular n-gon P(0). We
can adjust by a continuous family of projective transformations so that P(¢) is a bounded
polygon in R* for all ¢ € [0,1]. We orient P(0) counter-clockwise around P/(0). We extend
this orientation choice continuously to P(t). We let P,,(¢) denote the diagonal through
vertices P,(t) and P,(t). We orient P, ,(t) so that it points from P,(t) to P,(t). We take
indices mod n.

We now recall a definition from the introduction: When P is embedded, we say that
P is strictly star shaped with respect to x € P! if each ray emanating from x intersects P

exactly once.
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3

7

Figure 3.1: The soul of a 3-bird

Each such (k+1)-diagonal defines an oriented line that contains it, and also the (closed)
distinguished half plane which lies to the left of the oriented line. These n half-planes
vary continuously with ¢. The soul of P(t), which we denote S(t), is the intersection of the
distinguished half-planes. Figure 3.1 shows the an example.

The goal of this chapter is to prove the following result.
Theorem 3.1. Let P be a bird and let S be its soul. Then:
1. S is has non-empty interior.
2. ScP.
3. P is strictly star-shaped with respect to any point in S.

Theorem 3.1 immediately implies Statement 1 of Theorem 1.1.

We are going to give a homotopical proof of Theorem 3.1. We say that a value ¢t € [0, 1]
is a good parameter if Theorem 3.1 holds for P(t). All three conclusions of Theorem 3.1 are
open conditions. Finally, 0 is a good parameter. For all these reasons, it suffices to prove
that the set of good parameters is closed. By truncating our path at the first supposed

failure, we reduce to the case when Theorem 3.1 holds for all ¢t € [0, 1).
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3.2 The Proof

For ease of notation we set X = X(1) for any object X associated to P(1).

Lemma 3.2. If P is any k-bird, then P, and P, lie to the left of Py ;1. The same goes if all

indices are cyclically shifted by the same amount.

Proof: Consider the triangle with vertices Py(t) and P,(t) and P,,,(t). The k-niceness
condition implies that this triangle is non-degenerate for all ¢t € [0, 1]. Since Py(¢) lies to
to the left of Py ,;(¢), the non-degeneracy implies the same result for ¢t = 1. The same

argument works for the triple 2k + 1,k,k +1). &

Lemma 3.3. S is non-empty and contained in PL.

Proof: By continuity, S is nonempty and contained in P u P!. By the k-niceness property
and continuity, P, lies strictly to the right of Py ;. Hence the entire half-open edge [Py, P;)
lies strictly to the right of P, ,.,. Hence [Py, P;) is disjoint from S. By cyclic relabeling, the

same goes for all the other half-open edges. Hence SN P = ¢. Hence S C P!. &

Lemma 3.4. P is strictly star-shaped with respect to any point of S.

Proof: Since P(¢) is strictly star-shaped with respect to all points of S(¢) for ¢ < 1, this
lemma can only fail if there is an edge of P whose extending line contains a point x € S.

We can cyclically relabel so that the edge of P,P;.

k+1

Figure 3.2: The diagonal Py, does not separate 1 from x.
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Since x ¢ P, either P, lies between P, and x or P, lies in between x and P;. In the first
case, both P, and x lie on the same side of the diagonal P .,. This is a contradiction: P,
is supposed to lie on the right and x is supposed to lie on the left. In the second case we

get the same kind of contradiction with respect to the diagonal P_; ;. &

We say that P has opposing (k + 1)-diagonals if it has a pair of (k + 1)-diagonals which
lie in the same line and point in opposite directions. In this case, the two left half-spaces

are on opposite sides of the common line.

Lemma 3.5. P does not have opposing (k + 1)-diagonals.

Proof: We suppose that P has opposing diagonals and we derive a contradiction. In this
case S, which is the intersection of all the associated left half-planes, must be a subset of
the line L containing these diagonals. But then P intersects L in at least 4 points, none of
which lie in S. But then P cannot be strictly star-shaped with respect to any point of S.

This is a contradiction. &

We call three (k + 1)-diagonals of P(t) interlaced if the intersection of their left half-

spaces is a triangle. See Figure 3.3.

b3 a1

a2
bl

b2

a3

Figure 3.3: Interlaced diagonals on P(t).
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Given interlaced (k + 1)-diagonals, and a point x in the intersection, the circle of rays
emanating from x encounters the endpoints of the diagonals in an alternating pattern:
a,,bs, a,, by, as, by, Wwhere a,, a,, a; are the tail points and b,, b,, b; are the head points. Here

a, names the vertex P, (t), etc.

Lemma 3.6. P(t) cannot have interlaced diagonals for t < 1.

Proof: Choose x € S(t). The n-gon P(t) is strictly star-shaped with respect to x. Hence, the
vertices of P are encountered in order (mod ») by a family of rays that emanate from x
and rotates around full-circle. Given the order these vertices are encountered, we have
aj;1 = a; +7;, where ; < k. Here we are taking the subscripts mod 3 and the vertex
values mod n. This tells us that n = 5, + 1, + 13 < 3k. This contradicts the fact that n > 3k.
o

It only remains to show that S has non-empty interior. A special case of Helly’s
Theorem says the following: If we have a finite number of convex subsets of R then
they all intersect provided that every 3 of them intersect. Applying Helly’s Theorem to
the set of interiors of our distinguished half-planes, we conclude that we can find 3 of
these open half-planes whose triple intersection is empty. On the other hand, the triple
intersection of the closed half-planes contains x. Since P has no opposing diagonals, this
is only possible if the 3 associated diagonals are interlaced for ¢ sufficiently close to 1.

This contradicts Lemma 3.6. Hence S has non-empty interior.

4 The Feathers of the Bird

4.1 Goal of the Chapter

Recall that P! is the interior of the region bounded by P. We call the union of black

triangles in Figure 4.1 the feathers of the bird. the black region in the center is the soul.
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Figure 4.1 The feathers of a 3-bird.

Each feather F of a k-bird P is the convex hull of its base, an edge e of P, and its tip, a
vertex of A (P).
The goal of this chapter is to prove the following result, which says that the simple

topological picture shown in Figure 4.1 always holds.
Theorem 4.1. The following is true.
1. Let F be an feather with base e. Then F — {e} C P'.
2. Distinct feathers can only intersect at a vertex of P.
3. The line segment connecting two consecutive feather tips lies in P’.

When we apply A, to P we are just specifying the points of A, (P). We define the polygon
A (P) so that the edges are the bounded segments connecting the consecutive tips of the
feathers of P. With this definion, Statement 2 of Theorem 1.1 follows immediately from

Theorem 4.1.
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4.2 The Proof

There is one crucial idea in the proof of Theorem 4.1: The soul of P lies in the sector F*

opposite any of its feathers F. See Figure 4.2.

3
e

Figure 4.2 The soul lies in the sectors opposite the feathers.

We will give a homotopical proof of Theorem 4.1. By truncating our path of birds, we

can assume that Theorem 4.1 holds for all t € [0,1). We set P = P(1), etc.

Statement 1: Figure 4.3 shows the 2 ways that Statement 1 could fail:
1. The tip v of the feather F could coincide with some p € P.

2. Some p € P could lie in the interior point of 0F —e.

W

(U
Figure 4.3: Case 1 (left) and Case 2 (right).

For all x € F*, the ray xp intersects P both at p and at a point p’ € e. This contradicts

the fact that for any x € S c F*, the polygon P is strictly star-shaped with respect to x.
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This establishes Statement 1 of Theorem 4.1.

Statement 2: Let F, and F, be two feathers of P, having bases ¢, and e,. For Statement 2,
it suffices to prove that F; —e; and F, — e, are disjoint.

The same homotopical argument as for Statement 1 reduces us to the case when F;
and F, have disjoint interiors but dF, —e; and 6F, — e, share a common point x. If §F; and
dF, share an entire line segment then, thanks to the fact that all the feathers are oriented
the same way, we would have two (k + 1) diagonals of P lying in the same line and having
opposite orientation. Lemma 3.5 rules this out.

In particular x must be the tip of at least one feather. Figure 4.4 shows the case when

x = vy, the tip of F,, but x # v,. The case when x = v, = v, has a similar treatment.

el

Figure 4.4: Opposiing sectors are disjoint

In this case, the two sectors F; and F; are either disjoint or intersect in a single point.
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This contradicts the fact that S c F; C F; has non-empty interior. This contradiction

establishes Statement 2 of Theorem 4.1.

Statement 3: Recall that P = PuU P!. Let F; and F, be consecutive feathers with bases e;
and e, respeectively. Let f be the edge connecting the tips of F; and F,. Our homotopy

idea reduces us to the case when f c P and f n P # §. Figure 4.5 shows the situation.

Figure 4.5: The problem a common boundary point

Note that f n P must be strictly contained in the interior of f because (by Statement 1
of Theorem 4.1) the endpoints of f lie in P’. But then, f N P is disjoint from F} n F;, which
is in turn contained in the shaded region G. For any x € G and each vertex p of f, the
ray the ray xp also intersects P at a point p’ € e; U e,. This gives the same contradiction
as above when we take x € S C Fy N F; C G. This completes the proof of Statement 3 of

Theorem 4.1.
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5 The Degeneration of Birds

5.1 Statement of Result

Let By, denote the space of n-gons which are k-birds. Let y, denote the k-energy. With
the value of k fixed in the background, we say that a degenerating path is a path Q(t) of

n-gons such that
1. Q(¢t)is planar for all ¢t € [0,1].
2. All vertices of Q(t) are distinct for all ¢ € [0, 1].
3. Q(t) € By, for all t € [0,1) but Q(1) & By ,.
4. x(Q()) >¢y>0forallt e[0,1].

In this chapter we will prove the following result, which will help us prove that
Ag(By.n) C B, in the next chapter. The reader should probably just use the statement as

a black box on the first reading.

Lemma 5.1 (Degeneration). If Q(-) is a degenerating path, then all but at most one vertex

of Q(1) lies in a line segment.

Remark: Our proof only uses the fact that Q has nontrivial edges, nontrivial k-diagonals,
and nontrivial (k+1)-diagonals. Some of the other vertices could coincide and it would not
matter. Also, the same proof works if, instead of a continuous path, we have a convergent

sequence {Q(t,)} with ¢, — 1 and a limiting polygon Q(1) = lim Q(t,).

Example: Let us give an example for the case k = 1 and n = 5. Figure 5.0 shows a picture

of a pentagon Q(¢) fort =1 —s.
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Ao—(0,1)

(-2,0) (2,0)

S (-1,-s)C (1,-s)

Figure 5.0: A degenerating path in the case k =1 and n = 5.

Here s ranges from 1 to 0 as ¢t ranges from 0 to 1. We have labeled some of the slopes
to facility the calculation (which we leave to the reader) that y;(Q(t)) remains uniformly

bounded away from 0.

5.2 Distinguished Diagonals

We orient Q(t) so that it goes counter-clockwise around the region it bounds. We orient
the diagonal Q,;, so that it points from Q, to Q,. For ¢ < 1 the vertices Q,(t) and Q,(¢) lie to
the right of the diagonal Q, . 1(¢), in the sense that a person walking along this diagonal
according to its orientation would see that points in the right. This has the same proof
as Lemma 3.2. The same rule holds for all cyclic relabelings of these points. The rule
holds when ¢ < 1. Taking a limit, we get a weak version of the rule: Each of Q,(1) and
Qi (1) either lies to the right of the diagonal Q,x,(1) or on it. The same goes for cyclic
relabeings. We call this the Right Hand Rule.

Say that a distinguished diagonal of Q(t) is either a k-diagonal or a (k + 1)-diagonal.

There are 2n of these, and they come in a natural cyclic order:

Qok(t) Qop+1(8), Qri+1(), Qi i42(D), ... (22)

The pattern alternates between k and (k + 1)-diagonals. We say that a diagonal chain is a
consecutive list of these.

We say that one oriented segment L, lies ahead of another one L, if we can rotate L,
by 6 € (0, 7) radians counter-clockwise to arrive at a segment parallel to L,, In this case

we write L; < L,. We have
Qo i+1(8) < Q1 41(8) < Qppe42(8) < Qppe42(8). (23)
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k+2
k+1

1 2

Figure 5.1: The turning rule

This certainly holds when ¢ = 0. By continuity and the Right Hand Rule, this holds for all
t < 1. Taking a limit, we see that the k-diagonals of Q(1) weakly turn counter-clockwise in
the sense that either L; < L, for consecutive diagonals or else L; and L, lie in the same
line and point in the same direction. Moreover, the total turning is 2z. If we start with
one distinguished diagonal and move through the cycle then the turning angle increases

by jumps in [0, 7] until it reaches 27z. We call these observations the Turning Rule.

5.3 Collapsed Diagonals

Figure 5.2 shows the distinguished diagonals incident to Q,. We always take indices mod

n. Thus -k —1=n—-k -1 mod n.

k+1

Figure 5.2: The 4 distinguished diagonals incident to Qy(t).

We say that Q has collapsed diagonals at a vertex if Q if the 4 distinguished diagonals
incident to Q, do not all lie on distinct lines. We set Q = Q(1). We set X = X(1) for each
object X associated to Q(1).

Arnold Mathematical Journal, Vol.11(4), 2025 39


http://dx.doi.org/10.56994/ARMJ

Richard Evan Schwartz

Since Q is planar but not k-nice, Q must have collapsed diagonals at some vertex. We

relabel so that the collapsed diagonals are at Q,.

Lemma 5.2. If Q has collapsed diagonals at Q, then Q_,_; , and Q +; point in opposite

directions or Q_; o and Q, point in the same direction.

Proof: Associated to each diagonal incident to Q, is the ray which starts at Q, and goes
in the direction of the other endpoint of the diagonal. (Warning: The ray may have the
opposite orientation than the diagonal it corresponds to.) If the angle between any of the
rays tends to 7 as t — 1 then the angle between the outer two rays tends to z. In this case
Q_ko and Qo point in the same directions. If the angle between non-adjacent rays tends
to 0 then Q_,_; o and Q,,; are squeezed together and point in opposite directions.
Suppose that the angle between adjacent rays tends to 0. If the two adjacent rays are
the middle ones, we have the case just considered. Otherwise, either the angle between
the two left rays tends to 0 or the angle between the two right rays tends to 0. In either
case, the uniform lower bound on the cross ratio forces a third diagonal to point either in
the same or the opposite direction as these adjacent diagonals when ¢t = 1. Any situation

like this leads to a case we have already considered. &

5.4 The Case of Aligned Diagonals

We say that Q has aligned diagonals at the vertex Q, if Q_;, and Q, are parallel. This is
the second option in Lemma 5.2. We make the same kind of definition at other vertices,

with the indices shifted in the obvious way;,.

Lemma 5.3. Suppose Q does not lie in a single line. Suppose also that Q has aligned
diagonals at Q. Then the diagonals Q_ ¢, Q_k 1, ..., Q_1 x, Qo all are parallel and (hence) the

2k + 1 points Q_y, ..., Qy, ..., Q. are contained in the line defined by these diagonals.

Proof: These two diagonals define a short chain of diagonals, which starts with the first

listed diagonal and ends with the second one. They also define a long chain, which starts
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with the second and ends with the first. The total turning of the diagonals is 27z, so one
of the two chains defined by our diagonals turns 2z and the other turns 0. Suppose first
that the long chain has 0 turning. This chain involves all points of Q, and forces all points

of Q to be on the same line. So, the short chain must consist of parallel diagonals. &

All we use in the rest of the proof is that Q_,, ..., Q; are all contained in a line L. By
shifting our indices, we can assume that Q,,; ¢ L. This relabeling trick comes with a cost.
Now we cannot say whether the points Q_;....Q, come in order on L. We now regain this

control.

Lemma 5.4. The length 2k-diagonal chain Q_, — ... = Qg consists entirely of parallel

diagonals. There is no turning at all.

Proof: The diagonals Q_;, and Q, . are either parallel or anti-parallel. If they are anti-
parallel, then the angle between the corresponding rays incident Q,(t) tends to 0 as t — 1.
But these are the outer two rays. This forces the angle between all 4 rays incident to Qq(¢)
to tend to 0. The whole picture just folds up like a fan. But one or these rays corresponds
to Qo x+1(t). This picture forces Q,,; € L. But this is not the case.

Now we know that Q_, and Q,, are parallel. All the diagonals in our chain are
either parallel or anti-parallel to the first and last ones in the chain. If we ever get an
anti-parallel pair, then the diagonals in the chain must turn 27 around. But then none of
the other distinguished diagonals outside our chain turns at all. As in Lemma 5.3, this

gives Q C L, which is false. &

We rotate the picture so that L coincides with the X-axis and so that Q,, points in
the positive direction. Since we are already using the words left and right for another
purpose, we say that p € L is forward of of q € L if p has larger X-coordinate. Likewise
we say that q is backwards of p in this situation. We say that Q,, points forwards. We

have established that Q_, ..., Qo all point forwards.

Lemma 5.5. Qy,, € L and both Q ., and Q, ., point backwards.
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Proof: We have arranged that Q,,; ¢ L. Let us first justify the fact that Q,,, lies above L.
This follows from Right Hand Rule applied to Q,,,; and Q, and the fact that Q,, points
forwards. Since Q_;, Q_;,;,Q; are collinear, Q has collapsed diagonals at Q,. But Q cannot
have aligned diagonals because Q; ;; is not parallel to Q_, ;. Hence Q has folded diagonals
at 1. This means that the diagonals Q_;; and Q; x, point in opposite directions. This
forces Q,,, € L and morever we can say that Q; ;,, points backwards.

We have Q, € L because 2 < k. We want to see that Q, ., points forwards and they

Suppose not. We consider the 3 distinguished diagonals

Qoks Quk+2s Qzk42-

These diagonals respectively point forwards, backwards, forwards and they all point one
direction or the other along L. But then, in going from Q,; to Q,,,, the diagonals have
already turned 2z. Since the total turn is 27, the diagonals Q, x4, Q3 x+3, > Quntk are all

parallel. But then Q,, ...,Q,, € L. This contradicts the fact that Q,,, € L. &

Lemma 5.6. For at least one of the two indices j € {2k + 2,2k + 3} we have Q; € L and Q.

points forwards.

Proof: Since Q,, Q,, Q;,, are collinear, Q has collapsed diagonals at Q;,,. So, by Lemma
5.2, we either have folded diagonals at Q,,, or aligned diagonals at Q,,. The aligned case
gives Q,.4, € L and the folded case gives Q,,,3; € L. We need to work out the direction of
pointing in each case.

Consider the aligned case. Suppose Q. k+> Points backwards, as shown in Figure

5.3.
k+1

‘
2k+2 k+2

Figure 5.3: Violation of the Right Hand Rule
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This violates the Right Hand Rule for Q, and Q. 5+, because Q,,; lies above L.
Consider the folded case. Since Q43 and Qy x, point in opposite directions, and

Q1 1+ points backwards (by the previous lemma), Qy,,r+3 points forwards. &

Let j € {2k + 2,2k + 3} be the index from Lemma 5.6. Consider the 3 diagonals

Qoks Qris1r  Qrsa,j-

These diagonals are all parallel to L and respectively point in the forwards, backwards,
forwards direction. This means that the diagonals in the chain Q,x — ... = Q4 ; have

already turned 27 radians. But this means that the diagonals

Qk+2,2k+3a Qk+3,2k+3’ Qk+3,2k+4a Qo,k:Qn,n+k

are all parallel and point forwards along L. Hence Qy,,, Qx43, -, Q, € L. Hence all points

but Q. liein L.

5.5 The Case of Double Folded Diagonals

We fix a value of k. Say that two indices a,b € Z/n are far if their distance is at least k
in Z/n. We say that Q has far folded diagonals if Q has folded diagonals at Q, and Q has
folded diagonals at b and a, b are far.

In this case we have two parallel diagonals Q, 4x+1 and Qp p4r+1. As in the proof of
Lemma 5.3, one of the two diagonal chains defined by these diagonals consists of parallel
diagonals. The far condition guarantees that at least 2k +1 consecutive points are involved
in each chain. But then we get 2k +1 collinear points. So, if Q has far folded diagonals, then
the same proof as in the previous section shows that the conclusion of the Degeneration

Lemma holds for Q.

5.6 Good Folded Diagonals

We say that the folded diagonals Q_,_; o and Qg x4 are good if all the points Qy1, Q425 - Qn_k—1

are collinear. This notion is empty when k = 2 and n = 7 but otherwise it has content. In
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this section we treat the case when Q has a pair of good folded diagonals. We start by
discussing an auxiliary notion.
We say that Q has backtracked edges at Q,, if the angle between the edges Q, ,,; and

Qg.q-1 1s either 0 or 2.

Lemma 5.7. If Q has backtracked edges at Q, then Q has folded diagonals at Q,.

Proof: For t € [0, 1), the edges of Q emanating from a divide the plane into 4 sectors, and
one of these sectors, C(t) contains all the distinguished diagonals emanating from Q,(¢).
The sector C(¢) is the one which locally intersects Q(t) near Q,(t). The angle of C(t) tends
to 0 ast — 1, forcing all the distinguished diagonals emanating from Q,(¢) to squeeze

down as ¢t — 1. This gives us the folded diagonals. &

We will use Lemma 5.7 in our analysis of good folded edges. Now we get to it. We
rotate so that our two diagonals are in the line L, which is the X-axis. We normalize so

that Q, is the origin, and Q,,; and Q_,_, are forward of Q,.

Lemma 5.8. Ifn > 3k+1and Q_y_1, Qo x+1 are good folded diagonals, then the Degeneration

Lemma is true for Q.

Proof: Suppose first that Q, € L. Then Q has folded diagonals at Q;,,. Whenn > 3k + 1
the indices (k + 1) and (—k — 1) are k-far. This gives Q far folded diagonals, a case we have
already treated.

To finish our proof, we show that Q, € L. We explore some of the other points. We
know that Q;,,...,Q,_x—1 € L. We can relabel dihedrally so that Q,,_;_, is forwards of
Qi+1- We claim that Qy,, is forwards of Q,,;. Suppose not. Then there is some index
a € {k +2,...,—k — 2} such that Q, is backwards of Q,,,. What is going on is that our points
would start by moving backwards on L and eventually they have to turn around. The
index a is the turn-around index. This gives us backtracked edges at Q,. By Lemma 5.7,
we have folded diagonals at Q,. But a and 0 are k-far indices. This gives Q far-folded

diagonals.
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The only way out of the contradiction is that Q. is forwards of Q; ;.

k+1 k+2
% > O=0 O

1

Figure 5.4: A contradiction involving Q;.

Suppose Q; ¢ L. by the Right Hand Rule applied to the diagonal Q ., the point Q;
lies beneath L, as shown in Figure 5.4. But then Q,,, lies to the left of the diagonal Q, y ..

This violates the Right Hand Rule. Now we know that Q, € L. &

Lemma 5.9. Suppose n =3k + 1 and k > 2. If Q_;_1 9, Qo x+1 are good folded diagonals, then

the Degeneration Lemma is true for Q.

Proof: The same argument as in Lemma 5.8 establishes the key containment Q, € L. (We
need k > 2 for this.) From here, as in Lemma 5.8, we deduce that Q_y_; o and Q1 54, are
parallel. This time the conclusion we get from this is not as good. We get a run of k points
in L, and then a point not necessarily in L, and then a run of k additional points in L.

The points are Qy1, ..., Qo415 ---» Qo With the point Q_, omitted. But then Q has folded
diagonals at each of these points except the outer two, Q,,; and Q,. But then For each
such index h, we see that both Q. 1) belong to L. This gives us all but one point in L.

It is instructive to consider an example, say k = 4 and n = 13. In this case, our ini-
tial run of points in L is Qs, Qs, Q7, Qg, Q19, Q11> Q12, Q13- The folded diagonals at Qg, Q;, Qg
respectively give Q;,Q,,Q; € L. The folded diagonals at Q,y, Q;;,Q;, respectively give
Q2,Q03,Q,€L. &

Finally we consider the case k = 2 and n = 7. In this case all we know is that Q,, Q3,Q4 €
L with Q;, Q, forwards of Q,. We can dihedrally relabel to that Q, is forwards of Q;. Here
Q3 = Q4 and Q4 = Qy,4,- So, now we can run the same argument as in Lemma 5.9 to

conclude that Q, € L. Now we proceed as in the proof of Lemma 5.9.
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We define S = S(1) to be the set of all accumulation points of sequences {p(t,)} where
p(t,) € S(t,) and t, — 1. Here S(t,) is the soul of P(t,). We have one more case to analyze,
namely ungood folded diagonals. To make our argument go smoothly, we first prove

some properties about S.

Lemma 5.10. Suppose that Q has folded diagonals at Q,. If the Degeneration Lemma is

false for Q, then S is contained in the line segment joining Q, to Q.

Proof: Here is a general statement about S. Since S(¢) is non-empty and closed for all
t < 1, we see by compactness that S is also a non-empty closed subset of the closed region
bounded by Q. By continuity S lies to the left of all the closed half-planes defined by the
oriented (k + 1) diagonals (or in their boundaries). Since S lies to the left of (or on) each
(k + 1) diagonal, S is a subset of the line L common to the folded diagonals and indeed
S lies to one side of the fold point Q,. From the way we have normalized, S lies in the
X-axis forward of Q,. (The point Q, might be an endpoint of S.)

If S contains points of L that lie forward of Q,,; then either the diagonal Qy x+>
points along the positive X-axis or into the lower half-plane. In the former cases, the
diagonals Qg 41, Qk+1.2k+2 are parallel and we get at least 2k + 1 collinear points and so
the Degeneration Lemma holds for Q.

If Qy11.2k42 Points into the negative half-plane, then the diagonal Q,,, turns more
than 7 degrees before reaching Q. .. But then the diagonals in the chain Q_;_; , —

e = Qo1 = Qp41.2k+2 turn more than 2z degrees. This is a contradiction. &

Remark: The same argument works with Q_;_; in place of Q;,;.

Lemma 5.11. If the Degeneration Lemma is false for Q then S cannot intersect Q in the

interior of an edge of Q.

Proof: Suppose this happens. We relabel so that the edge is Q, ;. By the Right Hand Rule,

the point Q, is not on the left of the diagonal Q, ;.;. At the same time, S is not on the right
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of the diagonal. The only possibility is that Q,, Qy, Qx,; are collinear. Likewise Q_;, Qy, Q;
are collinear. Furtheremore, the (k + 1)-diagonals Q_;; and Q. are parallel. Figure 5.5

shows the situation for Q(¢) and S(t) when ¢ is very near 1.

-k k+1

’\’>%/"‘°’°“'<”/4
0 1

Figure 5.5: The relevant points and lines.

But now we have two (k + 1)-diagonals that are parallel and which start at indices that
are k apart in Z /n. This gives us 2k + 1 consecutive collinear points on the line containing
our edge. We know how to finish the Degeneration Lemma in this case. The only way out

is that S cannot intersect Q in the interior of an edge of Q. &

Lemma 5.12. Ifthe Degeneration Lemma is false for Q, then S cannot contain a vertex of Q.

Proof: We relabel so that Q, € S. The same analysis as in the previous lemma shows that
Q;,Qo, Q_ are collinear. Figure 5.6. shows the situation for ¢t near 1. At the same time, the

points Q_;, Q,, Q, are collinear.

l

Oe— —— 1

Figure 5.6: The relevant points and lines

To avoid a case of the Degeneration Lemma we have already done, Q must have folded
diagonals at Q_;. Likewise Q must have folded diagonals at Q,. But then Q has far folded

diagonals, and the Degeneration Lemma holds for Q. &

Now let us bring back our assumptions: Q has folded diagonals at Q, and the points

Qo, Qi41, Q_j—1 all lie in the X-axis in the forward order listed.
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Corollary 5.13. If the Degeneration Lemma is false for Q then S lies in the open interval
bounded by Q, and Q,., and no point of S lies in Q. In particular, S contains a point x,

forwards of Q, and backwards of both Q, ., and Q_,_,, that is disjoint from Q.

5.8 Ungood Folded Diagonals

The only case left is when Q does not have 2k + 1 consecutive collinear points, and when
all folded diagonals of Q are ungood. Without loss of generality, we will consider the case
when Q has ungood folded diagonals at Q,. We normalize as in the previous section, so
that Qq, Qy41,Q__; lie in forward order on L, which is the X-axis. Let x be a point from
Corollary 5.13.

We call an edge of Q escaping if e n L is a single point. We call two different edges of Q,
in the labeled sense, twinned if they are both escaping and if they intersect in an open
interval. Even if two distinctly labeled edges of Q coincide, we consider them different as

labeled edges.

Lemma 5.14. Q cannot have twinned escaping edges.

Proof: Consider Q(t) for ¢ near 1. This polygon is strictly star shaped with respect to a

point x(¢) near x.

rt the twinned
pa edges of Q

of Q(t)
D /

%
L &

Figure 5.7: Rays intersecting the twinned segments

There is a disk D about x such that every p € D contains a ray which intersects the
twinned edges in the middle third portion of their intersection. Figure 5.7 shows what
we mean. Once ¢t is sufficiently near 1, the soul S(¢t) will intersect D, and for all points

p € D there will be a ray which intersects Q(¢) twice. This contradicts the fact that Q(t) is

Arnold Mathematical Journal, Vol.11(4), 2025 48


http://dx.doi.org/10.56994/ARMJ

The Flapping Birds in the Pentagram Zoo

strictly star-shaped with respect to all points of S(t). &

We say that an escape edge rises above L if it intersects the upper half plane in a

segment.

Lemma 5.15. Q cannot have two escape edges which rise above L and intersect Q on the

same side of the point x.

Proof: This situation is similar to the previous proof. In this case, there is a small disk D
about x such that every point p € D has a ray which intersects both rising escape edges
transversely, and in the middle third of each of the two subsegments of these escape

edges that lie above L. Figure 5.8 shows this situation.

the
rising
edges par—t
“ *//of Q(t)

Figuren 5.8: Rays intersecting the rising segments.

In this case, some part of Q(t) closely shadows our two escape edges for ¢ near 1. But
then, once ¢ is sufficiently near 1, each ray we have been talking about intersects Q(¢)
at least twice, once by each escaping edge. This gives the same contradiction as in the

previous lemma. &

We define falling escape segments the same way. The same statement as in Lemma
5.15 works for falling escape segments. Since x ¢ Q we conclude that Q can have at most
4 escaping segments total.

But Q = Q, UQ_, where Q, is an arc of Q that starts at Q,,; and ends at Q_,_,. Since

both these arcs start and end on L, and since both do not remain entirely on L, we see
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that each arc has at least 2 escape edges, and none of these are twinned. This means that
both Q, and Q_ have exactly two escape edges.

Now for the moment of truth: Consider Q,. Since Q, just has 2 escape edges, they both
have to be either rising or falling. Also, since Q, starts and ends on the same side of x,
and cannot intersect x, both the escape edges for Q. are on the same side of x. This is a

contradiction. The same argument would work for Q_ but we don’t need to make it.

6 The Persistence of Birds

In this chapter we prove Statement 3 of Theorem 1.1, namely the fact that Ag(B, ) = B, .
First we use the Degeneration Lemma to prove that A, (B, ) C B, . Then we deduce the

opposite containment from projective duality and from the factoring of A, given in §2.2.

6.1 Containment

Suppose for the sake of contradiction that there is some P € B, such that A(P) ¢ By .
Recall that there is a continuous path P(¢) for ¢t € [0, 1] such that P(0) is the regular n-gon.

Define Q(t) = A, (P(t)). There is some ¢, € [0, 1] such that Q(t,) & By ,. We can truncate
our path so that ¢, = 1. In other words, Q(t) € B, for t € [0,1) but Q(1) & By .

Lemma 6.1. Q(-) is a degenerating path.

Proof: Note that Q(-) is planar and hence satisfies Property 1 for degenerating paths. Let
P =P(1) and Q = Q(1). If Q doe not have all distinct vertices then two different feathers of
P intersect at a point which (by Statement 2 of Theorem 1.1) lies in P!. This contradicts
Statement 2 of Theorem 4.1. Hence Q(-) satisfies Property 2 for degenerating paths. By
construction, Q(t) € B, for all t € [0,1). Hence Q(-) satisfies Property 3. The energy y;
is well-defined and continuous on B, ,. Hence, by compactness, y,(P(t)) > ¢, for some
€o > 0and all ¢ € [0,1]. Now for the crucial step: We have already proved that y; oA, = xi.
Hence y;(Q(t)) > ¢, for all t € [0,1]. That is, Q(-) satisfies Property 4 for degenerating
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paths. &

Now we apply the Degeneration Lemma to Q(-). We conclude that all but at most 1
vertex of Q(1) lies in a line L. Stating this in terms of P(1), we can say that all but at most
one of the feathers of P(1) have their tips in a single line L. Call an edge of P(1) ordinary
if the feather associated to it has its tip in L. We call the remaining edge, if there is one,
special. Thus, all but at most one edge of P is ordinary.

Let S(¢) be the soul of P(¢). We know that S(1) has non-empty interior by Theorem 3.1.

For ease of notation we set P = P(1) and S = S(1).

Lemma 6.2. P cannot have ordinary edges e, and e, that lie on opposite sides of L and are

disjoint from L.

Proof: Suppose this happens. Figure 6.1 shows the situation.

/L—\/%V
= i

F2

Figure 6.1: Two feathers on opposite sides of L.

Let F, and F, be the two associated feathers. Then the opposite sector F; lies above L,
and the opposite sector F; lies below L and the two tips are distinct. But then S(1), which

must lie in the intersection of these sectors, is empty. &

Lemma 6.3. P cannot have more than 2 ordinary edges which intersect L.

Proof: Note that an ordinary edge cannot lie in L because then the tip would not. So, an
ordinary edge that intersects L does so either at a single vertex or at an interior point. As
we trace along L in one direction or the other we encounter the first intersecting edge and

then the last one and then some other intersecting edge. Let F,.F,.F; be the two feathers,
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as shown in Figure 6.3. Let ¢; be the edge of F; that belongs to P. Let v; be the tip of F;.
(Figure 6.3 shows the case when e; N L is an interior point of e; for each j = 1,2, 3, but the

same argument would work if some of these intersection points were vertices.)

e3
vl outside v2

Figure 6.2: Three or more crossing edges

One of the two arcs « of Q joining v, to v, stays in L, namely the one avoiding the
one point of Q not on L. However, « passes right through F; and in particular crosses e;
transversely. However, one side of F; is outside P. Hence « is not contained in P/, the
interior of the region bounded by P. This contradicts Statement 2 of Theorem 1.1, which

saysthatQ c Pl. &

The line L divides the plane into two open half-planes, which we call the sides of
L. Lemma 6.2 says that P cannot have ordinary edges contained in opposite sides of L.
Lemma 6.3 says that at most 2 ordinary edges can intersect L. Hence, all but at most 2 of
the ordinary edges of P lie on one side of L. Call this the abundant side of L. Call the other
side the barren side. The barren side contains no ordinary edges at all, and perhaps the

special edge. In particular, at most two vertices of P lie in the barren side.

abundant
el c2
' L
/\/Xﬁ
vi v2 barren

Figure 6.3: Following the diagonals bounding a feather

At the same time, each ordinary edge on the abundant side contributes two vertices to

the barren side: We just follow the diagonals comprising the corresponding feather. These

Arnold Mathematical Journal, Vol.11(4), 2025 52


http://dx.doi.org/10.56994/ARMJ

The Flapping Birds in the Pentagram Zoo

diagonals cross L from the abundant side into the barren side. Two different ordinary
edges contribute at least 3 distinct vertices to the barren side. This is a contradiction.
We have ruled out all possible behavior for P = P(1) assuming that Q = Q(1) is
degenerate. Hence, Q(1) is not degenerate. This means that Q(1) is a bird. This completes
the proof that
Ax(By.n) C By - (24)

6.2 Equality
We use the notation from §2.2. Equation 8 implies that
A = Diy10A0Dp - (25)

So far, Equation 25 makes sense in terms of PolyPoints and PolyLines.

Below we will explain how to interpret D,,; as a map from polygons in P to polygons
in P* and also as a map from polygons in P* to polygons in P. Since the dual projective
plane P* is an isomorphic copy of P, it makes sense to define B; . This space is just the

image of By , under any projective duality. Below we will prove
Theorem 6.4. Dy (B ,) C B},

It then follows from projective duality that Dy,,(B; ) C By ,. Combining these equa-
tions with Equation 25 we see that A Y(B,.x) C By This combines with Equation 24 to
finish the proof of Theorem 1.1.

Now we prove Theorem 6.4.

Lemma 6.5. If P € By ,, then we can enhance Dy ,(P) in such a way that Dy,(P) is a planar

polygon in P*. The enhancement varies continuously.

Proof: A polygon is a PolyPoint together with additional data specifying an edge in P
joining each consecutive pair of points. Dually, we get a polygon in P* from a PolyLine by
specifying, for each pair of consecutive lines L;, L;,,, an arc of the pencil of lines through

the intersection point which connects L; to L;;.
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Specifying an enhancement of D, ;(P) is the same as specifing, for each consecutive
pair L, L, of (k + 1) diagonals of P, an arc of the pencil through their intersection that
connects L;, L,. There are two possible arcs. One of them avoids the interior of the soul
of P and the other one sweeps through the soul of P. We choose the arc that avoids the

soul interior. Figure 6.4 shows that we mean for a concrete example.

Figure 6.4: Enhancing a PolyLine to a polygon: Avoid the soul.

