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Foreword to the special issue

We are happy to present a special issue of Arnold Mathematical Journal; its topic is
finite-dimensional completely integrable systems.

This special issue stemmed from the conference “Finite Dimensional Integrable Sys-
tems" (FDIS23) that took place in Antwerp, Belgium in summer of 2023. That was the 7th
in a series of biennial conferences, preceded by the following editions:

• 2011 in Jena, Germany,

• 2013 in Luminy, France,

• 2015 in Bedlewo, Poland,

• 2017 in Barcelona, Spain,

• 2019 in Shanghai, China,

• 2022 in Tel Aviv, Israel

• 2023 in Antwerp, Belgium

• and the 8th took place in 2025 in Guanajuato, Mexico.

FDIS is a major international event in the field of finite dimensional integrable sys-
tems and their ramifications. It attracts main players in this area, along with junior
researchers; its focus is on the theoretical development of the field and on its numerous
applications in mathematics and adjacent disciplines.

It has been a tradition to publish special issues of research journals originated in this
conference. These include Journal of Geometry and Physics January 2015, May 2017, and
April 2019; Philosophical Transactions of the Royal Society A, October 2018; and European
Journal of Mathematics, December 2022. The present issue continues this tradition.

The guest editors for this special issue are Misha Bialy (Tel Aviv University), Anton
Izosimov (University of Glasgow), and Sonja Hohloch (University of Antwerp).
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Sergey I. Agafonov, Vladimir S. Matveev

1 Introduction

We work locally, on a smooth 𝑛-dimensional pseudo-Riemannian manifold (𝑀, 𝑔) of any

signature. By geodesic flow we understand the Hamiltonian system on 𝑇∗𝑀 generated by

the Hamiltonian

𝐻(𝑥, 𝑝) = 1
2
𝑔𝑖𝑗𝑝𝑖𝑝𝑗.

We will study the situation when the geodesic flow admits 𝑛, including the Hamilto-

nian, integrals
1
𝐼(𝑥, 𝑝) = 2𝐻 ,

2
𝐼(𝑥, 𝑝) , … ,

𝑛
𝐼(𝑥, 𝑝)

such that the following conditions are fulfilled:

1. The integrals are quadratic in momenta, that is,
𝛼
𝐼(𝑥, 𝑝) =

𝛼
𝐾
𝑖𝑗

𝑝𝑖𝑝𝑗. In particular,

𝑔𝑖𝑗 =
1
𝐾
𝑖𝑗

. We assume without loss of generality that the (2,0)-tensor fields
𝛼
𝐾
𝑖𝑗

are

symmetric in upper indexes.

2. At almost every point 𝑥 ∈ 𝑀, there exists a basis in 𝑇𝑥𝑀 such that, for every 𝛼 =

1,… , 𝑛, the matrix (
𝛼
𝐾
𝑖𝑗

(𝑥)) is diagonal.

3. The differentials of the integrals are linearly independent at least at one1 point of

𝑇∗𝑀.

In many publications on this topic, e.g. in [BCR02, Eis34, Kiy97], it is assumed that for

almost every point 𝑥 ∈ 𝑀 the restrictions of the tensor fields
𝛼
𝐾
𝑖𝑗

, 𝛼 = 1,… , 𝑛, to 𝑇𝑥𝑀 are

linearly independent. Our main result, Theorem 1 below, shows that this assumptions

follows from conditions (1,2,3):

Theorem 1. Under the assumptions above, for almost every point 𝑥 the restrictions of

the tensor fields
𝛼
𝐾
𝑖𝑗

, 𝛼 = 1,… , 𝑛, to 𝑇𝑥𝑀 are linearly independent. In particular, for a
1Using ideas of [KM16], is is easy to show that linear independence of the differentials of polynomial

in momenta integrals at one point implies their linear independence at almost every point, provided the

manifold is connected
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Integrable geodesic flows with quadratic integrals

generic linear combination 𝐼 =
∑𝑛

𝛼=2 𝜆𝛼
𝛼
𝐼 of the integrals, the corresponding (1,1)-tensor

field 𝐾𝑖
𝑗 ∶= 𝐾𝑠𝑖𝑔𝑠𝑗, where 𝐾𝑖𝑗 =

∑𝑛
𝛼=2 𝜆𝛼

𝛼
𝐾
𝑖𝑗

, has 𝑛 different eigenvalues.

In dimension 𝑛 = 3, Theorem 1 and Corollary 1.1 below were proven in [Aga24,

Theorem 2] by other methods.

Corollary 1.1. Assume the integrals
𝛼
𝐼 satisfy the conditions (1,2,3) above and in addition

are in involution with respect to the standard Poisson bracket. Then, near almost every

point, the metric 𝑔 and the integrals come from the Stäckel construction.

In view of Theorem 1, Corollary 1.1 follows from [KM80, Theorem 6], [Kiy97, Proposi-

tion 1.1.3], [BCR02, Theorem 8.6] or, possibly,2 from A. Thimm 1976. In these references,

it was shown that 𝑛 quadratic functionally independent integrals in involution such that

the corresponding Killing tensors are simultaneously diagonalisable at every tangent

space and such that at least one of the Killing tensors with one index raised by the metric

has 𝑛 different eigenvalues, come from the Stäckel construction which we recall below.

As mentioned above, the difference between our conditions (1,2,3) and the assump-

tions used in [KM80, Theorem 6], [Kiy97, Proposition 1.1.3] or [BCR02, Theorem 8.6] is

as follows: in [KM80, Theorem 6], [Kiy97, Proposition 1.1.3] or [BCR02, Theorem 8.6] it

was assumed that one of the Killing tensors, with one index raised by the metric, has 𝑛

different eigenvalues. We do not have this condition as an assumption and prove that it

follows from other assumptions.

Let us recall the Stäckel3 construction following [Eis34, St1]. Take a non-degenerate

𝑛 × 𝑛 matrix 𝑆 = (𝑆𝑖𝑗) with 𝑆𝑖𝑗 being a function of the 𝑖-th variable 𝑥𝑖 only . Next, consider

the functions
𝛼
𝐼, 𝛼 = 1,… , 𝑛, given by the following system of linear equations

𝑆𝕀 = ℙ, (1)

2By [Kli78, Note on page 185] the diploma thesis of A. Thimm 1976, which we were not able to find,

contains this result
3The construction appeared already in [Lio49, §§13-14], see also discussion in [L9̈0, pp. 703–705]
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where 𝕀 = (
1
𝐼,
2
𝐼, … ,

𝑛
𝐼)

⊤

and ℙ =
(
𝑝21, 𝑝

2
2, … , 𝑝

2
𝑛
)⊤. It is known that the functions

𝛼
𝐼 are in

involution. Taking one of them (say, the first one, provided the inverse matrix to 𝑆 has no

zeros in the first raw) as twice the Hamiltonian of the metric, one obtains an integrable

geodesic flow whose integrals satisfy the conditions (1,2,3). Corollary 1.1 says that locally,

near almost every points, there exist no other examples of geodesic flows admitting 𝑛

independend quadratic in momenta integrals in involution, such that the corresponding

Killing tensors are simultaneously diagonalisable at almost every tangent space.

It is known that metrics coming from the Stäckel construction admit orthogonal sepa-

ration of variables in the Hamilton-Jacobi equations, so the equation for their geodesics

can be locally solved in quadratures [BKM25, KKM18]. Namely, J. Liouville [Lio49] and,

independently, P. Stäckel [St1] has shown that the metrics are precisely those admit-

ting othogonal separation of variables. L. P. Eisenhart, in his widely cited and very

influential paper [Eis34], has shown that locally the metrics coming from the Stäckel

construction are precisely those whose geodesic flows admit 𝑛 functionally independent

integrals in involution satisfying the following conditions: the integrals are quadratic in

momenta, the corresponding matrices are simultaneously diagonalisable in a coordinate

system, and at every point the corresponding matrices are linearly independent. In

[BCR02, KM80, Kiy97] it was shown that the assumption that the integrals are simultane-

ously diagonalisable in a coordinate system may be replaced by a weaker assumption that

the matrices of the integrals are diagonalisable in a frame. Our result further improves

the result of Eisenhart and shows that the condition that the matrices of the integrals

are linearly independent at each point is not necessary as this assumption follows from

other conditions.

2 Proof of Theorem 1

Under the assumptions (1,2,3) from Section 1, near almost every point, there exist smooth

vector fields 𝑣1(𝑥), ..., 𝑣𝑛(𝑥) ∈ 𝑇𝑥𝑀 such that they are linearly independent at every tangent
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space and such that the metric 𝑔 and the matrices
𝛼
𝐾
𝑖𝑗

are diagonal in the basis (𝑣1, ..., 𝑣𝑛).

After re-arranging and re-scaling the vectors 𝑣𝑖, there exists 𝑚 ∈ ℕ, 𝑚 ≤ 𝑛, 𝑘1, ..., 𝑘𝑚 ∈ ℕ

with 𝑘1+⋯+𝑘𝑚 = 𝑛 and smooth local functions 𝑔1, .., 𝑔𝑚,
𝛼
𝜌1, … ,

𝛼
𝜌𝑚, 𝛼 ∈ {2, … , 𝑛}, on 𝑀 such

that the Hamiltonian and the integrals
𝛼
𝐼 with 𝛼 = 2,… , 𝑛 are given by the formulas

2𝐻 = 𝑉1 + 𝑉2 +⋯+ 𝑉𝑚
𝛼
𝐼 =

𝛼
𝜌1𝑉1 +

𝛼
𝜌2𝑉2 +⋯+

𝛼
𝜌𝑚𝑉𝑚

(2)

In the formulas above, 𝑉𝑖 are the functions on the cotangent bundle given by

𝑉1 = (𝑣1)2𝜀1 + (𝑣2)2𝜀2 +⋯+ (𝑣𝑘1)
2𝜀𝑘1 ,

𝑉2 = (𝑣𝑘1+1)
2𝜀𝑘1+1 + (𝑣𝑘1+2)

2𝜀𝑘1+2 +⋯+ (𝑣𝑘1+𝑘2)
2𝜀𝑘1+𝑘2 ,

⋮

𝑉𝑚 = (𝑣𝑘1+⋯+𝑘𝑚−1+1)
2𝜀𝑘1+⋯+𝑘𝑚−1+1 + (𝑣𝑘1+⋯+𝑘𝑚−1+2)

2𝜀𝑘1+⋯+𝑘𝑚−1+2 +⋯+ (𝑣𝑛)2𝜀𝑛,

where 𝑣𝑖 is the linear function on the 𝑇∗𝑀 generated by the vector field 𝑣𝑖 via the canonical

identification4 𝑇𝑀 ≡ 𝑇∗∗𝑀, and 𝜀𝑖 ∈ {−1, 1}.

The Poisson bracket of 𝐻 and 𝐼 =
𝛼
𝐼 reads (we omit the index 𝛼 since the equations

hold for any
𝛼
𝐼):

0 = {2𝐻, 𝐼} =
𝑚∑

𝑖,𝑗=1

(
{𝑉𝑖, 𝜌𝑗}𝑉𝑗 + 𝜌𝑗{𝑉𝑖, 𝑉𝑗}

)
. (3)

The right hand side of (3) is a cubic polynomial in momenta so all its coefficients are

zero. For every point 𝑥 ∈ 𝑀, this gives us a system of linear equations on the directional

derivatives 𝑣𝑠(𝜌𝑗) with 𝑠 ∈ {1, … , 𝑛} and 𝑗 ∈ {1, … ,𝑚}. The coefficients and free terms of this

system depend on 𝜌𝑗(𝑥), on the entries of the vector fields 𝑣𝑠 at 𝑥, and on the derivatives

of the entries of the vector fields 𝑣𝑠 at 𝑥. Let us show that all directional derivatives 𝑣𝑠(𝜌𝑖)

can be reconstructed from this system. We will show this for the directional derivatives

𝑣1(𝜌2) and 𝑣1(𝜌1), since this will cover two principle cases 𝑖 = 𝑗 and 𝑖 ≠ 𝑗; the proof for all

other 𝑣𝑖(𝜌𝑗) is completely analogous.
4In naive terms, we consider the vector field 𝑣 =

∑
𝑖 𝑣

𝑖𝜕𝑖 as the linear function 𝑝 ↦→
∑

𝑖 𝑣
𝑖𝑝𝑖 on 𝑇∗𝑀. This

identification of vector fields on 𝑀 and linear in momenta functions on the cotangent bundle is independent

of a coordinate system

Arnold Mathematical Journal, Vol.11(4), 2025 5

http://dx.doi.org/10.56994/ARMJ


Sergey I. Agafonov, Vladimir S. Matveev

In order to extract 𝑣1(𝜌2), note that the cubic in momenta component (𝑣𝑘1+1)
2𝑣1 shows

up only in the addends {𝑉1, 𝜌2}𝑉2, 𝜌1{𝑉2, 𝑉1} and 𝜌1{𝑉1, 𝑉2}. In these addends, the coefficient

containing a derivative of one of the functions 𝜌𝑠 is 𝑣1(𝜌2). Thus, equating the coefficient

of (𝑣𝑘1+1)
2𝑣1 to zero gives us 𝑣1(𝜌2) as a function of 𝜌1, 𝜌2 and the entries of {𝑉1, 𝑉2}.

Similarly, in order to extract 𝑣1(𝜌1), we note that the cubic in momenta component

(𝑣1)3 shows up only in the addends {𝑉1, 𝜌1}𝑉1 and 𝜌1{𝑉1, 𝑉2}. Its coefficient containing the

derivatives of 𝜌’s is 𝑣1(𝜌1). Thus, equating the coefficient of (𝑣1)3 to zero gives us 𝑣1(𝜌1) as

a function of 𝜌1.

Thus, all directional derivatives 𝑣𝑠(𝜌𝑗) can be obtained from the system (3). Let us now

view the system (3) as a linear PDE-system on unknown functions 𝜌𝑖. The coefficients of

this system come from the vector fields 𝑣𝑠 and are given by certain nonlinear expressions

in the components of 𝑣𝑠 and their derivatives. Since the directional derivatives of all

functions 𝜌𝑖 are expressed in the terms of the functions 𝜌𝑖, the system can be solved with

respect to all derivatives of the functions 𝜌𝑖. Therefore, the initial values of the functions

𝜌𝑖 at one point 𝑥0 determine the local solution of the system. This implies that the space of

solutions is at most 𝑚-dimensional. Finally, the linear vector space of the integrals
𝛼
𝐼 is at

most 𝑚-dimensional. Since 𝑛 of them are functionally independent by our assumptions,

𝑛 = 𝑚 and Theorem 1 is proved.

Remark 1. The proof of Theorem 1 is motivated by [Ben92, proof of Lemma 1.2], [Kiy97,

§1.1] and [KKM24, §2].
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The Flapping Birds in the Pentagram Zoo

1 Introduction

1.1 Context

When you visit the pentagram zoo you should certainly make the pentagram map itself

your first stop. This old and venerated animal has been around since the place opened

up and it is very friendly towards children. When defined on convex pentagons, this

map has a very long history. See e.g. [15]. In modern times [19], the pentagram is defined

and studied much more generally. The easiest case to explain is the action on convex

𝑛-gons. One starts with a convex 𝑛-gon 𝑃, for 𝑛 ≥ 5, and then forms a new convex 𝑛-gon

𝑃′ by intersecting the consecutive diagonals, as shown Figure 1.1 below.

The magic starts when you iterate the map. One of the first things I proved in [19]

about the pentagram map is the successive iterates shrink to a point. Many years later, M.

Glick [3] proved that this limit point is an algebraic function of the vertices, and indeed

found a formula for it. See also [9] and [1].

P

P'

P''

Figure 1.1: The pentagram map iterated on a convex 7-gon 𝑃.

Forgetting about convexity, the pentagram map is generically defined on polygons

in the projective plane over any field except for 𝒁∕2. In all cases, the pentagram map

commutes with projective transformations and thereby defines a birational map on the

space of 𝑛-gons modulo projective transformations. The action on this moduli space has

a beautiful structure. As shown in [17] [18], and independently in [23], the pentagram
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map is a discrete completely integrable system when the ground field is the reals. ([23]

also treats the complex case.) Recently, M. Weinreich [24] generalized the integrability

result, to a large extent, to fields of positive characteristic.

The pentagram map has many generalizations. See for example [2], [14], [16], [10], [11],

[6]. The paper [2] has the first general complete integrability result. The authors prove the

complete integrability of the (𝑘, 1) diagonal maps, i.e. the maps obtained by intersecting

successive 𝑘-diagonals. Figure 1.3 below shows the (3, 1) diagonal map. (Technically, [2]

concentrates on what happens when these maps act on so-called corregated polygons in

higher dimensional Euclidean spaces.) The paper [6] proves an integrability result for a

very wide class of generalizations, including the ones we study below. (Technically, for the

maps we consider here, the result in [6] does not establish the algebraic independence

of invariants needed for complete integrability.) The pentagram map and its many

generalizations are related to a number of topics: alternating sign matrices [20], dimers

[5], cluster algebras [4], the KdV hierarchy [12], [13], spin networks [2], Poisson Lie groups

[8], Lax pairs [23], [10], [11], [6], [8], and so forth. The zoo has many cages and sometimes

you have to get up on a tall ladder to see inside them.

Figure 1.2: The (3, 1)-diagonal map acting on 8-gons.

The algebraic side of the pentagram zoo is extremely well developed, but the geometric

side is hardly developed at all. In spite of all the algebraic results, we don’t really know,
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geometrically speaking, much about what the pentagram map and its relatives really do

to polygons.

Geometrically speaking, there seems to be a dichotomy between convexity and non-

convexity. The generic pentagram orbit of a projective equivalance class of a convex

polygon lies on a smooth torus, and you can make very nice animations. What you will

see, if you tune the power of the map and pick suitable representatives of the projective

classes, is a convex polygon sloshing around as if it were moving through water waves.

If you try the pentagram map on a non-convex polygon, you see a crazy erratic picture

no matter how you try to normalize the images. The situation is even worse for the other

maps in the pentagram zoo, because these generally do not preserve convexity. Figure 1.2

shows how the (3, 1)-diagonal map does not necessarily preserve convexity, for instance.

See [21], [22] for more details.

If you want to look at pentagram map generalizations, you have to abandon convexity.

However, in this paper, I will show that sometimes there are geometrically appealing

replacements. The context for these replacements is the (𝑘 + 1, 𝑘)-diagonal map, which

I call ∆𝑘, acting on what I call 𝑘-birds. ∆𝑘 starts with the polygon 𝑃 and intersects the

(𝑘 + 1)-diagonals which differ by 𝑘 clicks. (We will give a more formal definition in the

next section.) ∆𝑘 is well (but not perfectly) understood algebraically [6]. Geometrically it

is not well understood at all.

1.2 The Maps and the Birds

Definition of a Polygon: For us, a polygon is a choice of both vertices and the edges

connecting them. Each polygon 𝑃 we consider will all be planar, in the sense that there is

some projective transformation that maps 𝑃, both vertices and edges, to the affine patch.

Our classical example is a regular 𝑛-gon, with the obvious short edges chosen.

The Maps: Given a polygon 𝑃, let 𝑃𝑎 denote the (𝑎)th vertex of 𝑃. Let 𝑃𝑎𝑏 be the line
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through 𝑃𝑎 and 𝑃𝑏. The vertices of ∆𝑘(𝑃) are

𝑃𝑗,𝑗+𝑘+1 ∩ 𝑃𝑗+1,𝑗−𝑘. (1)

Here the indices are taken mod 𝑛. Figure 1.3 shows this for (𝑘, 𝑛) = (2, 7). The polygons in

Figure 1.3 are examples of a concept we shall define shortly, that of a 𝑘-bird.

Figure 1.3: ∆2 acting on 2-birds.

We should say a word about how the edges are defined. In the case for the regular 𝑛-gon

we make the obvious choice, discussed above. In general, we define the class of polygons

we consider in terms of a homotopy from the regular 𝑛-gon. So, in general, we make the

edge choices so that the edges vary continuously.

The Birds: Given an 𝑛-gon 𝑃, we let 𝑃𝑎,𝑏 denote the line containing the vertices 𝑃𝑎 and 𝑃𝑏.

We call 𝑃 𝑘-nice if 𝑛 > 3𝑘, and 𝑃 is planar, and the 4 lines

𝑃𝑖,𝑖−𝑘−1, 𝑃𝑖,𝑖−𝑘, 𝑃𝑖,𝑖+𝑘, 𝑃𝑖,𝑖+𝑘+1 (2)

are distinct for all 𝑖. It is not true that the generic 𝑛-gon is 𝑘-nice, because there are open

sets of non-planar polygons. (Consider a neighborhood of 𝑃, where 𝑃 the regular 100-gon

with the opposite choice of edges.) However, the generic perturbation of a planar 𝑛-gon

is also 𝑘-nice.

We call 𝑃 a 𝑘-bird if 𝑃 is the endpoint of a path of 𝑘-nice 𝑛-gons that starts with the

regular 𝑛-gon. We let 𝐵𝑘,𝑛 be the subspace of 𝑛-gons which are 𝑘-birds. Note that 𝐵𝑘,𝑛
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contains the set of convex 𝑛-gons, and the containment is strict when 𝑘 > 1. As Figure 1.3

illustrates, a 𝑘-bird need not be convex for 𝑘 ≥ 2. We will show that 𝑘-birds are always

star-shaped, and in particular embedded. As we mentioned above, we use the homotopic

definition of a 𝑘-bird, to define the edges of ∆𝑘(𝑃) when 𝑃 is a 𝑘-bird.

Example: The homotopy part of our definition looks a bit strange, but it is necessary. To

illustrate this, we consider the picture further for the case 𝑘 = 1. In this case, a 1-bird must

be convex, though the 1-niceness condition just means planar and locally convex. Figure

1.4 shows how we might attempt a homoropy from the regular octagon to a locally convex

octagon which essentially wraps twice around a quadrilateral. The little grey arrows

give hints about how the points are moved. At some times, the homotopy must break

the 1-niceness condition. The two grey polygons indicate failures and the highlighted

vertices indicate the sites of the failures. There might be other failures as well; we are

taking some jumps in our depiction.

Figure 1.4: A homotopy that cannot stay 1-nice.

One could make similar pictures when 𝑘 ≥ 1, but the pictures might be harder to

understand.
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1.3 The Main Result

Given an embedded planar polygon 𝑃, let 𝑃𝐼 denote the interior of region bounded by 𝑃.

We say that 𝑃 is strictly star shaped with respect to 𝑥 ∈ 𝑃𝐼 if each ray emanating from 𝑥

intersects 𝑃 exactly once. More simply, we say that 𝑃 is strictly star shaped if it is strictly

star shaped with respect to some point 𝑥 ∈ 𝑃𝐼 . Here is the main result.

Theorem 1.1. Let 𝑘 ≥ 2 and 𝑛 > 3𝑘 and 𝑃 ∈ 𝐵𝑘,𝑛. Then

1. 𝑃 is strictly star-shaped, and in particular embedded.

2. ∆𝑘(𝑃) ⊂ 𝑃𝐼 .

3. ∆𝑘(𝐵𝑘,𝑛) = 𝐵𝑘,𝑛.

Remark: The statement that 𝑛 > 3𝑘 is present just for emphasis. 𝐵𝑛,𝑘 is by definition

empty when 𝑛 ≤ 3𝑘. The restriction 𝑛 > 3𝑘 is necessary. Figure 1.5 illustrates what would

be a counter-example to Theorem 1.1 for the pair (𝑘, 𝑛) = (3, 9). The issue is that a certain

triple of 4-diagonals has a common intersection point. This does not happen for 𝑛 > 3𝑘.

See Lemma 3.6.
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Figure 1.5: ∆3 acting on a certain convex 9-gon.

1.4 The Energy

We will deduce Statements 1 and 2 of Theorem 1.1 in a geometric way. The key to proving

Statement 3 is a natural quantity associated to a 𝑘-bird. We let 𝜎𝑎,𝑏 be the slope of the line

𝑃𝑎,𝑏 and we define the cross ratio

𝜒(𝑎, 𝑏, 𝑐, 𝑑) =
(𝑎 − 𝑏)(𝑐 − 𝑑)

(𝑎 − 𝑐)(𝑏 − 𝑑)
. (3)

We define
𝜒𝑘(𝑃) =

𝑛∏

𝑖=1

𝜒(𝑖, 𝑘, 𝑃), 𝜒(𝑖, 𝑘, 𝑃) = 𝜒(𝜎𝑖,𝑖−𝑘, 𝜎𝑖,𝑖−𝑘−1, 𝜎𝑖,𝑖+𝑘+1, 𝜎𝑖,𝑖+𝑘) (4)

Here we are taking the cross ratio the slopes the lines involved in our definition of 𝑘-nice.

When 𝑘 = 1 this is the familiar invariant 𝜒1 = 𝑂𝐸 for the pentagram map ∆1. See [19],

[20], [17], [18]. When 𝑛 = 3𝑘 + 1, a suitable star-relabeling of our polygons converts ∆𝑘 to

∆1 and 𝜒𝑘 to 1∕𝜒1. So, in this case 𝜒𝑘◦∆𝑘 = 𝜒𝑘. Figure 1.5 illustrates this for (𝑘, 𝑛) = (3, 10).

Note that the polygons suggested by the dots in Figure 1.5 are not convex. Were we to

add in the edges we would get a highly non-convex pattern.

0

9
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7
6

5

4

3

2

1

Figure 1.6: A star-relabeling converts ∆1 to ∆3 and 1∕𝜒1 to 𝜒3.

In general, 𝜒𝑘 is not as clearly related to 𝜒1. Nonetheless, we will prove

Theorem 1.2. 𝜒𝑘◦∆𝑘 = 𝜒𝑘.
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Theorem 1.2 is meant to hold for all 𝑛-gons, as long as all quantities are defined. There

is no need to restrict to birds.

1.5 The Collapse Point

When it is understood that 𝑃 ∈ 𝐵𝑘,𝑛 it is convenient to write

𝑃𝓁 = ∆𝓁
𝑘
(𝑃) (5)

We also let 𝑃 denote the closed planar region bounded by 𝑃. Figure 1.7 below shows

𝑃 = 𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃4 for some 𝑃 ∈ 𝐵4,13.

Figure 1.7: ∆4 and its iterates acting on a member of 𝐵4,13.

Define

𝑃∞ =
⋂

𝓁∈𝒁

𝑃𝓁, 𝑃−∞ =
⋃

𝓁∈𝒁

𝑃𝓁. (6)

Theorem 1.3. If 𝑃 ∈ 𝐵𝑘,𝑛 then 𝑃∞ is a point and 𝑃−∞ is an affine plane.

Our argument will show that 𝑃 ∈ 𝐵𝑘,𝑛 is strictly star-shaped with respect to all points

in 𝑃𝑛. In particular, all polygons in the orbit are strictly star-shaped with respect to the

collapse point 𝑃∞. See Corollary 7.3.
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One might wonder if some version of Glick’s formula works for the 𝑃∞ in general. I

discovered experimentally that this is indeed the case for 𝑛 = 3𝑘 + 1 and 𝑛 = 3𝑘 + 2. See

§9.2 for a discussion of this and related matters.

Here is a corollary of our results that is just about convex polygons.

Corollary 1.4. Suppose that 𝑛 > 3𝑘 and 𝑃 is a convex 𝑛-gon. Then the sequence {∆𝓁
𝑘
(𝑃)}

shrinks to a point as 𝓁 → ∞, and each member of this sequence if strictly star-shaped with

respect to the collapse point.

1.6 The Triangulations

In §7.1 we associate to each 𝑘-bird 𝑃 a triangulation 𝜏𝑃 ⊂ 𝑷, the projective plane. Here

𝜏𝑃 is an embedded degree 6 triangulation of 𝑃−∞ − 𝑃∞. The edges are made from the

segments in the 𝛿-diagonals of 𝑃 and its iterates for 𝛿 = 1, 𝑘, 𝑘 + 1.

Figure 1.8 shows this tiling associated to a member of 𝐵5,16. In this figure, the interface

between the big black triangles and the big white triangles is some∆𝓁
5
(𝑃) for some smallish

value of 𝓁. (I zoomed into the picture a bit to remove the boundary of the initial 𝑃.) The

picture is normalized so that the line 𝑃−∞ is the line at infinity. When I make these kinds

of pictures (and animations), I normalize so that the ellipse of inertia of 𝑃 is the unit disk.
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Figure 1.8: The triangulation associated to a member of 𝐵5,16.

1.7 Paper Organization

This paper is organized as follows.

• In §2 we prove Theorem 1.2.

• In §3 we prove Statement 1 of Theorem 1.1.

• In §4 we prove Statement 2 of Theorem 1.1.

• In §5 we prove a technical result called the Degeneration Lemma, which will help

with Statement 3 of Theorem 1.1.
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• In §6 we prove Statement 3 of Theorem 1.1.

• In §7 we introduce the triangulations discussed above. Our Theorem 7.2 will help

with the proof of Theorem 1.3.

• In §8 we prove Theorem 1.3.

• In §9, an appendix, we sketch an alternate proof of Theorem 1.2 which Anton Izosi-

mov kindly explained. We also discuss Glick’s collapse formula and star relabelings

of polygons.

1.8 Visit the Flapping Bird Exhibit

Our results inject some more geometry into the pentagram zoo. Our results even have

geometric implications for the pentagram map itself. See §9.3. There are different ways

to visit the flapping bird exhibit in the zoo. You could read the proofs here, or you might

just want to to look at some images:

http://www.math.brown.edu/∼reschwar/BirdGallery

You can also download and play with the software I wrote:

http://www.math.brown.edu/∼reschwar/Java/Bird.TAR

The software has detailed instructions. You can view this paper as a justification for why

the nice images actually exist.

2 The Energy

The purpose of this chapter is to prove Theorem 1.2. The proof, which is similar to what I

do in [19], is more of a verification than a conceptual explanation. My computer program

allows the reader to understand the technical details of the proof better. The reader might

want to just skim this chapter on the first reading. In §9 I will sketch an alternate proof,

which I learned from Anton Izosimov. Izosimov’s proof also uses the first two sections of

this chapter.
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2.1 Projective Geometry

Let 𝑷 denote the real projective plane. This is the space of 1-dimensional subspaces of 𝑹3.

The projective plane 𝑷 contains 𝑹2 as the affine patch. Here 𝑹2 corresponds to vectors of

the form (𝑥, 𝑦, 1), which in turn define elements of 𝑷.

Let 𝑷∗ denote the dual projective plane, namely the space of lines in 𝑷. The elements

in 𝑷
∗ are naturally equivalent to 2-dimensional subspaces of 𝑹3. The line in 𝑷 such a

subspace Π defines is equal to the union of all 1-dimensional subspaces of Π.

Any invertible linear transformation of 𝑹3 induces a projective transformation of 𝑷,

and also of 𝑷∗. These form the projective group 𝑃𝑆𝐿3(𝑹). Such maps preserve collinear

points and coincident lines.

A duality from 𝑷 to 𝑷
∗ is an analytic diffeomorphism 𝑷 → 𝑷

∗ which maps collinear

points to coincidence lines. The classic example is the map which sends each linear

subspace of 𝑹3 to its orthogonal complement.

A PolyPoint is a cyclically ordered list of points of 𝑷. When there are 𝑛 such points,

we call this an 𝑛-Point. A PolyLine is a cyclically ordered list of lines in 𝑷, which is the

same as a cyclically ordered list of points in 𝑷
∗. A projective duality maps PolyLines to

PolyPoints, and vice versa.

Each 𝑛-Point determines 2𝑛 polygons in 𝑷 because, for each pair of consecutive points,

we may choose one of two line segments to join them. As we mentioned in the introduction,

we have a canonical choice for 𝑘-birds. Theorem 1.2 only involves PolyPoints, and our

proof uses PolyPoints and PolyLines.

Given a 𝑛-Point 𝑃, we let 𝑃𝑗 be its 𝑗th point. We make a similar definition for 𝑛-Lines.

We always take indices mod 𝑛.

2.2 Factoring the Map

Like the pentagram map, the map ∆𝑘 is the product of 2 involutions. This factorization

will be useful here and in later chapters.

Given a PolyPoint 𝑃, consisting of points 𝑃1, ..., 𝑃𝑛, we define 𝑄 = 𝐷𝑚(𝑃) to be the
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PolyLine whose successive lines are 𝑃0,𝑚, 𝑃1,𝑚+1, etc. Here 𝑃0,𝑚 denotes the line through

𝑃0 and 𝑃𝑚, etc. We labed the vertices so that

𝑄−𝑚−𝑖 = 𝑃𝑖,𝑖+𝑚. (7)

This is a convenient choice. We define the action of 𝐷𝑚 on PolyLines in the same way,

switching the roles of points and lines. For PolyLines, 𝑃0,𝑚 is the intersection of the line

𝑃0 with the line 𝑃𝑚. The map 𝐷𝑚 is an involution which swaps PolyPoints with PolyLines.

We have the compositions

∆𝑘 = 𝐷𝑘◦𝐷𝑘+1, ∆−1
𝑘

= 𝐷𝑘+1◦𝐷𝑘. (8)

The energy 𝜒𝑘 makes sense for 𝑛-Lines as well as for 𝑛-Points. The quantities 𝜒𝑘◦𝐷𝑘(𝑃)

and 𝜒𝑘◦𝐷𝑘+1(𝑃) can be computed directly from the PolyPoint 𝑃. Figure 2.1 shows schemat-

ically the 4-tuples associated to 𝜒(0, 𝑘, 𝑄) for 𝑄 = 𝑃 and 𝐷𝑘(𝑃) and 𝐷𝑘+1(𝑃). In each case,

𝜒𝑘(𝑄) is a product of 𝑛 cross ratios like these. If we want to compute the factor of 𝜒𝑘(𝐷𝑘(𝑃))

associated to index 𝑖 we subtract (rather than add) 𝑖 from the indices shown in the middle

figure. A similar rule goes for 𝐷𝑘+1(𝑃).

Figure 2.1: Computing the 𝑘-energy.

Theorem 1.2 follows from the next two results.

Lemma 2.1. 𝜒𝑘◦𝐷𝑘 = 𝜒𝑘.

Lemma 2.2. 𝜒𝑘◦𝐷𝑘+1 = 𝜒𝑘.

These results have almost identical proofs. We consider Lemma 2.1 in detail and then

explain the small changes needed for Lemma 2.2.
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2.3 Proof of the First Result

We study the ratio

𝑅(𝑃) =
𝜒𝑘◦𝐷𝑘(𝑃)

𝜒𝑘(𝑃)
. (9)

We want to show that 𝑅(𝑃) equals 1 wherever it is defined. We certainly have 𝑅(𝑃) = 1

when 𝑃 is the regular 𝑛-Point.

Given a PolyPoint 𝑃 we choose a pair of vertices 𝑎, 𝑏 with |𝑎 − 𝑏| = 𝑘. We define 𝑃(𝑡) to

be the PolyPoint obtained by replacing 𝑃𝑎 with

(1 − 𝑡)𝑃𝑎 + 𝑡𝑃𝑏. (10)

Figure 2.2 shows what we are talking about, in case 𝑘 = 3. We have rotated the picture so

that 𝑃𝑎 and 𝑃𝑏 both lie on the 𝑋-axis.

t

Figure 2.2: Connecting one PolyPoint to another by sliding a point.

The two functions

𝑓(𝑡) = 𝜒𝑘(𝑃(𝑡)), 𝑔(𝑡) = 𝜒𝑘◦𝐷𝑘(𝑃(𝑡)) (11)

are each rational functions of 𝑡. Our notation does not reflect that 𝑓 and 𝑔 depend on

𝑃, 𝑎, 𝑏.

A linear fractional transformation is a map of the form

𝑡 →
𝛼𝑡 + 𝛽

𝛾𝑡 + 𝛿
, 𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝑹, 𝛼𝛿 − 𝛽𝛾 ≠ 0.

Lemma 2.3 (Factor I). If 𝑛 ≥ 4𝑘 + 2 and 𝑃 is a generically chosen 𝑛-Point, then 𝑓(𝑡) and 𝑔(𝑡)

are each products of 4 linear fractional transformations. The zeros of 𝑓 and 𝑔 occur at the

same points and the poles of 𝑓 and 𝑔 occur at the same points. Hence 𝑓∕𝑔 is constant.
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The only reason we choose 𝑛 ≥ 4𝑘 + 2 in the Factor Lemma is so that the various

diagonals involved in the proof do not have common endpoints. The Factor Lemma I

works the same way for all 𝑘 and for all choices of (large) 𝑛. We write 𝑃 ↔ 𝑄 if we can

choose indices 𝑎, 𝑏 and some 𝑡 ∈ 𝑹 such that 𝑄 = 𝑃(𝑡). The Factor Lemma implies that

when 𝑃,𝑄 are generic and 𝑃 ↔ 𝑄 we have 𝑅(𝑃) = 𝑅(𝑄). The result for non-generic choices

of 𝑃 follows from continuity. Any 𝑛-Point 𝑄 can be included in a finite chain

𝑃0 ↔ 𝑃1 ↔⋯↔ 𝑃2𝑛 = 𝑄,

where 𝑃0 is the regular 𝑛-Point. Hence 𝑅(𝑄) = 𝑅(𝑃0) = 1. This shows that Lemma 2.1 holds

for (𝑘, 𝑛) where 𝑘 ≥ 2 and 𝑛 ≥ 4𝑘 + 2. (The case 𝑘 = 1 is a main result of [19], and by now

has many proofs.)

Lemma 2.4. If Lemma 2.1 is true for all large values of 𝑛, then it is true for all values of 𝑛.

Proof: If we are interested in the result for small values of 𝑛, we can replace a given

PolyPoint 𝑃 with its 𝑚-fold cyclic cover 𝑚𝑃. We have 𝜒𝑘(𝑚𝑃) = 𝜒𝑘(𝑃)
𝑚 and 𝜒𝑘(𝐷𝑘(𝑚𝑃)) =

𝜒𝑘(𝐷𝑘(𝑝))
𝑚. Thus, the result for large 𝑛 implies the result for small 𝑛. ♠

In view of Equation 4 we have

𝑓(𝑡) = 𝑓1(𝑡)...𝑓𝑛(𝑡), 𝑓𝑗(𝑡) = 𝜒(𝑗, 𝑘, 𝑃(𝑡)). (12)

Thus 𝑓(𝑡) is the product of 𝑛 “local” cross ratios. We call an index 𝑗 asleep if none of the

lines involved in the cross ratio 𝑓𝑗(𝑡) depend on 𝑡. In other words, the lines do not vary at

all with 𝑡. Otherwise we call 𝑗 awake.

As we vary 𝑡, only the diagonals 𝑃0,ℎ change for ℎ = −𝑘,−𝑘 − 1, 𝑘 + 1, 𝑘. From this fact,

it is not surprising that there are precisely 4 awake indices. These indices are

𝑗0 = 0, 𝑗1 = 𝑘 + 1, 𝑗2 = −𝑘 − 1, 𝑗3 = −𝑘. (13)

The index 𝑘 is not awake because the diagonal 𝑃0,𝑘(𝑡) does not move with 𝑡.
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We define a chord of 𝑃(𝑡) to be a line defined by a pair of vertices of 𝑃(𝑡). The point
𝑃0(𝑡) moves at linear speed, and the 4 lines involved in the calculation of 𝑓𝑐𝑗 (𝑡) are distinct
unless 𝑃0(𝑡) lies in one of the chords of 𝑃(𝑡). Thus 𝑓𝑐𝑗 (𝑡) only has zeros and poles at the
corresponding values of 𝑡. It turns out that only the following chords are involved.

−𝑘

−𝑘 − 1

−𝑘

𝑘 + 1

−𝑘

1

−𝑘

−2𝑘 − 1

−𝑘 − 1

−1

−𝑘 − 1

−2𝑘 − 1

𝑘 + 1

1

𝑘 + 1

2𝑘 + 1
(14)

We call these 𝑐0, ..., 𝑐7. For instance, 𝑐0 is the line through 𝑃−𝑘 and 𝑃−𝑘−1. Let 𝑡𝑗 denote the

value of 𝑡 such that 𝑃(𝑡𝑗) ∈ 𝑐𝑗.

The PolyPoint 𝑄(𝑡) = 𝐷𝑘(𝑃(𝑡)) has the same structure as 𝑃(𝑡). Up to projective transfor-

mations 𝑄(𝑡) is also obtained from the regular PolyPoint by moving a single vertex along

one of the 𝑘-diagonals. The pattern of zeros and poles is not precisely the same because

the chords of 𝑄(𝑡) do not correspond to the chords of 𝑃(𝑡) in a completely straightfor-

ward way. The 𝑘-diagonals of 𝑄(𝑡) correspond to the vertices of 𝑃(𝑡) and vice versa. The

(𝑘 + 1) diagonals of 𝑄(𝑡) correspond to the vertices of ∆−1
𝑘
(𝑃(𝑡)). This is what gives us our

quadruples of points in the middle picture in Figure 2.1.

We now list the pattern of zeros and poles. We explain our notation by way of example.

The quadruple (𝑓, 2, 4, 5) indicates that 𝑓𝑐2 has a simple zero at 𝑓4 and a simple pole at 𝑡5.

(𝑓, 0, 0, 1), (𝑓, 1, 6, 7), (𝑓, 2, 4, 5), (𝑓, 3, 2, 3). (15)

(𝑔, 0, 6, 5), (𝑔, 1, 0, 3), (𝑔, 2, 2, 1), (𝑔, 3, 4, 7). (16)

Since these functions have holomorphic extensions to 𝑪 with no other zeros and poles,

these functions are linear fractional transformations. This pattern establishes the Factor

Lemma I.

Checking that the pattern is correct is just a matter of inspection. We give two example

checks.

• To see why 𝑓𝑐2 has a simple zero at 𝑡4 we consider the quintuple

(−𝑘 − 1,−2𝑘 − 1,−2𝑘 − 2, 0, −1).
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At 𝑡4 the two diagonals 𝑃−𝑘−1,0 and 𝑃−𝑘−1,−1 coincide. In terms of the cross ratios of

the slopes we are computing 𝜒(𝑎, 𝑏, 𝑐, 𝑑) with 𝑎 = 𝑏. The point 𝑃0(𝑡) is moving with

linear speed and so the zero is simple.

• To see why 𝑔𝑐2 has a simple pole at 𝑡1 we consider the 4 points

𝑃2𝑘+2,𝑘+2 ∩ 𝑃1,𝑘+1, 𝑃𝑘+1, 𝑃1, 𝑃1,𝑘+1 ∩ 𝑃−𝑘,0. (17)

These are all contained in the 𝑘-diagonal 𝑃1,𝑘+1, which corresponds to the vertex

(−𝑘 − 1) of 𝐷𝑘(𝑃). At 𝑡 = 𝑡1 the three points 𝑃0(𝑡) and 𝑃−𝑘 and 𝑃𝑘+1 are collinear. This

makes the 2nd and 4th listed point coincided. In terms of our cross ratio 𝜒(𝑎, 𝑏, 𝑐, 𝑑)

we have 𝑏 = 𝑑. This gives us a pole. The pole is simple because the points come

together at linear speed.

The other explanations are similar. The reader can see graphical illustrations of these

zeros and poles using our program.

2.4 Proof of the Second Result

The proof of Lemma 2.2 is essentially identical to the proof of Lemma 2.1. Here are the

changes. The Factor Lemma II has precisely the same statement as the Factor Lemma I,

except that

• When defining 𝑃(𝑡) we use points 𝑃𝑎 and 𝑃𝑏 with |𝑎 − 𝑏| = 𝑘 + 1.

• We are comparing 𝑃(𝑡) with 𝐷𝑘+1(𝑃(𝑡)).

This changes the definition of the functions 𝑓 and 𝑔. With these changes made, the Factor

Lemma I is replaced by the Factor Lemma II, which has an identical statement. This time

the chords involved are as follows.

−𝑘 − 1

−𝑘

−𝑘 − 1

𝑘

−𝑘 − 1

−1

−𝑘 − 1

−2𝑘 − 1

−𝑘

1

−𝑘

−2𝑘 − 1

𝑘

−1

𝑘

2𝑘 + 1
(18)
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This time the 4 awake indices are:

𝑗0 = 0, 𝑗1 = 𝑘, 𝑗2 = −𝑘 − 1, 𝑗3 = −𝑘. (19)

Here is the pattern of zeros and poles.

(𝑓, 0, 1, 0), (𝑓, 1, 7, 6), (𝑓, 2, 3, 2), (𝑓, 3, 5, 4). (20)

(𝑔, 0, 5, 6), (𝑔, 1, 3, 0), (𝑔, 2, 7, 4), (𝑔, 3, 1, 2). (21)

The pictures in these cases look almost identical to the previous case. The reader can see

these pictures by operating my computer program. Again, the zeros of 𝑓 and 𝑔 are located

at the same places, and likewise the poles of 𝑓 and 𝑔 are located at the same places. Hence

𝑓∕𝑔 is constant. This completes the proof the Factor Lemma II, which implies Lemma 2.2.

3 The Soul of the Bird

3.1 Goal of the Chapter

Given a polygon 𝑃 ⊂ 𝑹
2, let 𝑃 be the closure of the bounded components of 𝑹2 − 𝑃 and let

𝑃𝐼 be the interior of 𝑃. (Eventually we will see that birds are embedded, so 𝑃 will be a

closed topological disk and 𝑃𝐼 will be an open topological disk.)

Suppose now that 𝑃(𝑡) for 𝑡 ∈ [0, 1] is a path in 𝐵𝑛,𝑘 starting at the regular 𝑛-gon 𝑃(0). We

can adjust by a continuous family of projective transformations so that 𝑃(𝑡) is a bounded

polygon in 𝑹
2 for all 𝑡 ∈ [0, 1]. We orient 𝑃(0) counter-clockwise around 𝑃𝐼(0). We extend

this orientation choice continuously to 𝑃(𝑡). We let 𝑃𝑎𝑏(𝑡) denote the diagonal through

vertices 𝑃𝑎(𝑡) and 𝑃𝑏(𝑡). We orient 𝑃𝑎,𝑏(𝑡) so that it points from 𝑃𝑎(𝑡) to 𝑃𝑏(𝑡). We take

indices mod 𝑛.

We now recall a definition from the introduction: When 𝑃 is embedded, we say that

𝑃 is strictly star shaped with respect to 𝑥 ∈ 𝑃𝐼 if each ray emanating from 𝑥 intersects 𝑃

exactly once.
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Figure 3.1: The soul of a 3-bird

Each such (𝑘+1)-diagonal defines an oriented line that contains it, and also the (closed)

distinguished half plane which lies to the left of the oriented line. These 𝑛 half-planes

vary continuously with 𝑡. The soul of 𝑃(𝑡), which we denote 𝑆(𝑡), is the intersection of the

distinguished half-planes. Figure 3.1 shows the an example.

The goal of this chapter is to prove the following result.

Theorem 3.1. Let 𝑃 be a bird and let 𝑆 be its soul. Then:

1. 𝑆 is has non-empty interior.

2. 𝑆 ⊂ 𝑃𝐼 .

3. 𝑃 is strictly star-shaped with respect to any point in 𝑆.

Theorem 3.1 immediately implies Statement 1 of Theorem 1.1.

We are going to give a homotopical proof of Theorem 3.1. We say that a value 𝑡 ∈ [0, 1]

is a good parameter if Theorem 3.1 holds for 𝑃(𝑡). All three conclusions of Theorem 3.1 are

open conditions. Finally, 0 is a good parameter. For all these reasons, it suffices to prove

that the set of good parameters is closed. By truncating our path at the first supposed

failure, we reduce to the case when Theorem 3.1 holds for all 𝑡 ∈ [0, 1).
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3.2 The Proof

For ease of notation we set 𝑋 = 𝑋(1) for any object 𝑋 associated to 𝑃(1).

Lemma 3.2. If 𝑃 is any 𝑘-bird, then 𝑃0 and 𝑃2𝑘+1 lie to the left of 𝑃𝑘,𝑘+1. The same goes if all

indices are cyclically shifted by the same amount.

Proof: Consider the triangle with vertices 𝑃0(𝑡) and 𝑃𝑘(𝑡) and 𝑃𝑘+1(𝑡). The 𝑘-niceness

condition implies that this triangle is non-degenerate for all 𝑡 ∈ [0, 1]. Since 𝑃0(𝑡) lies to

to the left of 𝑃𝑘,𝑘+1(𝑡), the non-degeneracy implies the same result for 𝑡 = 1. The same

argument works for the triple (2𝑘 + 1, 𝑘, 𝑘 + 1). ♠

Lemma 3.3. 𝑆 is non-empty and contained in 𝑃𝐼 .

Proof: By continuity, 𝑆 is nonempty and contained in 𝑃 ∪ 𝑃𝐼 . By the 𝑘-niceness property

and continuity, 𝑃1 lies strictly to the right of 𝑃0,𝑘+1. Hence the entire half-open edge [𝑃0, 𝑃1)

lies strictly to the right of 𝑃0,𝑘+1. Hence [𝑃0, 𝑃1) is disjoint from 𝑆. By cyclic relabeling, the

same goes for all the other half-open edges. Hence 𝑆 ∩ 𝑃 = ∅. Hence 𝑆 ⊂ 𝑃𝐼 . ♠

Lemma 3.4. 𝑃 is strictly star-shaped with respect to any point of 𝑆.

Proof: Since 𝑃(𝑡) is strictly star-shaped with respect to all points of 𝑆(𝑡) for 𝑡 < 1, this

lemma can only fail if there is an edge of 𝑃 whose extending line contains a point 𝑥 ∈ 𝑆.

We can cyclically relabel so that the edge of 𝑃0𝑃1.

01x

k+1

01x

k+1

or

Figure 3.2: The diagonal 𝑃0,𝑘+1 does not separate 1 from 𝑥.
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Since 𝑥 ∉ 𝑃, either 𝑃1 lies between 𝑃0 and 𝑥 or 𝑃0 lies in between 𝑥 and 𝑃1. In the first

case, both 𝑃1 and 𝑥 lie on the same side of the diagonal 𝑃0,𝑘+1. This is a contradiction: 𝑃1
is supposed to lie on the right and 𝑥 is supposed to lie on the left. In the second case we

get the same kind of contradiction with respect to the diagonal 𝑃−𝑘,1. ♠

We say that 𝑃 has opposing (𝑘 + 1)-diagonals if it has a pair of (𝑘 + 1)-diagonals which

lie in the same line and point in opposite directions. In this case, the two left half-spaces

are on opposite sides of the common line.

Lemma 3.5. 𝑃 does not have opposing (𝑘 + 1)-diagonals.

Proof: We suppose that 𝑃 has opposing diagonals and we derive a contradiction. In this

case 𝑆, which is the intersection of all the associated left half-planes, must be a subset of

the line 𝐿 containing these diagonals. But then 𝑃 intersects 𝐿 in at least 4 points, none of

which lie in 𝑆. But then 𝑃 cannot be strictly star-shaped with respect to any point of 𝑆.

This is a contradiction. ♠

We call three (𝑘 + 1)-diagonals of 𝑃(𝑡) interlaced if the intersection of their left half-

spaces is a triangle. See Figure 3.3.

a1

b1

a2

a3

b2

b3

Figure 3.3: Interlaced diagonals on 𝑃(𝑡).
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Given interlaced (𝑘 + 1)-diagonals, and a point 𝑥 in the intersection, the circle of rays

emanating from 𝑥 encounters the endpoints of the diagonals in an alternating pattern:

𝑎1, 𝑏3, 𝑎2, 𝑏1, 𝑎3, 𝑏2, where 𝑎1, 𝑎2, 𝑎3 are the tail points and 𝑏1, 𝑏2, 𝑏3 are the head points. Here

𝑎1 names the vertex 𝑃𝑎1(𝑡), etc.

Lemma 3.6. 𝑃(𝑡) cannot have interlaced diagonals for 𝑡 < 1.

Proof: Choose 𝑥 ∈ 𝑆(𝑡). The 𝑛-gon 𝑃(𝑡) is strictly star-shaped with respect to 𝑥. Hence, the

vertices of 𝑃 are encountered in order (mod 𝑛) by a family of rays that emanate from 𝑥

and rotates around full-circle. Given the order these vertices are encountered, we have

𝑎𝑗+1 = 𝑎𝑗 + 𝜂𝑗, where 𝜂𝑗 ≤ 𝑘. Here we are taking the subscripts mod 3 and the vertex

values mod 𝑛. This tells us that 𝑛 = 𝜂1 + 𝜂2 + 𝜂3 ≤ 3𝑘. This contradicts the fact that 𝑛 > 3𝑘.

♠

It only remains to show that 𝑆 has non-empty interior. A special case of Helly’s

Theorem says the following: If we have a finite number of convex subsets of 𝑹2 then

they all intersect provided that every 3 of them intersect. Applying Helly’s Theorem to

the set of interiors of our distinguished half-planes, we conclude that we can find 3 of

these open half-planes whose triple intersection is empty. On the other hand, the triple

intersection of the closed half-planes contains 𝑥. Since 𝑃 has no opposing diagonals, this

is only possible if the 3 associated diagonals are interlaced for 𝑡 sufficiently close to 1.

This contradicts Lemma 3.6. Hence 𝑆 has non-empty interior.

4 The Feathers of the Bird

4.1 Goal of the Chapter

Recall that 𝑃𝐼 is the interior of the region bounded by 𝑃. We call the union of black

triangles in Figure 4.1 the feathers of the bird. the black region in the center is the soul.
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e

v

Figure 4.1 The feathers of a 3-bird.

Each feather 𝐹 of a 𝑘-bird 𝑃 is the convex hull of its base, an edge 𝑒 of 𝑃, and its tip, a

vertex of ∆𝑘(𝑃).

The goal of this chapter is to prove the following result, which says that the simple

topological picture shown in Figure 4.1 always holds.

Theorem 4.1. The following is true.

1. Let 𝐹 be an feather with base 𝑒. Then 𝐹 − {𝑒} ⊂ 𝑃𝐼 .

2. Distinct feathers can only intersect at a vertex of 𝑃.

3. The line segment connecting two consecutive feather tips lies in 𝑃𝐼 .

When we apply∆𝑘 to 𝑃 we are just specifying the points of∆𝑘(𝑃). We define the polygon

∆𝑘(𝑃) so that the edges are the bounded segments connecting the consecutive tips of the

feathers of 𝑃. With this definion, Statement 2 of Theorem 1.1 follows immediately from

Theorem 4.1.
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4.2 The Proof

There is one crucial idea in the proof of Theorem 4.1: The soul of 𝑃 lies in the sector 𝐹∗

opposite any of its feathers 𝐹. See Figure 4.2.

F*

F

S

e
v

Figure 4.2 The soul lies in the sectors opposite the feathers.

We will give a homotopical proof of Theorem 4.1. By truncating our path of birds, we

can assume that Theorem 4.1 holds for all 𝑡 ∈ [0, 1). We set 𝑃 = 𝑃(1), etc.

Statement 1: Figure 4.3 shows the 2 ways that Statement 1 could fail:

1. The tip 𝑣 of the feather 𝐹 could coincide with some 𝑝 ∈ 𝑃.

2. Some 𝑝 ∈ 𝑃 could lie in the interior point of 𝜕𝐹 − 𝑒.

Figure 4.3: Case 1 (left) and Case 2 (right).

For all 𝑥 ∈ 𝐹∗, the ray ⃖⃗𝑥𝑝 intersects 𝑃 both at 𝑝 and at a point 𝑝′ ∈ 𝑒. This contradicts

the fact that for any 𝑥 ∈ 𝑆 ⊂ 𝐹∗, the polygon 𝑃 is strictly star-shaped with respect to 𝑥.
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This establishes Statement 1 of Theorem 4.1.

Statement 2: Let 𝐹1 and 𝐹2 be two feathers of 𝑃, having bases 𝑒1 and 𝑒2. For Statement 2,

it suffices to prove that 𝐹1 − 𝑒1 and 𝐹2 − 𝑒2 are disjoint.

The same homotopical argument as for Statement 1 reduces us to the case when 𝐹1

and 𝐹2 have disjoint interiors but 𝜕𝐹1−𝑒1 and 𝜕𝐹2−𝑒2 share a common point 𝑥. If 𝜕𝐹1 and

𝜕𝐹2 share an entire line segment then, thanks to the fact that all the feathers are oriented

the same way, we would have two (𝑘 + 1) diagonals of 𝑃 lying in the same line and having

opposite orientation. Lemma 3.5 rules this out.

In particular 𝑥 must be the tip of at least one feather. Figure 4.4 shows the case when

𝑥 = 𝑣1, the tip of 𝐹1, but 𝑥 ≠ 𝑣2. The case when 𝑥 = 𝑣1 = 𝑣2 has a similar treatment.

F
1

F
2

Figure 4.4: Opposiing sectors are disjoint

In this case, the two sectors 𝐹∗
1

and 𝐹∗
2

are either disjoint or intersect in a single point.
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This contradicts the fact that 𝑆 ⊂ 𝐹∗
1
⊂ 𝐹∗

2
has non-empty interior. This contradiction

establishes Statement 2 of Theorem 4.1.

Statement 3: Recall that 𝑃 = 𝑃 ∪ 𝑃𝐼 . Let 𝐹1 and 𝐹2 be consecutive feathers with bases 𝑒1
and 𝑒2 respeectively. Let 𝑓 be the edge connecting the tips of 𝐹1 and 𝐹2. Our homotopy

idea reduces us to the case when 𝑓 ⊂ 𝑃 and 𝑓 ∩ 𝑃 ≠ ∅. Figure 4.5 shows the situation.

F
1 F

2

2

e1 e2

Figure 4.5: The problem a common boundary point

Note that 𝑓 ∩ 𝑃 must be strictly contained in the interior of 𝑓 because (by Statement 1

of Theorem 4.1) the endpoints of 𝑓 lie in 𝑃𝐼 . But then, 𝑓 ∩ 𝑃 is disjoint from 𝐹∗
1
∩ 𝐹∗

2
, which

is in turn contained in the shaded region 𝐺. For any 𝑥 ∈ 𝐺 and each vertex 𝑝 of 𝑓, the

ray the ray ⃖⃗𝑥𝑝 also intersects 𝑃 at a point 𝑝′ ∈ 𝑒1 ∪ 𝑒2. This gives the same contradiction

as above when we take 𝑥 ∈ 𝑆 ⊂ 𝐹∗
1
∩ 𝐹∗

2
⊂ 𝐺. This completes the proof of Statement 3 of

Theorem 4.1.

Arnold Mathematical Journal, Vol.11(4), 2025 36

http://dx.doi.org/10.56994/ARMJ


The Flapping Birds in the Pentagram Zoo

5 The Degeneration of Birds

5.1 Statement of Result

Let 𝐵𝑘,𝑛 denote the space of 𝑛-gons which are 𝑘-birds. Let 𝜒𝑘 denote the 𝑘-energy. With

the value of 𝑘 fixed in the background, we say that a degenerating path is a path 𝑄(𝑡) of

𝑛-gons such that

1. 𝑄(𝑡) is planar for all 𝑡 ∈ [0, 1].

2. All vertices of 𝑄(𝑡) are distinct for all 𝑡 ∈ [0, 1].

3. 𝑄(𝑡) ∈ 𝐵𝑘,𝑛 for all 𝑡 ∈ [0, 1) but 𝑄(1) ∉ 𝐵𝑘,𝑛.

4. 𝜒𝑘(𝑄(𝑡)) > 𝜖0 > 0 for all 𝑡 ∈ [0, 1].

In this chapter we will prove the following result, which will help us prove that

∆𝑘(𝐵𝑘,𝑛) ⊂ 𝐵𝑘,𝑛 in the next chapter. The reader should probably just use the statement as

a black box on the first reading.

Lemma 5.1 (Degeneration). If 𝑄(⋅) is a degenerating path, then all but at most one vertex

of 𝑄(1) lies in a line segment.

Remark: Our proof only uses the fact that 𝑄 has nontrivial edges, nontrivial 𝑘-diagonals,

and nontrivial (𝑘+1)-diagonals. Some of the other vertices could coincide and it would not

matter. Also, the same proof works if, instead of a continuous path, we have a convergent

sequence {𝑄(𝑡𝑛)} with 𝑡𝑛 → 1 and a limiting polygon 𝑄(1) = lim𝑄(𝑡𝑛).

Example: Let us give an example for the case 𝑘 = 1 and 𝑛 = 5. Figure 5.0 shows a picture

of a pentagon 𝑄(𝑡) for 𝑡 = 1 − 𝑠.
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Figure 5.0: A degenerating path in the case 𝑘 = 1 and 𝑛 = 5.

Here 𝑠 ranges from 1 to 0 as 𝑡 ranges from 0 to 1. We have labeled some of the slopes

to facility the calculation (which we leave to the reader) that 𝜒1(𝑄(𝑡)) remains uniformly

bounded away from 0.

5.2 Distinguished Diagonals

We orient 𝑄(𝑡) so that it goes counter-clockwise around the region it bounds. We orient

the diagonal 𝑄𝑎𝑏 so that it points from 𝑄𝑎 to 𝑄𝑏. For 𝑡 < 1 the vertices 𝑄1(𝑡) and 𝑄𝑘(𝑡) lie to

the right of the diagonal 𝑄0,𝑘+1(𝑡), in the sense that a person walking along this diagonal

according to its orientation would see that points in the right. This has the same proof

as Lemma 3.2. The same rule holds for all cyclic relabelings of these points. The rule

holds when 𝑡 < 1. Taking a limit, we get a weak version of the rule: Each of 𝑄1(1) and

𝑄𝑘(1) either lies to the right of the diagonal 𝑄0,𝑘+1(1) or on it. The same goes for cyclic

relabeings. We call this the Right Hand Rule.

Say that a distinguished diagonal of 𝑄(𝑡) is either a 𝑘-diagonal or a (𝑘 + 1)-diagonal.

There are 2𝑛 of these, and they come in a natural cyclic order:

𝑄0,𝑘(𝑡) 𝑄0,𝑘+1(𝑡), 𝑄1,𝑘+1(𝑡), 𝑄1,𝑘+2(𝑡), ... (22)

The pattern alternates between 𝑘 and (𝑘 + 1)-diagonals. We say that a diagonal chain is a

consecutive list of these.

We say that one oriented segment 𝐿2 lies ahead of another one 𝐿1 if we can rotate 𝐿1
by 𝜃 ∈ (0, 𝜋) radians counter-clockwise to arrive at a segment parallel to 𝐿2, In this case

we write 𝐿1 ≺ 𝐿2. We have

𝑄0,𝑘+1(𝑡) ≺ 𝑄1,𝑘+1(𝑡) ≺ 𝑄1,𝑘+2(𝑡) ≺ 𝑄2,𝑘+2(𝑡). (23)
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0

k+1

1

k+2

2

Figure 5.1: The turning rule

This certainly holds when 𝑡 = 0. By continuity and the Right Hand Rule, this holds for all

𝑡 < 1. Taking a limit, we see that the 𝑘-diagonals of 𝑄(1) weakly turn counter-clockwise in

the sense that either 𝐿1 ≺ 𝐿2 for consecutive diagonals or else 𝐿1 and 𝐿2 lie in the same

line and point in the same direction. Moreover, the total turning is 2𝜋. If we start with

one distinguished diagonal and move through the cycle then the turning angle increases

by jumps in [0, 𝜋] until it reaches 2𝜋. We call these observations the Turning Rule.

5.3 Collapsed Diagonals

Figure 5.2 shows the distinguished diagonals incident to 𝑄0. We always take indices mod

𝑛. Thus −𝑘 − 1 = 𝑛 − 𝑘 − 1 mod 𝑛.

Figure 5.2: The 4 distinguished diagonals incident to 𝑄0(𝑡).

We say that 𝑄 has collapsed diagonals at a vertex if 𝑄 if the 4 distinguished diagonals

incident to 𝑄𝑘 do not all lie on distinct lines. We set 𝑄 = 𝑄(1). We set 𝑋 = 𝑋(1) for each

object 𝑋 associated to 𝑄(1).
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Since 𝑄 is planar but not 𝑘-nice, 𝑄 must have collapsed diagonals at some vertex. We

relabel so that the collapsed diagonals are at 𝑄0.

Lemma 5.2. If 𝑄 has collapsed diagonals at 𝑄0 then 𝑄−𝑘−1,0 and 𝑄0,𝑘+1 point in opposite

directions or 𝑄−𝑘,0 and 𝑄0,𝑘 point in the same direction.

Proof: Associated to each diagonal incident to 𝑄0 is the ray which starts at 𝑄0 and goes

in the direction of the other endpoint of the diagonal. (Warning: The ray may have the

opposite orientation than the diagonal it corresponds to.) If the angle between any of the

rays tends to 𝜋 as 𝑡 → 1 then the angle between the outer two rays tends to 𝜋. In this case

𝑄−𝑘,0 and 𝑄0,𝑘 point in the same directions. If the angle between non-adjacent rays tends

to 0 then 𝑄−𝑘−1,0 and 𝑄0,𝑘+1 are squeezed together and point in opposite directions.

Suppose that the angle between adjacent rays tends to 0. If the two adjacent rays are

the middle ones, we have the case just considered. Otherwise, either the angle between

the two left rays tends to 0 or the angle between the two right rays tends to 0. In either

case, the uniform lower bound on the cross ratio forces a third diagonal to point either in

the same or the opposite direction as these adjacent diagonals when 𝑡 = 1. Any situation

like this leads to a case we have already considered. ♠

5.4 The Case of Aligned Diagonals

We say that 𝑄 has aligned diagonals at the vertex 𝑄0 if 𝑄−𝑘,0 and 𝑄0,𝑘 are parallel. This is

the second option in Lemma 5.2. We make the same kind of definition at other vertices,

with the indices shifted in the obvious way,.

Lemma 5.3. Suppose 𝑄 does not lie in a single line. Suppose also that 𝑄 has aligned

diagonals at 𝑄0. Then the diagonals 𝑄−𝑘,0, 𝑄−𝑘,1, ..., 𝑄−1,𝑘, 𝑄0,𝑘 all are parallel and (hence) the

2𝑘 + 1 points 𝑄−𝑘, ..., 𝑄0, ..., 𝑄𝑘 are contained in the line defined by these diagonals.

