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Evgeny G. Malkovich

1 Introduction

The Heisenberg group ℋ is one of the best known and straightforward examples of

nonholonomic geometry. It consists of the three-dimensional space ℝ3 equipped with a

two-dimensional non-integrable subbundle of the tangent bundle 𝑇ℝ3. In the context of

the Heisenberg group, the planes Π of admissible directions are spanned by two vector

fields, 𝑋 and 𝑌:

𝑋 = 𝜕
𝜕𝑥 − 𝑦

2
𝜕
𝜕𝑧 , 𝑌 = 𝜕

𝜕𝑦 +
𝑥
2
𝜕
𝜕𝑧 . (1)

It is straightforward to verify that the Lie bracket [𝑋, 𝑌] = 𝜕
𝜕𝑧

. According to Frobenius

theorem, there is no foliation of ℝ3 into a family of two-dimensional surfaces Σ such

that 𝑋 and 𝑌 are tangent to Σ; this is equivalent to the non-integrability of distribution.

In this scenario, it is quite clear that the normal vector 𝑛 of the plane Π would need to

be the gradient of some function 𝐹 = 𝐹(𝑥, 𝑦, 𝑧) up to multiplication by a scalar function

𝜆 = 𝜆(𝑥, 𝑦, 𝑧):

𝜆𝑛 = 𝜆𝑋 × 𝑌 = 𝜆(𝑦2 , −
𝑥
2 , 1) = (𝐹′𝑥, 𝐹′𝑦, 𝐹′𝑧).

It is not hard to check that there are no solutions 𝜆(𝑥, 𝑦, 𝑧) and 𝐹(𝑥, 𝑦, 𝑧) of this system of

PDEs: from the first two equations it easy to show that 𝐹 should be a function depending

only on 𝜙 = arctan 𝑦
𝑥

and 𝑧; usind the third equation one will find that 𝐹 doesn’t depend

on 𝜙 either; after that it is clear that there are no non-trivial solutiouns. In contrast, in

the integrable (or holonomic) case the family of surfaces Σ is defined as the level sets of

some function 𝐹

Σ = {𝑝 ∈ ℝ3|𝐹(𝑝) = const}.

To discretize a smooth surface Σ, one can simply define a triangulation of this surface.

If the triangles in this triangulation are sufficiently small, they can approximate the

pieces of the surface accurately.

For the non-holonomic geometry onℋ, we can consider a small disk𝐷𝜀 = {𝛼𝑋+𝛽𝑌|𝛼2+

𝛽2 < 𝜀2} ⊂ Π as a “two-dimensional piece of the Heisenberg group" [1]. However, it turns
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Discretization of the sub-Riemannian Heisenberg Group

out that a discrete model of the Heisenberg group, represented as a set of intersecting

disks, fails to capture the essential geometric features of ℋ.

To construct a viable discrete model of ℋ, we define a local sub-Riemannian distance

between sufficiently close points. This distance is generated by the distribution (1), similar

to how it is approached in Heron’s problem. Subsequently, we define a spatial graph Γ𝑟
as a discretization of the sub-Riemannian Heisenberg group. Numerical experiments

indicate that the metric properties of this graph — such as the shape of the shortest paths

— effectively simulate the corresponding properties of the Heisenberg group.

There is a series of works [2, 3, 4] that explore discrete non-holonomic systems from

the perspectives of finite-difference operators and computational methods. For instance,

in the article titled “On Discrete Geometry of Non-Holonomic Spaces" [5], the authors

examine a discrete version of the Lagrange-d’Alembert-Chaplygin equations without

delving into specific discrete geometric objects. This work aims to construct a tangible

discrete model for ℋ — the simplest example of sub-Riemannian geometry.

2 Local sub-Riemannian Distance

Consider two arbitrary points 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and 𝑝𝑗 = (𝑥𝑗, 𝑦𝑗, 𝑧𝑗) in ℋ. Each point defines

a plane spanned by the vectors 𝑋𝑖 = (1, 0, −𝑦𝑖
2
) and 𝑌𝑖 = (0, 1, 𝑥𝑖

2
). A normal vector to this

plane is given by 𝑁𝑖 = (𝑦𝑖
2
, −𝑥𝑖

2
, 1). The corresponding planes are:

Π𝑖 ∶
𝑦𝑖
2 (𝑥 − 𝑥𝑖) −

𝑥𝑖
2 (𝑦 − 𝑦𝑖) + (𝑧 − 𝑧𝑖) = 0

Π𝑗 ∶
𝑦𝑗
2 (𝑥 − 𝑥𝑗) −

𝑥𝑗
2 (𝑦 − 𝑦𝑗) + (𝑧 − 𝑧𝑗) = 0.