Since the soul of P has non-empty interior, there exists a point x € P which is disjoint
from all these pencil-arcs. Applying duality, this exactly says that there is some line in P*
which is disjoint from all the edges of our enhanced D, ,(P). Hence, this enhancement

makes Dy ;(P) planar. Our choice also varies continuously on B,, ;.. #

Lemma 6.6. D, ., maps a member of B, , to an n-gon which is k-nice.

Proof: Let Q = D;,1(P). A (k + 1)-diagonal of Q is just a vertex of P. A k diagonal of Q is a
vertex of Ay (p). Thus, to check the k-nice property for Q we need to take n-collections of
4-tuples of points and check that they are distinct. In each case, the points are collinear

because the lines of Q are coincident.
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Figure 6.5 One of the n different 4-tuples we need to check.

Once we make this specification, there is really combinatorially only possibility for
which collections we need to check. Figure 6.5 shows one such 4-tuple, a,b,c,d. The
shaded triangles are the two feathers of P whose tips are b,c. But a, b, c,d are distinct

vertices of P U A (P) and so they are distinct. That is all there is to it. &

To show that Q = D, ,(P) is a k-bird, we consider a continuous path P(¢t) from the
regular n-gon P(0) to P = P(1). We set Q(t) = P(t). By construction, Q(0) is a copy of the
regular n-gon in P*, and Q(¢) is k-nice for all ¢ € [0,1], and Q(¢) is a planar polygon for all
t € [0,1]. By definition Q = Q(1) is a k-bird. This completes the proof of Theorem 6.4.

7 The Triangulation

7.1 Basic Definition

In this section we gather together the results we have proved so far and explain how we

construct the triangulation 7, associated to a bird P € By ,.

Since Ay(By,,) C By, We know that A (P) is also a k-bird. Combining this with Theorem
3.1 and Theorem 4.1 we can say that A, (P) is one embedded n-gon contained in P/, the
interior of the region bounded by the embedded P. The region between P and A, (P) is
a topological annulus. Moreover, A, (P) is obtained from P by connecting the tips of the
feathers of P. The left side Figure 7.1 shows how this region is triangulated. The black
triangles are the feathers of P and each of the white triangles is made from an edge of

A (P) and two edges of adjacent feathers.
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Figure 7.1: The triangulation of the annulus

Lemma 7.1. For every member P € By ,, the associated 2n triangles have pairwise disjoint

interiors, and thus triangulate the annular region between P and A (P).

Proof: As usual, we make a homotopical argument. If this result is false for some P, then
we can look at path which starts at the regular n-gon (for which it is true) and stop at the
first place where it fails. Theorem 4.1 tells us that nothing goes wrong with the feathers
of P. The only thing that can go wrong is A, (P) fails to be an embedded polygon. Since

this does not happen, we see that in fact there is no counter-example at all. &

We can now iterate, and produce 2n triangles between A, (P) and Ai(P), etc. The right
side of Figure 7.1 shows the result of doing this many times. The fact that A, (B ,,) = Bi,
allows us to extend outward as well. When we iterate forever in both directions, we get
an infinite triangulation of a (topological) cylinder that has degree 6 everywhere. This is

what Figure 1.6 is showing. We call this bi-infinite triangulation zp.

7.2 Some Structural Results
The following result will help with the proof of Theorem 1.3.

Theorem 7.2. Let P € B, . Let S be the soul of B. Then for ¢ > n we have Ai(P) cS.
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Proof: We first note the existence of certain infinite polygonal arcs in 7. We start at a
vertex of P and then move inward to a vertex of A (P) along one of the edges. We then
continue through this vertex so that 3 triangles are on our left and 3 on our right. Figure

7.2 below shows the two paths like this that emanate from the same vertex of P.

Figure 7.2: The spiral paths.

The usual homotopical argument establishes the fact that the spiral paths are locally
convex. One can understand their combinatrics, and how they relate to the polygons in
the orbit, just by looking at the case of the regular n-gon. We call the two spiral paths in
Figure 7.2 partners. In the regular n-gon the partners intersect infinitely often. So this
is true in general. Each spiral path has an initial segment joining the initial endpoint
on P to the first intersection point with the partner. We define a petal to be the region
bounded by the initial paths of the two partners.

It is convenient to write P’ = A’(P). In the regular case, P’ is contained in the petal
for ¢ > n — 1.. Hence, the same goes in the general case. Because the initial segments are

locally conveg, the petal lies to the left of the lines extending the edges e¢; and e, when

Arnold Mathematical Journal, Vol.11(4), 2025 57


http://dx.doi.org/10.56994/ARMJ

Richard Evan Schwartz

these edges are oriented according to the (k + 1)-diagonals of P. But this argument works
for every pair of partner spiral paths which start at a vertex of P. We conclude that for
¢ > n, the polygon P? lies to the left of all the (k + 1)-diagonals of P. But the soul of P is

exactly the intersection of all these left half planes. &

Theorem 7.2 in turn gives us information about the nesting properties of birds within

an orbit. Let S, denote the soul of P?. Let

S =[) Se- S—wo = Se- (26)
telZ teZ

It follows from Theorem 7.2 that P, = S, and P__ = S_., because
Sesn C P C S, C PL. (27)
Hence these sets are all convex subsets of an affine plane.

Corollary 7.3. Any P € By, is strictly star-shaped with respect to all points in the convex
hull of A7(P).

Proof: Since P‘*" c S,, and P? is strictly star shaped with respect to all points of S¢, we
see that P? is strictly star shaped with respect to all points of P‘**. Since S, is convex,
we can say more strongly that P? is strictly star-shaped with respect to all points of the
convex hull of P/+". Now we just set ¢ = 0 and recall the meaning of our notation, we get

the exact statement of the result. &

An immediate corollary is that P is strictly star-shaped with respect to P,. (Theorem

1.3 says that this is a single point.)
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8 Nesting Properties of Birds

8.1 Duality

In this chapter we prove Theorem 1.3. In this first section we show how Statement 1 of
Theorem 1.3 implies Statement 2. We want to prove that the “backwards union” P__, is
an affine plane. Here P € B, is a k-bird.

We take ¢ > 0 and consider P~¢ = A;f(P). Since P~ is planar, there is a closed set A, of
lines in P which miss P~¢. These sets of lines are nested: A; D A, D A;.... The intersection
is non-empty and contains some line L. We can normalize so that L is the line at infinity.
Thus all P~ lie in R*>. We want to see that P__ = R%.

Let Dy, be the map from §2.2 and §6.2. From Equation 8 we see that D, ,; conjugates

Ay to A;l. With Theorem 6.4 in mind, define the following “dual” k-birds:
¢ = AY (Dy11(P)) = Dyyy (P79). (28)

From Statement 1 of Theorem 1.3, the sequence of k-birds {I1¢} shrinks to a point in the
dual plane P*. The vertices of IT* are the (k + 1)-diagonals of P~*. Because the vertices of

I1¢ shrink to a single point, all the (k + 1)-diagonals of P~¢ converge to a single line L’.

Lemma 8.1. L' is the line at infinity.

Proof: Suppose not. When ¢ is large, all the (k + 1)-diagonals point nearly in the same
direction as L’. In particular, this is true of the subset of these diagonals which define the
soul S~*. But these special diagonals turn monotonically and by less than 7 radians as we
move from one to the next. Hence, some of these diagonals nearly point in one direction
along L’ and some point nearly in the opposite direction. But then S~ converges to a

subset of L’. This is a contradiction, &

The soul S~ is a convex set, containing the origin, and is bounded by some of the

(k + 1) diagonals. If S~ does not converge to the whole plane, then some (k + 1)-diagonal
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intersects a uniformly bounded region in R* for each ¢. But this produces a sequence
of (k + 1)-diagonals that does not converge to the line at infinity. This is a contradiction.

Hence S~¢ converges to all of R*. But then so does P~7.

8.2 The Pre-Compact Case

The rest of the chapter is devoted to proving Statrement 1 of Theorem 1.3. Let P € B,
and let PY = A?(P). We take ¢ =0, 1,2, 3....

Conjecture 8.2. The sequence {P’} is pre-compact modulo affine transformations. That s,

this sequence has a convergent subsequence which converges to another element of B, .

In this section I will prove the P, is a single point under the assumption that {P*} is
pre-compact.

We would like to see that the diameter of P? steadily shrinks, but the notion of diameter
is not affinely natural. We first develop a notion of affinely natural diameter. For each
direction v in the plane, we let ||S||, denote the maximum length of L n S where L is a

straight line parallel to v. We then define

1511,
6(51,5,) =su
(S1.82) = sup e

The quantity §(S;, S,) is affine invariant, and (choosing a direction x which realizes the

e [o,1]. (29)

diamater of S;) we have
diam(s;) < (15111
diam(S;) ~ ISzl

< 46(57,53). (30)

Let S? be the soul of P?. By Theorem 5.11 we have S*** ¢ S*. More precisely, the former
set is contained in the interior of the latter set. Under the pre-compactness assumption,

there are infinitely many indices ¢; and some ¢ > 0 such that

S(Stitn sty <1 —e. (31)
But then
: ti+n
diam(S*/™") l—¢ (32)
diam(S?/)
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infinitely often. This forces diam(S?) — 0. But P, is contained in this nested intersection
and hence is a point.
If we knew the truth of Conjecture 8.2 then our proof of Theorem 1.3 would be done.

Since we don’t know this, we have to work much harder to prove Statement 1 in general.

8.3 Normalizing by Affine Transformations

Henceforth we assume that the forward orbit {P’} of P under A, is not pre-compact

modulo affine transformations.

Lemma 8.3. There is a sequence {T,} of affine transformations such that
1. T,(P?) has (the same) 3 vertices which make a fixed equilateral triangle.
2. T, expands distances on P’ for all ¢.

3. T,(P?) is contained in a uniformly bounded subset of R>.

Proof: To P! we associate the triangle r, made from 3 vertices of PY and having maximal
area. The diameter of 7, is uniformly small, so we can find a single equilateral triangle T
and an expanding affine map T, : 7, — T. Let d be the side length of T. Every vertex of
T,(P?) is within d of all the sides of T, because otherwise we’d have a triangle of larger

area. The sequence {T,} has the advertised properties. &

Let Q° = T,(P%). By compactness we can pass to a subsequence so that the limit
polygon Q exists, in the sense that the vertices and the edges converge. Let Q,, Q;, etc.
be the vertices of Q. Perhaps some of these coincide. Each distinguished diagonal of Q°
defines the unit vector which is parallel to it. Thus Q¢ defines a certain list of 2n unit
vectors. We can pass to a subsequence so that all these unit vectors converge. Thus Q still
has well defined distinguished diagonals even when the relevant points coincide.

We now define the “limiting soul”. Let S¢ = S(Q?), the soul of Q¢. As in §5.7. let S be

the set of accumulation points of sequences {p¢} with p’ € S?. Since S¢ c Q’ for all ¢ we
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have S c Q. Now we define a related object. We have a left half-plane associated to each
diagonal of Q. We define X to be the intersection of all these half-planes. We will use the

set = at various places below to get control over the set S.

Lemma 8.4. ScC 2.

Proof: Fix ¢ > 0. If this is not the case, then by compactness we can find a convergent
sequence {p’}, with p¢ € S?, which does not converge to a point of =. But p? lies in every
left half plane associated to Q¢. But then, by continuity, the accumulation point p lies in

every left half plane associated to Q. Hence p € Z. &

8.4 Structure of the Normalized Limits

We work under the assumption that P, is not a single point. The goal of this section
is to establish several structural properties about the sets S and Q. Our first property
guarantees that there is a chord S* of S connecting vertices of Q. Once we establish this,
we show that Q is a union of two “monotone” arcs joining the endpoints of S*. These
structural properties will be used repeatedly in subsequent sections of this chapter.

Let H, denote the convex hull of Q. Note that S C Q C Hy,.

Corollary 8.5. Suppose that P, is not a single point. Then (S, H) = 1.

Proof: Suppose not. Note that Hy, ¢ S*~" by Theorem 7.2 and convexity. Then for ¢ large

we have

8(Qf) = §(S?,St") < 5(Sf,HQ€) <48(S,Hp) +e¢,

and we can make ¢ as small as we like. This gives us a uniform & < 1 such that 5(Q¢) < &
once ¢ is large enough. The argument in the compact case now shows that P, is a single

point. &
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Corollary 8.5 says that S and Q have the same diameter. Hence there is a chord S* c S
which has the same diameter as Q. Since Q is a polygon, this means that Q must have
vertices at either endpoint of S*. We normalize so that S* is the unit segment joining (0, 0)

to (1,0).
Lemma 8.6. Let Q' C Q be an arc of Q that joins (0,0) to (1,0).
1. The vertices of Q" must have non-decreasing x-coordinates.
2. If consecutive vertices of Q' have the same x-coordinate, they coincide.

3. Either Q' c S* or Q' intersects S* only at (0,0) and (1,0).

Proof: Suppose the Statement 1 is false. Then we can find a vertical line A which intersects
S* at a relative interior point and which intersects Q' transversely at 3 points. But then
once ¢ is sufficiently large, Q¢ will intersect all vertical lines sufficiently close to A in at
least 3 points and moreover some of these lines will contain points of S?. This contradicts
the fact that Q? is strictly star-shaped with respect to all points of Q.

For Statement 2, we observe that Q' does not contain any point of the form (0, y) or
(1,y) for y # 0. Otherwise Q has larger diameter than 1. This is to say that once Q' leaves
(0,0) it immediately moves forward in the X-direction. Likewise, once Q’ (traced out the
other way) leaves (1,0) it immediately moves backward in the X-direction. If Statement 2
is false, ten we can find a non-horizontal line A’ which intersects S* in a relative interior
point and which intersects Q’ transversely at 3 points. The slope is A’ depends on which
of the two vertices of Q' lies above the other. Once we have A’ we play the same game as
for the first statement, and get the same kind of contradiction.

Suppose Statement 3 is false. We use the kind of argument we had in §5.8. By State-
ments 1 and 2 together, Q" must have an escape edge which touches S* in a relative
interior point. Moreover, this one escape edge is paired with another escape edge. Thus
we can find a point x € $* which strictly lies on the same side of both of these same-type

escape edges. The argument in §5.8 now shows that Q? is not strictly star-shaped with
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respect to points of S¢ very near x. &

Corollary 8.7. Suppose0 < a < b <nandQ, = Qp. Then either we have Q, = Q,; = ... = Qp

or else we have Q, = Qpy1 = ... = Qgyn-

Proof: In view of Lemma 8.6 it suffices to show that our two monotone arcs comprising
Q are disjoint except at their endpoints.

Let U denote the open upper halfplane, bounded by the X-axis. After reflecting in
the X-axis we can guarantee that one of our monotone arcs « has a point in U. But then,
by Lemma 8.6, all of « lies in U except for its endpoints. If the other monotone arc 8
intersects « away from the endpoints, then g has a point in U, but then, by Lemma 8.6,
all of 8 lies in U except for the endpoints. But then S lies in U, except for the points (0,0)
and (1,0). This contradicts the fact that S* Cc S. &

Our argument shows in particular that Q is embedded, up to adding repeated vertices.
However, we will not directly use this property in our proof below.
8.5 The Triangular Case

We continue with the assumption that P is not a single point. Here we pick off a special

case:
* There is a line L such that Q, & L.
* Qi Qki1s - Quk—1,Qn_ € L and
* Qi # Quk-

Figure 8.1 shows the situation. As always, the notation Q_; and Q,_; names the same
point. All but 2k — 1 points are on L, and except for Q, we don’t know where these other

2k — 1 points are.
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0

Figure 8.1: The triangular limit Q.
Given the constant energy of our orbit, the cross ratio of the lines

Qo> Qok+1> Qnk-1,0 Qn-kpo

is at least ;. Also, these lines are cyclically ordered about 0 as indicated in Figure
8.1, thanks to the k-niceness property and continuity. Also, the two lines containing
Qox and Q_i, are not parallel because Q, ¢ L. Hence S is contained in the shaded
region in Figure 8.1, namely the triangle with vertices Q, and Q. ). But this shaded
region has diameter strictly smaller than the triangle r with vertices Q, and Q.. Hence
diam(S) < diam(7) < diam(Q). This contradicts Corollary 8.5 which says, in particular, that

S and Q have the same diameter.

8.6 The Case of No Folded Diagonals

We work under the assumption that P, is not a single point. The notions of collapsed
diagonals, folded diagonals, and aligned diagonals from §5 make sense for Q because the
concepts just involve the directions of the diagonals. The proof of Lemma 5.3 also works

the same way.
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Lemma 8.8. Q must either have a trivial edge, a trivial distinguished diagonal, or collapsed

diagonals,

Proof: As remarked in §5, the proof of the Degeneration Lemma works for sequences
as well as paths, and only uses the fact that the limiting polygon has nontrivial edges
and nontrivial distinguished diagonals. So, if Q has no trivial edges and no trivial dis-
tinguished diagonals, then all but one vertex of Q lies in a single line. But then Q has

collapsed diagonals. &

Remark: Here is a second, more direct proof. If Lemma 8.8 is false then we have a picture
as in the left side of Figure 7.1. The feathers defined in §4.1 would be all non-degenerate
and the segments joining the tips of consecutive feathers would be nontrivial. This would

force S to lie in the interior of Q. But then diam(S) < diam(Q), contradicting Corollary 8.5.

If Q has a trivial distinguished diagonal, then by Lemma 8.7, we see that Q also has a
trivial edge. If Q has a trivial edge, say Q_; = Q,, then the diagonals at Q are collapsed at
Q- So, in all cases, Q has collapsed diagonals. We assume in this section that Q has no
folded diagonals anywhere. This means that Q has aligned diagonals, say at Q,. Thus Qg
and Qy , are parallel. Since Q does not lie in a line, Lemma 5.3 tells us that the chain of

2k + 1 parallel distinguished diagonals:

Qo,kcs Qo415 Q1 k415 Q1 k425 -+ Qre—1,2k5 Qi 2k (33)

Now we have a “runaway situation”. The two diagonals Q. x and Q,—; (Which are
just the reversals of the last two in Equation 33) are parallel. Thus Q has collapsed
diagonals at Q,;. Since Q has no folded diagonals, Q has aligned diagonals at Q,,. But then,
applying Lemma 5.3 again, we can extend that chain in Equation 33 so that it contines as
s o0 Qak—1.3k» Qak 3k~ But now Q has collapsed diagonals at Q;;. And so on. Continuing this
way, we end up with all points on Q. This is a contradiction.

The only way out is that Q must have folded diagonals somewhere
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8.7 The Case of Folded Diagonals

We continue to work under the assumption that P, is not a single point. Now we consider
the case when Q has folded diagonals at, say, Q,. What this means that the diagonals Qg y 1,
Qo1 are parallel. (Again, these diagonals are well defined even when their endpoints
coincide; we are just using a notational convention to name them here.) But then the
corresponding half planes intersect along a single line L, forcing ¥ c L. By Lemma 8.4,
the soul S is contained in =. Hence, S C L. Letting S* be the chord from §8.4, we also have
S = S*. This is because S and S* are segments of the same diagonal and in the same line.
We will use S and S* interchangeably below.

We normalize so that S is the line segment connecting (0, 0) to (1,0). As in §8.4, both
these points are vertices of Q. The folding condition forces ¥ (and hence S) to lie to one
side of these points. Hence, we have either Q, = (0,0) or Q, = (1,0). Without loss of
generality we consider the case when Q, = (0,0). Note that points of Q — S do not be-

long to L, because Q and S have the same diameter. We break the analysis down into cases.

Case 1: Suppose that Q,,, is not an endpoint of S* and Q,_,_; # (0,0). Consider the
arc Q' given by Qy — ... = Q41 — ... = Qg = (1,0). Here § is some index we do not know
explicitly, but we take § as large as possible, in the sense that Qg,; # (1,0). The arc Q'
connects (0,0) to (1,0) and intersets S* at Q,,, a point which is neither (0,0) or (1, 0). By
Lemma 8.6, we have Q" c S*. We conclude that Q,, ..., Qg CS™.

If 8 does not lie in the index interval (k + 1,n — k — 1) then we have just shown that
Qk41s - Qn_k_1 € S*. If B = n — k — 1 we have the same result. Here is what we do if 8
does lie in (k + 1,n — k — 1). We apply our same argument as in the previous paragraph
to the arc Qs — ... > Q,_x—;, and see that Qg, ...,Q,_x_; € S. So, in all cases, we see that
Q415+ Quk-1 €S.

In short, Q; € L unless j € {—k,...,—1}. All but k vertices belong to L. In particular, we
have an index h € {-k,...,—1} such that Q, ¢ L but Qj 1, Qnik+1>--> Qnank—1>Qnin-k € L.

Now we are close to the Triangular case from §8.5 except that all the indices are shifted
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by h. If it happens that Q. # Qnin—r then we have the Triangular Case and we are done.

The other possibility is that Qj,x = Qu4,.—k- In this case, Lemma 8.7 gives us Q,,x =
Qh+k+1 = Qnin—k—1 = Qnyn—i- In particular, the diagonals Q411 and Qy, 4,1 are folded
at Qy,. Since Q, ¢ L this means that there is some other line L’ such that S c L’. This is a

contradiction.

Case 2: Suppose Q_,_; = Q41 = (1,0). Before analyzing this case, we remember a
lesson from the end of Case 1: It is not possible for Q to have folded diagonals at a point

notonsS.

Corollary 8.7 says that Q,;; = ... = Q,_r—1 = (1,0). This is a run of k + 8 points, where
B =n—-Bk+1)>0. There is some index h € {1, ... + k} such that Q, ¢ L. Without loss of
generality we will take h € {1, ..., k}.

Suppose first that n > 3k + 1. Then there are at least k + 1 consecutive vertices sitting
at (1,0) and so both diagonals Q, ;. and Qy x4x+1 point from Q, to (1,0) # Q. This means
that Q has collapsed diagonals at Q;,. Remembering our lesson, we know that Q does not

have folded diagonals at Q,. Hence Q has aligned diagonals at Q,,.

Now we have the same runaway situation we had in §8.6. The diagonals in the chain
Qp—k.n--Qnn+k point are all pointing along the line connecting (1,0) to Q,, and they are
pointing away from (1, 0). This gives us collapsed diagonals at Q;_.,. Remembering our
lesson, we see that Q has aligned diagonals at Q;,. And so on. All the points after Q,, get

stuck on L’ and we have a contradiction.

If n = 3k + 1, then the same argument works as long as » # +k. So, we just have to
worry about the case when all points of Q belong to S except for Q, and Q_;, which do
not belong to S. Applying Lemma 8.6 to the arc Qy, —» Q; — ... » Q, — (1,0) we conclude
that Qy = ... = Qr_; = (0,0). Applying Lemma 8.6 to the arcQy - Q_; — ... = Q_; = (1,0)
we conclude that Q, = ... = Q,_; = (0,0). But now we have a run of 2k — 1 > k + 1 points
sitting at (0,0) and we can run the same argument as in the case n > 3k + 1, with (0,0) in

place of (1,0).
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Case 3: The only cases left to consider is when one or both of Q1) equals (0,0). We
suppose without loss of generality that Q_,_; = (0,0). Since we also have Q, = (0,0),
Lemma 8.7 gives Q_;_; = ... = Qo = (0,0). This is a run of k + 2 consecutive points sitting
at (0,0).

There is some smallest # > 0 so that Q, ¢ S. Applying Lemma 8.6 to the arc Q, — ... —
Qi — ... » (1,0), we conclude that Q,_; = ... = Q; = (0,0). (Otherwise Lemma 8.6 would
force Q, €S.)

Now we know that Q has collapsed diagonals at Q, ¢ L. We now get a contradiction

from the same runaway situation as in Case 2.

9 Appendix

9.1 The Energy Invariance Revisited

In this section we sketch Anton Izosimov’s proof that y, oA, = yi. This proof requires the
machinery from [6]. (The perspective comes from [8], but the needed result for A is in
the follow-up paper [6].)

Let P be an n-gon. Welet V4, ..., V,, be points in R’ representing the consecutive vertices
of P. Thus the vertex P; is the equivalence class of V;. We can choose periodic sequences
{a;}, {b;}, {c;}, {d;} such that

a;iVi+biVigk + Vi1 + diVigok1 =0, vi. (34)
Recall from §2.2 that Ay = DyoDy;.

Lemma 9.1. One of the cross ratio factors of y;oDy,1 IS (agd_i)/(cob_).

Proof: One of the factors is the cross ratio of Py, y, x, P;.,,, Where

X = Pojcr1 N P k1, Yy =P_j1 NPy
(Compare the right side of Figure 2.1, shifting all the indices there by k + 1.)

Arnold Mathematical Journal, Vol.11(4), 2025 69


http://dx.doi.org/10.56994/ARMJ

Richard Evan Schwartz

The points x and y respectively are represented by vectors
X =agVo+ Vi1 = —boVi — doVaks1,

Y=—a_V_—c Vi=b_ Vo+d_ Vi

The point here is that the vector X lies in the span of {V, V}.,,} and in the span of {V, V5 1}
and projectively this is exactly what is required. A similar remark applies to Y.

Setting Q = V, X V.1, we compute the relevant cross ratio as

VO XY XXVk+1 _ d_kQ % aog _ d_kao (35)
VoXX YXVig  cQ " b Q  b_c’

which is just a rearrangement of the claimed term. &

The other cross ratio factors are obtained by shifting the indices in an obvious way.
As an immediate corollary, we see that

n

a;d;
XD @) =[] - (36)
i=1 bici
Let us call this quantity w; (P).
Lemma 9.2. If oA, = . then yioAy = xi.
Proof: If y oA, = w;, then ,ukoAl:l = u.. Equation 36 says that
XkODp41 = His MkODy 11 = Xk (37)

The first equation implies the second because Dy, is an involution. Since D, ,, conjugates

Ar to A we have

Xic©Ak = X0Dj410A; oDy y = oA oDy = fxoDyyy = X

This completes the proof. &
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Let P = Ai(P). Let {@;}, etc., be the sequences associated to P. We want to show that

n n ~ 7
a;d; aidl‘

11 he 117 (38)

i=1 i=1 biC;

This is just a restatement of the equation u,0A; = .
Now we use the formalism from [6] to establish Equation 38. We associate to our
polygon P operator D on the space V of bi-infinite sequences {V;} of vectors in R’. The

definition of D is given coordinate-wise as
D(V;) = a;V; + b;T*(V)) + ¢, TN (V) + d T*H(V)). (39)

Here T is the shift operator, whose action is T(V;) = V;,,. If we take {V;} to be a periodic
bi-infinite sequence of vectors corresponding to our polygon P, then D maps {V;} to the
0-sequence.

Next, we write D = D, + D_ where coordinate-wise
D.(V}) = a;V; + TNV, D_(V;) = bT*(V) + d; T+ (V). (40)

The pair (D,,D_) is associated to the polygon P.
Let D and (D,,D_) be the corresponding operators associated to P. One of the main

results of [6] is that the various choices can be made so that
D.D_=D_D,. (41)

This is called refactorization. Equating the lowest (respectively highest) terms of the
relation in Equation 41 gives us the identity @;b; = b;a;,, (respectively &d;,x11 = d;Ciiors1.)

These relations hold for all i and together imply Equation 38.

9.2 Extensions of Glick’s Formula

Theorem 1.1 in [3] says that the coordinates for the collapse point of the pentagram
map A, are algebraic functions of the coordinates of the initial polygon. In Equation 1.1

of [3], Glick goes further and gives a formula for the collapse point. I will explain his
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formula. Let (x*, y*) denote the accumulation point of the forward iterates of P under A,.
Let P = (x*,y*,1) be the collapse point. In somewhat different notation, Glick introduces

the operator
n
|Pi_1,0, Piyq]
TP = ”lI - Gp, GP(U) = - - - L.
3 ;lpi—lipiipi+1| l

(42)

Here |a, b, c| denotes the determinant of the matrix with rows a, b,c and I; is the 3 x 3
identity matrix. It turns out T is a A-invariant operatoy, in the sense that T, ) = T)p.
Moreover P, is an eigenvector of Tp. This is Glick’s formula for P,.. Actually, one can
say more simply that G, is a Aj-invariant operator and that P, is a fixed point of the
projective action of G,. This means that the vectors representing these points in R’ are
eigenvectors for the operator. The reason Glick uses the more complicated expression
nl; — Gp is that geometrically it is easier to work with.
Define Gp ,;, by the formula

n
|Pi—qs U, Piypl

Gpap(V) = ), >—F— P
@ ; |Pi—asPisPi+b| '

(43)

Let P, be the limit point of the forward iterates of P under A,.

A lot of experimental evidence suggests the following conjecture.

Conjecture 9.3. Let k > 2. If n = 3k + 1 the point P_, is a fixed point for the projective action
of Gpyx- If n = 3k + 2 the point P, is a fixed point for the projective action of Gp 1 x41- In

particular, in these cases the coordinates of P, are algebraic functions of the vertices of P.

Anton Izosimov kindly explained the following lemma, which seems like a big step in
proving the conjecture. (I am still missing the geometric side of Glick’s argument in this

new setting.)

Lemma 9.4. When n = 3k + 1 the operator Gp  is invariant under Ay,. When n = 3k + 2

the operator Gp 1 x+1 1S invariant under Ay.

Proof: These operators are Glick’s operator in disguise. When n = 3k + 1 we can relabel

our n-gons in a way that converts A, to the pentagram map. The corresponding space of
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birds B, corresponds to some strange set of “relabeled k-birds”. This relabeling converts
Gp xx Tespectively to Glick’s original operator. This proves the invariance of Gp ;, under
A, when n = 3k + 1. A similar thing works for n = 3k + 2, but this time the relabeling

converts A, to the inverse of the pentagram map. &

I was not able to find any similar formulas when n > 3k + 2.

Question 9.5. When n > 3k + 2 and P is a k-bird, are the coordinates of the collapse point

P, algebraic functions of the vertices of P?

Here is one more thing I have wondered about. Suppose that » is very large and P is a
convex n-gon. Then P can be considered as a k-bird for all k = 1,2,..., 3, where f is the
largest integer such that n > 35 + 1. When we apply the map A, for these various values
of k we get potentially 8 different collapse points. All I can say, based on experiments, is

that these points are not generally collinear.

Question 9.6. Does the collection of 8 collapse points in this situation have any special

meaning?

9.3 Star Relabelings

Let us further take up the theme in the proof of Lemma 9.4. Given an n-gon P and and

some integer r relatively prime to n, we define a new n-gon P*" by the formula

Pi" =Py;. (44)

Figure 1.5 shows the P*(-® when P is the regular 10-gon.
As we have already mentioned, the action of A; on the P*(=¥ is the same as the action
of Ay on P when n = 3k + 1. So, when n = 3k + 1, the pentagram map has another nice

invariant set (apart from the set of convex n-gons), namely
—k _
B = {P*P| P € By ,}.
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The action of the pentagram map on this set is geometrically nice. If we suitably star-
relabel, we get star-shaped (and hence embedded) polygons. A similar thing works when

n =3k + 2.
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Abstract: We show that the Yajima-Oikawa (YO) equations, a model of short
wave-long wave interaction, arise from a simple geometric flow on curves
in the 3-dimensional sphere S* that are transverse to the standard contact
structure. For the family of periodic plane wave solutions of the YO equations
studied by Wright, we construct the associated transverse curves, derive their

closure condition, and exhibit several examples with non-trivial topology.
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1 Introduction

This work is part of our investigation of curve flows in the 3-sphere S that are invari-

ant under the action of the group SU(2,1) of pseudoconformal transformations, which
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preserves the standard contact structure on the sphere. While the focus of our previous
study [2] was Legendrian curves in the 3-sphere and geometric flows for such curves
which are integrable (i.e., inducing integrable evolution equations for their fundamental
differential invariants), in this note we discuss an interesting connection between an
integrable model of short wave-long wave interaction and a geometric flow for curves

that are transverse to the contact structure.

The pseudoconformal geometry of S is inherited from the geometry of the space C3

endowed with the indefinite Hermitian form
(z,w) 1= i(z3w; — z;W3) + Z,W;. (1)

(The coordinates are chosen so that the z,, z; axes are null directions.) Given the standard
action of SL(3,C) on C3, let SU(2,1) denote the subgroup that preserves this form. Let
N c C3 be the null cone, i.e., the set of nonzero null vectors for (1). The set of complex
lines on the null cone is diffeomorphic to S3, the unit sphere in C2 (see (30)). It follows
that the linear action of SU(2,1) on C3 induces an action on S* known as the group of
pseudoconformal transformations. We will let 7 denote the complex projectivization
map from C* minus the origin to CP?, as well as its restriction to the null cone, giving a

commutative diagram:
N C C\{0}
-k
S* c cp?
The pseudoconformal action preserves the standard contact structure on S*, defined for

curves in S3 in terms of their lifts relative to 7 as follows.

Definitions. Lety : I — S° be a regular parametrized curve on an interval I ¢ R. Then y

is Legendrian if it has a lift T" : T — 2V satisfying

Im(T",,,T) =0,Vx € I. (2)
By contrast, y is a transverse curve or T-curve if its lift satisfies

Im(I',,T) #0,Vx € I. (3)
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In other words, the tangent vector of a T-curve is everywhere transverse to the con-
tact planes. (Note that both conditions (2),(3) are invariant under a change of lift, i.e.,

multiplying I by a nonzero complex-valued function.)

Lety : I —» S3be aregular curve withlift T : I — V. Then T and its derivative T, satisfy
(I,T) =0 and Re(l',, ') = 0. If y is a transverse curve then Im(T,, ') # 0, SO we can assume
the normalization (T',, ') = i or equivalently (il',T,) = 1; we can furthermore choose a lift
that also satisfies (I',,T',) = 0 (see §2 for more details). With these assumptions, we define

a geometric flow based on the second derivative T, as
Iy =iT — <Fxx’ 1—‘x>i1—‘) > 4

which induces a well-defined flow for the T-curve y = 7ol'. Note that the vector field
in parentheses on the right-hand side is a modification of T, that lies in {T',}*, the or-
thogonal complement of the complex span {T',}. If we let p ;. denote the orthogonal
projection onto {I',}*, then writing (4) as I, = ip ;. (T'y,) suggests an analogy with the
vortex filament flow y, = y, Xy, (or binormal flow) for an arc length parametrized curve
y in Euclidean space [10], with the skew-symmetric operator ip; ;. the analogue of the

symplectic operator T, x for the binormal flow.

In Sections 2-4 we construct adapted frames for transverse curves—both local frames
(akin to the Frenet frames of Euclidean geometry) and non-local ‘natural’ frames—and
show that equation (4) can be rewritten in terms of a convenient non-local adapted frame

(r,T,,B) as

r[ = iZB,
where B is a unit spacelike vector orthogonal to {I', '} and z is a complex curvature, part
of the set (z,m), z € C,m € R, of geometric invariants of I'. After deriving the evolution

equations for the geometric invariants induced by a general vector field on (lifts of)

transverse curves, we show that the evolution induced by (4) on the invariants (z, m) is

Arnold Mathematical Journal, Vol.11(4), 2025 79


http://dx.doi.org/10.56994/ARMJ

Annalisa Calini, Thomas Ivey

the following system of nonlinear PDE

z; = i(zyx — m2),

m; = 2(|z]?),,

known as the Yajima-Oikawa (YO) or Long-Wave-Short-Wave equations, a completely
integrable model of interaction of long and short waves.

The YO system first appeared in work by Grimshaw [6] in the context of internal
gravity waves, and was derived by Yajima & Oikawa [12] and by Djordjevic & Redekopp
[5] as an integrable model of interaction of a long wave (of amplitude m) and a short
wave (of complex amplitude z).

In Section 5, we use the connection between the Lax pair for the YO equations at given
(z,m) and the adapted frame of the associated transverse curve to construct examples of
geometric realizations of solutions of the YO equations. We focus on the family of plane
wave YO solutions studied by Wright in [11], derive closure conditions for the associated
curves, and construct explicit formulas. The plane wave solutions, though simple at the
YO level, provide a wealth of closed transverse curves with non-trivial topology. We
present visualizations of several examples, that illustrate how the knot type and the
geometry relate to the parameters in the YO solutions.

In Section 6 we discuss some open questions and directions for future work.

2 Pseudoconformal Frames and Curvature

Lety : I — S* be a T-curve, and T be a lift satisfying Im(T",,T') > 0. Since the restriction
of the Hermitian form (1) to the complex span 8§ = span.{I',I'} is non-degenerate, we
construct a smooth adapted frame by selecting two linearly independent null vectors-I'
itself and a second vector V € S-and adding a third vector B which is spacelike and spans
the complex line orthogonal to S.

As described in Proposition 10 of [2], the ordered triple (T, B, V) of vectors in C* can

Arnold Mathematical Journal, Vol.11(4), 2025 80


http://dx.doi.org/10.56994/ARMJ

Geometric Realization of the YO Equations

be chosen to satisfy the following inner product relations
(I,T) =(V,V)=(B,I) =(B,V) =0,
(T,V)y=—i, (V,I)=1i, (B,B)=1.
as well as the condition det(l', B, V) = 1 (meaning that the vectors form the columns of
a unimodular matrix). We call a triple that satisfies these relations a unimodular null
frame. In the rest of this section we describe how a smoothly-varying unimodular null
frame, including the lift T" as its first member, can be chosen in an essentially unique way

for a regular T-curve, allowing us to identify fundamental invariants.

Local frame.