Proof: These two diagonals define a short chain of diagonals, which starts with the first

listed diagonal and ends with the second one. They also define a long chain, which starts
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with the second and ends with the first. The total turning of the diagonals is 2𝜋, so one

of the two chains defined by our diagonals turns 2𝜋 and the other turns 0. Suppose first

that the long chain has 0 turning. This chain involves all points of 𝑄, and forces all points

of 𝑄 to be on the same line. So, the short chain must consist of parallel diagonals. ♠

All we use in the rest of the proof is that 𝑄−𝑘, ..., 𝑄𝑘 are all contained in a line 𝐿. By

shifting our indices, we can assume that 𝑄𝑘+1 ∉ 𝐿. This relabeling trick comes with a cost.

Now we cannot say whether the points 𝑄−𝑘....𝑄𝑘 come in order on 𝐿. We now regain this

control.

Lemma 5.4. The length 2𝑘-diagonal chain 𝑄−𝑘,0 → ... → 𝑄0,𝑘 consists entirely of parallel

diagonals. There is no turning at all.

Proof: The diagonals 𝑄−𝑘,0 and 𝑄0,𝑘. are either parallel or anti-parallel. If they are anti-

parallel, then the angle between the corresponding rays incident 𝑄0(𝑡) tends to 0 as 𝑡 → 1.

But these are the outer two rays. This forces the angle between all 4 rays incident to 𝑄0(𝑡)

to tend to 0. The whole picture just folds up like a fan. But one or these rays corresponds

to 𝑄0,𝑘+1(𝑡). This picture forces 𝑄𝑘+1 ∈ 𝐿. But this is not the case.

Now we know that 𝑄−𝑘,0 and 𝑄0,𝑘 are parallel. All the diagonals in our chain are

either parallel or anti-parallel to the first and last ones in the chain. If we ever get an

anti-parallel pair, then the diagonals in the chain must turn 2𝜋 around. But then none of

the other distinguished diagonals outside our chain turns at all. As in Lemma 5.3, this

gives 𝑄 ⊂ 𝐿, which is false. ♠

We rotate the picture so that 𝐿 coincides with the 𝑋-axis and so that 𝑄0,𝑘 points in

the positive direction. Since we are already using the words left and right for another

purpose, we say that 𝑝 ∈ 𝐿 is forward of of 𝑞 ∈ 𝐿 if 𝑝 has larger 𝑋-coordinate. Likewise

we say that 𝑞 is backwards of 𝑝 in this situation. We say that 𝑄0,𝑘 points forwards. We

have established that 𝑄−𝑘,0, ..., 𝑄0,𝑘 all point forwards.

Lemma 5.5. 𝑄𝑘+2 ∈ 𝐿 and both 𝑄1,𝑘+2 and 𝑄2,𝑘+2 point backwards.
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Proof: We have arranged that 𝑄𝑘+1 ∉ 𝐿. Let us first justify the fact that 𝑄𝑘+1 lies above 𝐿.

This follows from Right Hand Rule applied to 𝑄0,𝑘+1 and 𝑄𝑘 and the fact that 𝑄0,𝑘 points

forwards. Since 𝑄−𝑘, 𝑄−𝑘+1, 𝑄1 are collinear, 𝑄 has collapsed diagonals at 𝑄1. But 𝑄 cannot

have aligned diagonals because𝑄1,𝑘+1 is not parallel to𝑄−𝑘,1. Hence𝑄 has folded diagonals

at 1. This means that the diagonals 𝑄−𝑘,1 and 𝑄1,𝑘+2 point in opposite directions. This

forces 𝑄𝑘+2 ∈ 𝐿 and morever we can say that 𝑄1,𝑘+2 points backwards.

We have 𝑄2 ∈ 𝐿 because 2 ≤ 𝑘. We want to see that 𝑄2,𝑘+2 points forwards and they

Suppose not. We consider the 3 distinguished diagonals

𝑄0,𝑘, 𝑄1,𝑘+2, 𝑄2,𝑘+2.

These diagonals respectively point forwards, backwards, forwards and they all point one

direction or the other along 𝐿. But then, in going from 𝑄0,𝑘 to 𝑄2,𝑘+2, the diagonals have

already turned 2𝜋. Since the total turn is 2𝜋, the diagonals 𝑄2,𝑘+2, 𝑄3,𝑘+3, ..., 𝑄𝑛,𝑛+𝑘 are all

parallel. But then 𝑄2, ..., 𝑄𝑛 ∈ 𝐿. This contradicts the fact that 𝑄𝑘+1 ∉ 𝐿. ♠

Lemma 5.6. For at least one of the two indices 𝑗 ∈ {2𝑘 + 2, 2𝑘 + 3} we have 𝑄𝑗 ∈ 𝐿 and 𝑄𝑘+2,𝑗
points forwards.

Proof: Since 𝑄1, 𝑄2, 𝑄𝑘+2 are collinear, 𝑄 has collapsed diagonals at 𝑄𝑘+2. So, by Lemma

5.2, we either have folded diagonals at 𝑄𝑘+2 or aligned diagonals at 𝑄𝑘+2. The aligned case

gives 𝑄2𝑘+2 ∈ 𝐿 and the folded case gives 𝑄2𝑘+3 ∈ 𝐿. We need to work out the direction of

pointing in each case.

Consider the aligned case. Suppose 𝑄𝑘+2,2𝑘+2 points backwards, as shown in Figure

5.3.

k+2

k+1

2k+2

Figure 5.3: Violation of the Right Hand Rule
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This violates the Right Hand Rule for 𝑄𝑘+2 and 𝑄𝑘+1,2𝑘+2 because 𝑄𝑘+1 lies above 𝐿.

Consider the folded case. Since 𝑄𝑘+2,2𝑘+3 and 𝑄1,𝑘+2 point in opposite directions, and

𝑄1,𝑘+2 points backwards (by the previous lemma), 𝑄𝑘+2,2𝑘+3 points forwards. ♠

Let 𝑗 ∈ {2𝑘 + 2, 2𝑘 + 3} be the index from Lemma 5.6. Consider the 3 diagonals

𝑄0,𝑘, 𝑄1,𝑘+1, 𝑄𝑘+2,𝑗.

These diagonals are all parallel to 𝐿 and respectively point in the forwards, backwards,

forwards direction. This means that the diagonals in the chain 𝑄0,𝑘 → ... → 𝑄𝑘+2,𝑗 have

already turned 2𝜋 radians. But this means that the diagonals

𝑄𝑘+2,2𝑘+3, 𝑄𝑘+3,2𝑘+3, 𝑄𝑘+3,2𝑘+4, ... 𝑄0,𝑘 = 𝑄𝑛,𝑛+𝑘

are all parallel and point forwards along 𝐿. Hence 𝑄𝑘+2, 𝑄𝑘+3, ..., 𝑄𝑛 ∈ 𝐿. Hence all points

but 𝑄𝑘+1 lie in 𝐿.

5.5 The Case of Double Folded Diagonals

We fix a value of 𝑘. Say that two indices 𝑎, 𝑏 ∈ 𝒁∕𝑛 are far if their distance is at least 𝑘

in 𝒁∕𝑛. We say that 𝑄 has far folded diagonals if 𝑄 has folded diagonals at 𝑄𝑎 and 𝑄 has

folded diagonals at 𝑏 and 𝑎, 𝑏 are far.

In this case we have two parallel diagonals 𝑄𝑎,𝑎+𝑘+1 and 𝑄𝑏,𝑏+𝑘+1. As in the proof of

Lemma 5.3, one of the two diagonal chains defined by these diagonals consists of parallel

diagonals. The far condition guarantees that at least 2𝑘+1 consecutive points are involved

in each chain. But then we get 2𝑘+1 collinear points. So, if𝑄 has far folded diagonals, then

the same proof as in the previous section shows that the conclusion of the Degeneration

Lemma holds for 𝑄.

5.6 Good Folded Diagonals

We say that the folded diagonals𝑄−𝑘−1,0 and𝑄0,𝑘+1 are good if all the points𝑄𝑘+1, 𝑄𝑘+2, ..., 𝑄𝑛−𝑘−1
are collinear. This notion is empty when 𝑘 = 2 and 𝑛 = 7 but otherwise it has content. In
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this section we treat the case when 𝑄 has a pair of good folded diagonals. We start by

discussing an auxiliary notion.

We say that 𝑄 has backtracked edges at 𝑄𝑎 if the angle between the edges 𝑄𝑎,𝑎+1 and

𝑄𝑎,𝑎−1 is either 0 or 2𝜋.

Lemma 5.7. If 𝑄 has backtracked edges at 𝑄𝑎 then 𝑄 has folded diagonals at 𝑄𝑎.

Proof: For 𝑡 ∈ [0, 1), the edges of 𝑄 emanating from 𝑎 divide the plane into 4 sectors, and

one of these sectors, 𝐶(𝑡) contains all the distinguished diagonals emanating from 𝑄𝑎(𝑡).

The sector 𝐶(𝑡) is the one which locally intersects 𝑄(𝑡) near 𝑄𝑎(𝑡). The angle of 𝐶(𝑡) tends

to 0 as 𝑡 → 1, forcing all the distinguished diagonals emanating from 𝑄𝑎(𝑡) to squeeze

down as 𝑡 → 1. This gives us the folded diagonals. ♠

We will use Lemma 5.7 in our analysis of good folded edges. Now we get to it. We

rotate so that our two diagonals are in the line 𝐿, which is the 𝑋-axis. We normalize so

that 𝑄0 is the origin, and 𝑄𝑘+1 and 𝑄−𝑘−1 are forward of 𝑄0.

Lemma 5.8. If 𝑛 > 3𝑘+1 and𝑄−𝑘−1,0, 𝑄0,𝑘+1 are good folded diagonals, then the Degeneration

Lemma is true for 𝑄.

Proof: Suppose first that 𝑄1 ∈ 𝐿. Then 𝑄 has folded diagonals at 𝑄𝑘+1. When 𝑛 > 3𝑘 + 1

the indices (𝑘 + 1) and (−𝑘 − 1) are 𝑘-far. This gives 𝑄 far folded diagonals, a case we have

already treated.

To finish our proof, we show that 𝑄1 ∈ 𝐿. We explore some of the other points. We

know that 𝑄𝑘+1, ..., 𝑄𝑛−𝑘−1 ∈ 𝐿. We can relabel dihedrally so that 𝑄𝑛−𝑘−1 is forwards of

𝑄𝑘+1. We claim that 𝑄𝑘+2 is forwards of 𝑄𝑘+1. Suppose not. Then there is some index

𝑎 ∈ {𝑘 + 2, ..., −𝑘 − 2} such that 𝑄𝑎 is backwards of 𝑄𝑎±1. What is going on is that our points

would start by moving backwards on 𝐿 and eventually they have to turn around. The

index 𝑎 is the turn-around index. This gives us backtracked edges at 𝑄𝑎. By Lemma 5.7,

we have folded diagonals at 𝑄𝑎. But 𝑎 and 0 are 𝑘-far indices. This gives 𝑄 far-folded

diagonals.
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The only way out of the contradiction is that 𝑄𝑘+2 is forwards of 𝑄𝑘+1.

0

k+1

-k-1L

k+2

1

Figure 5.4: A contradiction involving 𝑄1.

Suppose 𝑄1 ∉ 𝐿. by the Right Hand Rule applied to the diagonal 𝑄0,𝑘+1, the point 𝑄1
lies beneath 𝐿, as shown in Figure 5.4. But then 𝑄𝑘+1 lies to the left of the diagonal 𝑄1,𝑘+2.

This violates the Right Hand Rule. Now we know that 𝑄1 ∈ 𝐿. ♠

Lemma 5.9. Suppose 𝑛 = 3𝑘 + 1 and 𝑘 > 2. If 𝑄−𝑘−1,0, 𝑄0,𝑘+1 are good folded diagonals, then

the Degeneration Lemma is true for 𝑄.

Proof: The same argument as in Lemma 5.8 establishes the key containment 𝑄1 ∈ 𝐿. (We

need 𝑘 > 2 for this.) From here, as in Lemma 5.8, we deduce that 𝑄−𝑘−1,0 and 𝑄𝑘+1,2𝑘+2 are

parallel. This time the conclusion we get from this is not as good. We get a run of 𝑘 points

in 𝐿, and then a point not necessarily in 𝐿, and then a run of 𝑘 additional points in 𝐿.

The points are 𝑄𝑘+1, ..., 𝑄2𝑘+1, ..., 𝑄0 with the point 𝑄−𝑘 omitted. But then 𝑄 has folded

diagonals at each of these points except the outer two, 𝑄𝑘+1 and 𝑄0. But then For each

such index ℎ, we see that both 𝑄ℎ±(𝑘+1) belong to 𝐿. This gives us all but one point in 𝐿.

It is instructive to consider an example, say 𝑘 = 4 and 𝑛 = 13. In this case, our ini-

tial run of points in 𝐿 is 𝑄5, 𝑄6, 𝑄7, 𝑄8, 𝑄10, 𝑄11, 𝑄12, 𝑄13. The folded diagonals at 𝑄6, 𝑄7, 𝑄8
respectively give 𝑄1, 𝑄2, 𝑄3 ∈ 𝐿. The folded diagonals at 𝑄10, 𝑄11, 𝑄12 respectively give

𝑄2, 𝑄3, 𝑄4 ∈ 𝐿. ♠

Finally we consider the case 𝑘 = 2 and 𝑛 = 7. In this case all we know is that𝑄0, 𝑄3, 𝑄4 ∈

𝐿 with 𝑄3, 𝑄4 forwards of 𝑄0. We can dihedrally relabel to that 𝑄4 is forwards of 𝑄3. Here

𝑄3 = 𝑄𝑘+1 and 𝑄4 = 𝑄𝑘+2. So, now we can run the same argument as in Lemma 5.9 to

conclude that 𝑄1 ∈ 𝐿. Now we proceed as in the proof of Lemma 5.9.
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5.7 Properties of the Soul

We define 𝑆 = 𝑆(1) to be the set of all accumulation points of sequences {𝑝(𝑡𝑛)} where

𝑝(𝑡𝑛) ∈ 𝑆(𝑡𝑛) and 𝑡𝑛 → 1. Here 𝑆(𝑡𝑛) is the soul of 𝑃(𝑡𝑛). We have one more case to analyze,

namely ungood folded diagonals. To make our argument go smoothly, we first prove

some properties about 𝑆.

Lemma 5.10. Suppose that 𝑄 has folded diagonals at 𝑄0. If the Degeneration Lemma is

false for 𝑄, then 𝑆 is contained in the line segment joining 𝑄0 to 𝑄𝑘+1

Proof: Here is a general statement about 𝑆. Since 𝑆(𝑡) is non-empty and closed for all

𝑡 < 1, we see by compactness that 𝑆 is also a non-empty closed subset of the closed region

bounded by 𝑄. By continuity 𝑆 lies to the left of all the closed half-planes defined by the

oriented (𝑘 + 1) diagonals (or in their boundaries). Since 𝑆 lies to the left of (or on) each

(𝑘 + 1) diagonal, 𝑆 is a subset of the line 𝐿 common to the folded diagonals and indeed

𝑆 lies to one side of the fold point 𝑄0. From the way we have normalized, 𝑆 lies in the

𝑋-axis forward of 𝑄0. (The point 𝑄0 might be an endpoint of 𝑆.)

If 𝑆 contains points of 𝐿 that lie forward of 𝑄𝑘+1 then either the diagonal 𝑄𝑘+1,2𝑘+2
points along the positive 𝑋-axis or into the lower half-plane. In the former cases, the

diagonals 𝑄0,𝑘+1, 𝑄𝑘+1,2𝑘+2 are parallel and we get at least 2𝑘 + 1 collinear points and so

the Degeneration Lemma holds for 𝑄.

If 𝑄𝑘+1,2𝑘+2 points into the negative half-plane, then the diagonal 𝑄0,𝑘+1 turns more

than 𝜋 degrees before reaching 𝑄𝑘+1,2𝑘+2. But then the diagonals in the chain 𝑄−𝑘−1,0 →

... → 𝑄0,𝑘+1... → 𝑄𝑘+1,2𝑘+2 turn more than 2𝜋 degrees. This is a contradiction. ♠

Remark: The same argument works with 𝑄−𝑘−1 in place of 𝑄𝑘+1.

Lemma 5.11. If the Degeneration Lemma is false for 𝑄 then 𝑆 cannot intersect 𝑄 in the

interior of an edge of 𝑄.

Proof: Suppose this happens. We relabel so that the edge is 𝑄0,1. By the Right Hand Rule,

the point 𝑄1 is not on the left of the diagonal 𝑄0,𝑘+1. At the same time, 𝑆 is not on the right
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of the diagonal. The only possibility is that 𝑄1, 𝑄0, 𝑄𝑘+1 are collinear. Likewise 𝑄−𝑘, 𝑄0, 𝑄1
are collinear. Furtheremore, the (𝑘 + 1)-diagonals 𝑄−𝑘,1 and 𝑄0,𝑘+1 are parallel. Figure 5.5

shows the situation for 𝑄(𝑡) and 𝑆(𝑡) when 𝑡 is very near 1.

0 1

k+1-k
the soul

Figure 5.5: The relevant points and lines.

But now we have two (𝑘 +1)-diagonals that are parallel and which start at indices that

are 𝑘 apart in 𝒁∕𝑛. This gives us 2𝑘 + 1 consecutive collinear points on the line containing

our edge. We know how to finish the Degeneration Lemma in this case. The only way out

is that 𝑆 cannot intersect 𝑄 in the interior of an edge of 𝑄. ♠

Lemma 5.12. If the Degeneration Lemma is false for 𝑄, then 𝑆 cannot contain a vertex of 𝑄.

Proof: We relabel so that 𝑄0 ∈ 𝑆. The same analysis as in the previous lemma shows that

𝑄1, 𝑄0, 𝑄−𝑘 are collinear. Figure 5.6. shows the situation for 𝑡 near 1. At the same time, the

points 𝑄−1, 𝑄0, 𝑄𝑘 are collinear.

the soul

0

-k

1

Figure 5.6: The relevant points and lines

To avoid a case of the Degeneration Lemma we have already done, 𝑄 must have folded

diagonals at 𝑄−𝑘. Likewise 𝑄 must have folded diagonals at 𝑄𝑘. But then 𝑄 has far folded

diagonals, and the Degeneration Lemma holds for 𝑄. ♠

Now let us bring back our assumptions: 𝑄 has folded diagonals at 𝑄0 and the points

𝑄0, 𝑄𝑘+1, 𝑄−𝑘−1 all lie in the 𝑋-axis in the forward order listed.
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Corollary 5.13. If the Degeneration Lemma is false for 𝑄 then 𝑆 lies in the open interval

bounded by 𝑄0 and 𝑄𝑘+1 and no point of 𝑆 lies in 𝑄. In particular, 𝑆 contains a point 𝑥,

forwards of 𝑄0 and backwards of both 𝑄𝑘+1 and 𝑄−𝑘−1, that is disjoint from 𝑄.

5.8 Ungood Folded Diagonals

The only case left is when 𝑄 does not have 2𝑘 + 1 consecutive collinear points, and when

all folded diagonals of 𝑄 are ungood. Without loss of generality, we will consider the case

when 𝑄 has ungood folded diagonals at 𝑄0. We normalize as in the previous section, so

that 𝑄0, 𝑄𝑘+1, 𝑄−𝑘−1 lie in forward order on 𝐿, which is the 𝑋-axis. Let 𝑥 be a point from

Corollary 5.13.

We call an edge of 𝑄 escaping if 𝑒 ∩ 𝐿 is a single point. We call two different edges of 𝑄,

in the labeled sense, twinned if they are both escaping and if they intersect in an open

interval. Even if two distinctly labeled edges of 𝑄 coincide, we consider them different as

labeled edges.

Lemma 5.14. 𝑄 cannot have twinned escaping edges.

Proof: Consider 𝑄(𝑡) for 𝑡 near 1. This polygon is strictly star shaped with respect to a

point 𝑥(𝑡) near 𝑥.

L

the twinned 

edges of Q
part

of Q(t)

D

Figure 5.7: Rays intersecting the twinned segments

There is a disk 𝐷 about 𝑥 such that every 𝑝 ∈ 𝐷 contains a ray which intersects the

twinned edges in the middle third portion of their intersection. Figure 5.7 shows what

we mean. Once 𝑡 is sufficiently near 1, the soul 𝑆(𝑡) will intersect 𝐷, and for all points

𝑝 ∈ 𝐷 there will be a ray which intersects 𝑄(𝑡) twice. This contradicts the fact that 𝑄(𝑡) is
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strictly star-shaped with respect to all points of 𝑆(𝑡). ♠

We say that an escape edge rises above 𝐿 if it intersects the upper half plane in a

segment.

Lemma 5.15. 𝑄 cannot have two escape edges which rise above 𝐿 and intersect 𝑄 on the

same side of the point 𝑥.

Proof: This situation is similar to the previous proof. In this case, there is a small disk 𝐷

about 𝑥 such that every point 𝑝 ∈ 𝐷 has a ray which intersects both rising escape edges

transversely, and in the middle third of each of the two subsegments of these escape

edges that lie above 𝐿. Figure 5.8 shows this situation.

L

part

of Q(t)

D

the 

rising

edges

Figuren 5.8: Rays intersecting the rising segments.

In this case, some part of 𝑄(𝑡) closely shadows our two escape edges for 𝑡 near 1. But

then, once 𝑡 is sufficiently near 1, each ray we have been talking about intersects 𝑄(𝑡)

at least twice, once by each escaping edge. This gives the same contradiction as in the

previous lemma. ♠

We define falling escape segments the same way. The same statement as in Lemma

5.15 works for falling escape segments. Since 𝑥 ∉ 𝑄 we conclude that 𝑄 can have at most

4 escaping segments total.

But 𝑄 = 𝑄+ ∪ 𝑄−, where 𝑄± is an arc of 𝑄 that starts at 𝑄𝑘+1 and ends at 𝑄−𝑘−1. Since

both these arcs start and end on 𝐿, and since both do not remain entirely on 𝐿, we see
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that each arc has at least 2 escape edges, and none of these are twinned. This means that

both 𝑄+ and 𝑄− have exactly two escape edges.

Now for the moment of truth: Consider 𝑄+. Since 𝑄+ just has 2 escape edges, they both

have to be either rising or falling. Also, since 𝑄+ starts and ends on the same side of 𝑥,

and cannot intersect 𝑥, both the escape edges for 𝑄+ are on the same side of 𝑥. This is a

contradiction. The same argument would work for 𝑄− but we don’t need to make it.

6 The Persistence of Birds

In this chapter we prove Statement 3 of Theorem 1.1, namely the fact that ∆𝑘(𝐵𝑛,𝑘) = 𝐵𝑛,𝑘.

First we use the Degeneration Lemma to prove that ∆𝑘(𝐵𝑛,𝑘) ⊂ 𝐵𝑛,𝑘. Then we deduce the

opposite containment from projective duality and from the factoring of ∆𝑘 given in §2.2.

6.1 Containment

Suppose for the sake of contradiction that there is some 𝑃 ∈ 𝐵𝑘,𝑛 such that ∆(𝑃) ∉ 𝐵𝑘,𝑛.

Recall that there is a continuous path 𝑃(𝑡) for 𝑡 ∈ [0, 1] such that 𝑃(0) is the regular 𝑛-gon.

Define 𝑄(𝑡) = ∆𝑘(𝑃(𝑡)). There is some 𝑡0 ∈ [0, 1] such that 𝑄(𝑡0) ∉ 𝐵𝑘,𝑛. We can truncate

our path so that 𝑡0 = 1. In other words, 𝑄(𝑡) ∈ 𝐵𝑛,𝑘 for 𝑡 ∈ [0, 1) but 𝑄(1) ∉ 𝐵𝑘,𝑛.

Lemma 6.1. 𝑄(⋅) is a degenerating path.

Proof: Note that 𝑄(⋅) is planar and hence satisfies Property 1 for degenerating paths. Let

𝑃 = 𝑃(1) and 𝑄 = 𝑄(1). If 𝑄 doe not have all distinct vertices then two different feathers of

𝑃 intersect at a point which (by Statement 2 of Theorem 1.1) lies in 𝑃𝐼 . This contradicts

Statement 2 of Theorem 4.1. Hence 𝑄(⋅) satisfies Property 2 for degenerating paths. By

construction, 𝑄(𝑡) ∈ 𝐵𝑛,𝑘 for all 𝑡 ∈ [0, 1). Hence 𝑄(⋅) satisfies Property 3. The energy 𝜒𝑘

is well-defined and continuous on 𝐵𝑘,𝑛. Hence, by compactness, 𝜒𝑘(𝑃(𝑡)) > 𝜖0 for some

𝜖0 > 0 and all 𝑡 ∈ [0, 1]. Now for the crucial step: We have already proved that 𝜒𝑘◦∆𝑘 = 𝜒𝑘.

Hence 𝜒𝑘(𝑄(𝑡)) > 𝜖0 for all 𝑡 ∈ [0, 1]. That is, 𝑄(⋅) satisfies Property 4 for degenerating
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paths. ♠

Now we apply the Degeneration Lemma to 𝑄(⋅). We conclude that all but at most 1

vertex of 𝑄(1) lies in a line 𝐿. Stating this in terms of 𝑃(1), we can say that all but at most

one of the feathers of 𝑃(1) have their tips in a single line 𝐿. Call an edge of 𝑃(1) ordinary

if the feather associated to it has its tip in 𝐿. We call the remaining edge, if there is one,

special. Thus, all but at most one edge of 𝑃 is ordinary.

Let 𝑆(𝑡) be the soul of 𝑃(𝑡). We know that 𝑆(1) has non-empty interior by Theorem 3.1.

For ease of notation we set 𝑃 = 𝑃(1) and 𝑆 = 𝑆(1).

Lemma 6.2. 𝑃 cannot have ordinary edges 𝑒1 and 𝑒2 that lie on opposite sides of 𝐿 and are

disjoint from 𝐿.

Proof: Suppose this happens. Figure 6.1 shows the situation.

L

F1

F2

Figure 6.1: Two feathers on opposite sides of 𝐿.

Let 𝐹1 and 𝐹2 be the two associated feathers. Then the opposite sector 𝐹∗
1

lies above 𝐿,

and the opposite sector 𝐹∗
2

lies below 𝐿 and the two tips are distinct. But then 𝑆(1), which

must lie in the intersection of these sectors, is empty. ♠

Lemma 6.3. 𝑃 cannot have more than 2 ordinary edges which intersect 𝐿.

Proof: Note that an ordinary edge cannot lie in 𝐿 because then the tip would not. So, an

ordinary edge that intersects 𝐿 does so either at a single vertex or at an interior point. As

we trace along 𝐿 in one direction or the other we encounter the first intersecting edge and

then the last one and then some other intersecting edge. Let 𝐹1.𝐹2.𝐹3 be the two feathers,
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as shown in Figure 6.3. Let 𝑒𝑗 be the edge of 𝐹𝑗 that belongs to 𝑃. Let 𝑣𝑗 be the tip of 𝐹𝑗.

(Figure 6.3 shows the case when 𝑒𝑗 ∩ 𝐿 is an interior point of 𝑒𝑗 for each 𝑗 = 1, 2, 3, but the

same argument would work if some of these intersection points were vertices.)

outsideF1
F2F3

e3
v1 v2

Figure 6.2: Three or more crossing edges

One of the two arcs 𝛼 of 𝑄 joining 𝑣1 to 𝑣2 stays in 𝐿, namely the one avoiding the

one point of 𝑄 not on 𝐿. However, 𝛼 passes right through 𝐹3 and in particular crosses 𝑒3
transversely. However, one side of 𝐹3 is outside 𝑃. Hence 𝛼 is not contained in 𝑃𝐼 , the

interior of the region bounded by 𝑃. This contradicts Statement 2 of Theorem 1.1, which

says that 𝑄 ⊂ 𝑃𝐼 . ♠

The line 𝐿 divides the plane into two open half-planes, which we call the sides of

𝐿. Lemma 6.2 says that 𝑃 cannot have ordinary edges contained in opposite sides of 𝐿.

Lemma 6.3 says that at most 2 ordinary edges can intersect 𝐿. Hence, all but at most 2 of

the ordinary edges of 𝑃 lie on one side of 𝐿. Call this the abundant side of 𝐿. Call the other

side the barren side. The barren side contains no ordinary edges at all, and perhaps the

special edge. In particular, at most two vertices of 𝑃 lie in the barren side.

abundant

barren

e1
e2

L

v1

v3

v2

Figure 6.3: Following the diagonals bounding a feather

At the same time, each ordinary edge on the abundant side contributes two vertices to

the barren side: We just follow the diagonals comprising the corresponding feather. These
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diagonals cross 𝐿 from the abundant side into the barren side. Two different ordinary

edges contribute at least 3 distinct vertices to the barren side. This is a contradiction.

We have ruled out all possible behavior for 𝑃 = 𝑃(1) assuming that 𝑄 = 𝑄(1) is

degenerate. Hence, 𝑄(1) is not degenerate. This means that 𝑄(1) is a bird. This completes

the proof that

∆𝑘(𝐵𝑘,𝑛) ⊂ 𝐵𝑘,𝑛. (24)

6.2 Equality

We use the notation from §2.2. Equation 8 implies that

∆−1
𝑘

= 𝐷𝑘+1◦∆𝑘◦𝐷𝑘+1. (25)

So far, Equation 25 makes sense in terms of PolyPoints and PolyLines.

Below we will explain how to interpret 𝐷𝑘+1 as a map from polygons in 𝑷 to polygons

in 𝑷
∗ and also as a map from polygons in 𝑷

∗ to polygons in 𝑷. Since the dual projective

plane 𝑷∗ is an isomorphic copy of 𝑷, it makes sense to define 𝐵∗
𝑘.𝑛

. This space is just the

image of 𝐵𝑘,𝑛 under any projective duality. Below we will prove

Theorem 6.4. 𝐷𝑘+1(𝐵𝑘,𝑛) ⊂ 𝐵∗
𝑘,𝑛

.

It then follows from projective duality that 𝐷𝑘+1(𝐵∗𝑘,𝑛) ⊂ 𝐵𝑘,𝑛. Combining these equa-

tions with Equation 25 we see that ∆−1
𝑘
(𝐵𝑛,𝑘) ⊂ 𝐵𝑛,𝑘. This combines with Equation 24 to

finish the proof of Theorem 1.1.

Now we prove Theorem 6.4.

Lemma 6.5. If 𝑃 ∈ 𝐵𝑘,𝑛, then we can enhance 𝐷𝑘+1(𝑃) in such a way that 𝐷𝑘+1(𝑃) is a planar

polygon in 𝑷
∗. The enhancement varies continuously.

Proof: A polygon is a PolyPoint together with additional data specifying an edge in 𝑷

joining each consecutive pair of points. Dually, we get a polygon in 𝑷
∗ from a PolyLine by

specifying, for each pair of consecutive lines 𝐿𝑗, 𝐿𝑗+1, an arc of the pencil of lines through

the intersection point which connects 𝐿𝑗 to 𝐿𝑗+1.
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Specifying an enhancement of 𝐷𝑘+1(𝑃) is the same as specifing, for each consecutive

pair 𝐿1, 𝐿2 of (𝑘 + 1) diagonals of 𝑃, an arc of the pencil through their intersection that

connects 𝐿1, 𝐿2. There are two possible arcs. One of them avoids the interior of the soul

of 𝑃 and the other one sweeps through the soul of 𝑃. We choose the arc that avoids the

soul interior. Figure 6.4 shows that we mean for a concrete example.

Figure 6.4: Enhancing a PolyLine to a polygon: Avoid the soul.

Since the soul of 𝑃 has non-empty interior, there exists a point 𝑥 ∈ 𝑃 which is disjoint

from all these pencil-arcs. Applying duality, this exactly says that there is some line in 𝑷
∗

which is disjoint from all the edges of our enhanced 𝐷𝑘+1(𝑃). Hence, this enhancement

makes 𝐷𝑘+1(𝑃) planar. Our choice also varies continuously on 𝐵𝑛,𝑘. ♠

Lemma 6.6. 𝐷𝑘+1 maps a member of 𝐵𝑘,𝑛 to an 𝑛-gon which is 𝑘-nice.

Proof: Let 𝑄 = 𝐷𝑘+1(𝑃). A (𝑘 + 1)-diagonal of 𝑄 is just a vertex of 𝑃. A 𝑘 diagonal of 𝑄 is a

vertex of ∆𝑘(𝑝). Thus, to check the 𝑘-nice property for 𝑄 we need to take 𝑛-collections of

4-tuples of points and check that they are distinct. In each case, the points are collinear

because the lines of 𝑄 are coincident.

a
b

c

d
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Figure 6.5 One of the 𝑛 different 4-tuples we need to check.

Once we make this specification, there is really combinatorially only possibility for

which collections we need to check. Figure 6.5 shows one such 4-tuple, 𝑎, 𝑏, 𝑐, 𝑑. The

shaded triangles are the two feathers of 𝑃 whose tips are 𝑏, 𝑐. But 𝑎, 𝑏, 𝑐, 𝑑 are distinct

vertices of 𝑃 ∪ ∆𝑘(𝑃) and so they are distinct. That is all there is to it. ♠

To show that 𝑄 = 𝐷𝑘+1(𝑃) is a 𝑘-bird, we consider a continuous path 𝑃(𝑡) from the

regular 𝑛-gon 𝑃(0) to 𝑃 = 𝑃(1). We set 𝑄(𝑡) = 𝑃(𝑡). By construction, 𝑄(0) is a copy of the

regular 𝑛-gon in 𝑷
∗, and 𝑄(𝑡) is 𝑘-nice for all 𝑡 ∈ [0, 1], and 𝑄(𝑡) is a planar polygon for all

𝑡 ∈ [0, 1]. By definition 𝑄 = 𝑄(1) is a 𝑘-bird. This completes the proof of Theorem 6.4.

7 The Triangulation

7.1 Basic Definition

In this section we gather together the results we have proved so far and explain how we

construct the triangulation 𝜏𝑃 associated to a bird 𝑃 ∈ 𝐵𝑘,𝑛.

Since ∆𝑘(𝐵𝑘,𝑛) ⊂ 𝐵𝑘,𝑛, we know that ∆𝑘(𝑃) is also a 𝑘-bird. Combining this with Theorem

3.1 and Theorem 4.1 we can say that ∆𝑘(𝑃) is one embedded 𝑛-gon contained in 𝑃𝐼 , the

interior of the region bounded by the embedded 𝑃. The region between 𝑃 and ∆𝑘(𝑃) is

a topological annulus. Moreover, ∆𝑘(𝑃) is obtained from 𝑃 by connecting the tips of the

feathers of 𝑃. The left side Figure 7.1 shows how this region is triangulated. The black

triangles are the feathers of 𝑃 and each of the white triangles is made from an edge of

∆𝑘(𝑃) and two edges of adjacent feathers.
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Figure 7.1: The triangulation of the annulus

Lemma 7.1. For every member 𝑃 ∈ 𝐵𝑘,𝑛, the associated 2𝑛 triangles have pairwise disjoint

interiors, and thus triangulate the annular region between 𝑃 and ∆𝑘(𝑃).

Proof: As usual, we make a homotopical argument. If this result is false for some 𝑃, then

we can look at path which starts at the regular 𝑛-gon (for which it is true) and stop at the

first place where it fails. Theorem 4.1 tells us that nothing goes wrong with the feathers

of 𝑃. The only thing that can go wrong is ∆𝑘(𝑃) fails to be an embedded polygon. Since

this does not happen, we see that in fact there is no counter-example at all. ♠

We can now iterate, and produce 2𝑛 triangles between ∆𝑘(𝑃) and ∆2
𝑘
(𝑃), etc. The right

side of Figure 7.1 shows the result of doing this many times. The fact that ∆𝑘(𝐵𝑘,𝑛) = 𝐵𝑘,𝑛

allows us to extend outward as well. When we iterate forever in both directions, we get

an infinite triangulation of a (topological) cylinder that has degree 6 everywhere. This is

what Figure 1.6 is showing. We call this bi-infinite triangulation 𝜏𝑃.

7.2 Some Structural Results

The following result will help with the proof of Theorem 1.3.

Theorem 7.2. Let 𝑃 ∈ 𝐵𝑛,𝑘. Let 𝑆 be the soul of 𝐵. Then for 𝓁 ≥ 𝑛 we have ∆𝓁
𝑘
(𝑃) ⊂ 𝑆.
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Proof: We first note the existence of certain infinite polygonal arcs in 𝜏𝑃. We start at a

vertex of 𝑃 and then move inward to a vertex of ∆𝑘(𝑃) along one of the edges. We then

continue through this vertex so that 3 triangles are on our left and 3 on our right. Figure

7.2 below shows the two paths like this that emanate from the same vertex of 𝑃.

e1 e2

Figure 7.2: The spiral paths.

The usual homotopical argument establishes the fact that the spiral paths are locally

convex. One can understand their combinatrics, and how they relate to the polygons in

the orbit, just by looking at the case of the regular 𝑛-gon. We call the two spiral paths in

Figure 7.2 partners. In the regular 𝑛-gon the partners intersect infinitely often. So this

is true in general. Each spiral path has an initial segment joining the initial endpoint

on 𝑃 to the first intersection point with the partner. We define a petal to be the region

bounded by the initial paths of the two partners.

It is convenient to write 𝑃𝓁 = ∆𝓁
𝑘
(𝑃). In the regular case, 𝑃𝓁 is contained in the petal

for 𝓁 > 𝑛 − 1.. Hence, the same goes in the general case. Because the initial segments are

locally convex, the petal lies to the left of the lines extending the edges 𝑒1 and 𝑒2 when
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these edges are oriented according to the (𝑘 + 1)-diagonals of 𝑃. But this argument works

for every pair of partner spiral paths which start at a vertex of 𝑃. We conclude that for

𝓁 ≥ 𝑛, the polygon 𝑃𝓁 lies to the left of all the (𝑘 + 1)-diagonals of 𝑃. But the soul of 𝑃 is

exactly the intersection of all these left half planes. ♠

Theorem 7.2 in turn gives us information about the nesting properties of birds within

an orbit. Let 𝑆𝓁 denote the soul of 𝑃𝓁. Let

𝑆∞ =
⋂

𝓁∈𝒁

𝑆𝓁, 𝑆−∞ =
⋃

𝓁∈𝒁

𝑆𝓁. (26)

It follows from Theorem 7.2 that 𝑃∞ = 𝑆∞ and 𝑃−∞ = 𝑆−∞, because

𝑆𝓁+𝑛 ⊂ 𝑃𝓁+𝑛 ⊂ 𝑆𝓁 ⊂ 𝑃𝓁. (27)

Hence these sets are all convex subsets of an affine plane.

Corollary 7.3. Any 𝑃 ∈ 𝐵𝑘,𝑛 is strictly star-shaped with respect to all points in the convex

hull of ∆𝑛
𝑘
(𝑃).

Proof: Since 𝑃𝓁+𝑛 ⊂ 𝑆𝓁, and 𝑃𝓁 is strictly star shaped with respect to all points of 𝑆𝓁, we

see that 𝑃𝓁 is strictly star shaped with respect to all points of 𝑃𝓁+𝑛. Since 𝑆𝓁 is convex,

we can say more strongly that 𝑃𝓁 is strictly star-shaped with respect to all points of the

convex hull of 𝑃𝓁+𝑛. Now we just set 𝓁 = 0 and recall the meaning of our notation, we get

the exact statement of the result. ♠

An immediate corollary is that 𝑃 is strictly star-shaped with respect to 𝑃∞. (Theorem

1.3 says that this is a single point.)
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8 Nesting Properties of Birds

8.1 Duality

In this chapter we prove Theorem 1.3. In this first section we show how Statement 1 of

Theorem 1.3 implies Statement 2. We want to prove that the “backwards union” 𝑃−∞ is

an affine plane. Here 𝑃 ∈ 𝐵𝑛,𝑘 is a 𝑘-bird.

We take 𝓁 ≥ 0 and consider 𝑃−𝓁 = ∆−𝓁
𝑘
(𝑃). Since 𝑃−𝓁 is planar, there is a closed set Λ𝓁 of

lines in 𝑷 which miss 𝑃−𝓁. These sets of lines are nested: Λ1 ⊃ Λ2 ⊃ Λ3.... The intersection

is non-empty and contains some line 𝐿. We can normalize so that 𝐿 is the line at infinity.

Thus all 𝑃−𝓁 lie in 𝑹
2. We want to see that 𝑃−∞ = 𝑹

2.

Let 𝐷𝑘+1 be the map from §2.2 and §6.2. From Equation 8 we see that 𝐷𝑘+1 conjugates

∆𝑘 to ∆−1
𝑘

. With Theorem 6.4 in mind, define the following “dual” 𝑘-birds:

Π𝓁 = ∆𝓁
𝑘
(𝐷𝑘+1(𝑃)) = 𝐷𝑘+1(𝑃

−𝓁). (28)

From Statement 1 of Theorem 1.3, the sequence of 𝑘-birds {Π𝓁} shrinks to a point in the

dual plane 𝑷∗. The vertices of Π𝓁 are the (𝑘 + 1)-diagonals of 𝑃−𝓁. Because the vertices of

Π𝓁 shrink to a single point, all the (𝑘 + 1)-diagonals of 𝑃−𝓁 converge to a single line 𝐿′.

Lemma 8.1. 𝐿′ is the line at infinity.

Proof: Suppose not. When 𝓁 is large, all the (𝑘 + 1)-diagonals point nearly in the same

direction as 𝐿′. In particular, this is true of the subset of these diagonals which define the

soul 𝑆−𝓁. But these special diagonals turn monotonically and by less than 𝜋 radians as we

move from one to the next. Hence, some of these diagonals nearly point in one direction

along 𝐿′ and some point nearly in the opposite direction. But then 𝑆−𝓁 converges to a

subset of 𝐿′. This is a contradiction, ♠

The soul 𝑆−𝓁 is a convex set, containing the origin, and is bounded by some of the

(𝑘 + 1) diagonals. If 𝑆−𝓁 does not converge to the whole plane, then some (𝑘 + 1)-diagonal
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intersects a uniformly bounded region in 𝑹
2 for each 𝓁. But this produces a sequence

of (𝑘 + 1)-diagonals that does not converge to the line at infinity. This is a contradiction.

Hence 𝑆−𝓁 converges to all of 𝑹2. But then so does 𝑃−𝓁.

8.2 The Pre-Compact Case

The rest of the chapter is devoted to proving Statrement 1 of Theorem 1.3. Let 𝑃 ∈ 𝐵𝑛,𝑘

and let 𝑃𝓁 = ∆𝓁(𝑃). We take 𝓁 = 0, 1, 2, 3....

Conjecture 8.2. The sequence {𝑃𝓁} is pre-compact modulo affine transformations. That is,

this sequence has a convergent subsequence which converges to another element of 𝐵𝑛,𝑘.

In this section I will prove the 𝑃∞ is a single point under the assumption that {𝑃𝓁} is

pre-compact.

We would like to see that the diameter of 𝑃𝓁 steadily shrinks, but the notion of diameter

is not affinely natural. We first develop a notion of affinely natural diameter. For each

direction 𝑣 in the plane, we let ‖𝑆‖𝑣 denote the maximum length of 𝐿 ∩ 𝑆 where 𝐿 is a

straight line parallel to 𝑣. We then define

𝛿(𝑆1, 𝑆2) = sup
𝑣

‖𝑆1‖𝑣

‖𝑆2‖𝑣
∈ [0, 1]. (29)

The quantity 𝛿(𝑆1, 𝑆2) is affine invariant, and (choosing a direction 𝜇 which realizes the

diamater of 𝑆1) we have
diam(𝑆1)

diam(𝑆2)
≤
‖𝑆1‖𝜇

‖𝑆2‖𝜇
≤ 𝛿(𝑆1, 𝑆2). (30)

Let 𝑆𝓁 be the soul of 𝑃𝓁. By Theorem 5.11 we have 𝑆𝓁+𝑛 ⊂ 𝑆𝓁. More precisely, the former

set is contained in the interior of the latter set. Under the pre-compactness assumption,

there are infinitely many indices 𝓁𝑗 and some 𝜖 > 0 such that

𝛿(𝑆𝓁𝑗+𝑛, 𝑆𝓁𝑗 ) < 1 − 𝜖. (31)

But then
diam(𝑆𝓁𝑗+𝑛)

diam(𝑆𝓁𝑗 )
< 1 − 𝜖 (32)
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infinitely often. This forces diam(𝑆𝓁) → 0. But 𝑃∞ is contained in this nested intersection

and hence is a point.

If we knew the truth of Conjecture 8.2 then our proof of Theorem 1.3 would be done.

Since we don’t know this, we have to work much harder to prove Statement 1 in general.

8.3 Normalizing by Affine Transformations

Henceforth we assume that the forward orbit {𝑃𝓁} of 𝑃 under ∆𝑘 is not pre-compact

modulo affine transformations.

Lemma 8.3. There is a sequence {𝑇𝓁} of affine transformations such that

1. 𝑇𝓁(𝑃𝓁) has (the same) 3 vertices which make a fixed equilateral triangle.

2. 𝑇𝓁 expands distances on 𝑃𝓁 for all 𝓁.

3. 𝑇𝓁(𝑃𝓁) is contained in a uniformly bounded subset of 𝑹2.

Proof: To 𝑃𝓁 we associate the triangle 𝜏𝓁 made from 3 vertices of 𝑃𝓁 and having maximal

area. The diameter of 𝜏𝓁 is uniformly small, so we can find a single equilateral triangle 𝑇

and an expanding affine map 𝑇𝓁 ∶ 𝜏𝓁 → 𝑇. Let 𝑑 be the side length of 𝑇. Every vertex of

𝑇𝓁(𝑃
𝓁) is within 𝑑 of all the sides of 𝑇, because otherwise we’d have a triangle of larger

area. The sequence {𝑇𝓁} has the advertised properties. ♠

Let 𝑄𝓁 = 𝑇𝓁(𝑃
𝓁). By compactness we can pass to a subsequence so that the limit

polygon 𝑄 exists, in the sense that the vertices and the edges converge. Let 𝑄0, 𝑄1, etc.

be the vertices of 𝑄. Perhaps some of these coincide. Each distinguished diagonal of 𝑄𝓁

defines the unit vector which is parallel to it. Thus 𝑄𝓁 defines a certain list of 2𝑛 unit

vectors. We can pass to a subsequence so that all these unit vectors converge. Thus 𝑄 still

has well defined distinguished diagonals even when the relevant points coincide.

We now define the “limiting soul”. Let 𝑆𝓁 = 𝑆(𝑄𝓁), the soul of 𝑄𝓁. As in §5.7. let 𝑆 be

the set of accumulation points of sequences {𝑝𝓁} with 𝑝𝓁 ∈ 𝑆𝓁. Since 𝑆𝓁 ⊂ 𝑄𝓁 for all 𝓁 we
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have 𝑆 ⊂ 𝑄. Now we define a related object. We have a left half-plane associated to each

diagonal of 𝑄. We define Σ to be the intersection of all these half-planes. We will use the

set Σ at various places below to get control over the set 𝑆.

Lemma 8.4. 𝑆 ⊂ Σ.

Proof: Fix 𝜖 > 0. If this is not the case, then by compactness we can find a convergent

sequence {𝑝𝓁}, with 𝑝𝓁 ∈ 𝑆𝓁, which does not converge to a point of Σ. But 𝑝𝓁 lies in every

left half plane associated to 𝑄𝓁. But then, by continuity, the accumulation point 𝑝 lies in

every left half plane associated to 𝑄. Hence 𝑝 ∈ Σ. ♠

8.4 Structure of the Normalized Limits

We work under the assumption that 𝑃∞ is not a single point. The goal of this section

is to establish several structural properties about the sets 𝑆 and 𝑄. Our first property

guarantees that there is a chord 𝑆∗ of 𝑆 connecting vertices of 𝑄. Once we establish this,

we show that 𝑄 is a union of two “monotone” arcs joining the endpoints of 𝑆∗. These

structural properties will be used repeatedly in subsequent sections of this chapter.

Let 𝐻𝑄 denote the convex hull of 𝑄. Note that 𝑆 ⊂ 𝑄 ⊂ 𝐻𝑄.

Corollary 8.5. Suppose that 𝑃∞ is not a single point. Then 𝛿(𝑆,𝐻𝑄) = 1.

Proof: Suppose not. Note that 𝐻𝑄𝓁 ⊂ 𝑆𝓁−𝑛 by Theorem 7.2 and convexity. Then for 𝓁 large

we have

𝛿(𝑄𝓁−𝑛) = 𝛿(𝑆𝓁, 𝑆𝓁−𝑛) ≤ 𝛿(𝑆𝓁, 𝐻𝑄𝓁) < 𝛿(𝑆,𝐻𝑄) + 𝜖,

and we can make 𝜖 as small as we like. This gives us a uniform 𝛿 < 1 such that 𝛿(𝑄𝓁) < 𝛿

once 𝓁 is large enough. The argument in the compact case now shows that 𝑃∞ is a single

point. ♠
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Corollary 8.5 says that 𝑆 and 𝑄 have the same diameter. Hence there is a chord 𝑆∗ ⊂ 𝑆

which has the same diameter as 𝑄. Since 𝑄 is a polygon, this means that 𝑄 must have

vertices at either endpoint of 𝑆∗. We normalize so that 𝑆∗ is the unit segment joining (0, 0)

to (1, 0).

Lemma 8.6. Let 𝑄′ ⊂ 𝑄 be an arc of 𝑄 that joins (0, 0) to (1, 0).

1. The vertices of 𝑄′ must have non-decreasing 𝑥-coordinates.

2. If consecutive vertices of 𝑄′ have the same 𝑥-coordinate, they coincide.

3. Either 𝑄′ ⊂ 𝑆∗ or 𝑄′ intersects 𝑆∗ only at (0, 0) and (1, 0).

Proof: Suppose the Statement 1 is false. Then we can find a vertical lineΛwhich intersects

𝑆∗ at a relative interior point and which intersects 𝑄′ transversely at 3 points. But then

once 𝓁 is sufficiently large, 𝑄𝓁 will intersect all vertical lines sufficiently close to Λ in at

least 3 points and moreover some of these lines will contain points of 𝑆𝓁. This contradicts

the fact that 𝑄𝓁 is strictly star-shaped with respect to all points of 𝑄𝓁.

For Statement 2, we observe that 𝑄′ does not contain any point of the form (0, 𝑦) or

(1, 𝑦) for 𝑦 ≠ 0. Otherwise 𝑄 has larger diameter than 1. This is to say that once 𝑄′ leaves

(0, 0) it immediately moves forward in the 𝑋-direction. Likewise, once 𝑄′ (traced out the

other way) leaves (1, 0) it immediately moves backward in the 𝑋-direction. If Statement 2

is false, ten we can find a non-horizontal line Λ′ which intersects 𝑆∗ in a relative interior

point and which intersects 𝑄′ transversely at 3 points. The slope is Λ′ depends on which

of the two vertices of 𝑄′ lies above the other. Once we have Λ′ we play the same game as

for the first statement, and get the same kind of contradiction.

Suppose Statement 3 is false. We use the kind of argument we had in §5.8. By State-

ments 1 and 2 together, 𝑄′ must have an escape edge which touches 𝑆∗ in a relative

interior point. Moreover, this one escape edge is paired with another escape edge. Thus

we can find a point 𝑥 ∈ 𝑆∗ which strictly lies on the same side of both of these same-type

escape edges. The argument in §5.8 now shows that 𝑄𝓁 is not strictly star-shaped with
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respect to points of 𝑆𝓁 very near 𝑥. ♠

Corollary 8.7. Suppose 0 ≤ 𝑎 < 𝑏 < 𝑛 and 𝑄𝑎 = 𝑄𝑏. Then either we have𝑄𝑎 = 𝑄𝑎+1 = ... = 𝑄𝑏

or else we have 𝑄𝑏 = 𝑄𝑏+1 = ... = 𝑄𝑎+𝑛.

Proof: In view of Lemma 8.6 it suffices to show that our two monotone arcs comprising

𝑄 are disjoint except at their endpoints.

Let 𝑈 denote the open upper halfplane, bounded by the 𝑋-axis. After reflecting in

the 𝑋-axis we can guarantee that one of our monotone arcs 𝛼 has a point in 𝑈. But then,

by Lemma 8.6, all of 𝛼 lies in 𝑈 except for its endpoints. If the other monotone arc 𝛽

intersects 𝛼 away from the endpoints, then 𝛽 has a point in 𝑈, but then, by Lemma 8.6,

all of 𝛽 lies in 𝑈 except for the endpoints. But then 𝑆 lies in 𝑈, except for the points (0, 0)

and (1, 0). This contradicts the fact that 𝑆∗ ⊂ 𝑆. ♠

Our argument shows in particular that 𝑄 is embedded, up to adding repeated vertices.

However, we will not directly use this property in our proof below.

8.5 The Triangular Case

We continue with the assumption that 𝑃 is not a single point. Here we pick off a special

case:

• There is a line 𝐿 such that 𝑄0 ∉ 𝐿.

• 𝑄𝑘, 𝑄𝑘+1, ..., 𝑄𝑛−𝑘−1, 𝑄𝑛−𝑘 ∈ 𝐿 and

• 𝑄𝑘 ≠ 𝑄𝑛−𝑘.

Figure 8.1 shows the situation. As always, the notation 𝑄−𝑘 and 𝑄𝑛−𝑘 names the same

point. All but 2𝑘 − 1 points are on 𝐿, and except for 𝑄0 we don’t know where these other

2𝑘 − 1 points are.

Arnold Mathematical Journal, Vol.11(4), 2025 64

http://dx.doi.org/10.56994/ARMJ


The Flapping Birds in the Pentagram Zoo

L

0

-k

-k-1 k+1

k

Figure 8.1: The triangular limit 𝑄.

Given the constant energy of our orbit, the cross ratio of the lines

𝑄0,𝑘, 𝑄0,𝑘+1, 𝑄𝑛−𝑘−1,0, 𝑄𝑛−𝑘,0

is at least 𝜖0. Also, these lines are cyclically ordered about 0 as indicated in Figure

8.1, thanks to the 𝑘-niceness property and continuity. Also, the two lines containing

𝑄0,𝑘 and 𝑄−𝑘,0 are not parallel because 𝑄0 ∉ 𝐿. Hence 𝑆 is contained in the shaded

region in Figure 8.1, namely the triangle with vertices 𝑄0 and 𝑄±(𝑘+1). But this shaded

region has diameter strictly smaller than the triangle 𝜏 with vertices 𝑄0 and 𝑄±𝑘. Hence

diam(𝑆) < diam(𝜏) ≤ diam(𝑄). This contradicts Corollary 8.5 which says, in particular, that

𝑆 and 𝑄 have the same diameter.

8.6 The Case of No Folded Diagonals

We work under the assumption that 𝑃∞ is not a single point. The notions of collapsed

diagonals, folded diagonals, and aligned diagonals from §5 make sense for 𝑄 because the

concepts just involve the directions of the diagonals. The proof of Lemma 5.3 also works

the same way.
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Lemma 8.8. 𝑄 must either have a trivial edge, a trivial distinguished diagonal, or collapsed

diagonals,

Proof: As remarked in §5, the proof of the Degeneration Lemma works for sequences

as well as paths, and only uses the fact that the limiting polygon has nontrivial edges

and nontrivial distinguished diagonals. So, if 𝑄 has no trivial edges and no trivial dis-

tinguished diagonals, then all but one vertex of 𝑄 lies in a single line. But then 𝑄 has

collapsed diagonals. ♠

Remark: Here is a second, more direct proof. If Lemma 8.8 is false then we have a picture

as in the left side of Figure 7.1. The feathers defined in §4.1 would be all non-degenerate

and the segments joining the tips of consecutive feathers would be nontrivial. This would

force 𝑆 to lie in the interior of 𝑄. But then diam(𝑆) < diam(𝑄), contradicting Corollary 8.5.

If 𝑄 has a trivial distinguished diagonal, then by Lemma 8.7, we see that 𝑄 also has a

trivial edge. If 𝑄 has a trivial edge, say 𝑄−1 = 𝑄0, then the diagonals at 𝑄 are collapsed at

𝑄𝑘. So, in all cases, 𝑄 has collapsed diagonals. We assume in this section that 𝑄 has no

folded diagonals anywhere. This means that 𝑄 has aligned diagonals, say at 𝑄𝑘. Thus 𝑄0,𝑘
and 𝑄𝑘,2𝑘 are parallel. Since 𝑄 does not lie in a line, Lemma 5.3 tells us that the chain of

2𝑘 + 1 parallel distinguished diagonals:

𝑄0,𝑘, 𝑄0,𝑘+1, 𝑄1,𝑘+1, 𝑄1,𝑘+2, ..., 𝑄𝑘−1,2𝑘, 𝑄𝑘,2𝑘 (33)

Now we have a “runaway situation”. The two diagonals 𝑄2𝑘,𝑘 and 𝑄2𝑘,𝑘−1 (which are

just the reversals of the last two in Equation 33) are parallel. Thus 𝑄 has collapsed

diagonals at 𝑄2𝑘. Since 𝑄 has no folded diagonals, 𝑄 has aligned diagonals at 𝑄2𝑘. But then,

applying Lemma 5.3 again, we can extend that chain in Equation 33 so that it contines as

, ..., 𝑄2𝑘−1,3𝑘, 𝑄2𝑘,3𝑘. But now 𝑄 has collapsed diagonals at 𝑄3𝑘. And so on. Continuing this

way, we end up with all points on 𝑄. This is a contradiction.

The only way out is that 𝑄 must have folded diagonals somewhere
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8.7 The Case of Folded Diagonals

We continue to work under the assumption that 𝑃∞ is not a single point. Now we consider

the case when𝑄 has folded diagonals at, say, 𝑄0. What this means that the diagonals𝑄0,𝑘+1,

𝑄0,−𝑘−1 are parallel. (Again, these diagonals are well defined even when their endpoints

coincide; we are just using a notational convention to name them here.) But then the

corresponding half planes intersect along a single line 𝐿, forcing Σ ⊂ 𝐿. By Lemma 8.4,

the soul 𝑆 is contained in Σ. Hence, 𝑆 ⊂ 𝐿. Letting 𝑆∗ be the chord from §8.4, we also have

𝑆 = 𝑆∗. This is because 𝑆 and 𝑆∗ are segments of the same diagonal and in the same line.

We will use 𝑆 and 𝑆∗ interchangeably below.

We normalize so that 𝑆 is the line segment connecting (0, 0) to (1, 0). As in §8.4, both

these points are vertices of 𝑄. The folding condition forces Σ (and hence 𝑆) to lie to one

side of these points. Hence, we have either 𝑄0 = (0, 0) or 𝑄0 = (1, 0). Without loss of

generality we consider the case when 𝑄0 = (0, 0). Note that points of 𝑄 − 𝑆 do not be-

long to 𝐿, because𝑄 and 𝑆 have the same diameter. We break the analysis down into cases.

Case 1: Suppose that 𝑄𝑘+1 is not an endpoint of 𝑆∗ and 𝑄𝑛−𝑘−1 ≠ (0, 0). Consider the

arc 𝑄′ given by 𝑄0 → ... → 𝑄𝑘+1 → ... → 𝑄𝛽 = (1, 0). Here 𝛽 is some index we do not know

explicitly, but we take 𝛽 as large as possible, in the sense that 𝑄𝛽+1 ≠ (1, 0). The arc 𝑄′

connects (0, 0) to (1, 0) and intersets 𝑆∗ at 𝑄𝑘+1, a point which is neither (0, 0) or (1, 0). By

Lemma 8.6, we have 𝑄′ ⊂ 𝑆∗. We conclude that 𝑄0, ..., 𝑄𝛽 ⊂ 𝑆∗.

If 𝛽 does not lie in the index interval (𝑘 + 1, 𝑛 − 𝑘 − 1) then we have just shown that

𝑄𝑘+1, ..., 𝑄𝑛−𝑘−1 ∈ 𝑆∗. If 𝛽 = 𝑛 − 𝑘 − 1 we have the same result. Here is what we do if 𝛽

does lie in (𝑘 + 1, 𝑛 − 𝑘 − 1). We apply our same argument as in the previous paragraph

to the arc 𝑄𝛽 → ... → 𝑄𝑛−𝑘−1, and see that 𝑄𝛽, ..., 𝑄𝑛−𝑘−1 ∈ 𝑆. So, in all cases, we see that

𝑄𝑘+1, ..., 𝑄𝑛−𝑘−1 ∈ 𝑆.

In short, 𝑄𝑗 ∈ 𝐿 unless 𝑗 ∈ {−𝑘, ..., −1}. All but 𝑘 vertices belong to 𝐿. In particular, we

have an index ℎ ∈ {−𝑘, ..., −1} such that 𝑄ℎ ∉ 𝐿 but 𝑄ℎ+𝑘, 𝑄ℎ+𝑘+1, ..., 𝑄ℎ+𝑛−𝑘−1, 𝑄ℎ+𝑛−𝑘 ∈ 𝐿.

Now we are close to the Triangular case from §8.5 except that all the indices are shifted
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by ℎ. If it happens that 𝑄ℎ+𝑘 ≠ 𝑄ℎ+𝑛−𝑘 then we have the Triangular Case and we are done.

The other possibility is that 𝑄ℎ+𝑘 = 𝑄ℎ+𝑛−𝑘. In this case, Lemma 8.7 gives us 𝑄ℎ+𝑘 =

𝑄ℎ+𝑘+1 = 𝑄ℎ+𝑛−𝑘−1 = 𝑄ℎ+𝑛−𝑘. In particular, the diagonals 𝑄ℎ,ℎ+𝑘+1 and 𝑄ℎ,ℎ+𝑛−𝑘−1 are folded

at 𝑄ℎ. Since 𝑄ℎ ∉ 𝐿 this means that there is some other line 𝐿′ such that 𝑆 ⊂ 𝐿′. This is a

contradiction.

Case 2: Suppose 𝑄−𝑘−1 = 𝑄𝑘+1 = (1, 0). Before analyzing this case, we remember a

lesson from the end of Case 1: It is not possible for 𝑄 to have folded diagonals at a point

not on 𝑆.

Corollary 8.7 says that 𝑄𝑘+1 = ... = 𝑄𝑛−𝑘−1 = (1, 0). This is a run of 𝑘 + 𝛽 points, where

𝛽 = 𝑛 − (3𝑘 + 1) ≥ 0. There is some index ℎ ∈ {±1, ... ± 𝑘} such that 𝑄ℎ ∉ 𝐿. Without loss of

generality we will take ℎ ∈ {1, ..., 𝑘}.

Suppose first that 𝑛 > 3𝑘 + 1. Then there are at least 𝑘 + 1 consecutive vertices sitting

at (1, 0) and so both diagonals 𝑄ℎ,𝑘+ℎ and 𝑄ℎ,𝑘+ℎ+1 point from 𝑄ℎ to (1, 0) ≠ 𝑄ℎ. This means

that 𝑄 has collapsed diagonals at 𝑄ℎ. Remembering our lesson, we know that 𝑄 does not

have folded diagonals at 𝑄ℎ. Hence 𝑄 has aligned diagonals at 𝑄ℎ.

Now we have the same runaway situation we had in §8.6. The diagonals in the chain

𝑄ℎ−𝑘,ℎ...𝑄ℎ,ℎ+𝑘 point are all pointing along the line connecting (1, 0) to 𝑄ℎ, and they are

pointing away from (1, 0). This gives us collapsed diagonals at 𝑄ℎ+𝑘. Remembering our

lesson, we see that 𝑄 has aligned diagonals at 𝑄ℎ+𝑘. And so on. All the points after 𝑄ℎ get

stuck on 𝐿′ and we have a contradiction.

If 𝑛 = 3𝑘 + 1, then the same argument works as long as ℎ ≠ ±𝑘. So, we just have to

worry about the case when all points of 𝑄 belong to 𝑆 except for 𝑄𝑘 and 𝑄−𝑘, which do

not belong to 𝑆. Applying Lemma 8.6 to the arc 𝑄0 → 𝑄1 → ... → 𝑄𝑘 → (1, 0) we conclude

that 𝑄0 = ... = 𝑄𝑘−1 = (0, 0). Applying Lemma 8.6 to the arc 𝑄0 → 𝑄−1 → ... → 𝑄−𝑘 → (1, 0)

we conclude that 𝑄0 = ... = 𝑄𝑘−1 = (0, 0). But now we have a run of 2𝑘 − 1 ≥ 𝑘 + 1 points

sitting at (0, 0) and we can run the same argument as in the case 𝑛 > 3𝑘 + 1, with (0, 0) in

place of (1, 0).
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Case 3: The only cases left to consider is when one or both of 𝑄±(𝑘+1) equals (0, 0). We

suppose without loss of generality that 𝑄−𝑘−1 = (0, 0). Since we also have 𝑄0 = (0, 0),

Lemma 8.7 gives 𝑄−𝑘−1 = ... = 𝑄0 = (0, 0). This is a run of 𝑘 + 2 consecutive points sitting

at (0, 0).

There is some smallest ℎ > 0 so that 𝑄ℎ ∉ 𝑆. Applying Lemma 8.6 to the arc 𝑄0 → ... →

𝑄𝑘 → ... → (1, 0), we conclude that 𝑄ℎ−1 = ... = 𝑄1 = (0, 0). (Otherwise Lemma 8.6 would

force 𝑄ℎ ∈ 𝑆.)

Now we know that 𝑄 has collapsed diagonals at 𝑄ℎ ∉ 𝐿. We now get a contradiction

from the same runaway situation as in Case 2.

9 Appendix

9.1 The Energy Invariance Revisited

In this section we sketch Anton Izosimov’s proof that 𝜒𝑘◦∆𝑘 = 𝜒𝑘. This proof requires the

machinery from [6]. (The perspective comes from [8], but the needed result for ∆𝑘 is in

the follow-up paper [6].)