The intersection of these planes defines a line 𝑙𝑖𝑗 = Π𝑖
⋂Π𝑗, which can be expressed in

parametric form:

𝑙𝑖𝑗(𝑡) =

⎛
⎜
⎜
⎜
⎜
⎝

(𝑧𝑗−𝑧𝑖)(𝑥𝑖+𝑥𝑗)
𝑥𝑖𝑦𝑗−𝑥𝑗𝑦𝑖

(𝑧𝑗−𝑧𝑖)(𝑦𝑖+𝑦𝑗)
𝑥𝑖𝑦𝑗−𝑥𝑗𝑦𝑖
𝑧𝑖+𝑧𝑗
2

⎞
⎟
⎟
⎟
⎟
⎠

+ 𝑡

⎛
⎜
⎜
⎜
⎝

2𝑥𝑗 − 2𝑥𝑖
2𝑦𝑗 − 2𝑦𝑖
𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖

⎞
⎟
⎟
⎟
⎠

.
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We define the local sub-Riemannian (lsR) distance between the two points 𝑝𝑖 and 𝑝𝑗
as the length of the shortest broken line consisting of two segments that connect these

points within the union of the two planes Π𝑖
⋃Π𝑗.

𝐝lsR(𝑝𝑖, 𝑝𝑗) = min
𝑞∈𝑙𝑖𝑗

(𝜌(𝑝𝑖, 𝑞) + 𝜌(𝑞, 𝑝𝑗)),

where 𝜌 is the standard Euclidean distance in ℝ3. This approach generalizes the classic

Heron’s problem of finding a point 𝑞 on a fixed line that minimizes the sum of distances

to two fixed points. One of the planes, let’s say Π𝑖, can be rotate about the line 𝑙𝑖𝑗 until it

coincides with the another planeΠ𝑗 and the points 𝑝𝑖 and 𝑝𝑗 will be placed in the different

half-planes defined by the line 𝑙𝑖𝑗. Then

𝐝lsR(𝑝𝑖, 𝑝𝑗)2 = 𝜌(𝑝′𝑖 , 𝑝𝑗)
2 = (𝜌𝑖 + 𝜌𝑗)2 + (𝜌(𝑝⊥𝑖 , 𝑝

⊥
𝑗 ))

2, (2)

as can be seen in the Fig.1. Here 𝑝⊥𝑖 is the projection of 𝑝𝑖 onto 𝑙𝑖𝑗 and 𝜌𝑖 = 𝜌(𝑝𝑖, 𝑝⊥𝑖 ).

Figure 1: The local sub-Riemannian distance 𝐝lsR(𝑝𝑖, 𝑝𝑗) and Heron’s problem.

The distances 𝜌𝑖 and 𝜌𝑗 can be calculated easily

𝜌𝑖 =
|𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖 + 2𝑧𝑖 − 2𝑧𝑗|

√
4(𝑥𝑖 − 𝑥𝑗)2 + 4(𝑦𝑖 − 𝑦𝑗)2 + (𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖)2

√
4+ 𝑥2𝑖 + 𝑦2𝑖 , (3)
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𝜌𝑗 =
|𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖 + 2𝑧𝑖 − 2𝑧𝑗|

√
4(𝑥𝑖 − 𝑥𝑗)2 + 4(𝑦𝑖 − 𝑦𝑗)2 + (𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖)2

√
4+ 𝑥2𝑗 + 𝑦2𝑗 . (4)

The distance 𝜌(𝑝⊥𝑖 , 𝑝
⊥
𝑗 ) between the projections of the points on the line 𝑙𝑖𝑗 is

𝜌(𝑝⊥𝑖 , 𝑝
⊥
𝑗 )

2 =
(
2(𝑥𝑖 − 𝑥𝑗)2 + 2(𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑗 − 𝑧𝑖)(𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖)

)2

4(𝑥𝑖 − 𝑥𝑗)2 + 4(𝑦𝑖 − 𝑦𝑗)2 + (𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖)2
. (5)

Gathering (3) − (5) and substituting them into (2) gives the lsR-distance:

𝐝lsR(𝑝𝑖, 𝑝𝑗) =
1

√
4(𝑥𝑖 − 𝑥𝑗)2 + 4(𝑦𝑖 − 𝑦𝑗)2 + (𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖)2

⋅

⋅
(
(𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖 + 2𝑧𝑖 − 2𝑧𝑗)2

(√
4 + 𝑥2𝑖 + 𝑦2𝑖 +

√
4 + 𝑥2𝑗 + 𝑦2𝑗

)2
+ (6)

+
(
2(𝑥𝑖 − 𝑥𝑗)2 + 2(𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑗 − 𝑧𝑖)(𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖)

)2) 1
2 .

We will use formula (6) to define weights of the edges in a graph Γ𝑟. Next we set 𝑝1 as

an origin point 𝑂 ∈ ℋ and examine the ball 𝐵(𝑂, 1) with respect to the lsR-distance.