In Corollary 1 of [2] it is shown that, under suitable nondegeneracy assumptions, any
parametrized T-curve y has a unimodular null frame field (T, B, V), constructed in terms

of algebraic functions of the components of y and its derivatives, that satisfies

~ iip —iqg m
dF 4 2
—=F -3 . 5
dx 0 31p q 5)
1 0 %ip

where F denotes the matrix with columns T, B, V, and m, p,q are real-valued fundamental
differential invariants of the parametrized curve. We refer to this as the local frame, and
it is unique up to multiplication of each column by the same cube root of unity. It is the

analogue of the (local) Frenet frame for a unit-speed curve y : R — R? in Euclidean space.

Natural frame.

In the Euclidean case, one can also construct the (non-local) relatively parallel or natural
frame (T,U;,U,), where U; = cos& N +sin6 Band U, = —sinf N + cos 6 B, with 6 = — [t ds.
(Here N and B are the unit normal and binormal vectors and s is arclength.) This frame,

which is unique up to a choice of antiderivative 6, satisfies
dT dU, dU,

E = klUl + szz, K = —le, K = sz,

Arnold Mathematical Journal, Vol.11(4), 2025 81


http://dx.doi.org/10.56994/ARMJ

Annalisa Calini, Thomas Ivey

so that the normal vectors U,, U, rotate only in the direction of the tangent line. The
functions k; = kcos6 and k, = ksin 6 are natural curvatures [1].

By analogy with the Euclidean case, given the local frame F for a T-curve y we can
use an antiderivative to neutralize the rotation of normal vector B in the normal plane,

forming a new unimodular null frame field defined by

F = Fexp(6)), where@:—fpdx, J=lo =3 o

0 0 -1
It follows that F satisfies the nonlocal frame equations
0 —iz m
dF
—=Flo 0 z]|, (6)
dx
1 0 O

where z = ¢q and m is the same as in (5). One can interpret z as a complex curvature,
measuring how the tangent line z{I', V} bends within the complex projective plane. The
real-valued invariant m = Im(V, V) measures the deviation of the projectivization of

from being a Legendrian curve in S°.

Companion A-frames

Any two unimodular null frames at the same point of S* are linked by a transformation
of the following form (see, e.g., Proposition 10 in [2])
F=w, B= g(B +un), V=7 [V —iuB- (1 + %i|/x|2)1“] , (7)
where v, u are complex, with v # 0, and 2 is real.
Given the local frame for a T-curve, we modify the frame using u = 0, v = 1and 4
constant in (7), to obtain the companion A-frameT =T,B = B,V = V — AI. This modified

frame satisfies
- 1, = & = o~ 2. = = 1 ~
Ie=(3p+4)I'+V, By=-igl'=3ipB, V,=(m-2A9I'+(3ip-DV.
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If we make a similar modification to a natural frame for a T-curve we obtain the compan-
ion A-natural frame, which satisfies
A —iz m—2?

=Flo o z ) (8)

Remark. Note that if the projection of the frame vector V of a companion A-frame is
a Legendrian curve in S* (so that m — A2 = 0), then the same is true for the companion

frame constructed using —A.

3 Curve Flows and the Yajima-Oikawa Equations

If y(x, t) is a smooth variation of a T-curve and (T, B, V) is a smoothly-varying choice of

natural frame, then the vector field I'; = fT + gB + hV must satisfy
h,=-2Ref and (Imf), = Re(gz) 9

in order to keep the frame adapted, as shown in Proposition 11 of [2]. (Note that, since
condition (3) is an open condition, such variations always exist.) It follows that the

nonlocal invariants m and z = k + i¢ evolve by

k Img
m lh
t 2
where
—3¢D7lof 3¢D lok —D*+m 2Dok 4+ kD
P=|3kD ot +D?*-m —3kD 1ok 2Dof + ¢D
2kD + Dok 2¢D + Dof 2(mD + Dom) — D?

and D = 4,. The matrix operator 2 is skew-adjoint, and forms a Hamiltonian pair with

0 1 O
Q=|-1 0 0
0 0 D
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In particular, if T" evolves by
I, = izB, (11)
then the invariants z and m satisfy the Yajima-Oikawa (YO) equations
z; = i(zxx — m2),

(12)
m; = 2(|z]?),.

Integrability

The YO system (12) is the compatibility condition of the following pair of linear systems

¢.=Up, ¢ =V¢, (13)
where
A0 1 —%W —iz 0
U=|iz 0 of, V=|iz-z 21/12 z | (14)
m z -1 1zZ?  iAz-2Z,) —§1,12

with eigenfunction ¢ € C3, and spectral parameter 1 € C. (We will show below that this
is linearly equivalent to the Lax pair in [11].) When 1 € R, U and V take value in the Lie
algebra 3u(2, 1) of the subgroup of SL(3, C) that preserves the Hermitian form (1). Taking

the transpose of (13) and complex conjugating, we obtain

A —iz m L2 az-z,  |z?
3
F,=Flo 0 =z |, F,=F| iz —31/12 i(z, — A2) |- (15)
1 0 -1 0 z Lip2

3
Comparing the first of these equations to (8) shows that system (15) can be interpreted as

the Frenet equations for the companion natural A-frame of an T-curve with curvatures z
and 7 = m + 212, and which evolves by the flow
T, =izB + %i/lzl“. (16)

This connection between the YO Lax pair and the evolution of (framed) curves allows
the construction of interesting examples of transverse curves associated with simple

solutions of the YO system, as shown in the rest of the article.
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4 Plane wave solutions

In [11], Wright investigates the linear stability of plane wave solutions of the YO equa-
tions (17) and derives explicit solutions of the associated Lax pair in order to construct

homoclinic orbits of unstable plane waves.

4.1 Equivalent Versions of YO

In [11] the YO system is given as

A = =2i(Ay, — AB),
(17)
B, = 4(|A])x
for complex A(x,7) and real B(x, 7), and its Lax pair is given as
with
i A iB %igz CA—iA, A2
U=[o0 o -4|, V=|24 —gigz ¢A—iA, |,
-i 0 —i¢ 0 —A L2

3

where ¢ and 7 denote Wright’s spectral parameter and time variable respectively. (Wright’s
YO equations include an extra parameter which we omit because it can be removed by a
simple change of variable.) The equations (17) are equivalent to (12) under the substitu-
tionsA=z,B=mandr = %t. Moreover, the linear systems (18) and (13) are equivalent
under a change of gauge, since with these substitutions, U= MUM~! and V = MVM™},
where

0 01

M=o 1 0].
-1 0 0
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4.2 Wright’s Solutions

In this section, we will present Wright’s solutions, rewritten in terms of our variables.
We will then make use of the eigenfunction formulas in [11], appropriately adapted to
the geometric framework, to construct the associated transverse curves. We will then

identify the parameter choices that give rise to closed transverse curves.

Proposition 1 ([11]). For real constants a, b, k and A such that a > 0, the functions
z(x,t) = ae™N m(x,t)=b, whereN :=kx — At

give a solution of (12) if and only if the dispersion relation b + k? + A = 0 is satisfied. When

these z, m are substituted into (13), a non-trivial solution of (13) is given by
$(x, ) = elx+vOpr, (19)

where
1 0 0

P=]0 eN o],
0 0 1

and r is a nonzero common eigenvector of the matrices

10 1 —iw —ia 0
ia ik o0 |, a(l + ik) giAZ—iA a (20)
b a -1 a2 a(k +iA) —gw

with eigenvalues i and iv, respectively.

It is easy to check that the matrices in (20) have a non-trivial common eigenvector if
and only if x and v satisfy
(U +b+2%)(u—k)+a*>=0, (21a)

v=w—k*—A+ 512. (21b)
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In order to construct a fundamental matrix solution for (13) using solutions of the form
(19), let u = m,, m,, m; be three distinct roots of (21a) and let n,, n,, n; be the corresponding
values of v given by substituting these into (21b). Then a matrix solution is given by
® = PRE, where

-1 -1 -1 eilmix+nyt) 0 0
a a a ,
R=1%_ m k—-m, k—m,| E= 0 el(mx ) 0
0 0 ei(m3x+n3t)

A—imp A—im, A1 —im,

Our discussion in §3 implies that if ® is a fundamental matrix solution of the YO
Lax pair for a real value of 4, and taking value in the group SU(2,1), then F = ®' is a
A-natural frame matrix for a transverse curve evolving by (16). Since 1 € R implies that
the coefficient matrices in (13) take value in 811(2, 1), we can ensure that our fundamental
matrix takes value in SU(2,1) by modifying it to be equal to the identity matrix when
x=t=0

® = PRER'P !, where P, = P ) (22)
0 x=t=0

Using this matrix to construct the natural frame, and taking the projectivization of the
first frame vector T to obtain a transverse curve y, we now consider the question of when

the resulting curve is smoothly closed.

Proposition 2. Suppose the fundamental matrix ® = PRE described above corresponds
to a A-natural frame for a T-curve y. Then y is closed of length L if and only if there is a
cube root w of unity such that

eimjL — aeikL/S. (23)

Proof. Let F be a natural A-frame along the curve, satisfying the spatial part of (15), and
let F be the local frame related to F by F = F exp(—6J). Because the local frame is uniquely
determined by derivatives of y, up to multiplying by a cube root of unity, then y is closed
of length L if and only if

F(x + L) = wF(x). (24)
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For the solutions of Prop. 1, 0 = argz = —N; rewriting (24) in terms of F = @7, then in
terms of the factors of ® given by (22), and simplifying (using the fact that J commutes

with M and P) gives the condition (23). O

Without loss of generality, we will take L = 27 from now on, and assume the roots of
(21a) are numbered in ascending order; i.e., m; < m, < ms. Note that, for a given value of

4, these roots determine the coefficients in the polynomial via:

k= m; + my, + ms,
a? = (k — my)(k — my)(k — m3), (25)

b = mym, + m;m; + mym; — A%

Lemma 3. The above closure conditions (23) are satisfied if and only if there are positive

integers p, q such that k satisfies either
—%(213 +q) <k< %(p —q) (26a)
or
k> %(p +2q). (26D)
In either case, the roots are given by
m = 2(=2p—q+k), my=:(p—q+k), my=(p+2q+k), 27)
and w = e27¢/3 where ¢ = 0, 1, 2 is such that 3m; — k = e modulo 3.
Proof. We can rewrite the closure condition (23) as
mj=lj+§€+§k, (28)
for some integers [; < [, < 5. The second relation in (25) is satisfied for a > 0 if and only if

m; <k <m, <my or m; < m, < msz <Kk. (29)
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When written in terms of the positive integers p = I, — [, and q = I3 —,, the two conditions
in (29) become those in (26).
Conversely, suppose a pair positive integers p, q satisfy either of the equations in (26)

for some real number k. Let ¢ = 0,1,2 be chosen so that p — g = ¢ modulo 3, and let

1
h=3(-2p—-q-¢. L=ip-q-9 L=:(p+2)-3c

Then with m; given by (28), condition (29) is satisfied. O

4.3 Visualizing Examples

In this section we will exhibit examples of closed transverse curves in S3, generated using
the fundamental matrix ® corresponding to Wright’s solutions, with closure conditions
imposed using Lemma 3. In particular, we will observe knotted transverse curves which,
because their differential invariants are the same at each time, move by rigid motion
under the flow (16).

In more detail, given two positive integers p, g one may select any value of 1 and a real
value of k satisfying one of the inequalities in (26). The other parameters involved in the
solution are determined by equations (25) and (27). This yields two distinct 2-parameter
families of closed curves for each pair (p, q). (Exactly how we construct these curves is
explained below.) We will assume that p, q are relatively prime; experiments indicate
that the knot types are the same when p, g are multiplied by a common integer factor.

In the case (26a) we observe that the curve in R? is a right-handed (g, p + q) torus
knot. Recall that the type of a (m, n) torus knot depends only on the unordered pair {m, n}.
However, for our examples we find that when k is close to its lower limit, the knot takes a
shape with g strands that wind along the torus the long way (see Figure 1, top left, where
k = —3.85 > —4), while when k is close to its upper limit the knot has p + g strands winding
the long way (see Figure 1, bottom right, where k = 0.2 < 0.5.) In general, the knot shape is
more compact and symmetric when 1 = 0; Figure 2 shows two shapes for the same p,q,k

but different A values. Note that (25) shows that these curves have the same differential
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invariant z but different constant values m = b.

We showed in Lemma 12 of [2] that transverse curves for which z = 0 identically are
SU(2,1)-congruent to curves which run along the circular fibers of the Hopf fibration.
Thus, when k approaches one of the roots m;, a = |z| will approach zero and the closed
curve will approach a multiply-covered circle congruent to a Hopf fiber. In Figure 1, we
show a family of right-handed (2, 5) torus knots, corresponding to a range of k-values,
where at both ends of the family the curve approaches a multiply-covered circle.

In the case (26b) we observe that the curve in R3 is a left-handed (p, ) torus knot.
(When p =1 or g = 1 the curve is unknotted, as shown in Figure 4.) When k is close to
its lower limit the curve has p strands winding around the torus the long way, and its
shape approaches a circle covered p times. For large values of k, the curve approaches a
flattened teardrop shape, with the knot crossings compressed into a small region near

where x = 7. Both these limiting behaviors are illustrated in Figure 3.

4.4 Constructing Transverse Curves

Once we have a fundamental matrix solution @ for the linear system (13), the first

component of the 1-natural frame is then given by
I = Fe, = ®'e,,

taking value in the null cone . We produce curves in S* using a projection # : v — S3
given in terms of the components of T by

T —il, _A2r,

=———, Z;= = 30
T, + il 2T Ty 4+l (30)

Z

where (z;, z,) lie on the unit sphere in C? equipped with its standard Hermitian inner
product. For purposes of visualization, we in turn apply stereographic projection into R3

(using the point z; = 0, z, = i as pole) given by

Rez; Imz; Rez, )

o :(21,2) (1—ImZ2’ 1—Imzz’ 1-Imz,
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Figure 1: A family of (2, 5) torus knots obtained using p = 3, ¢ = 2, 1 = 0 and the values
k = —3.85,—3.25,—2.5 in the top row and k = —1.75,-0.7,0.2 in the bottom row. The first

and last figure show knots near the limiting values of k, since k € (—4,0.5) from (26a).

Figure 2: Right-handed (3,4) torus knots obtained using p = 1, ¢ = 3 and k = —2.2; on the
left 2 = 0, while on the right 2 = 3.1.
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s

Figure 3: Left-handed (2, 3) torus knots (i.e., trefoils) obtained using p =1, ¢ =2 and 1 = 0;
on the left k = 4.6, while on the right k = 31.

Remark. The action of SU(2, 1) on the null cone preserves the 1-form ay = (dg, g), which is
the pullback under # of the standard contact form on S3, given by ag = % Im(z,dz; +z,dz,).
The contact planes in S* annihilated by this 1-form are orthogonal to the Hopf fibers.
Since S3 is parallelizable, we can choose an globally defined orthogonal frame (vy, vy, V)
such that v;, v, are tangent to the contact planes. For purposes of visualizing the contact
distribution, we will use the following vectors in R* which are tangent to the image of

this distribution under stereographic projection:
_ 0 1,5, 5. 5 o] e}
o.v; =—(z+ xy)a + E(x -y +z°— 1)5 + (x — yz)a—z,
— 1222 9 N 9
O.Vy = 2(x y-—z +1)ax+(xy Z)6y+(xz+y)6z'

Figure 4 shows how the curve y is transverse to the planes spanned by these vector fields.
Recall from (6) that when m = 0 the frame vector V projects to a Legendrian curve in
S3. Figure 4 also shows this companion curve which in this example is linked with y and

tangent to the contact planes.

5 Discussion

We have shown how the YO equations arise, somewhat unexpectedly, from a simple

geometric flow for curves in S* that are transverse to the standard contact structure. The
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Figure 4: At left, in orange, is an unknotted T-curve y generated using parameter values
p=gq=1k=2andA = 1/4/3. Substituting these values into (27) and (25) shows that
m = b = 0, hence the curve traced by the projectivization of frame vector V (shown at
right in magenta) is a Legendrian curve. Along both curves we have drawn some planes

of the contact distribution.

recent renewed interest in the YO equations and related systems (see, e.g., [3, 4, 7]), the
analogies between the geometric flow considered in this work and the vortex filament
flow, and the relatively simple reconstruction of the transverse curve in terms of solutions
of the YO Lax pair, makes this a good case for exploring questions such as recursion
schemes and the geometric and topological properties of transverse curves related to
special solutions of the YO equations.

A natural direction of investigation is the study of the integrable hierarchy of vector
fields for transverse curves associated with the YO hierarchy. These are generated by
beginning with a conserved density for the YO equations, e.g.,

1 1 1 _ 1 1
P11 = Em’ P2 = 5|Z|2, P3 = Elm(ZZx) - gmz, Pa = -3 (Wl|Z|2 + |Zx|2) y oo

and forming the vector field X,, = f,T + g,B + h,V where ([,B,V) is a natural frame.

The coefficients are determined by the corresponding density as follows. As in (10)
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write z = k + i¢ and express the density p, in terms of real invariants k, ¢, m and their

x-derivatives. Let

(an’ bn’ cn)T =Ep,
where E denotes the vector-valued Euler operator. Then the components of X,, are h,, = 2¢,,,
g, = i(a, +ib,) and f, = —(c,)y + id,,, where d,, = S Re(g,z) dx. (Thus, these vector fields

satisfy the conditions in (9) to preserve the adapted frame.)

The first few vector fields generated this way are

X, =V=T,
X, =izB = i(Ty, — mD),
— (1! L2 !
X; = (4mx + 21|z| )F +2z,B sz,
X, = (%lzli — iIm(sz)) I'+i(zy, — mz)B — |z|?V.
The fact that the antiderivative d, is always expressible in terms of z, m and their

derivatives is somewhat mysterious. However, we observe that these antiderivatives are

expressible in terms of Hermitian inner products of the vector fields themselves:

2j-2 2j-1
1 1
dyj = -3 Z (X2jk> X14k)» dyjp1 = -3 Z (DX 412k X1 1k0)-
k=1 k=1

Since d,, = Re(X,,,V) = é((Xn, V)y+(V,X,)) and V = X, these identities are equivalent to

2j-1 2j
D (Xaj k. X14k)=0  and D (DMK 41— X14k) = 0.
k=0 k=0

These show a remarkable parallel with the situation for vector fields in the hierarchy
for the vortex filament flow [9], where the antiderivative required for the tangential
component of X, is expressible in terms of inner products of the vector fields up to X,,. In
that case, the analogous identities were proved using the first-order ‘geometric’ recursion
operator for the vector fields. In our case, it may be sufficient to have a second-order

recursion operator that relates X,,,, to X,,.
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Backlund and Darboux transformations as well as Miura transformations are other
common features of integrable systems. In particular, the classical Backlund transfor-
mation for the sine-Gordon equation has its origins in relating pair of pseudospherical
surfaces through line congruences (see, e.g., §7.5 in [8]). It is possible that an analogous
transformation exists between T-curves evolving by the YO flow (11); one might expect
that the curves would be joined by a congruence of circles in S3 expressed in terms of the
vectors of the natural frame.

In relation to a possible Miura transformation, one can investigate the evolution
equations induced by (11) for the tangent indicatrix, i.e., the curve in S* traced out by
the projectivization of the frame vector V. It is natural to ask how the invariants of
these indicatrices are related to those of the primary curve, and furthermore whether,
when the primary curve evolves by an integrable geometric flow, the invariants of the

indicatrix evolve by a related integrable system.
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Dual-projective equivalence and superintegrability

We show that certain torsion-free affine connections which are naturally
associated to certain second order superintegrable systems share the same

dual-geodesics.

AMS Classification: 70G45, 53B10, 37]35, 53B12, 70H33

1 Introduction

We consider geometric structures (more precisely, certain affine connections) that natu-
rally appear in the context of certain second order (maximally) superintegrable Hamil-
tonian systems. Such systems include famous models from mathematical physics, such
as the Kepler-Coulomb system, the isotropic harmonic oscillator or the Smorodinski-
Winternitz system. We obtain that the aforementioned geometric structures are dual-
projectively equivalent, a concept which has been introduced in the context of statistical
manifolds, Weylian structures and affine hypersurfaces.

Let (M, g) be a Riemannian (smooth) manifold. Assume that, fore > 0,y : (—¢,e) > M
is a (smooth) curve on M with tangent (velocity) vector field y. We denote the 1-form
associated to y (by virtue of g) by j°. Here, b : (M) — Q'(M) denotes the usual musical
isomorphism induced by g. Similarly, we denote by # : Q!(M) — %(M) the musical

isomorphism induced by g~!, when the underlying metric is clear.

Definition 1 ([Iva95]). A curve y on M is called dual-geodesic for an affine connection V if
V7' =q®)7",

where q : (—¢,e) — R. In particular, we say that y is an affinely parametrized dual-geodesic

for v, if
V7' =o0.

If V is the Levi-Civita connection of the (Riemannian) metric g, then we also say that a curve

is dual-geodesic for g, if it is dual-geodesic for V.
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It is well-known that for every dual-geodesic curve, there exists an affine parametriza-
tion, see [Iva95, Prop. 2.1]. In this reference, dual-geodesics are introduced as a tool for
the study of semi-conjugate connections and affine hypersurface immersions, and we
refer the interested reader there for more detailed information on this perspective. Here,
we mention only the following fact, which we need later: Let p € M and w € T,M. Then
there exists a (unique up to reparametrization and for sufficiently small € > 0) dual-geodesic

curvey : (—¢,e) — M, y(0) = p with y(0) = w, see [Iva95, Prop. 2.2] .

Definition 2 ([Iva95]). Two connections are called dual-projectively equivalent, if they

share the same dual-geodesic curves.

Dual-geodesics and dual-projectively equivalent connections have been discussed,
for instance, in [Iva95, Mat10], where they have been related to affine hypersurfaces,
statistical manifolds and Weylian structures. The purpose of this paper is to demonstrate
that dual-projectively equivalent connections naturally arise in the context of second
order superintegrable Hamiltonian systems. Let (M, g) be a simply connected (connected)
Riemannian manifold and denote its Levi-Civita connection by V. Then T*M carries a
natural symplectic structure w induced by the tautological 1-form. We consider a natural

Hamiltonian H : T*M - R,

H(x,p) =g;'(p,p) +V(x),

where (x, p) are canonical Darboux coordinates on T*M. For a function f : T*M - R,
we denote by X, the Hamiltonian vector field with respect to the natural symplectic
structure, i.e. ix,@ = df.

Definition 3. A (maximally) superintegrable system is given by a Hamiltonian H together
with 2n — 2 functions F'™ : T*M — R, such that (H,FW, ..., F?"=2) are functionally inde-
pendent, and such that Xy (F'™) = 0 for all 1 < m < 2n — 2. We say that a superintegrable

system is second order if the functions F™ are quadratic polynomials in the momenta, i.e.

n
F(x,p)= 2 K (Opipj + WM (x).
ij=1
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For the integrals of motion in a second order superintegrable system, it is easy to
check that (omitting the subscript (m) for brevity) the tensor field Y g,;g,, K’ dx' ® dx/ is
Killing, i.e. satisfies VxK(X,X) = 0 for all X € X(M). We write X for the R-linear space of
Killing tensors associated to a second order superintegrable system, meaning that there
is a function W on M such that F = K(pﬁ, pﬁ) + W is an integral of the motion for H, i.e.
Xy(F) =0.

Definition 4. We say that a second order superintegrable system is irreducible, if the linear
space generated by the endomorphisms K, K’ € X, form an irreducible set, i.e. do not share
a common eigenspace. For the sake of brevity, an irreducible second order superintegrable

system will simply be referred to as an irreducible system in the following.

It was proven in [KSV23] that, for an irreducible system, there exists a tensor field

T e F(Symi(T*M ) ® TM), trace-free in its covariant indices, such that
N 1
VIV =TdV) + —gAvV, 1

where T depends on X only, and where A denotes the Laplace-Beltrami operator. In
general, the tensor 7 is not unique, but here we confine ourselves to systems for which 7
is unique. Specifically, we consider non-degenerate second order superintegrable systems.
These are irreducible systems with a (n + 2)-parameter family of potentials (see Section 2
for a precise definition). The main results are Theorems 1 and 2 in Section 3, which show
that three affine connections, which are naturally defined for non-degenerate systems,

are dual-projectively equivalent:

(A) the induced connection V& + T (“induced connections”),

(B) the corresponding connection that endows the space with the information-geometric
structure of a statistical manifold,

(C) the connections that naturally arise when one restricts to an (n + 1)-dimensional

subspace of potentials (to be explained later).

These connections can also be found in [KSV23, KSV24, CV25, Vol25b, NV24], for exam-

ple. Before we prove these dual-projective equivalences, we review some facts about
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irreducible second order superintegrable Hamiltonian systems.

2 Irreducible second order superintegrable systems

Two specific kinds of irreducible systems are going to play a crucial role in the following,
namely non-degenerate and (generalised) semi-degenerate systems. These are introduced
in the following two subsections. The terminology goes back to the foundational work
by Kalnins and coworkers, cf. [KKM]18, KKM05a, KKMO05b, KKMO05¢c, KKM06a, KKMO6b]

and the references therein. For semi-degenerate systems, we also mention [ER]J17].

2.1 Non-degenerate systems

Non-degenerate systems are quadruples (M, g, X, V) such that (M, g) is as before, X is a
linear space of Killing tensors (of dimension 2n—1 or larger, with g € X) and V c €*(M) is
a linear subspace (of dimension n + 2), such that the space of endomorphisms associated
to X is irreducible, and d(K(dV)) =0 for all V € ¥ and K € End(TM) with K* € X. Such a
system satisfies (1), which then implies the (closed) prolongation system (V denotes the

Levi-Civita connection of g, and A its Laplace-Beltrami operator)

V2V =T(dV) + %AVg

VAV = §(dV) + (tr(T) — g)AV
where g(X,Y) = g(d(X),Y) and §(X) = try(V.1(-, X)) + Z(X) — Ric (X) with g(Ric}(X), Y) =
Ric®(X,Y). Also, we introduce .7 € End(TM) via 7 (X) = trg(9(X, -, -)), where O : X(M)? -

X(M),
0X,Y,Z)(a) = TX, YX(T(Z)(a)),

forX,Y,Z € ¥(M), a € Q'(M), where T(Z)(«) is the 1-form T(-, Z)(«). For a non-degenerate

system, we define the induced connections by
vil = v T, 2)
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which is torsion-free and Ricci-symmetric, see [Vol25b]. For simplicity, we abbreviate
vl = v+T, Following [KSV23], we furthermore introduce the totally symmetric and
tracefree tensor field S € F(Symi(T*M)) and the 1-form ¢t € Q'(M) by setting S = 7 and

t = ——tr(T), such that
(n—-1)(n+2)

TX,Y,Z)=SX,Y,Z)+t(X)g(Y,2) + t(Y)g(X,Z) + t(Z)g(X,Y),
where T := 7’ and where X, Y, Z € X(M). Next, for dimension n > 3, we let
Z2=.—(m=2)S{t)+t®t)— Ric’, 3)

where .7(X,Y) = trg( S(X,)(S(-,Y)) ). It is shown in [KSV23] that, if n > 3 and if the

underlying manifold is of constant sectional curvature, then
Z =V 4)
for a function ¢ € ¢*(M). We can hence introduce the totally symmetric tensor field

+2
_/-'=T+nTg®t+ Hsymg®d§.

_
2(n—2)
which is then also a Codazzi tensor, c.f. [KSV23]. Note that the definition of f relies on
the assumption of having a space of constant sectional curvature. For later use, we also
introduce ¢ = rg~! and V¥ = V £ £ (and V/ = V¥),

Relaxing the curvature assumptions again, we introduce, for a non-degenerate system

in dimension n > 2, the totally symmetric tensor field

n+2
n

B=T+

gRt,
as well as the connections
Vi .= vzB (VB=V+B)

where B = Bg~!, c.f. [KSV23]. We remark that for so-called abundant systems, the connec-
tions V¥ and V*3, respectively, coincide up to a suitable gauge choice of ¢{. An abundant

system is a non-degenerate system with %n(n +1) linearly independent, compatible Killing
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tensor fields. Note the non-trivial freedom for choosing the function ¢, satisfying (4). This
gauge freedom is thoroughly discussed in [KSV23]. If n > 3 and g has constant sectional
curvature, [KSV23] shows that one can choose ¢ = 0 without changing the data of S and ¢,

i.e. without modifying the structure tensor 7.

2.2 Semi-degenerate systems

Generalized semi-degenerate systems, or (n + 1)-parameter systems, are quadruples
(M, g, X, V)such that (M, g) is as before, X is a linear space of Killing tensors (of dimension
2n—1 or larger, with g € X) and V c €*(M) is a linear subspace (of dimension n + 1), such
that the space of endomorphisms associated to X is irreducible, and d(K(dV)) = 0 for all
vV € vV and K € End(TM) with K’ € X. Moreover, we require that in addition to (1), an
equation of the form

AV =3(dV) (5)

holds, for some § € X(M) that is determined by X, and where A is the Laplace-Beltrami
operator of the Levi-Civita connection V of g. For the generalized semi-degenerate system
subject to (5) we therefore have

V2V = D(@dV),

where we introduce the tensor field b = T + %g ® § € T(Sym*(T*M) ® TM). Note that T
depends on the space X only. We also introduce D = D’ e I(Sym*(T*M) @ T*M) for later
use.

We say that a generalized semi-degenerate system, is weak, if there is V' > V such that
(M,g, X, V") is non-degenerate. Otherwise, we call it a strong semi-degenerate system.

For a (weak or strong) semi-degenerate system, we define the induced connection by
v :=vzD

(again abbreviating V2 = v*P). It is shown in [Vol25b] that V? is torsion-free, Ricci-
symmetric and projectively flat (the reference only discusses the case of strong semi-

degeneracy, but it is easy to extend this result to generalized semi-degenerate systems).
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We also introduce the tensor field, c.f. [NV24],

N(X,Y,Z) := % (2D(X,Y,Z)-D(X,Z,Y) - D(Y, Z,X))

+

3 (28X, Y)d(Z) — g(X, 2)a(Y) — g(¥, Z)d(X))
(n—-1)

where d = (n+2)t —s. It is shown in [NV24] that N = 0 characterizes precisely the situation
of a generalized semi-degenerate system that is weak (i.e. it is strong if N does not vanish).

This means, in the case N = 0, that

~

T=D--g®35

S|

satisfies the conditions of a non-degenerate structure tensor. For later use, and to keep

the notation clean, we introduce the 1-form s € Q'(M), s = §°.

3 Proof of the main results

In this section, we show the dual-geodesic equivalence of the connections (A)-(C). All of
these connections are torsion-free. Indeed, denoting the Levi-Civita connection of g by V,
the torsion-freeness of V + T follows immediately from the symmetries of 7, cf. [Vol25b].
The torsion-freeness of V + B follows immediately from the total symmetry of B°. In the
semi-degenerate case, the torsion-freeness of the connections V + D follows similarly.
Before we proceed to the actual proof, we review some results from the literature

that are going to be useful later.

Lemma 1 (Prop. 2.3 of [Iva95]). Let (M, g) be a pseudo-Riemannian manifold. Then two
torsion-free affine connections V, V' are dual-projectively equivalent if and only if there is a
1-form a € Q'(M) such that

VLY = VxY +afg(X,Y) (6)
for any vector fields X, Y € X(M).

Torsion-freeness is a necessary requirement for (6), and in the presence of torsion coun-

terexamples can easily be found.
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For later use, we also introduce the concept of semi-compatibility for pairs (V’, h)

consisting of an affine connection V' and a metric h.

Definition 5 ([Iva95]). The pair (V’, h) is said to be semi-compatible (via a), if there exists

a 1-form «a such that
Vi (Y, Z) = Vih(X,Z) = a(Y)h(X, Z) — a(X)h(Y, Z)

forany X,Y,Z € X(M). The pair (V', h) is called compatible, if it is semi-compatible via

a=0.

We begin our investigation with the dual-projective equivalence of the connections (A)
and (B). To this end, consider a non-degenerate system on (M, g) with structure tensor T
as before. Observe that the induced connection V7 and the structural connection V2 are

dual-projectively equivalent.

Theorem 1. (i) The connections VI and V? share the same dual-geodesics.
(ii) For a non-degenerate system with induced connection V', there is a unique dual-

projectively equivalent connection V* such that (V*,g) is compatible. In fact, V* = V5.

The analogous statements hold, if we replace V? and V2 by V-7 and V-3, respectively. We
comment that the following proof also shows that T = 0, if VI = V*. This latter condition

holds for the so-called non-degenerate harmonic oscillator system [KSV23].

Proof. We denote the Levi-Civita connection of g by V&. We have VI —V8 = V8 —T— V848 =

B —T. Using the musical isomorphisms, we then compute

n

(B—T)X.Y.Z) = : 2 {(D)e(X,Y)

and conclude V7 — v& = 2 g ® t*. This proves the first claim. We next consider the
n

connections that are dual-projectively equivalent to V7. They are of the form, 8 € Q'(M),
ViY = VEY + BFg(X, V).
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A short computation shows that

Vig(Y,2) - V,,g(X,2) = a(Y)g(X, Z) — a(X)g(Y, 2)

with the 1-form « = 22¢ — B. The connection V* therefore is compatible with g if and
n

onlyif g = "T”t. We conclude

*v _ ol
VXY—VXY+ n

_ b
gX,Y)=VEiy.
O

Remark 1. We remark that an analogous computation shows VQg(Y, Z)— Vﬁyg(X ,Z)=0,
alongside Vf(g(Y, Z)— V?,g(X ,Z) = 0. However, the connections V' and VB are, in general,

different, as

s 5 1
g(V —vVB) = =D Mgymg ® dS.

We infer that the connections V* and V? coincide precisely if d. = 0. Note that the vanishing

of d¢ implies Z = 0.

We now turn our attention to the dual-projective equivalence of the connections (A)

and (C), i.e. we now consider systems with (n+1)-parameter potential. Again, we focus
on V2 = v+ for conciseness, as the discussion for V-2 is analogous. We introduce the
connection
vi=vD %sﬁ g
which is clearly dual-projectively equivalent to V2. We characterize weak semi-degeneracy
via V2.
Theorem 2. (i) Consider a weak semi-degenerate system with induced connection V2.
Assume that the induced connection of the naturally associated non-degenerate system is
V7. Then V2 and VT share the same dual-geodesics.

(ii) Consider a (generalized) semi-degenerate system with induced connection V2 and

semi-degeneracy 1-form s. Then (V2, g) are semi-compatible via

f=1G-(+2)0),

if and only if the system is a weak semi-degenerate system.
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The analogous statements hold, if we replace V7 and V2 by V-7 and V-2, respectively.

Proof. We have VT = V', and hence V7’ and V? are dual-projectively equivalent, complet-

ing the first part of the theorem. For the second part, we first compute

VPe(Y,7) - VDg(X,2) = N(Y,Z,X) - N(X,Z,Y)

+ % (5(X) — (n+2)t(X)) (Y, 2)

-~ % (s(Y) = (n+2)1(Y)) g(X, 2)
= BCOR(Y, Z) — B(Y)g(X, Z) 7

where the exclamation point indicates the requirement that (V?, g) be semi-compatible
via s.

Part “=”: Inserting the formula for g into (7), we obtain the condition
N(Y,Z,X)=NX,Z,Y).

It follows that N = 0 and, invoking [NV24], we thus obtain the claim.
Part “<”: If the system is weakly semi-degenerate, then N = 0, due to [NV24]. We

immediately find that the condition at the exclamation point holds, if 3 is as claimed. U

4 Conclusion

We have seen here that certain affine connections that naturally appear in the theory
of irreducible superintegrable systems are dual-projectively equivalent. In particular,
the theorems stated in this paper imply that extendability (weak semi-degeneracy) for
a (n + 1)-parameter system is linked to the semi-compatibility (with the metric g) of its
induced connection V2. Weak semi-degeneracy in turn implies that there is a naturally
associated non-degenerate system whose induced connection V7 is dual-projectively
equivalent to V2. In this case there is also a connection V2 that is compatible with g and

dual-projectively equivalent to V2. The observed occurrence of dual-projective geometry
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is natural and linked to the underlying Weylian structure. The underlying Weylian

structure was discussed in [Vol25a]. Note that, by a direct computation,

vlg(Y,2) - ”T” {(X)g(Y, Z) € T(Sym>(T*M))

is totally symmetric. According to [Mat10], it was shown in [Mat07] that this implies the

existence of a Weylian connection.
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1 Introduction

One of the historically first manifestations of integrability is Poncelet’s porism, also known
as Poncelet’s closure theorem. Poncelet’s theorem says that if a planar n-gon is inscribed
in a conic C, and circumscribed about another conic C,, then any point of C; is a vertex
of such an n-gon, see Figure 1. The two arguably most standard proofs of this theorem

are based, respectively, on complex and symplectic geometry. The complex proof goes
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Folding of quadrilaterals

Figure 1: Every point of C; is a vertex of a pentagon inscribed in C; and circumscribed

about C,.

roughly as follows. One can identify the space of tangents dropped from a point on
C, to C, with an elliptic curve. The successive sides of a polygon inscribed in C; and
circumscribed about C, are points on that curve related to each by a fixed translation.
This polygon closes up if and only if the translation vector is a torsion point on the elliptic
curve. Whether or not that is the case depends only on C; and C,, but not on the initial
point, so all polygons inscribed in C; and circumscribed about C, will close up after the
same number of steps [GH77].

The second, symplectic, proof is based on the fact that any two generic conics can
be mapped, by a projective transformation, to confocal conics. In the confocal case, a
polygon inscribed in C; and circumscribed about C, can be identified with a billiard
trajectory in C,. The billiard in a conic is an integrable system, and any two polygons
inscribed in C; and circumscribed about C, correspond to trajectories belonging to the
same level set of the first integral. Hence, by Arnold-Liouville theorem, if one of the
trajectories is periodic with period n, then so is the other one, cf. [LT07].