Let 𝑃 be an 𝑛-gon. We let 𝑉1, ..., 𝑉𝑛 be points in 𝑹
3 representing the consecutive vertices

of 𝑃. Thus the vertex 𝑃𝑗 is the equivalence class of 𝑉𝑗. We can choose periodic sequences

{𝑎𝑖}, {𝑏𝑖}, {𝑐𝑖}, {𝑑𝑖} such that

𝑎𝑖𝑉𝑖 + 𝑏𝑖𝑉𝑖+𝑘 + 𝑐𝑖𝑉𝑖+𝑘+1 + 𝑑𝑖𝑉𝑖+2𝑘+1 = 0, ∀𝑖. (34)

Recall from §2.2 that ∆𝑘 = 𝐷𝑘◦𝐷𝑘+1.

Lemma 9.1. One of the cross ratio factors of 𝜒𝑘◦𝐷𝑘+1 is (𝑎0𝑑−𝑘)∕(𝑐0𝑏−𝑘).

Proof: One of the factors is the cross ratio of 𝑃0, 𝑦, 𝑥, 𝑃𝑘+1, where

𝑥 = 𝑃0,𝑘+1 ∩ 𝑃𝑘,2𝑘+1, 𝑦 = 𝑃−𝑘,1 ∩ 𝑃0,𝑘+1.

(Compare the right side of Figure 2.1, shifting all the indices there by 𝑘 + 1.)
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The points 𝑥 and 𝑦 respectively are represented by vectors

𝑋 = 𝑎0𝑉0 + 𝑐0𝑉𝑘+1 = −𝑏0𝑉𝑘 − 𝑑0𝑉2𝑘+1,

𝑌 = −𝑎−𝑘𝑉−𝑘 − 𝑐−𝑘𝑉1 = 𝑏−𝑘𝑉0 + 𝑑−𝑘𝑉𝑘+1.

The point here is that the vector𝑋 lies in the span of {𝑉0, 𝑉𝑘+1} and in the span of {𝑉𝑘, 𝑉2𝑘+1}

and projectively this is exactly what is required. A similar remark applies to 𝑌.

Setting Ω = 𝑉0 × 𝑉𝑘+1, we compute the relevant cross ratio as

𝑉0 × 𝑌

𝑉0 × 𝑋
⋅
𝑋 × 𝑉𝑘+1

𝑌 × 𝑉𝑘+1
=
𝑑−𝑘Ω

𝑐0Ω
×

𝑎0Ω

𝑏−𝑘Ω
=
𝑑−𝑘𝑎0

𝑏−𝑘𝑐0
, (35)

which is just a rearrangement of the claimed term. ♠

The other cross ratio factors are obtained by shifting the indices in an obvious way.

As an immediate corollary, we see that

𝜒𝑘(𝐷𝑘+1(𝑃)) =

𝑛∏

𝑖=1

𝑎𝑖𝑑𝑖

𝑏𝑖𝑐𝑖
. (36)

Let us call this quantity 𝜇𝑘(𝑃).

Lemma 9.2. If 𝜇𝑘◦∆𝑘 = 𝜇𝑘 then 𝜒𝑘◦∆𝑘 = 𝜒𝑘.

Proof: If 𝜇𝑘◦∆𝑘 = 𝜇𝑘 then 𝜇𝑘◦∆
−1

𝑘
= 𝜇𝑘. Equation 36 says that

𝜒𝑘◦𝐷𝑘+1 = 𝜇𝑘, 𝜇𝑘◦𝐷𝑘+1 = 𝜒𝑘. (37)

The first equation implies the second because 𝐷𝑘+1 is an involution. Since 𝐷𝑘+1 conjugates

∆𝑘 to ∆−1
𝑘

we have

𝜒𝑘◦∆𝑘 = 𝜒𝑘◦𝐷𝑘+1◦∆
−1

𝑘
◦𝐷𝑘+1 = 𝜇𝑘◦∆

−1

𝑘
◦𝐷𝑘+1 = 𝜇𝑘◦𝐷𝑘+1 = 𝜒𝑘.

This completes the proof. ♠
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Let 𝑃 = ∆𝑘(𝑃). Let {𝑎𝑖}, etc., be the sequences associated to 𝑃. We want to show that

𝑛∏

𝑖=1

𝑎𝑖𝑑𝑖

𝑏𝑖𝑐𝑖
=

𝑛∏

𝑖=1

𝑎𝑖𝑑𝑖

𝑏𝑖𝑐𝑖

. (38)

This is just a restatement of the equation 𝜇𝑘◦∆𝑘 = 𝜇𝑘.

Now we use the formalism from [6] to establish Equation 38. We associate to our

polygon 𝑃 operator 𝐷 on the space 𝒱 of bi-infinite sequences {𝑉𝑖} of vectors in 𝑹
3. The

definition of 𝐷 is given coordinate-wise as

𝐷(𝑉𝑖) = 𝑎𝑖𝑉𝑖 + 𝑏𝑖𝑇
𝑘(𝑉𝑖) + 𝑐𝑖𝑇

𝑘+1(𝑉𝑖) + 𝑑𝑖𝑇
2𝑘+1(𝑉𝑖). (39)

Here 𝑇 is the shift operator, whose action is 𝑇(𝑉𝑖) = 𝑉𝑖+1. If we take {𝑉𝑖} to be a periodic

bi-infinite sequence of vectors corresponding to our polygon 𝑃, then 𝐷 maps {𝑉𝑖} to the

0-sequence.

Next, we write 𝐷 = 𝐷+ + 𝐷− where coordinate-wise

𝐷+(𝑉𝑖) = 𝑎𝑖𝑉𝑖 + 𝑐𝑖𝑇
𝑘+1(𝑉𝑖), 𝐷−(𝑉𝑖) = 𝑏𝑖𝑇

𝑘(𝑉𝑖) + 𝑑𝑖𝑇
2𝑘+1(𝑉𝑖). (40)

The pair (𝐷+, 𝐷−) is associated to the polygon 𝑃.

Let 𝐷̃ and (𝐷̃+, 𝐷̃−) be the corresponding operators associated to 𝑃. One of the main

results of [6] is that the various choices can be made so that

𝐷̃+𝐷− = 𝐷̃−𝐷+. (41)

This is called refactorization. Equating the lowest (respectively highest) terms of the

relation in Equation 41 gives us the identity 𝑎𝑖𝑏𝑖 = 𝑏𝑖𝑎𝑖+𝑘 (respectively 𝑐𝑖𝑑𝑖+𝑘+1 = 𝑑𝑖𝑐𝑖+2𝑘+1.)

These relations hold for all 𝑖 and together imply Equation 38.

9.2 Extensions of Glick’s Formula

Theorem 1.1 in [3] says that the coordinates for the collapse point of the pentagram

map ∆1 are algebraic functions of the coordinates of the initial polygon. In Equation 1.1

of [3], Glick goes further and gives a formula for the collapse point. I will explain his
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formula. Let (𝑥∗, 𝑦∗) denote the accumulation point of the forward iterates of 𝑃 under ∆1.

Let 𝑃∞ = (𝑥∗, 𝑦∗, 1) be the collapse point. In somewhat different notation, Glick introduces

the operator

𝑇𝑃 = 𝑛𝐼3 − 𝐺𝑃, 𝐺𝑃(𝑣) =

𝑛∑

𝑖=1

|𝑃𝑖−1, 𝑣, 𝑃𝑖+1|

|𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1|
𝑃𝑖. (42)

Here |𝑎, 𝑏, 𝑐| denotes the determinant of the matrix with rows 𝑎, 𝑏, 𝑐 and 𝐼3 is the 3 × 3

identity matrix. It turns out 𝑇𝑃 is a ∆1-invariant operator, in the sense that 𝑇∆0(𝑃) = 𝑇𝑃.

Moreover 𝑃∞ is an eigenvector of 𝑇𝑃. This is Glick’s formula for 𝑃∞. Actually, one can

say more simply that 𝐺𝑃 is a ∆0-invariant operator and that 𝑃∞ is a fixed point of the

projective action of 𝐺𝑝. This means that the vectors representing these points in 𝑹
3 are

eigenvectors for the operator. The reason Glick uses the more complicated expression

𝑛𝐼3 − 𝐺𝑃 is that geometrically it is easier to work with.

Define 𝐺𝑃,𝑎,𝑏 by the formula

𝐺𝑃,𝑎,𝑏(𝑣) =

𝑛∑

𝑖=1

|𝑃𝑖−𝑎, 𝑣, 𝑃𝑖+𝑏|

|𝑃𝑖−𝑎, 𝑃𝑖, 𝑃𝑖+𝑏|
𝑃𝑖. (43)

Let 𝑃∞,𝑘 be the limit point of the forward iterates of 𝑃 under ∆𝑘.

A lot of experimental evidence suggests the following conjecture.

Conjecture 9.3. Let 𝑘 ≥ 2. If 𝑛 = 3𝑘+1 the point 𝑃∞ is a fixed point for the projective action

of 𝐺𝑃,𝑘,𝑘. If 𝑛 = 3𝑘 + 2 the point 𝑃∞ is a fixed point for the projective action of 𝐺𝑃,𝑘+1,𝑘+1. In

particular, in these cases the coordinates of 𝑃∞ are algebraic functions of the vertices of 𝑃.

Anton Izosimov kindly explained the following lemma, which seems like a big step in

proving the conjecture. (I am still missing the geometric side of Glick’s argument in this

new setting.)

Lemma 9.4. When 𝑛 = 3𝑘 + 1 the operator 𝐺𝑃,𝑘,𝑘 is invariant under ∆𝑘. When 𝑛 = 3𝑘 + 2

the operator 𝐺𝑃,𝑘+1,𝑘+1 is invariant under ∆𝑘.

Proof: These operators are Glick’s operator in disguise. When 𝑛 = 3𝑘 + 1 we can relabel

our 𝑛-gons in a way that converts ∆𝑘 to the pentagram map. The corresponding space of
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birds 𝐵𝑛,𝑘 corresponds to some strange set of “relabeled 𝑘-birds”. This relabeling converts

𝐺𝑃,𝑘,𝑘 respectively to Glick’s original operator. This proves the invariance of 𝐺𝑃,𝑘,𝑘 under

∆𝑘 when 𝑛 = 3𝑘 + 1. A similar thing works for 𝑛 = 3𝑘 + 2, but this time the relabeling

converts ∆𝑘 to the inverse of the pentagram map. ♠

I was not able to find any similar formulas when 𝑛 > 3𝑘 + 2.

Question 9.5. When 𝑛 > 3𝑘 + 2 and 𝑃 is a 𝑘-bird, are the coordinates of the collapse point

𝑃∞ algebraic functions of the vertices of 𝑃?

Here is one more thing I have wondered about. Suppose that 𝑛 is very large and 𝑃 is a

convex 𝑛-gon. Then 𝑃 can be considered as a 𝑘-bird for all 𝑘 = 1, 2, ..., 𝛽, where 𝛽 is the

largest integer such that 𝑛 ≥ 3𝛽 + 1. When we apply the map ∆𝑘 for these various values

of 𝑘 we get potentially 𝛽 different collapse points. All I can say, based on experiments, is

that these points are not generally collinear.

Question 9.6. Does the collection of 𝛽 collapse points in this situation have any special

meaning?

9.3 Star Relabelings

Let us further take up the theme in the proof of Lemma 9.4. Given an 𝑛-gon 𝑃 and and

some integer 𝑟 relatively prime to 𝑛, we define a new 𝑛-gon 𝑃∗𝑟 by the formula

𝑃∗𝑟
𝑗
= 𝑃𝑟𝑗. (44)

Figure 1.5 shows the 𝑃∗(−3) when 𝑃 is the regular 10-gon.

As we have already mentioned, the action of ∆1 on the 𝑃∗(−𝑘) is the same as the action

of ∆𝑘 on 𝑃 when 𝑛 = 3𝑘 + 1. So, when 𝑛 = 3𝑘 + 1, the pentagram map has another nice

invariant set (apart from the set of convex 𝑛-gons), namely

𝐵
∗(−𝑘)

𝑘,𝑛
= {𝑃∗(−𝑘)| 𝑃 ∈ 𝐵𝑘,𝑛}.
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The action of the pentagram map on this set is geometrically nice. If we suitably star-

relabel, we get star-shaped (and hence embedded) polygons. A similar thing works when

𝑛 = 3𝑘 + 2.
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1 Introduction

This work is part of our investigation of curve flows in the 3-sphere 𝑆3 that are invari-

ant under the action of the group 𝑆𝑈(2, 1) of pseudoconformal transformations, which
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preserves the standard contact structure on the sphere. While the focus of our previous

study [2] was Legendrian curves in the 3-sphere and geometric flows for such curves

which are integrable (i.e., inducing integrable evolution equations for their fundamental

differential invariants), in this note we discuss an interesting connection between an

integrable model of short wave-long wave interaction and a geometric flow for curves

that are transverse to the contact structure.

The pseudoconformal geometry of 𝑆3 is inherited from the geometry of the space ℂ3

endowed with the indefinite Hermitian form

⟨𝐳,𝐰⟩ ∶= i(𝑧3𝑤1 − 𝑧1𝑤3) + 𝑧2𝑤2. (1)

(The coordinates are chosen so that the 𝑧1, 𝑧3 axes are null directions.) Given the standard

action of 𝑆𝐿(3, ℂ) on ℂ3, let 𝑆𝑈(2, 1) denote the subgroup that preserves this form. Let

𝒩 ⊂ ℂ3 be the null cone, i.e., the set of nonzero null vectors for (1). The set of complex

lines on the null cone is diffeomorphic to 𝑆3, the unit sphere in ℂ2 (see (30)). It follows

that the linear action of 𝑆𝑈(2, 1) on ℂ3 induces an action on 𝑆3 known as the group of

pseudoconformal transformations. We will let 𝜋 denote the complex projectivization

map from ℂ3 minus the origin to ℂ𝑃2, as well as its restriction to the null cone, giving a

commutative diagram:
𝒩 ⊂
𝜋

ℂ3∖{0}

?
𝑆3 ⊂

𝜋

ℂ𝑃2
?

The pseudoconformal action preserves the standard contact structure on 𝑆3, defined for

curves in 𝑆3 in terms of their lifts relative to 𝜋 as follows.

Definitions. Let 𝛾 ∶ 𝐼 → 𝑆3 be a regular parametrized curve on an interval 𝐼 ⊂ ℝ. Then 𝛾

is Legendrian if it has a lift Γ ∶ 𝐼 → 𝒩 satisfying

Im⟨Γ𝑥, Γ⟩ = 0, ∀𝑥 ∈ 𝐼. (2)

By contrast, 𝛾 is a transverse curve or T-curve if its lift satisfies

Im⟨Γ𝑥, Γ⟩ ≠ 0, ∀𝑥 ∈ 𝐼. (3)
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In other words, the tangent vector of a T-curve is everywhere transverse to the con-

tact planes. (Note that both conditions (2),(3) are invariant under a change of lift, i.e.,

multiplying Γ by a nonzero complex-valued function.)

Let 𝛾 ∶ 𝐼 → 𝑆3 be a regular curve with lift Γ ∶ 𝐼 → 𝒩. Then Γ and its derivative Γ𝑥 satisfy

⟨Γ, Γ⟩ = 0 and Re⟨Γ𝑥, Γ⟩ = 0. If 𝛾 is a transverse curve then Im⟨Γ𝑥, Γ⟩ ≠ 0, so we can assume

the normalization ⟨Γ𝑥, Γ⟩ = i or equivalently ⟨iΓ, Γ𝑥⟩ = 1; we can furthermore choose a lift

that also satisfies ⟨Γ𝑥, Γ𝑥⟩ = 0 (see §2 for more details). With these assumptions, we define

a geometric flow based on the second derivative Γ𝑥𝑥 as

Γ𝑡 = i (Γ𝑥𝑥 − ⟨Γ𝑥𝑥, Γ𝑥⟩iΓ) , (4)

which induces a well-defined flow for the T-curve 𝛾 = 𝜋◦Γ. Note that the vector field

in parentheses on the right-hand side is a modification of Γ𝑥𝑥 that lies in {Γ𝑥}⟂, the or-

thogonal complement of the complex span {Γ𝑥}. If we let 𝗉{Γ𝑥}⟂ denote the orthogonal

projection onto {Γ𝑥}⟂, then writing (4) as Γ𝑡 = i𝗉{Γ𝑥}⟂ (Γ𝑥𝑥) suggests an analogy with the

vortex filament flow 𝛾𝑡 = 𝛾𝑥 ×𝛾𝑥𝑥 (or binormal flow) for an arc length parametrized curve

𝛾 in Euclidean space [10], with the skew-symmetric operator i𝗉{Γ𝑥}⟂ the analogue of the

symplectic operator 𝑇𝑥× for the binormal flow.

In Sections 2–4 we construct adapted frames for transverse curves—both local frames

(akin to the Frenet frames of Euclidean geometry) and non-local ‘natural’ frames—and

show that equation (4) can be rewritten in terms of a convenient non-local adapted frame

(Γ, Γ𝑥, 𝐵) as

Γ𝑡 = i𝑧𝐵,

where 𝐵 is a unit spacelike vector orthogonal to {Γ, Γ𝑥} and 𝑧 is a complex curvature, part

of the set (𝑧,𝑚), 𝑧 ∈ ℂ,𝑚 ∈ ℝ, of geometric invariants of Γ. After deriving the evolution

equations for the geometric invariants induced by a general vector field on (lifts of)

transverse curves, we show that the evolution induced by (4) on the invariants (𝑧,𝑚) is
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the following system of nonlinear PDE

𝑧𝑡 = i(𝑧𝑥𝑥 −𝑚𝑧),

𝑚𝑡 = 2(|𝑧|2)𝑥,

known as the Yajima-Oikawa (YO) or Long-Wave-Short-Wave equations, a completely

integrable model of interaction of long and short waves.

The YO system first appeared in work by Grimshaw [6] in the context of internal

gravity waves, and was derived by Yajima & Oikawa [12] and by Djordjevic & Redekopp

[5] as an integrable model of interaction of a long wave (of amplitude 𝑚) and a short

wave (of complex amplitude 𝑧).

In Section 5, we use the connection between the Lax pair for the YO equations at given

(𝑧,𝑚) and the adapted frame of the associated transverse curve to construct examples of

geometric realizations of solutions of the YO equations. We focus on the family of plane

wave YO solutions studied by Wright in [11], derive closure conditions for the associated

curves, and construct explicit formulas. The plane wave solutions, though simple at the

YO level, provide a wealth of closed transverse curves with non-trivial topology. We

present visualizations of several examples, that illustrate how the knot type and the

geometry relate to the parameters in the YO solutions.

In Section 6 we discuss some open questions and directions for future work.

2 Pseudoconformal Frames and Curvature

Let 𝛾 ∶ 𝐼 → 𝑆3 be a T-curve, and Γ be a lift satisfying Im⟨Γ𝑥, Γ⟩ > 0. Since the restriction

of the Hermitian form (1) to the complex span 𝒮 = spanℂ{Γ, Γ𝑥} is non-degenerate, we

construct a smooth adapted frame by selecting two linearly independent null vectors–Γ

itself and a second vector 𝑉 ∈ 𝒮–and adding a third vector 𝐵 which is spacelike and spans

the complex line orthogonal to 𝒮.

As described in Proposition 10 of [2], the ordered triple (Γ, 𝐵, 𝑉) of vectors in ℂ3 can
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be chosen to satisfy the following inner product relations

⟨Γ, Γ⟩ = ⟨𝑉, 𝑉⟩ = ⟨𝐵, Γ⟩ = ⟨𝐵, 𝑉⟩ = 0,

⟨Γ, 𝑉⟩ = −i, ⟨𝑉, Γ⟩ = i, ⟨𝐵, 𝐵⟩ = 1.

as well as the condition det(Γ, 𝐵, 𝑉) = 1 (meaning that the vectors form the columns of

a unimodular matrix). We call a triple that satisfies these relations a unimodular null

frame. In the rest of this section we describe how a smoothly-varying unimodular null

frame, including the lift Γ as its first member, can be chosen in an essentially unique way

for a regular T-curve, allowing us to identify fundamental invariants.

Local frame.

In Corollary 1 of [2] it is shown that, under suitable nondegeneracy assumptions, any

parametrized T-curve 𝛾 has a unimodular null frame field (Γ, 𝐵, 𝑉), constructed in terms

of algebraic functions of the components of 𝛾 and its derivatives, that satisfies

𝑑𝐹
𝑑𝑥

= 𝐹

⎡
⎢
⎢
⎢
⎢
⎣

1
3
i𝑝 −i𝑞 𝑚

0 − 2
3
i𝑝 𝑞

1 0 1
3
i𝑝

⎤
⎥
⎥
⎥
⎥
⎦

. (5)

where 𝐹 denotes the matrix with columns Γ, 𝐵, 𝑉, and 𝑚,𝑝, 𝑞 are real-valued fundamental

differential invariants of the parametrized curve. We refer to this as the local frame, and

it is unique up to multiplication of each column by the same cube root of unity. It is the

analogue of the (local) Frenet frame for a unit-speed curve 𝛾 ∶ ℝ → ℝ3 in Euclidean space.

Natural frame.

In the Euclidean case, one can also construct the (non-local) relatively parallel or natural

frame (𝑇,𝑈1, 𝑈2), where 𝑈1 = cos 𝜃 𝑁 + sin 𝜃 𝐵 and 𝑈2 = −sin 𝜃 𝑁 + cos 𝜃 𝐵, with 𝜃 = −∫ 𝜏 𝑑𝑠.

(Here 𝑁 and 𝐵 are the unit normal and binormal vectors and 𝑠 is arclength.) This frame,

which is unique up to a choice of antiderivative 𝜃, satisfies
𝑑𝑇
𝑑𝑠

= 𝑘1𝑈1 + 𝑘2𝑈2,
𝑑𝑈1
𝑑𝑠

= −𝑘1𝑇,
𝑑𝑈2
𝑑𝑠

= −𝑘2𝑇,
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so that the normal vectors 𝑈1, 𝑈2 rotate only in the direction of the tangent line. The

functions 𝑘1 = 𝑘 cos 𝜃 and 𝑘2 = 𝑘 sin 𝜃 are natural curvatures [1].

By analogy with the Euclidean case, given the local frame 𝐹 for a T-curve 𝛾 we can

use an antiderivative to neutralize the rotation of normal vector 𝐵 in the normal plane,

forming a new unimodular null frame field defined by

𝐹 = 𝐹 exp(𝜃𝖩), where 𝜃 = −∫ 𝑝 𝑑𝑥, 𝖩 =

⎛
⎜
⎜
⎜
⎝

1
3
i 0 0

0 − 2
3
i 0

0 0 1
3
i

⎞
⎟
⎟
⎟
⎠

.

It follows that 𝐹 satisfies the nonlocal frame equations

𝑑𝐹
𝑑𝑥

= 𝐹

⎡
⎢
⎢
⎢
⎢
⎣

0 −i𝑧 𝑚

0 0 𝑧

1 0 0

⎤
⎥
⎥
⎥
⎥
⎦

, (6)

where 𝑧 = 𝑒i𝜃𝑞 and 𝑚 is the same as in (5). One can interpret 𝑧 as a complex curvature,

measuring how the tangent line 𝜋{Γ, 𝑉} bends within the complex projective plane. The

real-valued invariant 𝑚 = 𝖨𝗆⟨𝑉,𝑉𝑥⟩ measures the deviation of the projectivization of 𝑉

from being a Legendrian curve in 𝑆3.

Companion 𝜆-frames

Any two unimodular null frames at the same point of 𝑆3 are linked by a transformation

of the following form (see, e.g., Proposition 10 in [2])

Γ̃ = 𝜈Γ, 𝐵 = 𝜈
𝜈 (𝐵 + 𝜇Γ) , 𝑉 = 𝜈

−1 [
𝑉 − i𝜇𝐵 − (𝜆 + 1

2
i|𝜇|2)Γ

]
, (7)

where 𝜈, 𝜇 are complex, with 𝜈 ≠ 0, and 𝜆 is real.

Given the local frame for a T-curve, we modify the frame using 𝜇 = 0, 𝜈 = 1 and 𝜆

constant in (7), to obtain the companion 𝜆-frame Γ̃ = Γ, 𝐵 = 𝐵,𝑉 = 𝑉 − 𝜆Γ. This modified

frame satisfies

Γ̃𝑥 = (13i𝑝 + 𝜆) Γ̃ + 𝑉, 𝐵𝑥 = −i𝑞Γ̃ − 2
3i𝑝𝐵, 𝑉𝑥 = (𝑚 − 𝜆2)Γ̃ + (13i𝑝 − 𝜆)𝑉.
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If we make a similar modification to a natural frame for a T-curve we obtain the compan-

ion 𝜆-natural frame, which satisfies

𝑑𝐹
𝑑𝑥

= 𝐹

⎡
⎢
⎢
⎢
⎢
⎣

𝜆 −i𝑧 𝑚 − 𝜆2

0 0 𝑧

1 0 −𝜆

⎤
⎥
⎥
⎥
⎥
⎦

. (8)

Remark. Note that if the projection of the frame vector 𝑉 of a companion 𝜆-frame is

a Legendrian curve in 𝑆3 (so that 𝑚 − 𝜆2 = 0), then the same is true for the companion

frame constructed using −𝜆.

3 Curve Flows and the Yajima-Oikawa Equations

If 𝛾(𝑥, 𝑡) is a smooth variation of a T-curve and (Γ, 𝐵, 𝑉) is a smoothly-varying choice of

natural frame, then the vector field Γ𝑡 = 𝑓Γ + 𝑔𝐵 + ℎ𝑉 must satisfy

ℎ𝑥 = −2𝖱𝖾𝑓 and (𝖨𝗆𝑓)𝑥 = 𝖱𝖾(𝑔𝑧) (9)

in order to keep the frame adapted, as shown in Proposition 11 of [2]. (Note that, since

condition (3) is an open condition, such variations always exist.) It follows that the

nonlocal invariants 𝑚 and 𝑧 = 𝑘 + i𝓁 evolve by

⎡
⎢
⎢
⎢
⎢
⎣

𝑘

𝓁

𝑚

⎤
⎥
⎥
⎥
⎥
⎦𝑡

= 𝒫

⎡
⎢
⎢
⎢
⎢
⎣

𝖨𝗆𝑔

−𝖱𝖾 𝑔
1
2
ℎ

⎤
⎥
⎥
⎥
⎥
⎦

, (10)

where

𝒫 =

⎛
⎜
⎜
⎜
⎝

−3𝓁𝐷−1◦𝓁 3𝓁𝐷−1◦𝑘 − 𝐷2 +𝑚 2𝐷◦𝑘 + 𝑘𝐷

3𝑘𝐷−1◦𝓁 + 𝐷2 −𝑚 −3𝑘𝐷−1◦𝑘 2𝐷◦𝓁 + 𝓁𝐷

2𝑘𝐷 + 𝐷◦𝑘 2𝓁𝐷 + 𝐷◦𝓁 2(𝑚𝐷 + 𝐷◦𝑚) − 𝐷3

⎞
⎟
⎟
⎟
⎠

and 𝐷 = 𝜕𝑥. The matrix operator 𝒫 is skew-adjoint, and forms a Hamiltonian pair with

𝒬 =
⎛
⎜
⎜
⎝

0 1 0

−1 0 0

0 0 𝐷

⎞
⎟
⎟
⎠

.
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In particular, if Γ evolves by

Γ𝑡 = i𝑧𝐵, (11)

then the invariants 𝑧 and 𝑚 satisfy the Yajima-Oikawa (YO) equations

𝑧𝑡 = i(𝑧𝑥𝑥 −𝑚𝑧),

𝑚𝑡 = 2(|𝑧|2)𝑥.
(12)

Integrability

The YO system (12) is the compatibility condition of the following pair of linear systems

𝝓𝑥 = 𝑈𝝓, 𝝓𝑡 = 𝑉𝝓, (13)

where

𝑈 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜆 0 1

i𝑧 0 0

𝑚 𝑧 −𝜆

⎤
⎥
⎥
⎥
⎥
⎦

, 𝑉 =

⎡
⎢
⎢
⎢
⎢
⎣

− 1
3
i𝜆2 −i𝑧 0

𝜆𝑧 − 𝑧𝑥
2
3
i𝜆2 𝑧

|𝑧|2 i(𝜆𝑧 − 𝑧𝑥) − 1
3
i𝜆2

⎤
⎥
⎥
⎥
⎥
⎦

, (14)

with eigenfunction 𝜙 ∈ ℂ3, and spectral parameter 𝜆 ∈ ℂ. (We will show below that this

is linearly equivalent to the Lax pair in [11].) When 𝜆 ∈ ℝ, 𝑈 and 𝑉 take value in the Lie

algebra 𝔰𝔲(2, 1) of the subgroup of 𝑆𝐿(3, ℂ) that preserves the Hermitian form (1). Taking

the transpose of (13) and complex conjugating, we obtain

𝐹𝑥 = 𝐹

⎡
⎢
⎢
⎢
⎢
⎣

𝜆 −i𝑧 𝑚

0 0 𝑧

1 0 −𝜆

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐹𝑡 = 𝐹

⎡
⎢
⎢
⎢
⎢
⎣

1
3
i𝜆2 𝜆𝑧 − 𝑧𝑥 |𝑧|2

i𝑧 − 2
3
i𝜆2 i(𝑧𝑥 − 𝜆𝑧)

0 𝑧 1
3
i𝜆2

⎤
⎥
⎥
⎥
⎥
⎦

. (15)

Comparing the first of these equations to (8) shows that system (15) can be interpreted as

the Frenet equations for the companion natural 𝜆-frame of an T-curve with curvatures 𝑧

and 𝑚̃ = 𝑚 + 𝜆2, and which evolves by the flow

Γ𝑡 = i𝑧𝐵 + 1
3
i𝜆2Γ. (16)

This connection between the YO Lax pair and the evolution of (framed) curves allows

the construction of interesting examples of transverse curves associated with simple

solutions of the YO system, as shown in the rest of the article.
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4 Plane wave solutions

In [11], Wright investigates the linear stability of plane wave solutions of the YO equa-

tions (17) and derives explicit solutions of the associated Lax pair in order to construct

homoclinic orbits of unstable plane waves.

4.1 Equivalent Versions of YO

In [11] the YO system is given as

𝐴𝜏 = −2i(𝐴𝑥𝑥 − 𝐴𝐵),

𝐵𝜏 = 4(|𝐴|2)𝑥
(17)

for complex 𝐴(𝑥, 𝜏) and real 𝐵(𝑥, 𝜏), and its Lax pair is given as

𝝍𝑥 = 𝐔𝝍, 𝝍𝜏 = 2𝐕𝝍 (18)

with

𝐔 =

⎡
⎢
⎢
⎢
⎢
⎣

i𝜁 𝐴 i𝐵

0 0 −𝐴

−i 0 −i𝜁

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐕 =

⎡
⎢
⎢
⎢
⎢
⎣

1
3
i𝜁2 𝜁𝐴 − i𝐴𝑥 i|𝐴|2

2𝐴 − 2
3
i𝜁2 𝜁𝐴 − i𝐴𝑥

0 −𝐴 1
3
i𝜁2

⎤
⎥
⎥
⎥
⎥
⎦

,

where 𝜁 and 𝜏 denote Wright’s spectral parameter and time variable respectively. (Wright’s

YO equations include an extra parameter which we omit because it can be removed by a

simple change of variable.) The equations (17) are equivalent to (12) under the substitu-

tions 𝐴 = 𝑧, 𝐵 = 𝑚 and 𝜏 = 1
2
𝑡. Moreover, the linear systems (18) and (13) are equivalent

under a change of gauge, since with these substitutions, 𝐔 = 𝑀𝑈𝑀−1 and 𝐕 = 𝑀𝑉𝑀−1,

where

𝑀 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 1

0 1 0

−i 0 0

⎤
⎥
⎥
⎥
⎥
⎦

.
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4.2 Wright’s Solutions

In this section, we will present Wright’s solutions, rewritten in terms of our variables.

We will then make use of the eigenfunction formulas in [11], appropriately adapted to

the geometric framework, to construct the associated transverse curves. We will then

identify the parameter choices that give rise to closed transverse curves.

Proposition 1 ([11]). For real constants 𝑎, 𝑏, 𝑘 and Λ such that 𝑎 > 0, the functions

𝑧(𝑥, 𝑡) = 𝑎e−i𝑁 𝑚(𝑥, 𝑡) = 𝑏, where 𝑁 ∶= 𝑘𝑥 − Λ𝑡

give a solution of (12) if and only if the dispersion relation 𝑏+𝑘2+Λ = 0 is satisfied. When

these 𝑧,𝑚 are substituted into (13), a non-trivial solution of (13) is given by

𝝓(𝑥, 𝑡) = ei(𝜇𝑥+𝜈𝑡)𝑃𝗋, (19)

where

𝑃 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0

0 e−i𝑁 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

,

and 𝗋 is a nonzero common eigenvector of the matrices

⎡
⎢
⎢
⎢
⎢
⎣

𝜆 0 1

i𝑎 i𝑘 0

𝑏 𝑎 −𝜆

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

− 1
3
i𝜆2 −i𝑎 0

𝑎(𝜆 + i𝑘) 2
3
i𝜆2 − iΛ 𝑎

𝑎2 𝑎(𝑘 + i𝜆) − 1
3
i𝜆2

⎤
⎥
⎥
⎥
⎥
⎦

(20)

with eigenvalues i𝜇 and i𝜈, respectively.

It is easy to check that the matrices in (20) have a non-trivial common eigenvector if

and only if 𝜇 and 𝜈 satisfy

(𝜇2 + 𝑏 + 𝜆2)(𝜇 − 𝑘) + 𝑎2 = 0, (21a)

𝜈 = 𝜇2 − 𝑘2 − Λ + 2
3
𝜆2. (21b)
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In order to construct a fundamental matrix solution for (13) using solutions of the form

(19), let 𝜇 = 𝑚1, 𝑚2, 𝑚3 be three distinct roots of (21a) and let 𝑛1, 𝑛2, 𝑛3 be the corresponding

values of 𝜈 given by substituting these into (21b). Then a matrix solution is given by

Φ = 𝑃𝑅𝐸, where

𝑅 =

⎛
⎜
⎜
⎜
⎜
⎝

−1 −1 −1
𝑎

𝑘 − 𝑚1

𝑎
𝑘 − 𝑚2

𝑎
𝑘 − 𝑚2

𝜆 − i𝑚1 𝜆 − i𝑚2 𝜆 − i𝑚3

⎞
⎟
⎟
⎟
⎟
⎠

, 𝐸 =

⎛
⎜
⎜
⎜
⎝

ei(𝑚1𝑥+𝑛1𝑡) 0 0

0 ei(𝑚2𝑥+𝑛2𝑡) 0

0 0 ei(𝑚3𝑥+𝑛3𝑡)

⎞
⎟
⎟
⎟
⎠

.

Our discussion in §3 implies that if Φ is a fundamental matrix solution of the YO

Lax pair for a real value of 𝜆, and taking value in the group 𝑆𝑈(2, 1), then 𝐹 = Φ† is a

𝜆-natural frame matrix for a transverse curve evolving by (16). Since 𝜆 ∈ ℝ implies that

the coefficient matrices in (13) take value in 𝔰𝔲(2, 1), we can ensure that our fundamental

matrix takes value in 𝑆𝑈(2, 1) by modifying it to be equal to the identity matrix when

𝑥 = 𝑡 = 0:

Φ = 𝑃𝑅𝐸𝑅−1𝑃−10 , where 𝑃0 = 𝑃||||𝑥=𝑡=0. (22)

Using this matrix to construct the natural frame, and taking the projectivization of the

first frame vector Γ to obtain a transverse curve 𝛾, we now consider the question of when

the resulting curve is smoothly closed.

Proposition 2. Suppose the fundamental matrix Φ = 𝑃𝑅𝐸 described above corresponds

to a 𝜆-natural frame for a T-curve 𝛾. Then 𝛾 is closed of length 𝐿 if and only if there is a

cube root 𝜔 of unity such that

ei𝑚𝑗𝐿 = 𝜔ei𝑘𝐿∕3. (23)

Proof. Let 𝐹 be a natural 𝜆-frame along the curve, satisfying the spatial part of (15), and

let 𝐹 be the local frame related to 𝐹 by 𝐹 = 𝐹 exp(−𝜃𝖩). Because the local frame is uniquely

determined by derivatives of 𝛾, up to multiplying by a cube root of unity, then 𝛾 is closed

of length 𝐿 if and only if

𝐹(𝑥 + 𝐿) = 𝜔𝐹(𝑥). (24)
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For the solutions of Prop. 1, 𝜃 = arg 𝑧 = −𝑁; rewriting (24) in terms of 𝐹 = Φ†, then in

terms of the factors of Φ given by (22), and simplifying (using the fact that 𝖩 commutes

with 𝑀 and 𝑃) gives the condition (23).

Without loss of generality, we will take 𝐿 = 2𝜋 from now on, and assume the roots of

(21a) are numbered in ascending order, i.e., 𝑚1 < 𝑚2 < 𝑚3. Note that, for a given value of

𝜆, these roots determine the coefficients in the polynomial via:

𝑘 = 𝑚1 +𝑚2 +𝑚3,

𝑎2 = (𝑘 − 𝑚1)(𝑘 − 𝑚2)(𝑘 − 𝑚3),

𝑏 = 𝑚1𝑚2 +𝑚1𝑚3 +𝑚2𝑚3 − 𝜆2.

(25)

Lemma 3. The above closure conditions (23) are satisfied if and only if there are positive

integers 𝑝, 𝑞 such that 𝑘 satisfies either

− 1
2
(2𝑝 + 𝑞) < 𝑘 < 1

2
(𝑝 − 𝑞) (26a)

or

𝑘 > 1
2
(𝑝 + 2𝑞). (26b)

In either case, the roots are given by

𝑚1 =
1
3
(−2𝑝 − 𝑞 + 𝑘), 𝑚2 =

1
3
(𝑝 − 𝑞 + 𝑘), 𝑚3 =

1
3
(𝑝 + 2𝑞 + 𝑘), (27)

and 𝜔 = e2𝜋i𝜖∕3 where 𝜖 = 0, 1, 2 is such that 3𝑚𝑗 − 𝑘 ≡ 𝜖 modulo 3.

Proof. We can rewrite the closure condition (23) as

𝑚𝑗 = 𝑙𝑗 +
1
3
𝜖 + 1

3
𝑘, (28)

for some integers 𝑙1 < 𝑙2 < 𝑙3. The second relation in (25) is satisfied for 𝑎 > 0 if and only if

𝑚1 < 𝑘 < 𝑚2 < 𝑚3 or 𝑚1 < 𝑚2 < 𝑚3 < 𝑘. (29)
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When written in terms of the positive integers 𝑝 = 𝑙2−𝑙1 and 𝑞 = 𝑙3−𝑙2, the two conditions

in (29) become those in (26).

Conversely, suppose a pair positive integers 𝑝, 𝑞 satisfy either of the equations in (26)

for some real number 𝑘. Let 𝜖 = 0, 1, 2 be chosen so that 𝑝 − 𝑞 ≡ 𝜖 modulo 3, and let

𝑙1 =
1
3
(−2𝑝 − 𝑞 − 𝜖), 𝑙2 =

1
3
(𝑝 − 𝑞 − 𝜖), 𝑙3 =

1
3
(𝑝 + 2𝑞) − 1

3𝜖.

Then with 𝑚𝑗 given by (28), condition (29) is satisfied.

4.3 Visualizing Examples

In this section we will exhibit examples of closed transverse curves in 𝑆3, generated using

the fundamental matrix Φ corresponding to Wright’s solutions, with closure conditions

imposed using Lemma 3. In particular, we will observe knotted transverse curves which,

because their differential invariants are the same at each time, move by rigid motion

under the flow (16).

In more detail, given two positive integers 𝑝, 𝑞 one may select any value of 𝜆 and a real

value of 𝑘 satisfying one of the inequalities in (26). The other parameters involved in the

solution are determined by equations (25) and (27). This yields two distinct 2-parameter

families of closed curves for each pair (𝑝, 𝑞). (Exactly how we construct these curves is

explained below.) We will assume that 𝑝, 𝑞 are relatively prime; experiments indicate

that the knot types are the same when 𝑝, 𝑞 are multiplied by a common integer factor.

In the case (26a) we observe that the curve in ℝ3 is a right-handed (𝑞, 𝑝 + 𝑞) torus

knot. Recall that the type of a (𝑚, 𝑛) torus knot depends only on the unordered pair {𝑚, 𝑛}.

However, for our examples we find that when 𝑘 is close to its lower limit, the knot takes a

shape with 𝑞 strands that wind along the torus the long way (see Figure 1, top left, where

𝑘 = −3.85 ≳ −4), while when 𝑘 is close to its upper limit the knot has 𝑝+𝑞 strands winding

the long way (see Figure 1, bottom right, where 𝑘 = 0.2 ≲ 0.5.) In general, the knot shape is

more compact and symmetric when 𝜆 = 0; Figure 2 shows two shapes for the same 𝑝, 𝑞, 𝑘

but different 𝜆 values. Note that (25) shows that these curves have the same differential
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invariant 𝑧 but different constant values 𝑚 = 𝑏.

We showed in Lemma 12 of [2] that transverse curves for which 𝑧 = 0 identically are

𝑆𝑈(2, 1)-congruent to curves which run along the circular fibers of the Hopf fibration.

Thus, when 𝑘 approaches one of the roots 𝑚𝑗, 𝑎 = |𝑧| will approach zero and the closed

curve will approach a multiply-covered circle congruent to a Hopf fiber. In Figure 1, we

show a family of right-handed (2, 5) torus knots, corresponding to a range of 𝑘-values,

where at both ends of the family the curve approaches a multiply-covered circle.

In the case (26b) we observe that the curve in ℝ3 is a left-handed (𝑝, 𝑞) torus knot.

(When 𝑝 = 1 or 𝑞 = 1 the curve is unknotted, as shown in Figure 4.) When 𝑘 is close to

its lower limit the curve has 𝑝 strands winding around the torus the long way, and its

shape approaches a circle covered 𝑝 times. For large values of 𝑘, the curve approaches a

flattened teardrop shape, with the knot crossings compressed into a small region near

where 𝑥 = 𝜋. Both these limiting behaviors are illustrated in Figure 3.

4.4 Constructing Transverse Curves

Once we have a fundamental matrix solution Φ for the linear system (13), the first

component of the 𝜆-natural frame is then given by

Γ = 𝐹𝖾1 = Φ†𝖾1,

taking value in the null cone 𝒩. We produce curves in 𝑆3 using a projection 𝜋̂ ∶ 𝒩 → 𝑆3

given in terms of the components of Γ by

𝑧1 =
Γ3 − iΓ1
Γ3 + iΓ1

, 𝑧2 =

√
2Γ2

Γ3 + iΓ1
, (30)

where (𝑧1, 𝑧2) lie on the unit sphere in ℂ2 equipped with its standard Hermitian inner

product. For purposes of visualization, we in turn apply stereographic projection into ℝ3

(using the point 𝑧1 = 0, 𝑧2 = i as pole) given by

𝜎 ∶ (𝑧1, 𝑧2) ↦→ (
Re 𝑧1

1 − Im𝑧2
,

Im 𝑧1
1 − Im𝑧2

,
Re 𝑧2

1 − Im𝑧2
) .
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Figure 1: A family of (2, 5) torus knots obtained using 𝑝 = 3, 𝑞 = 2, 𝜆 = 0 and the values

𝑘 = −3.85, −3.25, −2.5 in the top row and 𝑘 = −1.75, −0.7, 0.2 in the bottom row. The first

and last figure show knots near the limiting values of 𝑘, since 𝑘 ∈ (−4, 0.5) from (26a).

Figure 2: Right-handed (3, 4) torus knots obtained using 𝑝 = 1, 𝑞 = 3 and 𝑘 = −2.2; on the

left 𝜆 = 0, while on the right 𝜆 = 3.1.
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Figure 3: Left-handed (2, 3) torus knots (i.e., trefoils) obtained using 𝑝 = 1, 𝑞 = 2 and 𝜆 = 0;

on the left 𝑘 = 4.6, while on the right 𝑘 = 31.

Remark. The action of 𝑆𝑈(2, 1) on the null cone preserves the 1-form 𝛼𝑁 = (𝑑𝑔, 𝑔), which is

the pullback under 𝜋̂ of the standard contact form on 𝑆3, given by 𝛼𝑆 =
1
2
Im(𝑧1𝑑𝑧1+𝑧2𝑑𝑧2).

The contact planes in 𝑆3 annihilated by this 1-form are orthogonal to the Hopf fibers.

Since 𝑆3 is parallelizable, we can choose an globally defined orthogonal frame (𝗏0, 𝗏1, 𝗏2)

such that 𝗏1, 𝗏2 are tangent to the contact planes. For purposes of visualizing the contact

distribution, we will use the following vectors in ℝ3 which are tangent to the image of

this distribution under stereographic projection:

𝜎∗𝗏1 = −(𝑧 + 𝑥𝑦) 𝜕
𝜕𝑥

+ 1
2
(𝑥2 − 𝑦2 + 𝑧2 − 1) 𝜕

𝜕𝑦
+ (𝑥 − 𝑦𝑧) 𝜕

𝜕𝑧
,

𝜎∗𝗏2 =
1
2
(𝑥2 − 𝑦2 − 𝑧2 + 1) 𝜕

𝜕𝑥
+ (𝑥𝑦 − 𝑧) 𝜕

𝜕𝑦
+ (𝑥𝑧 + 𝑦) 𝜕

𝜕𝑧
.

Figure 4 shows how the curve 𝛾 is transverse to the planes spanned by these vector fields.

Recall from (6) that when 𝑚 = 0 the frame vector 𝑉 projects to a Legendrian curve in

𝑆3. Figure 4 also shows this companion curve which in this example is linked with 𝛾 and

tangent to the contact planes.

5 Discussion

We have shown how the YO equations arise, somewhat unexpectedly, from a simple

geometric flow for curves in 𝑆3 that are transverse to the standard contact structure. The
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Figure 4: At left, in orange, is an unknotted 𝑇-curve 𝛾 generated using parameter values

𝑝 = 𝑞 = 1, 𝑘 = 2 and 𝜆 = 1∕
√
3. Substituting these values into (27) and (25) shows that

𝑚 = 𝑏 = 0, hence the curve traced by the projectivization of frame vector 𝑉 (shown at

right in magenta) is a Legendrian curve. Along both curves we have drawn some planes

of the contact distribution.

recent renewed interest in the YO equations and related systems (see, e.g., [3, 4, 7]), the

analogies between the geometric flow considered in this work and the vortex filament

flow, and the relatively simple reconstruction of the transverse curve in terms of solutions

of the YO Lax pair, makes this a good case for exploring questions such as recursion

schemes and the geometric and topological properties of transverse curves related to

special solutions of the YO equations.

A natural direction of investigation is the study of the integrable hierarchy of vector

fields for transverse curves associated with the YO hierarchy. These are generated by

beginning with a conserved density for the YO equations, e.g.,

𝜌1 =
1
2
𝑚, 𝜌2 =

1
2
|𝑧|2, 𝜌3 =

1
2
Im(𝑧𝑧𝑥) −

1
8
𝑚2, 𝜌4 = − 1

2

(
𝑚|𝑧|2 + |𝑧𝑥|2

)
, …

and forming the vector field 𝑋𝑛 = 𝑓𝑛Γ + 𝑔𝑛𝐵 + ℎ𝑛𝑉 where (Γ, 𝐵, 𝑉) is a natural frame.

The coefficients are determined by the corresponding density as follows. As in (10)
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write 𝑧 = 𝑘 + i𝓁 and express the density 𝜌𝑛 in terms of real invariants 𝑘, 𝓁,𝑚 and their

𝑥-derivatives. Let

(𝑎𝑛, 𝑏𝑛, 𝑐𝑛)𝑇 = 𝖤𝜌𝑛

where 𝖤 denotes the vector-valued Euler operator. Then the components of𝑋𝑛 are ℎ𝑛 = 2𝑐𝑛,

𝑔𝑛 = i(𝑎𝑛 + i𝑏𝑛) and 𝑓𝑛 = −(𝑐𝑛)𝑥 + i𝑑𝑛, where 𝑑𝑛 = ∫ Re(𝑔𝑛𝑧) 𝑑𝑥. (Thus, these vector fields

satisfy the conditions in (9) to preserve the adapted frame.)

The first few vector fields generated this way are

𝑋1 = 𝑉 = Γ𝑥,

𝑋2 = i𝑧𝐵 = i(Γ𝑥𝑥 −𝑚Γ),

𝑋3 =
( 1
4
𝑚𝑥 +

1
2
i|𝑧|2

)
Γ + 𝑧𝑥𝐵 −

1
2
𝑚𝑉,

𝑋4 =
( 1
2
|𝑧|2𝑥 − i Im(𝑧𝑧𝑥)

)
Γ + i(𝑧𝑥𝑥 −𝑚𝑧)𝐵 − |𝑧|2𝑉.

The fact that the antiderivative 𝑑𝑛 is always expressible in terms of 𝑧,𝑚 and their

derivatives is somewhat mysterious. However, we observe that these antiderivatives are

expressible in terms of Hermitian inner products of the vector fields themselves:

𝑑2𝑗 = − 1
2

2𝑗−2∑

𝑘=1
⟨𝑋2𝑗−𝑘, 𝑋1+𝑘⟩, 𝑑2𝑗+1 = − 1

2

2𝑗−1∑

𝑘=1
(−1)𝑘⟨𝑋2𝑗+1−𝑘, 𝑋1+𝑘⟩.

Since 𝑑𝑛 = Re⟨𝑋𝑛, 𝑉⟩ =
1
2
(⟨𝑋𝑛, 𝑉⟩ + ⟨𝑉, 𝑋𝑛⟩) and 𝑉 = 𝑋1, these identities are equivalent to

2𝑗−1∑

𝑘=0
⟨𝑋2𝑗−𝑘, 𝑋1+𝑘⟩ = 0 and

2𝑗∑

𝑘=0
(−1)𝑘⟨𝑋2𝑗+1−𝑘, 𝑋1+𝑘⟩ = 0.

These show a remarkable parallel with the situation for vector fields in the hierarchy

for the vortex filament flow [9], where the antiderivative required for the tangential

component of𝑋𝑛+1 is expressible in terms of inner products of the vector fields up to𝑋𝑛. In

that case, the analogous identities were proved using the first-order ‘geometric’ recursion

operator for the vector fields. In our case, it may be sufficient to have a second-order

recursion operator that relates 𝑋𝑛+2 to 𝑋𝑛.
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Bäcklund and Darboux transformations as well as Miura transformations are other

common features of integrable systems. In particular, the classical Bäcklund transfor-

mation for the sine-Gordon equation has its origins in relating pair of pseudospherical

surfaces through line congruences (see, e.g., §7.5 in [8]). It is possible that an analogous

transformation exists between T-curves evolving by the YO flow (11); one might expect

that the curves would be joined by a congruence of circles in 𝑆3 expressed in terms of the

vectors of the natural frame.

In relation to a possible Miura transformation, one can investigate the evolution

equations induced by (11) for the tangent indicatrix, i.e., the curve in 𝑆3 traced out by

the projectivization of the frame vector 𝑉. It is natural to ask how the invariants of

these indicatrices are related to those of the primary curve, and furthermore whether,

when the primary curve evolves by an integrable geometric flow, the invariants of the

indicatrix evolve by a related integrable system.
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Dual-projective equivalence and superintegrability

We show that certain torsion-free affine connections which are naturally

associated to certain second order superintegrable systems share the same

dual-geodesics.

AMS Classification: 70G45, 53B10, 37J35, 53B12, 70H33

1 Introduction

We consider geometric structures (more precisely, certain affine connections) that natu-

rally appear in the context of certain second order (maximally) superintegrable Hamil-

tonian systems. Such systems include famous models from mathematical physics, such

as the Kepler-Coulomb system, the isotropic harmonic oscillator or the Smorodinski-

Winternitz system. We obtain that the aforementioned geometric structures are dual-

projectively equivalent, a concept which has been introduced in the context of statistical

manifolds, Weylian structures and affine hypersurfaces.

Let (𝑀, 𝑔) be a Riemannian (smooth) manifold. Assume that, for 𝜀 > 0, 𝛾 ∶ (−𝜀, 𝜀) → 𝑀

is a (smooth) curve on 𝑀 with tangent (velocity) vector field 𝛾̇. We denote the 1-form

associated to 𝛾̇ (by virtue of 𝑔) by 𝛾̇♭. Here, ♭ ∶ 𝔛(𝑀) → Ω1(𝑀) denotes the usual musical

isomorphism induced by 𝑔. Similarly, we denote by ♯ ∶ Ω1(𝑀) → 𝔛(𝑀) the musical

isomorphism induced by 𝑔−1, when the underlying metric is clear.

Definition 1 ([Iva95]). A curve 𝛾 on 𝑀 is called dual-geodesic for an affine connection ∇ if

∇𝛾̇𝛾̇
♭ = 𝑞(𝑡) 𝛾̇♭,

where 𝑞 ∶ (−𝜀, 𝜀) → ℝ. In particular, we say that 𝛾 is an affinely parametrized dual-geodesic

for ∇, if

∇𝛾̇𝛾̇
♭ = 0.

If ∇ is the Levi-Civita connection of the (Riemannian) metric 𝑔, then we also say that a curve

is dual-geodesic for 𝑔, if it is dual-geodesic for ∇.

Arnold Mathematical Journal, Vol.11(4), 2025 99

http://dx.doi.org/10.56994/ARMJ


Andreas Vollmer

It is well-known that for every dual-geodesic curve, there exists an affine parametriza-

tion, see [Iva95, Prop. 2.1]. In this reference, dual-geodesics are introduced as a tool for

the study of semi-conjugate connections and affine hypersurface immersions, and we

refer the interested reader there for more detailed information on this perspective. Here,

we mention only the following fact, which we need later: Let 𝑝 ∈ 𝑀 and 𝑤 ∈ 𝑇𝑝𝑀. Then

there exists a (unique up to reparametrization and for sufficiently small 𝜀 > 0) dual-geodesic

curve 𝛾 ∶ (−𝜀, 𝜀) → 𝑀, 𝛾(0) = 𝑝 with 𝛾̇(0) = 𝑤, see [Iva95, Prop. 2.2] .

Definition 2 ([Iva95]). Two connections are called dual-projectively equivalent, if they

share the same dual-geodesic curves.

Dual-geodesics and dual-projectively equivalent connections have been discussed,

for instance, in [Iva95, Mat10], where they have been related to affine hypersurfaces,

statistical manifolds and Weylian structures. The purpose of this paper is to demonstrate

that dual-projectively equivalent connections naturally arise in the context of second

order superintegrable Hamiltonian systems. Let (𝑀, 𝑔) be a simply connected (connected)

Riemannian manifold and denote its Levi-Civita connection by ∇. Then 𝑇∗𝑀 carries a

natural symplectic structure 𝜔 induced by the tautological 1-form. We consider a natural

Hamiltonian 𝐻 ∶ 𝑇∗𝑀 → ℝ,

𝐻(𝑥, 𝑝) = 𝑔−1𝑥 (𝑝, 𝑝) + 𝑉(𝑥) ,

where (𝑥, 𝑝) are canonical Darboux coordinates on 𝑇∗𝑀. For a function 𝑓 ∶ 𝑇∗𝑀 → ℝ,

we denote by 𝑋𝑓 the Hamiltonian vector field with respect to the natural symplectic

structure, i.e. 𝜄𝑋𝑓𝜔 = 𝑑𝑓.

Definition 3. A (maximally) superintegrable system is given by a Hamiltonian 𝐻 together

with 2𝑛 − 2 functions 𝐹(𝑚) ∶ 𝑇∗𝑀 → ℝ, such that (𝐻, 𝐹(1), … , 𝐹(2𝑛−2)) are functionally inde-

pendent, and such that 𝑋𝐻(𝐹(𝑚)) = 0 for all 1 ≤ 𝑚 ≤ 2𝑛 − 2. We say that a superintegrable

system is second order if the functions 𝐹(𝑚) are quadratic polynomials in the momenta, i.e.

𝐹(𝑚)(𝑥, 𝑝) =

𝑛∑

𝑖,𝑗=1

𝐾
𝑖𝑗

(𝑚)
(𝑥)𝑝𝑖𝑝𝑗 +𝑊(𝑚)(𝑥).
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For the integrals of motion in a second order superintegrable system, it is easy to

check that (omitting the subscript (𝑚) for brevity) the tensor field ∑
𝑔𝑎𝑖𝑔𝑏𝑖𝐾

𝑎𝑏 𝑑𝑥𝑖 ⊗ 𝑑𝑥𝑗 is

Killing, i.e. satisfies ∇𝑋𝐾(𝑋,𝑋) = 0 for all 𝑋 ∈ 𝔛(𝑀). We write 𝒦 for the ℝ-linear space of

Killing tensors associated to a second order superintegrable system, meaning that there

is a function 𝑊 on 𝑀 such that 𝐹 = 𝐾(𝑝♯, 𝑝♯) + 𝑊 is an integral of the motion for 𝐻, i.e.

𝑋𝐻(𝐹) = 0.

Definition 4. We say that a second order superintegrable system is irreducible, if the linear

space generated by the endomorphisms 𝐾, 𝐾♭ ∈ 𝒦, form an irreducible set, i.e. do not share

a common eigenspace. For the sake of brevity, an irreducible second order superintegrable

system will simply be referred to as an irreducible system in the following.

It was proven in [KSV23] that, for an irreducible system, there exists a tensor field

𝑇̂ ∈ Γ(Sym
2

◦
(𝑇∗𝑀)⊗ 𝑇𝑀), trace-free in its covariant indices, such that

∇2𝑉 = 𝑇̂(𝑑𝑉) +
1

𝑛
𝑔 ∆𝑉, (1)

where 𝑇̂ depends on 𝒦 only, and where ∆ denotes the Laplace-Beltrami operator. In

general, the tensor 𝑇̂ is not unique, but here we confine ourselves to systems for which 𝑇̂

is unique. Specifically, we consider non-degenerate second order superintegrable systems.

These are irreducible systems with a (𝑛 + 2)-parameter family of potentials (see Section 2

for a precise definition). The main results are Theorems 1 and 2 in Section 3, which show

that three affine connections, which are naturally defined for non-degenerate systems,

are dual-projectively equivalent:

⟨A⟩ the induced connection ∇𝑔 ± 𝑇̂ (“induced connections”),

⟨B⟩ the corresponding connection that endows the space with the information-geometric

structure of a statistical manifold,

⟨C⟩ the connections that naturally arise when one restricts to an (𝑛 + 1)-dimensional

subspace of potentials (to be explained later).

These connections can also be found in [KSV23, KSV24, CV25, Vol25b, NV24], for exam-

ple. Before we prove these dual-projective equivalences, we review some facts about
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irreducible second order superintegrable Hamiltonian systems.

2 Irreducible second order superintegrable systems

Two specific kinds of irreducible systems are going to play a crucial role in the following,

namely non-degenerate and (generalised) semi-degenerate systems. These are introduced

in the following two subsections. The terminology goes back to the foundational work

by Kalnins and coworkers, cf. [KKMJ18, KKM05a, KKM05b, KKM05c, KKM06a, KKM06b]

and the references therein. For semi-degenerate systems, we also mention [ERJ17].

2.1 Non-degenerate systems

Non-degenerate systems are quadruples (𝑀, 𝑔,𝒦,𝒱) such that (𝑀, 𝑔) is as before, 𝒦 is a

linear space of Killing tensors (of dimension 2𝑛−1 or larger, with 𝑔 ∈ 𝒦) and 𝒱 ⊂ 𝒞∞(𝑀) is

a linear subspace (of dimension 𝑛 + 2), such that the space of endomorphisms associated

to 𝒦 is irreducible, and 𝑑(𝐾(𝑑𝑉)) = 0 for all 𝑉 ∈ 𝒱 and 𝐾 ∈ End(𝑇𝑀) with 𝐾♭ ∈ 𝒦. Such a

system satisfies (1), which then implies the (closed) prolongation system (∇ denotes the

Levi-Civita connection of 𝑔, and ∆ its Laplace-Beltrami operator)

∇2𝑉 = 𝑇̂(𝑑𝑉) +
1

𝑛
∆𝑉 𝑔

∇∆𝑉 = 𝑞̂(𝑑𝑉) + (tr(𝑇̂) − 𝑞)∆𝑉

where 𝑞(𝑋, 𝑌) = 𝑔(𝑞̂(𝑋), 𝑌) and 𝑞̂(𝑋) = tr𝑔(∇⋅𝑇̂(⋅, 𝑋)) + T (𝑋) − R̂ic
𝑔

(𝑋) with 𝑔(R̂ic
𝑔
(𝑋), 𝑌) =

Ric
𝑔
(𝑋, 𝑌). Also, we introduce T ∈ End(𝑇𝑀) via T (𝑋) = tr𝑔(Θ(𝑋, ⋅, ⋅)), where Θ ∶ 𝔛(𝑀)3 →

𝔛(𝑀),

Θ(𝑋,𝑌, 𝑍)(𝛼) = 𝑇̂(𝑋, 𝑌)(𝑇̂(𝑍)(𝛼)),

for 𝑋,𝑌, 𝑍 ∈ 𝔛(𝑀), 𝛼 ∈ Ω1(𝑀), where 𝑇̂(𝑍)(𝛼) is the 1-form 𝑇̂(⋅, 𝑍)(𝛼). For a non-degenerate

system, we define the induced connections by

∇±𝑇̂ ∶= ∇ ∓ 𝑇̂, (2)
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which is torsion-free and Ricci-symmetric, see [Vol25b]. For simplicity, we abbreviate

∇𝑇̂ = ∇+𝑇̂. Following [KSV23], we furthermore introduce the totally symmetric and

tracefree tensor field 𝑆 ∈ Γ(Sym
3

◦
(𝑇∗𝑀)) and the 1-form 𝑡 ∈ Ω1(𝑀) by setting 𝑆 = 𝑇̊ and

𝑡 =
𝑛

(𝑛−1)(𝑛+2)
tr(𝑇̂), such that

𝑇(𝑋, 𝑌, 𝑍) = 𝑆(𝑋, 𝑌, 𝑍) + 𝑡(𝑋)𝑔(𝑌, 𝑍) + 𝑡(𝑌)𝑔(𝑋, 𝑍) + 𝑡(𝑍)𝑔(𝑋, 𝑌) ,

where 𝑇 ∶= 𝑇̂♭ and where 𝑋,𝑌, 𝑍 ∈ 𝔛(𝑀). Next, for dimension 𝑛 ≥ 3, we let

𝒵 = S − (𝑛 − 2)(𝑆(𝑡) + 𝑡 ⊗ 𝑡) − Ric
𝑔
, (3)

where S (𝑋, 𝑌) = tr𝑔( 𝑆̂(𝑋, ⋅)(𝑆(⋅, 𝑌)) ). It is shown in [KSV23] that, if 𝑛 ≥ 3 and if the

underlying manifold is of constant sectional curvature, then

𝒵̊ = ∇̊2𝜁 (4)

for a function 𝜁 ∈ 𝒞∞(𝑀). We can hence introduce the totally symmetric tensor field

ϝ = 𝑇 +
𝑛 + 2

𝑛
𝑔 ⊗ 𝑡 +

1

2(𝑛 − 2)
ΠSym𝑔 ⊗ 𝑑𝜁 .

which is then also a Codazzi tensor, c.f. [KSV23]. Note that the definition of ϝ relies on

the assumption of having a space of constant sectional curvature. For later use, we also

introduce ϝ̂ = ϝ𝑔−1 and ∇±ϝ̂ = ∇ ∓ ϝ̂ (and ∇ϝ̂ = ∇+ϝ̂).

Relaxing the curvature assumptions again, we introduce, for a non-degenerate system

in dimension 𝑛 ≥ 2, the totally symmetric tensor field

𝐵 = 𝑇 +
𝑛 + 2

𝑛
𝑔 ⊗ 𝑡 ,

as well as the connections

∇±𝐵̂ ∶= ∇ ∓ 𝐵̂ (∇𝐵̂ = ∇+𝐵̂).

where 𝐵̂ = 𝐵𝑔−1, c.f. [KSV23]. We remark that for so-called abundant systems, the connec-

tions ∇±ϝ̂ and ∇±𝐵̂, respectively, coincide up to a suitable gauge choice of 𝜁. An abundant

system is a non-degenerate system with 1

2
𝑛(𝑛+1) linearly independent, compatible Killing
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tensor fields. Note the non-trivial freedom for choosing the function 𝜁, satisfying (4). This

gauge freedom is thoroughly discussed in [KSV23]. If 𝑛 ≥ 3 and 𝑔 has constant sectional

curvature, [KSV23] shows that one can choose 𝜁 = 0 without changing the data of 𝑆 and 𝑡,

i.e. without modifying the structure tensor 𝑇̂.

2.2 Semi-degenerate systems

Generalized semi-degenerate systems, or (𝑛 + 1)-parameter systems, are quadruples

(𝑀, 𝑔,𝒦,𝒱) such that (𝑀, 𝑔) is as before, 𝒦 is a linear space of Killing tensors (of dimension

2𝑛−1 or larger, with 𝑔 ∈ 𝒦) and 𝒱 ⊂ 𝒞∞(𝑀) is a linear subspace (of dimension 𝑛+1), such

that the space of endomorphisms associated to 𝒦 is irreducible, and 𝑑(𝐾(𝑑𝑉)) = 0 for all

𝑉 ∈ 𝒱 and 𝐾 ∈ End(𝑇𝑀) with 𝐾♭ ∈ 𝒦. Moreover, we require that in addition to (1), an

equation of the form

∆𝑉 = 𝑠(𝑑𝑉) (5)

holds, for some 𝑠 ∈ 𝔛(𝑀) that is determined by 𝒦, and where ∆ is the Laplace-Beltrami

operator of the Levi-Civita connection ∇ of 𝑔. For the generalized semi-degenerate system

subject to (5) we therefore have

∇2𝑉 = 𝐷̂(𝑑𝑉) ,

where we introduce the tensor field 𝐷̂ = 𝑇̂ +
1

𝑛
𝑔 ⊗ 𝑠 ∈ Γ(Sym

2
(𝑇∗𝑀) ⊗ 𝑇𝑀). Note that 𝑇̂

depends on the space 𝒦 only. We also introduce 𝐷 = 𝐷̂♭ ∈ Γ(Sym
2
(𝑇∗𝑀)⊗ 𝑇∗𝑀) for later

use.