A lesser known relative of Poncelet’s porism is Darboux’s porism on folding of quadri-
laterals. Folding of a vertex of a planar polygon is the reflection of that vertex is the
diagonal joining its neighbors, see Figure 2. Darboux’s porism says that if a sequence
of alternating foldings of adjacent vertices restores, after 2n steps, the initial polygon,
then this is the case for any polygon with the same side lengths. For example, folding any

polygon with side lengths 1,3, 34/5, 5 six times, we come back to the initial polygon, see
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Figure 2: Folding of the vertex C of a quadrilateral ABCD. Its new position is C’.

[[zm23, Figure 2].

Just like Poncelet’s porism, Darboux’s theorem can be proved using elliptic curves.
Specifically, one shows that the complexified moduli space of quadrilaterals with fixed
side length is an elliptic curve. Composition of foldings at adjacent vertices amounts to
a translation on that curve. Whether or not a sequence of foldings restores the initial
polygon depends on whether the translation vector is a torsion point and is independent

on the particular choice of a quadrilateral [Izm23].

What currently seems to be missing in the literature is a symplectic proof of Darboux’s
theorem. We provide such a proof in the present paper. Specifically, we show that,
in an appropriate sense, Darboux’s folding is Arnold-Liouville integrable, and deduce

Darboux’s porism.

Furthermore, we extend these results to Bottema’s zigzag porism [Bot65], which can
be stated as follows. Let C, and C;, be two circles such that there exists a unit equilateral
2n-gon whose odd-indexed vertices lie on C, and even-indexed vertices lie on C,. Then
there exist infinitely many such 2n-gons. The zigzag porism is equivalent to Darboux’s
porism when the circles are coplanar [CHO0], but is in fact valid for any two circles in
R3 [BHH74]. We construct the underlying Arnold-Liouville integrable system in this more

general setting.
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2 Arnold-Liouville integrability of folding

Let 2 be the space of quadrilaterals ABCD with fixed side lengths, considered up to
orientation-preserving isometries. There is abundant literature on the topology of such
spaces for polygons with any number of vertices, see [KM95] and references therein. The
space 2 is a smooth manifold assuming that there is no linear combination of side lengths
with coefficients +1 which is equal to zero [KM95, Lemma 2]. In the case of quadrilaterals,
this manifold is diffeomorphic to a circle or disjoint union of two circles, see [KM95,
Theorem 1]. These circles are distinguished by the sign of the oriented area and are
interchanged by an orientation-reversing isometry, cf. [KM95, Section 10].

Denote by Fp : ? — 2 folding of the vertex B. This mapping is well-defined assuming
that the vertices A and C cannot come together. This holds provided that the side lengths
satisfy at least one of the following conditions: |AB| # |BC| or |AD| # |CD|. Likewise, let
Fc: P — P be folding of C, and let F := F-oFg be the composition of the two foldings.
Darboux’s porism says that if F*(P) = P for some quadrilateral P € P, then F" is the
identity mapping on . We shall prove this by establishing Arnold-Liouville integrability
of the mapping F.

Clearly, F cannot be Arnold-Liouville integrable on the space 2 of quadrilaterals with
fixed side lengths, as the latter space is one-dimensional. So, we consider a bigger space
P of quadrilaterals with fixed lengths of the sides AB, BC,CD, again considered up to
orientation-preserving isometries. This space is diffeomorphic to a two-dimensional
torus and is parametrized by the oriented angles ~ABC and «BCD. The squared length
of the side AD is a smooth function of the torus ’. The space ? of quadrilaterals with

fixed lengths of all sides is a level set of that function.

Theorem 2.1. The folding mapping F = FcoFy is Arnold-Liouville integrable on the moduli
space P’ of quadrilaterals ABCD with fixed lengths of the sides AB, BC,CD.

Proof. Folding does not affect side lengths. In particular, |AD|? is a first integral of F.
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Furthermore, the map F : ?’ — ?’ has an invariant symplectic structure given by
Q :=d£ABC A d«BCD.

To show invariance, consider, for instance, folding of the vertex C depicted in Figure 2.

The pullback of the symplectic form Q by this map is
F:Q=dsABC' Ad«BC'D = d(£ABC — 2£CBD) Ad(2m — £BCD) = —Q — 2d2CBD A d£BCD.

Furthermore, since the side lengths |BC| and |CD| are fixed, the angle ~CBD is a function
of the angle «BCD and is independent of the angle ZABC. So, d2CBD A d«BCD = 0,
implying

FiQ=-Q,

i.e., the form Q is anti-invariant under a single folding, and hence invariant under F. [

3 Darboux’s porism

Theorem 3.1 (Darboux’s porism). Assume we are given a quadrilateral which restores
its initial shape after 2n alternating foldings at adjacent vertices. Suppose its side lengths
are such that no linear combination of them with coefficients +1 is equal to zero. Then
any quadrilateral with the same side lengths restores its initial shape after 2n alternating

foldings at adjacent vertices.

Remark 3.2. The condition on linear combinations of side lengths cannot be avoided.
Consider, for instance a quadrilateral with all four vertices along a line, shown in Figure 3.
Here we have |AB| = 2, |BC| =1, |CD| = 2, |AD| = 3. Clearly, this quadrilateral is invariant
under any folding. However, that is not so for a generic quadrilateral with side lengths

2,1,2,3.

Proof of Theorem 3.1. The assumption on linear combinations of side lengths ensures
that the moduli space 2 of quadrilaterals with such side lengths is a regular level set of

the function |AD|? on the moduli space #’ of polygons with fixed lengths of AB, BC, CD.
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Figure 3: A degenerate polygon.

We are given that there is a quadrilateral P € 2 on that level set such that F*(P) = P. So,
by Arnold-Liouville integrability of F, we have that F" is the identity on the connected
component of ? containing P. Moreover, since there are at most two components, and they
are interchanged by an orientation-reversing isometry which commutes with foldings,

we must have that F” is the identity of the whole of 2, as desired. O

4 Aremark on polygons with more vertices

The F-invariant symplectic form on the moduli space ?’ of quadrilaterals with fixed
lengths of the sides AB, BC,CD induces an F-invariant non-vanishing 1-form on any non-
singular level set of the first integral |AD|?, i.e., on the moduli space 2 of quadrilaterals
with fixed side lengths. The existence of this 1-form is at heart of Arnold-Liouville theorem.
It can be shown that, up to a constant factor, this form is given by

d«£ABC
area of /\ ACD’

This expression is invariant under cyclic permutation of vertices, up to sign. Likewise,
the expression

dpia A Adi,
area of the triangle formed by verticesi —1,i,i + 1’

where ¢; is the angle subdued at ith vertex (the indices are understood cyclically, modulo
n), gives a volume form on the moduli space of n-gons with fixed side lengths which is
anti-invariant under each folding and hence invariant under an even number of foldings.
However, for n > 4, this does not imply any kind of integrable behavior. Moreover,
already for pentagons a random sequence of foldings has dense orbits on the moduli
space P [CD23].
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C, Gy

Figure 4: The zigzag porism: all zigzags with the same edge length close after the same

number of steps.

5 The zigzag porism

Let C, and C, be two circles in R3. A zigzag between C, and C, is an equilateral polygon
whose odd-indexed vertices lie on C, and even-indexed vertices lie on C,. The zigzag
porism says that if there exists a closed 2n-gonal zigzag between C, and C,, then any zigzag
between C, and C, with the same edge length is also a closed 2n-gon [Bot65, BHH74], see
Figure 4.

A zigzag between two circles C,, C, may be built by iterating the zigzag map Z : C, x
Cp, — C, x Cp, which sends a pair A € C,, B € C, to a pair A’ € C,, B € C, such that
|A’B’| = |A’B| = |AB|, see Figure 5. This map is a composition of two involutions, namely
(A,B) —— (A’,B), where |A’B| = |AB|, and (A’, B) —— (A’,B’), where |A’B’| = |A’B|. Observe

Figure 5: The zigzag map Z: (A,B) —— (A’,B’).
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b

Figure 6: Two successive legs AB, BA’ of a zigzag are related by folding.

that, in the case when the circles C,, C, are coplanar, these involutions are just foldings
of the quadrilateral 0,ABO,, where O,, O, are centers of C,,C;, at A and B respectively,
see Figure 6. So, the planar case of the zigzag porism is equivalent to Darboux’s porism

[CHOO]. Here we show that the integrability result carries over to the spatial situation:
Theorem 5.1. The zigzag map Z is Arnold-Liouville integrable for any circles C,, Cy, in R3.

Proof. By definition, the map Z: (A,B) ~— (A’,B’) preserves the squared distance be-
tween A and B. So, it suffices to find an area form on C, x Cp, invariant under Z. Let
¢4, € R/27Z be standard angular parameters on C,, C,. We will prove that the form
d¢, Ad¢, on C, x C,, is preserved by Z. To that end, it suffices to establish anti-invariance
of that form with respect to the involutions whose composition gives Z. Furthermore,

since those involutions are related to each other by interchanging the roles of the circles

Figure 7: The involution (4, B) —— (A’, B) takes the form d¢, A d¢, to —d¢, A dey.
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C,, Cy, it is sufficient to consider the involution (A, B) v— (A4’, B) defined by the condition
|A'B| = |AB|, where A, A’ € C,. Let B be the orthogonal projection of B onto the plane
containing C,. Then |AB| = |A’B|, see Figure 7. Here 0,X is the reference direction used

to define the angular coordinated ¢, on C,. We have
£X04A + £X0,A" = 2£X0,B.

So, the sum on the left only depends on the position of the point B but not A. Therefore,

in coordinates ¢,, ¢;, the involution (A, B) —— (A’, B) has the form

(ba> b)) == (f(#5) — da> Pp)

for a certain smooth function f. So, the form d¢, A d¢, is indeed anti-invariant under

this involution. ]

In terms of the map Z, the zigzag porism says that if an orbit of (4, B) € C, x C, under
Z is n-periodic, then the same holds for any (4’,B’) € C, x C, with |A’B’| = |AB|. This
is derived from Theorem 5.1 in the same way as Darboux’s porism is obtained from

Theorem 2.1.
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1 Introduction

1.1 Context and Motivation

Given a polygon P in the real projective plane, let T) be the map that connects its k-th
diagonals and intersects them successively to form another polygon P’ whose vertices

are given by the following formula:
P{ = PiPi1x N Pi11Pitk41- 1)

Figure 1 demonstrates an example of the action of T, on a convex heptagon. The map
T, is called the pentagram map, a well-studied discrete dynamical system (see [Sch92,
Sch01, Sch08, 0ST10]). A well-known result is that T, preserves convexity.! The T,-orbit
of a convex polygon sits on a flat torus in the moduli space of projective equivalent
convex polygons. On the other hand, the geometry of the map T is less well-behaved.
For k > 3, the T, images of convex polygons may not even be embedded. See Figure 1 for
an example of T; taking a convex heptagon to a polygon that is not even embedded.
Previous results of T; often had an algebraic and combinatorial flavor, motivated by
two branches of studies. The first one was a sequence of works [Sch08, OST10, Sol13,
0ST13] that established that the T, action on the moduli space of projective convex
polygons is a discrete completely integrable system; the second one was M. Glick’s dis-
covery in [Gli11] of the connection between T, and cluster algebras. In [GSTV12], M.
Gekhtman, M. Shapiro, S. Tabachnikov, and A. Vainshtein generalized the cluster trans-

formations in [Gli11] to the map T acting on so-called “corrugated polygons,” which

1A projective polygon is convex if some projective transformation maps it to a planar convex polygon in

the affine patch
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Figure 1: Left: The iterative images of a convex heptagon under the action of T,. Right: A

convex heptagon whose image under T; is not even embedded.

are polygonal curves in RP¥ satisfying certain coplanarity conditions. [GSTV12] showed
that T} is a discrete integrable system. There are numerous integrability results for
these higher-dimensional analogs. See [KS13, MB13, MB14, KS16, IK23]. These led to
many applications and connections of T}, to other fields, such as octahedral recurrence
[Sch08, FK12], the condensation method of computing determinants [Sch08, Gli18], clus-
ter algebras [Gli11, GSTV12, GP16, FK12], Poisson Lie groups [FM16, Iz0o22b], T-systems
[KV15, FK12], Grassmannians [FMB19], algebraically closed fields [Wei23], Poncelet
polygons [Sch07, Sch21, Izo22a, Sch24], and integrable partial differential equations
[Sch08, OST10, NS21].

The geometric aspects of T, and other deep diagonal maps on planar polygons remain
underexplored. There are only a few studies on the geometries of T, that focused on
small k or polygons with many symmetries. See [Sch21, Sch24]. There is no established
general framework on the type of geometric properties preserved under T, for k > 3 that
is analogous to convexity under T,. Even less is known for geometric objects that have

precompact orbits under T.

The most relevant result to this endeavor is the discovery of k-birds under the map A,

in [Sch25]. A k-bird P is a planar n-gon with n > 3k, such that there exists a continuous
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path of polygons P® connecting P to the regular n-gon where the four lines

() p(0) ®) p(1) () p(0) () p(0)
Pi Pi—k—l’ Pi Pi—k’ Pi Pi+k’ Pi Pi+k+1

are distinct for alli =1,...,nand t € I. The map A, connects the (k + 1)-th diagonal of a
polygon and intersects the diagonals that are k clicks apart. See Figure 2 for the action of
A, on 2-birds. In [Sch25], R. Schwartz showed that the k-birds are invariant under both
A, and A;l. Experimentally, the k-birds seem to have toroidal orbits under A;, which
highly resembles the orbit of convex n-gons under T,. Schwartz also showed that the
k-birds have precompact forward A;-orbits modulo affine transformations—a property

satisfied by convex n-gons under T,.

Figure 2: Action of A, on two heptagons that are 2-birds.

This paper has two main results. The first one is the discovery of two classes of
geometric objects called type-a and type-g k-spirals that are preserved under T, for all
k > 2. These two classes of objects are subsets of twisted polygons: bi-infinite sequences
P : Z — RP? such that no three consecutive points are collinear, and P;.,, = ¢(P;) for some
fixed projective transformation ¢ called the monodromy. The moduli space of projective
equivalent twisted n-gons is conventionally denoted by »,. The type-a and type-§ k-
spirals are the first discovered classes of geometric constructions of T, that generalize
the pentagram map, which provides crucial evidence for a more general understanding
of geometrically preserved classes under T}.

The second result is the precompactness of both forward and backward T -orbits
of type-a and type-$ k-spirals modulo projective transformations for k = 2 and 3, a key

property satisfied by convex polygons under the pentagram map discovered by Schwartz
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in [Sch92]. We first examine the action of T; on type-a and type-g 3-spirals. We show
that one can characterize type-a and type-$ 3-spirals via linear constraints on the corner
invariants. We also derive a birational formula of T for the corner invariants, which is
a generalization of the combinatorial formulas developed by [GP16]. Then, we present
four global invariants under T;, which we use to prove the precompactness of T;-orbits
modulo projective transformations. For the case k = 2, we show that there exists no
type-a 2-spirals and that the type-8 2-spirals are distinct from closed convex polygons.
We use the Casimir functions of the T,-invariant Poisson structure developed in [Sch08]
and [OST10] to show that type-g 2-spirals have precompact T,-orbits modulo projective

transformations.

1.2 The k-Spirals under the Map T,

Here we describe the geometric picture of a k-spiral. For the formal definition, see §3.1.
Geometrically, [P] € P, is a k-spiral if for all N € Z, we can find a representative P such
that {P;};>n lies on the affine patch, and the triangles (P;, P;,1, P;,,) and (P;, P;,1, P; ;) have

positive orientation for all i > N. We call P an N-representative of [P].

Figure 3: A gallery of 5-spirals. Left: S7,. Middle: 85’3. Right: 82’20. The red-shaded
triangles indicate the defining orientations and containment relations of type-a and

type-B k-spirals..

We are mainly interested in two types of k-spirals, which we term type-a and type-3
(although there certainly exist many more types of spirals, we only consider these two
types here). They are k-spirals with additional constraints on the arrangement of the

four points P;, P;,1, Pi ik, Piyks1- FOT type-a spirals, we require P, to be contained in the

Arnold Mathematical Journal, Vol.11(4), 2025 127


http://dx.doi.org/10.56994/ARMJ

Zhengyu Zou

interior of the triangle (P;, P;,1, Pi1x41)- FOr type-g spirals, P;,,,; needs to be contained
in the interior of (P;, P;,,, P ). We say P is a type-a or type- N-representative. A class of
twisted polygons [P] is a type-a k-spiral (resp. 8) if and only if it admits a type-a (resp. 8)
N-representative for all N € Z. Let Sk n and Sﬁ’n denote the space of type-a and type-§
k-spirals modulo projective equivalence. We will see in §3.1 that they are both open in
P, and hence have dimension 2n. Figure 3 illustrates three examples of representatives
of Sg"n for n = 3, and 20.

It turns out that Si"n and Si,n are invariant under both T, and T;l. Figure 4 shows the

inward half of a representative P of [P] € P

53> with the red arc representing P’ = T5(P).

On the right we have five polygonal arcs by joining vertices of P that are 5 clicks apart.
We call them the transversals of P. One way to distinguish type-a and type-$ spirals
is by looking at the orientations of transversals. The transversals of type-« spirals are
counterclockwise, whereas those of type-g are clockwise (See Figure 11). In §3, we use

the orientations of these transversals to prove the following main theorem.

Theorem 1.1. For alln > 2 and k > 2, we have T\(8;,) = 8 . The same is true for type-g.

P

P'--.'-.

Figure 4: Left: T5 acting on a representative P of [P] € 8‘53 ;- Right: Transversals of P.

A key property satisfied by convex polygons under the pentagram mabp is that the
forward and backward orbits of any convex polygon under the pentagram map are
precompact modulo projective tranformations. See [Sch92, Lemma 3.2]. Experimental

results suggest that the k-birds also have precompact A, -orbits. In [Sch25, Conjecture 8.2]
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Schwartz conjectured that the k-birds have precompact forward A,-orbits modulo affine
transformations. We observed experimentally that 87 and Si , behave analogously

under T;.

Conjecture 1.2. For n > 2 and k > 2, the forward and backward T;-orbit of any [P] € 8

is precompact in P,. The same holds for type-f.

In §6 and §7, we prove Conjecture 1.2 for k =2 and k = 3.

1.3 Tic-Tac-Toe Partition and Precompact 7, Orbits
Our main focus will be the case k = 3, which we prove in §6.2.

Theorem 1.3. For n > 2, the forward and backward T5-orbit of any [P] € 85, is precompact

in P,. The same holds for type-§.

We discovered several interesting properties of the two types of k-spirals and the
map T3 along our way to prove Theorem 1.3. One major discovery is that the sets 8,
and Sf,n fit well with a local parameterization of 2, — R?" introduced by [Sch92] called
corner invariants (See §2.4). The invariant sets of ?, under T; are partitioned by linear
boundaries in the parameter space. The boundary lines give a grid pattern that resembles
the board of the game “tic-tac-toe.” Each of the four “side-squares” is invariant under Ts.

To construct the tic-tac-toe board, consider the three intervals I,J,K of R given by
I = (—00,0),J = (0,1), K = (1,00). The squares are of the form I xI, I xJ, I XK, J X I,
etc.. We mark the four side-squares S,(I,J), S,,(J,1), S,(K,J), S,(J,K). See Figure 5 for a
visualization of the tic-tac-toe grid. Given [P] € P, we say [P] € S,(I,J) if all even corner
invariants of [P] are in I, and all odd ones are in J. This means if we plot all n pairs of
corner invariants (x,;, x,;,1) onto R?, we would see n points lying in I x J. The other three
side squares are defined analogously.

Figure 6 shows vertices of a representative P of [P] € S,(K,J) and the image P’ = T;(P).
On the right, we have the projection of the first 2!! iterations of the orbit of P under T;.

Each point corresponds to Pgm) after normalizing (P(_’g),P(_”f), P(()'"), P™) to the unit square
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Figure 5: The partition of R? into a 3 x 3 grid, and the four side-squares of our interest.

(here P = T3'(P)). We speculate that the orbit lies on a flat torus, where the map T; acts
as a translation on the flat metric.

Twisted polygons that are assigned to these squares have geometric properties. For
example, the closed convex polygons always lie in the center square; two of the side-
squares are 83, and Sf’n; the other two side-squares are obtained by reverting the indexing
of vertices of these two types of k-spirals. These facts will be proved in §4.

The proof of Theorem 1.3 is algebraic. In §5 I show that T; is a birational map on the
corner invariants, which generalizes a direct application of [GP16, Theorem 1.6]. For the
explicit formulas, see Equation (19). In §6, I derive four algebraic invariants of T5, which
allow me to show boundedness of the corner invariants of the T;-orbits, thereby proving
Theorem 1.3. This approach is reminiscent of Schwartz’s second proof of precompactness

of T,-orbits of convex polygons in [Sch01, Section 3B & 3C].

1.4 The Type-g3 2-Spirals and Precompact T, Orbits

We now proceed to the case k = 2, where the map T, is the classical pentagram map. In §3.1
we show that there exist no type-a 2-spirals (so Conjecture 1.2 is vacuously true for type-a

2-spirals). On the other hand, type-g 2-spirals are nontrivial geometric constructions that

Arnold Mathematical Journal, Vol.11(4), 2025 130


http://dx.doi.org/10.56994/ARMJ

Tic-tac-toe partition

Figure 6: Left: T; acting on a representative of [P] € S4(K,J). Right: The orbit of Pg’") in A2
by ﬁXing P_2 == (0, 0), P—l = (1,0), PO = (1, 1), Pl == (0, 1).

are distinct from convex polygons. In §7.1, we show that the corner invariants of type-g
2-spirals are also partitioned by linear boundaries, and in particular 85, C Sf’n.

We point out that the type-8 2-spirals are not related to the pentagram spirals in
[Sch13]. The latter requires P to be a relabeling of T*(P) for some positive integer m.

In §7.2, we use the Casimir functions of the T,-invariant Poisson structure on ,, from

[Sch08] and [OST10] to prove Conjecture 1.2 for k = 2.

Theorem 1.4. For n > 2, the forward and backward T,-orbit of any [P] € Sin is precompact

in?,.

1.5 Obstacles for k > 3 and Future Directions

Our algebraic method of proving Theorem 1.3 and 1.4 requires a complete character-
ization of the corner invariants of 8, and Si’n and enough algebraic invariants of T}
that uniformly bound the corner invariants away from the boundaries of St n and Sﬁ’n.
However, the corner invariants seem to be not partitioned by linear boundaries for k > 3,
which makes it difficult to analyze the boundaries of the corner invariants of sy and
Si’n. Moreover, the map T, for the corner invariants seems not birational from computer

algebra. This makes it difficult to algebraically characterize the corner invariants.
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One future direction is to look at the cross-ratio of different combinations of points
other than the ones involved in the definition of corner invariants. In §8 we present a
conjecture on a potential algebraic invariant of T}, which can be interpreted as a Casimir
function of a Poisson structure over the y-parameteris of a quiver Qg. The quiver Qg is
associated to a Y-mesh of type S from [GP16] and is isomorphic to the quiver in [GSTV12],
which corresponds geometrically to the map T;.

Another direction is to analyze the two types of k-spirals geometrically. There are
yet many open problems on the geometry of the two types of k-spirals that could hint at
the behavior of their T,-orbits. For open problems, see the end of §3.1. Answering these
geometric problems may provide a new approach to tackle Conjecture 1.2.

Finally, for the case k = 3, the birational formula for T; could be applied to other
settings such as the action of T; on Poncelet polygons [Sch24] or discovering T;-compatible

Poisson structures on P, that generalizes the one in [GSTV12] for corrugated polygons.

1.6 Accompanying Program

Iwrote a web-based program to visualize the orbits of twisted polygons under 7). Readers

can access it from the following link:
https://zzou9.github.io/pentagram-map/spiral.html

When reaching the website, you will see a representative of a twisted polygon displayed
in the middle of the screen. You can click on the user manual button for instructions on
how to use the program. I discovered most of the results by computer experiments using
this program. The paper contains rigorous proofs of the beautiful pictures I observed

from it.
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2 Background

2.1 Projective Geometry

The real projective plane RP? is the space of 1-dimensional subspaces of R3. Points of
RP? are lines in R3 that go through the origin. We say that [x : y : z] is a homogeneous
coordinate of V € RP? if the vector V = (x,y,z) is a representative of V. Given two
distinct points V;,V, € RP?, the line [ = V,V, connecting V; and V, is the 2-dimensional
hyperplane spanned by the two 1-dimensional subspaces. Let [;,[, be two lines in RP?.
The point of intersection I, n1, is the 1-dimensional line given by the intersection of the
two 2-dimensional subspaces. In RP2, there exists a unique line connecting each pair
of distinct points and a unique point of intersection given two distinct lines. We call a
collection of points V,,V,,...,V, € RP? in general position if no three of them are collinear.

The affine patch A? consists of points in RP? with homogeneous coordinate [x : y : 1].
We call this canonical choice of coordinate (x, y, 1) the affine coordinate of a point vV € A2,
There is a diffeomorphism @ : R? - A? given by ®(x,y) = [x : y : 1]. We often identify
A? as a copy of R? in RP2. The line RP? — A? is called the line at infinity.

A map ¢ : RP? - RP? is a projective transformation if it maps points to points and
lines to lines and is bijective. Algebraically, the group of projective transformations is
PGL;(R) = GL3(R)/R*I, where we are modding by the subgroup R*I = {AI : 1 € R*}and I
is the 3x3 identity matrix. We state a classical result regarding projective transformations

below with its proof omitted.

Arnold Mathematical Journal, Vol.11(4), 2025 133


http://dx.doi.org/10.56994/ARMJ

Zhengyu Zou

Theorem 2.1. Given two 4-tuples of points (V,,V,,V3,V,) and (W, W,, W5, W,) in RP?, both

in general position, there exists a unique ¢ € PGL3(R) such that ¢(V;) = W,.

The group of affine transformations Aff,(R) on A? is the subgroup of projective transfor-
mations that fixes the line at infinity. It is isomorphic to a semidirect product of GL,(R) and
R2. Elements of Aff,(R) can be uniquely expressed as a tuple (M’,v) where M’ € GL,(R)
and v € R2. Let Aff; (R) denote the subgroup of Aff;(R) where (M’,v) € Aff;(R) iff

det(M’) > 0. These are orientation-preserving affine transformations.

2.2 Orientation of Affine Triangles

Given an ordered 3-tuple (V,,V,,V3) of points in R? or A2, let int(V,V,, V) denote the
interior of the affine triangle with vertices V,,V,, V5. There is a canonical way to define
the orientation of an ordered 3-tuple. Let V; be the affine coordinate of V;. We consider

the signed area O(V,,V,,V;) of the oriented triangle, which can be computed as
O(V1,V3,V3) = det(V1, V5, V3). (2)

The determinant is evaluated on the 3 x 3 matrix with column vectors V;. We say an
ordered 3-tuple (V,,V,, V3) is positive if O(V,,V,,V3) > 0. Figure 7 shows an example of a

positive 3-tuple.

A2 v,

Figure 7: A positive 3-tuple of affine points (V1,V,,V3).

Arnold Mathematical Journal, Vol.11(4), 2025 134


http://dx.doi.org/10.56994/ARMJ

Tic-tac-toe partition
Here is another way to compute O using the R? coordinates of V;,V,, V5:

OV 1,V,,Vs3) = det(Vy,V,) + det(V,, V3) + det(V5, V) @)
=det(V; —=V;_1,Viy; = V;) fori=1,2,3
where the determinant is evaluated on the 2 x 2 matrix.

O interacts with the action of Aff;(R) and the symmetric group S; on planar/affine
triangles in the following way: Given M € Aff?(R), let Vi’ = M(V;). One can show
that (V,,V,,V3) is positive iff (V],V),V}) is positive. On the other hand, for all ¢ € S;,
OV 1), Vo2), Vo)) = sgn(a)O0(V1,V,,V3), 80 OV, Vo), Vo)) = O(V1,V,,V3) when o is a
3-cycle.

Below are useful equivalence conditions for the positivity of (V;,V,, V). The proof is

elementary, so we will omit it.

Proposition 2.2. Given V,V,,V; € R? in general position, and W € int(V,V,,V3), the

following are equivalent:

~

. (V1,V,,V3) is positive.

N

. (V, Vi1, W) is positive for somei € {1,2,3}.

W

. (Vi,Vis1, W) is posttive for all i € {1,2, 3}.

N

. det(V; = V,_1,Visp — W) >0 for somei € {1,2,3}.

5]

. det(V; = V,_,Vi,, —W)>0foralli €{1,2,3}.

2.3 The Cross-Ratio

The cross-ratio is used to construct a projective-invariant parametrization of the k-spirals.
There are multiple ways to define the cross-ratio of four collinear points on the projective
plane, each using its own permutation of the points. We follow the convention used in

[Sch92]. Given four collinear points A, B,C,D on a line w ¢ RP2, we choose a projective
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transformation 3 that maps w to the x-axis of A2. Let a, b, ¢, d be the x-coordinates of 1(A),

¥»(B), P(C), (D). We define the cross-ratio to be the following quantity:

(a—b)(c—d)

)((A,B, C,D) = m

4)

QU

c
b—

If A lies on the line at infinity, we let y(A,B,C,D) =
¢ € PGL;(R),

. One can check that given any

QU

X(A,B,C,D) = x(¢(A), $(B), $(C), $(D)).

We also define the cross-ratio for four projective lines. Let [,m,n,k be four lines
intersecting at a common point O. Normalize with a projective transformation so that
l,m,n, k c A? with slopes s, s,,., S, s,.. We define

(Sl - Sm)(sn - Sk)

X(l’ i k) B (Sl - Sn)(sm - Sk) (5)

with y(l,m,n, k) = % if 5 = c0.
m™ ok

If w is a line that does not go through O and intersects [, m, n, k at A, B, C, D respectively,

we have

x(,m,n, k)= x(A,B,C,D). (6)

See Figure 8 for the configuration. The proof is elementary, so we will omit it.

Figure 8: The configuration in Equation (6).
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2.4 Twisted Polygons, Corner Invariants

Introduced in [Sch08], a twisted n-gon is a bi-infinite sequence P : Z — RP?, along with
a projective transformation M € PGL;(R) called the monodromy, such that every three
consecutive points of P are in general position, and P;,, = M(P;) for alli € Z. When M
is the identity, we get an ordinary closed n-gon. Two twisted n-gons P, Q are equivalent
if there exists ¢ € PGL;(R) such that ¢(P;) = Q; for all i € Z. The two monodromies M,
and M, satisfy M, = $M,¢~". Let P, denote the space of twisted n-gons modulo projective
equivalence.

The cross-ratio allows us to parameterize 2, with coordinates in R?". Given a twisted
n-gon P, the corner invariants of P is a coordinate system x,(P), ..., X,,_1(P) given by

X5i(P) = X(Pi_y, Pi_y, PioPi1 N PiPiyy, P »Piy NPy Piys);

(7)
Xoi41(P) = X(Pit2, Pit1, Piy2Piy1 N PPy, PiypPiy1 NP1 Pi5).

Py Py

Figure 9: Left: The corner invariants x,;(P) = y(P;_,, P;_,, A,0) computed using Equation
(7). Right: x,;,(P) = x(l1 5,11 1, 11 0, 1 ») computed using Equation (8).
See the left side of Figure 9 for a geometric interpretation of the corner invariants.

Letl,}, = Pi.oPiyp. By Equation (5), the corner invariants can be computed by

X,i(P) = )((ll,—z, 11,—1, 11,0: 11,2)2
€)]
Xi41(P) = )((l—l,z, 1—1,1, l—1,0y l—1,—2)-

See the right side of Figure 9 for the line configurations.
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Since y is invariant under projective transformations, for all j we have x;(P) = x;,,,(P),
so a 2n-tuple of corner invariants is enough to fully determine the projective equivalence
class of a twisted n-gon. We use x;(P) to denote the corner invariants of [P] € P, without
adding square brackets around P. To obtain the corner invariants of [P] € ?,, one
can simply choose an arbitrary representative P and compute its corner invariants.
[Sch08, Equation (19) & (20)] showed that one can also revert the process and obtain a

representative twisted polygon of the equivalence class given its corner invariants.

3 The Spirals and T,-Orbit Invariance

In this section, we explore the geometric properties of type-a and type-g k-spirals and
prove Theorem 1.1. In §3.1, we give rigorous definitions of the two types of k-spirals and
discuss their geometric properties. In §3.2, we introduce a construct associated to the two
types of k-spirals called the transversals. In §3.3 and §3.4, we prove Theorem 1.1 using

geometric properties of the transversals.

3.1 The Geometry of k-Spirals

Here we give the formal definition of a k-spiral and its two subsets called type-« and

type-B8. We then explore their geometric properties and present some open problems.

Definition 3.1. Given integers k > 2, n > 2, we say that [P] € P, is a k-spiralif forall N € Z,
there exists a representative P that satisfies the following: For all i > N, P; lies in A2,
(P;, Pi11, Piyy) 1s positive, and (P;, P;,q, P;y ) 1S positive. Such a representative is called an
N-representative. Saying that [P] is a k-spiral means that [P] admits an N-representative
forall N € 7.

Remark 3.2. The idea of considering an N-representative for each N € Z is new to the
literature and may at first seem superfluous. Readers will see in §4 that this condition is
natural when we examine the corner invariants of the two types of k-spirals. See the end

of this section for open problems related to the geometry of N-representatives.
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In practice, since [P] is a twisted n-gon, it suffices to find a single N,-representative P,

for some N, € Z. One can then obtain other N-representatives for N < N, by applying
No—N

the m-th power of the monodromy of [P] to P,, where m > p

+ 1.

Definition 3.3. A k-spiral [P] € 2, is of type-a or type-§ if for all N € Z, it has an N-

representative P that satisfies the following conditions:
* [P]is of type-a if P, € int(P;, P;,1, Pi1r41) fOor alli > N;

* [P]is of type-B if P, 4, € int(P;, Pi;, Piy) foralli > N.

Figure 10: Left: The inward half of a O-representative P of a type-a 6-spiral. The red
triangle is joined by (P;, P;,1, Pi+r+1), Which is positive by Proposition 3.4 and contains P;
in its interior. Right: The inward half of a O-representative P of a type-8 6-spiral. The cyan

triangle is joined by (P;, P;,1, Pi+), which is positive and contains P; ., in its interior.

See Figure 10 for O-representatives of type-a and type-§ 6-spirals. For the type-a k-
spirals, we show that positivity of (P;, P;, 1, P;;) is equivalent to positivity of (P;, P, 1, Piti41)-
The latter condition turns out to be more convenient for showing T, invariance.
Proposition 3.4. [P] € P, is a type-a k-spiral if and only if for all N € Z, there exists a

representative P that satisfies the following: for alli > N, P; lies in A2, (P;,P;,;,P;;,) IS

positive, (P;, Py, P r41) IS positive, and P,y € int(P;, Pit1, Piyit1)-

Proof. Since P, € int(P;, Pi11, Piyks1), We see that int(P;, Piyq, Piyk41) 1S NOnempty, so the
three points P;, P;, 1, P;, 14+, are in general position. It then follows from Proposition 2.2

that (P;, P;,1, Pi,y) is positive iff (P;, P4, P i41) 1S positive. O
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Corollary 3.5. There exists no type-a 2-spirals.

Proof. It suffices to show that there exists no configuration of four points 4,B,C,D € A?
such that (A, B, D), (B,C, D) are both positive and C € int(A, B, D). If (A, B, D) is positive
and C € int(A4, B, D), then Proposition 2.2 implies (B, D, C) is positive, but that contradicts
(B,C, D) positive because O(B,C,D) = -O(B, D, C). O

On the other hand, type-g 2-spirals do exist. Geometrically, their N-representatives

look like triangular spirals. See §7 for a more thorough discussion on type-g 2-spirals.

Remark 3.6. One may attempt to define the two types of k-spirals on bi-infinite sequences
of points in RP? with no periodicity constraints. The results in this section hold true for
this more general definition. We restrict our attention to twisted polygons because it’s a

finite-dimensional space, which allows us to more easily keep track of the T)-orbits.

We now proceed to discuss some geometric properties of type-a and type-g k-spirals.
A twisted polygon P is called k-nice if the four points P;, P;.;, Pi,k, Pi+r4+1 @re in general
position for all i € Z. The k-nice condition is projective invariant. Let P, , denote the

space of k-nice twisted n-gons modulo projective equivalence.
Proposition 3.7. For all k > 2, P, ,, is open in P,, so it has dimension 2n.

Proof. The condition that four points P;, P, Pi.x, Pi1r4+1 are in general position remains
true if we perturb one of the points in a small enough neighborhood of RP2. The dimen-
sion of #,, comes from the fact that , has dimension 2n, which is shown in [OST10,

Lemma 2.2]. O

Proposition 3.8. Both type-a and type-f k-spirals are k-nice.

Proof. We give a proof to the type-a case. The type-g case is analogous, so we will omit
it. Given a type-a k-spiral [P] and an integer i € Z, let P be an i-representative of [P].
Since (P;, P;,1, Piyi4+1) 1S positive, these three points cannot be collinear. Also, since P, €
int(P;, Pi11, Pivi41)s Pirr does not lie in any of the lines joined by two of the three vertices

P;,Pii1,Pitr41- This shows that P;, P, Pi,y, Piyi4q @re in general position. O
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As stated in §1.2, we let 8§ and Sﬁ , denote the space of type-a and type-g k-spirals
(By Corollary 3.5, 87 =@ foralln >2).

Proposition 3.9. Both 87 and $° are open in P ,, so they both have dimension 2n.
N k.n >

Proof. The positivity conditions of (P;, P;,;,P;,,) and (P;, P;,,,P;,,) are open conditions
from continuity of the determinant function. The condition P, € int(P;, P;,1, Pi;r41) fOr
type-a (or P4, € int(P;, P;, 1, P;,y) for type-p) is equivalent to the positivity of certain
determinants by Proposition 2.2, so this is also an open condition. Finally, 8w € Prn and

Si ., € Py, follows from Proposition 3.8. O

A twisted polygon P is closed if there exists some positive integer n such that P,,,, = P,,
or [P] € #, with identity monodromy. We show that neither type-a nor type-g k-spirals

are closed.

Proposition 3.10. For allk > 2 and n > 2, if [P] € 8 , then [P] is not closed. The same
B
holds for Sin

Proof. Given any closed n-gon P on A2, let C be the convex hull of the vertices of P. Since
P has finitely many vertices, there exists a vertex P; such that P; ¢ int(C). Then, since
int(P;_, Pi_x4+1, Piz1) C int(C), we must have P; & int(P;_y, P;_i+1,Piy1). It follows that P is
not an N-representative of type-a k-spiral for any N or k. The proof for type-g is similar,

SO we omit it. O

The two types of k-spirals seem to possess rich geometric properties. We will present

some open problems. In the discussion below, [P] denotes a type-a or type-gS k-spiral.

Problem 3.11. For all N € 7, is it always possible to find N-representatives P such that
forall j >i+1, (P, P, P ;) is positive (in other words, P; always lies on the same side of

the line P;P;,)?

Problem 3.12. Let P be an arbitrary representative of [P]. Is there a minimal N € Z such
that P is an N-representative on some affine patch of RP2? Does there exist P that is an

N-representative for all N € Z?
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Problem 3.13. Given an N-representative P, does P; converge to a point in A% asi —» co?

3.2 Transversals of the Spirals

In this section, we prove our remark in §1.2 that transversals for type-a spirals are
oriented counterclockwise, whereas transversals for type-g are oriented clockwise. Recall
that the transversals of an N-representative P of a k-spiral are k polygonal arcs joined by
vertices P;, Piy, Pi ok, .- fOri = N,...,N + k — 1. See Figure 11 for one of the k transversals

of the two representatives from Figure 10.

Figure 11: Transversals of two representatives from Figure 10.

Lemma 3.14. Given O, A, B,C,D € A? (See Figure 12) such that (A, O, B), (4,0,D), (B,0,C),
(C,0,D) are all positive. Then, (A, O, C) is positive iff (B, 0, D) is positive.

Proof. For the forward direction, normalize with Aff;r (R)sothat O = (0,0) and A = (-1, 0).
Let B = (xp,yp), C = (x.,y.), and D = (x4, y4)- Since (A, O, B) is positive, Equation (3) gives
us

O(A,0,B) = det(O — A,B — 0) = det(—A,B) =y, > 0.
Similarly, positivity of (4,0, C) and (A4, O, D) give us y., y; > 0. Next, observe that

O(B,0,C) =det(—B,C) = —xpY. + X.Vp;
O(B,0,D) = det(—B, D) = —x,,Vq + XqVp;
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since yj,y., y4 > 0, we have 22,24 > 0, which implies

Ye Ve

O(B,0,D) = —xpYy + X4V = ;yv—” O(C,0,D) + i—d O(B,0,C) > 0.
C

c
This shows positivity of (B, O, D).

The proof for the backward direction is analogous. Normalize so that O = (0,0) and
D = (1,0). Let A = (x4,¥4), B = (xp, ), C = (x.,y.)- Positivity of (4,0, D), (B,0,D), and
(C,0,D) implies y,,y,y. > 0. One can then check that

(A, 0,C) = —X Ve + XYy = i—c O(A,0,B) + i—" O(B,0,C) > 0.
b b

This shows positivity of (A4, O, C). O

Figure 12: Examples of O, A, B,C,D in Lemma 3.14.

The next proposition formalizes our claim on the orientation of transversals.
Proposition 3.15. Let P be an N-representative of a k-spiral [P]. For alli > N, if [P] is type-a,

then (P;, P; 1, Piyor) IS positive; if [P] is type-B, then (P, 5, Piir, P;) IS positive.

Proof. The proof applies Lemma 3.14 with suitable choices of O, A, B, C, D. See Figure 13
for the configuration of points involved.

We start with P of type-a. Consider the following choices of vertices:
O =Py A=P;; B=Piyp-1; C =P D =Piigy1

It follows immediately from the definition of a type-a N-representative that (B, 0, C)

and (B, 0, D) are positive. The other conditions follow from applications of Proposition
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Pi+2k+1
Pi+2k—1
P Pi+k—1

i+2k

Pi+k+1

Pi+1

Figure 13: Left: St configuration. Right: Si’n configuration.

2.2. Apply Proposition 2.2 with (P,_;, P;, P;,;) positive and P;,,_; € int(P,_;,P;,P; ;) to
get positivity of (A, O, B). Apply Proposition 2.2 with (P;, P;,;, Pi1x4+1) POsitive and P, €
int(P;, Pi;1, Pitr41) to get positivity of (4, O, D). Apply Proposition 2.2 with (P;,x, Pi k415 Piyok+1)
positive and P; ;. € int(P; k, Piti+1> Pisak+1) tO get positivity of (C, O, D). Then, the backward
direction of Lemma 3.14 implies (P;, P;,«, P;;2x) 1S positive.

The proof for type-g is analogous. Consider the following choices of vertices:
O =Piyx; A= P15 B=Piyy; C =Pijy1; D=P;.

Positivity of (4, 0, C) and (B, O, C) follows from the definition of a type-8 N-representative.
A similar application of Proposition 2.2 as in the case of type-a gives positivity of (4, O, B),
(A,0,D), and (C, O, D), which we will omit. Finally, the forward direction of Lemma 3.14

implies (P;, ., Pi1k, P;) 1S positive. O

3.3 Invariance of Forward Orbit

In this section, we prove that 8¢ and Si , are Ty-invariant. We will use Equation (1) for
our labeling convention. See Figure 14.
If P is k-nice, then P’ is always well-defined. In particular, Proposition 3.8 implies T}, is

well-defined on Si and §° .
N k.,n
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Pi+k

Pi+k+1

Figure 14: The labeling convention of the map T, from Equation (1).

Remark 3.16. T, doesn’t necessarily send k-nice twisted polygons to k-nice twisted
polygons. Here is an example provided by the anonymous referee: Fix r € (0,1). Consider
the function P : Z —» C ~ R? mapping z ~— r? exp(zzi/k). One can check that P is a k-nice
twisted n-gon for any n > 2 with monodromy that is a scale-rotation, but T, (P) is the zero
function and hence not k-nice. What we will show is that in the case of type-a and type-8
k-spirals, T} does preserve k-niceness. This is a direct consequence of Theorem 1.1 and

Proposition 3.8.

We proceed to prove the Ty-invariance of 8} and s separately. We start with the
N k,n

following lemma.

Lemma 3.17. Given four points A, B, C, D in R? in general position with D € int(A, B, C). Let
O = ABNCD. There exist s € (0,1) and t € (1, o) such that

O0=(01-5)A+sB=(1-1t)C +tD.
Proof. Since D € int(A, B, C), there exists 1;,1,,4; € (0,1) such that
Al +Az +l3 =1; D =11A+12B+A3C

i 1
2 andt =

Taking s = gives us the desired result. O

Proposition 3.18. For allk > 2andn > 2, Ti(S};,) C 8¢ .

Proof. Given an N-representative P of some [P] € Sp o we will show that P’ = T (P) is a

/

type-a N-representative of [T, (P)] by proving that for alli > N, (P, P{, , P!, ,) is positive,
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(P, P, ., l+k+1) is positive, and P’ , € int(P], P!, ,P +k+1) See the left side of Figure 15 for
configurations of relevant vertices of P and P’.
Leti > N be fixed. Since P is a type-a N-representative, P;,; € int(P},Pj,1,Pjr41) for

all j > N. Applying Lemma 3.17 with Equation (1) on P;. forjefi,i+1,i+2,i+k,i+k+1}

gives us
P! = (1 —s)Pi1 +$1Pippsts Pl = =t)Piy + 1Py
Pl = (1= )Py + $5Pisks2; Pl =1 = 1)P; + 1P )

!/ . / —
P = A =53)Piyr1 +83Pioksrs Piyqy = A= 13)Pipr + B3Pk,

where sy, 5,,83 € (0,1) and ¢4, £, t; € (1, o). In particular, this shows P/ so the

i+k+1 ¢ Pl i+1’°

three points P}, P!, ,P;

i+1> Pl .., are in general position.

To see that (P!, P;] ) is positive, Equation (3) and (9) give us

+1° l+2

'pl pl Y=
O(P Pz+1’ i+2)_

= det((s; — t1)Pip1 + (&1 — S1)Piyis1, (82 — £2)Piys + (82 — $)Pigpi2) (10)

/ / / /
det(P!,, —P/,Pl,,— P )

= (t; — sty — 82) det(Piy 42 — Pigas Piy1 — Piyiy1)-

Then, since O(P;;1, Pi12, Pisky2) > 0 @and Py € int(Piyq, Pita, Pitryn), Proposition 2.2 im-

plies det(Py 42 — Piy2, Pix1 — Piyis1) > 0,80 O(P;, P, P; ;) > 0.
] . ] _ 1-s1 8 . .
Next, we show that P/ , € int(P/, P I +k L) Letr = p— and r, = = (9) implies

r, 1, € (0,1) and

Pz,+k (1 = 83)Pitk1 + S3Pirok
_ (1 —s3)(ty — 1)P’ + (1—s3)1 - Sl)P/ $3(t3 — DP’ + s3(1 — S3)P,

t— 8 i t —8; i+1 ty — 83 i+k t; — 83 i+k+1°
It follows that
ty—s 1—s3)(t;—1 1—s3)(1—s s5(1 —
P! 3—S3 (( 3)(t )Pf + ( 3)( I)Pf + 3( )P’ )
l+k t3(S3 _ 1) tl -5 i tl -5 i+1 t3 — 53 i+k+1
t:—s83)(1—t t: —83)(s7 —1
=(3 3)( 1)P1+(3 3)(1 )P/l P/k
t3(t — 1) ' t3(t; — 81) L gy ikl

=(1—r2)(1—r1)PiI+(1—}’2)1"1P +F2Pl+k+1
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Observe that the coefficients (1 —r,)(1 —ry), (1 —r,)r;, r, are all in (0,1) and sum up to 1, so

! . ! p! ’
Pi+k € ln‘[(Pi’Pi+1’Pi+k+1)'

Finally, using Equation (3) and (9), we have

det(P!, — P!, P!

s — Pio) = det((ty = 5)(Piks1 — Pira)s (63 = 83)(Pigais1 — Pisicar))

= (t; — $1)(t3 — s3) det(Piy g1 — Pigas Piyok+1 — Pivks1) (11)
= (t; — $1)(t3 — 83)O(Pit15 Pirks1> Piyoks1)-
Proposition 3.15 implies O(P;;1, Pik41, Pitok+1) > 0, S0 det(P, | — P!, P] — P!, ,)>0Since

i i+k+1 i

/ / / 143
PLP P ), Proposition 2.2 and

Equation (11) imply O(P}, P}, ,, P, ,,) > 0. We conclude that P’ is a type-a N-representative.
O

: . , ol ol o
are in general position and P, , € int(P;,P |, P},

Py Py

Figure 15: Left: Proposition 3.18 configuration. Right: Proposition 3.19 configuration.

Proposition 3.19. Forallk >2andn > 2, Tk(Sf,n) - Si’n.

Proof. The proof is analogous to the one for Proposition 3.18. Replacing a with 8, we may
work with the setup in the proof of Proposition 3.18. See the right side of Figure 15.
The key difference between type-a and type-g is that conditions for type-§ k-spirals

give us the following linear relations when we apply Lemma 3.17 with (1) on P;. for
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jeli,i+1,i+2,i+k,i+k+1}

Pl = (1= t)Piyy + 11 Piypesn; Pl = =5)Pip1 +51Piypsr

Pl = (1= t)Piy + 6Pk Pl , = (1= 5)Pi1s + 3Pk (12)

1

Pz{+k = (1 = 3)Piyr1 + L3Pk Pz{+k+1 = (1 = 83)Piks1 + S3Piors1s

where s;,5,,5; € (0,1) and t,t,,t; € (1,0). We can see that Pi’+k & Pi’PlfH, so the three

. b . .
points P, P/ ,, P/ , arein general position.

A very similar computation as Equation (10) shows positivity of (P}, P}, ,, P}, ,), so we
t1—1 S3

t andr, = = Notice that (1 —r,)(1 —ry), 1 —r,)ry, and r, are
1—51 3

will omit it. Next, letr; =
allin (0,1) and sum up to 1. Also, Equation (12) implies

P!

s = (L= 121 = rDP! 4 (1= 1Pl + 1Pl

i+1

This shows P’

. / /
ki1 € 1nt(Pl.,P.

i11»Pi,)- Finally, positivity of (P.P; , P/ ) follows from a

i+1°

similar computation as Equation (11), Plf € int(Plf , P! Plf ) the points Plf ,P' P are

+k+1 i+1° i+1° 7 i+k

in general position, and Proposition 2.2. O
3.4 Invariance of Backward Orbit

In this section, we complete the proof of Theorem 1.1 by showing that 8§ and Si , are
T, Linvariant. One can derive a formula for T, ! from Equation (1). Given any k-nice
twisted n-gon P’, P = T, /'(P’) is given by

p,=P P nP_P. (13)

i—k—1" i—-k i—1" i

Proposition 3.8 implies T;l is well-defined on 8}, and Si ,- In general, T,:l needs not

preserve k-niceness of twisted polygons.
Proposition 3.20. Forallk >2andn > 2, T;l(S;jn) C S,

Proof. Given P’ a type-a N-representative, we will show that P = T '(P) is a type-«

(N + k + 1)-representative by proving that for alli > N + k + 1, (P;, P;41, Pi;,) 1S positive,
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(P;, Pi11, Pitr41) 18 positive, the four points P;, P, 1, P, ., Piyk41 @re in general position, and
Pi.i € int(P;, P41, Piirs1)- See the left side of Figure 16 for configurations of relevant
vertices of P/ and P.

Leti > N + k + 1 be fixed. Since P’ is a type-a N-representative, we must have P;. k€

int(P;.,P;. +1,P;. iy for all j > N. Applying Lemma 3.17 with Equation (13) on P; for

jEe{i,i+1,i+2,i+k,i+k+1}givesus

Pi=(]‘_S1)Pl{_k+S1P{

D Py =1 —t)P] +t,P]

i—-1’°

Pi+1 = (1 - S2)P{—k+l + S2P{

l—k; Pi+1 = (1 - t2)P{+1 + t?’Pl,;

(14)
Py =0 =3P, ,+83P .5 Pk =1 —5)P] +54P)_;
Piyie1 = (1= s5)P],; + s5P),
where sy, 55, 53, 84,85 € (0,1) and ¢, t, € (1, ).
We first show that (P;, P;,1, Pi1x4+1) 1S positive. From Equation (14) we have
O(P;, Piy1, Pigrs1) = (titx(1 = 55) — t1(1 = £5)s5)O(P!_, P}, P! ).
It follows that O(P;, Pi;1, Pitk+1) > 0, SO (P;, Pitq, Piyks1) 1S pOSitive.
Next, we show that P;,; € int(P;, Pi;;, Pitr41)- Letr, = ;2_1 and r, = :—4 Equation (14)
2755 1

implies ry,r, € (0,1) and
Pk = (A =r)(A = rPipq + (1 = r)r Piyeyq +12P;.

Observe that the coefficients (1 —r,)(1 — ry), (1 — ry)ry, and r, are all in (0,1) and sum up to
1,80 Py € int(P;, Piyy, Piygsr)-
Finally, we check (P;, P;,,, P;,,) is positive. We aim to invoke Lemma 3.14 with the

following choices of vertices:

O=Pi+1; A=Pl, B:Pi+k+l; C=Pi+2; D=P, (15)

i—k+1°

Positivity of (4, O, B) is a direct consequence of the above argument. Positivity of (B, 0, C)

follows from positivity of (P;,1, Piyss Piykt2)s Pivics1 € int(Piy1, Piys, Piyics2), and Proposition
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2.2. Next, observe that

O(A,0,D) = SISZO(P;_]( 1’P1, k’le k41>

O(C,0,D) = (1 = $3),0(P;_,, P , . ,Pl_, )% (16)
O(B O D) - S2(1 - SS)O(PZ k’ i— k+1’ l+1) + SZSSO(Pl k’Pl k+1’P{);
Then, positivity of (4,0,D) and (C, O, D) follows from positivity of (P , ,P; ,,P| , +1) and
(P_s Pl 15 Pi_i,,)- Toseethat (B, O, D)is positive, applyProposmonZ 2on(P;_,,P_, . .,Pl. )

positive and P’ € int(P/ ) to get (P! P( ) positive. The backward direc-

i—-k’ z k+1’ L+1 i-k’ l k+1’

tion of Lemma 3.14 then implies (P;, P, ;, P;,,) is positive. We conclude that P is a type-a

(N + k + 1)-representative. O]

Figure 16: Left: Proposition 3.20 configuration. Right: Proposition 3.21 configuration.

Proposition 3.21. Forallk >2andn > 2, T,:l(Sf ) C Sf 0

Proof. The proofis similar to that of Lemma 3.20 (See right side of Figure 16). We will point
out some key differences. Replacing « with 3, we may work with the setup in the proof of

Proposition 3.20. Applying Lemma 3.17 with (13) on P; for j € {i,i + 1,i + 2,i + k,i + k + 1}
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gives us

Pi = (1 Sl)P + S1P Pi = (1 - tl)Pl{—l + tlpl,’

lkl’

Piyy = (1 —=5)P,_, ., +5P] Piyy = (1 = 1,)P] + 13P]

i— k’ l+1’ (17)

Py =1 —=s)P_, ,+53P_, 1 P =1 —5)P_ +5,P];

P =Q0Q- SS)PI + SSP,H’

where s,,5,,53,54,5; € (0,1) and t;,¢t, € (1, ). Positivity of (P,-,P,-+1,Pi+k) follows from a

1—s4

similar computation as in (3.4). Next, letr; = and r, = =. Equation (17) implies

t1—S4

Piyky1 = (1 =1r)A = rPiyp + (1 = r)r Py + 1Py ;.

Observe that the coefficients (1 —r,)(1 — ry), (1 — ry)ry, and r, are all in (0,1) and sum up to
1,80 Piypy1 € Int(Py, Piyy, Pigi)-

Finally, assign O, A, B,C,D to be the same vertices as in (15). Positivity of (A4, O, B),
(B,0,C),(C,0,D), (A,0,D), and (B, O, D) follows from a very similar proof as that of Propo-
sition 3.20, with (16) replaced by

O(A,0,D) = 15,0PP,_, |, P, P ;. ));

O(C,0,D) = (1 = 83)8,0(P_,,P_, ., P{_, )

O(B,0,D) = s5,(1 - s5)O(P]_, , P! P)) + 5,850(P] P ).

i—k+1’° i— k’ i— k+1’ i+1

The backward direction of Proposition 3.14 then implies (P;, P, P;,,) is positive. O

We conclude this section by stating that Proposition 3.18, 3.19, 3.20, 3.21 together

prove Theorem 1.1.

4 Coordinate Representation of 3-Spirals

4.1 The Tic-Tac-Toe Grids

Recall the intervals I = (=, 0),J = (0,1), K = (1, ) from §1.3. One can partition R? into a

3 x 3 grid. See Figure 5. We make the following definition:
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Definition 4.1. For n > 2, let S,(1,J) be the subset of 2, that satisfies the following: given
[P] € S,(1,J), for alli €{0,...,n — 1}, (xy;, X2;41) € I X J. We similarly define S,(X,J), S,(J,I),
and S,,(J,K).

The following symmetries of the four grids follow directly from Definition 4.1.

Proposition 4.2. For i € Z, define the map o; : Z — Z by o;(x) = x + i. Define the map
t: Z - Z by (x) = —x. Given [P] € P,, the following are true:

» If[P] € S,(I,J), then [Poc;] € S,(I,J) for alli € Z. This also holds for S,(K,J), S,(J,I),
and S,(J,K).

* [P] € S,(I,J) if and only if [Po(] € S,,(J,I).
* [P] € S,(K,J) if and only if [Pot] € S,,(J,K).

To understand the geometry implied by the corner invariants, we need to examine

what happens when the corner invariants take value from 0, 1, c.

Proposition 4.3. For all [P] € P, with corner invariants x; = x;(P) and i € Z, we have the

following correspondence between the position of P;,, and the values of x,; and x,;,:

Configuration | Coordinates || Configuration | Coordinates
Piyy € Py P Xy =0 Piyy €Pi1Piy | X341 =0

Py, € PP, Xy =1 Py, € P 1P, Xoip1 =1

Piyz € PitgPig Xz = 00 Piiy € Pi1P; X2i41 = 0

Proof. Consider the following lines:
h=PuPio bL=PpPiy; L=PiP;  ly=PPiy;
my = Pi_1Piyp; my =P Py my =P P my=P_ P,

See Figure 17 for a visualization of the configurations of points and lines. Equation (8)

implies le’ = ){(ll, lz, l3, 14) and x2i+1 = ){(ml, mz, WL3, M4). ThiS yieldS
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Figure 17: Configurations of points and lines in the proof of Proposition 4.3.

Configuration | Lines | Coordinates || Configuration | Lines | Coordinates
Py €PipgP | lh=1 X =0 Piyy €Pi 1Py | mp=m, Xoi41 =0

Py €PiiPiy | h=1h Xy =1 Piyy €Pi Py | My =my | Xy =1

Py €PiyPiy | ly=1 Xy = 00 Py €Pi Py | mp=m3 | Xy =00

which is precisely the relationship described in the proposition.

O]

Remark 4.4. Proposition 4.3 also gives us a way to determine the position of P,,, when

neither x,; nor x,;,; takes value in 0, 1, 0. Suppose the four points P;_,, P;_;, P;, P;,; are in

general position. For i, j, k € {1, 2, 3} distinct, we define U; j to be the connected component

of RP? — (I; U ;) that does not intersect [. For i, j, k € {2, 3,4} distinct, we define V; ; to be

the connected component of RP? — (m; U m;) that does not intersect m,,. See Figure 18 for

a visualization of the U; ;’s and V; ;’s using the point configurations given in Figure 17. By

Proposition 4.3 and continuity of y, we have the following:

Configuration | Coordinates || Configuration | Coordinates
Py, €Ups Xy =1 P2 €Vis X1 =1
Py €Us; X =J P2 €Viy Xoip1 =J
Py €Usp Xy =K Py €Viy Xoip1 = K
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Corollary 4.5. Given [P] € P, with corner invariants x; = x;(P), if x; & {0,1, oo} for all j,

then P is 3-nice. Moreover, every four consecutive points of P are in general position.
Coordinates

Proof. Using Proposition 4.3 we may check that
Collinearity | Coordinates || Collinearity

Xpi—1 = 00 Pi_1, Pi, Piyp Xpi41 =

Pi_1; Piy1; Piyo X1 =0

X =0

Pi—2’ Pi—l’ Pi+1
Xpip1 =1
P, Piiq, Piyo

Pi—z’ Pi—l’ Pi+2
Xpi = 1

Pi_», Pit1, Piyo
X3i2 =0

P 1, Py, Py
All seven cases contradict the assumption in the corollary. Therefore, the four points
O

P;_,, P;_1, Pi;1, Py, are in general position, and the four consecutive points P;_;, P;, P,
P;,, are in general position for all i € Z. This shows P is 3-nice, and every four consecutive

points of P are in general position.

l
L, 1
'
» J N
- 1 .
N
. Uiz .
L .
Lo e e —
. .
- .
\‘ \\
s, U2,3 S Vs
.
.
.
‘\
Vaa . v
....... b 34
.
.
.
.
.
.
S
K~
my

Figure 18: The connected components U; ;’s and V; ;’s in Remark 4.4. The corner invariants

value in I if P, , lies in the black-shaded region, J if P;,, lies in the red-shaded region, and
154

K if P;, lies in the cyan-shaded region.
Our goal of this section is to prove the following correspondence theorem:
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- B _
Theorem 4.6. For alln > 2, Sg‘n =S,WJ,I), S, = S, (K,J).
This theorem immediately produces the following important corollary.

Corollary 4.7. For alln > 2, the four cells S,(1,J), S,(K,J), S,(J,I), S,(J,K) are both forward

and backward invariant under Ts.

Proof. The case S,(J,I) and S,(K,J) follows immediately from Theorem 1.1 and 4.6. We

will prove the case S,,(I,J). The case S,,(J,K) is completely analogous, so we will omit.
Fix [P] € S,(I,J). Recall the maps o; and : from Proposition 4.2. Equation (1) implies

T5(Pot) = T5(P)otoo,. Then, Proposition 4.2 implies [Pot] € S,(J,I), SO [T53(Pov)] € S,(J,I).

Finally, observe that
T+(P) = (T5(P)otog,)o(o_y0t) = T5(Pot)o(c_400).

It follows that [T5(P)] € S,(I,J). We omit the proof of [T;'(P)] € S, (I, ). O

4.2 The Correspondence of 87, and S,(J,I)

Here we show that 8, is equivalent to S,,(J, ). We will first show that the corner invariants
of a 0-representative P of some [P] € 85, satisfies S,(J,I). Then, we will show that we can

find type-a N-representatives for all N € Z given any [P] € S,(J,I).

Lemma 4.8. If P is an N-representative of [P] € 8%

3,n’

then P;,, € int(P;_,,P;,P;,,) for all
i>N+1.

Proof. Since (P;_;, P;, P;,,) is positive, we may normalize with Aff ;“ (R)sothat P;_; = (-1,0),
P, = (0,0), and P;,; = (0,1). Let P;,, = (x,y). It suffices to show that x < 0, y > 0, and
y —x < 1. We get x < 0 from positivity of (P;, P;,,,P;,,), and we get y > 0 from positivity
of (P,_,,P;,P;,,). Finally, since (P,_,,P;_;,P;,,) is positive and P;,; € int(P;_,,P;_1,P;;»),

Proposition 2.2 implies (P, , P;_;, P;;,) is positive, which gives us y — x < 1 as desired. [
Proposition 4.9. For alln > 2, 83, CSp(J, D).
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Proof. Fixi € Z. Let P be an (i — 3)-representative of [P] € 87, with corner invariants

x; = x;(P). Normalize with Aff;([R{) so that P,_; = (-1,0), P; = (0,0), and P;,; = (0,1). Let
sq,» denote the slope of the line P, ,P;,,. See Figure 19 for the configuration of points.

We want to show that (xy, x5;,;) € I xJ. By Lemma 4.8, P;,; € int(P;,_,, P;_;, P;). This
implies s; , > s_;_, > 1. On the other hand, since P;,; € int(P;,_,,P;_;,P;;,), we have

S12 > 81,5 > 1,and s_;, € (0,1). This gives us
2= s )00 —812) S

Xy = =
l (81,2 — 51,0)(51,-1 — $12) S12—1
(512 —5-11)(S_10 = S_1,-2)  S_1,2(5_12—1)
= I

X2it+1 = = .
' (S_12 = 8-10)(5_11 —S_1-2)  S_12(51,2—1)
]

elJ and

This concludes the proof.

Figure 19: Configuration of Proposition 4.9 and 4.10.

Proposition 4.10. For alln > 2, Sg‘n =S,I,J).
Proof. Proposition 4.9 implies we only need to show Sg‘,n D S,(I,J). Given [P] € S,(I,J]), let

P be a representative that satisfies P_; = (1,4), P, = (—1,0), P; = (0,0), P, = (0,1). Say that
P satisfies condition (x); if the three triangles (P;_;, P;, P;;1), (P;, Pit1, Piy2), (Pi_1, P, Piyo) are
all positive, P, € int(P;_;, P;, P;y1), and P;,, € int(P;_,, P;_;, Pi;1)-

We show that for all i > 0, if P satisfies (x),_;, then P satisfies (x);. Since (P,_;, P;, P;,1)

is positive, we can normalize with Aff;(R) so that P,_;, = (-1,0), P; = (0,0), and P;,; =
156

Arnold Mathematical Journal, Vol.11(4), 2025


http://dx.doi.org/10.56994/ARMJ

Tic-tac-toe partition

(0,1). Let s,;, denote the slope of P, ,P;,;,. Since P;;; € int(P;_,, P;_;,P;), we know that
S1.-2 > S_1—» > 1. Then, x,; € J implies 0 < 9271 4, This gives us s;, > 5, > 1. On

S12—1

< 0. Since s_; _, > 1, this is equivalent to

S_1,2(8_1,—1)
5_12(521,-2—1)
1 — — < 0, which implies s_;, € (0,1). Thus, the two lines P,_;P;,, and P;;P;,, must

S_1,2

meet in the shaded triangle in Figure 19, which implies (P;, P; 4, P;;,), (P;_1,P;, P;,,) are

the other hand, x,;,; € I implies

positive, P;,, € int(P;_,,P;, P;;,), and P, € int(P;,_,, P;_;,P;,1), SO P satisfies (x);. Finally,
since P clearly satisfies (x),, by induction P satisfies (x); for all i > 0, so P is a type-a

O-representative of a 3-spiral. We conclude that [P] € &5, . O

4.3 The Correspondence of Sf,n and S,(K,J)

Here we show that Sf , s equivalent to S,(K,J). The ideas behind the proofs are essentially
the same as the ones in §4.2. We will focus on explaining how to modify the details of the

proofs in §4.2 for type-g 3-spirals and S,,(K, J).

Lemma 4.11. If P is an N-representative of [P] € Sf’n, then the quadrilateral joined by

vertices (P;, P;,1, P, Pi;3) IS convex for alli > N.

Proof. Normalize with Aff;(R) so that P; = (-1,0), P;;; = (0,0), P;,, = (0,1), and P, 5 =
(x,y). Positivity of (P;,4, Pi;,, P;y3) and (P;, P;, 1, P;y3) implies x < 0 and y > 0. Positivity of
(Pi_1,P;, P;1), Piy5 € int(P;_q, P;, P;y,), and Proposition 2.2 shows y — x > 1. O

Proposition 4.12. For alln > 2, Sf,n C S,(K,J).

Proof. Let P be a (—3)-representative of [P] € S'f,n with corner invariants x; = x;(P).
Lemma 4.11 implies the quadrilateral (P;_,, P;_;, P;, P;,1) 1S convex. Next, since P is a type-
B (—3)-representative, P; € int(P;_,, P;_;, P;;;) for alli > 0 (See Figure 20). Referring back to
Remark 4.4, convexity of (P;_,, P;_;, P;, P;;;) implies P;P;,, doesn’t go through P;_,,P;_;, P;,,

SO (X, X5i41) € K XJ whenever P;, € int(P;_,,P;_1,P;1). O

Lemma 4.13. Given a 3-nice sequence P : Z — RP? and an integer i € Z, let x,; = x,;(P)

and x,; 1 = X,;,1(P) be the corner invariants of P. If the following conditions are true:
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Figure 20: Configuration of Proposition 4.12 and Lemma 4.13.

* (P,_,,P;_,,P;) and (P;_,,P;, P;,,) are both positive;
* The quadrilateral (P;_,,P;_,P;, P;,) IS convex;
* (X, X2i41) € K X J.
Then, the following hold:
* Piyy € int(Pi_y, Pi_1, Piy1);
* The quadrilateral (P;_,,P;, P;,1, P;,,) IS convex;
* (P;,P;i,1,P;,,) and (P;_y, P;, P;,,) are both positive.

Proof. Recall that from the proof of Proposition 4.12, we claimed that if the quadrilat-
eral (P,_,,P;_;,P;,P;,,) is convex, then the line P;P;,, doesn’t go through (P,_,, P;_;, P;;1)-
Since (xy;, x5;,1) € K xJ, Remark 4.4 implies P, € int(P;_,, P;_;, P;;,), in which case all

conclusions of this lemma will hold. See Figure 20 for a visualization of the five points. O
Proposition 4.14. 8‘33 4 = Sp(K, ).

Proof. Proposition 4.12 gives us Sf,n C S,(K,J), so we show the other containment. Given
[P] € S,(K,J), we can find a representative P that satisfies Py = (0,0), Py, = (1,0),
Pyni2 = (1,1), Py,3 = (0,1). Corollary 4.5 shows that P is 3-nice. To see that (P;, P;,;, Pis2),
(P;, P;11, P, 3) are positive, and P, 4 € int(P;, P;,;, Pi,3), we may inductively apply Lemma

.. . 8
4.13. This implies [P] € S5 O
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5 A Birational Formula for T,

Given two spaces X and Y, a rational map f : X - Y is an equivalence class of maps
fu : U - Y where U is a dense open in X, and the equivalence relation is given by
fu ~ fv if they restrict to the same mapon UnV. Amap f : X -» Y is birational if there
exists a rational map g : Y --» X such that gof restricts to the identity on a dense open of
X and fog restricts to an identity on a dense open of Y.

In this section, we show that T; : 2, > P, is a birational map by finding an explicit

formula using the corner invariants.

5.1 The Formula

Let P be a twisted n-gon, and P’ = T;(P). In this section, we use a different labeling
convention:

P{ =P ,Pi;1 NPi_1Piy,. (18)

We let x; = x;(P) and xj. = x;(P") denote the corner invariants of P and P’ respectively.
Our goal is to show that T; is a birational map over the corner invariants. I discovered it

using computer algebra and the reconstruction formula in [Sch08, Equation (19)].

Proposition 5.1. Given [P] € P;,, the following formula holds (indices taken modulo 2n):

(Xgi_4 + X311 — 1) _
Xoi—2Xpi—1 — (1 — Xp11.1)(A — Xp14)
(X142 + Xiys — 1)
Xoir2X2143 — (1 = Xpp45)(1 — Xp)

1
Xy = X2i-2°

(19)

P
Xoie1 = X2ie3”

One can verify Equation (19) with the following procedure: Given the corner in-
variants of [P], use the reconstruction formula from [Sch08, Equation (19)] to obtain a
representative P. Apply T; on P as in Equation (18) to get P’ = T;(P). Then, compute
the corner invariants of P’. We present a geometric proof of Equation (19) using cross-
ratio identities. We start with the following lemma, which is a classical observation in

projective geometry called “quadrangular sets.”
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Lemma 5.2. Let Q;,Q,,Q3,Q,4 be four points in general position, and let w be a line that

contains none of the four points. For alli # j, let I;; = Q;Q; and S;; = w n l;; Then,

)((S121 5137 Sl47 524) = X(SZS’ 513’ S34’ 524)-

2 @

13 23 14 S24

113

Figure 21: Point configurations of Lemma 5.2

Proof. Let O = l;3n1y,. See Figure 21 for an example of the point configurations. Applying

Equation (6) on (I;,, 13, L4, QD) with respect to w and Q,Q, gives us
X(S12: 5138145 S24) = x (2, b3, las Q1 D) 2 X(Q2,0,Q4, S2).

Next, applying Equation (6) twice on (1,3, L3, 34, Q3D) with respect to I,, and w gives us
X(Q2,0,Q4,524) lg X(y3, 113,134, Q3D) = X(S23, 513, S34, S24)-

Combining the above two equations completes the proof. O

Proof of Proposition 5.1. From the symmetry of Equation (19), it suffices to prove the

formula for x;. That is,
) X_o(x_4+x_;-1)

XX — (1 —x_g)(1—xp)

(20)
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Figure 22: Visualization of Points Assigned in Equation (21). The thick black line segments
are edges connecting vertices of P, and the thick red line segments are edges connecting

vertices of P'.
Letl;; = P,P;and O = I_;_, nl_; ,. We label points as follows:

A= P’—Z; C= 1_3,0 N 1_2,1; E = P_3; G= l_3’0 n 1_2’_1;
(21)
B=P,_1; D=P0; F=l_3’onl_1’1; H=l_3’onOP1.
Since [P] € P;,, every five consecutive points of [P] are in general position. This
ensures that point O and the points in Equation (21) are all distinct. See Figure 22 for a

visualization of the assignment of labels to these points.

It follows from Equation (7) that x; = (A, B, C, D). Using Equation (8), we have

-3,0

I
Xog= x4 i3 Ly 5, 110) = X(AE,G,D);

l_ 5!
x_3 = x(o-3, lo—2 o1, lo1) = x(E,B,H,D);
l (22)
x_g= x5, Logs L1, 153) =’ x(B,D,G,E);
l_ i)
Xy =12 Ly, Ly, 12122) =’ x(C,F,D,G).