We say that a generalized semi-degenerate system, is weak, if there is 𝒱 ′ ⊃ 𝒱 such that

(𝑀, 𝑔,𝒦,𝒱 ′) is non-degenerate. Otherwise, we call it a strong semi-degenerate system.

For a (weak or strong) semi-degenerate system, we define the induced connection by

∇±𝐷̂ ∶= ∇ ∓ 𝐷̂

(again abbreviating ∇𝐷̂ = ∇+𝐷̂). It is shown in [Vol25b] that ∇𝐷̂ is torsion-free, Ricci-

symmetric and projectively flat (the reference only discusses the case of strong semi-

degeneracy, but it is easy to extend this result to generalized semi-degenerate systems).
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We also introduce the tensor field, c.f. [NV24],

𝑁(𝑋,𝑌, 𝑍) ∶=
1

3
(2𝐷(𝑋, 𝑌, 𝑍) − 𝐷(𝑋, 𝑍, 𝑌) − 𝐷(𝑌, 𝑍, 𝑋))

+
1

3(𝑛 − 1)
(2𝑔(𝑋, 𝑌)𝚍(𝑍) − 𝑔(𝑋, 𝑍)𝚍(𝑌) − 𝑔(𝑌, 𝑍)𝚍(𝑋))

where 𝚍 = (𝑛+2)𝑡−𝑠. It is shown in [NV24] that 𝑁 = 0 characterizes precisely the situation

of a generalized semi-degenerate system that is weak (i.e. it is strong if 𝑁 does not vanish).

This means, in the case 𝑁 = 0, that

𝑇̂ = 𝐷̂ −
1

𝑛
𝑔 ⊗ 𝑠

satisfies the conditions of a non-degenerate structure tensor. For later use, and to keep

the notation clean, we introduce the 1-form 𝑠 ∈ Ω1(𝑀), 𝑠 = 𝑠♭.

3 Proof of the main results

In this section, we show the dual-geodesic equivalence of the connections ⟨A⟩–⟨C⟩. All of

these connections are torsion-free. Indeed, denoting the Levi-Civita connection of 𝑔 by ∇,

the torsion-freeness of ∇ ± 𝑇̂ follows immediately from the symmetries of 𝑇̂, cf. [Vol25b].

The torsion-freeness of ∇ ± 𝐵̂ follows immediately from the total symmetry of 𝐵♭. In the

semi-degenerate case, the torsion-freeness of the connections ∇ ± 𝐷̂ follows similarly.

Before we proceed to the actual proof, we review some results from the literature

that are going to be useful later.

Lemma 1 (Prop. 2.3 of [Iva95]). Let (𝑀, 𝑔) be a pseudo-Riemannian manifold. Then two

torsion-free affine connections ∇,∇′ are dual-projectively equivalent if and only if there is a

1-form 𝛼 ∈ Ω1(𝑀) such that

∇′
𝑋
𝑌 = ∇𝑋𝑌 + 𝛼♯ 𝑔(𝑋, 𝑌) (6)

for any vector fields 𝑋,𝑌 ∈ 𝔛(𝑀).

Torsion-freeness is a necessary requirement for (6), and in the presence of torsion coun-

terexamples can easily be found.
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For later use, we also introduce the concept of semi-compatibility for pairs (∇′, ℎ)

consisting of an affine connection ∇′ and a metric ℎ.

Definition 5 ([Iva95]). The pair (∇′, ℎ) is said to be semi-compatible (via 𝛼), if there exists

a 1-form 𝛼 such that

∇′
𝑋
ℎ(𝑌, 𝑍) − ∇′

𝑌
ℎ(𝑋, 𝑍) = 𝛼(𝑌)ℎ(𝑋, 𝑍) − 𝛼(𝑋)ℎ(𝑌, 𝑍)

for any 𝑋,𝑌, 𝑍 ∈ 𝔛(𝑀). The pair (∇′, ℎ) is called compatible, if it is semi-compatible via

𝛼 = 0.

We begin our investigation with the dual-projective equivalence of the connections ⟨A⟩

and ⟨B⟩. To this end, consider a non-degenerate system on (𝑀, 𝑔) with structure tensor 𝑇̂

as before. Observe that the induced connection ∇𝑇̂ and the structural connection ∇𝐵̂ are

dual-projectively equivalent.

Theorem 1. (i) The connections ∇𝑇̂ and ∇𝐵̂ share the same dual-geodesics.

(ii) For a non-degenerate system with induced connection ∇𝑇̂, there is a unique dual-

projectively equivalent connection ∇⋆ such that (∇⋆, 𝑔) is compatible. In fact, ∇⋆ = ∇𝐵̂.

The analogous statements hold, if we replace ∇𝑇̂ and ∇𝐵̂ by ∇−𝑇̂ and ∇−𝐵̂, respectively. We

comment that the following proof also shows that 𝑇 = 0, if ∇𝑇̂ = ∇⋆. This latter condition

holds for the so-called non-degenerate harmonic oscillator system [KSV23].

Proof. We denote the Levi-Civita connection of 𝑔 by∇𝑔. We have∇𝑇̂−∇𝐵̂ = ∇𝑔−𝑇̂−∇𝑔+𝐵̂ =

𝐵̂ − 𝑇̂. Using the musical isomorphisms, we then compute

(𝐵 − 𝑇)(𝑋, 𝑌, 𝑍) =
𝑛 + 2

𝑛
𝑡(𝑍)𝑔(𝑋, 𝑌)

and conclude ∇𝑇̂ − ∇𝐵̂ =
𝑛+2

𝑛
𝑔 ⊗ 𝑡♯ . This proves the first claim. We next consider the

connections that are dual-projectively equivalent to ∇𝑇̂. They are of the form, 𝛽 ∈ Ω1(𝑀),

∇⋆
𝑋
𝑌 = ∇𝑇̂

𝑋
𝑌 + 𝛽♯ 𝑔(𝑋, 𝑌).
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A short computation shows that

∇⋆
𝑋
𝑔(𝑌, 𝑍) − ∇′

𝑌
𝑔(𝑋, 𝑍) = 𝛼(𝑌)𝑔(𝑋, 𝑍) − 𝛼(𝑋)𝑔(𝑌, 𝑍)

with the 1-form 𝛼 =
𝑛+2

𝑛
𝑡 − 𝛽. The connection ∇⋆ therefore is compatible with 𝑔 if and

only if 𝛽 = 𝑛+2

𝑛
𝑡. We conclude

∇⋆
𝑋
𝑌 = ∇𝑇̂

𝑋
𝑌 +

𝑛 + 2

𝑛
𝑡♯ 𝑔(𝑋, 𝑌) = ∇𝐵̂

𝑋
𝑌.

Remark 1. We remark that an analogous computation shows ∇ϝ̂

𝑋
𝑔(𝑌, 𝑍) − ∇

ϝ̂

𝑌
𝑔(𝑋, 𝑍) = 0 ,

alongside ∇𝐵̂
𝑋
𝑔(𝑌, 𝑍) − ∇𝐵̂

𝑌
𝑔(𝑋, 𝑍) = 0 . However, the connections ∇ϝ̂ and ∇𝐵̂ are, in general,

different, as

𝑔(∇ϝ̂ − ∇𝐵̂) =
1

2(𝑛 − 2)
ΠSym𝑔 ⊗ 𝑑𝜁.

We infer that the connections ∇ϝ and ∇𝐵̂ coincide precisely if 𝑑𝜁 = 0. Note that the vanishing

of 𝑑𝜁 implies 𝒵̊ = 0.

We now turn our attention to the dual-projective equivalence of the connections ⟨A⟩

and ⟨C⟩, i.e. we now consider systems with (n+1)-parameter potential. Again, we focus

on ∇𝐷̂ = ∇+𝐷̂ for conciseness, as the discussion for ∇−𝐷̂ is analogous. We introduce the

connection

∇† = ∇𝐷̂ −
1

𝑛
𝑠♯ 𝑔

which is clearly dual-projectively equivalent to∇𝐷̂ . We characterize weak semi-degeneracy

via ∇𝐷̂.

Theorem 2. (i) Consider a weak semi-degenerate system with induced connection ∇𝐷̂ .

Assume that the induced connection of the naturally associated non-degenerate system is

∇𝑇̂. Then ∇𝐷̂ and ∇𝑇̂ share the same dual-geodesics.

(ii) Consider a (generalized) semi-degenerate system with induced connection ∇𝐷̂ and

semi-degeneracy 1-form 𝑠. Then (∇𝐷̂, 𝑔) are semi-compatible via

𝛽 =
1

𝑛
(𝑠 − (𝑛 + 2) 𝑡) ,

if and only if the system is a weak semi-degenerate system.
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The analogous statements hold, if we replace ∇𝑇̂ and ∇𝐷̂ by ∇−𝑇̂ and ∇−𝐷̂, respectively.

Proof. We have ∇𝑇̂ = ∇†, and hence ∇𝑇̂ and ∇𝐷̂ are dual-projectively equivalent, complet-

ing the first part of the theorem. For the second part, we first compute

∇𝐷̂
𝑋
𝑔(𝑌, 𝑍) − ∇𝐷̂

𝑌
𝑔(𝑋, 𝑍) = 𝑁(𝑌, 𝑍, 𝑋) − 𝑁(𝑋, 𝑍, 𝑌)

+
1

𝑛
(𝑠(𝑋) − (𝑛 + 2) 𝑡(𝑋)) 𝑔(𝑌, 𝑍)

−
1

𝑛
(𝑠(𝑌) − (𝑛 + 2) 𝑡(𝑌)) 𝑔(𝑋, 𝑍)

!
= 𝛽(𝑋)𝑔(𝑌, 𝑍) − 𝛽(𝑌)𝑔(𝑋, 𝑍) (7)

where the exclamation point indicates the requirement that (∇𝐷̂, 𝑔) be semi-compatible

via 𝑠.

Part “⇒”: Inserting the formula for 𝛽 into (7), we obtain the condition

𝑁(𝑌, 𝑍, 𝑋) = 𝑁(𝑋, 𝑍, 𝑌).

It follows that 𝑁 = 0 and, invoking [NV24], we thus obtain the claim.

Part “⇐”: If the system is weakly semi-degenerate, then 𝑁 = 0, due to [NV24]. We

immediately find that the condition at the exclamation point holds, if 𝛽 is as claimed.

4 Conclusion

We have seen here that certain affine connections that naturally appear in the theory

of irreducible superintegrable systems are dual-projectively equivalent. In particular,

the theorems stated in this paper imply that extendability (weak semi-degeneracy) for

a (𝑛 + 1)-parameter system is linked to the semi-compatibility (with the metric 𝑔) of its

induced connection ∇𝐷̂. Weak semi-degeneracy in turn implies that there is a naturally

associated non-degenerate system whose induced connection ∇𝑇̂ is dual-projectively

equivalent to ∇𝐷̂ . In this case there is also a connection ∇𝐵̂ that is compatible with 𝑔 and

dual-projectively equivalent to ∇𝐷̂ . The observed occurrence of dual-projective geometry
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is natural and linked to the underlying Weylian structure. The underlying Weylian

structure was discussed in [Vol25a]. Note that, by a direct computation,

∇𝑇̂
𝑋
𝑔(𝑌, 𝑍) −

𝑛 + 2

𝑛
𝑡(𝑋)𝑔(𝑌, 𝑍) ∈ Γ(Sym

3
(𝑇∗𝑀))

is totally symmetric. According to [Mat10], it was shown in [Mat07] that this implies the

existence of a Weylian connection.
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1 Introduction

One of the historically first manifestations of integrability is Poncelet’s porism, also known

as Poncelet’s closure theorem. Poncelet’s theorem says that if a planar 𝑛-gon is inscribed

in a conic 𝐶1 and circumscribed about another conic 𝐶2, then any point of 𝐶1 is a vertex

of such an 𝑛-gon, see Figure 1. The two arguably most standard proofs of this theorem

are based, respectively, on complex and symplectic geometry. The complex proof goes
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Folding of quadrilaterals

Figure 1: Every point of 𝐶1 is a vertex of a pentagon inscribed in 𝐶1 and circumscribed

about 𝐶2.

roughly as follows. One can identify the space of tangents dropped from a point on

𝐶1 to 𝐶2 with an elliptic curve. The successive sides of a polygon inscribed in 𝐶1 and

circumscribed about 𝐶2 are points on that curve related to each by a fixed translation.

This polygon closes up if and only if the translation vector is a torsion point on the elliptic

curve. Whether or not that is the case depends only on 𝐶1 and 𝐶2, but not on the initial

point, so all polygons inscribed in 𝐶1 and circumscribed about 𝐶2 will close up after the

same number of steps [GH77].

The second, symplectic, proof is based on the fact that any two generic conics can

be mapped, by a projective transformation, to confocal conics. In the confocal case, a

polygon inscribed in 𝐶1 and circumscribed about 𝐶2 can be identified with a billiard

trajectory in 𝐶1. The billiard in a conic is an integrable system, and any two polygons

inscribed in 𝐶1 and circumscribed about 𝐶2 correspond to trajectories belonging to the

same level set of the first integral. Hence, by Arnold-Liouville theorem, if one of the

trajectories is periodic with period 𝑛, then so is the other one, cf. [LT07].

A lesser known relative of Poncelet’s porism is Darboux’s porism on folding of quadri-

laterals. Folding of a vertex of a planar polygon is the reflection of that vertex is the

diagonal joining its neighbors, see Figure 2. Darboux’s porism says that if a sequence

of alternating foldings of adjacent vertices restores, after 2𝑛 steps, the initial polygon,

then this is the case for any polygon with the same side lengths. For example, folding any

polygon with side lengths 1, 3, 3
√
5, 5 six times, we come back to the initial polygon, see
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Figure 2: Folding of the vertex 𝐶 of a quadrilateral 𝐴𝐵𝐶𝐷. Its new position is 𝐶′.

[Izm23, Figure 2].

Just like Poncelet’s porism, Darboux’s theorem can be proved using elliptic curves.

Specifically, one shows that the complexified moduli space of quadrilaterals with fixed

side length is an elliptic curve. Composition of foldings at adjacent vertices amounts to

a translation on that curve. Whether or not a sequence of foldings restores the initial

polygon depends on whether the translation vector is a torsion point and is independent

on the particular choice of a quadrilateral [Izm23].

What currently seems to be missing in the literature is a symplectic proof of Darboux’s

theorem. We provide such a proof in the present paper. Specifically, we show that,

in an appropriate sense, Darboux’s folding is Arnold-Liouville integrable, and deduce

Darboux’s porism.

Furthermore, we extend these results to Bottema’s zigzag porism [Bot65], which can

be stated as follows. Let 𝐶𝑎 and 𝐶𝑏 be two circles such that there exists a unit equilateral

2𝑛-gon whose odd-indexed vertices lie on 𝐶𝑎 and even-indexed vertices lie on 𝐶𝑏. Then

there exist infinitely many such 2𝑛-gons. The zigzag porism is equivalent to Darboux’s

porism when the circles are coplanar [CH00], but is in fact valid for any two circles in

ℝ3 [BHH74]. We construct the underlying Arnold-Liouville integrable system in this more

general setting.
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2 Arnold-Liouville integrability of folding

Let 𝒫 be the space of quadrilaterals 𝐴𝐵𝐶𝐷 with fixed side lengths, considered up to

orientation-preserving isometries. There is abundant literature on the topology of such

spaces for polygons with any number of vertices, see [KM95] and references therein. The

space 𝒫 is a smooth manifold assuming that there is no linear combination of side lengths

with coefficients ±1 which is equal to zero [KM95, Lemma 2]. In the case of quadrilaterals,

this manifold is diffeomorphic to a circle or disjoint union of two circles, see [KM95,

Theorem 1]. These circles are distinguished by the sign of the oriented area and are

interchanged by an orientation-reversing isometry, cf. [KM95, Section 10].

Denote by 𝐹𝐵 ∶ 𝒫 → 𝒫 folding of the vertex 𝐵. This mapping is well-defined assuming

that the vertices 𝐴 and 𝐶 cannot come together. This holds provided that the side lengths

satisfy at least one of the following conditions: |𝐴𝐵| ≠ |𝐵𝐶| or |𝐴𝐷| ≠ |𝐶𝐷|. Likewise, let

𝐹𝐶 ∶ 𝒫 → 𝒫 be folding of 𝐶, and let 𝐹 ∶= 𝐹𝐶◦𝐹𝐵 be the composition of the two foldings.

Darboux’s porism says that if 𝐹𝑛(𝑃) = 𝑃 for some quadrilateral 𝑃 ∈ 𝒫, then 𝐹𝑛 is the

identity mapping on 𝒫. We shall prove this by establishing Arnold-Liouville integrability

of the mapping 𝐹.

Clearly, 𝐹 cannot be Arnold-Liouville integrable on the space 𝒫 of quadrilaterals with

fixed side lengths, as the latter space is one-dimensional. So, we consider a bigger space

𝒫′ of quadrilaterals with fixed lengths of the sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐷, again considered up to

orientation-preserving isometries. This space is diffeomorphic to a two-dimensional

torus and is parametrized by the oriented angles ∠𝐴𝐵𝐶 and ∠𝐵𝐶𝐷. The squared length

of the side 𝐴𝐷 is a smooth function of the torus 𝒫′. The space 𝒫 of quadrilaterals with

fixed lengths of all sides is a level set of that function.

Theorem 2.1. The folding mapping 𝐹 = 𝐹𝐶◦𝐹𝐵 is Arnold-Liouville integrable on the moduli

space 𝒫′ of quadrilaterals 𝐴𝐵𝐶𝐷 with fixed lengths of the sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐷.

Proof. Folding does not affect side lengths. In particular, |𝐴𝐷|2 is a first integral of 𝐹.
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Furthermore, the map 𝐹∶ 𝒫′ → 𝒫′ has an invariant symplectic structure given by

Ω ∶= 𝑑∠𝐴𝐵𝐶 ∧ 𝑑∠𝐵𝐶𝐷.

To show invariance, consider, for instance, folding of the vertex 𝐶 depicted in Figure 2.

The pullback of the symplectic form Ω by this map is

𝐹∗𝐶Ω = 𝑑∠𝐴𝐵𝐶′ ∧ 𝑑∠𝐵𝐶′𝐷 = 𝑑(∠𝐴𝐵𝐶 − 2∠𝐶𝐵𝐷) ∧ 𝑑(2𝜋 − ∠𝐵𝐶𝐷) = −Ω − 2𝑑∠𝐶𝐵𝐷 ∧ 𝑑∠𝐵𝐶𝐷.

Furthermore, since the side lengths |𝐵𝐶| and |𝐶𝐷| are fixed, the angle ∠𝐶𝐵𝐷 is a function

of the angle ∠𝐵𝐶𝐷 and is independent of the angle ∠𝐴𝐵𝐶. So, 𝑑∠𝐶𝐵𝐷 ∧ 𝑑∠𝐵𝐶𝐷 = 0,

implying

𝐹∗𝐶Ω = −Ω,

i.e., the form Ω is anti-invariant under a single folding, and hence invariant under 𝐹.

3 Darboux’s porism

Theorem 3.1 (Darboux’s porism). Assume we are given a quadrilateral which restores

its initial shape after 2𝑛 alternating foldings at adjacent vertices. Suppose its side lengths

are such that no linear combination of them with coefficients ±1 is equal to zero. Then

any quadrilateral with the same side lengths restores its initial shape after 2𝑛 alternating

foldings at adjacent vertices.

Remark 3.2. The condition on linear combinations of side lengths cannot be avoided.

Consider, for instance a quadrilateral with all four vertices along a line, shown in Figure 3.

Here we have |𝐴𝐵| = 2, |𝐵𝐶| = 1, |𝐶𝐷| = 2, |𝐴𝐷| = 3. Clearly, this quadrilateral is invariant

under any folding. However, that is not so for a generic quadrilateral with side lengths

2, 1, 2, 3.

Proof of Theorem 3.1. The assumption on linear combinations of side lengths ensures

that the moduli space 𝒫 of quadrilaterals with such side lengths is a regular level set of

the function |𝐴𝐷|2 on the moduli space 𝒫′ of polygons with fixed lengths of 𝐴𝐵, 𝐵𝐶, 𝐶𝐷.
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Figure 3: A degenerate polygon.

We are given that there is a quadrilateral 𝑃 ∈ 𝒫 on that level set such that 𝐹𝑛(𝑃) = 𝑃. So,

by Arnold-Liouville integrability of 𝐹, we have that 𝐹𝑛 is the identity on the connected

component of𝒫 containing 𝑃. Moreover, since there are at most two components, and they

are interchanged by an orientation-reversing isometry which commutes with foldings,

we must have that 𝐹𝑛 is the identity of the whole of 𝒫, as desired.

4 A remark on polygons with more vertices

The 𝐹-invariant symplectic form on the moduli space 𝒫′ of quadrilaterals with fixed

lengths of the sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐷 induces an 𝐹-invariant non-vanishing 1-form on any non-

singular level set of the first integral |𝐴𝐷|2, i.e., on the moduli space 𝒫 of quadrilaterals

with fixed side lengths. The existence of this 1-form is at heart of Arnold-Liouville theorem.

It can be shown that, up to a constant factor, this form is given by

𝑑∠𝐴𝐵𝐶
area of △𝐴𝐶𝐷

.

This expression is invariant under cyclic permutation of vertices, up to sign. Likewise,

the expression

𝑑𝜙𝑖+2 ∧⋯ ∧ 𝑑𝜙𝑖−2
area of the triangle formed by vertices 𝑖 − 1, 𝑖, 𝑖 + 1

,

where 𝜙𝑖 is the angle subdued at 𝑖th vertex (the indices are understood cyclically, modulo

𝑛), gives a volume form on the moduli space of 𝑛-gons with fixed side lengths which is

anti-invariant under each folding and hence invariant under an even number of foldings.

However, for 𝑛 > 4, this does not imply any kind of integrable behavior. Moreover,

already for pentagons a random sequence of foldings has dense orbits on the moduli

space 𝒫 [CD23].
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Figure 4: The zigzag porism: all zigzags with the same edge length close after the same

number of steps.

5 The zigzag porism

Let 𝐶𝑎 and 𝐶𝑏 be two circles in ℝ3. A zigzag between 𝐶𝑎 and 𝐶𝑏 is an equilateral polygon

whose odd-indexed vertices lie on 𝐶𝑎 and even-indexed vertices lie on 𝐶𝑏. The zigzag

porism says that if there exists a closed 2𝑛-gonal zigzag between𝐶𝑎 and𝐶𝑏, then any zigzag

between 𝐶𝑎 and 𝐶𝑏 with the same edge length is also a closed 2𝑛-gon [Bot65, BHH74], see

Figure 4.

A zigzag between two circles 𝐶𝑎, 𝐶𝑏 may be built by iterating the zigzag map 𝑍∶ 𝐶𝑎 ×

𝐶𝑏 → 𝐶𝑎 × 𝐶𝑏 which sends a pair 𝐴 ∈ 𝐶𝑎, 𝐵 ∈ 𝐶𝑏 to a pair 𝐴′ ∈ 𝐶𝑎, 𝐵′ ∈ 𝐶𝑏 such that

|𝐴′𝐵′| = |𝐴′𝐵| = |𝐴𝐵|, see Figure 5. This map is a composition of two involutions, namely

(𝐴, 𝐵) ↦→ (𝐴′, 𝐵), where |𝐴′𝐵| = |𝐴𝐵|, and (𝐴′, 𝐵) ↦→ (𝐴′, 𝐵′), where |𝐴′𝐵′| = |𝐴′𝐵|. Observe

Figure 5: The zigzag map 𝑍∶ (𝐴, 𝐵) ↦→ (𝐴′, 𝐵′).
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Figure 6: Two successive legs 𝐴𝐵, 𝐵𝐴′ of a zigzag are related by folding.

that, in the case when the circles 𝐶𝑎, 𝐶𝑏 are coplanar, these involutions are just foldings

of the quadrilateral 𝑂𝑎𝐴𝐵𝑂𝑏, where 𝑂𝑎, 𝑂𝑏 are centers of 𝐶𝑎, 𝐶𝑏, at 𝐴 and 𝐵 respectively,

see Figure 6. So, the planar case of the zigzag porism is equivalent to Darboux’s porism

[CH00]. Here we show that the integrability result carries over to the spatial situation:

Theorem 5.1. The zigzag map 𝑍 is Arnold-Liouville integrable for any circles 𝐶𝑎, 𝐶𝑏 in ℝ3.

Proof. By definition, the map 𝑍∶ (𝐴, 𝐵) ↦→ (𝐴′, 𝐵′) preserves the squared distance be-

tween 𝐴 and 𝐵. So, it suffices to find an area form on 𝐶𝑎 × 𝐶𝑏 invariant under 𝑍. Let

𝜙𝑎, 𝜙𝑏 ∈ ℝ∕2𝜋ℤ be standard angular parameters on 𝐶𝑎, 𝐶𝑏. We will prove that the form

𝑑𝜙𝑎 ∧ 𝑑𝜙𝑏 on 𝐶𝑎 × 𝐶𝑏 is preserved by 𝑍. To that end, it suffices to establish anti-invariance

of that form with respect to the involutions whose composition gives 𝑍. Furthermore,

since those involutions are related to each other by interchanging the roles of the circles

Figure 7: The involution (𝐴, 𝐵) ↦→ (𝐴′, 𝐵) takes the form 𝑑𝜙𝑎 ∧ 𝑑𝜙𝑏 to −𝑑𝜙𝑎 ∧ 𝑑𝜙𝑏.

Arnold Mathematical Journal, Vol.11(4), 2025 119

http://dx.doi.org/10.56994/ARMJ


Anton Izosimov

𝐶𝑎, 𝐶𝑏, it is sufficient to consider the involution (𝐴, 𝐵) ↦→ (𝐴′, 𝐵) defined by the condition

|𝐴′𝐵| = |𝐴𝐵|, where 𝐴,𝐴′ ∈ 𝐶𝑎. Let 𝐵̂ be the orthogonal projection of 𝐵 onto the plane

containing 𝐶𝑎. Then |𝐴𝐵̂| = |𝐴′𝐵̂|, see Figure 7. Here 𝑂𝑎𝑋 is the reference direction used

to define the angular coordinated 𝜙𝑎 on 𝐶𝑎. We have

∠𝑋𝑂𝑎𝐴 + ∠𝑋𝑂𝑎𝐴′ = 2∠𝑋𝑂𝑎𝐵̂.

So, the sum on the left only depends on the position of the point 𝐵 but not 𝐴. Therefore,

in coordinates 𝜙𝑎, 𝜙𝑏, the involution (𝐴, 𝐵) ↦→ (𝐴′, 𝐵) has the form

(𝜙𝑎, 𝜙𝑏) ↦→ (𝑓(𝜙𝐵) − 𝜙𝑎, 𝜙𝑏)

for a certain smooth function 𝑓. So, the form 𝑑𝜙𝑎 ∧ 𝑑𝜙𝑏 is indeed anti-invariant under

this involution.

In terms of the map 𝑍, the zigzag porism says that if an orbit of (𝐴, 𝐵) ∈ 𝐶𝑎 × 𝐶𝑏 under

𝑍 is 𝑛-periodic, then the same holds for any (𝐴′, 𝐵′) ∈ 𝐶𝑎 × 𝐶𝑏 with |𝐴′𝐵′| = |𝐴𝐵|. This

is derived from Theorem 5.1 in the same way as Darboux’s porism is obtained from

Theorem 2.1.
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1 Introduction

1.1 Context and Motivation

Given a polygon 𝑃 in the real projective plane, let 𝑇𝑘 be the map that connects its 𝑘-th

diagonals and intersects them successively to form another polygon 𝑃′ whose vertices

are given by the following formula:

𝑃′𝑖 = 𝑃𝑖𝑃𝑖+𝑘 ∩ 𝑃𝑖+1𝑃𝑖+𝑘+1. (1)

Figure 1 demonstrates an example of the action of 𝑇2 on a convex heptagon. The map

𝑇2 is called the pentagram map, a well-studied discrete dynamical system (see [Sch92,

Sch01, Sch08, OST10]). A well-known result is that 𝑇2 preserves convexity.1 The 𝑇2-orbit

of a convex polygon sits on a flat torus in the moduli space of projective equivalent

convex polygons. On the other hand, the geometry of the map 𝑇𝑘 is less well-behaved.

For 𝑘 ≥ 3, the 𝑇𝑘 images of convex polygons may not even be embedded. See Figure 1 for

an example of 𝑇3 taking a convex heptagon to a polygon that is not even embedded.

Previous results of 𝑇𝑘 often had an algebraic and combinatorial flavor, motivated by

two branches of studies. The first one was a sequence of works [Sch08, OST10, Sol13,

OST13] that established that the 𝑇2 action on the moduli space of projective convex

polygons is a discrete completely integrable system; the second one was M. Glick’s dis-

covery in [Gli11] of the connection between 𝑇2 and cluster algebras. In [GSTV12], M.

Gekhtman, M. Shapiro, S. Tabachnikov, and A. Vainshtein generalized the cluster trans-

formations in [Gli11] to the map 𝑇𝑘 acting on so-called “corrugated polygons,” which
1A projective polygon is convex if some projective transformation maps it to a planar convex polygon in

the affine patch
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𝑃

𝑃′

𝑃

𝑃′
𝑃′′

Figure 1: Left: The iterative images of a convex heptagon under the action of 𝑇2. Right: A

convex heptagon whose image under 𝑇3 is not even embedded.

are polygonal curves in ℝℙ𝑘 satisfying certain coplanarity conditions. [GSTV12] showed

that 𝑇𝑘 is a discrete integrable system. There are numerous integrability results for

these higher-dimensional analogs. See [KS13, MB13, MB14, KS16, IK23]. These led to

many applications and connections of 𝑇𝑘 to other fields, such as octahedral recurrence

[Sch08, FK12], the condensation method of computing determinants [Sch08, Gli18], clus-

ter algebras [Gli11, GSTV12, GP16, FK12], Poisson Lie groups [FM16, Izo22b], 𝑇-systems

[KV15, FK12], Grassmannians [FMB19], algebraically closed fields [Wei23], Poncelet

polygons [Sch07, Sch21, Izo22a, Sch24], and integrable partial differential equations

[Sch08, OST10, NS21].

The geometric aspects of 𝑇𝑘 and other deep diagonal maps on planar polygons remain

underexplored. There are only a few studies on the geometries of 𝑇𝑘 that focused on

small 𝑘 or polygons with many symmetries. See [Sch21, Sch24]. There is no established

general framework on the type of geometric properties preserved under 𝑇𝑘 for 𝑘 ≥ 3 that

is analogous to convexity under 𝑇2. Even less is known for geometric objects that have

precompact orbits under 𝑇𝑘.

The most relevant result to this endeavor is the discovery of 𝑘-birds under the map ∆𝑘
in [Sch25]. A 𝑘-bird 𝑃 is a planar 𝑛-gon with 𝑛 > 3𝑘, such that there exists a continuous
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path of polygons 𝑃(𝑡) connecting 𝑃 to the regular 𝑛-gon where the four lines

𝑃(𝑡)𝑖 𝑃
(𝑡)
𝑖−𝑘−1, 𝑃(𝑡)𝑖 𝑃

(𝑡)
𝑖−𝑘, 𝑃(𝑡)𝑖 𝑃

(𝑡)
𝑖+𝑘, 𝑃(𝑡)𝑖 𝑃

(𝑡)
𝑖+𝑘+1

are distinct for all 𝑖 = 1, … , 𝑛 and 𝑡 ∈ 𝐼. The map ∆𝑘 connects the (𝑘 + 1)-th diagonal of a

polygon and intersects the diagonals that are 𝑘 clicks apart. See Figure 2 for the action of

∆2 on 2-birds. In [Sch25], R. Schwartz showed that the 𝑘-birds are invariant under both

∆𝑘 and ∆−1𝑘 . Experimentally, the 𝑘-birds seem to have toroidal orbits under ∆𝑘, which

highly resembles the orbit of convex 𝑛-gons under 𝑇2. Schwartz also showed that the

𝑘-birds have precompact forward ∆𝑘-orbits modulo affine transformations—a property

satisfied by convex 𝑛-gons under 𝑇2.

Figure 2: Action of ∆2 on two heptagons that are 2-birds.

This paper has two main results. The first one is the discovery of two classes of

geometric objects called type-𝛼 and type-𝛽 𝑘-spirals that are preserved under 𝑇𝑘 for all

𝑘 ≥ 2. These two classes of objects are subsets of twisted polygons: bi-infinite sequences

𝑃 ∶ ℤ → ℝℙ2 such that no three consecutive points are collinear, and 𝑃𝑖+𝑛 = 𝜙(𝑃𝑖) for some

fixed projective transformation 𝜙 called the monodromy. The moduli space of projective

equivalent twisted 𝑛-gons is conventionally denoted by 𝒫𝑛. The type-𝛼 and type-𝛽 𝑘-

spirals are the first discovered classes of geometric constructions of 𝑇𝑘 that generalize

the pentagram map, which provides crucial evidence for a more general understanding

of geometrically preserved classes under 𝑇𝑘.

The second result is the precompactness of both forward and backward 𝑇𝑘-orbits

of type-𝛼 and type-𝛽 𝑘-spirals modulo projective transformations for 𝑘 = 2 and 3, a key

property satisfied by convex polygons under the pentagram map discovered by Schwartz
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in [Sch92]. We first examine the action of 𝑇3 on type-𝛼 and type-𝛽 3-spirals. We show

that one can characterize type-𝛼 and type-𝛽 3-spirals via linear constraints on the corner

invariants. We also derive a birational formula of 𝑇3 for the corner invariants, which is

a generalization of the combinatorial formulas developed by [GP16]. Then, we present

four global invariants under 𝑇3, which we use to prove the precompactness of 𝑇3-orbits

modulo projective transformations. For the case 𝑘 = 2, we show that there exists no

type-𝛼 2-spirals and that the type-𝛽 2-spirals are distinct from closed convex polygons.

We use the Casimir functions of the 𝑇2-invariant Poisson structure developed in [Sch08]

and [OST10] to show that type-𝛽 2-spirals have precompact 𝑇2-orbits modulo projective

transformations.

1.2 The 𝑘-Spirals under the Map 𝑇𝑘

Here we describe the geometric picture of a 𝑘-spiral. For the formal definition, see §3.1.

Geometrically, [𝑃] ∈ 𝒫𝑛 is a 𝑘-spiral if for all 𝑁 ∈ ℤ, we can find a representative 𝑃 such

that {𝑃𝑖}𝑖≥𝑁 lies on the affine patch, and the triangles (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2) and (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘) have

positive orientation for all 𝑖 ≥ 𝑁. We call 𝑃 an 𝑁-representative of [𝑃].

Figure 3: A gallery of 5-spirals. Left: 𝒮𝛼5,3. Middle: 𝒮𝛽5,3. Right: 𝒮𝛽5,20. The red-shaded

triangles indicate the defining orientations and containment relations of type-𝛼 and

type-𝛽 𝑘-spirals..

We are mainly interested in two types of 𝑘-spirals, which we term type-𝛼 and type-𝛽

(although there certainly exist many more types of spirals, we only consider these two

types here). They are 𝑘-spirals with additional constraints on the arrangement of the

four points 𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘, 𝑃𝑖+𝑘+1. For type-𝛼 spirals, we require 𝑃𝑖+𝑘 to be contained in the
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interior of the triangle (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1). For type-𝛽 spirals, 𝑃𝑖+𝑘+1 needs to be contained

in the interior of (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘). We say 𝑃 is a type-𝛼 or type-𝛽 𝑁-representative. A class of

twisted polygons [𝑃] is a type-𝛼 𝑘-spiral (resp. 𝛽) if and only if it admits a type-𝛼 (resp. 𝛽)

𝑁-representative for all 𝑁 ∈ ℤ. Let 𝒮𝛼𝑘,𝑛 and 𝒮𝛽𝑘,𝑛 denote the space of type-𝛼 and type-𝛽

𝑘-spirals modulo projective equivalence. We will see in §3.1 that they are both open in

𝒫𝑛 and hence have dimension 2𝑛. Figure 3 illustrates three examples of representatives

of 𝒮𝛼5,𝑛 for 𝑛 = 3, and 20.

It turns out that 𝒮𝛼𝑘,𝑛 and 𝒮𝛽𝑘,𝑛 are invariant under both 𝑇𝑘 and 𝑇−1𝑘 . Figure 4 shows the

inward half of a representative 𝑃 of [𝑃] ∈ 𝒮𝛽5,3, with the red arc representing 𝑃′ = 𝑇5(𝑃).

On the right we have five polygonal arcs by joining vertices of 𝑃 that are 5 clicks apart.

We call them the transversals of 𝑃. One way to distinguish type-𝛼 and type-𝛽 spirals

is by looking at the orientations of transversals. The transversals of type-𝛼 spirals are

counterclockwise, whereas those of type-𝛽 are clockwise (See Figure 11). In §3, we use

the orientations of these transversals to prove the following main theorem.

Theorem 1.1. For all 𝑛 ≥ 2 and 𝑘 ≥ 2, we have 𝑇𝑘(𝒮𝛼𝑘,𝑛) = 𝒮𝛼𝑘,𝑛. The same is true for type-𝛽.

𝑃

𝑃′

𝑃

Figure 4: Left: 𝑇5 acting on a representative 𝑃 of [𝑃] ∈ 𝒮𝛽5,3. Right: Transversals of 𝑃.

A key property satisfied by convex polygons under the pentagram map is that the

forward and backward orbits of any convex polygon under the pentagram map are

precompact modulo projective tranformations. See [Sch92, Lemma 3.2]. Experimental

results suggest that the 𝑘-birds also have precompact ∆𝑘-orbits. In [Sch25, Conjecture 8.2]
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Schwartz conjectured that the 𝑘-birds have precompact forward ∆𝑘-orbits modulo affine

transformations. We observed experimentally that 𝒮𝛼𝑘,𝑛 and 𝒮𝛽𝑘,𝑛 behave analogously

under 𝑇𝑘.

Conjecture 1.2. For 𝑛 ≥ 2 and 𝑘 ≥ 2, the forward and backward 𝑇𝑘-orbit of any [𝑃] ∈ 𝒮𝛼𝑘,𝑛
is precompact in 𝒫𝑛. The same holds for type-𝛽.

In §6 and §7, we prove Conjecture 1.2 for 𝑘 = 2 and 𝑘 = 3.

1.3 Tic-Tac-Toe Partition and Precompact 𝑇3 Orbits

Our main focus will be the case 𝑘 = 3, which we prove in §6.2.

Theorem 1.3. For 𝑛 ≥ 2, the forward and backward 𝑇3-orbit of any [𝑃] ∈ 𝒮𝛼3,𝑛 is precompact

in 𝒫𝑛. The same holds for type-𝛽.

We discovered several interesting properties of the two types of 𝑘-spirals and the

map 𝑇3 along our way to prove Theorem 1.3. One major discovery is that the sets 𝒮𝛼3,𝑛
and 𝒮𝛽3,𝑛 fit well with a local parameterization of 𝒫𝑛 → ℝ2𝑛 introduced by [Sch92] called

corner invariants (See §2.4). The invariant sets of 𝒫𝑛 under 𝑇3 are partitioned by linear

boundaries in the parameter space. The boundary lines give a grid pattern that resembles

the board of the game “tic-tac-toe.” Each of the four “side-squares” is invariant under 𝑇3.

To construct the tic-tac-toe board, consider the three intervals 𝐼, 𝐽, 𝐾 of ℝ given by

𝐼 = (−∞, 0), 𝐽 = (0, 1), 𝐾 = (1,∞). The squares are of the form 𝐼 × 𝐼, 𝐼 × 𝐽, 𝐼 × 𝐾, 𝐽 × 𝐼,

etc.. We mark the four side-squares 𝑆𝑛(𝐼, 𝐽), 𝑆𝑛(𝐽, 𝐼), 𝑆𝑛(𝐾, 𝐽), 𝑆𝑛(𝐽, 𝐾). See Figure 5 for a

visualization of the tic-tac-toe grid. Given [𝑃] ∈ 𝒫𝑛, we say [𝑃] ∈ 𝑆𝑛(𝐼, 𝐽) if all even corner

invariants of [𝑃] are in 𝐼, and all odd ones are in 𝐽. This means if we plot all 𝑛 pairs of

corner invariants (𝑥2𝑖, 𝑥2𝑖+1) onto ℝ2, we would see 𝑛 points lying in 𝐼 × 𝐽. The other three

side squares are defined analogously.

Figure 6 shows vertices of a representative 𝑃 of [𝑃] ∈ 𝑆4(𝐾, 𝐽) and the image 𝑃′ = 𝑇3(𝑃).

On the right, we have the projection of the first 211 iterations of the orbit of 𝑃 under 𝑇3.

Each point corresponds to 𝑃(𝑚)3 after normalizing (𝑃(𝑚)−2 , 𝑃
(𝑚)
−1 , 𝑃

(𝑚)
0 , 𝑃(𝑚)1 ) to the unit square
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𝑆𝑛(𝐽, 𝐾)

𝑆𝑛(𝐾, 𝐽)

𝑆𝑛(𝐽, 𝐼)

𝑆𝑛(𝐼, 𝐽)

0 1

1

0

Figure 5: The partition of ℝ2 into a 3 × 3 grid, and the four side-squares of our interest.

(here 𝑃(𝑚) = 𝑇𝑚3 (𝑃)). We speculate that the orbit lies on a flat torus, where the map 𝑇3 acts

as a translation on the flat metric.

Twisted polygons that are assigned to these squares have geometric properties. For

example, the closed convex polygons always lie in the center square; two of the side-

squares are 𝒮𝛼3,𝑛 and 𝒮𝛽3,𝑛; the other two side-squares are obtained by reverting the indexing

of vertices of these two types of 𝑘-spirals. These facts will be proved in §4.

The proof of Theorem 1.3 is algebraic. In §5 I show that 𝑇3 is a birational map on the

corner invariants, which generalizes a direct application of [GP16, Theorem 1.6]. For the

explicit formulas, see Equation (19). In §6, I derive four algebraic invariants of 𝑇3, which

allow me to show boundedness of the corner invariants of the 𝑇3-orbits, thereby proving

Theorem 1.3. This approach is reminiscent of Schwartz’s second proof of precompactness

of 𝑇2-orbits of convex polygons in [Sch01, Section 3B & 3C].

1.4 The Type-𝛽 2-Spirals and Precompact 𝑇2 Orbits

We now proceed to the case 𝑘 = 2, where the map 𝑇2 is the classical pentagram map. In §3.1

we show that there exist no type-𝛼 2-spirals (so Conjecture 1.2 is vacuously true for type-𝛼

2-spirals). On the other hand, type-𝛽 2-spirals are nontrivial geometric constructions that
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Figure 6: Left: 𝑇3 acting on a representative of [𝑃] ∈ 𝑆4(𝐾, 𝐽). Right: The orbit of 𝑃(𝑚)3 in 𝔸2

by fixing 𝑃−2 = (0, 0), 𝑃−1 = (1, 0), 𝑃0 = (1, 1), 𝑃1 = (0, 1).

are distinct from convex polygons. In §7.1, we show that the corner invariants of type-𝛽

2-spirals are also partitioned by linear boundaries, and in particular 𝒮𝛼3,𝑛 ⊂ 𝒮𝛽2,𝑛.

We point out that the type-𝛽 2-spirals are not related to the pentagram spirals in

[Sch13]. The latter requires 𝑃 to be a relabeling of 𝑇𝑚2 (𝑃) for some positive integer 𝑚.

In §7.2, we use the Casimir functions of the 𝑇2-invariant Poisson structure on 𝒫𝑛 from

[Sch08] and [OST10] to prove Conjecture 1.2 for 𝑘 = 2.

Theorem 1.4. For 𝑛 ≥ 2, the forward and backward 𝑇2-orbit of any [𝑃] ∈ 𝒮𝛽2,𝑛 is precompact

in 𝒫𝑛.

1.5 Obstacles for 𝑘 > 3 and Future Directions

Our algebraic method of proving Theorem 1.3 and 1.4 requires a complete character-

ization of the corner invariants of 𝒮𝛼𝑘,𝑛 and 𝒮𝛽𝑘,𝑛 and enough algebraic invariants of 𝑇𝑘
that uniformly bound the corner invariants away from the boundaries of 𝒮𝛼𝑘,𝑛 and 𝒮𝛽𝑘,𝑛.

However, the corner invariants seem to be not partitioned by linear boundaries for 𝑘 > 3,

which makes it difficult to analyze the boundaries of the corner invariants of 𝒮𝛼𝑘,𝑛 and

𝒮𝛽𝑘,𝑛. Moreover, the map 𝑇𝑘 for the corner invariants seems not birational from computer

algebra. This makes it difficult to algebraically characterize the corner invariants.
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One future direction is to look at the cross-ratio of different combinations of points

other than the ones involved in the definition of corner invariants. In §8 we present a

conjecture on a potential algebraic invariant of 𝑇𝑘, which can be interpreted as a Casimir

function of a Poisson structure over the 𝑦-parameteris of a quiver 𝑄𝑆. The quiver 𝑄𝑆 is

associated to a 𝑌-mesh of type 𝑆 from [GP16] and is isomorphic to the quiver in [GSTV12],

which corresponds geometrically to the map 𝑇𝑘.

Another direction is to analyze the two types of 𝑘-spirals geometrically. There are

yet many open problems on the geometry of the two types of 𝑘-spirals that could hint at

the behavior of their 𝑇𝑘-orbits. For open problems, see the end of §3.1. Answering these

geometric problems may provide a new approach to tackle Conjecture 1.2.

Finally, for the case 𝑘 = 3, the birational formula for 𝑇3 could be applied to other

settings such as the action of 𝑇3 on Poncelet polygons [Sch24] or discovering 𝑇3-compatible

Poisson structures on 𝒫𝑛 that generalizes the one in [GSTV12] for corrugated polygons.

1.6 Accompanying Program

I wrote a web-based program to visualize the orbits of twisted polygons under 𝑇𝑘. Readers

can access it from the following link:

https://zzou9.github.io/pentagram-map/spiral.html

When reaching the website, you will see a representative of a twisted polygon displayed

in the middle of the screen. You can click on the user manual button for instructions on

how to use the program. I discovered most of the results by computer experiments using

this program. The paper contains rigorous proofs of the beautiful pictures I observed

from it.
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2 Background

2.1 Projective Geometry

The real projective plane ℝℙ2 is the space of 1-dimensional subspaces of ℝ3. Points of

ℝℙ2 are lines in ℝ3 that go through the origin. We say that [𝑥 ∶ 𝑦 ∶ 𝑧] is a homogeneous

coordinate of 𝑉 ∈ ℝℙ2 if the vector 𝑉̃ = (𝑥, 𝑦, 𝑧) is a representative of 𝑉. Given two

distinct points 𝑉1, 𝑉2 ∈ ℝℙ2, the line 𝑙 = 𝑉1𝑉2 connecting 𝑉1 and 𝑉2 is the 2-dimensional

hyperplane spanned by the two 1-dimensional subspaces. Let 𝑙1, 𝑙2 be two lines in ℝℙ2.

The point of intersection 𝑙1 ∩ 𝑙2 is the 1-dimensional line given by the intersection of the

two 2-dimensional subspaces. In ℝℙ2, there exists a unique line connecting each pair

of distinct points and a unique point of intersection given two distinct lines. We call a

collection of points 𝑉1, 𝑉2, … , 𝑉𝑛 ∈ ℝℙ2 in general position if no three of them are collinear.

The affine patch 𝔸2 consists of points in ℝℙ2 with homogeneous coordinate [𝑥 ∶ 𝑦 ∶ 1].

We call this canonical choice of coordinate (𝑥, 𝑦, 1) the affine coordinate of a point 𝑉 ∈ 𝔸2.

There is a diffeomorphism Φ ∶ ℝ2 → 𝔸2 given by Φ(𝑥, 𝑦) = [𝑥 ∶ 𝑦 ∶ 1]. We often identify

𝔸2 as a copy of ℝ2 in ℝℙ2. The line ℝℙ2 − 𝔸2 is called the line at infinity.

A map 𝜙 ∶ ℝℙ2 → ℝℙ2 is a projective transformation if it maps points to points and

lines to lines and is bijective. Algebraically, the group of projective transformations is

PGL3(ℝ) = GL3(ℝ)∕ℝ∗𝐼, where we are modding by the subgroup ℝ∗𝐼 = {𝜆𝐼 ∶ 𝜆 ∈ ℝ∗} and 𝐼

is the 3×3 identity matrix. We state a classical result regarding projective transformations

below with its proof omitted.
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Theorem 2.1. Given two 4-tuples of points (𝑉1, 𝑉2, 𝑉3, 𝑉4) and (𝑊1,𝑊2,𝑊3,𝑊4) in ℝℙ2, both

in general position, there exists a unique 𝜙 ∈ PGL3(ℝ) such that 𝜙(𝑉𝑖) = 𝑊𝑖.

The group of affine transformationsAff 2(ℝ) on𝔸2 is the subgroup of projective transfor-

mations that fixes the line at infinity. It is isomorphic to a semidirect product ofGL2(ℝ) and

ℝ2. Elements of Aff 2(ℝ) can be uniquely expressed as a tuple (𝑀′, 𝑣) where 𝑀′ ∈ GL2(ℝ)

and 𝑣 ∈ ℝ2. Let Aff+2 (ℝ) denote the subgroup of Aff+2 (ℝ) where (𝑀′, 𝑣) ∈ Af f+2 (ℝ) iff

det(𝑀′) > 0. These are orientation-preserving affine transformations.

2.2 Orientation of Affine Triangles

Given an ordered 3-tuple (𝑉1, 𝑉2, 𝑉3) of points in ℝ2 or 𝔸2, let int(𝑉1, 𝑉2, 𝑉3) denote the

interior of the affine triangle with vertices 𝑉1, 𝑉2, 𝑉3. There is a canonical way to define

the orientation of an ordered 3-tuple. Let 𝑉̃𝑖 be the affine coordinate of 𝑉𝑖. We consider

the signed area 𝒪(𝑉1, 𝑉2, 𝑉3) of the oriented triangle, which can be computed as

𝒪(𝑉1, 𝑉2, 𝑉3) = det(𝑉̃1, 𝑉̃2, 𝑉̃3). (2)

The determinant is evaluated on the 3 × 3 matrix with column vectors 𝑉̃𝑖. We say an

ordered 3-tuple (𝑉1, 𝑉2, 𝑉3) is positive if 𝒪(𝑉1, 𝑉2, 𝑉3) > 0. Figure 7 shows an example of a

positive 3-tuple.

𝑉1

𝑉2

𝑉3

𝑉̃1

𝑉̃2

𝑉̃3

𝔸2

Figure 7: A positive 3-tuple of affine points (𝑉1, 𝑉2, 𝑉3).
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Here is another way to compute 𝒪 using the ℝ2 coordinates of 𝑉1, 𝑉2, 𝑉3:

𝒪(𝑉1, 𝑉2, 𝑉3) = det(𝑉1, 𝑉2) + det(𝑉2, 𝑉3) + det(𝑉3, 𝑉1)

= det(𝑉𝑖 − 𝑉𝑖−1, 𝑉𝑖+1 − 𝑉𝑖) for 𝑖 = 1, 2, 3
(3)

where the determinant is evaluated on the 2 × 2 matrix.

𝒪 interacts with the action of Aff+2 (ℝ) and the symmetric group 𝑆3 on planar/affine

triangles in the following way: Given 𝑀 ∈ Aff+2 (ℝ), let 𝑉′
𝑖 = 𝑀(𝑉𝑖). One can show

that (𝑉1, 𝑉2, 𝑉3) is positive iff (𝑉′
1, 𝑉

′
2, 𝑉

′
3) is positive. On the other hand, for all 𝜎 ∈ 𝑆3,

𝒪(𝑉𝜎(1), 𝑉𝜎(2), 𝑉𝜎(3)) = sgn(𝜎)𝒪(𝑉1, 𝑉2, 𝑉3), so 𝒪(𝑉𝜎(1), 𝑉𝜎(2), 𝑉𝜎(3)) = 𝒪(𝑉1, 𝑉2, 𝑉3) when 𝜎 is a

3-cycle.

Below are useful equivalence conditions for the positivity of (𝑉1, 𝑉2, 𝑉3). The proof is

elementary, so we will omit it.

Proposition 2.2. Given 𝑉1, 𝑉2, 𝑉3 ∈ ℝ2 in general position, and 𝑊 ∈ int(𝑉1, 𝑉2, 𝑉3), the

following are equivalent:

1. (𝑉1, 𝑉2, 𝑉3) is positive.

2. (𝑉𝑖, 𝑉𝑖+1,𝑊) is positive for some 𝑖 ∈ {1, 2, 3}.

3. (𝑉𝑖, 𝑉𝑖+1,𝑊) is positive for all 𝑖 ∈ {1, 2, 3}.

4. det(𝑉𝑖 − 𝑉𝑖−1, 𝑉𝑖+1 −𝑊) > 0 for some 𝑖 ∈ {1, 2, 3}.

5. det(𝑉𝑖 − 𝑉𝑖−1, 𝑉𝑖+1 −𝑊) > 0 for all 𝑖 ∈ {1, 2, 3}.

2.3 The Cross-Ratio

The cross-ratio is used to construct a projective-invariant parametrization of the 𝑘-spirals.

There are multiple ways to define the cross-ratio of four collinear points on the projective

plane, each using its own permutation of the points. We follow the convention used in

[Sch92]. Given four collinear points 𝐴, 𝐵, 𝐶, 𝐷 on a line 𝜔 ⊂ ℝℙ2, we choose a projective
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transformation 𝜓 that maps 𝜔 to the 𝑥-axis of 𝔸2. Let 𝑎, 𝑏, 𝑐, 𝑑 be the 𝑥-coordinates of 𝜓(𝐴),

𝜓(𝐵), 𝜓(𝐶), 𝜓(𝐷). We define the cross-ratio to be the following quantity:

𝜒(𝐴, 𝐵, 𝐶, 𝐷) ∶=
(𝑎 − 𝑏)(𝑐 − 𝑑)
(𝑎 − 𝑐)(𝑏 − 𝑑)

. (4)

If 𝐴 lies on the line at infinity, we let 𝜒(𝐴, 𝐵, 𝐶, 𝐷) = 𝑐−𝑑
𝑏−𝑑

. One can check that given any

𝜙 ∈ PGL3(ℝ),

𝜒(𝐴, 𝐵, 𝐶, 𝐷) = 𝜒(𝜙(𝐴), 𝜙(𝐵), 𝜙(𝐶), 𝜙(𝐷)).

We also define the cross-ratio for four projective lines. Let 𝑙, 𝑚, 𝑛, 𝑘 be four lines

intersecting at a common point 𝑂. Normalize with a projective transformation so that

𝑙, 𝑚, 𝑛, 𝑘 ⊂ 𝔸2 with slopes 𝑠𝑙, 𝑠𝑚, 𝑠𝑛, 𝑠𝑘. We define

𝜒(𝑙,𝑚, 𝑛, 𝑘) =
(𝑠𝑙 − 𝑠𝑚)(𝑠𝑛 − 𝑠𝑘)
(𝑠𝑙 − 𝑠𝑛)(𝑠𝑚 − 𝑠𝑘)

(5)

with 𝜒(𝑙,𝑚, 𝑛, 𝑘) = 𝑠𝑛−𝑠𝑘
𝑠𝑚−𝑠𝑘

if 𝑠𝑙 = ∞.

If 𝜔 is a line that does not go through 𝑂 and intersects 𝑙, 𝑚, 𝑛, 𝑘 at 𝐴, 𝐵, 𝐶, 𝐷 respectively,

we have

𝜒(𝑙,𝑚, 𝑛, 𝑘) = 𝜒(𝐴, 𝐵, 𝐶, 𝐷). (6)

See Figure 8 for the configuration. The proof is elementary, so we will omit it.

𝜔

𝑙

𝑚

𝑛

𝑘

𝐴

𝐵

𝐶

𝐷

𝑂

Figure 8: The configuration in Equation (6).
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2.4 Twisted Polygons, Corner Invariants

Introduced in [Sch08], a twisted 𝑛-gon is a bi-infinite sequence 𝑃 ∶ ℤ → ℝℙ2, along with

a projective transformation 𝑀 ∈ PGL3(ℝ) called the monodromy, such that every three

consecutive points of 𝑃 are in general position, and 𝑃𝑖+𝑛 = 𝑀(𝑃𝑖) for all 𝑖 ∈ ℤ. When 𝑀

is the identity, we get an ordinary closed 𝑛-gon. Two twisted 𝑛-gons 𝑃,𝑄 are equivalent

if there exists 𝜙 ∈ PGL3(ℝ) such that 𝜙(𝑃𝑖) = 𝑄𝑖 for all 𝑖 ∈ ℤ. The two monodromies 𝑀𝑝

and 𝑀𝑞 satisfy 𝑀𝑞 = 𝜙𝑀𝑝𝜙−1. Let 𝒫𝑛 denote the space of twisted 𝑛-gons modulo projective

equivalence.

The cross-ratio allows us to parameterize 𝒫𝑛 with coordinates in ℝ2𝑛. Given a twisted

𝑛-gon 𝑃, the corner invariants of 𝑃 is a coordinate system 𝑥0(𝑃), … , 𝑥2𝑛−1(𝑃) given by

⎧

⎨
⎩

𝑥2𝑖(𝑃) = 𝜒(𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖−2𝑃𝑖−1 ∩ 𝑃𝑖𝑃𝑖+1, 𝑃𝑖−2𝑃𝑖−1 ∩ 𝑃𝑖+1𝑃𝑖+2);

𝑥2𝑖+1(𝑃) = 𝜒(𝑃𝑖+2, 𝑃𝑖+1, 𝑃𝑖+2𝑃𝑖+1 ∩ 𝑃𝑖𝑃𝑖−1, 𝑃𝑖+2𝑃𝑖+1 ∩ 𝑃𝑖−1𝑃𝑖−2).
(7)

𝑃𝑖

𝑃𝑖+1

𝑃𝑖+2

𝑃𝑖−1 𝑃𝑖−2

𝑃𝑖

𝑃𝑖+1

𝑃𝑖+2

𝑃𝑖−1 𝑃𝑖−2𝑂 𝐴
𝑙1,2 𝑙1,0 𝑙1,−1 𝑙1,−2

Figure 9: Left: The corner invariants 𝑥2𝑖(𝑃) = 𝜒(𝑃𝑖−2, 𝑃𝑖−1, 𝐴, 𝑂) computed using Equation

(7). Right: 𝑥2𝑖(𝑃) = 𝜒(𝑙1,−2, 𝑙1,−1, 𝑙1,0, 𝑙1,2) computed using Equation (8).

See the left side of Figure 9 for a geometric interpretation of the corner invariants.

Let 𝑙𝑎,𝑏 = 𝑃𝑖+𝑎𝑃𝑖+𝑏. By Equation (5), the corner invariants can be computed by

⎧

⎨
⎩

𝑥2𝑖(𝑃) = 𝜒(𝑙1,−2, 𝑙1,−1, 𝑙1,0, 𝑙1,2);

𝑥2𝑖+1(𝑃) = 𝜒(𝑙−1,2, 𝑙−1,1, 𝑙−1,0, 𝑙−1,−2).
(8)

See the right side of Figure 9 for the line configurations.
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Since𝜒 is invariant under projective transformations, for all 𝑗 we have 𝑥𝑗(𝑃) = 𝑥𝑗+2𝑛(𝑃),

so a 2𝑛-tuple of corner invariants is enough to fully determine the projective equivalence

class of a twisted 𝑛-gon. We use 𝑥𝑗(𝑃) to denote the corner invariants of [𝑃] ∈ 𝒫𝑛 without

adding square brackets around 𝑃. To obtain the corner invariants of [𝑃] ∈ 𝒫𝑛, one

can simply choose an arbitrary representative 𝑃 and compute its corner invariants.

[Sch08, Equation (19) & (20)] showed that one can also revert the process and obtain a

representative twisted polygon of the equivalence class given its corner invariants.

3 The Spirals and 𝑇𝑘-Orbit Invariance

In this section, we explore the geometric properties of type-𝛼 and type-𝛽 𝑘-spirals and

prove Theorem 1.1. In §3.1, we give rigorous definitions of the two types of 𝑘-spirals and

discuss their geometric properties. In §3.2, we introduce a construct associated to the two

types of 𝑘-spirals called the transversals. In §3.3 and §3.4, we prove Theorem 1.1 using

geometric properties of the transversals.

3.1 The Geometry of 𝑘-Spirals

Here we give the formal definition of a 𝑘-spiral and its two subsets called type-𝛼 and

type-𝛽. We then explore their geometric properties and present some open problems.

Definition 3.1. Given integers 𝑘 ≥ 2, 𝑛 ≥ 2, we say that [𝑃] ∈ 𝒫𝑛 is a 𝑘-spiral if for all𝑁 ∈ ℤ,

there exists a representative 𝑃 that satisfies the following: For all 𝑖 ≥ 𝑁, 𝑃𝑖 lies in 𝔸2,

(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2) is positive, and (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘) is positive. Such a representative is called an

𝑁-representative. Saying that [𝑃] is a 𝑘-spiral means that [𝑃] admits an 𝑁-representative

for all 𝑁 ∈ ℤ.

Remark 3.2. The idea of considering an 𝑁-representative for each 𝑁 ∈ ℤ is new to the

literature and may at first seem superfluous. Readers will see in §4 that this condition is

natural when we examine the corner invariants of the two types of 𝑘-spirals. See the end

of this section for open problems related to the geometry of 𝑁-representatives.
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In practice, since [𝑃] is a twisted 𝑛-gon, it suffices to find a single 𝑁0-representative 𝑃0
for some 𝑁0 ∈ ℤ. One can then obtain other 𝑁-representatives for 𝑁 < 𝑁0 by applying

the 𝑚-th power of the monodromy of [𝑃] to 𝑃0, where 𝑚 > 𝑁0−𝑁
𝑘

+ 1.

Definition 3.3. A 𝑘-spiral [𝑃] ∈ 𝒫𝑛 is of type-𝛼 or type-𝛽 if for all 𝑁 ∈ ℤ, it has an 𝑁-

representative 𝑃 that satisfies the following conditions:

• [𝑃] is of type-𝛼 if 𝑃𝑖+𝑘 ∈ int(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1) for all 𝑖 ≥ 𝑁;

• [𝑃] is of type-𝛽 if 𝑃𝑖+𝑘+1 ∈ int(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘) for all 𝑖 ≥ 𝑁.

Figure 10: Left: The inward half of a 0-representative 𝑃 of a type-𝛼 6-spiral. The red

triangle is joined by (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1), which is positive by Proposition 3.4 and contains 𝑃𝑖+𝑘
in its interior. Right: The inward half of a 0-representative 𝑃 of a type-𝛽 6-spiral. The cyan

triangle is joined by (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘), which is positive and contains 𝑃𝑖+𝑘+1 in its interior.

See Figure 10 for 0-representatives of type-𝛼 and type-𝛽 6-spirals. For the type-𝛼 𝑘-

spirals, we show that positivity of (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘) is equivalent to positivity of (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1).

The latter condition turns out to be more convenient for showing 𝑇𝑘 invariance.

Proposition 3.4. [𝑃] ∈ 𝒫𝑛 is a type-𝛼 𝑘-spiral if and only if for all 𝑁 ∈ ℤ, there exists a

representative 𝑃 that satisfies the following: for all 𝑖 ≥ 𝑁, 𝑃𝑖 lies in 𝔸2, (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2) is

positive, (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1) is positive, and 𝑃𝑖+𝑘 ∈ int(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1).

Proof. Since 𝑃𝑖+𝑘 ∈ int(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1), we see that int(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1) is nonempty, so the

three points 𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1 are in general position. It then follows from Proposition 2.2

that (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘) is positive iff (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1) is positive.
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Corollary 3.5. There exists no type-𝛼 2-spirals.

Proof. It suffices to show that there exists no configuration of four points 𝐴, 𝐵, 𝐶, 𝐷 ∈ 𝔸2

such that (𝐴, 𝐵, 𝐷), (𝐵, 𝐶, 𝐷) are both positive and 𝐶 ∈ int(𝐴, 𝐵, 𝐷). If (𝐴, 𝐵, 𝐷) is positive

and 𝐶 ∈ int(𝐴, 𝐵, 𝐷), then Proposition 2.2 implies (𝐵, 𝐷, 𝐶) is positive, but that contradicts

(𝐵, 𝐶, 𝐷) positive because 𝒪(𝐵, 𝐶, 𝐷) = −𝒪(𝐵, 𝐷, 𝐶).

On the other hand, type-𝛽 2-spirals do exist. Geometrically, their 𝑁-representatives

look like triangular spirals. See §7 for a more thorough discussion on type-𝛽 2-spirals.

Remark 3.6. One may attempt to define the two types of 𝑘-spirals on bi-infinite sequences

of points in ℝℙ2 with no periodicity constraints. The results in this section hold true for

this more general definition. We restrict our attention to twisted polygons because it’s a

finite-dimensional space, which allows us to more easily keep track of the 𝑇𝑘-orbits.

We now proceed to discuss some geometric properties of type-𝛼 and type-𝛽 𝑘-spirals.

A twisted polygon 𝑃 is called 𝑘-nice if the four points 𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘, 𝑃𝑖+𝑘+1 are in general

position for all 𝑖 ∈ ℤ. The 𝑘-nice condition is projective invariant. Let 𝒫𝑘,𝑛 denote the

space of 𝑘-nice twisted 𝑛-gons modulo projective equivalence.

Proposition 3.7. For all 𝑘 ≥ 2, 𝒫𝑘,𝑛 is open in 𝒫𝑛, so it has dimension 2𝑛.

Proof. The condition that four points 𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘, 𝑃𝑖+𝑘+1 are in general position remains

true if we perturb one of the points in a small enough neighborhood of ℝℙ2. The dimen-

sion of 𝒫𝑘,𝑛 comes from the fact that 𝒫𝑛 has dimension 2𝑛, which is shown in [OST10,

Lemma 2.2].