We may further invoke Lemma 5.2 with Q; = P_,,Q, = 0, Q; = P;, Q, = P_;, and
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w = 1_3,. This gives us

x_, = x(E,B,H,D) = x(G,B,F,D). (23)

The rest of the proof is just algebraic verification. Normalize with a projective trans-
formation so that I_; is the x-axis of A% Leta, b, ¢, d, e, f, g, h be coordinates of A, B, C,
D, E, F, G, H respectively. Plugging (22) and (23) into the numerator of (20) gives us

x—2(x—4 + X_1— 1) = X(G’B’FaD) (X(A’E9G’D) + X(BsDaGaE) - 1)
_ (=b)(f-d)((a—e)g—d) N (b—e)g—d)
(g—-f)b—d)\(a—-g)e—d) (b—g)e—-d)
_ (a=-b)g—d)e-g)d-f)
(a—g)b-d)e—d)g—-f)
The denominator can be computed similarly. We skip the computation and list the results:
(a—c)g—d)d-f)le—g)
(a—-g)c—d)d-e)f-g)

Combining the above two equations gives us

XX —(1—x_4)A—x)=

X_o(xog+x_4—1) (a—Db)(c—d) /
= =y(A,B,C,D) =x,,
XX —(1—x_)A-x) (a—c)b—d) X V=%
which is precisely Equation (20). O

Next, we provide a formula for the inverse of Ts.

Proposition 5.3. The map T5 : P, -> P, is birational. Its inverse is given by

/ !/
_ (x2i+4 T X941~ 1)) .
X2i = X142 X' x! -(1- x! )1 — x! )’
2i4172i42 2i—1 2i+4 (24)
/ /
(3 + X =1

!
X2i41 = Xp_1 " / ’ :
XX = (1 =25 )1 = x5 5)

We will give an algebraic proof. Consider two families of rational maps {u., :
R --> Rzn}(s,t)eZZ and {v, : R > IRzn}(s,t)ezz- Write (ag, -, Gzp—1) = Hs,0)(Xos > X2n-1)

and (by, ..., byy—1) = V(5,1(X0, - » X24—1)- Then, we set

_ 1 — Xpi4s b, = 1— X545
Q= ——— 2= T o o
X2its+t — X2i+5X2i+s+t (25)
_ 1= X415 . b _ 1—Xpi41-s
Qi1 = —— 241 = 7 .
X2it1—s—t — X2i4+1—5sX2i4+1—s5—t
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Lemma 5.4. Let ¢ : Z> — 7?* be the map given by
(s, 1) = (=15, (=1)°(2s + 1)) (26)
Then, ¢ is an involution. Moreover, when t is odd, /,c(‘s)l[) = Vy(s,) aNd ”(_s,lt) = Up(s.0)-
Proof. To see ¢ is an involution, a direct computation shows that

P*(s,0) = p((=1)**1s, (=1)°(2s + 1))
= ((—1)EVsrstZs, (“1)EVTS (=1 s + (<1’ Qs + 1)) = (s, ).

Next, we show that when ¢ is odd, ’u(_slt) = Vy(s,1)- We will show by direct computation that
M(s,)°Vg(s,) 18 the identity on the 2i-th coordinate when s is even. First, when s is even,

@(s,t) = (=s,2s + t). The 2i-th coordinate of w( s ovy ) is given by

-1
1— 1- X2i4s5+(—s) 1- X2i4s+t—(—s)
1 = Xi 4 54(=5)X2i45+(—5)+(25+1) 1 = X914 54t (—5)X2its5t+t—(—5)—(25+1)
_ ( 1— Xy ) (1 — x2i+2s+tx2i> _
=|1- = Xy;.
1 = X2 X1 4254¢ 1 —X0i4054¢

This is precisely what we want. One can similarly carry out the computation of v, ou,

for the (2i + 1)-th coordinate, and s odd. We will omit these heavy computations and
conclude that ’u(_s,lt) = Vy(s)- Finally, to see V(_s,lt) = Uy(sr), Observe that (—1)°(2s + t) is odd iff ¢

is odd. Therefore, v oy ) = Vor(s, )My, 1S the identity map by the previous argument.

The same argument shows that u, oV, is the identity. O

The following corollary is immediate. We omit the proof.
Corollary 5.5. For all (s,t) € Z* such that t is odd, y ) and v, are birational maps.

Proof of Proposition 5.3. We first claim that T3 = v_; 1o _3). We will provide the com-
putation for even coordinates. Let (a, ..., a,,_;) denote the image of (x, ..., x,,_;) under

M(3,—3), and let (b, ..., by,_,) denote the image of (ay, ..., a5,—;) under v_; _;y. Then, we have

by =

1—ay 1055 X2i—1 X2i—1X2i—2

41
1—a54 _ (1 1= x2i—4> ) (1 _ (1 = x5-4)(1 = x2i+1))

Xoi—2(Xi—1 + Xi—4 + 1)

B Xoi—1X5i—3 — (1 — Xpi_4)(1 — x2i+1).
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Observe that this is precisely the first line of (19). The computation for b,;,, is analogous,
thus omitted. Then, by Corollary 5.5, T;" = v _3ou(_1 3. Finally, Equation (24) follows

from a direct computation of v(; _3you_; 3, using Equation (25), which we will omit. O

5.2 Conjugated Corner Invariants and Its T, Formula

To relate Equation (19) to parameters (y,),ez: in [GP16], it is convenient to consider

another coordinate system of 2,, which we define below.

Definition 5.6. Given [P] € ?,, define the conjugated corner invariants to be coordinate
xj(P)

functions %o(P), ... , X,,_1(P) given by X;(P) = pEt
XJ —

The conjugated corner invariants can be viewed as the image of the corner invariants

. . . . X
under a birational map 1 : R** --» R* sending each coordinate x; ~— —-. Observe

Xj—

that A2 restricted to the dense open set (R — {0, 1})*" is the identity map, so x i(P)is also a

coordinate system for 2,,. Geometrically, the map 21 corresponds to a different choice of
permutation in the cross-ratio.

Throughout this section, we will use %; = X;(P) and )2; = X;(P') to denote the conjugate
corner invariants of P and P’. We start by observing some symmetries of conjugating our

factorization maps y( ) and v from Equation (25).
Lemma 5.7. For all (s,t) € Z% we have Aoy ;oA = V(s —p).

Proof. We can check this by direct computation. We show that the equation holds on

even coordinates. The 2i-th coordinate of x o4 is given by

-1
1= X (s =17 1= Xojpeqy

Xirstt * (igsee = D71 Xoipse(Xips — 1)

The 2i-th coordinate of Aoy oA is given by

-1
L — Xoiqs+t ) 1 — X154t -1 =X
= ot
Xpigset(Xoips — 1) Xoigs+t(X2ips — 1) 1 = Xi4 54t X205

which is precisely the 2i-th coordinate of v, _. The computation for the odd coordinates

is similar. O
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Since A is an involution, it immediately follows that Aov( ;o4 = p(4, ). This allows us

to obtain a formula for T; with respect to the conjugated corner invariants.

Proposition 5.8. Given any 3-nice twisted n-gon P, the following formula holds (indices

taken modulo 2n):

oo (1 = X1 %0i—a)(1 — Xpiy1)
= X2 —— — ;

i TR = X X)L — X)) @7)
) . (1 = Xaig2%2i45)(1 — Xy;)

Xoiy1 = X2i43 " o ” .
2+l (1 — X0 %5143)(A — X5i42)

Proof. From the proof of Proposition 5.3, we saw that the formula for T; on the corner
invariants is given by v_; _;you; —s). It follows that the formula for conjugated corner

invariants is Ao (v_; _1)ou,_3)) oA. By Lemma 5.7,

Ao (v(_1,-1)0U,-3)) 04 = (Lov(_1 _1y0d) o (Ao 304) = H(2,1)°V(0.3)-

It remains to check that u_,;yov( 3, agrees with Equation (27). The 2i-th coordinate of

M(-2,1)°V(03) 18 given by

~ ~ -1 ~ ~ ~ ~
(1 _ I-%i ) . ( 1—X5 ) _ Xpi—2(1 = X1 %0i—g)(A — Xpi41)

1= X5 0% 1 =X 1%5i—4 (1 = Xpi—2%0i41)(A — Xpi1)

This is precisely ), from Equation (27). The computation for odd coordinates is omitted.

O]

Using Lemma 5.4, we can easily compute the formula of T;' with respect to the

conjugated corner invariants. The proof is again a direct computation, so we omit it.

Corollary5.9. The formula for T;l with conjugated corner invariants is given by i 3yov;, —3).

More specifically,
% = &% (1 21+1 21+4)(1 1).
20 = M40 " oy =/ )
l 1- 2i—1x2i+2)(1 - x2i+1) (28)
~! =~/ ~
.o (1 =35, %5 )0 = %55
X2i41 = Xy =7

~/ \"
(1- 21+2x21 1)(1 — Xy
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5.3 Relation to Y-Variables

In this section, we discuss how Equation (18) generalizes the results from [GP16]. The
propositions in this section hold for all four cells S,(1,J), S,(J,I), S,,(K,J), S,,(J,K). For
notational convenience, our statements will only mention S, (J,I). The readers may
assume that the propositions hold for the other three cells with the same proof.

The map T; along with the labeling convention of Equation (18) corresponds to the
following construction in [GP16]. Let a, b, c,d € Z? be distinct and assume a, < b, < ¢, < d,.
Say that S = {a,b,c,d}is a Y-pin if b, < ¢, and the vectors b — a, ¢ — a, d — a generate all of

72,

Definition 5.10 ([GP16, Definition 1.4]). Let S = {a, b, ¢,d} be a Y-pin and suppose D > 2.
A Y-mesh of type S and dimension D is a grid of points P; ; in RP” with i, j € Z which
together span all of RP? and such that

A

* Pria» Prib, Prie, Pryg are distinct for all r € 72,
s LetL, =P,,,P,,,. Then, P, ., P\, Pryc, Pryg alllie on L, for all r € Z2.
* The four lines L,_,, L,_p, L,_., L,_q (all of which contain P,) are distinct for all r € Z>2.

Let S = {(-1,0),(2,0),(0,1),(1,1)}, which is a Y-pin. Given a representative P of some

[P] € S,(J,I), we can consider a grid (?; ;) ez» Where P, ; is the i-th vertex of Tg(P).
Proposition 5.11. (P, ;) is a Y-mesh of type S and dimension 2.

Proof. The first two conditions of Definition 5.10 are straightforward to verify using the
identification S, (J,I) = 85, from Proposition 4.10. For the third condition, let PO = Tg (P).

Then, we have

— pW pU) — p pU) — p pUi) — p pUi)
Lo =P Pio Ly =P Py Lee=P P Lia=P_ P

Notice also that L,_, = PEJH)Pff:l) and L,_, = PYTPPU* 50 3-niceness of PU*D implies

they are distinct. The other pairings are distinct because of 3-niceness of P\, O
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[GP16] then introduces the parameters y,(P) associated to a Y-mesh. Fix a Y-pin

S ={a,b,c,d} and a Y-mesh P of type S and dimension D. For all r € Z?, consider

yr(p) = _X(Pr+a’pr+c,15r+d’pr+b)- (29)

See the left side of Figure 23 for the setup using the Y-mesh from Proposition 5.11. [GP16,

Theorem 1.6] give us the following relation on y,:

A+ yi—1,je)d + Yig3 1)
1

(30)

Yit1,j Vi+1,j+2 =

A+ YDA+ Y5 500) .

Figure 23: Left: Definition of y,(P) for the Y-mesh from Proposition 5.11. Right: Relation-

ship between y,(P) and conjugated corner invariants.

Lemma 5.12. Given a representative P of [P] € S,(I,J) with conjugated corner invariants
X; = %;(P). Let (P;;) be its corresponding Y-mesh with y, = y,(P) for all r € Z>. Then, for all
ieZ,

Yio = —X2i X243 (31)

Proof. Letl,;, = P;,,P;,p. See right side of Figure 23 for the setup. Equation (8) gives us

- X2i . X2i+3
Xoi = 1 = X(ll,—zall,—lall,Za 11,0), X2i+3 =
Xoi —

——— = x(lys,lo2, lo—1, 1p.1)-
Xes — 1 X35 0,25 Lo,—15 Lo,1
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Notice that (; _; Nnly—1) N (L1, Nlyp) = Pi_1Piy, = 1_1,. Then, from elementary cross ratio
identities we have
X%y = x(hanl b Nl lhsNlg Nl ,)

= )((Pi—l,o’Pi,l’Pi+1,1aPi+2,0) = Yo
which is precisely Equation (31). O

Remark 5.13. Equation (31) is very similar to the correspondence of y, and corner
invariants in the T, case. Let P be an arbitrary twisted n-gon with P’ = T,(P). If we use the
labeling convention P/ = P;_;P;,; NP;P;,,, then the T,-orbit (P; ;) jez2, Where P; ; is the i-th
vertex of Tg(P), is a Y-mesh of type S = {(~1,0),(1,0),(-1,1), (0, 1)}. Denote by x; = x;(P)

the corner invariants of P. Then, for alli € Z,
Yio = —X2i41X2i42- (32)
For the proof of Equation (32), see [Gli11, Equation (2.2)].

Theorem 5.14. For the Y-pin S = {(-1,0),(2,0),(0,1),(1,1)}, the transformation formula
of y, from [GP16, Theorem 1.6] is a direct consequence of the birational formula for the

conjugated corner invariants under T;.

Proof. It suffices to show that we can use Equation (31) to derive (30) for j = —1. We first
compute y;,; ; and y;,;; using Equation (27) and (28):

Xaira(l = X2i43%0146) (1 — Fait1)  Xoi43(1 — Xoig1%i44) (1 — Xaige)

Vi1 = (1 — Xpi11%2i44)(1 — X2143) (1 — Zpi3%2i46)(1 — X2i44)
 Xoin3%aira(l — Xpi41)(d — Xaige) |
) 1 - JZziJ:z.)(l - szit4) : o ) (33)
Vs = X1 - iCZi:2x2i+1)(1 - %oiv3)  Xaigr(1 - x2if6x2i+9)(1 - X2iv4)
’ (1 = X5 %543)(1 — X3i41) (1 — Xpi14%2147)(1 — X2i46)
_ Ti%air (14 Yic1,0) A+ Yigs0)(1 = Xoiy3)(1 = Xoigs)
B 1+ Yi0)(L + Yig2,0)1 — X011 — Xaiy6)
It follows that

X2iXoi43%0i44%2i47(L + Yi_1,0)(1 + Yig30)

A+ 1,01 + Yis20)
_ YVioYir20( +Yic10)A 4 Yigzo) (1 +Yi10)(A + Yigsp)
B I +yi0)A + Yita0) B 1+ yl._,ol)(l + yi_+12,0) .

Yit1,-1Yi+11 =
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This concludes the proof. O

6 The Precompactness of T, Orbits

In this section, we establish four algebraic invariants of T;. We then use them to prove
Theorem 1.3. Having Theorem 4.6 in hand, we may fully work with S,(J,I) and S, (K,J).
Our strategy is to use the algebraic invariants to show that the corner invariants are

uniformly bounded.

6.1 The Four Invariants

Proposition 6.1. Given [P] € P, with corner invariants x; = x;(P), consider the following
four quantities F; = F,(P):
n—1 n—1 n—1 n—1 1

)
i=0 2i i=0 x2i+1 -1 i=0 x2i+1 i=0 1- x2i+1

Then, ¥; is invariant under T, fori =1,2,3,4.

Proof. We first show that #; is invariant under T;. Let 7 denote the invariants obtained

by plugging in x] from Equation (24). Observe that

n—1 n—1

# =71 Xoi—g + Xpi—1 — 1 Xoi+2%i43 — (1 = Xp11.5)(1 — Xp)
=F;- .
3 ico X2i+2 t Xoips — 1 5 X0 0Xp 1 — (1= Xg14.1)(1 — X5-4)

n—4 n+1
. [T, sGoaia + X105 = 1) T2, (aiaXaimq — (1 = X541)(1 = X3i-4)) .
=73 ) =73

n-1 n—1
T Goaipa +Xoi5 =1 T1_y (eaiaXain — (1 = X411 = X2i-4))

This shows #} = #;. Next, we show that #; and #, are invariant. Using conjugated corner
n-1 _

n—-1 _ n—1 _
i X and F, = [[,_, X1. Welet ] = [],_, %, be the

first invariant of T5(P). Equation (27) gives us

invariants, we see that 7, = ]

n—1

1—X5_1X5_4)(1 — Xy;
St{ — Stl . H ( ~21 1~21 4)( ~21+1) —
im0 (1 — X1 %0i 5)(1 — X-1)

F1,
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where the last equality follows from cyclically permuting the numerator. This shows

F1 = #,. The proof for #, goes through the same computation, so we omit it.

727 50 by invariance of #,, #,, #5, we know that #, must
1

Finally, observe that #, =

also be invariant. This concludes the proof. O

Remark 6.2. As shown in the proof of Proposition 6.1, #, and ¥, correspond to the
product of conjugated corner invariants. 5 is the ratio of the two Casimirs 9 of the T,

invariant Poisson structure on 2,. For discussions on 5 and the Casimirs, see [Sch24,

§2.3]. Also, since F,%, = F,%;, the four T; invariants are not algebraically independent.

Below is a direct consequence of the invariance of the #;’s. Since the #;’s are preserved

by the forward action, it must also be preserved by the backward action.

Corollary 6.3. The four invariants ¥, ¥,, ¥3, ¥, are also invariant under Tg‘l.

6.2 Proof of Theorem 1.3

Recall that a subset A of a topological space X is precompact if the closure of A is compact.
To show that the T;-orbit is precompact, it suffices to show that the corner invariants of
the orbit are uniformly bounded away from the singularities 0, 1, co.

In this section, we let [n] :={1,...,n}. Given [P] € P,, forall j,m € Z,let x; ,, = x;(T;'(P))
whenever T7'(P) exists. Let #;,, = #;(T;'(P)) for i = 1,2,3,4. By Proposition 6.1, 7; ,, is
independent of m. All sequences are indexed by Z, unless specified otherwise. Finally,
when we say “{a,,} converges/diverges on a subsequence, and {b,,} converges/diverges
on the same subsequence,” we mean that a subsequence of {b,,} with the same choice of

indices as the subsequence of {a,,} converges/diverges.

Lemma 6.4. Given [P] € S,(J,]), there exist a,b € J such that x,; ,, € [a,b] for alli € [n]

and m € Zy.

Proof. We first claim that for each i, the sequence {x,, ,,} is bounded above uniformly by

some b; € J. If not, then x,; ,, — 1 on a subsequence, which implies 1 — x,; ,, - 0 on the
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same subsequence. Since [T(P)] € S,,(J, 1) for all m € Z;,, we must have 1 — x,; ,, € (0,1)
and (1 — x, j+1,m)‘1 € (0,1) for all j € [n]. This implies #,,, — 0 on the same subsequence,
but that contradicts invariance of #,,,. Therefore, {x,;,} is bounded above by b; =
sup,,{X2im} € J. Taking b = max;¢[,) b; satisfies the condition in the lemma.

Next, we show {x,; ,,} is bounded below uniformly by some q; > 0. If not, then x,; ,, - 0
on a subsequence, SO xy; , - (X5, —1)~! — 0 on the same subsequence. From the argument
above, x,; ,, < bforallm € Z,,and j € [n], which gives us [xy; - (X2, —1) 7| < |%|, so the
sequences are uniformly bounded for all j # i. This together with |x,; ,, - (x3;,, —1)7}| = 0
on a subsequence implies |#;,,| — 0 on the same subsequence, but that contradicts
invariance of #, ,. Therefore, {x,; ,,} is bounded below by a; = inf,,{x,; ,,} € J. Taking

a = min;¢[,) a; completes the proof. O

Lemma 6.5. With the same notation as in Lemma 6.6, there exist c,d € I such that xy;,; ,, €

[c,d] for alli € [n] and m € Z,,.

Proof. We first claim that for each i,the sequence {x,;,, ,,} is bounded above uniformly
by some d; € I. If not, then, x5;,1,, - (X2i41,» —1)™" — 0 on a subsequence. Since x,j,; , -
(X2j41,m — 1)~' €(0,1) for all j € [n], we must have F,,, — 0 on the same subsequence, but
that contradicts invariance of #,,,,.

Next, we show that {x,;,; ,,} is bounded below uniformly by some ¢; € I. If not, then
a subsequence of {x,;,1,} must diverge, so the same subsequence of {1 — x,;,1,,} also
diverges. Lemma 6.4 and x,,;,, < d; < 0 together implies #,,, diverges on the same
subsequence, but that contradicts invariance of #, ,,. Finally, taking ¢ = min;¢, ¢; and

d = max;ep,) d; completes the proof. O

The proofs of the following two lemmas are analogous to Lemma 6.4 and 6.5. We will

omit the details and point out which invariants to use in each step.

Lemma 6.6. Given [P] € S,(K,J), there exist a,b € J such that x;., , € [a,b] for alli € [n]

and m € Zy.
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Proof. For each i, the sequence {x,;,; ,,} is bounded below by some a; € J, for otherwise
F3., diverges on a subsequence. Next, since {|F; [} is bounded below by H;:; a; >0,
{X2i4+1,m} 18 bounded above by some b; € J. Taking a = min;g,ja; and b = max;ep, b;

completes the proof. O

Lemma 6.7. With the same notation as in Lemma 6.6, there exist ¢c,d € K such that

Xyim € [c,d] for alli € [n] and m € Z,,.

Proof. For each i, the sequence {x,; ,,} must be bounded below by some ¢; € K, for other-
wise F7,, — oo on a subsequence. It’s also bounded above by some d;. To see this, Lemma
6.6 implies all corner invariants are bounded away from 0, so if {x; ,,} is not bounded
above, then #;,, diverges on a subsequence. Taking ¢ = min; ¢; and d = max; d; completes

the proof. O

Proof of Theorem 1.3. We will show that the forward T; orbit of [P] € Sg"n = S,(J,I) has
uniformly bounded corner invariants. By Proposition 4.10, [P] € S,(J,I). Let [a,b] C J,
[c,d] c I be compact intervals derived from Lemma 6.4 and 6.5. Then, the sequence
{(Xo.m> - » X2n—1,m)} 18 contained in H::Ol[a, b] x [¢,d], so it is uniformly bounded. To show
precompactness of the backward T; orbit of 8, , one can adapt the proofs of Lemma 6.4
and 6.5 with very few changes. We omit the details. The case Sf’n follows from Lemma

6.6 and 6.7 by essentially the same argument, which we again omit. O

7 Type-3 2-Spirals and Precompact T, Orbits

7.1 The Corner Invariants of Type-g 2-Spirals

We finish this paper by discussing the type-g 2-spirals. Proposition 3.10 implies &, , is
disjoint from the moduli space of closed convex polygons, so Sf , 1s @ new invariant
geometric construction under the pentagram map by Theorem 1.1. In this section, we
analyze the corner invariants of Sf’n and show that just like the type-a and type-3 3-spirals,

it is cut out by linear boundaries.
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Proposition 7.1. For all n > 2, given any [P] € Sf , With corner invariants x; = x;(P), we

have x,; > 0 and x5, <0 for alli € [n].

Proof. Let P be an (i — 2)-representative of [P]. Normalize by Aff;([R) so that P,_; = (-1,0),
P, = (0,0), P;;; = (0,1) on the affine patch, which is possible because (P;_;,P;, P;,;) is
positive. Let s, , € Ru{oo} denote the slope of P;, ,P;,,. Positivity of (P;_,, P;_,P;) and P;,; €
int(P;_,, P;_1,P;) implies s_; _, > 1 and s; _, > 1. Similarly, since P, € int(P;_, P;, P;11), We

have s_;, € (0,1) and s, , > 1. It follows that

X (Sl,—z - Sl,—l)(sl,o - 51,2) S3,2—1 > 0:
2i = = - ’
(51,—2 — 51,0)(S1,-1 — $1.2) I—s1
(35)
N (so12=811)B10—5-1,-2) =81 2(5012—1) <0
2i+1 = = .
' (5_12 —S-1,0)(5_11 —S_1,-2) S_12(1—s_1_5)
This concludes the proof. O
P,
2
4
4
4
4
4
L4
K4
4
l' 1 Pi+1
4
4 4
" ,'
o" "
. ’
K4 .
0' ,'
s
e ip
'l i+2
Pi—l Pl

Figure 24: Configuration of Proposition 7.1 and 7.2.

Proposition 7.2. For alln > 2, if [P] € P, has corner invariants x; = x;(P) such that x; > 0

and x,;,; <0 for alli € [n], then [P] € S’in.

Proof. Fix N € Z. Let P be a representative of [P] such that Py_, = (%, g), Py_, = (-1,0),
Py =(0,0), and Py, = (0,1). We say P satisfies condition (sx); if (P,_;, P;, P;;;) 1S positive
and P;,, € int(P;_,, P;, P;;;)- Then, P is a type-f N-representative of 2-spirals iff P satisfies
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(xx); for all i > N. Notice that P satisfies (xx)y, S0 by an induction argument, it suffices to
show that for i > N, if P satisfies (xx);, then P satisfies («);,;.

If P satisfies (x*);, then (P,_;, P;, P;;,) is positive. Normalize by Aff; (R) so that P,_; =
(-1,0), P; = (0,0), and P; = (0,1). We will use the same notation I, and s, as Proposition
7.1. Since P, € int(P;_,,P;_;,P;), we have s_; _, > 1 and s; _, > 1. Then, since x,; > 0 and

X541 < 0, Equation (35) gives us

S1.,—1 S_1.2(05_1,—-1
== _>0and — 2512~ 1) <O0.
12— 1 S_12(s21,2—1)
It follows that s;, > 1 and 1 — — < 0. The latter inequality implies — > 1,s01in
? S_12 S_12

particular s_; , > 0 and hence s_,, € (0,1). The two conditions s, , > 1 and s_; , € (0,1)
implies P;,, € int(P;_;, P;, P;,;) and (P;, P;,;, P;,,) positive, so P satisfies (xx);,, as desired.

We conclude that [P] € Sf n. O

7.2 The Precompactness of T, Orbits

We adapt the argument for Theorem 1.3 to give a quick proof of Theorem 1.4 using the
Casimir functions of the T,-invariant Poisson structure on 2, that were developed in

[Sch08, Theorem 1.2]. One can find the proof of the following lemma in [Sch08, §2.2].

Lemma 7.3. For the map T, acting on a twisted n-gon P with corner invariants x; = x;(P),

one has the following four invariant quantities.

n—1

n—1

0,(P) = Z(_x2i+1 + X5i-1%2i%541);  On(P) = Hx2i+1§
i=0 i=0
n—1

n
E(P) = Z(_XZi + XpiaX0i1%21);  En(P) = Hx2i-
i=0 i=1

We continue to use the notation from §6.2. In addition, we write O, ,, = O,(T5'(P)). We
define O, ,, E ,,, and E, ,, analogously. By Lemma 7.3, the values of these four quantities

are independent of the choice of m.

Lemma 7.4. For alln > 2, given [P] € Sf w0 there exists a,b > 0 such that x; ,, € [a, b] for all

ie[n]and m € Z,.
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Proof. Fix i € [n]. We first show that x,; ,, is uniformly bounded above by some b > 0.
Since T}'(P) € Sf,n for all m € Z5,, we must have E; ,, < —xy;,,, < 0. Then, if x,; ,, > co on a
subsequence, E; ,, also diverges on the same subsequence, but that contradicts invariance
of E; ,,. This implies xy; ,, < b; for some b; > 0. Taking b = max;¢, b; satisfies the condition
in the lemma.

Next, we show that x,; ,, is uniformly bounded below by some a > 0. We first notice
that E, ,, < b. This implies if x,; ,, — 0 on a subsequence, then E, ,, — 0 on the same
subsequence, but that contradicts invariance of E, ,,. Therefore, x,; ,, > a; for some a; > 0.

Taking a = min;¢, ; completes the proof. O

Lemma 7.5. For alln > 2, given [P] € Sf,n, there exists c,d < 0 such that xy;,1,, € [c,d] for

alli € [n] and m € Z,,

Proof. The argument is analogous to the proof of Lemma 7.4. Fix i € [n]. To find ¢; that
bounds {x,;,, ,,} uniformly from below, we use the fact that O, ,, > —x;,; > 0. We then set
¢ = min;ey ¢;. To find d; that bounds {x,;, ,,} uniformly from above, we use the fact that

|0,(P)| < |c"|. We then set d = max;¢,| d; to complete the proof. O

Lemma 7.4 and 7.5 together implies that the forward T,-orbit of any [P] € an is
precompact in 2,. One can use the same argument to show that the backward T,-orbit is

also precompact. We have thus completed the proof of Theorem 1.4.

8 Appendix

8.1 Conjectures for Invariants
Given [P] € P} ,, we may consider the following quantity:
k
yl-( )(P) = —x(P;, PiPiyi N Pi_1Piyi—1, PiPitic N Piy1 Piyieirs Pigi)- (36)

When T,{(P) is well-defined, we write yl.(”;.) = yfk)(T]{(P)), or simply y; ; if the value of k is

clear from the context. Let Yj.k) (or simply Y;) denote the product H'::_Ol yfﬁ).
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Proposition 8.1. For all k,n > 2, given [P] € Sg » there exists C € R, C # 0, such that

0 () _
v (v9) =c (37)

: 8
for all j € 7. The same holds for [P] € S
Proof. The grid (P, ;); ez Where P, ; is the i-th vertex of Ti(P) is a Y-mesh of type S =

{(0,0), (k,0),(-1,1),(0,1)} with y, = y,.(P) for r € Z2. The proof is essentially the same as

the one for Proposition 5.11, so we will omit it. Then, from [GP16, Theorem 1.6], we have

A+ yim1,je)A + Yigk, j41)

Visk,jYi-1,j+2 = = — . (38)
A+y )+ 0
It follows that
nl 1+ i1 ) F ik j41)
=1,j+1 i+k,j+1
YYo= [[Guryicre) = [ [ — —
i=0 im0 L+ Y DA+ Y 0) 39
s 2 (1 + Yim1, 4 1)+ Yigkja1)
= H(yi,j+1 Vitk—1,j+1) H e GLTAE Y?+1'
=0 o U+ i) + Yigk—1,j+1)

This implies Y;,,/Y;,; = Y;,1/Y; for all j € Z. Taking C = Y; /Y, completes the proof. [

Remark 8.2. Combining the results of [GP16] and [GSTV12], we see that Proposition 8.1 is
equivalent to [GSTV12, Theorem 2.1]. Specifically, the quantity in Equation (37) is shown
to be a Casimir function with respect to a Poisson structure that is invariant under the
y-variable transformation of a quiver Q,, which we will define below.

Consider the infinite directed graph Q, whose vertices are indexed by Z x {0, 1}, with
directed edges (i,0) — (i — 1,1), (i,0) — (i — k,1), (i,1) - (i,0), and (i — k — 1,1) — (i,0)
for all i € Z. See Figure 25 for a visual representation of this quiver. We refer the
readers to [GP16, §9] for the construction of this quiver and the proof that the y-variable
transformations satisfy (38).

For all n > 2, the y-variables corresponding to [P] € #; , are periodic modulo n. We may
then identify vertices of Q, via (i, j) ~ (i + n, j), and similarly identify the corresponding

edges. The resulting directed graph Qy , is isomorphic to the quiver 9, , from [GSTV12]
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(i-k-1,1) (@(-k,1) (i-1,1) (i, 1)
[o) O @ ceeeen (o) (@)
(o]

(i,0)

Figure 25: The quiver Q,. Only edges into and out of the vertex (i, 0) are shown.

by applying a translation to the first entry of the vertices (i, 1). Moreover, the y-variables
(¥i0)ie[n) Of the quiver in [GP16] transforms in the same way as the p-variables (p;);g(,,) of
9, , under the map Ty (see [GSTV12, §2]), and the g-variables (@1)ie[n) Of 9, correspond
to the multiplicative inverse of y; _;. As a result, Yék) /Y(_kl) = ]‘[';=1 p:iq;> which by [GSTV12,
Theorem 2.1] is invariant under T_k and forms a Casimir function with respect to a Poisson
structure that is invariant under T,.

Both [GP16] and [GSTV12] demonstrate that the quiver Qy , is a bipartite graph that
can be embedded into a torus. For further details, see [GP16, §9] and [GSTV12, §3]. This
connection links Qy , to the Goncharov-Kenyon Dimer Integrable Systems in [GK13], where

a more general definition of Casimir functions is provided.
Conjecture 8.3. The constant C in Proposition 8.1 equals 1 for all k > 2.

We prove Conjecture 8.3 for k = 2 and k = 3. Let x; = x;(P) be the corner invariants of

[P]. The case k = 2 follows from yi(z)(P) = —X,i+1%2i42 (see Equation (32)), so

H yl-(z)(P) = (=" H X2it1%2i42 = (=1)" O,(P) E,(P),
i=1 i=1

which is T,-invariant by Lemma 7.3.

For the case k = 3, Equation (31) implies

n

[[y0®) =1 [] —222 = 1y 7,(P) 7(P),
i=1

i1 (2 = D(X2i43 — 1)
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which is T;-invariant by Proposition 6.1.
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1 Introduction

A classical result due to Bochner [1] establishes that a compact Lie group action on
a smooth manifold is locally equivalent, in the neighbourhood of a fixed point, to its
linearization. This result holds in the C* category. It is worth exploring if similar results
hold in the non-compact case.

As observed in [8], if the Lie group is connected, the linearization problem can be
formulated in the following terms: find a linear system of coordinates for the vector fields
corresponding to the one-parameter subgroups of G; or more generally, consider the
representation of a Lie algebra and find coordinates on the manifold that simultaneously
linearize the vector fields in the image of the representation vanishing at a point. This is
the perspective we adopt in this note when referring to linearization.

In the formal and analytic cases, the existence of coordinates that linearize the action
is related to a cohomological equation that can always be solved when the Lie group
under consideration is semisimple [9], [8]. Guillemin and Sternberg also studied the
problem in the C* setting. At the end of [8], they presented the celebrated example
of a non-linearizable action of 81(2,R) on R3, constructed via a perturbation involving
the radial vector field with flat coefficients. This example has been foundational in
the literature, inspiring the construction of other examples with profound geometric
implications, such as Weinstein’s non-stable Poisson structure example [19].

When the semisimple Lie algebras are of compact type, the linearization of the action
can be achieved by combining the local integration of the Lie group action with Bochner’s
theorem, leading to the linearization of the associated Lie algebra action [6].

Linearization techniques also play a significant role in Hamiltonian systems. When a
Hamiltonian system arises from a symplectic action of a compact Lie group fixing a point,
the equivariant version of Darboux’s theorem ([18], [3]) ensures that the group action
can be linearized in Darboux coordinates near the fixed point. It is worth exploring if
similar results apply beyond the compact case.

For complete integrable systems, an associated abelian symplectic action emerges.
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When the integrable system in local coordinates has a “linear part" linked to a Cartan
subalgebra, this leads to non-degenerate singularities [4]. As shown in [5], [4], [10], [11]
and [12], complete integrable systems near non-degenerate singular points are equivalent
to their linear models. Consequently, the Hamiltonian system itself is equivalent to the
linear one. This result provides normal forms for integrable systems near singular non-
degenerate points and, specifically, ensures the simultaneous linearization of Hamiltonian

vector fields near a common zero.

The next challenge involves Hamiltonian systems with a semisimple linear part, as
proposed by Eliasson in [5]. In the formal or analytic setting, results by Guillemin and
Sternberg [8] and Kushnirenko [9] demonstrate that such systems are equivalent to the
linear model when the symplectic form is disregarded. In this note, we establish that not
only can the Hamiltonian vector fields be linearized, but they can also be linearized in

Darboux coordinates.

Following Guillemin and Sternberg’s approach, we prove that if a symplectic Lie
algebra action of semisimple type fixes a point, there exist analytic Darboux coordinates
in which the analytic vector fields generating the Lie algebra action are linear. This
result also extends to complex analytic Lie algebra actions on complex analytic manifolds.
Additionally, we construct an example of a Hamiltonian system with a semisimple linear

part that is not C*-linearizable.

Organization of this article: In Section 2, we prove that linearizable actions on
symplectic manifolds can be locally linearized in Darboux coordinates. In Section 3, we
apply this to show that any real analytic symplectic action of a semisimple Lie algebra
can be linearized in real analytic Darboux coordinates in a neighborhood of a fixed point.
Furthermore, this result extends to analytic complex manifolds and complex analytic
actions of semisimple Lie algebras. In Section 4, we present a counterexample proving
that the linearization result does not hold in general for smooth Hamiltonian actions of

semisimple Lie algebras.
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2 Linearizable actions in Darboux coordinates

Let g be a Lie algebra and let p : ¢ — Lgyq1c Stand for a representation of g in the algebra
of real (or complex) analytic vector fields on a real (or complex) analytic manifold M.

We say that p € M is a fixed point for p if the vector fields in p(g) vanish at p. We say
that p can be linearized in a neighborhood of a fixed point if there exist local coordinates
in a neighbourhood of p such that the vector fields in the image of p can be simultaneously
linearized (i.e, p is equivalent to a linear representation).

Assume that the Lie algebra action is (analytically/smoothly) linearizable and assume
that M is endowed with a symplectic structure (smooth, analytic). We first prove that it is

then symplectically linearizable.

Theorem 2.1. Let g be a Lie algebra and let (M, w) be a (real or complex) analytic symplectic
manifold. Let p be a representation by analytic symplectic vector fields. Let p be a fixed
point for p and assume that p can be linearized. Then there exist local analytic coordinates
(X1, Y15 - » Xp» ¥ N @ neighborhood of p for p such that p is a linear representation and w

can be written as,

n
w = del- A dy;.

i=1

Proof. Let p be an analytic symplectic action of a Lie algebra on a manifold M, with a
fixed point p € M. Choose analytic coordinates (x;,y;, ..., X,,, y,,) centered at p in which
the action p is linear. Let w; denote the symplectic form in these coordinates. Although p
is now linear, w; need not be of Darboux type.