Proposition 3.8. Both type-𝛼 and type-𝛽 𝑘-spirals are 𝑘-nice.

Proof. We give a proof to the type-𝛼 case. The type-𝛽 case is analogous, so we will omit

it. Given a type-𝛼 𝑘-spiral [𝑃] and an integer 𝑖 ∈ ℤ, let 𝑃 be an 𝑖-representative of [𝑃].

Since (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1) is positive, these three points cannot be collinear. Also, since 𝑃𝑖+𝑘 ∈

int(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1), 𝑃𝑖+𝑘 does not lie in any of the lines joined by two of the three vertices

𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1. This shows that 𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘, 𝑃𝑖+𝑘+1 are in general position.
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As stated in §1.2, we let 𝒮𝛼𝑘,𝑛 and 𝒮𝛽𝑘,𝑛 denote the space of type-𝛼 and type-𝛽 𝑘-spirals

(By Corollary 3.5, 𝒮𝛼2,𝑛 = ∅ for all 𝑛 ≥ 2 ).

Proposition 3.9. Both 𝒮𝛼𝑘,𝑛 and 𝒮𝛽𝑘,𝑛 are open in 𝒫𝑘,𝑛, so they both have dimension 2𝑛.

Proof. The positivity conditions of (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2) and (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘) are open conditions

from continuity of the determinant function. The condition 𝑃𝑖+𝑘 ∈ int(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1) for

type-𝛼 (or 𝑃𝑖+𝑘+1 ∈ int(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘) for type-𝛽) is equivalent to the positivity of certain

determinants by Proposition 2.2, so this is also an open condition. Finally, 𝒮𝛼𝑘,𝑛 ⊂ 𝒫𝑘,𝑛 and

𝒮𝛽𝑘,𝑛 ⊂ 𝒫𝑘,𝑛 follows from Proposition 3.8.

A twisted polygon 𝑃 is closed if there exists some positive integer 𝑛 such that 𝑃𝑖+𝑛 = 𝑃𝑖,

or [𝑃] ∈ 𝒫𝑛 with identity monodromy. We show that neither type-𝛼 nor type-𝛽 𝑘-spirals

are closed.

Proposition 3.10. For all 𝑘 ≥ 2 and 𝑛 ≥ 2, if [𝑃] ∈ 𝒮𝛼𝑘,𝑛, then [𝑃] is not closed. The same

holds for 𝒮𝛽𝑘,𝑛.

Proof. Given any closed 𝑛-gon 𝑃 on 𝔸2, let 𝐶 be the convex hull of the vertices of 𝑃. Since

𝑃 has finitely many vertices, there exists a vertex 𝑃𝑖 such that 𝑃𝑖 ∉ int(𝐶). Then, since

int(𝑃𝑖−𝑘, 𝑃𝑖−𝑘+1, 𝑃𝑖+1) ⊂ int(𝐶), we must have 𝑃𝑖 ∉ int(𝑃𝑖−𝑘, 𝑃𝑖−𝑘+1, 𝑃𝑖+1). It follows that 𝑃 is

not an 𝑁-representative of type-𝛼 𝑘-spiral for any 𝑁 or 𝑘. The proof for type-𝛽 is similar,

so we omit it.

The two types of 𝑘-spirals seem to possess rich geometric properties. We will present

some open problems. In the discussion below, [𝑃] denotes a type-𝛼 or type-𝛽 𝑘-spiral.

Problem 3.11. For all 𝑁 ∈ ℤ, is it always possible to find 𝑁-representatives 𝑃 such that

for all 𝑗 > 𝑖 + 1, (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑗) is positive (in other words, 𝑃𝑗 always lies on the same side of

the line 𝑃𝑖𝑃𝑖+1)?

Problem 3.12. Let 𝑃 be an arbitrary representative of [𝑃]. Is there a minimal 𝑁 ∈ ℤ such

that 𝑃 is an 𝑁-representative on some affine patch of ℝℙ2? Does there exist 𝑃 that is an

𝑁-representative for all 𝑁 ∈ ℤ?
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Problem 3.13. Given an 𝑁-representative 𝑃, does 𝑃𝑖 converge to a point in 𝔸2 as 𝑖 → ∞?

3.2 Transversals of the Spirals

In this section, we prove our remark in §1.2 that transversals for type-𝛼 spirals are

oriented counterclockwise, whereas transversals for type-𝛽 are oriented clockwise. Recall

that the transversals of an 𝑁-representative 𝑃 of a 𝑘-spiral are 𝑘 polygonal arcs joined by

vertices 𝑃𝑖, 𝑃𝑖+𝑘, 𝑃𝑖+2𝑘, … for 𝑖 = 𝑁,… ,𝑁 + 𝑘 − 1. See Figure 11 for one of the 𝑘 transversals

of the two representatives from Figure 10.

Figure 11: Transversals of two representatives from Figure 10.

Lemma 3.14. Given 𝑂,𝐴, 𝐵, 𝐶, 𝐷 ∈ 𝔸2 (See Figure 12) such that (𝐴, 𝑂, 𝐵), (𝐴, 𝑂, 𝐷), (𝐵, 𝑂, 𝐶),

(𝐶, 𝑂, 𝐷) are all positive. Then, (𝐴, 𝑂, 𝐶) is positive iff (𝐵, 𝑂, 𝐷) is positive.

Proof. For the forward direction, normalize with Aff+2 (ℝ) so that 𝑂 = (0, 0) and 𝐴 = (−1, 0).

Let 𝐵 = (𝑥𝑏, 𝑦𝑏), 𝐶 = (𝑥𝑐, 𝑦𝑐), and 𝐷 = (𝑥𝑑, 𝑦𝑑). Since (𝐴, 𝑂, 𝐵) is positive, Equation (3) gives

us

𝒪(𝐴,𝑂, 𝐵) = det(𝑂 − 𝐴, 𝐵 − 𝑂) = det(−𝐴, 𝐵) = 𝑦𝑏 > 0.

Similarly, positivity of (𝐴, 𝑂, 𝐶) and (𝐴, 𝑂, 𝐷) give us 𝑦𝑐, 𝑦𝑑 > 0. Next, observe that

𝒪(𝐵,𝑂, 𝐶) = det(−𝐵, 𝐶) = −𝑥𝑏𝑦𝑐 + 𝑥𝑐𝑦𝑏;

𝒪(𝐵, 𝑂, 𝐷) = det(−𝐵,𝐷) = −𝑥𝑏𝑦𝑑 + 𝑥𝑑𝑦𝑏;

𝒪(𝐶, 𝑂, 𝐷) = det(−𝐶,𝐷) = −𝑥𝑐𝑦𝑑 + 𝑥𝑑𝑦𝑐.
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Since 𝑦𝑏, 𝑦𝑐, 𝑦𝑑 > 0, we have 𝑦𝑏
𝑦𝑐
, 𝑦𝑑
𝑦𝑐
> 0, which implies

𝒪(𝐵,𝑂, 𝐷) = −𝑥𝑏𝑦𝑑 + 𝑥𝑑𝑦𝑏 =
𝑦𝑏
𝑦𝑐
𝒪(𝐶,𝑂,𝐷) +

𝑦𝑑
𝑦𝑐
𝒪(𝐵,𝑂, 𝐶) > 0.

This shows positivity of (𝐵, 𝑂, 𝐷).

The proof for the backward direction is analogous. Normalize so that 𝑂 = (0, 0) and

𝐷 = (1, 0). Let 𝐴 = (𝑥𝑎, 𝑦𝑎), 𝐵 = (𝑥𝑏, 𝑦𝑏), 𝐶 = (𝑥𝑐, 𝑦𝑐). Positivity of (𝐴, 𝑂, 𝐷), (𝐵, 𝑂, 𝐷), and

(𝐶, 𝑂, 𝐷) implies 𝑦𝑎, 𝑦𝑏, 𝑦𝑐 > 0. One can then check that

𝒪(𝐴,𝑂, 𝐶) = −𝑥𝑎𝑦𝑐 + 𝑥𝑐𝑦𝑎 =
𝑦𝑐
𝑦𝑏

𝒪(𝐴,𝑂, 𝐵) +
𝑦𝑎
𝑦𝑏

𝒪(𝐵,𝑂, 𝐶) > 0.

This shows positivity of (𝐴, 𝑂, 𝐶).

𝑂

𝐴

𝐵

𝐶

𝐷

𝑂

𝐴

𝐵

𝐶

𝐷

Figure 12: Examples of 𝑂,𝐴, 𝐵, 𝐶, 𝐷 in Lemma 3.14.

The next proposition formalizes our claim on the orientation of transversals.

Proposition 3.15. Let 𝑃 be an𝑁-representative of a 𝑘-spiral [𝑃]. For all 𝑖 > 𝑁, if [𝑃] is type-𝛼,

then (𝑃𝑖, 𝑃𝑖+𝑘, 𝑃𝑖+2𝑘) is positive; if [𝑃] is type-𝛽, then (𝑃𝑖+2𝑘, 𝑃𝑖+𝑘, 𝑃𝑖) is positive.

Proof. The proof applies Lemma 3.14 with suitable choices of 𝑂,𝐴, 𝐵, 𝐶, 𝐷. See Figure 13

for the configuration of points involved.

We start with 𝑃 of type-𝛼. Consider the following choices of vertices:

𝑂 = 𝑃𝑖+𝑘; 𝐴 = 𝑃𝑖; 𝐵 = 𝑃𝑖+𝑘−1; 𝐶 = 𝑃𝑖+2𝑘; 𝐷 = 𝑃𝑖+𝑘+1.

It follows immediately from the definition of a type-𝛼 𝑁-representative that (𝐵, 𝑂, 𝐶)

and (𝐵, 𝑂, 𝐷) are positive. The other conditions follow from applications of Proposition
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𝑃𝑖+1

𝑃𝑖−1

𝑃𝑖+𝑘−1

𝑃𝑖+𝑘
𝑃𝑖+𝑘+1

𝑃𝑖+2𝑘−1
𝑃𝑖+2𝑘

𝑃𝑖+2𝑘+1

𝑃𝑖

𝑃𝑖−1

𝑃𝑖

𝑃𝑖+1

𝑃𝑖+𝑘

𝑃𝑖+𝑘−1

𝑃𝑖+𝑘+1
𝑃𝑖+2𝑘

𝑃𝑖+2𝑘−1

𝑃𝑖+2𝑘+1

Figure 13: Left: 𝒮𝛼𝑘,𝑛 configuration. Right: 𝒮𝛽𝑘,𝑛 configuration.

2.2. Apply Proposition 2.2 with (𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+𝑘) positive and 𝑃𝑖+𝑘−1 ∈ int(𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+𝑘) to

get positivity of (𝐴, 𝑂, 𝐵). Apply Proposition 2.2 with (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1) positive and 𝑃𝑖+𝑘 ∈

int(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1) to get positivity of (𝐴, 𝑂, 𝐷). Apply Proposition 2.2 with (𝑃𝑖+𝑘, 𝑃𝑖+𝑘+1, 𝑃𝑖+2𝑘+1)

positive and 𝑃𝑖+2𝑘 ∈ int(𝑃𝑖+𝑘, 𝑃𝑖+𝑘+1, 𝑃𝑖+2𝑘+1) to get positivity of (𝐶, 𝑂, 𝐷). Then, the backward

direction of Lemma 3.14 implies (𝑃𝑖, 𝑃𝑖+𝑘, 𝑃𝑖+2𝑘) is positive.

The proof for type-𝛽 is analogous. Consider the following choices of vertices:

𝑂 = 𝑃𝑖+𝑘; 𝐴 = 𝑃𝑖+𝑘−1; 𝐵 = 𝑃𝑖+2𝑘; 𝐶 = 𝑃𝑖+𝑘+1; 𝐷 = 𝑃𝑖.

Positivity of (𝐴, 𝑂, 𝐶) and (𝐵, 𝑂, 𝐶) follows from the definition of a type-𝛽 𝑁-representative.

A similar application of Proposition 2.2 as in the case of type-𝛼 gives positivity of (𝐴, 𝑂, 𝐵),

(𝐴, 𝑂, 𝐷), and (𝐶, 𝑂, 𝐷), which we will omit. Finally, the forward direction of Lemma 3.14

implies (𝑃𝑖+2𝑘, 𝑃𝑖+𝑘, 𝑃𝑖) is positive.

3.3 Invariance of Forward Orbit

In this section, we prove that 𝒮𝛼𝑘,𝑛 and 𝒮𝛽𝑘,𝑛 are 𝑇𝑘-invariant. We will use Equation (1) for

our labeling convention. See Figure 14.

If 𝑃 is 𝑘-nice, then 𝑃′ is always well-defined. In particular, Proposition 3.8 implies 𝑇𝑘 is

well-defined on 𝒮𝛼𝑘,𝑛 and 𝒮𝛽𝑘,𝑛.
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𝑃𝑖+1

𝑃𝑖+𝑘+1

𝑃𝑖+𝑘

𝑃𝑖

𝑃′𝑖

Figure 14: The labeling convention of the map 𝑇𝑘 from Equation (1).

Remark 3.16. 𝑇𝑘 doesn’t necessarily send 𝑘-nice twisted polygons to 𝑘-nice twisted

polygons. Here is an example provided by the anonymous referee: Fix 𝑟 ∈ (0, 1). Consider

the function 𝑃 ∶ ℤ → ℂ ≅ ℝ2 mapping 𝑧 ↦→ 𝑟𝑧 exp(𝑧𝜋𝑖∕𝑘). One can check that 𝑃 is a 𝑘-nice

twisted 𝑛-gon for any 𝑛 ≥ 2 with monodromy that is a scale-rotation, but 𝑇𝑘(𝑃) is the zero

function and hence not 𝑘-nice. What we will show is that in the case of type-𝛼 and type-𝛽

𝑘-spirals, 𝑇𝑘 does preserve 𝑘-niceness. This is a direct consequence of Theorem 1.1 and

Proposition 3.8.

We proceed to prove the 𝑇𝑘-invariance of 𝒮𝛼𝑘,𝑛 and 𝒮𝛽𝑘,𝑛 separately. We start with the

following lemma.

Lemma 3.17. Given four points 𝐴, 𝐵, 𝐶, 𝐷 in ℝ2 in general position with 𝐷 ∈ int(𝐴, 𝐵, 𝐶). Let

𝑂 = 𝐴𝐵 ∩ 𝐶𝐷. There exist 𝑠 ∈ (0, 1) and 𝑡 ∈ (1,∞) such that

𝑂 = (1 − 𝑠)𝐴 + 𝑠𝐵 = (1 − 𝑡)𝐶 + 𝑡𝐷.

Proof. Since 𝐷 ∈ int(𝐴, 𝐵, 𝐶), there exists 𝜆1, 𝜆2, 𝜆3 ∈ (0, 1) such that

𝜆1 + 𝜆2 + 𝜆3 = 1; 𝐷 = 𝜆1𝐴 + 𝜆2𝐵 + 𝜆3𝐶.

Taking 𝑠 = 𝜆2
1−𝜆3

and 𝑡 = 1
1−𝜆3

gives us the desired result.

Proposition 3.18. For all 𝑘 ≥ 2 and 𝑛 ≥ 2, 𝑇𝑘(𝒮𝛼𝑘,𝑛) ⊂ 𝒮𝛼𝑘,𝑛.

Proof. Given an 𝑁-representative 𝑃 of some [𝑃] ∈ 𝒮𝛼𝑘,𝑛, we will show that 𝑃′ = 𝑇𝑘(𝑃) is a

type-𝛼 𝑁-representative of [𝑇𝑘(𝑃)] by proving that for all 𝑖 ≥ 𝑁, (𝑃′𝑖 , 𝑃
′
𝑖+1, 𝑃

′
𝑖+2) is positive,

Arnold Mathematical Journal, Vol.11(4), 2025 145

http://dx.doi.org/10.56994/ARMJ


Zhengyu Zou

(𝑃′𝑖 , 𝑃
′
𝑖+1, 𝑃

′
𝑖+𝑘+1) is positive, and 𝑃′𝑖+𝑘 ∈ int(𝑃′𝑖 , 𝑃

′
𝑖+1, 𝑃

′
𝑖+𝑘+1). See the left side of Figure 15 for

configurations of relevant vertices of 𝑃 and 𝑃′.

Let 𝑖 ≥ 𝑁 be fixed. Since 𝑃 is a type-𝛼 𝑁-representative, 𝑃𝑗+𝑘 ∈ int(𝑃𝑗, 𝑃𝑗+1, 𝑃𝑗+𝑘+1) for

all 𝑗 ≥ 𝑁. Applying Lemma 3.17 with Equation (1) on 𝑃′𝑗 for 𝑗 ∈ {𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 𝑘, 𝑖 + 𝑘 + 1}

gives us

𝑃′𝑖 = (1 − 𝑠1)𝑃𝑖+1 + 𝑠1𝑃𝑖+𝑘+1; 𝑃′𝑖+1 = (1 − 𝑡1)𝑃𝑖+1 + 𝑡1𝑃𝑖+𝑘+1;

𝑃′𝑖+1 = (1 − 𝑠2)𝑃𝑖+2 + 𝑠2𝑃𝑖+𝑘+2; 𝑃′𝑖+2 = (1 − 𝑡2)𝑃𝑖+2 + 𝑡2𝑃𝑖+𝑘+2;

𝑃′𝑖+𝑘 = (1 − 𝑠3)𝑃𝑖+𝑘+1 + 𝑠3𝑃𝑖+2𝑘+1; 𝑃′𝑖+𝑘+1 = (1 − 𝑡3)𝑃𝑖+𝑘+1 + 𝑡3𝑃𝑖+2𝑘+1,

(9)

where 𝑠1, 𝑠2, 𝑠3 ∈ (0, 1) and 𝑡1, 𝑡2, 𝑡3 ∈ (1,∞). In particular, this shows 𝑃′𝑖+𝑘+1 ∉ 𝑃′𝑖𝑃
′
𝑖+1, so the

three points 𝑃′𝑖 , 𝑃
′
𝑖+1, 𝑃

′
𝑖+𝑘+1 are in general position.

To see that (𝑃′𝑖 , 𝑃
′
𝑖+1, 𝑃

′
𝑖+2) is positive, Equation (3) and (9) give us

𝒪(𝑃′𝑖 , 𝑃
′
𝑖+1, 𝑃

′
𝑖+2) = det(𝑃′𝑖+1 − 𝑃′𝑖 , 𝑃

′
𝑖+2 − 𝑃′𝑖+1)

= det((𝑠1 − 𝑡1)𝑃𝑖+1 + (𝑡1 − 𝑠1)𝑃𝑖+𝑘+1, (𝑠2 − 𝑡2)𝑃𝑖+2 + (𝑡2 − 𝑠2)𝑃𝑖+𝑘+2)

= (𝑡1 − 𝑠1)(𝑡2 − 𝑠2) det(𝑃𝑖+𝑘+2 − 𝑃𝑖+2, 𝑃𝑖+1 − 𝑃𝑖+𝑘+1).

(10)

Then, since 𝒪(𝑃𝑖+1, 𝑃𝑖+2, 𝑃𝑖+𝑘+2) > 0 and 𝑃𝑖+𝑘+1 ∈ int(𝑃𝑖+1, 𝑃𝑖+2, 𝑃𝑖+𝑘+2), Proposition 2.2 im-

plies det(𝑃𝑖+𝑘+2 − 𝑃𝑖+2, 𝑃𝑖+1 − 𝑃𝑖+𝑘+1) > 0, so 𝒪(𝑃′𝑖 , 𝑃
′
𝑖+1, 𝑃

′
𝑖+2) > 0.

Next, we show that 𝑃′𝑖+𝑘 ∈ int(𝑃′𝑖 , 𝑃
′
𝑖+1, 𝑃

′
𝑖+𝑘+1). Let 𝑟1 =

1−𝑠1
𝑡1−𝑠1

and 𝑟2 =
𝑠3
𝑡3

. (9) implies

𝑟1, 𝑟2 ∈ (0, 1) and

𝑃′𝑖+𝑘 = (1 − 𝑠3)𝑃𝑖+𝑘+1 + 𝑠3𝑃𝑖+2𝑘+1

=
(1 − 𝑠3)(𝑡1 − 1)

𝑡1 − 𝑠1
𝑃′𝑖 +

(1 − 𝑠3)(1 − 𝑠1)
𝑡1 − 𝑠1

𝑃′𝑖+1 +
𝑠3(𝑡3 − 1)
𝑡3 − 𝑠3

𝑃′𝑖+𝑘 +
𝑠3(1 − 𝑠3)
𝑡3 − 𝑠3

𝑃′𝑖+𝑘+1.

It follows that

𝑃′𝑖+𝑘 =
𝑡3 − 𝑠3
𝑡3(𝑠3 − 1)

(
(1 − 𝑠3)(𝑡1 − 1)

𝑡1 − 𝑠1
𝑃′𝑖 +

(1 − 𝑠3)(1 − 𝑠1)
𝑡1 − 𝑠1

𝑃′𝑖+1 +
𝑠3(1 − 𝑠3)
𝑡3 − 𝑠3

𝑃′𝑖+𝑘+1)

=
(𝑡3 − 𝑠3)(1 − 𝑡1)
𝑡3(𝑡1 − 𝑠1)

𝑃′𝑖 +
(𝑡3 − 𝑠3)(𝑠1 − 1)
𝑡3(𝑡1 − 𝑠1)

𝑃′𝑖+1 +
𝑠3
𝑡3
𝑃′𝑖+𝑘+1

= (1 − 𝑟2)(1 − 𝑟1)𝑃′𝑖 + (1 − 𝑟2)𝑟1𝑃′𝑖+1 + 𝑟2𝑃′𝑖+𝑘+1.
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Observe that the coefficients (1 − 𝑟2)(1 − 𝑟1), (1 − 𝑟2)𝑟1, 𝑟2 are all in (0, 1) and sum up to 1, so

𝑃′𝑖+𝑘 ∈ int(𝑃′𝑖 , 𝑃
′
𝑖+1, 𝑃

′
𝑖+𝑘+1).

Finally, using Equation (3) and (9), we have

det(𝑃′𝑖+1 − 𝑃′𝑖 , 𝑃
′
𝑖+𝑘+1 − 𝑃′𝑖+𝑘) = det((𝑡1 − 𝑠1)(𝑃𝑖+𝑘+1 − 𝑃𝑖+1), (𝑡3 − 𝑠3)(𝑃𝑖+2𝑘+1 − 𝑃𝑖+𝑘+1))

= (𝑡1 − 𝑠1)(𝑡3 − 𝑠3) det(𝑃𝑖+𝑘+1 − 𝑃𝑖+1, 𝑃𝑖+2𝑘+1 − 𝑃𝑖+𝑘+1)

= (𝑡1 − 𝑠1)(𝑡3 − 𝑠3)𝒪(𝑃𝑖+1, 𝑃𝑖+𝑘+1, 𝑃𝑖+2𝑘+1).

(11)

Proposition 3.15 implies 𝒪(𝑃𝑖+1, 𝑃𝑖+𝑘+1, 𝑃𝑖+2𝑘+1) > 0, so det(𝑃′𝑖+1 − 𝑃′𝑖 , 𝑃
′
𝑖+𝑘+1 − 𝑃′𝑖+𝑘) > 0 Since

𝑃′𝑖 , 𝑃
′
𝑖+1, 𝑃

′
𝑖+𝑘+1 are in general position and 𝑃′𝑖+𝑘 ∈ int(𝑃′𝑖 , 𝑃

′
𝑖+1, 𝑃

′
𝑖+𝑘+1), Proposition 2.2 and

Equation (11) imply𝒪(𝑃′𝑖 , 𝑃
′
𝑖+1, 𝑃

′
𝑖+𝑘+1) > 0. We conclude that 𝑃′ is a type-𝛼 𝑁-representative.

𝑃0

𝑃1

𝑃2
𝑃3

𝑃𝑘

𝑃𝑘+1

𝑃𝑘+2

𝑃𝑘+3

𝑃2𝑘

𝑃2𝑘+1

𝑃2𝑘+2

𝑃′0

𝑃′1

𝑃′𝑘 𝑃′2
𝑃′𝑘+1

𝑃0 𝑃1

𝑃2

𝑃3

𝑃𝑘

𝑃𝑘+1
𝑃𝑘+2

𝑃𝑘+3

𝑃2𝑘

𝑃2𝑘+1

𝑃2𝑘+2
𝑃′0

𝑃′1

𝑃′2

𝑃′𝑘

𝑃′𝑘+1

Figure 15: Left: Proposition 3.18 configuration. Right: Proposition 3.19 configuration.

Proposition 3.19. For all 𝑘 ≥ 2 and 𝑛 ≥ 2, 𝑇𝑘(𝒮
𝛽
𝑘,𝑛) ⊂ 𝒮𝛽𝑘,𝑛.

Proof. The proof is analogous to the one for Proposition 3.18. Replacing 𝛼 with 𝛽, we may

work with the setup in the proof of Proposition 3.18. See the right side of Figure 15.

The key difference between type-𝛼 and type-𝛽 is that conditions for type-𝛽 𝑘-spirals

give us the following linear relations when we apply Lemma 3.17 with (1) on 𝑃′𝑗 for
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𝑗 ∈ {𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 𝑘, 𝑖 + 𝑘 + 1}:

𝑃′𝑖 = (1 − 𝑡1)𝑃𝑖+1 + 𝑡1𝑃𝑖+𝑘+1; 𝑃′𝑖+1 = (1 − 𝑠1)𝑃𝑖+1 + 𝑠1𝑃𝑖+𝑘+1;

𝑃′𝑖+1 = (1 − 𝑡2)𝑃𝑖+2 + 𝑡2𝑃𝑖+𝑘+2; 𝑃′𝑖+2 = (1 − 𝑠2)𝑃𝑖+2 + 𝑠2𝑃𝑖+𝑘+2;

𝑃′𝑖+𝑘 = (1 − 𝑡3)𝑃𝑖+𝑘+1 + 𝑡3𝑃𝑖+2𝑘+1; 𝑃′𝑖+𝑘+1 = (1 − 𝑠3)𝑃𝑖+𝑘+1 + 𝑠3𝑃𝑖+2𝑘+1,

(12)

where 𝑠1, 𝑠2, 𝑠3 ∈ (0, 1) and 𝑡1, 𝑡2, 𝑡3 ∈ (1,∞). We can see that 𝑃′𝑖+𝑘 ∉ 𝑃′𝑖𝑃
′
𝑖+1, so the three

points 𝑃′𝑖 , 𝑃
′
𝑖+1, 𝑃

′
𝑖+𝑘 are in general position.

A very similar computation as Equation (10) shows positivity of (𝑃′𝑖 , 𝑃
′
𝑖+1, 𝑃

′
𝑖+2), so we

will omit it. Next, let 𝑟1 =
𝑡1−1
𝑡1−𝑠1

and 𝑟2 =
𝑠3
𝑡3

. Notice that (1 − 𝑟2)(1 − 𝑟1), (1 − 𝑟2)𝑟1, and 𝑟2 are

all in (0, 1) and sum up to 1. Also, Equation (12) implies

𝑃′𝑖+𝑘+1 = (1 − 𝑟2)(1 − 𝑟1)𝑃′𝑖 + (1 − 𝑟2)𝑟1𝑃′𝑖+1 + 𝑟2𝑃′𝑖+𝑘.

This shows 𝑃′𝑖+𝑘+1 ∈ int(𝑃′𝑖 , 𝑃
′
𝑖+1, 𝑃

′
𝑖+𝑘). Finally, positivity of (𝑃′𝑖 .𝑃

′
𝑖+1, 𝑃

′
𝑖+𝑘) follows from a

similar computation as Equation (11), 𝑃′𝑖+𝑘+1 ∈ int(𝑃′𝑖 , 𝑃
′
𝑖+1, 𝑃

′
𝑖+𝑘), the points 𝑃′𝑖 , 𝑃

′
𝑖+1, 𝑃

′
𝑖+𝑘 are

in general position, and Proposition 2.2.

3.4 Invariance of Backward Orbit

In this section, we complete the proof of Theorem 1.1 by showing that 𝒮𝛼𝑘,𝑛 and 𝒮𝛽𝑘,𝑛 are

𝑇−1𝑘 -invariant. One can derive a formula for 𝑇−1𝑘 from Equation (1). Given any 𝑘-nice

twisted 𝑛-gon 𝑃′, 𝑃 = 𝑇−1𝑘 (𝑃′) is given by

𝑃𝑖 = 𝑃′𝑖−𝑘−1𝑃
′
𝑖−𝑘 ∩ 𝑃

′
𝑖−1𝑃

′
𝑖 . (13)

Proposition 3.8 implies 𝑇−1𝑘 is well-defined on 𝒮𝛼𝑘,𝑛 and 𝒮𝛽𝑘,𝑛. In general, 𝑇−1𝑘 needs not

preserve 𝑘-niceness of twisted polygons.

Proposition 3.20. For all 𝑘 ≥ 2 and 𝑛 ≥ 2, 𝑇−1𝑘 (𝑆𝛼𝑘,𝑛) ⊂ 𝑆𝛼𝑘,𝑛.

Proof. Given 𝑃′ a type-𝛼 𝑁-representative, we will show that 𝑃 = 𝑇−1𝑘 (𝑃′) is a type-𝛼

(𝑁 + 𝑘 + 1)-representative by proving that for all 𝑖 ≥ 𝑁 + 𝑘 + 1, (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2) is positive,
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(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1) is positive, the four points 𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘, 𝑃𝑖+𝑘+1 are in general position, and

𝑃𝑖+𝑘 ∈ int(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1). See the left side of Figure 16 for configurations of relevant

vertices of 𝑃′ and 𝑃.

Let 𝑖 ≥ 𝑁 + 𝑘 + 1 be fixed. Since 𝑃′ is a type-𝛼 𝑁-representative, we must have 𝑃′𝑗+𝑘 ∈

int(𝑃′𝑗, 𝑃
′
𝑗+1, 𝑃

′
𝑗+𝑘+1) for all 𝑗 ≥ 𝑁. Applying Lemma 3.17 with Equation (13) on 𝑃𝑗 for

𝑗 ∈ {𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 𝑘, 𝑖 + 𝑘 + 1} gives us

𝑃𝑖 = (1 − 𝑠1)𝑃′𝑖−𝑘 + 𝑠1𝑃′𝑖−𝑘−1; 𝑃𝑖 = (1 − 𝑡1)𝑃′𝑖 + 𝑡1𝑃′𝑖−1;

𝑃𝑖+1 = (1 − 𝑠2)𝑃′𝑖−𝑘+1 + 𝑠2𝑃′𝑖−𝑘; 𝑃𝑖+1 = (1 − 𝑡2)𝑃′𝑖+1 + 𝑡3𝑃′𝑖 ;

𝑃𝑖+2 = (1 − 𝑠3)𝑃′𝑖−𝑘+2 + 𝑠3𝑃′𝑖−𝑘+1; 𝑃𝑖+𝑘 = (1 − 𝑠4)𝑃′𝑖 + 𝑠4𝑃′𝑖−1;

𝑃𝑖+𝑘+1 = (1 − 𝑠5)𝑃′𝑖+1 + 𝑠5𝑃′𝑖 ,

(14)

where 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5 ∈ (0, 1) and 𝑡1, 𝑡2 ∈ (1,∞).

We first show that (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1) is positive. From Equation (14) we have

𝒪(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1) = (𝑡1𝑡2(1 − 𝑠5) − 𝑡1(1 − 𝑡2)𝑠5)𝒪(𝑃′𝑖−1, 𝑃
′
𝑖 , 𝑃

′
𝑖+1).

It follows that 𝒪(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1) > 0, so (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1) is positive.

Next, we show that 𝑃𝑖+𝑘 ∈ int(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1). Let 𝑟1 =
𝑡2−1
𝑡2−𝑠5

and 𝑟2 =
𝑠4
𝑡1

. Equation (14)

implies 𝑟1, 𝑟2 ∈ (0, 1) and

𝑃𝑖+𝑘 = (1 − 𝑟2)(1 − 𝑟1)𝑃𝑖+1 + (1 − 𝑟2)𝑟1𝑃𝑖+𝑘+1 + 𝑟2𝑃𝑖.

Observe that the coefficients (1 − 𝑟2)(1 − 𝑟1), (1 − 𝑟2)𝑟1, and 𝑟2 are all in (0, 1) and sum up to

1, so 𝑃𝑖+𝑘 ∈ int(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘+1).

Finally, we check (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2) is positive. We aim to invoke Lemma 3.14 with the

following choices of vertices:

𝑂 = 𝑃𝑖+1; 𝐴 = 𝑃𝑖; 𝐵 = 𝑃𝑖+𝑘+1; 𝐶 = 𝑃𝑖+2; 𝐷 = 𝑃′𝑖−𝑘+1. (15)

Positivity of (𝐴, 𝑂, 𝐵) is a direct consequence of the above argument. Positivity of (𝐵, 𝑂, 𝐶)

follows from positivity of (𝑃𝑖+1, 𝑃𝑖+2, 𝑃𝑖+𝑘+2), 𝑃𝑖+𝑘+1 ∈ int(𝑃𝑖+1, 𝑃𝑖+2, 𝑃𝑖+𝑘+2), and Proposition
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2.2. Next, observe that

𝒪(𝐴,𝑂,𝐷) = 𝑠1𝑠2𝒪(𝑃′𝑖−𝑘−1, 𝑃
′
𝑖−𝑘, 𝑃

′
𝑖−𝑘+1);

𝒪(𝐶, 𝑂, 𝐷) = (1 − 𝑠3)𝑠2𝒪(𝑃′𝑖−𝑘, 𝑃
′
𝑖−𝑘+1, 𝑃

′
𝑖−𝑘+2);

𝒪(𝐵, 𝑂, 𝐷) = 𝑠2(1 − 𝑠5)𝒪(𝑃′𝑖−𝑘, 𝑃
′
𝑖−𝑘+1, 𝑃

′
𝑖+1) + 𝑠2𝑠5𝒪(𝑃′𝑖−𝑘, 𝑃

′
𝑖−𝑘+1, 𝑃

′
𝑖 );

(16)

Then, positivity of (𝐴, 𝑂, 𝐷) and (𝐶, 𝑂, 𝐷) follows from positivity of (𝑃′𝑖−𝑘−1, 𝑃
′
𝑖−𝑘, 𝑃

′
𝑖−𝑘+1) and

(𝑃′𝑖−𝑘, 𝑃
′
𝑖−𝑘+1, 𝑃

′
𝑖−𝑘+2). To see that (𝐵, 𝑂, 𝐷) is positive, apply Proposition 2.2 on (𝑃′𝑖−𝑘, 𝑃

′
𝑖−𝑘+1, 𝑃

′
𝑖+1)

positive and 𝑃′𝑖 ∈ int(𝑃′𝑖−𝑘, 𝑃
′
𝑖−𝑘+1, 𝑃

′
𝑖+1) to get (𝑃′𝑖−𝑘, 𝑃

′
𝑖−𝑘+1, 𝑃

′
𝑖 ) positive. The backward direc-

tion of Lemma 3.14 then implies (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2) is positive. We conclude that 𝑃 is a type-𝛼

(𝑁 + 𝑘 + 1)-representative.

𝑃′−𝑘−1

𝑃′−𝑘

𝑃′−𝑘+1

𝑃′−𝑘+2

𝑃′−1

𝑃′0
𝑃′1

𝑃′2
𝑃′𝑘−1 𝑃′𝑘

𝑃′𝑘+1

𝑃0

𝑃1 𝑃2

𝑃𝑘

𝑃𝑘+1

𝑃0
𝑃1

𝑃2

𝑃𝑘

𝑃𝑘+1𝑃′−𝑘−1

𝑃′−𝑘

𝑃′−𝑘+1

𝑃′−𝑘+2

𝑃′−1

𝑃′0 𝑃′1

𝑃′2

𝑃′𝑘−1

𝑃′𝑘

𝑃′𝑘+1

Figure 16: Left: Proposition 3.20 configuration. Right: Proposition 3.21 configuration.

Proposition 3.21. For all 𝑘 ≥ 2 and 𝑛 ≥ 2, 𝑇−1𝑘 (𝑆𝛽𝑘,𝑛) ⊂ 𝑆𝛽𝑘,𝑛.

Proof. The proof is similar to that of Lemma 3.20 (See right side of Figure 16). We will point

out some key differences. Replacing 𝛼 with 𝛽, we may work with the setup in the proof of

Proposition 3.20. Applying Lemma 3.17 with (13) on 𝑃𝑗 for 𝑗 ∈ {𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 𝑘, 𝑖 + 𝑘 + 1}
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gives us
𝑃𝑖 = (1 − 𝑠1)𝑃′𝑖−𝑘 + 𝑠1𝑃′𝑖−𝑘−1; 𝑃𝑖 = (1 − 𝑡1)𝑃′𝑖−1 + 𝑡1𝑃′𝑖 ;

𝑃𝑖+1 = (1 − 𝑠2)𝑃′𝑖−𝑘+1 + 𝑠2𝑃′𝑖−𝑘; 𝑃𝑖+1 = (1 − 𝑡2)𝑃′𝑖 + 𝑡3𝑃′𝑖+1;

𝑃𝑖+2 = (1 − 𝑠3)𝑃′𝑖−𝑘+2 + 𝑠3𝑃′𝑖−𝑘+1; 𝑃𝑖+𝑘 = (1 − 𝑠4)𝑃′𝑖−1 + 𝑠4𝑃′𝑖 ;

𝑃𝑖+𝑘+1 = (1 − 𝑠5)𝑃′𝑖 + 𝑠5𝑃′𝑖+1,

(17)

where 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5 ∈ (0, 1) and 𝑡1, 𝑡2 ∈ (1,∞). Positivity of (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘) follows from a

similar computation as in (3.4). Next, let 𝑟1 =
1−𝑠4
𝑡1−𝑠4

and 𝑟2 =
𝑠5
𝑡2

. Equation (17) implies

𝑃𝑖+𝑘+1 = (1 − 𝑟2)(1 − 𝑟1)𝑃𝑖+𝑘 + (1 − 𝑟2)𝑟1𝑃𝑖 + 𝑟2𝑃𝑖+1.

Observe that the coefficients (1 − 𝑟2)(1 − 𝑟1), (1 − 𝑟2)𝑟1, and 𝑟2 are all in (0, 1) and sum up to

1, so 𝑃𝑖+𝑘+1 ∈ int(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘).

Finally, assign 𝑂,𝐴, 𝐵, 𝐶, 𝐷 to be the same vertices as in (15). Positivity of (𝐴, 𝑂, 𝐵),

(𝐵, 𝑂, 𝐶), (𝐶, 𝑂, 𝐷), (𝐴, 𝑂, 𝐷), and (𝐵, 𝑂, 𝐷) follows from a very similar proof as that of Propo-

sition 3.20, with (16) replaced by

𝒪(𝐴,𝑂,𝐷) = 𝑠1𝑠2𝒪(𝑃′𝑖−𝑘−1, 𝑃
′
𝑖−𝑘, 𝑃

′
𝑖−𝑘+1);

𝒪(𝐶, 𝑂, 𝐷) = (1 − 𝑠3)𝑠2𝒪(𝑃′𝑖−𝑘, 𝑃
′
𝑖−𝑘+1, 𝑃

′
𝑖−𝑘+2);

𝒪(𝐵, 𝑂, 𝐷) = 𝑠2(1 − 𝑠5)𝒪(𝑃′𝑖−𝑘, 𝑃
′
𝑖−𝑘+1, 𝑃

′
𝑖 ) + 𝑠2𝑠5𝒪(𝑃′𝑖−𝑘, 𝑃

′
𝑖−𝑘+1, 𝑃

′
𝑖+1).

The backward direction of Proposition 3.14 then implies (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2) is positive.

We conclude this section by stating that Proposition 3.18, 3.19, 3.20, 3.21 together

prove Theorem 1.1.

4 Coordinate Representation of 3-Spirals

4.1 The Tic-Tac-Toe Grids

Recall the intervals 𝐼 = (−∞, 0), 𝐽 = (0, 1), 𝐾 = (1,∞) from §1.3. One can partition ℝ2 into a

3 × 3 grid. See Figure 5. We make the following definition:
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Definition 4.1. For 𝑛 ≥ 2, let 𝑆𝑛(𝐼, 𝐽) be the subset of 𝒫𝑛 that satisfies the following: given

[𝑃] ∈ 𝑆𝑛(𝐼, 𝐽), for all 𝑖 ∈ {0, … , 𝑛 − 1}, (𝑥2𝑖, 𝑥2𝑖+1) ∈ 𝐼 × 𝐽. We similarly define 𝑆𝑛(𝐾, 𝐽), 𝑆𝑛(𝐽, 𝐼),

and 𝑆𝑛(𝐽, 𝐾).

The following symmetries of the four grids follow directly from Definition 4.1.

Proposition 4.2. For 𝑖 ∈ ℤ, define the map 𝜎𝑖 ∶ ℤ → ℤ by 𝜎𝑖(𝑥) = 𝑥 + 𝑖. Define the map

𝜄 ∶ ℤ → ℤ by 𝜄(𝑥) = −𝑥. Given [𝑃] ∈ 𝒫𝑛, the following are true:

• If [𝑃] ∈ 𝑆𝑛(𝐼, 𝐽), then [𝑃◦𝜎𝑖] ∈ 𝑆𝑛(𝐼, 𝐽) for all 𝑖 ∈ ℤ. This also holds for 𝑆𝑛(𝐾, 𝐽), 𝑆𝑛(𝐽, 𝐼),

and 𝑆𝑛(𝐽, 𝐾).

• [𝑃] ∈ 𝑆𝑛(𝐼, 𝐽) if and only if [𝑃◦𝜄] ∈ 𝑆𝑛(𝐽, 𝐼).

• [𝑃] ∈ 𝑆𝑛(𝐾, 𝐽) if and only if [𝑃◦𝜄] ∈ 𝑆𝑛(𝐽, 𝐾).

To understand the geometry implied by the corner invariants, we need to examine

what happens when the corner invariants take value from 0, 1,∞.

Proposition 4.3. For all [𝑃] ∈ 𝒫𝑛 with corner invariants 𝑥𝑗 = 𝑥𝑗(𝑃) and 𝑖 ∈ ℤ, we have the

following correspondence between the position of 𝑃𝑖+2 and the values of 𝑥2𝑖 and 𝑥2𝑖+1:

Configuration Coordinates Configuration Coordinates

𝑃𝑖+2 ∈ 𝑃𝑖+1𝑃𝑖 𝑥2𝑖 = 0 𝑃𝑖+2 ∈ 𝑃𝑖−1𝑃𝑖+1 𝑥2𝑖+1 = 0

𝑃𝑖+2 ∈ 𝑃𝑖+1𝑃𝑖−2 𝑥2𝑖 = 1 𝑃𝑖+2 ∈ 𝑃𝑖−1𝑃𝑖−2 𝑥2𝑖+1 = 1

𝑃𝑖+2 ∈ 𝑃𝑖+1𝑃𝑖−1 𝑥2𝑖 = ∞ 𝑃𝑖+2 ∈ 𝑃𝑖−1𝑃𝑖 𝑥2𝑖+1 = ∞

Proof. Consider the following lines:

𝑙1 = 𝑃𝑖+1𝑃𝑖−2; 𝑙2 = 𝑃𝑖+1𝑃𝑖−1; 𝑙3 = 𝑃𝑖+1𝑃𝑖; 𝑙4 = 𝑃𝑖+1𝑃𝑖+2;

𝑚1 = 𝑃𝑖−1𝑃𝑖+2; 𝑚2 = 𝑃𝑖−1𝑃𝑖+1; 𝑚3 = 𝑃𝑖−1𝑃𝑖; 𝑚4 = 𝑃𝑖−1𝑃𝑖−2.

See Figure 17 for a visualization of the configurations of points and lines. Equation (8)

implies 𝑥2𝑖 = 𝜒(𝑙1, 𝑙2, 𝑙3, 𝑙4) and 𝑥2𝑖+1 = 𝜒(𝑚1, 𝑚2, 𝑚3, 𝑚4). This yields
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𝑚2𝑚3

𝑚4

𝑃𝑖−2 𝑃𝑖−1

𝑃𝑖

𝑃𝑖+1

𝑙1𝑙2

𝑙3

Figure 17: Configurations of points and lines in the proof of Proposition 4.3.

Configuration Lines Coordinates Configuration Lines Coordinates

𝑃𝑖+2 ∈ 𝑃𝑖+1𝑃𝑖 𝑙4 = 𝑙3 𝑥2𝑖 = 0 𝑃𝑖+2 ∈ 𝑃𝑖−1𝑃𝑖+1 𝑚1 = 𝑚2 𝑥2𝑖+1 = 0

𝑃𝑖+2 ∈ 𝑃𝑖+1𝑃𝑖−2 𝑙4 = 𝑙1 𝑥2𝑖 = 1 𝑃𝑖+2 ∈ 𝑃𝑖−1𝑃𝑖−2 𝑚1 = 𝑚4 𝑥2𝑖+1 = 1

𝑃𝑖+2 ∈ 𝑃𝑖+1𝑃𝑖−1 𝑙4 = 𝑙2 𝑥2𝑖 = ∞ 𝑃𝑖+2 ∈ 𝑃𝑖−1𝑃𝑖 𝑚1 = 𝑚3 𝑥2𝑖+1 = ∞

which is precisely the relationship described in the proposition.

Remark 4.4. Proposition 4.3 also gives us a way to determine the position of 𝑃𝑖+2 when

neither 𝑥2𝑖 nor 𝑥2𝑖+1 takes value in 0, 1,∞. Suppose the four points 𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1 are in

general position. For 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3} distinct, we define𝑈𝑖,𝑗 to be the connected component

of ℝℙ2 − (𝑙𝑖 ∪ 𝑙𝑗) that does not intersect 𝑙𝑘. For 𝑖, 𝑗, 𝑘 ∈ {2, 3, 4} distinct, we define 𝑉𝑖,𝑗 to be

the connected component of ℝℙ2 − (𝑚𝑖 ∪ 𝑚𝑗) that does not intersect 𝑚𝑘. See Figure 18 for

a visualization of the 𝑈𝑖,𝑗’s and 𝑉𝑖,𝑗’s using the point configurations given in Figure 17. By

Proposition 4.3 and continuity of 𝜒, we have the following:

Configuration Coordinates Configuration Coordinates

𝑃𝑖+2 ∈ 𝑈2,3 𝑥2𝑖 = 𝐼 𝑃𝑖+2 ∈ 𝑉2,3 𝑥2𝑖+1 = 𝐼

𝑃𝑖+2 ∈ 𝑈1,3 𝑥2𝑖 = 𝐽 𝑃𝑖+2 ∈ 𝑉2,4 𝑥2𝑖+1 = 𝐽

𝑃𝑖+2 ∈ 𝑈1,2 𝑥2𝑖 = 𝐾 𝑃𝑖+2 ∈ 𝑉3,4 𝑥2𝑖+1 = 𝐾
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Corollary 4.5. Given [𝑃] ∈ 𝒫𝑛 with corner invariants 𝑥𝑗 = 𝑥𝑗(𝑃), if 𝑥𝑗 ∉ {0, 1,∞} for all 𝑗,

then 𝑃 is 3-nice. Moreover, every four consecutive points of 𝑃 are in general position.

Proof. Using Proposition 4.3 we may check that

Collinearity Coordinates Collinearity Coordinates

𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖+1 𝑥2𝑖−1 = ∞ 𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+2 𝑥2𝑖+1 = ∞

𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖+2 𝑥2𝑖+1 = 1 𝑃𝑖−1, 𝑃𝑖+1, 𝑃𝑖+2 𝑥2𝑖+1 = 0

𝑃𝑖−2, 𝑃𝑖+1, 𝑃𝑖+2 𝑥2𝑖 = 1 𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2 𝑥2𝑖 = 0

𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1 𝑥2𝑖−2 = 0

All seven cases contradict the assumption in the corollary. Therefore, the four points

𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖+1, 𝑃𝑖+2 are in general position, and the four consecutive points 𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1,

𝑃𝑖+2 are in general position for all 𝑖 ∈ ℤ. This shows 𝑃 is 3-nice, and every four consecutive

points of 𝑃 are in general position.

𝑙1𝑙2

𝑙3

𝑚3
𝑚2

𝑚4

𝑈1,3

𝑈2,3

𝑈1,2
𝑉3,4

𝑉2,3

𝑉2,4

Figure 18: The connected components𝑈𝑖,𝑗’s and𝑉𝑖,𝑗’s in Remark 4.4. The corner invariants

value in 𝐼 if 𝑃𝑖+2 lies in the black-shaded region, 𝐽 if 𝑃𝑖+2 lies in the red-shaded region, and

𝐾 if 𝑃𝑖+2 lies in the cyan-shaded region.

Our goal of this section is to prove the following correspondence theorem:
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Theorem 4.6. For all 𝑛 ≥ 2, 𝒮𝛼3,𝑛 = 𝑆𝑛(𝐽, 𝐼), 𝒮
𝛽
3,𝑛 = 𝑆𝑛(𝐾, 𝐽).

This theorem immediately produces the following important corollary.

Corollary 4.7. For all 𝑛 ≥ 2, the four cells 𝑆𝑛(𝐼, 𝐽), 𝑆𝑛(𝐾, 𝐽), 𝑆𝑛(𝐽, 𝐼), 𝑆𝑛(𝐽, 𝐾) are both forward

and backward invariant under 𝑇3.

Proof. The case 𝑆𝑛(𝐽, 𝐼) and 𝑆𝑛(𝐾, 𝐽) follows immediately from Theorem 1.1 and 4.6. We

will prove the case 𝑆𝑛(𝐼, 𝐽). The case 𝑆𝑛(𝐽, 𝐾) is completely analogous, so we will omit.

Fix [𝑃] ∈ 𝑆𝑛(𝐼, 𝐽). Recall the maps 𝜎𝑖 and 𝜄 from Proposition 4.2. Equation (1) implies

𝑇3(𝑃◦𝜄) = 𝑇3(𝑃)◦𝜄◦𝜎4. Then, Proposition 4.2 implies [𝑃◦𝜄] ∈ 𝑆𝑛(𝐽, 𝐼), so [𝑇3(𝑃◦𝜄)] ∈ 𝑆𝑛(𝐽, 𝐼).

Finally, observe that

𝑇3(𝑃) = (𝑇3(𝑃)◦𝜄◦𝜎4)◦(𝜎−4◦𝜄) = 𝑇3(𝑃◦𝜄)◦(𝜎−4◦𝜄).

It follows that [𝑇3(𝑃)] ∈ 𝑆𝑛(𝐼, 𝐽). We omit the proof of [𝑇−13 (𝑃)] ∈ 𝑆𝑛(𝐼, 𝐽).

4.2 The Correspondence of 𝒮𝛼3,𝑛 and 𝑆𝑛(𝐽, 𝐼)

Here we show that 𝒮𝛼3,𝑛 is equivalent to 𝑆𝑛(𝐽, 𝐼). We will first show that the corner invariants

of a 0-representative 𝑃 of some [𝑃] ∈ 𝒮𝛼3,𝑛 satisfies 𝑆𝑛(𝐽, 𝐼). Then, we will show that we can

find type-𝛼 𝑁-representatives for all 𝑁 ∈ ℤ given any [𝑃] ∈ 𝑆𝑛(𝐽, 𝐼).

Lemma 4.8. If 𝑃 is an 𝑁-representative of [𝑃] ∈ 𝒮𝛼3,𝑛, then 𝑃𝑖+2 ∈ int(𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1) for all

𝑖 > 𝑁 + 1.

Proof. Since (𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1) is positive, we may normalize withAff+2 (ℝ) so that 𝑃𝑖−1 = (−1, 0),

𝑃𝑖 = (0, 0), and 𝑃𝑖+1 = (0, 1). Let 𝑃𝑖+2 = (𝑥, 𝑦). It suffices to show that 𝑥 < 0, 𝑦 > 0, and

𝑦 − 𝑥 < 1. We get 𝑥 < 0 from positivity of (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2), and we get 𝑦 > 0 from positivity

of (𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+2). Finally, since (𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖+2) is positive and 𝑃𝑖+1 ∈ int(𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖+2),

Proposition 2.2 implies (𝑃𝑖+1, 𝑃𝑖−1, 𝑃𝑖+2) is positive, which gives us 𝑦 − 𝑥 < 1 as desired.

Proposition 4.9. For all 𝑛 ≥ 2, 𝒮𝛼3,𝑛 ⊂ 𝑆𝑛(𝐽, 𝐼).
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Proof. Fix 𝑖 ∈ ℤ. Let 𝑃 be an (𝑖 − 3)-representative of [𝑃] ∈ 𝒮𝛼3,𝑛 with corner invariants

𝑥𝑗 = 𝑥𝑗(𝑃). Normalize with Aff+2 (ℝ) so that 𝑃𝑖−1 = (−1, 0), 𝑃𝑖 = (0, 0), and 𝑃𝑖+1 = (0, 1). Let

𝑠𝑎,𝑏 denote the slope of the line 𝑃𝑖+𝑎𝑃𝑖+𝑏. See Figure 19 for the configuration of points.

We want to show that (𝑥2𝑖, 𝑥2𝑖+1) ∈ 𝐼 × 𝐽. By Lemma 4.8, 𝑃𝑖+1 ∈ int(𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖). This

implies 𝑠1,−2 > 𝑠−1,−2 > 1. On the other hand, since 𝑃𝑖+1 ∈ int(𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖+2), we have

𝑠1,2 > 𝑠1,−2 > 1, and 𝑠−1,2 ∈ (0, 1). This gives us

𝑥2𝑖 =
(𝑠1,−2 − 𝑠1,−1)(𝑠1,0 − 𝑠1,2)
(𝑠1,−2 − 𝑠1,0)(𝑠1,−1 − 𝑠1,2)

=
𝑠1,−2 − 1
𝑠1,2 − 1 ∈ 𝐽 and

𝑥2𝑖+1 =
(𝑠−1,2 − 𝑠−1,1)(𝑠−1,0 − 𝑠−1,−2)
(𝑠−1,2 − 𝑠−1,0)(𝑠−1,1 − 𝑠−1,−2)

=
𝑠−1,−2(𝑠−1,2 − 1)
𝑠−1,2(𝑠−1,−2 − 1)

∈ 𝐼.

This concludes the proof.

𝑃𝑖−2

𝑃𝑖−1 𝑃𝑖

𝑃𝑖+1

𝑃𝑖+2

Figure 19: Configuration of Proposition 4.9 and 4.10.

Proposition 4.10. For all 𝑛 ≥ 2, 𝒮𝛼3,𝑛 = 𝑆𝑛(𝐼, 𝐽).

Proof. Proposition 4.9 implies we only need to show 𝒮𝛼3,𝑛 ⊃ 𝑆𝑛(𝐼, 𝐽). Given [𝑃] ∈ 𝑆𝑛(𝐼, 𝐽), let

𝑃 be a representative that satisfies 𝑃−1 = (1, 4), 𝑃0 = (−1, 0), 𝑃1 = (0, 0), 𝑃2 = (0, 1). Say that

𝑃 satisfies condition (∗)𝑖 if the three triangles (𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1), (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2), (𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+2) are

all positive, 𝑃𝑖+2 ∈ int(𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1), and 𝑃𝑖+2 ∈ int(𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖+1).

We show that for all 𝑖 > 0, if 𝑃 satisfies (∗)𝑖−1, then 𝑃 satisfies (∗)𝑖. Since (𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1)

is positive, we can normalize with Aff+2 (ℝ) so that 𝑃𝑖−1 = (−1, 0), 𝑃𝑖 = (0, 0), and 𝑃𝑖+1 =
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(0, 1). Let 𝑠𝑎,𝑏 denote the slope of 𝑃𝑖+𝑎𝑃𝑖+𝑏. Since 𝑃𝑖+1 ∈ int(𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖), we know that

𝑠1,−2 > 𝑠−1,−2 > 1. Then, 𝑥2𝑖 ∈ 𝐽 implies 0 < 𝑠1,−2−1
𝑠1,2−1

< 1. This gives us 𝑠1,2 > 𝑠1,−2 > 1. On

the other hand, 𝑥2𝑖+1 ∈ 𝐼 implies 𝑠−1,−2(𝑠−1,2−1)
𝑠−1,2(𝑠−1,−2−1)

< 0. Since 𝑠−1,−2 > 1, this is equivalent to

1 − 1
𝑠−1,2

< 0, which implies 𝑠−1,2 ∈ (0, 1). Thus, the two lines 𝑃𝑖−1𝑃𝑖+2 and 𝑃𝑖+1𝑃𝑖+2 must

meet in the shaded triangle in Figure 19, which implies (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2), (𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+2) are

positive, 𝑃𝑖+2 ∈ int(𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1), and 𝑃𝑖+2 ∈ int(𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖+1), so 𝑃 satisfies (∗)𝑖. Finally,

since 𝑃 clearly satisfies (∗)0, by induction 𝑃 satisfies (∗)𝑖 for all 𝑖 ≥ 0, so 𝑃 is a type-𝛼

0-representative of a 3-spiral. We conclude that [𝑃] ∈ 𝒮𝛼3,𝑛.

4.3 The Correspondence of 𝒮𝛽3,𝑛 and 𝑆𝑛(𝐾, 𝐽)

Here we show that 𝒮𝛽3,𝑛 is equivalent to 𝑆𝑛(𝐾, 𝐽). The ideas behind the proofs are essentially

the same as the ones in §4.2. We will focus on explaining how to modify the details of the

proofs in §4.2 for type-𝛽 3-spirals and 𝑆𝑛(𝐾, 𝐽).

Lemma 4.11. If 𝑃 is an 𝑁-representative of [𝑃] ∈ 𝒮𝛽3,𝑛, then the quadrilateral joined by

vertices (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2, 𝑃𝑖+3) is convex for all 𝑖 > 𝑁.

Proof. Normalize with Aff+2 (ℝ) so that 𝑃𝑖 = (−1, 0), 𝑃𝑖+1 = (0, 0), 𝑃𝑖+2 = (0, 1), and 𝑃𝑖+3 =

(𝑥, 𝑦). Positivity of (𝑃𝑖+1, 𝑃𝑖+2, 𝑃𝑖+3) and (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+3) implies 𝑥 < 0 and 𝑦 > 0. Positivity of

(𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+2), 𝑃𝑖+3 ∈ int(𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+2), and Proposition 2.2 shows 𝑦 − 𝑥 > 1.

Proposition 4.12. For all 𝑛 ≥ 2, 𝒮𝛽3,𝑛 ⊂ 𝑆𝑛(𝐾, 𝐽).

Proof. Let 𝑃 be a (−3)-representative of [𝑃] ∈ 𝒮𝛽3,𝑛 with corner invariants 𝑥𝑗 = 𝑥𝑗(𝑃).

Lemma 4.11 implies the quadrilateral (𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1) is convex. Next, since 𝑃 is a type-

𝛽 (−3)-representative, 𝑃𝑖 ∈ int(𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖+1) for all 𝑖 ≥ 0 (See Figure 20). Referring back to

Remark 4.4, convexity of (𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1) implies 𝑃𝑖𝑃𝑖+1 doesn’t go through 𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖+1,

so (𝑥2𝑖, 𝑥2𝑖+1) ∈ 𝐾 × 𝐽 whenever 𝑃𝑖+2 ∈ int(𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖+1).

Lemma 4.13. Given a 3-nice sequence 𝑃 ∶ ℤ → ℝℙ2 and an integer 𝑖 ∈ ℤ, let 𝑥2𝑖 = 𝑥2𝑖(𝑃)

and 𝑥2𝑖+1 = 𝑥2𝑖+1(𝑃) be the corner invariants of 𝑃. If the following conditions are true:
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𝑃𝑖−2

𝑃𝑖−1

𝑃𝑖𝑃𝑖+1

𝑃𝑖+2

Figure 20: Configuration of Proposition 4.12 and Lemma 4.13.

• (𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖) and (𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1) are both positive;

• The quadrilateral (𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1) is convex;

• (𝑥2𝑖, 𝑥2𝑖+1) ∈ 𝐾 × 𝐽.

Then, the following hold:

• 𝑃𝑖+2 ∈ int(𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖+1);

• The quadrilateral (𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2) is convex;

• (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2) and (𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+2) are both positive.

Proof. Recall that from the proof of Proposition 4.12, we claimed that if the quadrilat-

eral (𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1) is convex, then the line 𝑃𝑖𝑃𝑖+1 doesn’t go through (𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖+1).

Since (𝑥2𝑖, 𝑥2𝑖+1) ∈ 𝐾 × 𝐽, Remark 4.4 implies 𝑃𝑖+2 ∈ int(𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖+1), in which case all

conclusions of this lemma will hold. See Figure 20 for a visualization of the five points.

Proposition 4.14. 𝒮𝛽3,𝑛 = 𝑆𝑛(𝐾, 𝐽).

Proof. Proposition 4.12 gives us 𝒮𝛽3,𝑛 ⊂ 𝑆𝑛(𝐾, 𝐽), so we show the other containment. Given

[𝑃] ∈ 𝑆𝑛(𝐾, 𝐽), we can find a representative 𝑃 that satisfies 𝑃𝑁 = (0, 0), 𝑃𝑁+1 = (1, 0),

𝑃𝑁+2 = (1, 1), 𝑃𝑁+3 = (0, 1). Corollary 4.5 shows that 𝑃 is 3-nice. To see that (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2),

(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+3) are positive, and 𝑃𝑖+4 ∈ int(𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+3), we may inductively apply Lemma

4.13. This implies [𝑃] ∈ 𝒮𝛽3,𝑛.
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5 A Birational Formula for 𝑇3

Given two spaces 𝑋 and 𝑌, a rational map 𝑓 ∶ 𝑋 ⤏ 𝑌 is an equivalence class of maps

𝑓𝑈 ∶ 𝑈 → 𝑌 where 𝑈 is a dense open in 𝑋, and the equivalence relation is given by

𝑓𝑈 ∼ 𝑓𝑉 if they restrict to the same map on 𝑈 ∩ 𝑉. A map 𝑓 ∶ 𝑋 ⤏ 𝑌 is birational if there

exists a rational map 𝑔 ∶ 𝑌 ⤏ 𝑋 such that 𝑔◦𝑓 restricts to the identity on a dense open of

𝑋 and 𝑓◦𝑔 restricts to an identity on a dense open of 𝑌.

In this section, we show that 𝑇3 ∶ 𝒫𝑛 ⤏ 𝒫𝑛 is a birational map by finding an explicit

formula using the corner invariants.

5.1 The Formula

Let 𝑃 be a twisted 𝑛-gon, and 𝑃′ = 𝑇3(𝑃). In this section, we use a different labeling

convention:

𝑃′𝑖 = 𝑃𝑖−2𝑃𝑖+1 ∩ 𝑃𝑖−1𝑃𝑖+2. (18)

We let 𝑥𝑗 = 𝑥𝑗(𝑃) and 𝑥′𝑗 = 𝑥𝑗(𝑃′) denote the corner invariants of 𝑃 and 𝑃′ respectively.

Our goal is to show that 𝑇3 is a birational map over the corner invariants. I discovered it

using computer algebra and the reconstruction formula in [Sch08, Equation (19)].

Proposition 5.1. Given [𝑃] ∈ 𝒫3,𝑛, the following formula holds (indices taken modulo 2𝑛):

⎧
⎪

⎨
⎪
⎩

𝑥′2𝑖 = 𝑥2𝑖−2 ⋅
(𝑥2𝑖−4 + 𝑥2𝑖−1 − 1)

𝑥2𝑖−2𝑥2𝑖−1 − (1 − 𝑥2𝑖+1)(1 − 𝑥2𝑖−4)
;

𝑥′2𝑖+1 = 𝑥2𝑖+3 ⋅
(𝑥2𝑖+2 + 𝑥2𝑖+5 − 1)

𝑥2𝑖+2𝑥2𝑖+3 − (1 − 𝑥2𝑖+5)(1 − 𝑥2𝑖)
.

(19)

One can verify Equation (19) with the following procedure: Given the corner in-

variants of [𝑃], use the reconstruction formula from [Sch08, Equation (19)] to obtain a

representative 𝑃. Apply 𝑇3 on 𝑃 as in Equation (18) to get 𝑃′ = 𝑇3(𝑃). Then, compute

the corner invariants of 𝑃′. We present a geometric proof of Equation (19) using cross-

ratio identities. We start with the following lemma, which is a classical observation in

projective geometry called “quadrangular sets.”
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Lemma 5.2. Let 𝑄1, 𝑄2, 𝑄3, 𝑄4 be four points in general position, and let 𝜔 be a line that

contains none of the four points. For all 𝑖 ≠ 𝑗, let 𝑙𝑖𝑗 = 𝑄𝑖𝑄𝑗 and 𝑆𝑖𝑗 = 𝜔 ∩ 𝑙𝑖𝑗 Then,

𝜒(𝑆12, 𝑆13, 𝑆14, 𝑆24) = 𝜒(𝑆23, 𝑆13, 𝑆34, 𝑆24).

𝑄1

𝑄4

𝑄3

𝑄2

𝑙13

𝑙14𝑙23
𝑙34

𝑙24

𝑙12

𝑆12 𝑆13𝑆34 𝑆23 𝑆14 𝑆24
𝜔

𝑂

Figure 21: Point configurations of Lemma 5.2

Proof. Let 𝑂 = 𝑙13 ∩ 𝑙24. See Figure 21 for an example of the point configurations. Applying

Equation (6) on (𝑙12, 𝑙13, 𝑙14, 𝑄1𝐷) with respect to 𝜔 and 𝑄2𝑄4 gives us

𝜒(𝑆12, 𝑆13, 𝑆14, 𝑆24)
𝜔
= 𝜒(𝑙12, 𝑙13, 𝑙14, 𝑄1𝐷)

𝑙24= 𝜒(𝑄2, 𝑂, 𝑄4, 𝑆24).

Next, applying Equation (6) twice on (𝑙23, 𝑙13, 𝑙34, 𝑄3𝐷) with respect to 𝑙24 and 𝜔 gives us

𝜒(𝑄2, 𝑂, 𝑄4, 𝑆24)
𝑙24= 𝜒(𝑙23, 𝑙13, 𝑙34, 𝑄3𝐷)

𝜔
= 𝜒(𝑆23, 𝑆13, 𝑆34, 𝑆24).