We denote by w, the constant (degree-zero) term in the Taylor expansion of w, at the
origin. Since w, is preserved by p and p is linear; it follows that w, is preserved by the
linearized action p(V) = p. In particular, w, is a constant symplectic form invariant under

the action. Our goal is to construct a local analytic diffeomorphism ¢, fixing the origin,
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such that ¢*(w;) = w, and ¢ commutes with p. That is, we seek an equivariant analytic
Darboux theorem for w;, linearizing the form while preserving the linear action p.
To this end, we apply the path method [16] for analytic symplectic structures. By the

Poincaré lemma, there exists an analytic 1-form « such that
Wy = wy + da.
Define a path of symplectic forms:
w; =tw; + (1 —tw,, te][0,1].

Each w, is an analytic symplectic form in a neighbourhood of the origin. Moreover, the
action p preserves both w, and w;, hence it preserves the entire path w;,.

We now define the time-dependent analytic vector field X, by Moser’s equation:
ix,wp = —at. 2.1)

In order to ensure that X, is invariant under p, it suffices to construct « invariant under
p. For this purpose, we apply the standard homotopy operator used in the proof of the
Poincaré lemma, adapted to our equivariant setting.

LetR = )} x;0,, +y;0, be the radial vector field, and h, the homothety x ~— tx. Then,

we define
1
a = f %hf(iRﬁ’) dt, where 8 = w; — w,.
0

Because 3 is p-invariant and p commutes with R, it follows that « is also p-invariant. Thus,
the vector field X, is invariant under p.

Let ¢, denote the flow of X/, satisfying the differential equation

d
P @=x@@). f=id 2.2

Since X, is p-invariant, the flow ¢, commutes with the action p. Moreover, because «

vanishes at the origin, so does X;, ensuring that each ¢, fixes the origin.
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By construction, ¢;(w,) = wy, and in particular ¢;(w;) = w,. The diffeomorphism
¢ := ¢, is then the desired equivariant analytic transformation taking w; to o, while
preserving the linear action p.

This completes the proof. O

Remark 2.2. The theorem above is stated in the analytic category; however, if the lin-
earization is assumed to hold in the smooth category, the symplectic diffeomorphism

obtained from the proof is also smooth.

3 The case of analytic semisimple Lie algebra actions

Guillemin and Sternberg provided in [8] a complete characterization of analytically
linearizable actions. They demonstrated that a necessary and sufficient condition for the
representation

P - 8 = Lanalytic
to be locally analytically linearizable is the existence of an analytic vector field X, defined
in a neighborhood of p, vanishing at p, with the identity matrix as its Jacobian at p, and
commuting with all the vector fields in g.

This condition was elegantly recast in cohomological terms in [8]. They proved that
the first cohomology group H!(g, V*) acts as an obstruction to analytic linearization. For
semisimple g, H!(g, V*) vanishes for all representation spaces V, ensuring the possibility
of analytic linearization. On the other hand, for non-semisimple g, one can construct a
representation space V such that H!(g, V*) # 0, which precludes analytic linearization.

This result establishes the semisimple case as a natural candidate for analytic lin-
earization.

Guillemin and Sternberg [8] and Kushnirenko [9] proved the following.

Theorem 3.1 (Guillemin-Sternberg, Kushnirenko). The representation p : ¢ — Lgpaiytic
with g semisimple is locally equivalent, via an analytic diffeomorphism, to a linear repre-

sentation of g in a neighbourhood of a fixed point for p.
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As an application of theorem 2.1: When the representation is done by Hamiltonian
vector fields (locally symplectic), the analytic diffeomorphism that gives the equivalence
of the initial representation to the linear representation can be chosen to take the initial

symplectic form to the Darboux one. Namely,

Corollary 3.2. Let g be a semisimple Lie algebra and let (M, w) be a (real or complex) analytic
symplectic manifold. Let p : g — Lguqiyeic be a representation by analytic symplectic vector
fields. Then there exist local analytic coordinates (xi, y, ..., Xn, ¥,) IN @ neighbourhood of a

fixed point p for p such that p is a linear representation and w can be written as,

n
w = del‘ /\dyl

i=1
4 Non-linearizable semisimple smooth actions

4.1 The counterexample of Cairns and Ghys

In this section we recall the results of Cairns and Ghys concerning a C*-action of SL(2, R)
on R?® which is not linearizable. All results mentioned in this section are contained in
section 8 of [2].

Consider the basis {X, Y, Z} of 31(2, R) satisfying the relations:
[X5Y]=_Z’ [ZaX]=Ya [Z,Y]=—X
Now consider the representation on R* defined on this basis as:

p(X) = yZ4z2

0z dy

pY) = x—+zo 4.1)
E} E}

p(Z) = X5 Ve

The orbits of this action are the level sets of the quadratic form Q = x* + y*> — z% =
r? — z2 (where r? = x2 + y?). These level sets are non-degenerate quadrics: one-sheeted

hyperboloids for Q > 0, two-sheeted hyperboloids for Q < 0, and a quadratic cone for
Q=0.
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Introduce the radial vector field

R—xi+ i+z—
= *ox Yoy TP

and perturb p by setting
X=pX)+fR,
Y =p(Y)+gR, 4.2)
Z=p(2),

where

fGx,y,2) =xA(z,Vx2 +y?), g(x,y,2) = —yA(z,Vx2 +y?),

and
a(r* —z2)

Az,r) = =

>

with a: R —» R any C*®-function which vanishes for r* — z2 < 0 and is bounded.
By [2], the fields X, Y, Z still close under the Lie bracket to an 81(2, R)-algebra and are
complete. Hence they integrate to an action p of the universal cover of SL(2, R), which

descends to SL(2, R) itself since Z = p(Z) is unchanged. Moreover:

+ On the “hyperbolic region” {x?> + y?> > z?}, one has a(r> — z?) # 0 and {X,Y, Z} are

linearly independent, so p—orbits are 3-dimensional.

» On and inside the “cone” {x?> + y*> < z?},one has a(r* —z>) =030 X = p(X), ¥ = p(Y),

and p coincides with the linear action.

Since the original linear action never has 3-dimensional orbits, 4 cannot be conjugate to

it. Therefore, the deformed action is not linearizable.

4.2 The counterexample of Guillemin and Sternberg

The construction of Guillemin and Sternberg [8] follows the guidelines outlined below. It

is quite similar to the counterexample of Grant and Cairns; however, the key difference
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is that the vector field the perturbation does not preserve Z, so it cannot be guaranteed
that it lifts to SL(2, R).

If we perturb the initial action of 3[(2, R) to the non-linear action:

pIX) = p(X) + *Zg(r? = 2R,

pY) = p(Y) — ﬁ—fg(rz — )R,
B(Z) = p(Z) + g(r* — z*)R,

where R = x% + y% + z:—z is the radial vector field, and g € C*(R) is such that g(x) > 0 if
x> 0,and g(x) =0if x < 0.

Inside the cone r2 —z2, the two sets of vector fields are identical. However, if we choose
gu) = e /% u>0,and g(u) = 0, u <0, for example, then outside the cone r? — z2 = 0, the
vector field p(X) = x% — y% has closed circular orbits, while the corresponding deformed
vector field p(X) has orbits that spiral outward.

Therefore, it is impossible to find a C*-mapping defined in a neighborhood of the

origin. Hence, p is not linearizable.

4.3 A Hamiltonian counterexample

We construct a counterexample to C*-linearization under the hypothesis that the action
is Hamiltonian, thereby giving a negative answer to a question of Eliasson [5]. We keep

the notation of the Cairns-Ghys construction from Section 4.1.

Proposition 4.1. Let a be the SL(2, R)-action on R? generated by
X=pX)+fR,  Y=p(Y)+gR  Z=p(2),
whereR = x9, +y0, +z9, and
foxa(zVE YY), g=yAzNE ), Awn=2C0E)

with a : R - R smooth, bounded, and vanishing on R~. Let @ be the cotangent lift of « to

T*(R?). Then @ is Hamiltonian and not C®-linearizable in a neighbourhood of the origin.
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Proof. For a diffeomorphism g : M — M, the cotangent lift is

8(q, p) = (g(a), (dgz")*p),

SO
mog=gor  and  g(q,0) = (g(q),0). 4.3)

Thus fibres map to fibres and the zero section is preserved by every cotangent lift. In

particular, with
F:=n'0)={x=y=2z=0}, Z:={a=b=c=0} 0 :=(0,0,0;0,0,0),

both F and Z are invariant for the lifted linear action and for the lifted Cairns-Ghys
action (note that 0 is fixed in the base, since p is linear and fR, gR vanish at 0).
Let a(V denote the linear part of « and @V its cotangent lift. The latter is Hamiltonian

for w = d6 (6 = adx + bdy + cdz), with moment map
u=(zb+cy, az +cx, —ay + bx) € 31(2, R)*,

whose Jacobian is
0 ¢c b 0 2z vy
Du=lc 0 a z 0 x|

b —a 0 -y x 0

For Hamiltonian actions one has dim(G-m) = rank du,, (see, for instance, [7, §26]). A direct

computation shows that

0, p=0,

rankDu =12, (x,y,z)x(—a,—b,c) =0, p# O,

3, otherwise.

\

Equivalently, the rank drops to 2 precisely when (x, y, z) is collinear with (—a, —b, ¢), alocus
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containing F = {x =y =z = 0} and Z = {a = b = ¢ = 0} but strictly larger. Consequently,
0, p=0,
dim Oaw(p) =12, (x,y,2)x(—a,—b,c) =0, p # O, 4.4

3, otherwise,

and, in particular, dim Oz (q,0) = 2 for all g # 0.

For any lifted action, the fundamental vector fields satisfy

Ex(q, D) = (£x(q), — podEx(q)). (4.5)

Hence along Z one has ;?X(q, 0) = (£x(q),0), so every orbit starting in Z stays in Z. Con-
versely, no orbit through a point (g, p) ¢ Z can be contained in Z, since it already contains
(g, p) & Z. Thus, near O, the orbits contained in Z are exactly those starting in Z. Moreover,
from (4.5) we read off

dim Oa(q, 0) = dim O%(qg).

By [2, §8] there exist points g — 0 in the base with 3-dimensional a-orbits. For such g,

put p = (q,0) € Z \ {0}. Then
dim ©%(g,0) = dim 0%(q) = 3. (4.6)

Assume, for contradiction, that there exists a germ @ : (T*M, O) — (T*M, O) with ®og® =
ao®. Conjugacy carries orbits diffeomorphically to orbits, preserving their dimension.
Since, near O, the orbits contained in Z are precisely those starting in Z for both lifted

actions, necessarily ®(Z) = Z and ®(F) = F. Hence ®~!(p) € Z \ {0}, so by (4.4)
dim 0%"(@1(p)) = 2,

whereas by (4.6) dim Oa(p) = 3, a contradiction. Therefore, @ is not C*®-linearizable near

the zero section. ]

Remark 4.2. We can employ the same strategy, adopting the counterexample by Guillemin

and Sternberg in the process.
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Consider the Lie algebra action of 8(2, R), denoted by p, on R3, generated by the vector
fields:

pX) = p(X) + ~Zg(r? = 2R,
A(Y) = p(Y) — Zg(r? — )R,
p(2) = p(2) +8(r? - )R,

whereR = xai + yai + zai is the radial vector field, and g € C®(R) satisfies g(u) = e~1/*’
X y z

for u > 0and g(u) =0 foru <0.

Using similar guidelines to those of Guillemin and Sternberg in [8], we can verify that

the lifted action to T#(R?) is not C*-linearizable.

The lift of the action can be computed using the Liouville one-form. Let 6 = adx +
bdy + cdz. Then, the lift of the non-perturbed vector field is a Hamiltonian vector field

with the Hamiltonian function

f = —ay + bx,

and the lifted vector field of the perturbed system is the Hamiltonian vector field with

respect to the function

f" = —ay + bx + g(r* — z*)(ax + by).

The Hamiltonian vector field of f is given by:

xi— i+ai—bi
3y Yax "%pb  "aa’

and it exhibits periodic orbits. In contrast, the corresponding deformed vector field,

the Hamiltonian vector field of f’, has orbits that spiral outward.
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4.4 The case of semisimple Lie algebras of compact type

When the Lie algebra action is of compact type, it can be integrated into an action of a
compact Lie group G (see [6] for a proof, which is based on the use of algebroids).
Given a fixed point for the action p, we can associate a linear action of the group
in a neighbourhood of p, with the group action preserving the symplectic structure
(which we can assume to be in Darboux coordinates). Applying the equivariant Darboux
theorem [3], we obtain a diffeomorphism ¢ that linearizes the group action G in Darboux

coordinates. By differentiation, this provides the linearization of the Lie algebra action p.
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Abstract: In this paper we extend the novel approach to discrete Painlevé
equations initiated in our previous work [2]. A classification scheme for dis-
crete Painlevé equations proposed by Sakai interprets them as birational
isomorphisms between generalized Halphen surfaces (surfaces obtained from
P! x P! by blowing up at eight points). Sakai’s classification is thus based on
the classification of generalized Halphen surfaces. In our scheme, the family
of generalized Halphen surfaces is replaced by a pencil of quadrics in P3. A
discrete Painlevé equation is viewed as an autonomous transformation of P3
that preserves the pencil and maps each quadric of the pencil to a different
one. Thus, our scheme is based on the classification of pencils of quadrics

in P3. Compared to our previous work, here we consider a technically more
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demanding case where the characteristic polynomial A(1) of the pencil of
quadrics is not a complete square. As a consequence, traversing the pencil
via a 3D Painlevé map corresponds to a translation on the universal cover of
the Riemann surface of \/A(1), rather than to a Mébius transformation of the

pencil parameter A as in [2].

1 Introduction

This paper is the second contribution to our study devoted to a novel interpretation
of discrete Painlevé equations, which builds up on [2]. Discrete Painlevé equations
belong to the most intriguing objects in the theory of discrete integrable systems. After
some examples sporadically appeared in various applications, their systematic study
started when Grammaticos, Ramani and Papageorgiou proposed the notion of “singularity
confinement” as an integrability detector, and found the first examples of second order
nonlinear non-autonomous difference equations with this property, which they denoted
as discrete Painlevé equations [9, 16]. The activity of their group was summarized in [8]. A
general classification scheme of discrete Painlevé equations was proposed by Sakai [18]
and it is given a detailed exposition in the review paper by Kajiwara, Noumi and Yamada
[11]. In the framework of Sakai’s scheme, discrete Painlevé equations are birational maps
between generalized Halphen surfaces X. The latter can be realized as P! x P! blown up
at eight points. A monographic exposition of discrete Painlevé equations is given by Joshi
[10].

Let us summarize the main ingredients and features of our alternative approach to

discrete Painlevé equations, initiated in [2].

¢ A pencil of quadrics {Q,} in P3 containing non-degenarate quadrics. Such pencils
can be classified modulo projective transformations of P3, and they come in thirteen

classes. The class of the pencil can be identified by the type of its base curve Q, n
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Q.- This is a spatial curve of degree 4, whose type can vary from a generic one
(irreducible smooth curve for a pencil of type (1)), through irreducible curves with a
node (type (ii)) or with a cusp (type (iii)), to various types of reducible curves (from
two non-coplanar conics intersecting at two points, type (iv), to a pair of intersecting

double lines, type (xiii)).

* The second pencil of quadrics {P,} having one quadric in common with {Q;}, say

P, = Q.. The base curves of both pencils intersect at eight points S;,i = 1, ..., 8.

* Given two pencils of quadrics, one can define a three-dimensional analog of a QRT
map F = i;0i,, where the 3D QRT involutions i, i, act along two families of generators
of Q,, see [1]. Each involution puts into correspondence two intersection points of
a generator with the quadric P,. By definition, such an involution, and therefore
the 3D QRT map F = i;oi,, leaves each quadric of two pencils invariant, and thus

possesses two rational integrals of motion 1 = Q,/Q., and u = P,/P,.

* A Painlevé deformation map is the device which allows us to travel across the pencil
{Q,}. More precisely, such a map L on P? preserves the pencil, but not fiber-wise.
Rather, it sends each quadric Q, to a different quadric Q;. Moreover, L preserves
the base curve of the pencil {Q;}. In the cases considered in [2], the base curve is
reducible and contains straight lines. In these cases, L does not necessarily fix these
straight lines point-wise. In the cases considered in the present paper;, L fixes the

base curve Q, n Q. pointwise (in particular, it fixes all eight points S;).

* A 3D Painlevé map is obtained by composition F = Loi; oLoi,, provided it possesses the
singularity confinement property. It is to be stressed that the pencil {Q;} continues to
play a fundamental role in the dynamics of F: the maps Loi;, Loi, preserve the pencil
and map each quadric Q, to Q;. We do not have a straightforward description of the
dynamical role of the pencil {P,}, but anticipate its relation to the isomonodromic

description of the discrete Painlevé equations.

One can say that in our approach the role of a family of generalized Halphen surfaces
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is played by the quadrics of the pencil {Q,} with eight distinguished points on the base
curve of the pencil. The base curve itself plays the role of the unique anti-canonical
divisor. Let us stress several features of our construction which are in a sharp contrast to

the Sakai scheme.

* Neither the exceptional divisor nor the eight distinguished points evolve under the
map F. Their discrete time evolution is apparent and is due to their representation in
the so-called pencil-adapted coordinates. These are coordinates (x, y, 1) € P! x P! x P!
establishing an isomorphism between each quadric Q; of the pencil and P! x PL.
The pencil-adapted coordinates of a point on the base curve do depend on 4, so
traversing the pencil 1 ~— 1 under F induces an apparent discrete time evolution of

the base curve and of the eight distinguished points.

* The shift parameter § of discrete Painlevé equations (or its exponent g = ¢’ for the
g-difference equations among them) is not an intrinsic characteristic of the configu-

ration of eight distinguished points, but is a free parameter of the construction.

One can say that our approach is a realization of the old-style idea of discrete Painlevé
equations being non-autonomous versions (or modifications) of the QRT maps. This idea
was instrumental in the discovery and early classification attempts of discrete Painlevé
equations, summarized in [8]. A more geometric version of this procedure was proposed
in the framework of the Sakai’s scheme by Carstea, Dzhamay and Takenawa [5]. In
their scheme, the de-autonomization of a given QRT map depends on the choice of one
biquadratic curve of the pencil. In our approach, the choice of the base curve and eight
distinguished point on it determines uniquely all the ingredients of the construction,
starting with the two pencils of quadrics.

The structure of the paper is as follows. In Section 2, we describe the construction
scheme of discrete Painlevé equations applicable to the present case and stress its dis-
tinctions from the previous paper [2]. The main distinction is that here we consider the

pencils whose characteristic polynomial A(1) is not a complete square. As a consequence,
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the 3D QRT involutions iy, i, and the 3D QRT map F = i;0i, are no more birational maps
of P3. Rather, these maps become birational maps on X, a branched double covering of
3, whose ramification locus is the union of the singular quadrics Q, , where 4; are the
branch points of the Riemann surface ® of \/A(%).

In Section 3, we formulate a general recipe for the construction of the Painlevé
deformation map L, responsible to the evolution A ~— 2 across the pencil of quadrics {Q,}.
While in the first part [2] we had 1 = o(1), where ¢ : P! — P! is a M6bius automorphism
fixing the set Sing(Q) := {1 € P! : Q; is degenerate}, in the present paper the natural
definition becomes 1 = 1(9), where 1 = A(v) is the holomorphic uniformization map for
the Riemann surface R, and ¥ = v + 26 is the translation on the universal cover C. The
recipe turns out to be applicable to all types of the pencil {Q,} except for the generic type
(1). The latter leads to the elliptic Painlevé equation, which will be treated in a separate
publication.

In Section 4, we show that the so constructed L ensures the fundamental singularity
confinement property for our 3D Painlevé maps.

There follow five Sections 5-9 containing a detailed elaboration of our scheme for
all relevant types of the pencils except for the type (i). We recover, within our novel
framework, all discrete Painlevé equations except for the elliptic one, which is left for a

separate publication.

2 General scheme

We now describe the construction scheme of discrete Painlevé equations applicable to
the present case and stress its distinctions from the previous paper [2]. The first steps

are the same as there:

+ Start with a pencil {C,;} of biquadratic curves in P! x P! and the corresponding QRT
map. Let 5, ..., 53 € P! x P! be the base points of this pencil. Lift {C,} to a pencil of
quadrics {P,} in * using the Segre embedding of P! x P! to P*. The base curve of this
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pencil passes through the lifts S;, ..., Sg of the base points s, ..., sg.

* Choose one distinguished biquadratic curve C, of the pencil, along with its lift to a

quadric Pg..

» Based on these data, construct the pencil of quadrics {Q; = Q, — 1Q} in P spanned
by Q, = {X,X, — X3X, = 0} and Q, := P.. Recall that Q, is nothing but the image of
P!xP! by the Segre embedding. The base curve of the pencil {Q,} is, by definition, the
curve QyNQ, which is the image of C, under the Segre embedding. The intersection
of this curve with the base curve of the pencil {P,} consists exactly of the points

S1,..,Sg.
The characteristic polynomial of the pencil {Q;} is
A(A) = det(M;) = det(M, — AM,), (@)

where My, M, € Sym,,(C) are symmetric matrices of the quadratic forms Qg, Q. In the
present paper, we are dealing with the cases where this polynomial is not a complete
square. According to the projective classification of pencils of quadrics, discussed in [2],

these are the following six cases:

(1) Pencil of quadrics through a non-singular spatial quartic curve.

Segre symbol [1,1,1,1]; AL = (A — 1))(A — 1,)(A — 15)(A — 4,).

(ii) Pencil of quadrics through a nodal spatial quartic curve.

Segre symbol [2,1,1]; A(A) = (A — 11)*(A — A,)(A — A3).

(iii) Pencil of quadrics through a cuspidal spatial quartic curve.
Segre symbol [3,1]; A1) = (1 — 4,)3(A — 4).

(iv) Pencil of quadrics through two non-coplanar conics sharing two points.
Segre symbol [(1,1),1,1]; A(D) = (A — 1;)*(A — 1,)(A — 15).

(v) Pencil of quadrics through two non-coplanar conics touching at a point.

Segre symbol [(2,1),1]; A(Q) = (A — 1,)°(A — 1,).
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(vi) Pencil of quadrics tangent along a non-degenerate conic.

Segre symbol [(1,1,1),1]; A(Q) = (1 — 1,)3(A — 1,).

As discussed in [2], for X € Q,, the generators ¢,(X) and ¢,(X) are rational functions of
X and of y/A(2). The dependence on 1 can be expressed as a holomorphic dependence on
the point of the Riemann surface ® of v/A(1). This Riemann surface is a double cover of C
branched at two or at four points. By the uniformization theorem, its universal cover is C.
We will denote the uniformizing variable v € C, so that the maps v v— 1 and v — \/m

are holomorphic. The following three situations can be distinguished:

- case (i): four distinct branch points 1,, 1,, 15, 44, the Riemann surface R is a torus,
whose conformal class is determined by the cross-ratio of the branch points. This
case, corresponding to the elliptic Painlevé equations, will be treated in an upcoming

work;

- cases (ii), (iv): two branch points 1,,1;, one of the periods of the torus becomes

infinite, so that R is a cylinder;

- cases (iii), (v), (vi): two branch points 1,, 1,, both periods of the torus become infinite,

so that R is plane.

It becomes necessary to introduce modifications in the two major ingredients of the

construction in [2].

» The generators ¢,, ¢, are not rational functions on P anymore. Rather, they become
well-defined rational maps on the variety X which is a branched double covering of
3, whose ramification locus is the union of the singular quadrics Q,, where 2; are
the branch points of R. The same is true for a linear projective change of variables
X = A,Y reducing the quadratic form Q) to the standard form Q,, which we now

write as

Qin(A4,Y) = Qo(Y), or AJMu)A, = My, (2)
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and for the pencil-adapted coordinates

X1 X
X y
=A, =: ¢y(x, ). (3)
X3 Xy
X4 1

Thus, ¢, gives a parametrization of Q,(,) by (x,y) € P! x P!, such that the generators
¢1,resp. ¢, of Q; correspond to x = const, resp. to y = const. Interchanging two sheets

of the covering corresponds to interchanging two families of generators ¢, ¢,.

» Also the 3D QRT involutions i,, i, for the pencil {Q,}, defined by intersections of
its generators ¢,, ¢, with the quadrics P, (see [1]), are not birational maps of P?
anymore, and the same is true for the 3D QRT map F = i,oi,. Rather, these maps

become birational maps on X.

The next main deviation from the construction of [2] is that it becomes unnatural to
consider Painlevé deformation maps L as birational maps P* preserving the pencil {Q;}
and sending each Q; to Q,(;), where ¢ : P! — P! is a Mébius automorphism fixing the
set Sing(Q) := {1 € P! : Q, is degenerate}. Instead, in the present context we formulate the

following requirement.

» A Painlevé deformation map L is a birational map on X preserving the pencil {Q,}
and sending Q;,) to Q;, where v ~— 7 = v 4+ 2§ is a translation on the universal

cover of R.

As compared with [2], our construction will involve some additional ingredients,
required to establish the relation to the form of discrete Painlevé equations known from
the literature. The Painlevé deformation map L is decomposed in two factors, each one
depending only on one of the variables x, y, and shifting the variable v by §. This can be

done in two ways:
L =L,0R,, where L, : (x,y,v) > (x,y,v+98), R, : (x,y,v) — (X,y,v + 95), 4)
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resp.
L = L,oR;, where L, : (x,y,v) v (X,y,v+ ), R; : (x,y,v) > (x,¥,v + 9). (5)

(The indices 1, 2 refer to the variables which do not change under the mabp, like for i, i,.)

Each one of L;, L,, Ry, R, maps Q) t0 Q ,+5). We set
1
VYV, =vy+2nd for ne EZ’

so thatv,,,,, = v, + d. The variables associated to the discrete Painlevé equations known
from the literature, parametrize in our formulation the quadrics with half-integer indices,

namely

(xn’ ynaVZn—l/Z) € Q/l(vz,,_l/z) ’ (xn+1:ynaV2n+1/2) € Q/l(v2n+1/2) .

Definition 1. A 3D Painlevé map is given by

ﬁ =71°72, where 71 = RloiloLl’ 72 = R20i20L2, (6)
or; in coordinates,
L, L R,
(Xps Yns Van—172) = (X, Y5 V2n) = (X, Y5 V2n) = (Xpg15 Yo Vantr/2) (7
Ly i ~ R,
= (X415 Y Vont1) = X1, V5 Vans1) = (Xng1s Ynr1s Vans3/2)- (8)

The map F is conjugate to Loi, oLoiy; note that the latter map acts between the quadrics

with integer indices.

Our last requirement repeats the one in [2]:

* The singularity confinement properties of i;, i, are the same as that of iy, i,.

Reduction to the symmetric case. If the eight points s; are symmetric with respect to
the symmetry switch o : (x,y) v— (¥, x), we can define a 2D QRT root f = i;oo = ooi, such
that F = fof. In this case, the map L in the pencil-adapted coordinates satisfies L = goLoag,

and therefore its decomposition factors satisfy
L2 =U°L100', R2 =U°R100.
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The 3D Painlevé map F can be written as

F = R10i10L10R20i20L2 = RloiloLIOUORloaoionoLl
= Rjoijoo0Ll,0R 000i,0L,
= (RyofoL,)%.

Therefore, one can define the Painlevé deformed QRT root as f = R;ofoL,, then the

discrete Painlevé map decomposes as F = fof.

3 Construction of the Painlevé deformation map
The desired properties of the Painlevé deformation map L are ensured by the following
construction.

Theorem 1. If the polynomial Q, does not depend on X, definethemap L : [X; : X, : X5 :
X4l == [X) 1 X, 1 X5 1 X,] by requiring that, for X € Q;,, there holds

21 = X1X4,

| X=X ) ©
X3 =X3X, — (/1(7/) - A(V))Qoo(X),

| Xa =X,

where v = v + 26. If Q, does not depend on X, define

21 =X X, + (/1(77) - A(V))Qoo(X),
X, = X2,

) j 2 (10)
X3 = X,X5,
24 = X2X4.

Then L sends each Q,, to Q, and fixes all points of the base curve of the pencil {Q,} not
belonging to {X, = 0} (resp. to {X, = 0}), including all eight base points S;, i = 1,..., 8.

Proof. It follows by a simple computation. For instance, for the case (9):
2.8, =3R4 — A0 (X) = X3(X1X; — XX, — A)Qe (X)),

Arnold Mathematical Journal, Vol.11(4), 2025 206


http://dx.doi.org/10.56994/ARMJ

Discrete Painlevé equations

Futher, if Q,(X) =0and X, # 0, then [X; : X, : X; : Xu]=[X1 : X, : X5 : X,].

The recipe of Theorem 1 covers all cases treated in the present paper (pencils of
the types (ii)-(vi)). In retrospect, we notice that, with a natural modification (replace
1 =2 = A(®) — A(») by o(1) — 1), this recipe covers also the cases considered in the first
part of this study [2]. For pencils of the type (i) the quadric Q. is non-degenerate, so a

modification of the recipe is required.

4 Singularity confinement

Our case-by-case computations reveal the following observation. In all examples of the
present paper, the eight points sy, ..., sg in P! x P! serve as the indeterminacy set for the

2D QRT involutions iy, i,. The singularity confinement structure can be summarised as:
x=a} > 5 = y=b} i=1...8 (11)

In the pencil-adapted coordinates, the 3D QRT involutions restricted to Q,, are given
by the same formulas as the original 2D QRT involutions, with the points s; replaced by
their deformations s;(v). The latter still support a pencil of biquadratic curves, which are
the pre-images under ¢, of the intersection curves Q,,, n P,. Therefore, for the 3D QRT

involutions i; and i,, we have
x =g} = 50) = {y=b} (12)

Let ®; c 3 be the ruled surface comprised of the lines on Q;,, given, in the pencil-adapted
coordinates ¢,, by the equations {x = q;(v)}. Likewise, let ¥; c P be the ruled surface
comprised of the lines on Q,,, given in the coordinates ¢, by the equations {y = b;(v)}.
Then, in view of (12), we obtain the following singularity confinement patterns for i, i,:

iq iy
q)i - Si - ‘Pi. (13)

We emphasize that the surfaces ®; are blown down to points (rather than curves), and

these points are blown up to surfaces ¥; again.
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Theorem 2. Suppose that the involutions iy, i, : P -» P3 have a singularity confinement

pattern of the type (13), and L satisfies
L(S;) = S;. (14)
Then for the deformed maps i, = R;oi;0L,, i, = Ryo0iy0L, we have:
@) 2 Ri(S) > Ry(wy, )
which implies for F =i, oi, the singularity confinement pattern

_ F F -
(Lyoi) M (®;) — Ry(S) — (i10R,)(¥)). (16)

An important observation is that the eight points R,(S;) participating in these singu-

larity confinement patterns do not support a net of quadrics.

5 From a pencil of type (v) to the d-Painlevé equation of the

(€]

surface type A,

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic

curves {C,} through eight points s; = (a;, b;), i = 1,...,8, where
bj=-q;, i=1,..,4, and b;=1-gq;, i=5,..,8. 17
These eight points support a pencil of biquadratic curves if they satisfy the condition
ai+a,+a3+as—as—ag—a; —ag = —2. (18)
This pencil contains a reducible curve, consisting of two (1,1)-curves:
Co ={x+y)(x+y—1)=0} (19)
The vertical involution i, for this pencil can be described by the following equation:

F+0x+y)  ILG-a)

= . 20
G+x-Dx+y-1) Hfzs(x—ai) .

il(x’y) = (xa j"—)a

Arnold Mathematical Journal, Vol.11(4), 2025 208


http://dx.doi.org/10.56994/ARMJ

Discrete Painlevé equations

€))] )

; . @. ; ;
Figure 1: (a) Base set of the surface type A,”: two quadruples of points on two touching

(1,1)-curves in P! x PL. (b) Pencil of quadrics through two touching non-coplanar conics

Similarly, the horizontal involution i, can be described by the following equation:

E+y)x+y) 0+

= . 21
E+y—-Dxx+y-1) H?zs(y+ai_1) (21)

h(x,y) = (X, ),

The QRT map is the composition of these two involutions, F = i;0i,. The singularity
confinement structure of the involutionsi;, i, isasin (11). The symmetric case corresponds

to

Ay = =0y, 1 =1,2, Ay =1—ay,1=3,4
In this case, F = fof, with f = i;o0 = goi, being the QRT root (here o(x,y) = (¥, x)).
3D Painlevé map. We consider the pencil of quadrics {P,} in %, the Segre lift of the

pencil of curves {C,}. The pencil {Q,;} is spanned by Q, = {X;X, — X3X, = 0} and Q,, = P, =
{X + X)X + X, —X,) =0}

Q, = {Xle — X3 X, — AKX + X)X, + X, — X,) = 0}. (22)

The base set of the pencil Q; consists of the two conics, {X;X, — X3X, =0, X; + X, = 0} and
{X1X, — X5X, =0, X; + X, = X,}, which have one common (touching) point [0 : 0 : 1 : 0].
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This is a pencil of type (v). The intersection of this base set with the base set of the pencil

{P,} consists of eight points

which are nothing but the lifts of the points s; under the Segre embedding.

The matrix M; of the quadratic form Q;:

21 1-24 0 -4
1-24 =24 0 -4
0 0 0 -1

—A -4 -1 0

The characteristic polynomial of the pencil {Q,} is: A(1) = det(M;) = 1 — 44, which is not a
complete square, and Sing(Q;) = {i, oo}. We uniformize the Riemann surface of /A1) via

1 -2

/1=4,

AQQ) = . (24)

Thus, A(-v) = A(v), while y/A(1) changes its sign as v — —v. This gives us a double
cover of the original pencil branched at 1 = 1/4 (corresponding to » = 0), and at 1 = oo
(corresponding to v = oo0). The normalizing transformation of Q,,) to the canonical form

Qo can be found as follows:

X, Y,
X Y
=4, |, (25)
X3 Y,
X, Y,

where

La+v) La-») 0 o0

2v 2v

La-» La+v) o0 o
2v

A, =% . (26)
ﬁu —?) ﬁ(l —12) 1 0

0 0 01
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Indeed, one immediately verifies that
ATM;0)A, = M.

Now, we are in the position to derive a parametrization of the quadric Q;:

_ - _ - [ 1 ]
X, X ;((1 +v)x+ 1 —v)y)
X, y | |5@=-vx+a+vy
=A, = ) = ¢v(x’ »). 27)
X, xy xy + 1;—:(x +y)
[ X4 | | 1] 1

Observe that this parametrization is neither valid for v = 0 nor for v = . The pencil-

adapted coordinates (x, y,v) on (the double cover of) P* are:

Y= Q+v»)X, -1 -v)X, y= Q+v)X,— 1 -v)X;

X, X, (28)
which have to be supplemented with
— 2 XX, — X5X,
1= 1—-v 142 344 (29)

4 X X)X+ X, - X))
Theorem 3. For any é € C \ {0}, define the Painlevé deformation map corresponding to the

translation v w— v = v + 26 by

(%, = XX,
X, = XX,
L: X5 = X3X,—(A0) - A(»)Qw(X)
= X3X4+0(v + )X, + X)Xy + X, — X,),
X, = X2

Then, in pencil-adapted coordinates, the map L acts as follows:
oo o ) “ ) N
L:(xyv)—(X,9,9), X=x+ ;(x+y), y=y+ ;(x+y), V=v+26. (30)
For the latter map, the factorizations (4), (5) are given by
Li=R; : (x,y,v)— (x,y,v+6), L,=R, : (x,y,v)— (X,y,v + ),
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where
- ) y+x o y+x
y=y+yaty) J+x—v—-6 y+x—-v (31)
~_ 6 X+y _x+y
x—x+vu+y)<© Tiy—v—38 x+y—7v (32)

Relation to the d-Painlevé equation of the surface type A?). We now compute the 3D
Painlevé map F = R;oi oL, 0R,0iy0L, in the pencil-adapted coordinates (x, y, v). For each

fixed v, the intersection curves Q,,, n P, form a pencil through eight points

Si(V) = (ai’ _ai)’ i= 1’ oo 54’ (33)
s;(v) = (Vgl +al~,1+Tv—ai), i=5,..,8, (34)

which are just the points S, ..., Sg (which are, recall, independent of ») expressed in the
pencil-adapted coordinates on Q,,). The curve C.,(v), which is the image of the base curve

of the pencil {Q,} in the pencil-adapted coordinates on Q;,y, is given by the equation
Co) ={x+y)x+y—-v)=0}L (35)

The map L sends C,,(v) to C (v + 28), while the maps L, = R, and L, = R, send C(v)
to C,(v + 6). We observe that the map L fixes the (x,y) coordinates of the points of the
component {x + y = 0} of C(v), and acts as (x,y) v— (x + 8,y + &) on the component
{x +y = v}. This “shift” under the map L is, however, only apparent, as this map fixes the
curve Q, n 9, pointwise. Similarly, the map L, = R, acts on the second component as
(x,y) = (x,y + 6), while L, = R, acts as (x,y) ~— (x + &,y). These actions are non-trivial
in homogeneous coordinates X.