Combining the above two equations completes the proof.

Proof of Proposition 5.1. From the symmetry of Equation (19), it suffices to prove the

formula for 𝑥′0. That is,

𝑥′0 =
𝑥−2(𝑥−4 + 𝑥−1 − 1)

𝑥−2𝑥−1 − (1 − 𝑥−4)(1 − 𝑥1)
. (20)
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𝐴

𝑃−2

𝐸𝐺 𝐵

𝐶
𝐻

𝐹 𝐷

𝑃′0

𝑃′−1
𝑃′−2

𝑂

𝑃1

𝑃−1

𝑃2𝑃3

𝑃4

𝑃−4

𝑙−3,0

Figure 22: Visualization of Points Assigned in Equation (21). The thick black line segments

are edges connecting vertices of 𝑃, and the thick red line segments are edges connecting

vertices of 𝑃′.

Let 𝑙𝑖,𝑗 = 𝑃𝑖𝑃𝑗 and 𝑂 = 𝑙−3,−2 ∩ 𝑙−1,0. We label points as follows:

𝐴 = 𝑃′−2;

𝐵 = 𝑃′−1;

𝐶 = 𝑙−3,0 ∩ 𝑙−2,1;

𝐷 = 𝑃0;

𝐸 = 𝑃−3;

𝐹 = 𝑙−3,0 ∩ 𝑙−1,1;

𝐺 = 𝑙−3,0 ∩ 𝑙−2,−1;

𝐻 = 𝑙−3,0 ∩ 𝑂𝑃1.
(21)

Since [𝑃] ∈ 𝒫3,𝑛, every five consecutive points of [𝑃] are in general position. This

ensures that point 𝑂 and the points in Equation (21) are all distinct. See Figure 22 for a

visualization of the assignment of labels to these points.

It follows from Equation (7) that 𝑥′0 = 𝜒(𝐴, 𝐵, 𝐶, 𝐷). Using Equation (8), we have

𝑥−4 = 𝜒(𝑙−1,−4, 𝑙−1,−3, 𝑙−1,−2, 𝑙−1,0)
𝑙−3,0= 𝜒(𝐴, 𝐸, 𝐺, 𝐷);

𝑥−2 = 𝜒(𝑙0,−3, 𝑙0,−2, 𝑙0,−1, 𝑙0,1)
𝑙−3,0= 𝜒(𝐸, 𝐵,𝐻,𝐷);

𝑥−1 = 𝜒(𝑙−2,1, 𝑙−2,0, 𝑙−2,−1, 𝑙−2,−3)
𝑙−3,0= 𝜒(𝐵, 𝐷, 𝐺, 𝐸);

𝑥1 = 𝜒(𝑙−1,2, 𝑙−1,1, 𝑙−1,0, 𝑙−1,−2)
𝑙−3,0= 𝜒(𝐶, 𝐹, 𝐷, 𝐺).

(22)

We may further invoke Lemma 5.2 with 𝑄1 = 𝑃−2, 𝑄2 = 𝑂, 𝑄3 = 𝑃1, 𝑄4 = 𝑃−1, and
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𝜔 = 𝑙−3,0. This gives us

𝑥−2 = 𝜒(𝐸, 𝐵,𝐻,𝐷) = 𝜒(𝐺, 𝐵, 𝐹, 𝐷). (23)

The rest of the proof is just algebraic verification. Normalize with a projective trans-

formation so that 𝑙−3,0 is the 𝑥-axis of 𝔸2. Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ be coordinates of 𝐴, 𝐵, 𝐶,

𝐷, 𝐸, 𝐹, 𝐺, 𝐻 respectively. Plugging (22) and (23) into the numerator of (20) gives us

𝑥−2(𝑥−4 + 𝑥−1 − 1) = 𝜒(𝐺, 𝐵, 𝐹, 𝐷) (𝜒(𝐴, 𝐸, 𝐺, 𝐷) + 𝜒(𝐵, 𝐷, 𝐺, 𝐸) − 1)

=
(𝑔 − 𝑏)(𝑓 − 𝑑)
(𝑔 − 𝑓)(𝑏 − 𝑑)

(
(𝑎 − 𝑒)(𝑔 − 𝑑)
(𝑎 − 𝑔)(𝑒 − 𝑑)

+
(𝑏 − 𝑒)(𝑔 − 𝑑)
(𝑏 − 𝑔)(𝑒 − 𝑑)

)

=
(𝑎 − 𝑏)(𝑔 − 𝑑)(𝑒 − 𝑔)(𝑑 − 𝑓)
(𝑎 − 𝑔)(𝑏 − 𝑑)(𝑒 − 𝑑)(𝑔 − 𝑓)

.

The denominator can be computed similarly. We skip the computation and list the results:

𝑥−2𝑥−1 − (1 − 𝑥−4)(1 − 𝑥1) =
(𝑎 − 𝑐)(𝑔 − 𝑑)(𝑑 − 𝑓)(𝑒 − 𝑔)
(𝑎 − 𝑔)(𝑐 − 𝑑)(𝑑 − 𝑒)(𝑓 − 𝑔)

.

Combining the above two equations gives us
𝑥−2(𝑥−4 + 𝑥−1 − 1)

𝑥−2𝑥−1 − (1 − 𝑥−4)(1 − 𝑥1)
=
(𝑎 − 𝑏)(𝑐 − 𝑑)
(𝑎 − 𝑐)(𝑏 − 𝑑)

= 𝜒(𝐴, 𝐵, 𝐶, 𝐷) = 𝑥′0,

which is precisely Equation (20).

Next, we provide a formula for the inverse of 𝑇3.

Proposition 5.3. The map 𝑇3 ∶ 𝒫𝑛 ⤏ 𝒫𝑛 is birational. Its inverse is given by

⎧
⎪

⎨
⎪
⎩

𝑥2𝑖 = 𝑥′2𝑖+2 ⋅
(𝑥′2𝑖+4 + 𝑥′2𝑖+1 − 1)

𝑥′2𝑖+1𝑥
′
2𝑖+2 − (1 − 𝑥′2𝑖−1)(1 − 𝑥′2𝑖+4)

;

𝑥2𝑖+1 = 𝑥′2𝑖−1 ⋅
(𝑥′2𝑖−3 + 𝑥′2𝑖 − 1)

𝑥′2𝑖𝑥
′
2𝑖−1 − (1 − 𝑥′2𝑖+2)(1 − 𝑥′2𝑖−3)

.
(24)

We will give an algebraic proof. Consider two families of rational maps {𝜇(𝑠,𝑡) ∶

ℝ2𝑛 ⤏ ℝ2𝑛}(𝑠,𝑡)∈ℤ2 and {𝜈(𝑠,𝑡) ∶ ℝ2𝑛 ⤏ ℝ2𝑛}(𝑠,𝑡)∈ℤ2 . Write (𝑎0, … , 𝑎2𝑛−1) = 𝜇(𝑠,𝑡)(𝑥0, … , 𝑥2𝑛−1)

and (𝑏0, … , 𝑏2𝑛−1) = 𝜈(𝑠,𝑡)(𝑥0, … , 𝑥2𝑛−1). Then, we set

⎧
⎪

⎨
⎪
⎩

𝑎2𝑖 =
1 − 𝑥2𝑖+𝑠
𝑥2𝑖+𝑠+𝑡

𝑎2𝑖+1 =
1 − 𝑥2𝑖+1−𝑠
𝑥2𝑖+1−𝑠−𝑡

;

⎧
⎪

⎨
⎪
⎩

𝑏2𝑖 =
1 − 𝑥2𝑖+𝑠

1 − 𝑥2𝑖+𝑠𝑥2𝑖+𝑠+𝑡

𝑏2𝑖+1 =
1 − 𝑥2𝑖+1−𝑠

1 − 𝑥2𝑖+1−𝑠𝑥2𝑖+1−𝑠−𝑡
.

(25)

Arnold Mathematical Journal, Vol.11(4), 2025 162

http://dx.doi.org/10.56994/ARMJ


Tic-tac-toe partition

Lemma 5.4. Let 𝜑 ∶ ℤ2 → ℤ2 be the map given by

𝜑(𝑠, 𝑡) = ((−1)𝑠+1𝑠, (−1)𝑠(2𝑠 + 𝑡)). (26)

Then, 𝜑 is an involution. Moreover, when 𝑡 is odd, 𝜇−1(𝑠,𝑡) = 𝜈𝜑(𝑠,𝑡) and 𝜈−1(𝑠,𝑡) = 𝜇𝜑(𝑠,𝑡).

Proof. To see 𝜑 is an involution, a direct computation shows that

𝜑2(𝑠, 𝑡) = 𝜑((−1)𝑠+1𝑠, (−1)𝑠(2𝑠 + 𝑡))

=
(
(−1)(−1)𝑠+1𝑠+𝑠+2𝑠, (−1)(−1)𝑠+1𝑠 (2(−1)𝑠+1𝑠 + (−1)𝑠(2𝑠 + 𝑡))

)
= (𝑠, 𝑡).

Next, we show that when 𝑡 is odd, 𝜇−1(𝑠,𝑡) = 𝜈𝜑(𝑠,𝑡). We will show by direct computation that

𝜇(𝑠,𝑡)◦𝜈𝜑(𝑠,𝑡) is the identity on the 2𝑖-th coordinate when 𝑠 is even. First, when 𝑠 is even,

𝜑(𝑠, 𝑡) = (−𝑠, 2𝑠 + 𝑡). The 2𝑖-th coordinate of 𝜇(𝑠,𝑡)◦𝜈𝜑(𝑠,𝑡) is given by

(1 −
1 − 𝑥2𝑖+𝑠+(−𝑠)

1 − 𝑥2𝑖+𝑠+(−𝑠)𝑥2𝑖+𝑠+(−𝑠)+(2𝑠+𝑡)
) ⋅ (

1 − 𝑥2𝑖+𝑠+𝑡−(−𝑠)
1 − 𝑥2𝑖+𝑠+𝑡−(−𝑠)𝑥2𝑖+𝑠+𝑡−(−𝑠)−(2𝑠+𝑡)

)
−1

= (1 −
1 − 𝑥2𝑖

1 − 𝑥2𝑖𝑥2𝑖+2𝑠+𝑡
) (

1 − 𝑥2𝑖+2𝑠+𝑡𝑥2𝑖
1 − 𝑥2𝑖+2𝑠+𝑡

) = 𝑥2𝑖.

This is precisely what we want. One can similarly carry out the computation of 𝜈𝜑(𝑠,𝑡)◦𝜇𝑠,𝑡
for the (2𝑖 + 1)-th coordinate, and 𝑠 odd. We will omit these heavy computations and

conclude that 𝜇−1(𝑠,𝑡) = 𝜈𝜑(𝑠,𝑡). Finally, to see 𝜈−1(𝑠,𝑡) = 𝜇𝜑(𝑠,𝑡), observe that (−1)𝑠(2𝑠 + 𝑡) is odd iff 𝑡

is odd. Therefore, 𝜈𝑠,𝑡◦𝜇𝜑(𝑠,𝑡) = 𝜈𝜑2(𝑠,𝑡)◦𝜇𝜑(𝑠,𝑡) is the identity map by the previous argument.

The same argument shows that 𝜇𝜑(𝑠,𝑡)◦𝜈(𝑠,𝑡) is the identity.

The following corollary is immediate. We omit the proof.

Corollary 5.5. For all (𝑠, 𝑡) ∈ ℤ2 such that 𝑡 is odd, 𝜇(𝑠,𝑡) and 𝜈(𝑠,𝑡) are birational maps.

Proof of Proposition 5.3. We first claim that 𝑇3 = 𝜈(−1,−1)◦𝜇(3,−3). We will provide the com-

putation for even coordinates. Let (𝑎0, … , 𝑎2𝑛−1) denote the image of (𝑥0, … , 𝑥2𝑛−1) under

𝜇(3,−3), and let (𝑏0, … , 𝑏2𝑛−1) denote the image of (𝑎0, … , 𝑎2𝑛−1) under 𝜈(−1,−1). Then, we have

𝑏2𝑖 =
1 − 𝑎2𝑖−1

1 − 𝑎2𝑖−1𝑎2𝑖−2
= (1 −

1 − 𝑥2𝑖−4
𝑥2𝑖−1

) ⋅ (1 −
(1 − 𝑥2𝑖−4)(1 − 𝑥2𝑖+1)

𝑥2𝑖−1𝑥2𝑖−2
)
−1

=
𝑥2𝑖−2(𝑥2𝑖−1 + 𝑥2𝑖−4 + 1)

𝑥2𝑖−1𝑥2𝑖−2 − (1 − 𝑥2𝑖−4)(1 − 𝑥2𝑖+1)
.
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Observe that this is precisely the first line of (19). The computation for 𝑏2𝑖+1 is analogous,

thus omitted. Then, by Corollary 5.5, 𝑇−13 = 𝜈(3,−3)◦𝜇(−1,3). Finally, Equation (24) follows

from a direct computation of 𝜈(3,−3)◦𝜇(−1,3) using Equation (25), which we will omit.

5.2 Conjugated Corner Invariants and Its 𝑇3 Formula

To relate Equation (19) to parameters (𝑦𝑟)𝑟∈ℤ2 in [GP16], it is convenient to consider

another coordinate system of 𝒫𝑛, which we define below.

Definition 5.6. Given [𝑃] ∈ 𝒫𝑛, define the conjugated corner invariants to be coordinate

functions 𝑥̃0(𝑃), … , 𝑥̃2𝑛−1(𝑃) given by 𝑥̃𝑗(𝑃) =
𝑥𝑗(𝑃)

𝑥𝑗(𝑃)−1
.

The conjugated corner invariants can be viewed as the image of the corner invariants

under a birational map 𝜆 ∶ ℝ2𝑛 ⤏ ℝ2𝑛 sending each coordinate 𝑥𝑗 ↦→
𝑥𝑗
𝑥𝑗−1

. Observe

that 𝜆2 restricted to the dense open set (ℝ − {0, 1})2𝑛 is the identity map, so 𝑥̃𝑗(𝑃) is also a

coordinate system for 𝒫𝑛. Geometrically, the map 𝜆 corresponds to a different choice of

permutation in the cross-ratio.

Throughout this section, we will use 𝑥̃𝑗 = 𝑥̃𝑗(𝑃) and 𝑥̃′𝑗 = 𝑥̃𝑗(𝑃′) to denote the conjugate

corner invariants of 𝑃 and 𝑃′. We start by observing some symmetries of conjugating our

factorization maps 𝜇(𝑠,𝑡) and 𝜈(𝑠,𝑡) from Equation (25).

Lemma 5.7. For all (𝑠, 𝑡) ∈ ℤ2, we have 𝜆◦𝜇(𝑠,𝑡)◦𝜆 = 𝜈(𝑠+𝑡,−𝑡).

Proof. We can check this by direct computation. We show that the equation holds on

even coordinates. The 2𝑖-th coordinate of 𝜇(𝑠,𝑡)◦𝜆 is given by

1 − 𝑥2𝑖+𝑠 ⋅ (𝑥2𝑖+𝑠 − 1)−1

𝑥2𝑖+𝑠+𝑡 ⋅ (𝑥2𝑖+𝑠+𝑡 − 1)−1
=

1 − 𝑥2𝑖+𝑠+𝑡
𝑥2𝑖+𝑠+𝑡(𝑥2𝑖+𝑠 − 1)

The 2𝑖-th coordinate of 𝜆◦𝜇(𝑠,𝑡)◦𝜆 is given by

(
1 − 𝑥2𝑖+𝑠+𝑡

𝑥2𝑖+𝑠+𝑡(𝑥2𝑖+𝑠 − 1)
) ⋅ (

1 − 𝑥2𝑖+𝑠+𝑡
𝑥2𝑖+𝑠+𝑡(𝑥2𝑖+𝑠 − 1)

− 1)
−1

=
1 − 𝑥2𝑖+𝑠+𝑡

1 − 𝑥2𝑖+𝑠+𝑡𝑥2𝑖+𝑠
,

which is precisely the 2𝑖-th coordinate of 𝜈(𝑠+𝑡,−𝑡). The computation for the odd coordinates

is similar.

Arnold Mathematical Journal, Vol.11(4), 2025 164

http://dx.doi.org/10.56994/ARMJ


Tic-tac-toe partition

Since 𝜆 is an involution, it immediately follows that 𝜆◦𝜈(𝑠,𝑡)◦𝜆 = 𝜇(𝑠+𝑡,−𝑡). This allows us

to obtain a formula for 𝑇3 with respect to the conjugated corner invariants.

Proposition 5.8. Given any 3-nice twisted 𝑛-gon 𝑃, the following formula holds (indices

taken modulo 2𝑛):
⎧
⎪

⎨
⎪
⎩

𝑥̃′2𝑖 = 𝑥̃2𝑖−2 ⋅
(1 − 𝑥̃2𝑖−1𝑥̃2𝑖−4)(1 − 𝑥̃2𝑖+1)
(1 − 𝑥̃2𝑖+1𝑥̃2𝑖−2)(1 − 𝑥̃2𝑖−1)

;

𝑥̃′2𝑖+1 = 𝑥̃2𝑖+3 ⋅
(1 − 𝑥̃2𝑖+2𝑥̃2𝑖+5)(1 − 𝑥̃2𝑖)
(1 − 𝑥̃2𝑖𝑥̃2𝑖+3)(1 − 𝑥̃2𝑖+2)

.
(27)

Proof. From the proof of Proposition 5.3, we saw that the formula for 𝑇3 on the corner

invariants is given by 𝜈(−1,−1)◦𝜇(3,−3). It follows that the formula for conjugated corner

invariants is 𝜆◦
(
𝜈(−1,−1)◦𝜇(3,−3)

)
◦𝜆. By Lemma 5.7,

𝜆◦
(
𝜈(−1,−1)◦𝜇(3,−3)

)
◦𝜆 =

(
𝜆◦𝜈(−1,−1)◦𝜆

)
◦
(
𝜆◦𝜇(3,−3)◦𝜆

)
= 𝜇(−2,1)◦𝜈(0,3).

It remains to check that 𝜇(−2,1)◦𝜈(0,3) agrees with Equation (27). The 2𝑖-th coordinate of

𝜇(−2,1)◦𝜈(0,3) is given by

(1 −
1 − 𝑥̃2𝑖−2

1 − 𝑥̃2𝑖−2𝑥̃2𝑖+1
) ⋅ (

1 − 𝑥̃2𝑖−1
1 − 𝑥̃2𝑖−1𝑥̃2𝑖−4

)
−1

=
𝑥̃2𝑖−2(1 − 𝑥̃2𝑖−1𝑥̃2𝑖−4)(1 − 𝑥̃2𝑖+1)
(1 − 𝑥̃2𝑖−2𝑥̃2𝑖+1)(1 − 𝑥̃2𝑖−1)

.

This is precisely 𝑥̃′2𝑖 from Equation (27). The computation for odd coordinates is omitted.

Using Lemma 5.4, we can easily compute the formula of 𝑇−13 with respect to the

conjugated corner invariants. The proof is again a direct computation, so we omit it.

Corollary 5.9. The formula for𝑇−13 with conjugated corner invariants is given by𝜇(0,3)◦𝜈(2,−3).

More specifically,

⎧
⎪

⎨
⎪
⎩

𝑥̃2𝑖 = 𝑥̃′2𝑖+2 ⋅
(1 − 𝑥̃′2𝑖+1𝑥̃

′
2𝑖+4)(1 − 𝑥̃′2𝑖−1)

(1 − 𝑥̃′2𝑖−1𝑥̃
′
2𝑖+2)(1 − 𝑥̃′2𝑖+1)

;

𝑥̃2𝑖+1 = 𝑥̃′2𝑖−1 ⋅
(1 − 𝑥̃′2𝑖𝑥̃

′
2𝑖−3)(1 − 𝑥̃′2𝑖+2)

(1 − 𝑥̃′2𝑖+2𝑥̃
′
2𝑖−1)(1 − 𝑥̃′2𝑖)

.
(28)
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5.3 Relation to 𝑌-Variables

In this section, we discuss how Equation (18) generalizes the results from [GP16]. The

propositions in this section hold for all four cells 𝑆𝑛(𝐼, 𝐽), 𝑆𝑛(𝐽, 𝐼), 𝑆𝑛(𝐾, 𝐽), 𝑆𝑛(𝐽, 𝐾). For

notational convenience, our statements will only mention 𝑆𝑛(𝐽, 𝐼). The readers may

assume that the propositions hold for the other three cells with the same proof.

The map 𝑇3 along with the labeling convention of Equation (18) corresponds to the

following construction in [GP16]. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ2 be distinct and assume 𝑎2 ≤ 𝑏2 ≤ 𝑐2 ≤ 𝑑2.

Say that 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑} is a 𝑌-pin if 𝑏2 < 𝑐2 and the vectors 𝑏 − 𝑎, 𝑐 − 𝑎, 𝑑 − 𝑎 generate all of

ℤ2.

Definition 5.10 ([GP16, Definition 1.4]). Let 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑} be a 𝑌-pin and suppose 𝐷 ≥ 2.

A 𝑌-mesh of type 𝑆 and dimension 𝐷 is a grid of points 𝑃̂𝑖,𝑗 in ℝℙ𝐷 with 𝑖, 𝑗 ∈ ℤ which

together span all of ℝℙ𝐷 and such that

• 𝑃̂𝑟+𝑎, 𝑃̂𝑟+𝑏, 𝑃̂𝑟+𝑐, 𝑃̂𝑟+𝑑 are distinct for all 𝑟 ∈ ℤ2.

• Let 𝐿𝑟 = 𝑃̂𝑟+𝑎𝑃̂𝑟+𝑏. Then, 𝑃̂𝑟+𝑎, 𝑃̂𝑟+𝑏, 𝑃̂𝑟+𝑐, 𝑃̂𝑟+𝑑 all lie on 𝐿𝑟 for all 𝑟 ∈ ℤ2.

• The four lines 𝐿𝑟−𝑎, 𝐿𝑟−𝑏, 𝐿𝑟−𝑐, 𝐿𝑟−𝑑 (all of which contain 𝑃̂𝑟) are distinct for all 𝑟 ∈ ℤ2.

Let 𝑆 = {(−1, 0), (2, 0), (0, 1), (1, 1)}, which is a 𝑌-pin. Given a representative 𝑃 of some

[𝑃] ∈ 𝑆𝑛(𝐽, 𝐼), we can consider a grid (𝑃̂𝑖,𝑗)(𝑖,𝑗)∈ℤ2 where 𝑃̂𝑖,𝑗 is the 𝑖-th vertex of 𝑇𝑗3(𝑃).

Proposition 5.11. (𝑃̂𝑖,𝑗) is a 𝑌-mesh of type 𝑆 and dimension 2.

Proof. The first two conditions of Definition 5.10 are straightforward to verify using the

identification 𝑆𝑛(𝐽, 𝐼) = 𝒮𝛼3,𝑛 from Proposition 4.10. For the third condition, let 𝑃(𝑗) = 𝑇𝑗3(𝑃).

Then, we have

𝐿𝑟−𝑎 = 𝑃(𝑗)𝑖−1𝑃
(𝑗)
𝑖+2, 𝐿𝑟−𝑏 = 𝑃(𝑗)𝑖−1𝑃

(𝑗)
𝑖−4, 𝐿𝑟−𝑐 = 𝑃(𝑗)𝑖−1𝑃

(𝑗)
𝑖 , 𝐿𝑟−𝑑 = 𝑃(𝑗)𝑖−1𝑃

(𝑗)
𝑖−2.

Notice also that 𝐿𝑟−𝑎 = 𝑃(𝑗+1)𝑖 𝑃(𝑗+1)𝑖+1 and 𝐿𝑟−𝑏 = 𝑃(𝑗+1)𝑖−2 𝑃(𝑗+1)𝑖−1 , so 3-niceness of 𝑃(𝑗+1) implies

they are distinct. The other pairings are distinct because of 3-niceness of 𝑃(𝑗).
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[GP16] then introduces the parameters 𝑦𝑟(𝑃̂) associated to a 𝑌-mesh. Fix a 𝑌-pin

𝑆 = {𝑎, 𝑏, 𝑐, 𝑑} and a 𝑌-mesh 𝑃̂ of type 𝑆 and dimension 𝐷. For all 𝑟 ∈ ℤ2, consider

𝑦𝑟(𝑃̂) = −𝜒(𝑃̂𝑟+𝑎, 𝑃̂𝑟+𝑐, 𝑃̂𝑟+𝑑, 𝑃̂𝑟+𝑏). (29)

See the left side of Figure 23 for the setup using the 𝑌-mesh from Proposition 5.11. [GP16,

Theorem 1.6] give us the following relation on 𝑦𝑟:

𝑦𝑖+1,𝑗 𝑦𝑖+1,𝑗+2 =
(1 + 𝑦𝑖−1,𝑗+1)(1 + 𝑦𝑖+3,𝑗+1)

(1 + 𝑦−1𝑖,𝑗+1)(1 + 𝑦−1𝑖+2,𝑗+1)
. (30)

𝑙0,1 𝑙0,2 𝑙0,3𝑙0,−1

𝑙1,2

𝑙1,0

𝑙1,−1

𝑙1,−2𝑙−1,2

𝑃̂𝑖−1,0

𝑃̂𝑖,1

𝑃̂𝑖+1,1

𝑃̂𝑖+2,0

𝑃̂𝑖,0

𝑃̂𝑖+1,0

𝑃̂𝑖−1,0

𝑃̂𝑖,1

𝑃̂𝑖+1,1

𝑃̂𝑖+2,0

𝑃̂𝑖,0

𝑃̂𝑖+1,0

Figure 23: Left: Definition of 𝑦𝑟(𝑃̂) for the 𝑌-mesh from Proposition 5.11. Right: Relation-

ship between 𝑦𝑟(𝑃̂) and conjugated corner invariants.

Lemma 5.12. Given a representative 𝑃 of [𝑃] ∈ 𝑆𝑛(𝐼, 𝐽) with conjugated corner invariants

𝑥̃𝑗 = 𝑥̃𝑗(𝑃). Let (𝑃̂𝑖,𝑗) be its corresponding 𝑌-mesh with 𝑦𝑟 = 𝑦𝑟(𝑃̂) for all 𝑟 ∈ ℤ2. Then, for all

𝑖 ∈ ℤ,

𝑦𝑖,0 = −𝑥̃2𝑖𝑥̃2𝑖+3. (31)

Proof. Let 𝑙𝑎,𝑏 = 𝑃𝑖+𝑎𝑃𝑖+𝑏. See right side of Figure 23 for the setup. Equation (8) gives us

𝑥̃2𝑖 =
𝑥2𝑖

𝑥2𝑖 − 1 = 𝜒(𝑙1,−2, 𝑙1,−1, 𝑙1,2, 𝑙1,0); 𝑥̃2𝑖+3 =
𝑥2𝑖+3

𝑥2𝑖+3 − 1 = 𝜒(𝑙0,3, 𝑙0,2, 𝑙0,−1, 𝑙0,1).
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Notice that (𝑙1,−1 ∩ 𝑙0,−1) ∩ (𝑙1,2 ∩ 𝑙0,2) = 𝑃𝑖−1𝑃𝑖+2 = 𝑙−1,2. Then, from elementary cross ratio

identities we have

𝑥̃2𝑖𝑥̃2𝑖+3 = 𝜒(𝑙1,−1 ∩ 𝑙−1,2, 𝑙1,−2 ∩ 𝑙−1,2, 𝑙0,3 ∩ 𝑙−1,2, 𝑙0,2 ∩ 𝑙−1,2)

= 𝜒(𝑃̂𝑖−1,0, 𝑃̂𝑖,1, 𝑃̂𝑖+1,1, 𝑃̂𝑖+2,0) = −𝑦𝑖,0,

which is precisely Equation (31).

Remark 5.13. Equation (31) is very similar to the correspondence of 𝑦𝑟 and corner

invariants in the 𝑇2 case. Let 𝑃 be an arbitrary twisted 𝑛-gon with 𝑃′ = 𝑇2(𝑃). If we use the

labeling convention 𝑃′𝑖 = 𝑃𝑖−1𝑃𝑖+1∩𝑃𝑖𝑃𝑖+2, then the 𝑇2-orbit (𝑃̂𝑖,𝑗)(𝑖,𝑗)∈ℤ2 , where 𝑃̂𝑖,𝑗 is the 𝑖-th

vertex of 𝑇𝑗2(𝑃), is a 𝑌-mesh of type 𝑆 = {(−1, 0), (1, 0), (−1, 1), (0, 1)}. Denote by 𝑥𝑗 = 𝑥𝑗(𝑃)

the corner invariants of 𝑃. Then, for all 𝑖 ∈ ℤ,

𝑦𝑖,0 = −𝑥2𝑖+1𝑥2𝑖+2. (32)

For the proof of Equation (32), see [Gli11, Equation (2.2)].

Theorem 5.14. For the 𝑌-pin 𝑆 = {(−1, 0), (2, 0), (0, 1), (1, 1)}, the transformation formula

of 𝑦𝑟 from [GP16, Theorem 1.6] is a direct consequence of the birational formula for the

conjugated corner invariants under 𝑇3.

Proof. It suffices to show that we can use Equation (31) to derive (30) for 𝑗 = −1. We first

compute 𝑦𝑖+1,−1 and 𝑦𝑖+1,1 using Equation (27) and (28):

𝑦𝑖+1,−1 = −
𝑥̃2𝑖+4(1 − 𝑥̃2𝑖+3𝑥̃2𝑖+6)(1 − 𝑥̃2𝑖+1)
(1 − 𝑥̃2𝑖+1𝑥̃2𝑖+4)(1 − 𝑥̃2𝑖+3)

⋅
𝑥̃2𝑖+3(1 − 𝑥̃2𝑖+1𝑥̃2𝑖+4)(1 − 𝑥̃2𝑖+6)
(1 − 𝑥̃2𝑖+3𝑥̃2𝑖+6)(1 − 𝑥̃2𝑖+4)

= −
𝑥̃2𝑖+3𝑥̃2𝑖+4(1 − 𝑥̃2𝑖+1)(1 − 𝑥̃2𝑖+6)

(1 − 𝑥̃2𝑖+3)(1 − 𝑥̃2𝑖+4)
;

𝑦𝑖+1,1 = −
𝑥̃2𝑖(1 − 𝑥̃2𝑖−2𝑥̃2𝑖+1)(1 − 𝑥̃2𝑖+3)
(1 − 𝑥̃2𝑖𝑥̃2𝑖+3)(1 − 𝑥̃2𝑖+1)

⋅
𝑥̃2𝑖+7(1 − 𝑥̃2𝑖+6𝑥̃2𝑖+9)(1 − 𝑥̃2𝑖+4)
(1 − 𝑥̃2𝑖+4𝑥̃2𝑖+7)(1 − 𝑥̃2𝑖+6)

= −
𝑥̃2𝑖𝑥̃2𝑖+7(1 + 𝑦𝑖−1,0)(1 + 𝑦𝑖+3,0)(1 − 𝑥̃2𝑖+3)(1 − 𝑥̃2𝑖+4)

(1 + 𝑦𝑖,0)(1 + 𝑦𝑖+2,0)(1 − 𝑥̃2𝑖+1)(1 − 𝑥̃2𝑖+6)
.

(33)

It follows that

𝑦𝑖+1,−1 𝑦𝑖+1,1 =
𝑥̃2𝑖𝑥̃2𝑖+3𝑥̃2𝑖+4𝑥̃2𝑖+7(1 + 𝑦𝑖−1,0)(1 + 𝑦𝑖+3,0)

(1 + 𝑦𝑖,0)(1 + 𝑦𝑖+2,0)

=
𝑦𝑖,0𝑦𝑖+2,0(1 + 𝑦𝑖−1,0)(1 + 𝑦𝑖+3,0)

(1 + 𝑦𝑖,0)(1 + 𝑦𝑖+2,0)
=
(1 + 𝑦𝑖−1,0)(1 + 𝑦𝑖+3,0)
(1 + 𝑦−1𝑖,0 )(1 + 𝑦−1𝑖+2,0)

.
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This concludes the proof.

6 The Precompactness of 𝑇3 Orbits

In this section, we establish four algebraic invariants of 𝑇3. We then use them to prove

Theorem 1.3. Having Theorem 4.6 in hand, we may fully work with 𝑆𝑛(𝐽, 𝐼) and 𝑆𝑛(𝐾, 𝐽).

Our strategy is to use the algebraic invariants to show that the corner invariants are

uniformly bounded.

6.1 The Four Invariants

Proposition 6.1. Given [𝑃] ∈ 𝒫𝑛 with corner invariants 𝑥𝑗 = 𝑥𝑗(𝑃), consider the following

four quantities ℱ𝑖 = ℱ𝑖(𝑃):

ℱ1 =
𝑛−1∏

𝑖=0

𝑥2𝑖
𝑥2𝑖 − 1; ℱ2 =

𝑛−1∏

𝑖=0

𝑥2𝑖+1
𝑥2𝑖+1 − 1; ℱ3 =

𝑛−1∏

𝑖=0

𝑥2𝑖
𝑥2𝑖+1

; ℱ4 =
𝑛−1∏

𝑖=0

1 − 𝑥2𝑖
1 − 𝑥2𝑖+1

. (34)

Then, ℱ𝑖 is invariant under 𝑇3 for 𝑖 = 1, 2, 3, 4.

Proof. We first show that ℱ3 is invariant under 𝑇3. Let ℱ′
3 denote the invariants obtained

by plugging in 𝑥′𝑖 from Equation (24). Observe that

ℱ′
3 = ℱ3 ⋅

𝑛−1∏

𝑖=0

𝑥2𝑖−4 + 𝑥2𝑖−1 − 1
𝑥2𝑖+2 + 𝑥2𝑖+5 − 1 ⋅

𝑛−1∏

𝑖=0

𝑥2𝑖+2𝑥2𝑖+3 − (1 − 𝑥2𝑖+5)(1 − 𝑥2𝑖)
𝑥2𝑖−2𝑥2𝑖−1 − (1 − 𝑥2𝑖+1)(1 − 𝑥2𝑖−4)

= ℱ3 ⋅
∏𝑛−4

𝑖=−3(𝑥2𝑖+2 + 𝑥2𝑖+5 − 1)
∏𝑛−1

𝑖=0 (𝑥2𝑖+2 + 𝑥2𝑖+5 − 1)
⋅
∏𝑛+1

𝑖=2 (𝑥2𝑖−2𝑥2𝑖−1 − (1 − 𝑥2𝑖+1)(1 − 𝑥2𝑖−4))
∏𝑛−1

𝑖=0 (𝑥2𝑖−2𝑥2𝑖−1 − (1 − 𝑥2𝑖+1)(1 − 𝑥2𝑖−4))
= ℱ3.

This shows ℱ′
3 = ℱ3. Next, we show that ℱ1 and ℱ2 are invariant. Using conjugated corner

invariants, we see that ℱ1 =
∏𝑛−1

𝑖=0 𝑥̃2𝑖 and ℱ2 =
∏𝑛−1

𝑖=0 𝑥̃2𝑖+1. We let ℱ′
1 =

∏𝑛−1
𝑖=0 𝑥̃

′
2𝑖 be the

first invariant of 𝑇3(𝑃). Equation (27) gives us

ℱ′
1 = ℱ1 ⋅

𝑛−1∏

𝑖=0

(1 − 𝑥̃2𝑖−1𝑥̃2𝑖−4)(1 − 𝑥̃2𝑖+1)
(1 − 𝑥̃2𝑖+1𝑥̃2𝑖−2)(1 − 𝑥̃2𝑖−1)

= ℱ1,
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where the last equality follows from cyclically permuting the numerator. This shows

ℱ′
1 = ℱ1. The proof for ℱ2 goes through the same computation, so we omit it.

Finally, observe that ℱ4 =
ℱ2ℱ3

ℱ1
, so by invariance of ℱ1, ℱ2, ℱ3, we know that ℱ4 must

also be invariant. This concludes the proof.

Remark 6.2. As shown in the proof of Proposition 6.1, ℱ1 and ℱ2 correspond to the

product of conjugated corner invariants. ℱ3 is the ratio of the two Casimirs 𝑂𝑛
𝐸𝑛

of the 𝑇2
invariant Poisson structure on 𝒫𝑛. For discussions on ℱ3 and the Casimirs, see [Sch24,

§2.3]. Also, since ℱ1ℱ4 = ℱ2ℱ3, the four 𝑇3 invariants are not algebraically independent.

Below is a direct consequence of the invariance of theℱ𝑖’s. Since theℱ𝑖’s are preserved

by the forward action, it must also be preserved by the backward action.

Corollary 6.3. The four invariants ℱ1, ℱ2, ℱ3, ℱ4 are also invariant under 𝑇−13 .

6.2 Proof of Theorem 1.3

Recall that a subset 𝐴 of a topological space 𝑋 is precompact if the closure of 𝐴 is compact.

To show that the 𝑇3-orbit is precompact, it suffices to show that the corner invariants of

the orbit are uniformly bounded away from the singularities 0, 1,∞.

In this section, we let [𝑛] ∶= {1, … , 𝑛}. Given [𝑃] ∈ 𝒫𝑛, for all 𝑗,𝑚 ∈ ℤ, let 𝑥𝑗,𝑚 = 𝑥𝑗(𝑇𝑚3 (𝑃))

whenever 𝑇𝑚3 (𝑃) exists. Let ℱ𝑖,𝑚 = ℱ𝑖(𝑇𝑚3 (𝑃)) for 𝑖 = 1, 2, 3, 4. By Proposition 6.1, ℱ𝑖,𝑚 is

independent of 𝑚. All sequences are indexed by ℤ≥0 unless specified otherwise. Finally,

when we say “{𝑎𝑚} converges/diverges on a subsequence, and {𝑏𝑚} converges/diverges

on the same subsequence,” we mean that a subsequence of {𝑏𝑚} with the same choice of

indices as the subsequence of {𝑎𝑚} converges/diverges.

Lemma 6.4. Given [𝑃] ∈ 𝑆𝑛(𝐽, 𝐼), there exist 𝑎, 𝑏 ∈ 𝐽 such that 𝑥2𝑖,𝑚 ∈ [𝑎, 𝑏] for all 𝑖 ∈ [𝑛]

and 𝑚 ∈ ℤ≥0.

Proof. We first claim that for each 𝑖, the sequence {𝑥2𝑖,𝑚} is bounded above uniformly by

some 𝑏𝑖 ∈ 𝐽. If not, then 𝑥2𝑖,𝑚 → 1 on a subsequence, which implies 1 − 𝑥2𝑖,𝑚 → 0 on the
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same subsequence. Since [𝑇𝑚3 (𝑃)] ∈ 𝑆𝑛(𝐽, 𝐼) for all 𝑚 ∈ ℤ≥0, we must have 1 − 𝑥2𝑗,𝑚 ∈ (0, 1)

and (1 − 𝑥2𝑗+1,𝑚)−1 ∈ (0, 1) for all 𝑗 ∈ [𝑛]. This implies ℱ4,𝑚 → 0 on the same subsequence,

but that contradicts invariance of ℱ4,𝑚. Therefore, {𝑥2𝑖,𝑚} is bounded above by 𝑏𝑖 =

sup𝑚{𝑥2𝑖,𝑚} ∈ 𝐽. Taking 𝑏 = max𝑖∈[𝑛] 𝑏𝑖 satisfies the condition in the lemma.

Next, we show {𝑥2𝑖,𝑚} is bounded below uniformly by some 𝑎𝑖 > 0. If not, then 𝑥2𝑖,𝑚 → 0

on a subsequence, so 𝑥2𝑖,𝑚 ⋅ (𝑥2𝑖,𝑚−1)−1 → 0 on the same subsequence. From the argument

above, 𝑥2𝑗,𝑚 ≤ 𝑏 for all𝑚 ∈ ℤ≥0 and 𝑗 ∈ [𝑛], which gives us |𝑥2𝑗,𝑚 ⋅(𝑥2𝑗,𝑚−1)−1| ≤ | 𝑏
𝑏−1

|, so the

sequences are uniformly bounded for all 𝑗 ≠ 𝑖. This together with |𝑥2𝑖,𝑚 ⋅ (𝑥2𝑖,𝑚 − 1)−1| → 0

on a subsequence implies |ℱ1,𝑚| → 0 on the same subsequence, but that contradicts

invariance of ℱ1,𝑚. Therefore, {𝑥2𝑖,𝑚} is bounded below by 𝑎𝑖 = inf𝑚{𝑥2𝑖,𝑚} ∈ 𝐽. Taking

𝑎 = min𝑖∈[𝑛] 𝑎𝑖 completes the proof.

Lemma 6.5. With the same notation as in Lemma 6.6, there exist 𝑐, 𝑑 ∈ 𝐼 such that 𝑥2𝑖+1,𝑚 ∈

[𝑐, 𝑑] for all 𝑖 ∈ [𝑛] and 𝑚 ∈ ℤ≥0.

Proof. We first claim that for each 𝑖,the sequence {𝑥2𝑖+1,𝑚} is bounded above uniformly

by some 𝑑𝑖 ∈ 𝐼. If not, then, 𝑥2𝑖+1,𝑚 ⋅ (𝑥2𝑖+1,𝑚 − 1)−1 → 0 on a subsequence. Since 𝑥2𝑗+1,𝑚 ⋅

(𝑥2𝑗+1,𝑚 − 1)−1 ∈ (0, 1) for all 𝑗 ∈ [𝑛], we must have ℱ2,𝑚 → 0 on the same subsequence, but

that contradicts invariance of ℱ2,𝑚.

Next, we show that {𝑥2𝑖+1,𝑚} is bounded below uniformly by some 𝑐𝑖 ∈ 𝐼. If not, then

a subsequence of {𝑥2𝑖+1,𝑚} must diverge, so the same subsequence of {1 − 𝑥2𝑖+1,𝑚} also

diverges. Lemma 6.4 and 𝑥2𝑖+1,𝑚 ≤ 𝑑𝑖 < 0 together implies ℱ4,𝑚 diverges on the same

subsequence, but that contradicts invariance of ℱ4,𝑚. Finally, taking 𝑐 = min𝑖∈[𝑛] 𝑐𝑖 and

𝑑 = max𝑖∈[𝑛] 𝑑𝑖 completes the proof.

The proofs of the following two lemmas are analogous to Lemma 6.4 and 6.5. We will

omit the details and point out which invariants to use in each step.

Lemma 6.6. Given [𝑃] ∈ 𝑆𝑛(𝐾, 𝐽), there exist 𝑎, 𝑏 ∈ 𝐽 such that 𝑥2𝑖+1,𝑚 ∈ [𝑎, 𝑏] for all 𝑖 ∈ [𝑛]

and 𝑚 ∈ ℤ≥0.
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Proof. For each 𝑖, the sequence {𝑥2𝑖+1,𝑚} is bounded below by some 𝑎𝑖 ∈ 𝐽, for otherwise

ℱ3,𝑚 diverges on a subsequence. Next, since {|ℱ3,𝑚|} is bounded below by ∏𝑛−1
𝑗=0 𝑎𝑗 > 0,

{𝑥2𝑖+1,𝑚} is bounded above by some 𝑏𝑖 ∈ 𝐽. Taking 𝑎 = min𝑖∈[𝑛] 𝑎𝑖 and 𝑏 = max𝑖∈[𝑛] 𝑏𝑖
completes the proof.

Lemma 6.7. With the same notation as in Lemma 6.6, there exist 𝑐, 𝑑 ∈ 𝐾 such that

𝑥2𝑖,𝑚 ∈ [𝑐, 𝑑] for all 𝑖 ∈ [𝑛] and 𝑚 ∈ ℤ≥0.

Proof. For each 𝑖, the sequence {𝑥2𝑖,𝑚} must be bounded below by some 𝑐𝑖 ∈ 𝐾, for other-

wise ℱ1,𝑚 →∞ on a subsequence. It’s also bounded above by some 𝑑𝑖. To see this, Lemma

6.6 implies all corner invariants are bounded away from 0, so if {𝑥2𝑖,𝑚} is not bounded

above, then ℱ3,𝑚 diverges on a subsequence. Taking 𝑐 = min𝑖 𝑐𝑖 and 𝑑 = max𝑖 𝑑𝑖 completes

the proof.

Proof of Theorem 1.3. We will show that the forward 𝑇3 orbit of [𝑃] ∈ 𝒮𝛼3,𝑛 = 𝑆𝑛(𝐽, 𝐼) has

uniformly bounded corner invariants. By Proposition 4.10, [𝑃] ∈ 𝑆𝑛(𝐽, 𝐼). Let [𝑎, 𝑏] ⊂ 𝐽,

[𝑐, 𝑑] ⊂ 𝐼 be compact intervals derived from Lemma 6.4 and 6.5. Then, the sequence

{(𝑥0,𝑚, … , 𝑥2𝑛−1,𝑚)} is contained in ∏𝑛−1
𝑖=0 [𝑎, 𝑏] × [𝑐, 𝑑], so it is uniformly bounded. To show

precompactness of the backward 𝑇3 orbit of 𝒮𝛼3,𝑛, one can adapt the proofs of Lemma 6.4

and 6.5 with very few changes. We omit the details. The case 𝒮𝛽3,𝑛 follows from Lemma

6.6 and 6.7 by essentially the same argument, which we again omit.

7 Type-𝛽 2-Spirals and Precompact 𝑇2 Orbits

7.1 The Corner Invariants of Type-𝛽 2-Spirals

We finish this paper by discussing the type-𝛽 2-spirals. Proposition 3.10 implies 𝒮𝛽2,𝑛 is

disjoint from the moduli space of closed convex polygons, so 𝒮𝛽2,𝑛 is a new invariant

geometric construction under the pentagram map by Theorem 1.1. In this section, we

analyze the corner invariants of 𝒮𝛽2,𝑛 and show that just like the type-𝛼 and type-𝛽 3-spirals,

it is cut out by linear boundaries.

Arnold Mathematical Journal, Vol.11(4), 2025 172

http://dx.doi.org/10.56994/ARMJ


Tic-tac-toe partition

Proposition 7.1. For all 𝑛 ≥ 2, given any [𝑃] ∈ 𝒮𝛽2,𝑛 with corner invariants 𝑥𝑗 = 𝑥𝑗(𝑃), we

have 𝑥2𝑖 > 0 and 𝑥2𝑖+1 < 0 for all 𝑖 ∈ [𝑛].

Proof. Let 𝑃 be an (𝑖 − 2)-representative of [𝑃]. Normalize by Aff+2 (ℝ) so that 𝑃𝑖−1 = (−1, 0),

𝑃𝑖 = (0, 0), 𝑃𝑖+1 = (0, 1) on the affine patch, which is possible because (𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1) is

positive. Let 𝑠𝑎,𝑏 ∈ ℝ∪{∞} denote the slope of 𝑃𝑖+𝑎𝑃𝑖+𝑏. Positivity of (𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖) and 𝑃𝑖+1 ∈

int(𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖) implies 𝑠−1,−2 > 1 and 𝑠1,−2 > 1. Similarly, since 𝑃𝑖+2 ∈ int(𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1), we

have 𝑠−1,2 ∈ (0, 1) and 𝑠1,2 > 1. It follows that

𝑥2𝑖 =
(𝑠1,−2 − 𝑠1,−1)(𝑠1,0 − 𝑠1,2)
(𝑠1,−2 − 𝑠1,0)(𝑠1,−1 − 𝑠1,2)

= −
𝑠1,−2 − 1
1 − 𝑠1,2

> 0;

𝑥2𝑖+1 =
(𝑠−1,2 − 𝑠−1,1)(𝑠−1,0 − 𝑠−1,−2)
(𝑠−1,2 − 𝑠−1,0)(𝑠−1,1 − 𝑠−1,−2)

=
−𝑠−1,−2(𝑠−1,2 − 1)
𝑠−1,2(1 − 𝑠−1,−2)

< 0.
(35)

This concludes the proof.

𝑃𝑖−2

𝑃𝑖−1 𝑃𝑖

𝑃𝑖+1

𝑃𝑖+2

Figure 24: Configuration of Proposition 7.1 and 7.2.

Proposition 7.2. For all 𝑛 ≥ 2, if [𝑃] ∈ 𝒫𝑛 has corner invariants 𝑥𝑗 = 𝑥𝑗(𝑃) such that 𝑥2𝑖 > 0

and 𝑥2𝑖+1 < 0 for all 𝑖 ∈ [𝑛], then [𝑃] ∈ 𝒮𝛽2,𝑛.

Proof. Fix 𝑁 ∈ ℤ. Let 𝑃 be a representative of [𝑃] such that 𝑃𝑁−2 = ( 1
3
, 3
2
), 𝑃𝑁−1 = (−1, 0),

𝑃𝑁 = (0, 0), and 𝑃𝑁+1 = (0, 1). We say 𝑃 satisfies condition (∗∗)𝑖 if (𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1) is positive

and 𝑃𝑖+2 ∈ int(𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1). Then, 𝑃 is a type-𝛽 𝑁-representative of 2-spirals iff 𝑃 satisfies
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(∗∗)𝑖 for all 𝑖 > 𝑁. Notice that 𝑃 satisfies (∗∗)𝑁 , so by an induction argument, it suffices to

show that for 𝑖 ≥ 𝑁, if 𝑃 satisfies (∗∗)𝑖, then 𝑃 satisfies (∗∗)𝑖+1.

If 𝑃 satisfies (∗∗)𝑖, then (𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1) is positive. Normalize by Aff+2 (ℝ) so that 𝑃𝑖−1 =

(−1, 0), 𝑃𝑖 = (0, 0), and 𝑃𝑖 = (0, 1). We will use the same notation 𝑙𝑎,𝑏 and 𝑠𝑎,𝑏 as Proposition

7.1. Since 𝑃𝑖+1 ∈ int(𝑃𝑖−2, 𝑃𝑖−1, 𝑃𝑖), we have 𝑠−1,−2 > 1 and 𝑠1,−2 > 1. Then, since 𝑥2𝑖 > 0 and

𝑥2𝑖+1 < 0, Equation (35) gives us
𝑠1,−2 − 1
𝑠1,2 − 1 > 0 and

𝑠−1,−2(𝑠−1,2 − 1)
𝑠−1,2(𝑠−1,−2 − 1)

< 0.

It follows that 𝑠1,2 > 1 and 1 − 1
𝑠−1,2

< 0. The latter inequality implies 1
𝑠−1,2

> 1, so in

particular 𝑠−1,2 > 0 and hence 𝑠−1,2 ∈ (0, 1). The two conditions 𝑠1,2 > 1 and 𝑠−1,2 ∈ (0, 1)

implies 𝑃𝑖+2 ∈ int(𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1) and (𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+2) positive, so 𝑃 satisfies (∗∗)𝑖+1 as desired.

We conclude that [𝑃] ∈ 𝒮𝛽2,𝑛.

7.2 The Precompactness of 𝑇2 Orbits

We adapt the argument for Theorem 1.3 to give a quick proof of Theorem 1.4 using the

Casimir functions of the 𝑇2-invariant Poisson structure on 𝒫𝑛 that were developed in

[Sch08, Theorem 1.2]. One can find the proof of the following lemma in [Sch08, §2.2].

Lemma 7.3. For the map 𝑇2 acting on a twisted 𝑛-gon 𝑃 with corner invariants 𝑥𝑗 = 𝑥𝑗(𝑃),

one has the following four invariant quantities.

𝑂1(𝑃) =
𝑛−1∑

𝑖=0
(−𝑥2𝑖+1 + 𝑥2𝑖−1𝑥2𝑖𝑥2𝑖+1); 𝑂𝑛(𝑃) =

𝑛−1∏

𝑖=0
𝑥2𝑖+1;

𝐸1(𝑃) =
𝑛−1∑

𝑖=0
(−𝑥2𝑖 + 𝑥2𝑖−2𝑥2𝑖−1𝑥2𝑖); 𝐸𝑛(𝑃) =

𝑛∏

𝑖=1
𝑥2𝑖.

We continue to use the notation from §6.2. In addition, we write 𝑂1,𝑚 = 𝑂1(𝑇𝑚2 (𝑃)). We

define 𝑂𝑛,𝑚, 𝐸1,𝑚, and 𝐸𝑛,𝑚 analogously. By Lemma 7.3, the values of these four quantities

are independent of the choice of 𝑚.

Lemma 7.4. For all 𝑛 ≥ 2, given [𝑃] ∈ 𝒮𝛽2,𝑛, there exists 𝑎, 𝑏 > 0 such that 𝑥2𝑖,𝑚 ∈ [𝑎, 𝑏] for all

𝑖 ∈ [𝑛] and 𝑚 ∈ ℤ≥0.
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Proof. Fix 𝑖 ∈ [𝑛]. We first show that 𝑥2𝑖,𝑚 is uniformly bounded above by some 𝑏 > 0.

Since 𝑇𝑚2 (𝑃) ∈ 𝒮𝛽2,𝑛 for all 𝑚 ∈ ℤ≥0, we must have 𝐸1,𝑚 < −𝑥2𝑖,𝑚 < 0. Then, if 𝑥2𝑖,𝑚 →∞ on a

subsequence, 𝐸1,𝑚 also diverges on the same subsequence, but that contradicts invariance

of 𝐸1,𝑚. This implies 𝑥2𝑖,𝑚 < 𝑏𝑖 for some 𝑏𝑖 > 0. Taking 𝑏 = max𝑖∈[𝑛] 𝑏𝑖 satisfies the condition

in the lemma.

Next, we show that 𝑥2𝑖,𝑚 is uniformly bounded below by some 𝑎 > 0. We first notice

that 𝐸𝑛,𝑚 < 𝑏𝑛𝑖 . This implies if 𝑥2𝑖,𝑚 → 0 on a subsequence, then 𝐸𝑛,𝑚 → 0 on the same

subsequence, but that contradicts invariance of 𝐸𝑛,𝑚. Therefore, 𝑥2𝑖,𝑚 > 𝑎𝑖 for some 𝑎𝑖 > 0.

Taking 𝑎 = min𝑖∈[𝑛] 𝑎𝑖 completes the proof.

Lemma 7.5. For all 𝑛 ≥ 2, given [𝑃] ∈ 𝒮𝛽2,𝑛, there exists 𝑐, 𝑑 < 0 such that 𝑥2𝑖+1,𝑚 ∈ [𝑐, 𝑑] for

all 𝑖 ∈ [𝑛] and 𝑚 ∈ ℤ≥0.

Proof. The argument is analogous to the proof of Lemma 7.4. Fix 𝑖 ∈ [𝑛]. To find 𝑐𝑖 that

bounds {𝑥2𝑖+1,𝑚} uniformly from below, we use the fact that 𝑂1,𝑚 > −𝑥2𝑖+1 > 0. We then set

𝑐 = min𝑖∈[𝑛] 𝑐𝑖. To find 𝑑𝑖 that bounds {𝑥2𝑖+1,𝑚} uniformly from above, we use the fact that

|𝑂𝑛(𝑃)| < |𝑐𝑛|. We then set 𝑑 = max𝑖∈[𝑛] 𝑑𝑖 to complete the proof.

Lemma 7.4 and 7.5 together implies that the forward 𝑇2-orbit of any [𝑃] ∈ 𝒮𝛽2,𝑛 is

precompact in 𝒫𝑛. One can use the same argument to show that the backward 𝑇2-orbit is

also precompact. We have thus completed the proof of Theorem 1.4.

8 Appendix

8.1 Conjectures for Invariants

Given [𝑃] ∈ 𝒫𝑘,𝑛, we may consider the following quantity:

𝑦(𝑘)𝑖 (𝑃) = −𝜒(𝑃𝑖, 𝑃𝑖𝑃𝑖+𝑘 ∩ 𝑃𝑖−1𝑃𝑖+𝑘−1, 𝑃𝑖𝑃𝑖+𝑘 ∩ 𝑃𝑖+1𝑃𝑖+𝑘+1, 𝑃𝑖+𝑘). (36)

When 𝑇𝑗𝑘(𝑃) is well-defined, we write 𝑦(𝑘)𝑖,𝑗 = 𝑦(𝑘)𝑖 (𝑇𝑗𝑘(𝑃)), or simply 𝑦𝑖,𝑗 if the value of 𝑘 is

clear from the context. Let 𝑌(𝑘)
𝑗 (or simply 𝑌𝑗) denote the product ∏𝑛−1

𝑖=0 𝑦
(𝑘)
𝑖,𝑗 .

Arnold Mathematical Journal, Vol.11(4), 2025 175

http://dx.doi.org/10.56994/ARMJ


Zhengyu Zou

Proposition 8.1. For all 𝑘, 𝑛 ≥ 2, given [𝑃] ∈ 𝒮𝛼𝑘,𝑛, there exists 𝐶 ∈ ℝ, 𝐶 ≠ 0, such that

𝑌(𝑘)
𝑗+1

(
𝑌(𝑘)
𝑗

)−1
= 𝐶 (37)

for all 𝑗 ∈ ℤ. The same holds for [𝑃] ∈ 𝒮𝛽𝑘,𝑛.

Proof. The grid (𝑃̂𝑖,𝑗)(𝑖,𝑗)∈ℤ2 where 𝑃̂𝑖,𝑗 is the 𝑖-th vertex of 𝑇𝑗𝑘(𝑃) is a 𝑌-mesh of type 𝑆 =

{(0, 0), (𝑘, 0), (−1, 1), (0, 1)} with 𝑦𝑟 = 𝑦𝑟(𝑃̂) for 𝑟 ∈ ℤ2. The proof is essentially the same as

the one for Proposition 5.11, so we will omit it. Then, from [GP16, Theorem 1.6], we have

𝑦𝑖+𝑘,𝑗𝑦𝑖−1,𝑗+2 =
(1 + 𝑦𝑖−1,𝑗+1)(1 + 𝑦𝑖+𝑘,𝑗+1)

(1 + 𝑦−1𝑖,𝑗+1)(1 + 𝑦−1𝑖+𝑘−1,𝑗+1)
. (38)

It follows that

𝑌𝑗𝑌𝑗+2 =
𝑛−1∏

𝑖=0
(𝑦𝑖+𝑘,𝑗𝑦𝑖−1,𝑗+2) =

𝑛−1∏

𝑖=0

(1 + 𝑦𝑖−1,𝑗+1)(1 + 𝑦𝑖+𝑘,𝑗+1)

(1 + 𝑦−1𝑖,𝑗+1)(1 + 𝑦−1𝑖+𝑘−1,𝑗+1)

=
⎛
⎜
⎝

𝑛−1∏

𝑖=0
(𝑦𝑖,𝑗+1 𝑦𝑖+𝑘−1,𝑗+1)

⎞
⎟
⎠

⎛
⎜
⎝

𝑛−1∏

𝑖=0

(1 + 𝑦𝑖−1,𝑗+1)(1 + 𝑦𝑖+𝑘,𝑗+1)
(1 + 𝑦𝑖,𝑗+1)(1 + 𝑦𝑖+𝑘−1,𝑗+1)

⎞
⎟
⎠
= 𝑌2

𝑗+1.

(39)

This implies 𝑌𝑗+2∕𝑌𝑗+1 = 𝑌𝑗+1∕𝑌𝑗 for all 𝑗 ∈ ℤ. Taking 𝐶 = 𝑌1∕𝑌0 completes the proof.

Remark 8.2. Combining the results of [GP16] and [GSTV12], we see that Proposition 8.1 is

equivalent to [GSTV12, Theorem 2.1]. Specifically, the quantity in Equation (37) is shown

to be a Casimir function with respect to a Poisson structure that is invariant under the

𝑦-variable transformation of a quiver 𝑄𝑘, which we will define below.

Consider the infinite directed graph 𝑄𝑘 whose vertices are indexed by ℤ × {0, 1}, with

directed edges (𝑖, 0) → (𝑖 − 1, 1), (𝑖, 0) → (𝑖 − 𝑘, 1), (𝑖, 1) → (𝑖, 0), and (𝑖 − 𝑘 − 1, 1) → (𝑖, 0)

for all 𝑖 ∈ ℤ. See Figure 25 for a visual representation of this quiver. We refer the

readers to [GP16, §9] for the construction of this quiver and the proof that the 𝑦-variable

transformations satisfy (38).

For all 𝑛 ≥ 2, the 𝑦-variables corresponding to [𝑃] ∈ 𝒫𝑘,𝑛 are periodic modulo 𝑛. We may

then identify vertices of 𝑄𝑘 via (𝑖, 𝑗) ∼ (𝑖 + 𝑛, 𝑗), and similarly identify the corresponding

edges. The resulting directed graph 𝑄𝑘,𝑛 is isomorphic to the quiver 𝒬𝑘,𝑛 from [GSTV12]
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(𝑖 − 𝑘 − 1, 1) (𝑖 − 𝑘, 1) (𝑖 − 1, 1) (𝑖, 1)

(𝑖, 0)

Figure 25: The quiver 𝑄𝑘. Only edges into and out of the vertex (𝑖, 0) are shown.

by applying a translation to the first entry of the vertices (𝑖, 1). Moreover, the 𝑦-variables

(𝑦𝑖,0)𝑖∈[𝑛] of the quiver in [GP16] transforms in the same way as the 𝑝-variables (𝑝𝑖)𝑖∈[𝑛] of

𝒬𝑘,𝑛 under the map 𝑇𝑘 (see [GSTV12, §2]), and the 𝑞-variables (𝑞𝑖)𝑖∈[𝑛] of 𝒬𝑘,𝑛 correspond

to the multiplicative inverse of 𝑦𝑖,−1. As a result, 𝑌(𝑘)
0 ∕𝑌(𝑘)

−1 =
∏𝑛

𝑖=1 𝑝𝑖𝑞𝑖, which by [GSTV12,

Theorem 2.1] is invariant under 𝑇𝑘 and forms a Casimir function with respect to a Poisson

structure that is invariant under 𝑇𝑘.

Both [GP16] and [GSTV12] demonstrate that the quiver 𝑄𝑘,𝑛 is a bipartite graph that

can be embedded into a torus. For further details, see [GP16, §9] and [GSTV12, §3]. This

connection links 𝑄𝑘,𝑛 to the Goncharov-Kenyon Dimer Integrable Systems in [GK13], where

a more general definition of Casimir functions is provided.

Conjecture 8.3. The constant 𝐶 in Proposition 8.1 equals 1 for all 𝑘 ≥ 2.

We prove Conjecture 8.3 for 𝑘 = 2 and 𝑘 = 3. Let 𝑥𝑗 = 𝑥𝑗(𝑃) be the corner invariants of

[𝑃]. The case 𝑘 = 2 follows from 𝑦(2)𝑖 (𝑃) = −𝑥2𝑖+1𝑥2𝑖+2 (see Equation (32)), so
𝑛∏

𝑖=1
𝑦(2)𝑖 (𝑃) = (−1)𝑛

𝑛∏

𝑖=1
𝑥2𝑖+1𝑥2𝑖+2 = (−1)𝑛 𝑂𝑛(𝑃) 𝐸𝑛(𝑃),

which is 𝑇2-invariant by Lemma 7.3.

For the case 𝑘 = 3, Equation (31) implies
𝑛∏

𝑖=1
𝑦(3)𝑖 (𝑃) = (−1)𝑛

𝑛∏

𝑖=1

𝑥2𝑖𝑥2𝑖+3
(𝑥2𝑖 − 1)(𝑥2𝑖+3 − 1)

= (−1)𝑛ℱ1(𝑃)ℱ2(𝑃),
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which is 𝑇3-invariant by Proposition 6.1.
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1 Introduction

A classical result due to Bochner [1] establishes that a compact Lie group action on

a smooth manifold is locally equivalent, in the neighbourhood of a fixed point, to its

linearization. This result holds in the 𝐶𝑘 category. It is worth exploring if similar results

hold in the non-compact case.

As observed in [8], if the Lie group is connected, the linearization problem can be

formulated in the following terms: find a linear system of coordinates for the vector fields

corresponding to the one-parameter subgroups of 𝐺; or more generally, consider the

representation of a Lie algebra and find coordinates on the manifold that simultaneously

linearize the vector fields in the image of the representation vanishing at a point. This is

the perspective we adopt in this note when referring to linearization.

In the formal and analytic cases, the existence of coordinates that linearize the action

is related to a cohomological equation that can always be solved when the Lie group

under consideration is semisimple [9], [8]. Guillemin and Sternberg also studied the

problem in the 𝐶∞ setting. At the end of [8], they presented the celebrated example

of a non-linearizable action of 𝔰𝔩(2,ℝ) on ℝ3, constructed via a perturbation involving

the radial vector field with flat coefficients. This example has been foundational in

the literature, inspiring the construction of other examples with profound geometric

implications, such as Weinstein’s non-stable Poisson structure example [19].

When the semisimple Lie algebras are of compact type, the linearization of the action

can be achieved by combining the local integration of the Lie group action with Bochner’s

theorem, leading to the linearization of the associated Lie algebra action [6].

Linearization techniques also play a significant role in Hamiltonian systems. When a

Hamiltonian system arises from a symplectic action of a compact Lie group fixing a point,

the equivariant version of Darboux’s theorem ([18], [3]) ensures that the group action

can be linearized in Darboux coordinates near the fixed point. It is worth exploring if

similar results apply beyond the compact case.

For complete integrable systems, an associated abelian symplectic action emerges.
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When the integrable system in local coordinates has a “linear part" linked to a Cartan

subalgebra, this leads to non-degenerate singularities [4]. As shown in [5], [4], [10], [11]

and [12], complete integrable systems near non-degenerate singular points are equivalent

to their linear models. Consequently, the Hamiltonian system itself is equivalent to the

linear one. This result provides normal forms for integrable systems near singular non-

degenerate points and, specifically, ensures the simultaneous linearization of Hamiltonian

vector fields near a common zero.

The next challenge involves Hamiltonian systems with a semisimple linear part, as

proposed by Eliasson in [5]. In the formal or analytic setting, results by Guillemin and

Sternberg [8] and Kushnirenko [9] demonstrate that such systems are equivalent to the

linear model when the symplectic form is disregarded. In this note, we establish that not

only can the Hamiltonian vector fields be linearized, but they can also be linearized in

Darboux coordinates.

Following Guillemin and Sternberg’s approach, we prove that if a symplectic Lie

algebra action of semisimple type fixes a point, there exist analytic Darboux coordinates

in which the analytic vector fields generating the Lie algebra action are linear. This

result also extends to complex analytic Lie algebra actions on complex analytic manifolds.

Additionally, we construct an example of a Hamiltonian system with a semisimple linear

part that is not 𝐶∞-linearizable.

Organization of this article: In Section 2, we prove that linearizable actions on

symplectic manifolds can be locally linearized in Darboux coordinates. In Section 3, we

apply this to show that any real analytic symplectic action of a semisimple Lie algebra

can be linearized in real analytic Darboux coordinates in a neighborhood of a fixed point.

Furthermore, this result extends to analytic complex manifolds and complex analytic

actions of semisimple Lie algebras. In Section 4, we present a counterexample proving

that the linearization result does not hold in general for smooth Hamiltonian actions of

semisimple Lie algebras.

Acknowledgements: I would like to thank Häkan Eliasson, Ghani Zeghib, David
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2 Linearizable actions in Darboux coordinates

Let 𝔤 be a Lie algebra and let 𝜌 ∶ 𝔤 ,→ 𝐿𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 stand for a representation of 𝔤 in the algebra

of real (or complex) analytic vector fields on a real (or complex) analytic manifold 𝑀.

We say that 𝑝 ∈ 𝑀 is a fixed point for 𝜌 if the vector fields in 𝜌(𝔤) vanish at 𝑝. We say

that 𝜌 can be linearized in a neighborhood of a fixed point if there exist local coordinates

in a neighbourhood of 𝑝 such that the vector fields in the image of 𝜌 can be simultaneously

linearized (i.e, 𝜌 is equivalent to a linear representation).

Assume that the Lie algebra action is (analytically/smoothly) linearizable and assume

that 𝑀 is endowed with a symplectic structure (smooth, analytic). We first prove that it is

then symplectically linearizable.

Theorem 2.1. Let 𝔤 be a Lie algebra and let (𝑀, 𝜔) be a (real or complex) analytic symplectic

manifold. Let 𝜌 be a representation by analytic symplectic vector fields. Let 𝑝 be a fixed

point for 𝜌 and assume that 𝜌 can be linearized. Then there exist local analytic coordinates

(𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛) in a neighborhood of 𝑝 for 𝜌 such that 𝜌 is a linear representation and 𝜔

can be written as,

𝜔 =
𝑛∑

𝑖=1
𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖.

Proof. Let 𝜌 be an analytic symplectic action of a Lie algebra on a manifold 𝑀, with a

fixed point 𝑝 ∈ 𝑀. Choose analytic coordinates (𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛) centered at 𝑝 in which

the action 𝜌 is linear. Let 𝜔1 denote the symplectic form in these coordinates. Although 𝜌

is now linear, 𝜔1 need not be of Darboux type.

We denote by 𝜔0 the constant (degree-zero) term in the Taylor expansion of 𝜔1 at the

origin. Since 𝜔1 is preserved by 𝜌 and 𝜌 is linear, it follows that 𝜔0 is preserved by the

linearized action 𝜌(1) = 𝜌. In particular, 𝜔0 is a constant symplectic form invariant under

the action. Our goal is to construct a local analytic diffeomorphism 𝜙, fixing the origin,
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such that 𝜙∗(𝜔1) = 𝜔0 and 𝜙 commutes with 𝜌. That is, we seek an equivariant analytic

Darboux theorem for 𝜔1, linearizing the form while preserving the linear action 𝜌.

To this end, we apply the path method [16] for analytic symplectic structures. By the

Poincaré lemma, there exists an analytic 1-form 𝛼 such that

𝜔1 = 𝜔0 + 𝑑𝛼.

Define a path of symplectic forms:

𝜔𝑡 = 𝑡𝜔1 + (1 − 𝑡)𝜔0, 𝑡 ∈ [0, 1].

Each 𝜔𝑡 is an analytic symplectic form in a neighbourhood of the origin. Moreover, the

action 𝜌 preserves both 𝜔0 and 𝜔1, hence it preserves the entire path 𝜔𝑡.

We now define the time-dependent analytic vector field 𝑋𝑡 by Moser’s equation:

𝑖𝑋𝑡𝜔𝑡 = −𝛼. (2.1)

In order to ensure that 𝑋𝑡 is invariant under 𝜌, it suffices to construct 𝛼 invariant under

𝜌. For this purpose, we apply the standard homotopy operator used in the proof of the

Poincaré lemma, adapted to our equivariant setting.

Let 𝑅 = ∑𝑥𝑖𝜕𝑥𝑖 + 𝑦𝑖𝜕𝑦𝑖 be the radial vector field, and ℎ𝑡 the homothety 𝑥 ↦→ 𝑡𝑥. Then,

we define

𝛼 ∶= ∫
1

0

1
𝑡 ℎ

∗
𝑡 (𝑖𝑅𝛽) 𝑑𝑡, where 𝛽 = 𝜔1 − 𝜔0.

Because 𝛽 is 𝜌-invariant and 𝜌 commutes with 𝑅, it follows that 𝛼 is also 𝜌-invariant. Thus,

the vector field 𝑋𝑡 is invariant under 𝜌.

Let 𝜙𝑡 denote the flow of 𝑋𝑡, satisfying the differential equation

𝜕𝜙𝑡
𝜕𝑡 (𝑞) = 𝑋𝑡(𝜙𝑡(𝑞)), 𝜙0 = id. (2.2)

Since 𝑋𝑡 is 𝜌-invariant, the flow 𝜙𝑡 commutes with the action 𝜌. Moreover, because 𝛼

vanishes at the origin, so does 𝑋𝑡, ensuring that each 𝜙𝑡 fixes the origin.
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By construction, 𝜙∗𝑡 (𝜔𝑡) = 𝜔0, and in particular 𝜙∗1(𝜔1) = 𝜔0. The diffeomorphism

𝜙 ∶= 𝜙1 is then the desired equivariant analytic transformation taking 𝜔1 to 𝜔0 while

preserving the linear action 𝜌.

This completes the proof.

Remark 2.2. The theorem above is stated in the analytic category; however, if the lin-

earization is assumed to hold in the smooth category, the symplectic diffeomorphism

obtained from the proof is also smooth.

3 The case of analytic semisimple Lie algebra actions

Guillemin and Sternberg provided in [8] a complete characterization of analytically

linearizable actions. They demonstrated that a necessary and sufficient condition for the

representation

𝜌 ∶ 𝑔 → 𝐿analytic

to be locally analytically linearizable is the existence of an analytic vector field 𝑋, defined

in a neighborhood of 𝑝, vanishing at 𝑝, with the identity matrix as its Jacobian at 𝑝, and

commuting with all the vector fields in 𝑔.

This condition was elegantly recast in cohomological terms in [8]. They proved that

the first cohomology group 𝐻1(𝑔, 𝑉∗) acts as an obstruction to analytic linearization. For

semisimple 𝑔, 𝐻1(𝑔, 𝑉∗) vanishes for all representation spaces 𝑉, ensuring the possibility

of analytic linearization. On the other hand, for non-semisimple 𝑔, one can construct a

representation space 𝑉 such that 𝐻1(𝑔, 𝑉∗) ≠ 0, which precludes analytic linearization.

This result establishes the semisimple case as a natural candidate for analytic lin-

earization.

Guillemin and Sternberg [8] and Kushnirenko [9] proved the following.

Theorem 3.1 (Guillemin-Sternberg, Kushnirenko). The representation 𝜌 ∶ 𝔤 ,→ 𝐿𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐
with 𝔤 semisimple is locally equivalent, via an analytic diffeomorphism, to a linear repre-

sentation of 𝔤 in a neighbourhood of a fixed point for 𝜌.
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As an application of theorem 2.1: When the representation is done by Hamiltonian

vector fields (locally symplectic), the analytic diffeomorphism that gives the equivalence

of the initial representation to the linear representation can be chosen to take the initial

symplectic form to the Darboux one. Namely,

Corollary 3.2. Let 𝔤 be a semisimple Lie algebra and let (𝑀, 𝜔) be a (real or complex) analytic

symplectic manifold. Let 𝜌 ∶ 𝔤 ,→ 𝐿𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 be a representation by analytic symplectic vector

fields. Then there exist local analytic coordinates (𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛) in a neighbourhood of a

fixed point 𝑝 for 𝜌 such that 𝜌 is a linear representation and 𝜔 can be written as,

𝜔 =
𝑛∑

𝑖=1
𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖.

4 Non-linearizable semisimple smooth actions

4.1 The counterexample of Cairns and Ghys

In this section we recall the results of Cairns and Ghys concerning a 𝐶∞-action of 𝑆𝐿(2,ℝ)

on ℝ3 which is not linearizable. All results mentioned in this section are contained in

section 8 of [2].

Consider the basis {𝑋, 𝑌, 𝑍} of 𝔰𝔩(2,ℝ) satisfying the relations:

[𝑋, 𝑌] = −𝑍, [𝑍, 𝑋] = 𝑌, [𝑍, 𝑌] = −𝑋

Now consider the representation on ℝ3 defined on this basis as:

𝜌(𝑋) = 𝑦 𝜕
𝜕𝑧
+ 𝑧 𝜕

𝜕𝑦

𝜌(𝑌) = 𝑥 𝜕
𝜕𝑧
+ 𝑧 𝜕

𝜕𝑥

𝜌(𝑍) = 𝑥 𝜕
𝜕𝑦
− 𝑦 𝜕

𝜕𝑥

(4.1)

The orbits of this action are the level sets of the quadratic form 𝑄 = 𝑥2 + 𝑦2 − 𝑧2 =

𝑟2 − 𝑧2 (where 𝑟2 = 𝑥2 + 𝑦2). These level sets are non-degenerate quadrics: one-sheeted

hyperboloids for 𝑄 > 0, two-sheeted hyperboloids for 𝑄 < 0, and a quadratic cone for

𝑄 = 0.
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Introduce the radial vector field

𝑅 = 𝑥 𝜕
𝜕𝑥 + 𝑦 𝜕

𝜕𝑦 + 𝑧 𝜕
𝜕𝑧 ,

and perturb 𝜌 by setting
𝑋 = 𝜌(𝑋) + 𝑓 𝑅 ,

𝑌 = 𝜌(𝑌) + 𝑔 𝑅 ,

𝑍 = 𝜌(𝑍) ,

(4.2)

where

𝑓(𝑥, 𝑦, 𝑧) = 𝑥 𝐴
(
𝑧,
√
𝑥2 + 𝑦2

)
, 𝑔(𝑥, 𝑦, 𝑧) = −𝑦 𝐴

(
𝑧,
√
𝑥2 + 𝑦2

)
,

and

𝐴(𝑧, 𝑟) =
𝑎
(
𝑟2 − 𝑧2

)

𝑟2 ,

with 𝑎∶ ℝ → ℝ any 𝐶∞–function which vanishes for 𝑟2 − 𝑧2 ≤ 0 and is bounded.

By [2], the fields 𝑋,𝑌, 𝑍 still close under the Lie bracket to an 𝔰𝔩(2,ℝ)–algebra and are

complete. Hence they integrate to an action 𝜌̂ of the universal cover of 𝑆𝐿(2,ℝ), which

descends to 𝑆𝐿(2,ℝ) itself since 𝑍 = 𝜌(𝑍) is unchanged. Moreover:

• On the “hyperbolic region” {𝑥2 + 𝑦2 > 𝑧2}, one has 𝑎(𝑟2 − 𝑧2) ≠ 0 and {𝑋, 𝑌, 𝑍} are

linearly independent, so 𝜌̂–orbits are 3-dimensional.

• On and inside the “cone” {𝑥2 + 𝑦2 ≤ 𝑧2}, one has 𝑎(𝑟2 − 𝑧2) = 0 so 𝑋 = 𝜌(𝑋), 𝑌 = 𝜌(𝑌),

and 𝜌̂ coincides with the linear action.

Since the original linear action never has 3-dimensional orbits, 𝜌̂ cannot be conjugate to

it. Therefore, the deformed action is not linearizable.

4.2 The counterexample of Guillemin and Sternberg

The construction of Guillemin and Sternberg [8] follows the guidelines outlined below. It

is quite similar to the counterexample of Grant and Cairns; however, the key difference
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is that the vector field the perturbation does not preserve 𝑍, so it cannot be guaranteed

that it lifts to 𝑆𝐿(2,ℝ).

If we perturb the initial action of 𝔰𝔩(2,ℝ) to the non-linear action:

𝜌̂(𝑋) = 𝜌(𝑋) + 𝑥𝑧
𝑟2 𝑔(𝑟

2 − 𝑧2)𝑅,

𝜌̂(𝑌) = 𝜌(𝑌) − 𝑦𝑧
𝑟2 𝑔(𝑟

2 − 𝑧2)𝑅,

𝜌̂(𝑍) = 𝜌(𝑍) + 𝑔(𝑟2 − 𝑧2)𝑅,

where 𝑅 = 𝑥 𝜕
𝜕𝑥
+ 𝑦 𝜕

𝜕𝑦
+ 𝑧 𝜕

𝜕𝑧
is the radial vector field, and 𝑔 ∈ 𝐶∞(ℝ) is such that 𝑔(𝑥) > 0 if

𝑥 > 0, and 𝑔(𝑥) = 0 if 𝑥 ≤ 0.

Inside the cone 𝑟2−𝑧2, the two sets of vector fields are identical. However, if we choose

𝑔(𝑢) = 𝑒−1∕𝑢2 , 𝑢 > 0, and 𝑔(𝑢) = 0, 𝑢 ≤ 0, for example, then outside the cone 𝑟2 − 𝑧2 = 0, the

vector field 𝜌(𝑋) = 𝑥 𝜕
𝜕𝑦
−𝑦 𝜕

𝜕𝑥
has closed circular orbits, while the corresponding deformed

vector field 𝜌̂(𝑋) has orbits that spiral outward.

Therefore, it is impossible to find a 𝐶∞-mapping defined in a neighborhood of the

origin. Hence, 𝜌 is not linearizable.

4.3 A Hamiltonian counterexample

We construct a counterexample to 𝐶∞–linearization under the hypothesis that the action

is Hamiltonian, thereby giving a negative answer to a question of Eliasson [5]. We keep

the notation of the Cairns–Ghys construction from Section 4.1.

Proposition 4.1. Let 𝛼 be the 𝑆𝐿(2,ℝ)–action on ℝ3 generated by

𝑋 = 𝜌(𝑋) + 𝑓𝑅, 𝑌 = 𝜌(𝑌) + 𝑔𝑅, 𝑍 = 𝜌(𝑍),

where 𝑅 = 𝑥 𝜕𝑥 + 𝑦 𝜕𝑦 + 𝑧 𝜕𝑧 and

𝑓 = 𝑥𝐴
(
𝑧,
√
𝑥2 + 𝑦2

)
, 𝑔 = −𝑦 𝐴

(
𝑧,
√
𝑥2 + 𝑦2

)
, 𝐴(𝑧, 𝑟) = 𝑎(𝑟2 − 𝑧2)

𝑟2 ,

with 𝑎 ∶ ℝ → ℝ smooth, bounded, and vanishing on ℝ−. Let 𝛼̂ be the cotangent lift of 𝛼 to

𝑇∗(ℝ3). Then 𝛼̂ is Hamiltonian and not 𝐶∞–linearizable in a neighbourhood of the origin.
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Proof. For a diffeomorphism 𝑔 ∶ 𝑀 → 𝑀, the cotangent lift is

𝑔(𝑞, 𝑝) =
(
𝑔(𝑞), (𝑑𝑔−1𝑞 )∗𝑝

)
,

so

𝜋◦𝑔 = 𝑔◦𝜋 and 𝑔(𝑞, 0) = (𝑔(𝑞), 0). (4.3)

Thus fibres map to fibres and the zero section is preserved by every cotangent lift. In

particular, with

𝐹 ∶= 𝜋−1(0) = {𝑥 = 𝑦 = 𝑧 = 0}, 𝑍 ∶= {𝑎 = 𝑏 = 𝑐 = 0}, 𝑂 ∶= (0, 0, 0; 0, 0, 0),

both 𝐹 and 𝑍 are invariant for the lifted linear action and for the lifted Cairns–Ghys

action (note that 0 is fixed in the base, since 𝜌 is linear and 𝑓𝑅, 𝑔𝑅 vanish at 0).

Let 𝛼(1) denote the linear part of 𝛼 and 𝛼̂(1) its cotangent lift. The latter is Hamiltonian

for 𝜔 = 𝑑𝜃 (𝜃 = 𝑎 𝑑𝑥 + 𝑏 𝑑𝑦 + 𝑐 𝑑𝑧), with moment map

𝜇 = (𝑧𝑏 + 𝑐𝑦, 𝑎𝑧 + 𝑐𝑥, −𝑎𝑦 + 𝑏𝑥) ∈ 𝔰𝔩(2,ℝ)∗,

whose Jacobian is

𝐷𝜇 =

⎛
⎜
⎜
⎜
⎝

0 𝑐 𝑏 0 𝑧 𝑦

𝑐 0 𝑎 𝑧 0 𝑥

𝑏 −𝑎 0 −𝑦 𝑥 0

⎞
⎟
⎟
⎟
⎠

.

For Hamiltonian actions one has dim(𝐺⋅𝑚) = rank 𝑑𝜇𝑚 (see, for instance, [7, §26]). A direct

computation shows that

rank𝐷𝜇 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, 𝑝 = 𝑂,

2, (𝑥, 𝑦, 𝑧) × (−𝑎,−𝑏, 𝑐) = 0, 𝑝 ≠ 𝑂,

3, otherwise.

Equivalently, the rank drops to 2 precisely when (𝑥, 𝑦, 𝑧) is collinear with (−𝑎,−𝑏, 𝑐), a locus
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containing 𝐹 = {𝑥 = 𝑦 = 𝑧 = 0} and 𝑍 = {𝑎 = 𝑏 = 𝑐 = 0} but strictly larger. Consequently,

dim𝒪𝛼̂(1)(𝑝) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, 𝑝 = 𝑂,

2, (𝑥, 𝑦, 𝑧) × (−𝑎,−𝑏, 𝑐) = 0, 𝑝 ≠ 𝑂,

3, otherwise,

(4.4)

and, in particular, dim𝒪𝛼̂(1)(𝑞, 0) = 2 for all 𝑞 ≠ 0.

For any lifted action, the fundamental vector fields satisfy

𝜉𝑋(𝑞, 𝑝) =
(
𝜉𝑋(𝑞), −𝑝◦𝑑𝜉𝑋(𝑞)

)
. (4.5)

Hence along 𝑍 one has 𝜉𝑋(𝑞, 0) = (𝜉𝑋(𝑞), 0), so every orbit starting in 𝑍 stays in 𝑍. Con-

versely, no orbit through a point (𝑞, 𝑝) ∉ 𝑍 can be contained in 𝑍, since it already contains

(𝑞, 𝑝) ∉ 𝑍. Thus, near 𝑂, the orbits contained in 𝑍 are exactly those starting in 𝑍. Moreover,

from (4.5) we read off

dim𝒪𝛼̂(𝑞, 0) = dim𝒪𝛼(𝑞).

By [2, §8] there exist points 𝑞 → 0 in the base with 3–dimensional 𝛼–orbits. For such 𝑞,

put 𝑝 = (𝑞, 0) ∈ 𝑍 ⧵ {𝑂}. Then

dim𝒪𝛼̂(𝑞, 0) = dim𝒪𝛼(𝑞) = 3. (4.6)

Assume, for contradiction, that there exists a germ Φ ∶ (𝑇∗𝑀,𝑂) → (𝑇∗𝑀,𝑂) with Φ◦𝛼̂(1) =

𝛼̂◦Φ. Conjugacy carries orbits diffeomorphically to orbits, preserving their dimension.

Since, near 𝑂, the orbits contained in 𝑍 are precisely those starting in 𝑍 for both lifted

actions, necessarily Φ(𝑍) = 𝑍 and Φ(𝐹) = 𝐹. Hence Φ−1(𝑝) ∈ 𝑍 ⧵ {𝑂}, so by (4.4)

dim𝒪𝛼̂(1)(Φ−1(𝑝)
)
= 2,

whereas by (4.6) dim𝒪𝛼̂(𝑝) = 3, a contradiction. Therefore, 𝛼̂ is not 𝐶∞–linearizable near

the zero section.

Remark 4.2. We can employ the same strategy, adopting the counterexample by Guillemin

and Sternberg in the process.
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Consider the Lie algebra action of 𝔰𝔩(2,ℝ), denoted by 𝜌, on ℝ3, generated by the vector

fields:

𝜌̂(𝑋) = 𝜌(𝑋) + 𝑥𝑧
𝑟2 𝑔(𝑟

2 − 𝑧2)𝑅,

𝜌̂(𝑌) = 𝜌(𝑌) − 𝑦𝑧
𝑟2 𝑔(𝑟

2 − 𝑧2)𝑅,

𝜌̂(𝑍) = 𝜌(𝑍) + 𝑔(𝑟2 − 𝑧2)𝑅,

where 𝑅 = 𝑥 𝜕
𝜕𝑥
+ 𝑦 𝜕

𝜕𝑦
+ 𝑧 𝜕

𝜕𝑧
is the radial vector field, and 𝑔 ∈ 𝐶∞(ℝ) satisfies 𝑔(𝑢) = 𝑒−1∕𝑢2

for 𝑢 > 0 and 𝑔(𝑢) = 0 for 𝑢 ≤ 0.

Using similar guidelines to those of Guillemin and Sternberg in [8], we can verify that

the lifted action to 𝑇∗(ℝ3) is not 𝐶∞-linearizable.

The lift of the action can be computed using the Liouville one-form. Let 𝜃 = 𝑎 𝑑𝑥 +

𝑏 𝑑𝑦 + 𝑐 𝑑𝑧. Then, the lift of the non-perturbed vector field is a Hamiltonian vector field

with the Hamiltonian function

𝑓 = −𝑎𝑦 + 𝑏𝑥,

and the lifted vector field of the perturbed system is the Hamiltonian vector field with

respect to the function

𝑓′ = −𝑎𝑦 + 𝑏𝑥 + 𝑔(𝑟2 − 𝑧2)(𝑎𝑥 + 𝑏𝑦).

The Hamiltonian vector field of 𝑓 is given by:

𝑥 𝜕
𝜕𝑦 − 𝑦 𝜕

𝜕𝑥 + 𝑎 𝜕
𝜕𝑏 − 𝑏 𝜕

𝜕𝑎 ,

and it exhibits periodic orbits. In contrast, the corresponding deformed vector field,

the Hamiltonian vector field of 𝑓′, has orbits that spiral outward.
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4.4 The case of semisimple Lie algebras of compact type

When the Lie algebra action is of compact type, it can be integrated into an action of a

compact Lie group 𝐺 (see [6] for a proof, which is based on the use of algebroids).

Given a fixed point for the action 𝑝, we can associate a linear action of the group

in a neighbourhood of 𝑝, with the group action preserving the symplectic structure

(which we can assume to be in Darboux coordinates). Applying the equivariant Darboux

theorem [3], we obtain a diffeomorphism 𝜙 that linearizes the group action 𝐺 in Darboux

coordinates. By differentiation, this provides the linearization of the Lie algebra action 𝜌.
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Abstract: In this paper we extend the novel approach to discrete Painlevé

equations initiated in our previous work [2]. A classification scheme for dis-

crete Painlevé equations proposed by Sakai interprets them as birational

isomorphisms between generalized Halphen surfaces (surfaces obtained from

ℙ1 × ℙ1 by blowing up at eight points). Sakai’s classification is thus based on

the classification of generalized Halphen surfaces. In our scheme, the family

of generalized Halphen surfaces is replaced by a pencil of quadrics in ℙ3. A

discrete Painlevé equation is viewed as an autonomous transformation of ℙ3

that preserves the pencil and maps each quadric of the pencil to a different

one. Thus, our scheme is based on the classification of pencils of quadrics

in ℙ3. Compared to our previous work, here we consider a technically more
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demanding case where the characteristic polynomial ∆(𝜆) of the pencil of

quadrics is not a complete square. As a consequence, traversing the pencil

via a 3D Painlevé map corresponds to a translation on the universal cover of

the Riemann surface of
√
∆(𝜆), rather than to a Möbius transformation of the

pencil parameter 𝜆 as in [2].

1 Introduction

This paper is the second contribution to our study devoted to a novel interpretation

of discrete Painlevé equations, which builds up on [2]. Discrete Painlevé equations

belong to the most intriguing objects in the theory of discrete integrable systems. After

some examples sporadically appeared in various applications, their systematic study

started when Grammaticos, Ramani and Papageorgiou proposed the notion of “singularity

confinement” as an integrability detector, and found the first examples of second order

nonlinear non-autonomous difference equations with this property, which they denoted

as discrete Painlevé equations [9, 16]. The activity of their group was summarized in [8]. A

general classification scheme of discrete Painlevé equations was proposed by Sakai [18]

and it is given a detailed exposition in the review paper by Kajiwara, Noumi and Yamada

[11]. In the framework of Sakai’s scheme, discrete Painlevé equations are birational maps

between generalized Halphen surfaces 𝑋. The latter can be realized as ℙ1 × ℙ1 blown up

at eight points. A monographic exposition of discrete Painlevé equations is given by Joshi

[10].

Let us summarize the main ingredients and features of our alternative approach to

discrete Painlevé equations, initiated in [2].

• A pencil of quadrics {𝑄𝜆} in ℙ3 containing non-degenarate quadrics. Such pencils

can be classified modulo projective transformations of ℙ3, and they come in thirteen

classes. The class of the pencil can be identified by the type of its base curve 𝑄0 ∩
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𝑄∞. This is a spatial curve of degree 4, whose type can vary from a generic one

(irreducible smooth curve for a pencil of type (i)), through irreducible curves with a

node (type (ii)) or with a cusp (type (iii)), to various types of reducible curves (from

two non-coplanar conics intersecting at two points, type (iv), to a pair of intersecting

double lines, type (xiii)).

• The second pencil of quadrics {𝑃𝜇} having one quadric in common with {𝑄𝜆}, say

𝑃∞ = 𝑄∞. The base curves of both pencils intersect at eight points 𝑆𝑖, 𝑖 = 1, … , 8.

• Given two pencils of quadrics, one can define a three-dimensional analog of a QRT

map 𝐹 = 𝑖1◦𝑖2, where the 3D QRT involutions 𝑖1, 𝑖2 act along two families of generators

of 𝑄𝜆, see [1]. Each involution puts into correspondence two intersection points of

a generator with the quadric 𝑃𝜇. By definition, such an involution, and therefore

the 3D QRT map 𝐹 = 𝑖1◦𝑖2, leaves each quadric of two pencils invariant, and thus

possesses two rational integrals of motion 𝜆 = 𝑄0∕𝑄∞ and 𝜇 = 𝑃0∕𝑃∞.

• A Painlevé deformation map is the device which allows us to travel across the pencil

{𝑄𝜆}. More precisely, such a map 𝐿 on ℙ3 preserves the pencil, but not fiber-wise.

Rather, it sends each quadric 𝑄𝜆 to a different quadric 𝑄𝜆. Moreover, 𝐿 preserves

the base curve of the pencil {𝑄𝜆}. In the cases considered in [2], the base curve is

reducible and contains straight lines. In these cases, 𝐿 does not necessarily fix these

straight lines point-wise. In the cases considered in the present paper, 𝐿 fixes the

base curve 𝑄0 ∩ 𝑄∞ pointwise (in particular, it fixes all eight points 𝑆𝑖).

• A 3D Painlevé map is obtained by composition𝐹 = 𝐿◦𝑖1◦𝐿◦𝑖2, provided it possesses the

singularity confinement property. It is to be stressed that the pencil {𝑄𝜆} continues to

play a fundamental role in the dynamics of 𝐹: the maps 𝐿◦𝑖1, 𝐿◦𝑖2 preserve the pencil

and map each quadric 𝑄𝜆 to 𝑄𝜆. We do not have a straightforward description of the

dynamical role of the pencil {𝑃𝜇}, but anticipate its relation to the isomonodromic

description of the discrete Painlevé equations.

One can say that in our approach the role of a family of generalized Halphen surfaces
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is played by the quadrics of the pencil {𝑄𝜆} with eight distinguished points on the base

curve of the pencil. The base curve itself plays the role of the unique anti-canonical

divisor. Let us stress several features of our construction which are in a sharp contrast to

the Sakai scheme.

• Neither the exceptional divisor nor the eight distinguished points evolve under the

map 𝐹. Their discrete time evolution is apparent and is due to their representation in

the so-called pencil-adapted coordinates. These are coordinates (𝑥, 𝑦, 𝜆) ∈ ℙ1×ℙ1×ℙ1

establishing an isomorphism between each quadric 𝑄𝜆 of the pencil and ℙ1 × ℙ1.

The pencil-adapted coordinates of a point on the base curve do depend on 𝜆, so

traversing the pencil 𝜆 ↦→ 𝜆 under 𝐹 induces an apparent discrete time evolution of

the base curve and of the eight distinguished points.

• The shift parameter 𝛿 of discrete Painlevé equations (or its exponent 𝑞 = 𝑒𝛿 for the

𝑞-difference equations among them) is not an intrinsic characteristic of the configu-

ration of eight distinguished points, but is a free parameter of the construction.

One can say that our approach is a realization of the old-style idea of discrete Painlevé

equations being non-autonomous versions (or modifications) of the QRT maps. This idea

was instrumental in the discovery and early classification attempts of discrete Painlevé

equations, summarized in [8]. A more geometric version of this procedure was proposed

in the framework of the Sakai’s scheme by Carstea, Dzhamay and Takenawa [5]. In

their scheme, the de-autonomization of a given QRT map depends on the choice of one

biquadratic curve of the pencil. In our approach, the choice of the base curve and eight

distinguished point on it determines uniquely all the ingredients of the construction,

starting with the two pencils of quadrics.

The structure of the paper is as follows. In Section 2, we describe the construction

scheme of discrete Painlevé equations applicable to the present case and stress its dis-

tinctions from the previous paper [2]. The main distinction is that here we consider the

pencils whose characteristic polynomial ∆(𝜆) is not a complete square. As a consequence,
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the 3D QRT involutions 𝑖1, 𝑖2 and the 3D QRT map 𝐹 = 𝑖1◦𝑖2 are no more birational maps

of ℙ3. Rather, these maps become birational maps on 𝒳, a branched double covering of

ℙ3, whose ramification locus is the union of the singular quadrics 𝑄𝜆𝑖 , where 𝜆𝑖 are the

branch points of the Riemann surface ℛ of
√
∆(𝜆).

In Section 3, we formulate a general recipe for the construction of the Painlevé

deformation map 𝐿, responsible to the evolution 𝜆 ↦→ 𝜆 across the pencil of quadrics {𝑄𝜆}.

While in the first part [2] we had 𝜆 = 𝜎(𝜆), where 𝜎 ∶ ℙ1 → ℙ1 is a Möbius automorphism

fixing the set Sing(𝑄) ∶=
{
𝜆 ∈ ℙ1 ∶ 𝑄𝜆 is degenerate

}
, in the present paper the natural

definition becomes 𝜆 = 𝜆(𝜈), where 𝜆 = 𝜆(𝜈) is the holomorphic uniformization map for

the Riemann surface ℛ, and 𝜈 = 𝜈 + 2𝛿 is the translation on the universal cover ℂ. The

recipe turns out to be applicable to all types of the pencil {𝑄𝜆} except for the generic type

(i). The latter leads to the elliptic Painlevé equation, which will be treated in a separate

publication.

In Section 4, we show that the so constructed 𝐿 ensures the fundamental singularity

confinement property for our 3D Painlevé maps.

There follow five Sections 5–9 containing a detailed elaboration of our scheme for

all relevant types of the pencils except for the type (i). We recover, within our novel

framework, all discrete Painlevé equations except for the elliptic one, which is left for a

separate publication.

2 General scheme

We now describe the construction scheme of discrete Painlevé equations applicable to

the present case and stress its distinctions from the previous paper [2]. The first steps

are the same as there:

• Start with a pencil {𝐶𝜇} of biquadratic curves in ℙ1 × ℙ1 and the corresponding QRT

map. Let 𝑠1, … , 𝑠8 ∈ ℙ1 × ℙ1 be the base points of this pencil. Lift {𝐶𝜇} to a pencil of

quadrics {𝑃𝜇} in ℙ3 using the Segre embedding of ℙ1 ×ℙ1 to ℙ3. The base curve of this
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pencil passes through the lifts 𝑆1, … , 𝑆8 of the base points 𝑠1, … , 𝑠8.

• Choose one distinguished biquadratic curve 𝐶∞ of the pencil, along with its lift to a

quadric 𝑃∞.

• Based on these data, construct the pencil of quadrics {𝑄𝜆 = 𝑄0 − 𝜆𝑄∞} in ℙ3 spanned

by 𝑄0 = {𝑋1𝑋2 − 𝑋3𝑋4 = 0} and 𝑄∞ ∶= 𝑃∞. Recall that 𝑄0 is nothing but the image of

ℙ1×ℙ1 by the Segre embedding. The base curve of the pencil {𝑄𝜆} is, by definition, the

curve𝑄0∩𝑄∞, which is the image of 𝐶∞ under the Segre embedding. The intersection

of this curve with the base curve of the pencil {𝑃𝜇} consists exactly of the points

𝑆1, … , 𝑆8.

The characteristic polynomial of the pencil {𝑄𝜆} is

∆(𝜆) = det(𝑀𝜆) = det(𝑀0 − 𝜆𝑀∞), (1)

where 𝑀0,𝑀∞ ∈ Sym4×4(ℂ) are symmetric matrices of the quadratic forms 𝑄0, 𝑄∞. In the

present paper, we are dealing with the cases where this polynomial is not a complete

square. According to the projective classification of pencils of quadrics, discussed in [2],

these are the following six cases:

(i) Pencil of quadrics through a non-singular spatial quartic curve.

Segre symbol [1, 1, 1, 1]; ∆(𝜆) = (𝜆 − 𝜆1)(𝜆 − 𝜆2)(𝜆 − 𝜆3)(𝜆 − 𝜆4).

(ii) Pencil of quadrics through a nodal spatial quartic curve.

Segre symbol [2, 1, 1]; ∆(𝜆) = (𝜆 − 𝜆1)2(𝜆 − 𝜆2)(𝜆 − 𝜆3).

(iii) Pencil of quadrics through a cuspidal spatial quartic curve.

Segre symbol [3, 1]; ∆(𝜆) = (𝜆 − 𝜆1)3(𝜆 − 𝜆2).

(iv) Pencil of quadrics through two non-coplanar conics sharing two points.

Segre symbol [(1, 1), 1, 1]; ∆(𝜆) = (𝜆 − 𝜆1)2(𝜆 − 𝜆2)(𝜆 − 𝜆3).

(v) Pencil of quadrics through two non-coplanar conics touching at a point.

Segre symbol [(2, 1), 1]; ∆(𝜆) = (𝜆 − 𝜆1)3(𝜆 − 𝜆2).
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(vi) Pencil of quadrics tangent along a non-degenerate conic.

Segre symbol [(1, 1, 1), 1]; ∆(𝜆) = (𝜆 − 𝜆1)3(𝜆 − 𝜆2).

As discussed in [2], for 𝑋 ∈ 𝑄𝜆, the generators 𝓁1(𝑋) and 𝓁2(𝑋) are rational functions of

𝑋 and of
√
∆(𝜆). The dependence on 𝜆 can be expressed as a holomorphic dependence on

the point of the Riemann surface ℛ of
√
∆(𝜆). This Riemann surface is a double cover of ℂ̂

branched at two or at four points. By the uniformization theorem, its universal cover is ℂ.

We will denote the uniformizing variable 𝜈 ∈ ℂ, so that the maps 𝜈 ↦→ 𝜆 and 𝜈 ↦→
√
∆(𝜆)

are holomorphic. The following three situations can be distinguished:

- case (i): four distinct branch points 𝜆1, 𝜆2, 𝜆3, 𝜆4, the Riemann surface ℛ is a torus,

whose conformal class is determined by the cross-ratio of the branch points. This

case, corresponding to the elliptic Painlevé equations, will be treated in an upcoming

work;

- cases (ii), (iv): two branch points 𝜆2, 𝜆3, one of the periods of the torus becomes

infinite, so that ℛ is a cylinder;

- cases (iii), (v), (vi): two branch points 𝜆1, 𝜆2, both periods of the torus become infinite,

so that ℛ is plane.

It becomes necessary to introduce modifications in the two major ingredients of the

construction in [2].

• The generators 𝓁1, 𝓁2 are not rational functions on ℙ3 anymore. Rather, they become

well-defined rational maps on the variety 𝒳 which is a branched double covering of

ℙ3, whose ramification locus is the union of the singular quadrics 𝑄𝜆𝑖 , where 𝜆𝑖 are

the branch points of ℛ. The same is true for a linear projective change of variables

𝑋 = 𝐴𝜈𝑌 reducing the quadratic form 𝑄𝜆(𝜈) to the standard form 𝑄0, which we now

write as

𝑄𝜆(𝜈)(𝐴𝜈𝑌) = 𝑄0(𝑌), or 𝐴T
𝜈𝑀𝜆(𝜈)𝐴𝜈 = 𝑀0, (2)
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and for the pencil-adapted coordinates

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝜈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑥𝑦

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=∶ 𝜙𝜈(𝑥, 𝑦). (3)

Thus, 𝜙𝜈 gives a parametrization of 𝑄𝜆(𝜈) by (𝑥, 𝑦) ∈ ℙ1 × ℙ1, such that the generators

𝓁1, resp. 𝓁2 of 𝑄𝜆 correspond to 𝑥 = const, resp. to 𝑦 = const. Interchanging two sheets

of the covering corresponds to interchanging two families of generators 𝓁1, 𝓁2.

• Also the 3D QRT involutions 𝑖1, 𝑖2 for the pencil {𝑄𝜆}, defined by intersections of

its generators 𝓁1, 𝓁2 with the quadrics 𝑃𝜇 (see [1]), are not birational maps of ℙ3

anymore, and the same is true for the 3D QRT map 𝐹 = 𝑖1◦𝑖2. Rather, these maps

become birational maps on 𝒳.

The next main deviation from the construction of [2] is that it becomes unnatural to

consider Painlevé deformation maps 𝐿 as birational maps ℙ3 preserving the pencil {𝑄𝜆}

and sending each 𝑄𝜆 to 𝑄𝜎(𝜆), where 𝜎 ∶ ℙ1 → ℙ1 is a Möbius automorphism fixing the

set Sing(𝑄) ∶= {𝜆 ∈ ℙ1 ∶ 𝑄𝜆 is degenerate}. Instead, in the present context we formulate the

following requirement.

• A Painlevé deformation map 𝐿 is a birational map on 𝒳 preserving the pencil {𝑄𝜆}

and sending 𝑄𝜆(𝜈) to 𝑄𝜆(𝜈), where 𝜈 ↦→ 𝜈 = 𝜈 + 2𝛿 is a translation on the universal

cover of ℛ.

As compared with [2], our construction will involve some additional ingredients,

required to establish the relation to the form of discrete Painlevé equations known from

the literature. The Painlevé deformation map 𝐿 is decomposed in two factors, each one

depending only on one of the variables 𝑥, 𝑦, and shifting the variable 𝜈 by 𝛿. This can be

done in two ways:

𝐿 = 𝐿1◦𝑅2, where 𝐿1 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿), 𝑅2 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿), (4)

Arnold Mathematical Journal, Vol.11(4), 2025 204

http://dx.doi.org/10.56994/ARMJ


Discrete Painlevé equations

resp.

𝐿 = 𝐿2◦𝑅1, where 𝐿2 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿), 𝑅1 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿). (5)

(The indices 1, 2 refer to the variables which do not change under the map, like for 𝑖1, 𝑖2.)

Each one of 𝐿1, 𝐿2, 𝑅1, 𝑅2 maps 𝑄𝜆(𝜈) to 𝑄𝜆(𝜈+𝛿). We set

𝜈𝑛 = 𝜈0 + 2𝑛𝛿 for 𝑛 ∈ 1
2ℤ,

so that 𝜈𝑛+1∕2 = 𝜈𝑛 + 𝛿. The variables associated to the discrete Painlevé equations known

from the literature, parametrize in our formulation the quadrics with half-integer indices,

namely

(𝑥𝑛, 𝑦𝑛, 𝜈2𝑛−1∕2) ∈ 𝑄𝜆(𝜈2𝑛−1∕2) , (𝑥𝑛+1, 𝑦𝑛, 𝜈2𝑛+1∕2) ∈ 𝑄𝜆(𝜈2𝑛+1∕2) .

Definition 1. A 3D Painlevé map is given by

𝐹 = 𝑖̃1◦̃𝑖2, 𝑤ℎ𝑒𝑟𝑒 𝑖̃1 = 𝑅1◦𝑖1◦𝐿1, 𝑖̃2 = 𝑅2◦𝑖2◦𝐿2, (6)

or, in coordinates,

(𝑥𝑛, 𝑦𝑛, 𝜈2𝑛−1∕2)
𝐿2→ (𝑥, 𝑦𝑛, 𝜈2𝑛)

𝑖2→ (𝑥, 𝑦𝑛, 𝜈2𝑛)
𝑅2→ (𝑥𝑛+1, 𝑦𝑛, 𝜈2𝑛+1∕2) (7)

𝐿1→ (𝑥𝑛+1, 𝑦, 𝜈2𝑛+1)
𝑖1→ (𝑥𝑛+1, 𝑦, 𝜈2𝑛+1)

𝑅1→ (𝑥𝑛+1, 𝑦𝑛+1, 𝜈2𝑛+3∕2). (8)

The map 𝐹 is conjugate to 𝐿◦𝑖1◦𝐿◦𝑖2; note that the latter map acts between the quadrics

with integer indices.

Our last requirement repeats the one in [2]:

• The singularity confinement properties of 𝑖̃1, 𝑖̃2 are the same as that of 𝑖1, 𝑖2.

Reduction to the symmetric case. If the eight points 𝑠𝑖 are symmetric with respect to

the symmetry switch 𝜎 ∶ (𝑥, 𝑦) ↦→ (𝑦, 𝑥), we can define a 2D QRT root 𝑓 = 𝑖1◦𝜎 = 𝜎◦𝑖2 such

that 𝐹 = 𝑓◦𝑓. In this case, the map 𝐿 in the pencil-adapted coordinates satisfies 𝐿 = 𝜎◦𝐿◦𝜎,

and therefore its decomposition factors satisfy

𝐿2 = 𝜎◦𝐿1◦𝜎, 𝑅2 = 𝜎◦𝑅1◦𝜎.
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The 3D Painlevé map 𝐹 can be written as

𝐹 = 𝑅1◦𝑖1◦𝐿1◦𝑅2◦𝑖2◦𝐿2 = 𝑅1◦𝑖1◦𝐿1◦𝜎◦𝑅1◦𝜎◦𝑖2◦𝜎◦𝐿1

= 𝑅1◦𝑖1◦𝜎◦𝐿2◦𝑅1◦𝜎◦𝑖2◦𝐿2

= (𝑅1◦𝑓◦𝐿2)2.

Therefore, one can define the Painlevé deformed QRT root as 𝑓 = 𝑅1◦𝑓◦𝐿2, then the

discrete Painlevé map decomposes as 𝐹 = 𝑓◦𝑓.

3 Construction of the Painlevé deformation map

The desired properties of the Painlevé deformation map 𝐿 are ensured by the following

construction.

Theorem 1. If the polynomial 𝑄∞ does not depend on 𝑋3, define the map 𝐿 ∶ [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶

𝑋4] ↦→ [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶ 𝑋4] by requiring that, for 𝑋 ∈ 𝑄𝜆(𝜈), there holds

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑋1 = 𝑋1𝑋4,

𝑋2 = 𝑋2𝑋4,

𝑋3 = 𝑋3𝑋4 −
(
𝜆(𝜈) − 𝜆(𝜈)

)
𝑄∞(𝑋),

𝑋4 = 𝑋2
4 ,

(9)

where 𝜈 = 𝜈 + 2𝛿. If 𝑄∞ does not depend on 𝑋1, define

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑋1 = 𝑋1𝑋2 +
(
𝜆(𝜈) − 𝜆(𝜈)

)
𝑄∞(𝑋),

𝑋2 = 𝑋2
2 ,

𝑋3 = 𝑋2𝑋3,

𝑋4 = 𝑋2𝑋4.

(10)

Then 𝐿 sends each 𝑄𝜆(𝜈) to 𝑄𝜆(𝜈) and fixes all points of the base curve of the pencil {𝑄𝜆} not

belonging to {𝑋4 = 0} (resp. to {𝑋2 = 0}), including all eight base points 𝑆𝑖, 𝑖 = 1, … , 8.

Proof. It follows by a simple computation. For instance, for the case (9):

𝑋1𝑋2 − 𝑋3𝑋4 − 𝜆(𝜈)𝑄∞(𝑋) = 𝑋2
4

(
𝑋1𝑋2 − 𝑋3𝑋4 − 𝜆(𝜈)𝑄∞(𝑋)

)
.

Arnold Mathematical Journal, Vol.11(4), 2025 206

http://dx.doi.org/10.56994/ARMJ


Discrete Painlevé equations

Futher, if 𝑄∞(𝑋) = 0 and 𝑋4 ≠ 0, then [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶ 𝑋4] = [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶ 𝑋4]. ■

The recipe of Theorem 1 covers all cases treated in the present paper (pencils of

the types (ii)-(vi)). In retrospect, we notice that, with a natural modification (replace

𝜆 − 𝜆 = 𝜆(𝜈) − 𝜆(𝜈) by 𝜎(𝜆) − 𝜆), this recipe covers also the cases considered in the first

part of this study [2]. For pencils of the type (i) the quadric 𝑄∞ is non-degenerate, so a

modification of the recipe is required.

4 Singularity confinement

Our case-by-case computations reveal the following observation. In all examples of the

present paper, the eight points 𝑠1, … , 𝑠8 in ℙ1 × ℙ1 serve as the indeterminacy set for the

2D QRT involutions 𝑖1, 𝑖2. The singularity confinement structure can be summarised as:

{𝑥 = 𝑎𝑖}
𝑖1,→ 𝑠𝑖

𝑖2,→ {𝑦 = 𝑏𝑖}, 𝑖 = 1, … , 8. (11)

In the pencil-adapted coordinates, the 3D QRT involutions restricted to 𝑄𝜆(𝜈) are given

by the same formulas as the original 2D QRT involutions, with the points 𝑠𝑖 replaced by

their deformations 𝑠𝑖(𝜈). The latter still support a pencil of biquadratic curves, which are

the pre-images under 𝜙𝜈 of the intersection curves 𝑄𝜆(𝜈) ∩ 𝑃𝜇. Therefore, for the 3D QRT

involutions 𝑖1 and 𝑖2, we have

{𝑥 = 𝑎𝑖(𝜈)}
𝑖1→ 𝑠𝑖(𝜈)

𝑖2→ {𝑦 = 𝑏𝑖(𝜈)}. (12)

LetΦ𝑖 ⊂ ℙ3 be the ruled surface comprised of the lines on𝑄𝜆(𝜈) given, in the pencil-adapted

coordinates 𝜙𝜈, by the equations {𝑥 = 𝑎𝑖(𝜈)}. Likewise, let Ψ𝑖 ⊂ ℙ3 be the ruled surface

comprised of the lines on 𝑄𝜆(𝜈) given in the coordinates 𝜙𝜈 by the equations {𝑦 = 𝑏𝑖(𝜈)}.

Then, in view of (12), we obtain the following singularity confinement patterns for 𝑖1, 𝑖2:

Φ𝑖
𝑖1→ 𝑆𝑖

𝑖2→ Ψ𝑖. (13)

We emphasize that the surfaces Φ𝑖 are blown down to points (rather than curves), and

these points are blown up to surfaces Ψ𝑖 again.
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Theorem 2. Suppose that the involutions 𝑖1, 𝑖2 ∶ ℙ3 ⤏ ℙ3 have a singularity confinement

pattern of the type (13), and 𝐿 satisfies

𝐿(𝑆𝑖) = 𝑆𝑖. (14)

Then for the deformed maps 𝑖̃1 = 𝑅1◦𝑖1◦𝐿1, 𝑖̃2 = 𝑅2◦𝑖2◦𝐿2 we have:

𝐿−11 (Φ𝑖)
𝑖̃1→ 𝑅1(𝑆𝑖)

𝑖̃2→ 𝑅2(Ψ𝑖), (15)

which implies for 𝐹 = 𝑖̃1◦̃𝑖2 the singularity confinement pattern

(𝐿1◦̃𝑖2)−1(Φ𝑖)
𝐹
→ 𝑅1(𝑆𝑖)

𝐹
→ (̃𝑖1◦𝑅2)(Ψ𝑖). (16)

An important observation is that the eight points 𝑅1(𝑆𝑖) participating in these singu-

larity confinement patterns do not support a net of quadrics.

5 From a pencil of type (v) to the d-Painlevé equation of the

surface type 𝐴(1)
1

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic

curves {𝐶𝜇} through eight points 𝑠𝑖 = (𝑎𝑖, 𝑏𝑖), 𝑖 = 1, … , 8, where

𝑏𝑖 = −𝑎𝑖, 𝑖 = 1, … , 4, and 𝑏𝑖 = 1 − 𝑎𝑖, 𝑖 = 5, … , 8. (17)

These eight points support a pencil of biquadratic curves if they satisfy the condition

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 − 𝑎5 − 𝑎6 − 𝑎7 − 𝑎8 = −2. (18)

This pencil contains a reducible curve, consisting of two (1,1)-curves:

𝐶∞ = {(𝑥 + 𝑦)(𝑥 + 𝑦 − 1) = 0}. (19)

The vertical involution 𝑖1 for this pencil can be described by the following equation:

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦), (𝑦 + 𝑥)(𝑥 + 𝑦)
(𝑦 + 𝑥 − 1)(𝑥 + 𝑦 − 1)

=
∏4

𝑖=1(𝑥 − 𝑎𝑖)
∏8

𝑖=5(𝑥 − 𝑎𝑖)
. (20)
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(a) (b)

Figure 1: (a) Base set of the surface type 𝐴(1)
1 : two quadruples of points on two touching

(1,1)-curves in ℙ1 × ℙ1. (b) Pencil of quadrics through two touching non-coplanar conics

Similarly, the horizontal involution 𝑖2 can be described by the following equation:

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦), (𝑥 + 𝑦)(𝑥 + 𝑦)
(𝑥 + 𝑦 − 1)(𝑥 + 𝑦 − 1)

=
∏4

𝑖=1(𝑦 + 𝑎𝑖)
∏8

𝑖=5(𝑦 + 𝑎𝑖 − 1)
. (21)

The QRT map is the composition of these two involutions, 𝐹 = 𝑖1◦𝑖2. The singularity

confinement structure of the involutions 𝑖1, 𝑖2 is as in (11). The symmetric case corresponds

to

𝑎2𝑖 = −𝑎2𝑖−1, 𝑖 = 1, 2, 𝑎2𝑖 = 1 − 𝑎2𝑖−1, 𝑖 = 3, 4.

In this case, 𝐹 = 𝑓◦𝑓, with 𝑓 = 𝑖1◦𝜎 = 𝜎◦𝑖2 being the QRT root (here 𝜎(𝑥, 𝑦) = (𝑦, 𝑥)).

3D Painlevé map. We consider the pencil of quadrics {𝑃𝜇} in ℙ3, the Segre lift of the

pencil of curves {𝐶𝜇}. The pencil {𝑄𝜆} is spanned by 𝑄0 = {𝑋1𝑋2 −𝑋3𝑋4 = 0} and 𝑄∞ = 𝑃∞ =

{(𝑋1 + 𝑋2)(𝑋1 + 𝑋2 − 𝑋4) = 0}:

𝑄𝜆 =
{
𝑋1𝑋2 − 𝑋3𝑋4 − 𝜆(𝑋1 + 𝑋2)(𝑋1 + 𝑋2 − 𝑋4) = 0

}
. (22)

The base set of the pencil 𝑄𝜆 consists of the two conics, {𝑋1𝑋2 −𝑋3𝑋4 = 0, 𝑋1 +𝑋2 = 0} and

{𝑋1𝑋2 − 𝑋3𝑋4 = 0, 𝑋1 + 𝑋2 = 𝑋4}, which have one common (touching) point [0 ∶ 0 ∶ 1 ∶ 0].
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This is a pencil of type (v). The intersection of this base set with the base set of the pencil

{𝑃𝜇} consists of eight points

𝑆𝑖 = [𝑎𝑖 ∶ 𝑏𝑖 ∶ 𝑎𝑖𝑏𝑖 ∶ 1], 𝑖 = 1, … , 8,

which are nothing but the lifts of the points 𝑠𝑖 under the Segre embedding.

The matrix 𝑀𝜆 of the quadratic form 𝑄𝜆:

𝑀𝜆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−2𝜆 1 − 2𝜆 0 −𝜆

1 − 2𝜆 −2𝜆 0 −𝜆

0 0 0 −1

−𝜆 −𝜆 −1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (23)

The characteristic polynomial of the pencil {𝑄𝜆} is: ∆(𝜆) = det(𝑀𝜆) = 1 − 4𝜆, which is not a

complete square, and Sing(𝑄𝜆) = { 1
4
,∞}. We uniformize the Riemann surface of

√
∆(𝜆) via

𝜆 = 1 − 𝜈2
4 ,

√
∆(𝜆) = 𝜈. (24)

Thus, 𝜆(−𝜈) = 𝜆(𝜈), while
√
∆(𝜆) changes its sign as 𝜈 → −𝜈. This gives us a double

cover of the original pencil branched at 𝜆 = 1∕4 (corresponding to 𝜈 = 0), and at 𝜆 = ∞

(corresponding to 𝜈 = ∞). The normalizing transformation of 𝑄𝜆(𝜈) to the canonical form

𝑄0 can be found as follows:
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝜈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑌1
𝑌2
𝑌3
𝑌4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (25)

where

𝐴𝜈 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2𝜈
(1 + 𝜈) 1

2𝜈
(1 − 𝜈) 0 0

1
2𝜈
(1 − 𝜈) 1

2𝜈
(1 + 𝜈) 0 0

1
4𝜈
(1 − 𝜈2) 1

4𝜈
(1 − 𝜈2) 1 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (26)
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Indeed, one immediately verifies that

𝐴T
𝜈𝑀𝜆(𝜈)𝐴𝜈 = 𝑀0.

Now, we are in the position to derive a parametrization of the quadric 𝑄𝜆:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝜈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑥𝑦

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2𝜈
((1 + 𝜈)𝑥 + (1 − 𝜈)𝑦)

1
2𝜈
((1 − 𝜈)𝑥 + (1 + 𝜈)𝑦)

𝑥𝑦 + 1−𝜈2

4𝜈
(𝑥 + 𝑦)

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=∶ 𝜙𝜈(𝑥, 𝑦). (27)

Observe that this parametrization is neither valid for 𝜈 = 0 nor for 𝜈 = ∞. The pencil-

adapted coordinates (𝑥, 𝑦, 𝜈) on (the double cover of) ℙ3 are:

𝑥 = (1 + 𝜈)𝑋1 − (1 − 𝜈)𝑋2
2𝑋4

, 𝑦 = (1 + 𝜈)𝑋2 − (1 − 𝜈)𝑋1
2𝑋4

, (28)

which have to be supplemented with

𝜆 = 1 − 𝜈2
4 = 𝑋1𝑋2 − 𝑋3𝑋4

(𝑋1 + 𝑋2)(𝑋1 + 𝑋2 − 𝑋4)
. (29)

Theorem 3. For any 𝛿 ∈ ℂ ⧵ {0}, define the Painlevé deformation map corresponding to the

translation 𝜈 ↦→ 𝜈 = 𝜈 + 2𝛿 by

𝐿 ∶

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑋1 = 𝑋1𝑋4,

𝑋2 = 𝑋2𝑋4,

𝑋3 = 𝑋3𝑋4 −
(
𝜆(𝜈) − 𝜆(𝜈)

)
𝑄∞(𝑋)

= 𝑋3𝑋4 + 𝛿(𝜈 + 𝛿)(𝑋1 + 𝑋2)(𝑋1 + 𝑋2 − 𝑋4),

𝑋4 = 𝑋2
4 .

Then, in pencil-adapted coordinates, the map 𝐿 acts as follows:

𝐿 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈), 𝑥 = 𝑥 + 𝛿
𝜈 (𝑥 + 𝑦), 𝑦 = 𝑦 + 𝛿

𝜈 (𝑥 + 𝑦), 𝜈 = 𝜈 + 2𝛿. (30)

For the latter map, the factorizations (4), (5) are given by

𝐿1 = 𝑅1 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿), 𝐿2 = 𝑅2 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿),
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where

𝑦 = 𝑦 + 𝛿
𝜈 (𝑥 + 𝑦) ⇔ 𝑦 + 𝑥

𝑦 + 𝑥 − 𝜈 − 𝛿 = 𝑦 + 𝑥
𝑦 + 𝑥 − 𝜈 , (31)

𝑥 = 𝑥 + 𝛿
𝜈 (𝑥 + 𝑦) ⇔ 𝑥 + 𝑦

𝑥 + 𝑦 − 𝜈 − 𝛿 = 𝑥 + 𝑦
𝑥 + 𝑦 − 𝜈 . (32)

Relation to the 𝑑-Painlevé equation of the surface type 𝐴(1)
1 . We now compute the 3D

Painlevé map 𝐹 = 𝑅1◦𝑖1◦𝐿1◦𝑅2◦𝑖2◦𝐿2 in the pencil-adapted coordinates (𝑥, 𝑦, 𝜈). For each

fixed 𝜈, the intersection curves 𝑄𝜆(𝜈) ∩ 𝑃𝜇 form a pencil through eight points

𝑠𝑖(𝜈) = (𝑎𝑖, −𝑎𝑖), 𝑖 = 1, … , 4, (33)

𝑠𝑖(𝜈) =
(𝜈 − 1

2 + 𝑎𝑖,
1 + 𝜈
2 − 𝑎𝑖

)
, 𝑖 = 5, … , 8, (34)

which are just the points 𝑆1, … , 𝑆8 (which are, recall, independent of 𝜈) expressed in the

pencil-adapted coordinates on𝑄𝜆(𝜈). The curve 𝐶∞(𝜈), which is the image of the base curve

of the pencil {𝑄𝜆} in the pencil-adapted coordinates on 𝑄𝜆(𝜈), is given by the equation

𝐶∞(𝜈) = {(𝑥 + 𝑦)(𝑥 + 𝑦 − 𝜈) = 0}. (35)

The map 𝐿 sends 𝐶∞(𝜈) to 𝐶∞(𝜈 + 2𝛿), while the maps 𝐿1 = 𝑅1 and 𝐿2 = 𝑅2 send 𝐶∞(𝜈)

to 𝐶∞(𝜈 + 𝛿). We observe that the map 𝐿 fixes the (𝑥, 𝑦) coordinates of the points of the

component {𝑥 + 𝑦 = 0} of 𝐶∞(𝜈), and acts as (𝑥, 𝑦) ↦→ (𝑥 + 𝛿, 𝑦 + 𝛿) on the component

{𝑥 + 𝑦 = 𝜈}. This “shift” under the map 𝐿 is, however, only apparent, as this map fixes the

curve 𝒬0 ∩ 𝒬∞ pointwise. Similarly, the map 𝐿1 = 𝑅1 acts on the second component as

(𝑥, 𝑦) ↦→ (𝑥, 𝑦 + 𝛿), while 𝐿2 = 𝑅2 acts as (𝑥, 𝑦) ↦→ (𝑥 + 𝛿, 𝑦). These actions are non-trivial

in homogeneous coordinates 𝑋.

The formulas for the 3D QRT involutions 𝑖1, 𝑖2 restricted to 𝑄𝜆(𝜈) coincide, in the pencil-

adapted coordinates, with the original QRT involutions (20) and (21), upon replacing 𝑠𝑖
by 𝑠𝑖(𝜈):

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦), (𝑦 + 𝑥)(𝑥 + 𝑦)
(𝑦 + 𝑥 − 𝜈)(𝑥 + 𝑦 − 𝜈)

=
∏4

𝑖=1(𝑥 − 𝑎𝑖)
∏8

𝑖=5(𝑥 − 𝑎𝑖 −
𝜈−1
2
)
=∶ 𝜓1(𝑥, 𝜈), (36)
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𝑖2(𝑥, 𝑦) = (𝑥, 𝑦), (𝑥 + 𝑦)(𝑥 + 𝑦)
(𝑥 + 𝑦 − 𝜈)(𝑥 + 𝑦 − 𝜈)

=
∏4

𝑖=1(𝑦 + 𝑎𝑖)
∏8

𝑖=5(𝑦 + 𝑎𝑖 −
1+𝜈
2
)
=∶ 𝜓2(𝑦, 𝜈). (37)

In the notation of the equations (7), (8), we have:

(𝑥 + 𝑦𝑛)(𝑦𝑛 + 𝑥)
(𝑥 + 𝑦𝑛 − 𝜈2𝑛)(𝑦𝑛 + 𝑥 − 𝜈2𝑛)

= 𝜓2(𝑦𝑛, 𝜈2𝑛), (38)

(𝑦 + 𝑥𝑛+1)(𝑥𝑛+1 + 𝑦)
(𝑦 + 𝑥𝑛+1 − 𝜈2𝑛+1)(𝑥𝑛+1 + 𝑦 − 𝜈2𝑛+1)

= 𝜓1(𝑥𝑛+1, 𝜈2𝑛+1). (39)

It remains to express 𝑥, 𝑦, 𝑥, 𝑦 in these formulas in terms of 𝑥𝑛, 𝑦𝑛. According to (7), we

have:

𝐿2 ∶ (𝑥𝑛, 𝑦𝑛, 𝜈2𝑛−1∕2) ↦→ (𝑥, 𝑦𝑛, 𝜈2𝑛) and 𝑅2 ∶ (𝑥, 𝑦𝑛, 𝜈2𝑛) ↦→ (𝑥𝑛+1, 𝑦𝑛, 𝜈2𝑛+1∕2),

and with expressions (32) for the maps 𝐿2, 𝑅2, we find:

𝑥 + 𝑦𝑛
𝑥 + 𝑦𝑛 − 𝜈2𝑛

= 𝑥𝑛 + 𝑦𝑛
𝑥𝑛 + 𝑦𝑛 − 𝜈2𝑛−1∕2

, (40)

𝑥 + 𝑦𝑛
𝑥 + 𝑦𝑛 − 𝜈2𝑛

=
𝑥𝑛+1 + 𝑦𝑛

𝑥𝑛+1 + 𝑦𝑛 − 𝜈2𝑛+1∕2
. (41)

Similarly, according to (8), we have:

𝐿1 ∶ (𝑥𝑛+1, 𝑦𝑛, 𝜈2𝑛+1∕2) ↦→ (𝑥𝑛+1, 𝑦, 𝜈2𝑛+1) and 𝑅1 ∶ (𝑥𝑛+1, 𝑦, 𝜈2𝑛+1) ↦→ (𝑥𝑛+1, 𝑦𝑛+1, 𝜈2𝑛+3∕2),

and with expressions (31) for the maps 𝐿1, 𝑅1, we find:

𝑦 + 𝑥𝑛+1
𝑦 + 𝑥𝑛+1 − 𝜈2𝑛+1

=
𝑥𝑛+1 + 𝑦𝑛

𝑥𝑛+1 + 𝑦𝑛 − 𝜈2𝑛+1∕2
, (42)

𝑥𝑛+1 + 𝑦
𝑥𝑛+1 + 𝑦 − 𝜈2𝑛+1

=
𝑥𝑛+1 + 𝑦𝑛+1

𝑥𝑛+1 + 𝑦𝑛+1 − 𝜈2𝑛+3∕2
. (43)

Combining equations (38), (39) with (40)–(43) results in the following non-autonomous

system:
(𝑥𝑛+1 + 𝑦𝑛)(𝑥𝑛 + 𝑦𝑛)

(𝑥𝑛+1 + 𝑦𝑛 − 𝜈2𝑛+1∕2)(𝑥𝑛 + 𝑦𝑛 − 𝜈2𝑛−1∕2)
= 𝜓2(𝑦𝑛, 𝜈2𝑛), (44)

(𝑥𝑛+1 + 𝑦𝑛+1)(𝑥𝑛+1 + 𝑦𝑛)
(𝑥𝑛+1 + 𝑦𝑛+1 − 𝜈2𝑛+3∕2)(𝑥𝑛+1 + 𝑦𝑛 − 𝜈2𝑛+1∕2)

= 𝜓1(𝑥𝑛+1, 𝜈2𝑛+1). (45)
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This is nothing but the 𝑑-Painlevé equation of the surface type 𝐴(1)
1 , as given in [11].

Remark. The symmetric case can be characterized by 𝜓1(𝑥, 𝜈) = 𝜓2(𝑥, 𝜈). In this case

the latter equations become two instances of

(𝑢𝑛+1 + 𝑢𝑛)(𝑢𝑛 + 𝑢𝑛−1)
(𝑢𝑛+1 + 𝑢𝑛 − 𝜈𝑛+1∕2)(𝑢𝑛 + 𝑢𝑛−1 − 𝜈𝑛−1∕2)

= 𝜓1(𝑢𝑛, 𝜈𝑛), (46)

if we set 𝑢2𝑛−1 = 𝑥𝑛, 𝑢2𝑛 ∶= 𝑦𝑛.

6 From a pencil of type (vi) to the d-Painlevé equation of the

surface type 𝐷(1)
4

By a simple limiting procedure, the results of the previous section lead to similar results

for the d-Painlevé equation of the surface type 𝐷(1)
4 . We refrain from giving complete

details here, and restrict ourselves only to the main results.