The formulas for the 3D QRT involutions iy, i, restricted to Q) coincide, in the pencil-

adapted coordinates, with the original QRT involutions (20) and (21), upon replacing s;

by s;(v):

G+oa+y) I -a)
G+x—v)(x+y—v) Hfzs(x —a— vz;l)

il(x’y) = (x’y), = ¢1(X, V), (36)
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4
X i= (y + ai)

b = @) D HoOra) o om @

y Y I +a- T)

In the notation of the equations (7), (8), we have:
X+ y)Yn + %) _

Gt = 2O F =) 20V 9
o+ xn+1)(xn+1 +y) _ 1p1(xn+1, V2n+1)' (39)

0+ xp11 = Vanr1)Xng1 + Y — Voni1)

It remains to express x,y, X,y in these formulas in terms of x,, y,. According to (7), we

have:

Lyt (Xp, Yn> Van—172) == (X, Y5, v2p)  and Ry 1 (X, Y, Vo) == (Xpi1s Vs Vant1/2)s

and with expressions (32) for the maps L,, R,, we find:

x+yn — xn+yn (40)
X+ Yn— Vo Xp + Yn _VZn—l/z’

X+ Yn— Vo Xpt1+Yn — Van+1/2

Similarly, according to (8), we have:

Lyt (%41, Vi Van1/2) V= (Xpg1, Y5 Vope1)  and - Ry 1 (%41, Y, Vang1) += (Xng1s Va1 Vane/2)s

and with expressions (31) for the maps L,, R;, we find:

Y+ Xpn _ Xpt1 + Vn (42)
Y+ X1 —=Vope1  Xpg1 + Vo = Vant1/z
Xpi1 + 37 _ Xnt1 + Ynt1 (43)

Xpt1+Y = Vons1  Xnt1 t Ynt1 — Vans3)2

Combining equations (38), (39) with (40)—(43) results in the following non-autonomous

system:
(xn+1 + yn)(xn + yn)
= P2(Vn> Van), (44)
(xn+1 +Vn— V2n+1/2)(xn +Vn— VZn—l/Z) 2w an
+ +
(xn+1 yn+1)(xn+1 yn) — ¢1(xn+1’ V2n+1)- (45)

(xn+1 + Vny1 — V2n+3/2)(xn+1 +Vn— V2n+1/2)
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This is nothing but the d-Painlevé equation of the surface type Agl), as given in [11].

Remark. The symmetric case can be characterized by ¢,(x,v) = ¢,(x, ). In this case

the latter equations become two instances of

(un+1 + un)(un + un—l)
(un+1 +u, — Vn+1/2)(un + Uy — Vn—l/z)

= lpl(un’ Vn)a (46)

if we set uy,_; = x,, Uy, := Vp-

6 From a pencil of type (vi) to the d-Painlevé equation of the

(1

surface type D,

By a simple limiting procedure, the results of the previous section lead to similar results
for the d-Painlevé equation of the surface type fo). We refrain from giving complete

details here, and restrict ourselves only to the main results.

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic
curves {C,} through eight points

s;=(a;,—q;), Sizsa=(a;+¢,—a;+¢€), i=1,...,4, 47

where the points ss, ..., sg are infinitely near to s,, ..., s4, respectively. This pencil contains
a reducible curve:

Co ={(x +y)* =0} (48)

The vertical involution i; and the horizontal involution i, for this pencil can be described

by the following equations:

1 1 1 1
i = == 49
hy) =009, st o 2;x_ai, (49)
. _ 1 1 1 1
h(x,y) =(X,y), m+X+y _§;y+ai' (50)
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$1,82

$3,54

5,56

S7,S8

@

al

»)

Figure 2: (a) Base set of the surface type Dil): four double points on a double (1,1)-curve

in P! x PL. (b) Pencil of quadrics touching along a conic

3D Painlevé map. We consider the pencil of quadrics {P,} in P? obtained as the Segre

lift of the pencil of curves {C,}. The pencil {Q,} is spanned by Q, = {X;X, — X3X, = 0} and

Qu =Py ={(X; + X,)* = O

Qi = XX, — X3X, — AX, + X,)? = 0.

(51)

The base set of the pencil Q, is the double conic {X, X, — X;X, =0, X; + X, = 0}. Thisis a

pencil of type (vi). The matrix M, of the quadratic form Q, is:

21
1-24

1-24 0
—21 0
0 0

0 -1

0
0
-1

0
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The characteristic polynomial of the pencil {Q,} is: A(1) = det(M;) = 1 — 44, the same as in

Section 5. The normalizing transformation of Q,,, to the canonical form Q, reads:

X1 Y,
X Y
2 =A.V 2 ’
X3 Y3
X, Y,
where
La+v) La-v») 0 0
2v 2v
La-» La+») o o
A = 2v 2v
L=
0 0 10
0 0 0 1

A parametrization of the quadric Q,,, is given by:

_Xl- n %((1 +v)x + (1 —v)y)
L@-vx+a+

Xl _ A, Y1_ (=X +{1+2)y) =: ¢,(x,y).

X, Xy Xy

| X, | | 1] 1

The pencil-adapted coordinates (x, y,v) on (the double cover of) P? are:

- 2.X4 ’ y - 2X4 ’

which have to be supplemented with

1 —'))2 X1X2 —X3X4
A= = .
4 (X1 +X5)?

(53)

(54)

(55)

(56)

(57)

Theorem 4. For any § € C \ {0}, define the Painlevé deformation map corresponding to the
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translation v w— 9 = v + 26 by

X1 = X1X4
X, = XX,
L: { X5 = X3X,—(A0) - A(»)Qw(X)
= X3X, 4 6(v +8)(X; + X,)?,
X, = X2

Then, in pencil-adapted coordinates, the map L acts as follows:
oo o 5 “ ) N
L:(xyv)—X99), X=x+ ;(x+y), y=y+ ;(x+y), V=v+26. (58)
For the latter map, the factorizations (4), (5) are given by

Ll =R1 : (x,y,V) = (x,i,')}'i‘a), L2 =R2 : (x,y,V) = (-ﬁf’yav-i_a)a

where
- o) v+4 v
y—y+;(x+y) < Tix  yEx (59)
- o) +4 v
x—x+;(x+y) = Tty Xty (60)

Computing the 3D Painlevé map F = R;oi;oL;oR,0i,0L, in the pencil-adapted coordi-

nates (x,y,v), we come to the following non-autonomous system:

Von+1/2 Yon-1/2  Vop 4 1 61)
Xn+1 + Vn Xp + Yn 2 i=1 yn+ai’
4
Van+3/2 Yont1/2 Vopq Z 1 (62)
Xn+1 T Yo+l Xn+1 + Vn 2 i=1 Xn+1 — G .

This can be considered as a d-Painlevé equation of the surface type Dil), in a realization
different from that in [11]. We remark here that the latter equation was put into our
scheme in [2, sect. 9], however in the framework of pencils of quadrics with rational
(non-branching) generators. There is no obvious relation between these two systems,

and it would be desirable to clarify this point.
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The symmetric case is characterised by a,; = —a,_;, i = 1,2. In this case the latter

equations become two instances of

v Vy—
n+1/2 n-1/2 _ ‘Vn( uy, U, )’ (63)

Upt+1 + Uy Uy + Uy u,zl — af u,% - a§

if we set uy,_; = xp,, Uy, = Vp-

7 From a pencil of type (iv) to the g-Painlevé equation of the

®
surface type A,

2D QRT map. Consider the QRT map corresponding to the pencil of biquadratic curves
through eight points

s = (@, by) = (ke xc;), i=1,..,4, (64)

S; = (al‘, bl) = (Ci,Ci_l), i= 5, ,8, (65)

with x # 0,1. These eight points support a pencil of biquadratic curves if they satisfy the

condition
4 4 4

Il ¢ -1 o Il a o IT;_, bi _
8 8 8 :

Hi:S Ci Hi:s a; Hi:S b;

They are symmetric with respect to o(x,y) = (y,x) if ¢;; = cz‘il_l, i=1,..,4. See Fig. 3 (a).

(66)

This pencil contains a reducible curve consisting of two (1,1)-curves:
Co = {(xy — D(xy —x*) = 0}. (67)
The vertical involution i; can be described by the following equation:

4
52 2 . — ;

R o,z (68)
xy —1)(xy—1) I .(x—c¢)

Similarly, the horizontal involution i, can be described by the following equation:

Xy —xH)(xy =) _ T, —xch)

= . 69
(55)’ - 1)(xy -1 H?:S(y — Ci_l) (69)

L(x,y) = (X, ),
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(a) (b)

Figure 3: (a) Base set of the surface type Agl): two quadruples of points on two (1,1)-curves
(hyperbolas) in P! x P! intersecting at two points (co,0) and (0, o). (b) Pencil of quadrics

through two non-coplanar conics intersecting at two points

The QRT map F is the composition of these two involutions, F = i;0i,. The singularity
confinement structure of the QRT involutions is as in (11). In the symmetric case we have

F = f2, with f = i;oo = ooi, being the QRT root.
3D Painlevé map. As usual, we identify P! x P! with the quadric
Qo = {X1 X, — X3X, = 0} C P?,
via [X; : X, : X3 : X4] =[x :y: xy : 1]. The points s; are lifted to
[ke; et a2 1], i=1,..,4,
S;=1la; :b;:ab; :1] = (70)
it i1:1]i=5,..,8
We declare Q, to be spanned by Q, and Q, = P, = (X5 — x*X,)(X; — X,):
Q, = {XIXZ — XX, — A(X5 — 12X,)(X;5 — X,) = 0}. (71)

The base set of the pencil Q; consists of two conics, {X;X, — X;X, = 0, X5 — x2X, = 0} and
{X1X,—X5X, =0, X;—X, = 0}, which intersect at two points[0 : 1 : 0 : 0]and[1:0: 0 : 0].
This is a pencil of type (iv).
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The matrix M; of the quadratic form Q;:

0 1 0 0
10 0 0

M/l = (72)
0 0 —21 “1+0+1x»)A
0 0 —1+(1+x?)A —21%2

The characteristic polynomial of the pencil {Q,} is:
AQ) = detMy) = (1 — (1 +x3)2) — 4222 = (1 — (1 +1022)(1 — (1 — 1)22),

so that Sing(Q;) = {(1+x)72,(1—x)~2, oo}. This polynomial is not a complete square, and we
have to uniformize 4/A(1). The uniformizing variable is v € C. However, in the present
situation it will be convenient to use w = e” instead, with w € C \ {0}. The shiftv +—» v +§

will be replaced by w ~— qw with g = ¢°. We set

_(K —w)(1 —xw)

A=Aw) = P (73)
Then A(1) becomes a square:
_*Q—w?)? k(1 —w?)
M= pa e = VAW = aTay

Observe that A(w) = A(w™'), while \/A(1) changes its sign under w ~— w. This gives us a
double cover of the original pencil branched at 2 = (1 +x)~2 (corresponding to w = 1), and
at 1 = (1 —x)~2 (corresponding to w = —1). The point 1 = co (corresponding to w = 0, o)
is not a branch point. The normalizing transformation of Q;(X) to the canonical form

Qu(Y) =YY, —Y3Y, is achieved by the transformation

X, Y,
X Y
=4, 1, (74)
X3 Y;
X, Y,
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where one can take

1 0 0 0
01 0 0
Aw = 1—xw wkx—-—w) | (75)
0 0
1—w? 1—w?
Xx—Ww w(l —xw)
x(1—w?) x(1-—w?)

Indeed, one immediately verifies that
ALM Ay, = M.

Now, we are in the position to derive a parametrization of the quadric Q;:

X3 X
X5 y
= Aw =1 ¢u(x, ). (76)
X3 Xy
X4 1

Observe that this parametrization is neither valid for w = 0 nor for w = . The pencil-

adapted coordinates (x, y,w) on (the double cover of) P3 are:

_ (1 —xw)X; — x(x — w)X, _ w(l —xH)X, 77
(1 -x2)X, x(1 —xw)X, — (x — w)X;’
_ (1 —xw)X5 — x(x — w)X, _ w1l —x»)X, (78)
(1 -%x2)X, x(1 —xw)X, — (x — w)X,’
which have to be supplemented with
P _—w)d —xw) X3 X5~ X5Xy . (79)
(k2 —1)2w (X3 —12X,)(X5 — Xy)

Theorem 5. For any q # +1, define the Painlevé deformation map corresponding to the

translation w ~— © = q*w by

X1 = XX, + (AD) — Aw)) (X5 — X)(X5 — €2Xy),
X, =X2,
L: {272 (80)
X3 = X,Xs,
L ?4 = X2X4,
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where A = A(w) is given by (73). Then, in pencil-adapted coordinates, the map L acts as

follows:

2,2 2 2 2,2 2
o qw -1 (q _l)w -1 P | q-w -1 -1 (q _1) ~ 2

L: — —_ . e — - X, = . 81
YTt w—1 " Y q2(w2—1)y qz(w2—1)x ©=gqw. (1)

For the latter map, the factorizations (4), (5) are given by

L =R; : (x,y,w) - (x,y,qw), L, =R, : (x,y,w) — (X,y,qw)

where
goo Qw1 L @-) o Y ogw | yx—w? 82)
q>(w?—-1) q>(w?—-1) yx—1 yx—1~
and
o q2w2—1x_ (> - Dw* | - Xy —q’w? _ xy-—uw’ 83)
w?—1 w?-—1 Xy—1 xy—1"

Relation to the g-Painlevé equation of the surface type Agl). We now compute the 3D
Painlevé map F = R, oi;0L,0R,0i,0L, in the pencil-adapted coordinates (x, y, w). For each

fixed w, the intersection curves Q( N P, form a pencil through eight points
s(w) = (we, we; '), i=1,..,4, (84)

sw) = (¢,¢t), i=5,..,8, (85)

which are just the points S, ..., Sg expressed in the pencil-adapted coordinates on Q.
The formulas for the 3D QRT involutions iy, i, restricted to Q,,) coincide, in the pencil-
adapted coordinates, with the original QRT involutions (68) and (69), upon replacing x by
w, and s; by s;(w):

S N * (x — we
) =G, w) _ iz we) (86)
WDy =D - )

. L Gy—w)ay—wd) IO —we)
b = b b o~ = . 87
i(x,y) = (X,y) & - Doy —1) Hfzs(y e (87)
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In the notation of the equations (7), (8), the latter two equations read:

~ 4 _
(Xyn - wgn)(x.yn - wgn _ Hi=1(yn - w2nci 1)

= , (88)
S — S -
(Xyn 1)(xyn 1) Hi:S(yn - Ci 1)
= 4
(yxn+1 - w§n+1)(yxn+1 - wgn_ﬂ) _ Hizl(xn+1 - w2n+lci) (89)
Vi _ — - 8
(yxn+1 1)(yxn+1 1) Hi=5(xn+1 - Ci)
where
Wop—1/2 = g Wap, Wapt1/2 = qWoy. (90)
According to (7), we have:
Ly @ (X Yo Wan—172) == (X, Y, W) aNd Ry 1 (X, Vi, Wap) == (Xpg1, Vi Wang1/2)-
With expressions (83) for the maps L,, R,, we find:
2
XYn — w2n — XnYn — WapWop—1 (91)
Xyp—1 Xpyn — 1 ’
XYn — win _ Xn+1Yn — Wop+1Wop (92)
fyn -1 Xn+1Vn — 1 .

Similarly, according to (8), we have:

Lyt (X%p41, Yoo Wang1/2) V= (Xpg1, Y, Wapg1)  and Ry ¢ Xy, Vs Wong1) F—= (X1, Vi1 Want3/2),
and with expressions (82) for the maps L;, R;, we find:

2
Xty T Wh, _ Xn41¥n — Wopq1Wop

= , (93)
Xn+1Y — 1 Xn+1¥Vn — 1
= 2
2V Xnt1 = Wy, 4y _ Xn+1Vn+1 — Wons2Wonsy (94)
ixn+1 -1 Xn+1Vn+1 — 1

Combining equations (88), (89) with (91)—(94) results in the following non-autonomous

system:

4 -1
(xn+1yn - w2n+1w2n)(xnyn - w2nw2”_1) = Hi:l(yn _ werCi ) (95)
(Xp41Yn — DXy — 1) H?:s(yn - Ci_l)
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4
Vng1Xns1 = Wang2Want1)VnXng1 — Wopg1Wap) _ Hi:l(x”'H — Wn41Ci)

= (96)
(yn+1xn+1 - 1)(ynxn+1 - 1) H?=5(xn+1 — Ci)

This is the g-Painlevé equation of the surface type Agl) ,as given in [11]. In the symmetric

case, if ¢,; = Cz_il—l’ i=1,..,4, these equations become two instances of

4
(un+1un _ wn+1wn)(unun_1 —_ wnwn—l) _ Hi:l(un - wnci) (97)
(un+1un - 1)(unun—1 - 1) Hl-gzs(un - ci)

8 From a pencil of type (iii) to the d-Painlevé equation of the

surface type A"

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic

curves through eight points s; = (a;, b;), i = 1,...,8, where
a; = zi(z; —x1), by = zi(z; — 1)

These eight points support a pencil of biquadratic curves if they satisfy the condition
8
Zzi = 2(x; + x5).
i=1

They belong to the curve with the equation
(x = ¥)* = (1, — 1) (2% — K1 Y).

This is a biquadratic curve in P! x P! with a cusp point at (oo, o), see Fig. 4 (a).

The vertical involution i; can be described by the following equation:

il(x’ Y) = (X, .’)7)9
(T -E€-1))(y =8¢ —x2) _ uc)
(37_ E =1 —x + Kz))(y —(E—x)(E —x + Kz)) Uk, — 5),

Here we use the abbreviation

x =£(€ —xy). (98)

8
U(z) = [[(z -z (99)
i=1
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S

S4 S7

S5 S6

(a) (b)

Figure 4: (a) Base set of the surface type Agl): eight points on a cuspidal (2,2)-curve in

P! x PL. (b) Pencil of quadrics through cuspidal spatial quartic in P?

Formula (98) is understood as follows. Written as a polynomial in &, it is anti-symmetric
with respect to & « x; — §. Upon division by & — 2x,, the resulting polynomial is symmetric
and therefore it can be actually expressed as a polynomial in x = (¢ — «;). This defines i,

as a birational involution (its symmetry w.r.t. y < y is obvious).

Similarly, the horizontal involution i, can be described by the following equation:

iZ(x’y) = (555 y)’
(X =1 — 1) (x —=n(n — 1)) )
(i_ (m—1)(n — 13 + Kl))(x - =) —x,+ K1)) U, — 1)’

y=n(n—-1xy). (100)

The QRT map F is the composition of these two involutions, F = i;0i,. The eight points
$1,...,8g in P! x P! serve as the indeterminacy set for i; and for i,. The singularity confine-
ment structure is as in (11).

Remark. In what follows, we restrict ourselves to the case x; + x, = 0. This restriction
is not essential, but will allow us to shorten some of the formulas. Thus, from now on we

set
X =—K, K=K (101)

Arnold Mathematical Journal, Vol.11(4), 2025 225


http://dx.doi.org/10.56994/ARMJ

Jaume Alonso, Yuri B. Suris

If, additionally, the points z; satisfy the condition

Zipa=—2;, i=1,..,4, (102)
then the QRT involutions admits a symmetry i; = ooiyoo, where o(x,y) = (y, x), so that
one can introduce the QRT root f = i;oo = ooi,, such that F = fof.
3D Painlevé map. As usual, we identify P! x P! with the quadric Q, = {X, X, — XX, =
ObcP3via[X; : X, : X3 : X4] =[x :y: xy: 1]. The points s; are lifted to

S;=1la; : b; : a;b; : 1].
We declare Q, to be spanned by Q, and Q,, = P, = (X; — X;,)? — 2x*(X; + X,)X,:

Q; = {Xle — XX, — AKX = Xo)? — 23X, + X)X,) = 0}. (103)

The base set of the pencil Q, is a cuspidal space curve of degree 4, {X, X, — X3X, =0, (X; —
X,)? — 2x*(X; + X,)X, = 0}, with the cusp at [0 : 0 : 1 : 0]. This is a pencil of type (iii).

The matrix M; of the quadratic form Q;:

—21 14212 0 2%?
1421 =21 0 2%
0 0 0 -1

22 20> -1 0

The characteristic polynomial of the pencil {Q;} is: A(1) = det(M;) = 1 + 44, so that
Sing(Q;) = {—i, o). We set

2 -1

A=, Va@)=v. (105)

Thus, A(v) = A(—v), while \/A(1) changes its sign as v —— —v. This gives us a double
cover of the original pencil branched at v = 0, corresponding to 1 = —1/4, and at v = oo,

corresponding to 1 = co. The normalizing transformation of Q; to the canonical form Q,
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can be found as follows:

X Y,
X Y
2l Z A, 2 , (106)
X3 Y;
X, Y,
where
o+ -1 0 0
2v
lw-1) Z@+1 0 0
A= 2 : (107)
o2 _ o2 _
> (»=-1) > (»-1) 1 0
0 0 01

Indeed, one immediately verifies that
ATM;0)A, = M.

Now, we are in the position to derive a parametrization of the quadric Q,,):

'Xl' _x T i((v+1)x+(v—1)y)
X, y ~(v=Dx+@+1)y)
= A, =1 =: ¢,(x, ). (108)
X, xy xy + %(Vz - D(x+y)
| X4 | | 1] 1

Observe that this parametrization is neither valid for » = 0 nor for » = «. The pencil-

adapted coordinates (x, y,v) on (the double cover of) P are:

x:(v+1)X1—(v—1)X2 y:(v+1)X2—(v—1)X1

X, X, (109)
which have to be supplemented with
2 XX, — X5X
1= v —1 142 344 (110)

4 (X, —Xp)? - 212Xy + X)X,

The degenerate quadrics for v = oo and for » = 0 are cones.
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Theorem 6. For any 6§ € C \ {0}, define the Painlevé deformation map corresponding to the
translation v w— 9 = v + 25 by

r Py

X, = XX,
X, = XX,
L: X = X3X,—(20) = A(1))Qe(X)
= X3X4 — (v + B)(Xq — X5)* + 2°B(v + B)(X; + X)Xy,
X, = X

Then, in pencil-adapted coordinates, the map L acts as follows:

5(x — 5(y —
L: (x,9,9) — (9,9, 55=x+¥, )7=y+¥, S=v+25.  (111)

For the latter map, the factorizations (4), (5) are given by
~ ~ 9
Ll =R1 : (x,J’aV) = (xayav+5)a y=)’+;(y—x), (112)

L=Ry: (cp) = By, v +8), T=x+ S(x—y) (113)

Relation to the d-Painlevé equation of the surface type Af)l). In the pencil-adapted
coordinates (x, y, ), for each fixed v, the intersection curves Q;,, U P, form the pencil

through the points
5;(v) = (q;(v), b;(v)) = (zi(z; + V), zi(z; — %)), i=1,..,8, (114)

which are just the points S; expressed in the pencil-adapted coordinates on Q,,. Thus,
the 3D QRT involutions i;, i, act on each quadric Q,(, in the pencil-adapted coordinates
via formulas which are obtained from the corresponding 2D formulas by replacing x by

Xv.

il(xi y) = (xa j;)a
(7 — £ —1om) (y — £ — xv) G

= , x= .15
G-CGroG+2o)i-CErmE+am) UCow-9 §E+w), (115
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i2(x’ y) = (52” y)a
(X =10 + 1)) (x = 5(n +xv)) U

= , Yy =nn—xv). 116
G = (- 1)) — 200))(x — (1 — 1) — 2xv))  UGev—m)" ” n(n —xv) (116)

In notations of (7), (8), the latter two equations take the following form:

(% = 0 + 1v2)) (x =10 + xv21)) )
(’f - (77 - KVZn)(n - ZKVZn))(x - (77 - KVZn)(r) - ZKVZn)) U(szn - 77)’
Yn =11 = xvap), (117)
(37_ g(é‘ - KV2n+1))(y - g(g - KV2n+1)) U(§)

(37_ (g + KV2n+1)(§ + 2KV2n+1))(y - (§ + KV2n+1)(§ + 2KV2n+1)) - U(_KV2n+1 - g),
Xp41 = §(§ +xvp041). (118)

Recall that here

Vongl = Vang1/2 + 8 = Vo, + 28.
To express in (117) the variables x, X through x,, y,, we observe that
Ly : (xnayn’VZn—l/Z) == (X, yn’VZn)’ Ry : (x, yn’VZn) L (xn+1’ yn’V2n+1/2)

can be written, according to (113), as follows:

- o
(Xp —Yn)» TESP. Xpy1 =X+ —(X —Yp).

X =Xx,+
Von-1/2 Von

A simple computation confirms that these relations are equivalent to

x —n(n +xv,,) _ X, — NN+ KVy_1) _
= s Yn=n(n—xvy,), (119)
X =M —=xv,)(M = 2xvy,) Xy — () — xKV,) (1) — KV — KVp_1)
X =1+ xvyy,) Xpe1 — NN + KV2p41)

Yn = 77(77 - KVZn)~ (120)

X — (1 —xvy,)() — 2xv,,) B Xpp1 — (0 = xV2,)() — KV 41 — KVZn),

Similarly, to express in (118) the variables y, y through x,,,, y,,, we observe that

Ly ¢ (X1, Yno Vans1y2) F= g1 V5 Vang1)s - Ri 0 (0ng1, ¥ Vang1) F= (Xng1s Yag1s Vana3g2)s

which, according to (112), can be put as follows:

5
On—Xpt1)s Yn1 =Y+ ” & = Xpt1)-

y=¥Yn+
Van+1/2 2n+1
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Again, these relations are equivalent to

Y — &€ —xv3,41) _ Yn = §(§ —xvy,)
Y= (€ + 150 )E +2kv3011) Y — (€ 4 12040 + 1V 41 + 103)]
Xn41 = g(g + Kv2n+1) (121)
y—§( —xvyp1) _ Vi1 — §(§ — xv3,42)
V=G +1200)E +2102001)  Yna1 — € + 102040 + K40 + KV5041)
Xn+1 = §(§ + Kv2n+1)- (122)

Substituting (119)-(122) into (117), (118), we arrive at the following system of non-
autonomous difference equations for the variables x,,y, :
(Xpa1 =00 + 1KV241)) (X — N + KV2_1))

(xn+1 — () = xv2.)( — KV 41 — KVzn))(xn — (1 — xv2)(1) — KV, — KVzn—l))
__ U
U(cvyy — 1)

Yn =101 —xvy,), (123)

(yn+1 - g(g - KV2n+2))(yn - §(§ - KVZn))

()’n+1 — (§ + 12041 +KVop40 + KV2n+1))(Yn — (§ +1v2p41)(€ + 1V + KVZn))

U
B U(_sz(i)l “gy T §( +xvyn11). (124)

This is the d-Painlevé equation of the surface type Aél), as given in [20], [11].

Remark. In the symmetric situation, when U(z) = U(-z), the system (123), (124)
can be interpreted as a one-field second order difference equation, with x,, = u,,_; and
Yn = Uy,. To see this, one should make the change £ ~— —£ in equation (124), after which
it matches (123).

9 From a pencil of type (ii) to the g-Painlevé equation of the

surface type A"

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic
curves through eight points s; = (a;, b;), where

K1 1 Zj .
a, =2z;+—, bi=_+_’ l=1,...,8.
Zj Zi K
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These eight points support a pencil of biquadratic curves if they satisfy the condition

8
[]z =2
i=1
They belong to the curve with the equation
(x —160)(y — Kl_lx) = (k%) (11 — 162)%.

This is a biquadratic curve in P! x P! with a simple node at (oo, o), see Fig. 5 (a).

.
s, \
\
)
s |
S3 /
'S4 |
sg

(a) (b)

ST

Figure 5: (a) Base set of the surface type A(()D: eight points on a nodal (2,2)-curve in P! x P!.

(b) Pencil of quadrics through a nodal spatial quartic in P?

The vertical involution i; can be described by the following equation:

p-i-d
g 1%} § X2 _ U(g) X = g + E (125)
g.

il(x5 Y) = (X, )7)1

Here we use the abbreviation

8
Uz)=z*]](z - z). (126)
i=1

Formula (125) is understood as follows. Written as a Laurent polynomial in £, it is anti-

symmetric with respect to £ « x;/£. Upon division by & — x, /§, the resulting Laurent
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polynomial is symmetric and therefore it can be actually expressed as a polynomial
in x = £ + x;/&. This defines i; as a birational involution (its symmetry w.r.t. y < yis
obvious).

Similarly, the horizontal involution i, can be described by the following equation:

U
<~ K Kl’?)( 1) K177) U(E) n K
X—-———)[(x-=-—
n L%) n %) n

The eight points sy, ..., sg in P! x P! serve as the indeterminacy set for i; and for i,. The
singularity confinement structure is as in (11). The QRT map F is the composition of these
two involutions, F = i; oi,.

Remark. In what follows, we restrict ourselves to the case x;x, = 1. This restriction is
not essential, but will allow us to shorten some of the formulas. Thus, from now on we
set in this section

== =x. 128
X1 = Ky =K (128)

If, additionally, the points z; satisfy the condition
Zipa=2z ', i=1,..,4, (129)

then the QRT involutions admits a symmetry i; = ooi,oo, where o(x,y) = (y, x), so that

one can introduce the QRT root f = i;o0 = ooi,, such that F = fof.

3D Painlevé map. As usual, we identify P! x P! with the quadric Q, = {X; X, — X5X, =
O}cP3via[X; : X, : X5 : Xu] =[x :y:xy:1]. The points s; are lifted to

We declare Q, to be spanned by Q, and
Qoo = Po = (X7 + X3) — (1 + 11X, X, + (c — k7 1)2X7. (130)

The base set of the pencil Q, is a nodal space curve {Q, = 0, P, = 0} of degree 4, with the
node at [0 : 0 : 1 : 0]. This is a pencil of type (ii).
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The matrix M; of the quadratic form Q;:

—2xA 1+(1+%x*)A 0 0
1+ +x3)A —2x 0 0
M, = . (131)
0 0 0 -1
0 0 -1 2k —x"1H%1

The characteristic polynomial of the pencil {Q,} is:
AQ) =det(M;) = (1+ (1 + KZ)/I)Z — 4 = (1+ 1+ %) (1+ (1 - %)),

so that Sing(Q;) = {—(1 + ¥)72,—(1 — x)~2, o}. This polynomial is not a complete square,
and we have to uniformize 4/A(1). The uniformizing variable is v € C. As in Sect. 7, it will

be convenient to use w = e” instead, with w € C \ {0}. We set

(x —w)(1 — xw)

A =Aw) = (1 —x2)2w

(132)

Then A(1) becomes a square:

1*(1 — w?)? x(1 — w?)

AQ)= ———= VAQ) = ——=.

@ w2(1 — x2)? = @ w(l —x2)
Observe that A(w) = A(w™1), while y/A(1) changes its sign under w ~— w~!. This gives us a
double cover of the original pencil branched at 1 = —(1 + x)~2 (corresponding to w = 1),
and at 1 = —(1 — x)~2 (corresponding to w = —1). The point 1 = co is not a branch point (it
corresponds to w = 0, o). The normalizing transformation of Q;(X) to the canonical form

Qu(Y) =Y,Y, —Y;Y, is achieved by the transformation

X, Y,
X Y
2o, (133)
X; Ys
X, Y,
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where one can take

w(d—xw) wx-—w) 0
x(1—w?2) x(1—w?)
wx—-—w) wd-—xw) 0 0
A, =| K@T-w?) x(1-w?) . (134)
w 1 —xw)(x —w)
0 0 - =
X 2w
0 0 0 1
Indeed, one immediately verifies that
w
ALM Ay = ~Mo.
There follows a parametrization of the quadric Q.
X, b9
X y
=, = gulry). (135)
X3 Xy
X, 1

This parametrization is neither valid for w = 0 nor for w = ~. The pencil-adapted

coordinates (x, y, w) on (the double cover of) P3 are:

_x 1 —xw)X; — (x —w)X, _x 1 —xw)X, — (x —w)X; (136)
- w (1 - KZ)X4 ’ y= w (1 - KZ)X4 ’
which have to be supplemented with
1= (x —w)(1 — xw) _ X1 X, — X3X, . (137)
(k2 — 12w KX? + X2 — (1 +1)X, X, + (k — k12X

Theorem 7. For any q # +1, define the Painlevé deformation map corresponding to the

translation w ~— © = q*w by

X] =X1X4,
X, = X,X,,
L. Az 2484 (138)
X3 = X3X, — (A0) — A(w)) Qe (X),
f4 =Xi,
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where 1 = A(w) is given by (132), and Q. (X) is given in (130). Then, in pencil-adapted

coordinates, the map L acts as follows:

o 1-q? - 1-q? .
L: X=x+ (x—wy), y=y+ (y —wx), 0=q*w. (139)
w? -1 w? -1
For the latter map, the factorizations (4), (5) are given by
—_ q_2
L. (x,y,w) —— (x,y,qw), y=y+ 1 (y — qwx), (140)
— — 1—q2
Ryt (6y.w) = (6Fqu), §=y+ (v —wx) (141)
2
Lyt Guy.w) e (. qw), X =x+ =0 —quy), (142)
_ 42
Ry i (63,w) = (% y,qu), ¥ =x+ ——(x - wy). (143)

Relation to the g-Painlevé equation of the surface type A(()l). In the pencil-adapted
coordinates (x, y, w), for each fixed w, the intersection curves Q;, U P, form the pencil
through the points

5i(10) = (@) bi(w) = (z+ 5= -+ 1), 1=1,8, (144)

which are just the points S; expressed in the pencil-adapted coordinates on Q. Thus,
the 3D QRT involutions iy, i, act on each quadric Q,(,, in the pencil-adapted coordinates
via formulas which are obtained from the corresponding 2D formulas by replacing x by

w:

L(x,y) = (x, ), 1 S x=§+wig, (145)
(PN TR TR
X—-n——|lx—n——
B(x,y) = (%), ( w">< w”> u@) —%+% (146)
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In notations of (7), (8), this takes the form

(f_n_wzlnn><x_n , )

Wop7)

Un) 1.7
— , ==+ , (147)
(7{_ w0y, ] L) (x j Wy, j i) U(wzn) Yy n Wrp
2 2 n
n w5, n w;,
(i
& Wy § W _ u() Xpep = €+ 1 (148)
B 1 1 U( 1 ’ mH w2n+1§'
Y= wynii§ — w§n+1§ Y = Wy1§ — w§n+1§ Woni1§

Here, recall,

_ — 2
Wont+1 = qQWany1/2 = 4" Wop-

(149)
To express in (147) the variables x, X through x,, y,,, we observe that
Ly : (xn’ Yno w2n—1/2) = (x, Yn> wZn)’ Ry : (%, Yno wZn) i (xn+1’yn’ w2n+1/2)-
According to (142), (143), we find:
1—q72 _ 1-q? _
X =x,+ 2—(xn - qun—l/Zyn)a Xpy1 = X + 5 l(x — WypYn)-
wm-1/2 Won —
A straightforward computation confirms that these equations are equivalent to
e 1 N
Wop?) " Wrp—17M 1 n
= , == , 150
W1 _Bm__ 1 Tyt (150
7 wgn " Ui WopWop—1
- 1 s —p— L
~ Wy 7 Wop 7) TN wy,”
X — 7wl Xp41 — B e——

W, W
w3, n 2nWan+1

Similarly, to express in (148) the variables y, y through x,,,, y,, we observe that

Ly @ (Xp41, Yoo Wang1/2) F= (g1, Vs Wong1)y Ry 0 (X1, Y, Wangr) == (g1, Y1 Wanasy2)-
According to (140), (141), we find:

1—-q2 _ 1-qg2 _
Y=Y+ — n = QWant1/2Xn41)s Vo1 =V + ———( — Wans1Xp41).
Wons1/2 ~

n41
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These equations are equivalent to

1 ¢ ,_L_ 8
Wan+1 " w, 1
§ n+1 — § ”1 , Xy =&+ ” : (152)
Y= W€ — — Yp—Woypp§ — —— 2n+1
w2n+1§ w2n+1w2n§
51 § . 1 3
T w n+l =~ & w
3 2n+11 _ 3 2n+21 . Xp =&+ ” § (153)
V=W ——5—— Ve~ Wyné-——— 2n+1
2n+1§ w2n+2w2n+1§

Substitute (150)—(153) into (147), (148). This results in the following system of non-

autonomous difference equations for the variables x,, y,:

=)
Xpg1 =7 = Xp =7 =
<"+1 7 w2n+177>( n= 7 Wrp—17) _ U _ 1 n
_ D oy=—+ L (154
(x _ Wrp, _ n )(x _ Wy, _ L) U(%) n Wop
My WoWap 41 ooy WoWap—1 7

(y”“ w2n+z> (y" wZn) G

Yn = Wanp§ — ;) U(wmlﬂg)

w2n+1w2n§

Yn+1 — w2n+1§
w2n+2w2n+1§

(155)

Xpy1 = g +
Won+1

This is the g-Painlevé equation of the surface type Af)l), as given in [20], [11].

Remark. In the symmetric situation, when U(z) = U(z™!), the system (154), (155)
can be interpreted as a one-field second order difference equation, with x, = u,,_, and
Y = Uyy,. To see this, one should make in equation (155) the change ¢ ~— -1, after which

it matches (154).

10 Conclusions

In this paper, we carried out the largest part of the task left open in [2], namely extended

our novel approach to the pencils for which the generators through a point X € P?
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depend on X in a non-rational (branching) way. The only case left open for a further
investigation is the pencil of the generic type (i), associated (in our scheme) with the
elliptic Painlevé equation. Also the problem of an interpretation of the isomonodromic
property of discrete Painlevé equations within our scheme remains open and is left for
the future research. Finally, it will be important to extend the scheme of the present paper
to discrete Painlevé equations corresponding to further translations in the corresponding
affine Weyl symmetry groups. A path to this goal (via additional geometric involutions
related to pencils and nets of quadrics) was sketched in the concluding remarks of [2].
The first step towards this goal (in the two-dimensional framework) has been performed

in [3].
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