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic

curves {𝐶𝜇} through eight points

𝑠𝑖 = (𝑎𝑖, −𝑎𝑖), 𝑠𝑖+4 = (𝑎𝑖 + 𝜖,−𝑎𝑖 + 𝜖), 𝑖 = 1, … , 4, (47)

where the points 𝑠5, … , 𝑠8 are infinitely near to 𝑠1, … , 𝑠4, respectively. This pencil contains

a reducible curve:

𝐶∞ = {(𝑥 + 𝑦)2 = 0}. (48)

The vertical involution 𝑖1 and the horizontal involution 𝑖2 for this pencil can be described

by the following equations:

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦), 1
𝑦 + 𝑥 + 1

𝑥 + 𝑦 = 1
2

4∑

𝑖=1

1
𝑥 − 𝑎𝑖

, (49)

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦), 1
𝑥 + 𝑦 +

1
𝑥 + 𝑦 = 1

2

4∑

𝑖=1

1
𝑦 + 𝑎𝑖

. (50)
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s1,s2

s3,s4

s5,s6

s7,s8

(a) (b)

Figure 2: (a) Base set of the surface type 𝐷(1)
4 : four double points on a double (1,1)-curve

in ℙ1 × ℙ1. (b) Pencil of quadrics touching along a conic

3D Painlevé map. We consider the pencil of quadrics {𝑃𝜇} in ℙ3 obtained as the Segre

lift of the pencil of curves {𝐶𝜇}. The pencil {𝑄𝜆} is spanned by 𝑄0 = {𝑋1𝑋2 − 𝑋3𝑋4 = 0} and

𝑄∞ = 𝑃∞ = {(𝑋1 + 𝑋2)2 = 0}:

𝑄𝜆 =
{
𝑋1𝑋2 − 𝑋3𝑋4 − 𝜆(𝑋1 + 𝑋2)2 = 0

}
. (51)

The base set of the pencil 𝑄𝜆 is the double conic {𝑋1𝑋2 − 𝑋3𝑋4 = 0, 𝑋1 + 𝑋2 = 0}. This is a

pencil of type (vi). The matrix 𝑀𝜆 of the quadratic form 𝑄𝜆 is:

𝑀𝜆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−2𝜆 1 − 2𝜆 0 0

1 − 2𝜆 −2𝜆 0 0

0 0 0 −1

0 0 −1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (52)
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The characteristic polynomial of the pencil {𝑄𝜆} is: ∆(𝜆) = det(𝑀𝜆) = 1 − 4𝜆, the same as in

Section 5. The normalizing transformation of 𝑄𝜆(𝜈) to the canonical form 𝑄0 reads:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝜈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑌1
𝑌2
𝑌3
𝑌4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (53)

where

𝐴𝜈 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2𝜈
(1 + 𝜈) 1

2𝜈
(1 − 𝜈) 0 0

1
2𝜈
(1 − 𝜈) 1

2𝜈
(1 + 𝜈) 0 0

0 0 1 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (54)

A parametrization of the quadric 𝑄𝜆(𝜈) is given by:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝜈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑥𝑦

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2𝜈
((1 + 𝜈)𝑥 + (1 − 𝜈)𝑦)

1
2𝜈
((1 − 𝜈)𝑥 + (1 + 𝜈)𝑦)

𝑥𝑦

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=∶ 𝜙𝜈(𝑥, 𝑦). (55)

The pencil-adapted coordinates (𝑥, 𝑦, 𝜈) on (the double cover of) ℙ3 are:

𝑥 = (1 + 𝜈)𝑋1 − (1 − 𝜈)𝑋2
2𝑋4

, 𝑦 = (1 + 𝜈)𝑋2 − (1 − 𝜈)𝑋1
2𝑋4

, (56)

which have to be supplemented with

𝜆 = 1 − 𝜈2
4 = 𝑋1𝑋2 − 𝑋3𝑋4

(𝑋1 + 𝑋2)2
. (57)

Theorem 4. For any 𝛿 ∈ ℂ ⧵ {0}, define the Painlevé deformation map corresponding to the
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translation 𝜈 ↦→ 𝜈 = 𝜈 + 2𝛿 by

𝐿 ∶

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑋1 = 𝑋1𝑋4,

𝑋2 = 𝑋2𝑋4,

𝑋3 = 𝑋3𝑋4 −
(
𝜆(𝜈) − 𝜆(𝜈)

)
𝑄∞(𝑋)

= 𝑋3𝑋4 + 𝛿(𝜈 + 𝛿)(𝑋1 + 𝑋2)2,

𝑋4 = 𝑋2
4 .

Then, in pencil-adapted coordinates, the map 𝐿 acts as follows:

𝐿 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈), 𝑥 = 𝑥 + 𝛿
𝜈 (𝑥 + 𝑦), 𝑦 = 𝑦 + 𝛿

𝜈 (𝑥 + 𝑦), 𝜈 = 𝜈 + 2𝛿. (58)

For the latter map, the factorizations (4), (5) are given by

𝐿1 = 𝑅1 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿), 𝐿2 = 𝑅2 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿),

where

𝑦 = 𝑦 + 𝛿
𝜈 (𝑥 + 𝑦) ⇔ 𝜈 + 𝛿

𝑦 + 𝑥 = 𝜈
𝑦 + 𝑥 , (59)

𝑥 = 𝑥 + 𝛿
𝜈 (𝑥 + 𝑦) ⇔ 𝜈 + 𝛿

𝑥 + 𝑦 = 𝜈
𝑥 + 𝑦 . (60)

Computing the 3D Painlevé map 𝐹 = 𝑅1◦𝑖1◦𝐿1◦𝑅2◦𝑖2◦𝐿2 in the pencil-adapted coordi-

nates (𝑥, 𝑦, 𝜈), we come to the following non-autonomous system:

𝜈2𝑛+1∕2
𝑥𝑛+1 + 𝑦𝑛

+
𝜈2𝑛−1∕2
𝑥𝑛 + 𝑦𝑛

= 𝜈2𝑛
2

4∑

𝑖=1

1
𝑦𝑛 + 𝑎𝑖

, (61)

𝜈2𝑛+3∕2
𝑥𝑛+1 + 𝑦𝑛+1

+
𝜈2𝑛+1∕2
𝑥𝑛+1 + 𝑦𝑛

=
𝜈2𝑛+1
2

4∑

𝑖=1

1
𝑥𝑛+1 − 𝑎𝑖

. (62)

This can be considered as a 𝑑-Painlevé equation of the surface type 𝐷(1)
4 , in a realization

different from that in [11]. We remark here that the latter equation was put into our

scheme in [2, sect. 9], however in the framework of pencils of quadrics with rational

(non-branching) generators. There is no obvious relation between these two systems,

and it would be desirable to clarify this point.

Arnold Mathematical Journal, Vol.11(4), 2025 217

http://dx.doi.org/10.56994/ARMJ


Jaume Alonso, Yuri B. Suris

The symmetric case is characterised by 𝑎2𝑖 = −𝑎2𝑖−1, 𝑖 = 1, 2. In this case the latter

equations become two instances of

𝜈𝑛+1∕2
𝑢𝑛+1 + 𝑢𝑛

+
𝜈𝑛−1∕2

𝑢𝑛 + 𝑢𝑛−1
= 𝜈𝑛

( 𝑢𝑛
𝑢2𝑛 − 𝑎21

+ 𝑢𝑛
𝑢2𝑛 − 𝑎23

)
, (63)

if we set 𝑢2𝑛−1 = 𝑥𝑛, 𝑢2𝑛 ∶= 𝑦𝑛.

7 From a pencil of type (iv) to the q-Painlevé equation of the

surface type 𝐴(1)
1

2D QRT map. Consider the QRT map corresponding to the pencil of biquadratic curves

through eight points

𝑠𝑖 = (𝑎𝑖, 𝑏𝑖) =
(
𝜅𝑐𝑖, 𝜅𝑐−1𝑖

)
, 𝑖 = 1, … , 4, (64)

𝑠𝑖 = (𝑎𝑖, 𝑏𝑖) =
(
𝑐𝑖, 𝑐−1𝑖

)
, 𝑖 = 5, … , 8, (65)

with 𝜅 ≠ 0, 1. These eight points support a pencil of biquadratic curves if they satisfy the

condition ∏4
𝑖=1 𝑐𝑖

∏8
𝑖=5 𝑐𝑖

= 1 ⇔
∏4

𝑖=1 𝑎𝑖
∏8

𝑖=5 𝑎𝑖
= 𝜅4 ⇔

∏4
𝑖=1 𝑏𝑖

∏8
𝑖=5 𝑏𝑖

= 𝜅4. (66)

They are symmetric with respect to 𝜎(𝑥, 𝑦) = (𝑦, 𝑥) if 𝑐2𝑖 = 𝑐−12𝑖−1, 𝑖 = 1, … , 4. See Fig. 3 (a).

This pencil contains a reducible curve consisting of two (1,1)-curves:

𝐶∞ =
{
(𝑥𝑦 − 1)(𝑥𝑦 − 𝜅2) = 0

}
. (67)

The vertical involution 𝑖1 can be described by the following equation:

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦), (𝑥𝑦 − 𝜅2)(𝑥𝑦 − 𝜅2)
(𝑥𝑦 − 1)(𝑥𝑦 − 1)

=
∏4

𝑖=1(𝑥 − 𝜅𝑐𝑖)
∏8

𝑖=5(𝑥 − 𝑐𝑖)
. (68)

Similarly, the horizontal involution 𝑖2 can be described by the following equation:

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦), (𝑥𝑦 − 𝜅2)(𝑥𝑦 − 𝜅2)
(𝑥𝑦 − 1)(𝑥𝑦 − 1)

=
∏4

𝑖=1(𝑦 − 𝜅𝑐−1𝑖 )
∏8

𝑖=5(𝑦 − 𝑐−1𝑖 )
. (69)
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s1

s2

s3

s4

s5

s6

s7

s8

(a) (b)

Figure 3: (a) Base set of the surface type 𝐴(1)
1 : two quadruples of points on two (1,1)-curves

(hyperbolas) in ℙ1 × ℙ1 intersecting at two points (∞, 0) and (0,∞). (b) Pencil of quadrics

through two non-coplanar conics intersecting at two points

The QRT map 𝐹 is the composition of these two involutions, 𝐹 = 𝑖1◦𝑖2. The singularity

confinement structure of the QRT involutions is as in (11). In the symmetric case we have

𝐹 = 𝑓2, with 𝑓 = 𝑖1◦𝜎 = 𝜎◦𝑖2 being the QRT root.

3D Painlevé map. As usual, we identify ℙ1 × ℙ1 with the quadric

𝑄0 = {𝑋1𝑋2 − 𝑋3𝑋4 = 0} ⊂ ℙ3,

via [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶ 𝑋4] = [𝑥 ∶ 𝑦 ∶ 𝑥𝑦 ∶ 1]. The points 𝑠𝑖 are lifted to

𝑆𝑖 = [𝑎𝑖 ∶ 𝑏𝑖 ∶ 𝑎𝑖𝑏𝑖 ∶ 1] =
⎧

⎨
⎩

[
𝜅𝑐𝑖 ∶ 𝜅𝑐−1𝑖 ∶ 𝜅2 ∶ 1

]
, 𝑖 = 1, … , 4,

[
𝑐𝑖 ∶ 𝑐−1𝑖 ∶ 1 ∶ 1

]
, 𝑖 = 5, … , 8.

(70)

We declare 𝑄𝜆 to be spanned by 𝑄0 and 𝑄∞ = 𝑃∞ = (𝑋3 − 𝜅2𝑋4)(𝑋3 − 𝑋4):

𝑄𝜆 =
{
𝑋1𝑋2 − 𝑋3𝑋4 − 𝜆(𝑋3 − 𝜅2𝑋4)(𝑋3 − 𝑋4) = 0

}
. (71)

The base set of the pencil 𝑄𝜆 consists of two conics, {𝑋1𝑋2 − 𝑋3𝑋4 = 0, 𝑋3 − 𝜅2𝑋4 = 0} and

{𝑋1𝑋2−𝑋3𝑋4 = 0, 𝑋3−𝑋4 = 0}, which intersect at two points [0 ∶ 1 ∶ 0 ∶ 0] and [1 ∶ 0 ∶ 0 ∶ 0].

This is a pencil of type (iv).
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The matrix 𝑀𝜆 of the quadratic form 𝑄𝜆:

𝑀𝜆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

1 0 0 0

0 0 −2𝜆 −1 + (1 + 𝜅2)𝜆

0 0 −1 + (1 + 𝜅2)𝜆 −2𝜅2𝜆

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(72)

The characteristic polynomial of the pencil {𝑄𝜆} is:

∆(𝜆) = det(𝑀𝜆) =
(
1 − (1 + 𝜅2)𝜆

)2
− 4𝜅2𝜆2 =

(
1 − (1 + 𝜅)2𝜆

)(
1 − (1 − 𝜅)2𝜆

)
,

so that Sing(𝑄𝜆) = {(1+𝜅)−2, (1−𝜅)−2,∞}. This polynomial is not a complete square, and we

have to uniformize
√
∆(𝜆). The uniformizing variable is 𝜈 ∈ ℂ. However, in the present

situation it will be convenient to use 𝑤 = 𝑒𝜈 instead, with 𝑤 ∈ ℂ ⧵ {0}. The shift 𝜈 ↦→ 𝜈 + 𝛿

will be replaced by 𝑤 ↦→ 𝑞𝑤 with 𝑞 = 𝑒𝛿. We set

𝜆 = 𝜆(𝑤) = −(𝜅 − 𝑤)(1 − 𝜅𝑤)
(1 − 𝜅2)2𝑤

. (73)

Then ∆(𝜆) becomes a square:

∆(𝜆) = 𝜅2(1 − 𝑤2)2
𝑤2(1 − 𝜅2)2

⇒
√
∆(𝜆) = 𝜅(1 − 𝑤2)

𝑤(1 − 𝜅2)
.

Observe that 𝜆(𝑤) = 𝜆(𝑤−1), while
√
∆(𝜆) changes its sign under 𝑤 ↦→ 𝑤−1. This gives us a

double cover of the original pencil branched at 𝜆 = (1+𝜅)−2 (corresponding to 𝑤 = 1), and

at 𝜆 = (1 − 𝜅)−2 (corresponding to 𝑤 = −1). The point 𝜆 = ∞ (corresponding to 𝑤 = 0,∞)

is not a branch point. The normalizing transformation of 𝑄𝜆(𝑋) to the canonical form

𝑄0(𝑌) = 𝑌1𝑌2 − 𝑌3𝑌4 is achieved by the transformation

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝑤

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑌1
𝑌2
𝑌3
𝑌4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (74)

Arnold Mathematical Journal, Vol.11(4), 2025 220

http://dx.doi.org/10.56994/ARMJ


Discrete Painlevé equations

where one can take

𝐴𝑤 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 − 𝜅𝑤
1 − 𝑤2

𝑤(𝜅 − 𝑤)
1 − 𝑤2

0 0 𝜅 − 𝑤
𝜅(1 − 𝑤2)

𝑤(1 − 𝜅𝑤)
𝜅(1 − 𝑤2)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (75)

Indeed, one immediately verifies that

𝐴T
𝑤𝑀𝜆(𝑤)𝐴𝑤 = 𝑀0.

Now, we are in the position to derive a parametrization of the quadric 𝑄𝜆:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1

𝑋2

𝑋3

𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝑤

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑥𝑦

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=∶ 𝜙𝑤(𝑥, 𝑦). (76)

Observe that this parametrization is neither valid for 𝑤 = 0 nor for 𝑤 = ∞. The pencil-

adapted coordinates (𝑥, 𝑦, 𝑤) on (the double cover of) ℙ3 are:

𝑥 = (1 − 𝜅𝑤)𝑋3 − 𝜅(𝜅 − 𝑤)𝑋4
(1 − 𝜅2)𝑋2

= 𝑤(1 − 𝜅2)𝑋1
𝜅(1 − 𝜅𝑤)𝑋4 − (𝜅 − 𝑤)𝑋3

, (77)

𝑦 = (1 − 𝜅𝑤)𝑋3 − 𝜅(𝜅 − 𝑤)𝑋4
(1 − 𝜅2)𝑋1

= 𝑤(1 − 𝜅2)𝑋2
𝜅(1 − 𝜅𝑤)𝑋4 − (𝜅 − 𝑤)𝑋4

, (78)

which have to be supplemented with

𝜆 = −(𝜅 − 𝑤)(1 − 𝜅𝑤)
(𝜅2 − 1)2𝑤

= 𝑋1𝑋2 − 𝑋3𝑋4
(𝑋3 − 𝜅2𝑋4)(𝑋3 − 𝑋4)

. (79)

Theorem 5. For any 𝑞 ≠ ±1, define the Painlevé deformation map corresponding to the

translation 𝑤 ↦→ 𝑤 = 𝑞2𝑤 by

𝐿 ∶

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑋1 = 𝑋1𝑋2 +
(
𝜆(𝑤) − 𝜆(𝑤)

)
(𝑋3 − 𝑋4)(𝑋3 − 𝜅2𝑋4),

𝑋2 = 𝑋2
2 ,

𝑋3 = 𝑋2𝑋3,

𝑋4 = 𝑋2𝑋4,

(80)
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where 𝜆 = 𝜆(𝑤) is given by (73). Then, in pencil-adapted coordinates, the map 𝐿 acts as

follows:

𝐿 ∶ 𝑥 = 𝑞2𝑤2 − 1
𝑤2 − 1 𝑥− (𝑞2 − 1)𝑤2

𝑤2 − 1 𝑦−1, 𝑦 −1 = 𝑞2𝑤2 − 1
𝑞2(𝑤2 − 1)

𝑦−1− (𝑞2 − 1)
𝑞2(𝑤2 − 1)

𝑥, 𝑤 = 𝑞2𝑤. (81)

For the latter map, the factorizations (4), (5) are given by

𝐿1 = 𝑅1 ∶ (𝑥, 𝑦, 𝑤) ↦→ (𝑥, 𝑦, 𝑞𝑤), 𝐿2 = 𝑅2 ∶ (𝑥, 𝑦, 𝑤) ↦→ (𝑥, 𝑦, 𝑞𝑤)

where

𝑦 −1 = 𝑞2𝑤2 − 1
𝑞2(𝑤2 − 1)

𝑦−1 − (𝑞2 − 1)
𝑞2(𝑤2 − 1)

𝑥 ⇔ 𝑦𝑥 − 𝑞2𝑤2

𝑦𝑥 − 1 = 𝑞2 𝑦𝑥 − 𝑤2

𝑦𝑥 − 1 , (82)

and

𝑥 = 𝑞2𝑤2 − 1
𝑤2 − 1 𝑥 − (𝑞2 − 1)𝑤2

𝑤2 − 1 𝑦−1 ⇔ 𝑥𝑦 − 𝑞2𝑤2

𝑥𝑦 − 1 = 𝑥𝑦 − 𝑤2

𝑥𝑦 − 1 . (83)

Relation to the 𝑞-Painlevé equation of the surface type 𝐴(1)
1 . We now compute the 3D

Painlevé map 𝐹 = 𝑅1◦𝑖1◦𝐿1◦𝑅2◦𝑖2◦𝐿2 in the pencil-adapted coordinates (𝑥, 𝑦, 𝑤). For each

fixed 𝑤, the intersection curves 𝑄𝜆(𝑤) ∩ 𝑃𝜇 form a pencil through eight points

𝑠𝑖(𝑤) =
(
𝑤𝑐𝑖, 𝑤𝑐−1𝑖

)
, 𝑖 = 1, … , 4, (84)

𝑠𝑖(𝑤) =
(
𝑐𝑖, 𝑐−1𝑖

)
, 𝑖 = 5, … , 8, (85)

which are just the points 𝑆1, … , 𝑆8 expressed in the pencil-adapted coordinates on 𝑄𝜆(𝑤).

The formulas for the 3D QRT involutions 𝑖1, 𝑖2 restricted to 𝑄𝜆(𝑤) coincide, in the pencil-

adapted coordinates, with the original QRT involutions (68) and (69), upon replacing 𝜅 by

𝑤, and 𝑠𝑖 by 𝑠𝑖(𝑤):

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦), (𝑥𝑦 − 𝑤2)(𝑥𝑦 − 𝑤2)
(𝑥𝑦 − 1)(𝑥𝑦 − 1)

=
∏4

𝑖=1(𝑥 − 𝑤𝑐𝑖)
∏8

𝑖=5(𝑥 − 𝑐𝑖)
, (86)

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦), (𝑥𝑦 − 𝑤2)(𝑥𝑦 − 𝑤2)
(𝑥𝑦 − 1)(𝑥𝑦 − 1)

=
∏4

𝑖=1(𝑦 − 𝑤𝑐−1𝑖 )
∏8

𝑖=5(𝑦 − 𝑐−1𝑖 )
. (87)
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In the notation of the equations (7), (8), the latter two equations read:

(𝑥𝑦𝑛 − 𝑤2
2𝑛)(𝑥𝑦𝑛 − 𝑤2

2𝑛)
(𝑥𝑦𝑛 − 1)(𝑥𝑦𝑛 − 1)

=
∏4

𝑖=1(𝑦𝑛 − 𝑤2𝑛𝑐−1𝑖 )
∏8

𝑖=5(𝑦𝑛 − 𝑐−1𝑖 )
, (88)

(𝑦𝑥𝑛+1 − 𝑤2
2𝑛+1)(𝑦𝑥𝑛+1 − 𝑤2

2𝑛+1)
(𝑦𝑥𝑛+1 − 1)(𝑦𝑥𝑛+1 − 1)

=
∏4

𝑖=1(𝑥𝑛+1 − 𝑤2𝑛+1𝑐𝑖)
∏8

𝑖=5(𝑥𝑛+1 − 𝑐𝑖)
, (89)

where

𝑤2𝑛−1∕2 = 𝑞−1𝑤2𝑛, 𝑤2𝑛+1∕2 = 𝑞𝑤2𝑛. (90)

According to (7), we have:

𝐿2 ∶ (𝑥𝑛, 𝑦𝑛, 𝑤2𝑛−1∕2) ↦→ (𝑥, 𝑦𝑛, 𝑤2𝑛) and 𝑅2 ∶ (𝑥, 𝑦𝑛, 𝑤2𝑛) ↦→ (𝑥𝑛+1, 𝑦𝑛, 𝑤2𝑛+1∕2).

With expressions (83) for the maps 𝐿2, 𝑅2, we find:

𝑥𝑦𝑛 − 𝑤2
2𝑛

𝑥𝑦𝑛 − 1 = 𝑥𝑛𝑦𝑛 − 𝑤2𝑛𝑤2𝑛−1
𝑥𝑛𝑦𝑛 − 1 , (91)

𝑥𝑦𝑛 − 𝑤2
2𝑛

𝑥𝑦𝑛 − 1 =
𝑥𝑛+1𝑦𝑛 − 𝑤2𝑛+1𝑤2𝑛

𝑥𝑛+1𝑦𝑛 − 1 . (92)

Similarly, according to (8), we have:

𝐿1 ∶ (𝑥𝑛+1, 𝑦𝑛, 𝑤2𝑛+1∕2) ↦→ (𝑥𝑛+1, 𝑦, 𝑤2𝑛+1) and 𝑅1 ∶ (𝑥𝑛+1, 𝑦, 𝑤2𝑛+1) ↦→ (𝑥𝑛+1, 𝑦𝑛+1, 𝑤2𝑛+3∕2),

and with expressions (82) for the maps 𝐿1, 𝑅1, we find:

𝑞−2
𝑥𝑛+1𝑦 − 𝑤2

2𝑛+1
𝑥𝑛+1𝑦 − 1 =

𝑥𝑛+1𝑦𝑛 − 𝑤2𝑛+1𝑤2𝑛
𝑥𝑛+1𝑦𝑛 − 1 , (93)

𝑞2
𝑦𝑥𝑛+1 − 𝑤2

2𝑛+1
𝑦𝑥𝑛+1 − 1 =

𝑥𝑛+1𝑦𝑛+1 − 𝑤2𝑛+2𝑤2𝑛+1
𝑥𝑛+1𝑦𝑛+1 − 1 . (94)

Combining equations (88), (89) with (91)–(94) results in the following non-autonomous

system:
(𝑥𝑛+1𝑦𝑛 − 𝑤2𝑛+1𝑤2𝑛)(𝑥𝑛𝑦𝑛 − 𝑤2𝑛𝑤2𝑛−1)

(𝑥𝑛+1𝑦𝑛 − 1)(𝑥𝑛𝑦𝑛 − 1)
=
∏4

𝑖=1(𝑦𝑛 − 𝑤2𝑛𝑐−1𝑖 )
∏8

𝑖=5(𝑦𝑛 − 𝑐−1𝑖 )
, (95)
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(𝑦𝑛+1𝑥𝑛+1 − 𝑤2𝑛+2𝑤2𝑛+1)(𝑦𝑛𝑥𝑛+1 − 𝑤2𝑛+1𝑤2𝑛)
(𝑦𝑛+1𝑥𝑛+1 − 1)(𝑦𝑛𝑥𝑛+1 − 1)

=
∏4

𝑖=1(𝑥𝑛+1 − 𝑤2𝑛+1𝑐𝑖)
∏8

𝑖=5(𝑥𝑛+1 − 𝑐𝑖)
. (96)

This is the q-Painlevé equation of the surface type 𝐴(1)
1 , as given in [11]. In the symmetric

case, if 𝑐2𝑖 = 𝑐−12𝑖−1, 𝑖 = 1, … , 4, these equations become two instances of

(𝑢𝑛+1𝑢𝑛 − 𝑤𝑛+1𝑤𝑛)(𝑢𝑛𝑢𝑛−1 − 𝑤𝑛𝑤𝑛−1)
(𝑢𝑛+1𝑢𝑛 − 1)(𝑢𝑛𝑢𝑛−1 − 1)

=
∏4

𝑖=1(𝑢𝑛 − 𝑤𝑛𝑐𝑖)
∏8

𝑖=5(𝑢𝑛 − 𝑐𝑖)
. (97)

8 From a pencil of type (iii) to the d-Painlevé equation of the

surface type 𝐴(1)
0

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic

curves through eight points 𝑠𝑖 = (𝑎𝑖, 𝑏𝑖), 𝑖 = 1, … , 8, where

𝑎𝑖 = 𝑧𝑖(𝑧𝑖 − 𝜅1), 𝑏𝑖 = 𝑧𝑖(𝑧𝑖 − 𝜅2).

These eight points support a pencil of biquadratic curves if they satisfy the condition

8∑

𝑖=1
𝑧𝑖 = 2(𝜅1 + 𝜅2).

They belong to the curve with the equation

(𝑥 − 𝑦)2 = (𝜅2 − 𝜅1)(𝜅2𝑥 − 𝜅1𝑦).

This is a biquadratic curve in ℙ1 × ℙ1 with a cusp point at (∞,∞), see Fig. 4 (a).

The vertical involution 𝑖1 can be described by the following equation:

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦),
(
𝑦 − 𝜉(𝜉 − 𝜅2)

)(
𝑦 − 𝜉(𝜉 − 𝜅2)

)
(
𝑦 − (𝜉 − 𝜅1)(𝜉 − 𝜅1 + 𝜅2)

)(
𝑦 − (𝜉 − 𝜅1)(𝜉 − 𝜅1 + 𝜅2)

) =
𝑈(𝜉)

𝑈(𝜅1 − 𝜉)
, 𝑥 = 𝜉(𝜉 − 𝜅1). (98)

Here we use the abbreviation

𝑈(𝑧) =
8∏

𝑖=1
(𝑧 − 𝑧𝑖). (99)
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s1
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s3

s4

s5 s6

s7

s8

(a) (b)

Figure 4: (a) Base set of the surface type 𝐴(1)
0 : eight points on a cuspidal (2,2)-curve in

ℙ1 × ℙ1. (b) Pencil of quadrics through cuspidal spatial quartic in ℙ3

Formula (98) is understood as follows. Written as a polynomial in 𝜉, it is anti-symmetric

with respect to 𝜉 ↔ 𝜅1−𝜉. Upon division by 𝜉 −2𝜅1, the resulting polynomial is symmetric

and therefore it can be actually expressed as a polynomial in 𝑥 = 𝜉(𝜉 − 𝜅1). This defines 𝑖1
as a birational involution (its symmetry w.r.t. 𝑦 ↔ 𝑦 is obvious).

Similarly, the horizontal involution 𝑖2 can be described by the following equation:

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦),
(
𝑥 − 𝜂(𝜂 − 𝜅1)

)(
𝑥 − 𝜂(𝜂 − 𝜅1)

)
(
𝑥 − (𝜂 − 𝜅2)(𝜂 − 𝜅2 + 𝜅1)

)(
𝑥 − (𝜂 − 𝜅2)(𝜂 − 𝜅2 + 𝜅1)

) =
𝑈(𝜂)

𝑈(𝜅2 − 𝜂)
, 𝑦 = 𝜂(𝜂 − 𝜅2). (100)

The QRT map 𝐹 is the composition of these two involutions, 𝐹 = 𝑖1◦𝑖2. The eight points

𝑠1, … , 𝑠8 in ℙ1 × ℙ1 serve as the indeterminacy set for 𝑖1 and for 𝑖2. The singularity confine-

ment structure is as in (11).

Remark. In what follows, we restrict ourselves to the case 𝜅1 + 𝜅2 = 0. This restriction

is not essential, but will allow us to shorten some of the formulas. Thus, from now on we

set

𝜅1 = −𝜅, 𝜅2 = 𝜅. (101)
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If, additionally, the points 𝑧𝑖 satisfy the condition

𝑧𝑖+4 = −𝑧𝑖, 𝑖 = 1, … , 4, (102)

then the QRT involutions admits a symmetry 𝑖1 = 𝜎◦𝑖2◦𝜎, where 𝜎(𝑥, 𝑦) = (𝑦, 𝑥), so that

one can introduce the QRT root 𝑓 = 𝑖1◦𝜎 = 𝜎◦𝑖2, such that 𝐹 = 𝑓◦𝑓.

3D Painlevé map. As usual, we identify ℙ1 × ℙ1 with the quadric 𝑄0 = {𝑋1𝑋2 − 𝑋3𝑋4 =

0} ⊂ ℙ3 via [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶ 𝑋4] = [𝑥 ∶ 𝑦 ∶ 𝑥𝑦 ∶ 1]. The points 𝑠𝑖 are lifted to

𝑆𝑖 = [𝑎𝑖 ∶ 𝑏𝑖 ∶ 𝑎𝑖𝑏𝑖 ∶ 1].

We declare 𝑄𝜆 to be spanned by 𝑄0 and 𝑄∞ = 𝑃∞ = (𝑋1 − 𝑋2)2 − 2𝜅2(𝑋1 + 𝑋2)𝑋4:

𝑄𝜆 =
{
𝑋1𝑋2 − 𝑋3𝑋4 − 𝜆

(
(𝑋1 − 𝑋2)2 − 2𝜅2(𝑋1 + 𝑋2)𝑋4

)
= 0

}
. (103)

The base set of the pencil 𝑄𝜆 is a cuspidal space curve of degree 4, {𝑋1𝑋2 −𝑋3𝑋4 = 0, (𝑋1 −

𝑋2)2 − 2𝜅2(𝑋1 + 𝑋2)𝑋4 = 0}, with the cusp at [0 ∶ 0 ∶ 1 ∶ 0]. This is a pencil of type (iii).

The matrix 𝑀𝜆 of the quadratic form 𝑄𝜆:

𝑀𝜆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−2𝜆 1 + 2𝜆 0 2𝜆𝜅2

1 + 2𝜆 −2𝜆 0 2𝜆𝜅2

0 0 0 −1

2𝜆𝜅2 2𝜆𝜅2 −1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(104)

The characteristic polynomial of the pencil {𝑄𝜆} is: ∆(𝜆) = det(𝑀𝜆) = 1 + 4𝜆, so that

Sing(𝑄𝜆) = {− 1
4
,∞}. We set

𝜆 = 𝜈2 − 1
4 ,

√
∆(𝜆) = 𝜈. (105)

Thus, 𝜆(𝜈) = 𝜆(−𝜈), while
√
∆(𝜆) changes its sign as 𝜈 ↦→ −𝜈. This gives us a double

cover of the original pencil branched at 𝜈 = 0, corresponding to 𝜆 = −1∕4, and at 𝜈 = ∞,

corresponding to 𝜆 = ∞. The normalizing transformation of 𝑄𝜆 to the canonical form 𝑄0
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can be found as follows:
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝜈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑌1
𝑌2
𝑌3
𝑌4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (106)

where

𝐴𝜈 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2𝜈
(𝜈 + 1) 1

2𝜈
(𝜈 − 1) 0 0

1
2𝜈
(𝜈 − 1) 1

2𝜈
(𝜈 + 1) 0 0

𝜅2

2
(𝜈2 − 1) 𝜅2

2
(𝜈2 − 1) 1 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (107)

Indeed, one immediately verifies that

𝐴T
𝜈𝑀𝜆(𝜈)𝐴𝜈 = 𝑀0.

Now, we are in the position to derive a parametrization of the quadric 𝑄𝜆(𝜈):

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝜈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑥𝑦

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2𝜈
((𝜈 + 1)𝑥 + (𝜈 − 1)𝑦)

1
2𝜈
((𝜈 − 1)𝑥 + (𝜈 + 1)𝑦)

𝑥𝑦 + 𝜅2

2
(𝜈2 − 1)(𝑥 + 𝑦)

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=∶ 𝜙𝜈(𝑥, 𝑦). (108)

Observe that this parametrization is neither valid for 𝜈 = 0 nor for 𝜈 = ∞. The pencil-

adapted coordinates (𝑥, 𝑦, 𝜈) on (the double cover of) ℙ3 are:

𝑥 = (𝜈 + 1)𝑋1 − (𝜈 − 1)𝑋2
2𝑋4

, 𝑦 = (𝜈 + 1)𝑋2 − (𝜈 − 1)𝑋1
2𝑋4

, (109)

which have to be supplemented with

𝜆 = 𝜈2 − 1
4 = 𝑋1𝑋2 − 𝑋3𝑋4

(𝑋1 − 𝑋2)2 − 2𝜅2(𝑋1 + 𝑋2)𝑋4
. (110)

The degenerate quadrics for 𝜈 = ∞ and for 𝜈 = 0 are cones.
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Theorem 6. For any 𝛿 ∈ ℂ ⧵ {0}, define the Painlevé deformation map corresponding to the

translation 𝜈 ↦→ 𝜈 = 𝜈 + 2𝛿 by

𝐿 ∶

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑋1 = 𝑋1𝑋4,

𝑋2 = 𝑋2𝑋4,

𝑋3 = 𝑋3𝑋4 −
(
𝜆(𝜈) − 𝜆(𝜈)

)
𝑄∞(𝑋)

= 𝑋3𝑋4 − 𝛽(𝜈 + 𝛽)(𝑋1 − 𝑋2)2 + 2𝜅2𝛽(𝜈 + 𝛽)(𝑋1 + 𝑋2)𝑋4,

𝑋4 = 𝑋2
4 .

Then, in pencil-adapted coordinates, the map 𝐿 acts as follows:

𝐿 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈), 𝑥 = 𝑥 + 𝛿(𝑥 − 𝑦)
𝜈 , 𝑦 = 𝑦 + 𝛿(𝑦 − 𝑥)

𝜈 , 𝜈 = 𝜈 + 2𝛿. (111)

For the latter map, the factorizations (4), (5) are given by

𝐿1 = 𝑅1 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿), 𝑦 = 𝑦 + 𝛿
𝜈 (𝑦 − 𝑥), (112)

𝐿2 = 𝑅2 ∶ (𝑥, 𝑦, 𝜈) ↦→ (𝑥, 𝑦, 𝜈 + 𝛿), 𝑥 = 𝑥 + 𝛿
𝜈 (𝑥 − 𝑦). (113)

Relation to the 𝑑-Painlevé equation of the surface type 𝐴(1)
0 . In the pencil-adapted

coordinates (𝑥, 𝑦, 𝜈), for each fixed 𝜈, the intersection curves 𝑄𝜆(𝜈) ∪ 𝑃𝜇 form the pencil

through the points

𝑠𝑖(𝜈) = (𝑎𝑖(𝜈), 𝑏𝑖(𝜈)) =
(
𝑧𝑖(𝑧𝑖 + 𝜅𝜈), 𝑧𝑖(𝑧𝑖 − 𝜅𝜈)

)
, 𝑖 = 1, … , 8, (114)

which are just the points 𝑆𝑖 expressed in the pencil-adapted coordinates on 𝑄𝜆(𝜈). Thus,

the 3D QRT involutions 𝑖1, 𝑖2 act on each quadric 𝑄𝜆(𝜈) in the pencil-adapted coordinates

via formulas which are obtained from the corresponding 2D formulas by replacing 𝜅 by

𝜅𝜈:

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦),
(
𝑦 − 𝜉(𝜉 − 𝜅𝜈)

)(
𝑦 − 𝜉(𝜉 − 𝜅𝜈)

)
(
𝑦 − (𝜉 + 𝜅𝜈)(𝜉 + 2𝜅𝜈)

)(
𝑦 − (𝜉 + 𝜅𝜈)(𝜉 + 2𝜅𝜈)

) =
𝑈(𝜉)

𝑈(−𝜅𝜈 − 𝜉)
, 𝑥 = 𝜉(𝜉 + 𝜅𝜈), (115)

Arnold Mathematical Journal, Vol.11(4), 2025 228

http://dx.doi.org/10.56994/ARMJ


Discrete Painlevé equations

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦),
(
𝑥 − 𝜂(𝜂 + 𝜅𝜈)

)(
𝑥 − 𝜂(𝜂 + 𝜅𝜈)

)
(
𝑥 − (𝜂 − 𝜅𝜈)(𝜂 − 2𝜅𝜈)

)(
𝑥 − (𝜂 − 𝜅𝜈)(𝜂 − 2𝜅𝜈)

) =
𝑈(𝜂)

𝑈(𝜅𝜈 − 𝜂)
, 𝑦 = 𝜂(𝜂 − 𝜅𝜈). (116)

In notations of (7), (8), the latter two equations take the following form:
(
𝑥 − 𝜂(𝜂 + 𝜅𝜈2𝑛)

)(
𝑥 − 𝜂(𝜂 + 𝜅𝜈2𝑛)

)
(
𝑥 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 2𝜅𝜈2𝑛)

)(
𝑥 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 2𝜅𝜈2𝑛)

) =
𝑈(𝜂)

𝑈(𝜅𝜈2𝑛 − 𝜂)
,

𝑦𝑛 = 𝜂(𝜂 − 𝜅𝜈2𝑛), (117)

(
𝑦 − 𝜉(𝜉 − 𝜅𝜈2𝑛+1)

)(
𝑦 − 𝜉(𝜉 − 𝜅𝜈2𝑛+1)

)
(
𝑦 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 2𝜅𝜈2𝑛+1)

)(
𝑦 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 2𝜅𝜈2𝑛+1)

) =
𝑈(𝜉)

𝑈(−𝜅𝜈2𝑛+1 − 𝜉)
,

𝑥𝑛+1 = 𝜉(𝜉 + 𝜅𝜈2𝑛+1). (118)

Recall that here

𝜈2𝑛+1 = 𝜈2𝑛+1∕2 + 𝛿 = 𝜈2𝑛 + 2𝛿.

To express in (117) the variables 𝑥, 𝑥 through 𝑥𝑛, 𝑦𝑛, we observe that

𝐿2 ∶ (𝑥𝑛, 𝑦𝑛, 𝜈2𝑛−1∕2) ↦→ (𝑥, 𝑦𝑛, 𝜈2𝑛), 𝑅2 ∶ (𝑥, 𝑦𝑛, 𝜈2𝑛) ↦→ (𝑥𝑛+1, 𝑦𝑛, 𝜈2𝑛+1∕2)

can be written, according to (113), as follows:

𝑥 = 𝑥𝑛 +
𝛿

𝜈2𝑛−1∕2
(𝑥𝑛 − 𝑦𝑛), resp. 𝑥𝑛+1 = 𝑥 + 𝛿

𝜈2𝑛
(𝑥 − 𝑦𝑛).

A simple computation confirms that these relations are equivalent to

𝑥 − 𝜂(𝜂 + 𝜅𝜈2𝑛)
𝑥 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 2𝜅𝜈2𝑛)

= 𝑥𝑛 − 𝜂(𝜂 + 𝜅𝜈2𝑛−1)
𝑥𝑛 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 𝜅𝜈2𝑛 − 𝜅𝜈2𝑛−1)

, 𝑦𝑛 = 𝜂(𝜂 − 𝜅𝜈2𝑛), (119)

𝑥 − 𝜂(𝜂 + 𝜅𝜈2𝑛)
𝑥 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 2𝜅𝜈2𝑛)

=
𝑥𝑛+1 − 𝜂(𝜂 + 𝜅𝜈2𝑛+1)

𝑥𝑛+1 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 𝜅𝜈2𝑛+1 − 𝜅𝜈2𝑛)
, 𝑦𝑛 = 𝜂(𝜂 − 𝜅𝜈2𝑛). (120)

Similarly, to express in (118) the variables 𝑦, 𝑦 through 𝑥𝑛+1, 𝑦𝑛, we observe that

𝐿1 ∶ (𝑥𝑛+1, 𝑦𝑛, 𝜈2𝑛+1∕2) ↦→ (𝑥𝑛+1, 𝑦, 𝜈2𝑛+1), 𝑅1 ∶ (𝑥𝑛+1, 𝑦, 𝜈2𝑛+1) ↦→ (𝑥𝑛+1, 𝑦𝑛+1, 𝜈2𝑛+3∕2),

which, according to (112), can be put as follows:

𝑦 = 𝑦𝑛 +
𝛿

𝜈2𝑛+1∕2
(𝑦𝑛 − 𝑥𝑛+1), 𝑦𝑛+1 = 𝑦 + 𝛿

𝜈2𝑛+1
(𝑦 − 𝑥𝑛+1).
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Again, these relations are equivalent to
𝑦 − 𝜉(𝜉 − 𝜅𝜈2𝑛+1)

𝑦 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 2𝜅𝜈2𝑛+1)
= 𝑦𝑛 − 𝜉(𝜉 − 𝜅𝜈2𝑛)
𝑦𝑛 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 𝜅𝜈2𝑛+1 + 𝜅𝜈2𝑛)

,

𝑥𝑛+1 = 𝜉(𝜉 + 𝜅𝜈2𝑛+1) (121)

𝑦 − 𝜉(𝜉 − 𝜅𝜈2𝑛+1)
𝑦 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 2𝜅𝜈2𝑛+1)

=
𝑦𝑛+1 − 𝜉(𝜉 − 𝜅𝜈2𝑛+2)

𝑦𝑛+1 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 𝜅𝜈2𝑛+2 + 𝜅𝜈2𝑛+1)
,

𝑥𝑛+1 = 𝜉(𝜉 + 𝜅𝜈2𝑛+1). (122)

Substituting (119)–(122) into (117), (118), we arrive at the following system of non-

autonomous difference equations for the variables 𝑥𝑛, 𝑦𝑛 :
(
𝑥𝑛+1 − 𝜂(𝜂 + 𝜅𝜈2𝑛+1)

)(
𝑥𝑛 − 𝜂(𝜂 + 𝜅𝜈2𝑛−1)

)
(
𝑥𝑛+1 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 𝜅𝜈2𝑛+1 − 𝜅𝜈2𝑛)

)(
𝑥𝑛 − (𝜂 − 𝜅𝜈2𝑛)(𝜂 − 𝜅𝜈2𝑛 − 𝜅𝜈2𝑛−1)

)

= 𝑈(𝜂)
𝑈(𝜅𝜈2𝑛 − 𝜂)

, 𝑦𝑛 = 𝜂(𝜂 − 𝜅𝜈2𝑛), (123)

(
𝑦𝑛+1 − 𝜉(𝜉 − 𝜅𝜈2𝑛+2)

)(
𝑦𝑛 − 𝜉(𝜉 − 𝜅𝜈2𝑛)

)
(
𝑦𝑛+1 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 𝜅𝜈2𝑛+2 + 𝜅𝜈2𝑛+1)

)(
𝑦𝑛 − (𝜉 + 𝜅𝜈2𝑛+1)(𝜉 + 𝜅𝜈2𝑛+1 + 𝜅𝜈2𝑛)

)

= 𝑈(𝜉)
𝑈(−𝜅𝜈2𝑛+1 − 𝜉)

, 𝑥𝑛+1 = 𝜉(𝜉 + 𝜅𝜈2𝑛+1). (124)

This is the 𝑑-Painlevé equation of the surface type 𝐴(1)
0 , as given in [20], [11].

Remark. In the symmetric situation, when 𝑈(𝑧) = 𝑈(−𝑧), the system (123), (124)

can be interpreted as a one-field second order difference equation, with 𝑥𝑛 = 𝑢2𝑛−1 and

𝑦𝑛 = 𝑢2𝑛. To see this, one should make the change 𝜉 ↦→ −𝜉 in equation (124), after which

it matches (123).

9 From a pencil of type (ii) to the q-Painlevé equation of the

surface type 𝐴(1)
0

2D QRT map. We consider the QRT map corresponding to the pencil of biquadratic

curves through eight points 𝑠𝑖 = (𝑎𝑖, 𝑏𝑖), where

𝑎𝑖 = 𝑧𝑖 +
𝜅1
𝑧𝑖
, 𝑏𝑖 =

1
𝑧𝑖
+ 𝑧𝑖
𝜅2
, 𝑖 = 1, … , 8.
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These eight points support a pencil of biquadratic curves if they satisfy the condition
8∏

𝑖=1
𝑧𝑖 = 𝜅21𝜅

2
2.

They belong to the curve with the equation

(𝑥 − 𝜅2𝑦)(𝑦 − 𝜅−11 𝑥) = (𝜅1𝜅2)−1(𝜅1 − 𝜅2)2.

This is a biquadratic curve in ℙ1 × ℙ1 with a simple node at (∞,∞), see Fig. 5 (a).

s1

s2

s3

s4

s5

s6

s7

s8

(a) (b)

Figure 5: (a) Base set of the surface type 𝐴(1)
0 : eight points on a nodal (2,2)-curve in ℙ1 ×ℙ1.

(b) Pencil of quadrics through a nodal spatial quartic in ℙ3

The vertical involution 𝑖1 can be described by the following equation:

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦),
(𝑦 − 1

𝜉
− 𝜉
𝜅2
) (𝑦 − 1

𝜉
− 𝜉
𝜅2
)

(𝑦 −
𝜉
𝜅1

− 𝜅1
𝜅2𝜉

) (𝑦 −
𝜉
𝜅1

− 𝜅1
𝜅2𝜉

)
= 𝑈(𝜉)

𝑈
(𝜅1
𝜉
) , 𝑥 = 𝜉 + 𝜅1

𝜉
. (125)

Here we use the abbreviation

𝑈(𝑧) = 𝑧−4
8∏

𝑖=1
(𝑧 − 𝑧𝑖). (126)

Formula (125) is understood as follows. Written as a Laurent polynomial in 𝜉, it is anti-

symmetric with respect to 𝜉 ↔ 𝜅1∕𝜉. Upon division by 𝜉 − 𝜅1∕𝜉, the resulting Laurent
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polynomial is symmetric and therefore it can be actually expressed as a polynomial

in 𝑥 = 𝜉 + 𝜅1∕𝜉. This defines 𝑖1 as a birational involution (its symmetry w.r.t. 𝑦 ↔ 𝑦 is

obvious).

Similarly, the horizontal involution 𝑖2 can be described by the following equation:

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦),
(𝑥 − 𝜂 − 𝜅1

𝜂 ) (𝑥 − 𝜂 − 𝜅1
𝜂 )

(𝑥 − 𝜅2
𝜂 − 𝜅1𝜂

𝜅2
) (𝑥 − 𝜅2

𝜂 − 𝜅1𝜂
𝜅2

)
= 𝑈(𝜂)

𝑈
(𝜅2
𝜂
), 𝑦 = 1

𝜂 +
𝜂
𝜅2
. (127)

The eight points 𝑠1, … , 𝑠8 in ℙ1 × ℙ1 serve as the indeterminacy set for 𝑖1 and for 𝑖2. The

singularity confinement structure is as in (11). The QRT map 𝐹 is the composition of these

two involutions, 𝐹 = 𝑖1◦𝑖2.

Remark. In what follows, we restrict ourselves to the case 𝜅1𝜅2 = 1. This restriction is

not essential, but will allow us to shorten some of the formulas. Thus, from now on we

set in this section

𝜅1 =
1
𝜅 , 𝜅2 = 𝜅. (128)

If, additionally, the points 𝑧𝑖 satisfy the condition

𝑧𝑖+4 = 𝑧−1𝑖 , 𝑖 = 1, … , 4, (129)

then the QRT involutions admits a symmetry 𝑖1 = 𝜎◦𝑖2◦𝜎, where 𝜎(𝑥, 𝑦) = (𝑦, 𝑥), so that

one can introduce the QRT root 𝑓 = 𝑖1◦𝜎 = 𝜎◦𝑖2, such that 𝐹 = 𝑓◦𝑓.

3D Painlevé map. As usual, we identify ℙ1 × ℙ1 with the quadric 𝑄0 = {𝑋1𝑋2 − 𝑋3𝑋4 =

0} ⊂ ℙ3 via [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶ 𝑋4] = [𝑥 ∶ 𝑦 ∶ 𝑥𝑦 ∶ 1]. The points 𝑠𝑖 are lifted to

𝑆𝑖 = [𝑎𝑖 ∶ 𝑏𝑖 ∶ 𝑎𝑖𝑏𝑖 ∶ 1].

We declare 𝑄𝜆 to be spanned by 𝑄0 and

𝑄∞ = 𝑃∞ = 𝜅(𝑋2
1 + 𝑋2

2) − (1 + 𝜅2)𝑋1𝑋2 + (𝜅 − 𝜅−1)2𝑋2
4 . (130)

The base set of the pencil 𝑄𝜆 is a nodal space curve {𝑄0 = 0, 𝑃∞ = 0} of degree 4, with the

node at [0 ∶ 0 ∶ 1 ∶ 0]. This is a pencil of type (ii).
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The matrix 𝑀𝜆 of the quadratic form 𝑄𝜆:

𝑀𝜆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−2𝜅𝜆 1 + (1 + 𝜅2)𝜆 0 0

1 + (1 + 𝜅2)𝜆 −2𝜅𝜆 0 0

0 0 0 −1

0 0 −1 −2(𝜅 − 𝜅−1)2𝜆

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (131)

The characteristic polynomial of the pencil {𝑄𝜆} is:

∆(𝜆) = det(𝑀𝜆) =
(
1 + (1 + 𝜅2)𝜆

)2
− 4𝜅2𝜆2 =

(
1 + (1 + 𝜅)2𝜆

)(
1 + (1 − 𝜅)2𝜆

)
,

so that Sing(𝑄𝜆) = {−(1 + 𝜅)−2, −(1 − 𝜅)−2,∞}. This polynomial is not a complete square,

and we have to uniformize
√
∆(𝜆). The uniformizing variable is 𝜈 ∈ ℂ. As in Sect. 7, it will

be convenient to use 𝑤 = 𝑒𝜈 instead, with 𝑤 ∈ ℂ ⧵ {0}. We set

𝜆 = 𝜆(𝑤) = (𝜅 − 𝑤)(1 − 𝜅𝑤)
(1 − 𝜅2)2𝑤

. (132)

Then ∆(𝜆) becomes a square:

∆(𝜆) = 𝜅2(1 − 𝑤2)2
𝑤2(1 − 𝜅2)2

⇒
√
∆(𝜆) = 𝜅(1 − 𝑤2)

𝑤(1 − 𝜅2)
.

Observe that 𝜆(𝑤) = 𝜆(𝑤−1), while
√
∆(𝜆) changes its sign under 𝑤 ↦→ 𝑤−1. This gives us a

double cover of the original pencil branched at 𝜆 = −(1 + 𝜅)−2 (corresponding to 𝑤 = 1),

and at 𝜆 = −(1 − 𝜅)−2 (corresponding to 𝑤 = −1). The point 𝜆 = ∞ is not a branch point (it

corresponds to 𝑤 = 0,∞). The normalizing transformation of 𝑄𝜆(𝑋) to the canonical form

𝑄0(𝑌) = 𝑌1𝑌2 − 𝑌3𝑌4 is achieved by the transformation

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝑤

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑌1
𝑌2
𝑌3
𝑌4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (133)
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where one can take

𝐴𝑤 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑤(1 − 𝜅𝑤)
𝜅(1 − 𝑤2)

𝑤(𝜅 − 𝑤)
𝜅(1 − 𝑤2)

0 0

𝑤(𝜅 − 𝑤)
𝜅(1 − 𝑤2)

𝑤(1 − 𝜅𝑤)
𝜅(1 − 𝑤2)

0 0

0 0 𝑤
𝜅 −(1 − 𝜅𝑤)(𝜅 − 𝑤)

𝜅2𝑤
0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (134)

Indeed, one immediately verifies that

𝐴T
𝑤𝑀𝜆(𝑤)𝐴𝑤 = 𝑤

𝜅 𝑀0.

There follows a parametrization of the quadric 𝑄𝜆(𝑤):

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐴𝑤

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑥𝑦

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=∶ 𝜙𝑤(𝑥, 𝑦). (135)

This parametrization is neither valid for 𝑤 = 0 nor for 𝑤 = ∞. The pencil-adapted

coordinates (𝑥, 𝑦, 𝑤) on (the double cover of) ℙ3 are:

𝑥 = 𝜅
𝑤 ⋅ (1 − 𝜅𝑤)𝑋1 − (𝜅 − 𝑤)𝑋2

(1 − 𝜅2)𝑋4
, 𝑦 = 𝜅

𝑤 ⋅ (1 − 𝜅𝑤)𝑋2 − (𝜅 − 𝑤)𝑋1
(1 − 𝜅2)𝑋4

, (136)

which have to be supplemented with

𝜆 = (𝜅 − 𝑤)(1 − 𝜅𝑤)
(𝜅2 − 1)2𝑤

= 𝑋1𝑋2 − 𝑋3𝑋4
𝜅𝑋2

1 + 𝜅𝑋2
2 − (1 + 𝜅2)𝑋1𝑋2 + (𝜅 − 𝜅−1)2𝑋2

4
. (137)

Theorem 7. For any 𝑞 ≠ ±1, define the Painlevé deformation map corresponding to the

translation 𝑤 ↦→ 𝑤 = 𝑞2𝑤 by

𝐿 ∶

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑋1 = 𝑋1𝑋4,

𝑋2 = 𝑋2𝑋4,

𝑋3 = 𝑋3𝑋4 −
(
𝜆(𝑤) − 𝜆(𝑤)

)
𝑄∞(𝑋),

𝑋4 = 𝑋2
4 ,

(138)
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where 𝜆 = 𝜆(𝑤) is given by (132), and 𝑄∞(𝑋) is given in (130). Then, in pencil-adapted

coordinates, the map 𝐿 acts as follows:

𝐿 ∶ 𝑥 = 𝑥 + 1 − 𝑞−2
𝑤2 − 1 (𝑥 − 𝑤𝑦), 𝑦 = 𝑦 + 1 − 𝑞−2

𝑤2 − 1 (𝑦 − 𝑤𝑥), 𝑤 = 𝑞2𝑤. (139)

For the latter map, the factorizations (4), (5) are given by

𝐿1 ∶ (𝑥, 𝑦, 𝑤) ↦→ (𝑥, 𝑦, 𝑞𝑤), 𝑦 = 𝑦 + 1 − 𝑞−2
𝑤2 − 1 (𝑦 − 𝑞𝑤𝑥), (140)

𝑅1 ∶ (𝑥, 𝑦, 𝑤) ↦→ (𝑥, 𝑦, 𝑞𝑤), 𝑦 = 𝑦 + 1 − 𝑞−2
𝑤2 − 1 (𝑦 − 𝑤𝑥), (141)

𝐿2 ∶ (𝑥, 𝑦, 𝑤) ↦→ (𝑥, 𝑦, 𝑞𝑤), 𝑥 = 𝑥 + 1 − 𝑞−2
𝑤2 − 1 (𝑥 − 𝑞𝑤𝑦), (142)

𝑅2 ∶ (𝑥, 𝑦, 𝑤) ↦→ (𝑥, 𝑦, 𝑞𝑤), 𝑥 = 𝑥 + 1 − 𝑞−2
𝑤2 − 1 (𝑥 − 𝑤𝑦). (143)

Relation to the 𝑞-Painlevé equation of the surface type 𝐴(1)
0 . In the pencil-adapted

coordinates (𝑥, 𝑦, 𝑤), for each fixed 𝑤, the intersection curves 𝑄𝜆(𝑤) ∪ 𝑃𝜇 form the pencil

through the points

𝑠𝑖(𝑤) = (𝑎𝑖(𝑤), 𝑏𝑖(𝑤)) =
(
𝑧𝑖 +

1
𝑤𝑧𝑖

, 1𝑧𝑖
+ 𝑧𝑖
𝑤
)
, 𝑖 = 1, … , 8, (144)

which are just the points 𝑆𝑖 expressed in the pencil-adapted coordinates on 𝑄𝜆(𝑤). Thus,

the 3D QRT involutions 𝑖1, 𝑖2 act on each quadric 𝑄𝜆(𝑤) in the pencil-adapted coordinates

via formulas which are obtained from the corresponding 2D formulas by replacing 𝜅 by

𝑤:

𝑖1(𝑥, 𝑦) = (𝑥, 𝑦),
(𝑦 − 1

𝜉
− 𝜉
𝑤)(𝑦 −

1
𝜉
− 𝜉
𝑤)

(𝑦 − 𝑤𝜉 − 1
𝑤2𝜉 ) (

𝑦 − 𝑤𝜉 − 1
𝑤2𝜉 )

= 𝑈(𝜉)

𝑈
( 1
𝑤𝜉

), 𝑥 = 𝜉 + 1
𝑤𝜉

, (145)

𝑖2(𝑥, 𝑦) = (𝑥, 𝑦),
(𝑥 − 𝜂 − 1

𝑤𝜂) (𝑥 − 𝜂 − 1
𝑤𝜂)

(𝑥 − 𝑤
𝜂 − 𝜂

𝑤2 ) (𝑥 −
𝑤
𝜂 − 𝜂

𝑤2 )
= 𝑈(𝜂)

𝑈
(𝑤
𝜂
), 𝑦 = 1

𝜂 +
𝜂
𝑤 . (146)
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In notations of (7), (8), this takes the form

(𝑥 − 𝜂 − 1
𝑤2𝑛𝜂

) (𝑥 − 𝜂 − 1
𝑤2𝑛𝜂

)

(𝑥 −
𝑤2𝑛
𝜂 − 𝜂

𝑤2
2𝑛
) (𝑥 −

𝑤2𝑛
𝜂 − 𝜂

𝑤2
2𝑛
)
= 𝑈(𝜂)

𝑈
(𝑤2𝑛
𝜂
), 𝑦𝑛 =

1
𝜂 +

𝜂
𝑤2𝑛

, (147)

(𝑦 − 1
𝜉
− 𝜉
𝑤2𝑛+1

) (𝑦 − 1
𝜉
− 𝜉
𝑤2𝑛+1

)

(𝑦 − 𝑤2𝑛+1𝜉 −
1

𝑤2
2𝑛+1𝜉

) (𝑦 − 𝑤2𝑛+1𝜉 −
1

𝑤2
2𝑛+1𝜉

)
= 𝑈(𝜉)

𝑈
( 1
𝑤2𝑛+1𝜉

) , 𝑥𝑛+1 = 𝜉 + 1
𝑤2𝑛+1𝜉

. (148)

Here, recall,

𝑤2𝑛+1 = 𝑞𝑤2𝑛+1∕2 = 𝑞2𝑤2𝑛. (149)

To express in (147) the variables 𝑥, 𝑥 through 𝑥𝑛, 𝑦𝑛, we observe that

𝐿2 ∶ (𝑥𝑛, 𝑦𝑛, 𝑤2𝑛−1∕2) ↦→ (𝑥, 𝑦𝑛, 𝑤2𝑛), 𝑅2 ∶ (𝑥, 𝑦𝑛, 𝑤2𝑛) ↦→ (𝑥𝑛+1, 𝑦𝑛, 𝑤2𝑛+1∕2).

According to (142), (143), we find:

𝑥 = 𝑥𝑛 +
1 − 𝑞−2

𝑤2
2𝑛−1∕2 − 1

(𝑥𝑛 − 𝑞𝑤2𝑛−1∕2𝑦𝑛), 𝑥𝑛+1 = 𝑥 + 1 − 𝑞−2

𝑤2
2𝑛 − 1

(𝑥 − 𝑤2𝑛𝑦𝑛).

A straightforward computation confirms that these equations are equivalent to

𝑥 − 𝜂 − 1
𝑤2𝑛𝜂

𝑥 − 𝑤2𝑛
𝜂 − 𝜂

𝑤2
2𝑛

=
𝑥𝑛 − 𝜂 − 1

𝑤2𝑛−1𝜂

𝑥𝑛 −
𝑤2𝑛
𝜂 − 𝜂

𝑤2𝑛𝑤2𝑛−1

, 𝑦𝑛 =
1
𝜂 +

𝜂
𝑤2𝑛

, (150)

𝑥 − 𝜂 − 1
𝑤2𝑛𝜂

𝑥 − 𝑤2𝑛
𝜂 − 𝜂

𝑤2
2𝑛

=
𝑥𝑛+1 − 𝜂 − 1

𝑤2𝑛+1𝜂

𝑥𝑛+1 −
𝑤2𝑛
𝜂 − 𝜂

𝑤2𝑛𝑤2𝑛+1

, 𝑦𝑛 =
1
𝜂 +

𝜂
𝑤2𝑛

. (151)

Similarly, to express in (148) the variables 𝑦, 𝑦 through 𝑥𝑛+1, 𝑦𝑛, we observe that

𝐿1 ∶ (𝑥𝑛+1, 𝑦𝑛, 𝑤2𝑛+1∕2) ↦→ (𝑥𝑛+1, 𝑦, 𝑤2𝑛+1), 𝑅1 ∶ (𝑥𝑛+1, 𝑦, 𝑤2𝑛+1) ↦→ (𝑥𝑛+1, 𝑦𝑛+1, 𝑤2𝑛+3∕2).

According to (140), (141), we find:

𝑦 = 𝑦𝑛 +
1 − 𝑞−2

𝑤2
2𝑛+1∕2 − 1

(𝑦𝑛 − 𝑞𝑤2𝑛+1∕2𝑥𝑛+1), 𝑦𝑛+1 = 𝑦 + 1 − 𝑞−2

𝑤2
2𝑛+1 − 1

(𝑦 − 𝑤2𝑛+1𝑥𝑛+1).
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These equations are equivalent to

𝑦 − 1
𝜉
− 𝜉
𝑤2𝑛+1

𝑦 − 𝑤2𝑛+1𝜉 −
1

𝑤2
2𝑛+1𝜉

=
𝑦𝑛 −

1
𝜉
− 𝜉
𝑤2𝑛

𝑦𝑛 − 𝑤2𝑛+1𝜉 −
1

𝑤2𝑛+1𝑤2𝑛𝜉

, 𝑥𝑛+1 = 𝜉 + 1
𝑤2𝑛+1𝜉

, (152)

𝑦 − 1
𝜉
− 𝜉
𝑤2𝑛+1

𝑦 − 𝑤2𝑛+1𝜉 −
1

𝑤2
2𝑛+1𝜉

=
𝑦𝑛+1 −

1
𝜉
− 𝜉
𝑤2𝑛+2

𝑦𝑛+1 − 𝑤2𝑛+1𝜉 −
1

𝑤2𝑛+2𝑤2𝑛+1𝜉

, 𝑥𝑛+1 = 𝜉 + 1
𝑤2𝑛+1𝜉

. (153)

Substitute (150)–(153) into (147), (148). This results in the following system of non-

autonomous difference equations for the variables 𝑥𝑛, 𝑦𝑛:

(𝑥𝑛+1 − 𝜂 − 1
𝑤2𝑛+1𝜂

) (𝑥𝑛 − 𝜂 − 1
𝑤2𝑛−1𝜂

)

(𝑥𝑛+1 −
𝑤2𝑛
𝜂 − 𝜂

𝑤2𝑛𝑤2𝑛+1
) (𝑥𝑛 −

𝑤2𝑛
𝜂 − 𝜂

𝑤2𝑛𝑤2𝑛−1
)
= 𝑈(𝜂)

𝑈
(𝑤2𝑛
𝜂
), 𝑦𝑛 =

1
𝜂 +

𝜂
𝑤2𝑛

, (154)

(𝑦𝑛+1 −
1
𝜉
− 𝜉
𝑤2𝑛+2

) (𝑦𝑛 −
1
𝜉
− 𝜉
𝑤2𝑛

)

(𝑦𝑛+1 − 𝑤2𝑛+1𝜉 −
1

𝑤2𝑛+2𝑤2𝑛+1𝜉
) (𝑦𝑛 − 𝑤2𝑛+1𝜉 −

1
𝑤2𝑛+1𝑤2𝑛𝜉

)
= 𝑈(𝜉)

𝑈
( 1
𝑤2𝑛+1𝜉

) ,

𝑥𝑛+1 = 𝜉 + 1
𝑤2𝑛+1𝜉

. (155)

This is the 𝑞-Painlevé equation of the surface type 𝐴(1)
0 , as given in [20], [11].

Remark. In the symmetric situation, when 𝑈(𝑧) = 𝑈(𝑧−1), the system (154), (155)

can be interpreted as a one-field second order difference equation, with 𝑥𝑛 = 𝑢2𝑛−1 and

𝑦𝑛 = 𝑢2𝑛. To see this, one should make in equation (155) the change 𝜉 ↦→ 𝜉−1, after which

it matches (154).

10 Conclusions

In this paper, we carried out the largest part of the task left open in [2], namely extended

our novel approach to the pencils for which the generators through a point 𝑋 ∈ ℙ3
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depend on 𝑋 in a non-rational (branching) way. The only case left open for a further

investigation is the pencil of the generic type (i), associated (in our scheme) with the

elliptic Painlevé equation. Also the problem of an interpretation of the isomonodromic

property of discrete Painlevé equations within our scheme remains open and is left for

the future research. Finally, it will be important to extend the scheme of the present paper

to discrete Painlevé equations corresponding to further translations in the corresponding

affine Weyl symmetry groups. A path to this goal (via additional geometric involutions

related to pencils and nets of quadrics) was sketched in the concluding remarks of [2].

The first step towards this goal (in the two-dimensional framework) has been performed

in [3].
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