𝐝lsR(𝑂, (𝑥, 𝑦, 𝑧)) =
√
𝑥2 + 𝑦2 ⋅

√
1 + 𝑧2

(𝑥2 + 𝑦2)2
(2 +

√
4 + 𝑥2 + 𝑦2)2. (7)

It is evident that the vertical axis 𝑂𝑧 is ‘forbidden’ — points 𝑝𝑖 and 𝑝𝑗 having different 𝑧

coordinate define parallel planes Π𝑖 and Π𝑗. Consequently, the lsR-distance 𝐝lsR(𝑂, (0, 0, 𝑧))

becomes infinite (as illustrated in Fig. 2). This contrasts with the standard sub-Riemannian

ball in the Heisenberg group, which takes on an ‘apple’ shape [6, 7]. In contrast, the lsR-

distance results in a pinched ball resembling a donut with an infinitely small hole.

The sub-Riemannian distance 𝐝sR from the origin 𝑂 to the point (𝑥, 𝑦, 𝑧) in the Heisen-

berg group ℋ is defined as follows [7]:

a) if 𝑧 = 0, then 𝐝sR(𝑂, (𝑥, 𝑦, 0)) =
√
𝑥2 + 𝑦2,

b) if 𝑧 ≠ 0 and 𝑥 = 𝑦 = 0, then 𝐝sR(𝑂, (0, 0, 𝑧)) =
√
2𝜋|𝑧|,

c) if 𝑧 ≠ 0 and 𝑥2 + 𝑦2 > 0, then 𝐝sR(𝑂, (𝑥, 𝑦, 𝑧)) =
𝑞

sin 𝑞

√
𝑥2 + 𝑦2,

where
2𝑞 − sin 2𝑞
4 sin2 𝑞

= 𝑧
𝑥2 + 𝑦2 . (8)
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Figure 2: The hemisphere in the 𝐝lsR-distance and its ∞-shaped 𝑂𝑥𝑧-section (red).

The Taylor expansion of (7) gives

𝐝lsR(𝑂, (𝑥, 𝑦, 𝑧)) =
√
𝑥2 + 𝑦2

(
1 + 1

2
𝑧2

(𝑥2 + 𝑦2)2
(2 +

√
4 + 𝑥2 + 𝑦2)2 + ...

)
.

In the general case c) of the sub-Riemannian distance, assuming that 𝑞 is small enough,

from (8) one gets

𝑞 ∼ 3𝑧
𝑥2 + 𝑦2 .

Then

𝐝sR(𝑂, (𝑥, 𝑦, 𝑧)) =
√
𝑥2 + 𝑦2

(
1 + 1

2
3𝑧2

(𝑥2 + 𝑦2)2
+ ...

)
.

The second term in this expansion can be interpreted as a sub-Riemannian correction to

the 2-dimensional Euclidean distance function
√
𝑥2 + 𝑦2. Notably, both corrections share

a common multiplier of the form 3𝑧2

(𝑥2+𝑦2)2
, which is a positive indication. It is possible to

introduce an additional parameter Λ into the lsR-distance (7) that changes the weight of

the (𝜌(𝑝⊥𝑖 , 𝑝
⊥
𝑗 ))

2 summand, namely

√
𝑥2 + 𝑦2 ⋅

√
1 + Λ 𝑧2

(𝑥2 + 𝑦2)2
(2 +

√
4 + 𝑥2 + 𝑦2)2.

As Λ approaches zero, the ball 𝐵(𝑂, 1) becomes thicker; conversely, as Λ → ∞, it flattens

out — transforming from a donut to a pancake: 𝐵(𝑂, 1) → 𝐷1. It is crucial to note that

if the lsR-ball 𝐵(𝑂, 1) were merely a 2-dimensional disc 𝐷1, then the distance between

almost any pair of random points would be infinite.
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If the center of the ball shifts from the origin to the point 𝑝𝑖, the ball bends in such a

way that its central plane of symmetry coincides with the planeΠ𝑖 of admissible directions

at 𝑝𝑖 (Fig.3).

Figure 3: The ball 𝐵((2, 0, 0), 1) in the 𝐝lsR-distance.

3 A spatial graph and a discrete sub-Riemannian distance

Consider the cubic domain Ω = [−1, 1]3 ⊂ ℋ with a set 𝐷 = {𝑝𝑖 ∈ Ω|𝑖 = 1,… ,𝑁} of 𝑁 points.

These points can form either a regular lattice or they can be randomly and uniformly

distributed inΩ. We will consider the scenario with random points. Calculate all distances

𝐝lsR(𝑝𝑖, 𝑝𝑗) using (6) and consider the weighted spatial graph Γ𝑟 with vertices 𝑝𝑖 and edges

𝑣𝑖𝑗 of weight 𝐝lsR(𝑝𝑖, 𝑝𝑗) ≤ 𝑟, it means that vertices 𝑝𝑖 ∈ 𝐷 and 𝑝𝑗 are connected by the edge

𝑣𝑖𝑗 in the graph Γ𝑟 if and only if the local sub-Riemannian distance 𝐝lsR(𝑝𝑖, 𝑝𝑗) between

them is smaller than a fixed value 𝑟.

The graph Γ𝑟 serves as a discrete model for the Heisenberg group. When the parameter

𝑟 is too small, most vertices in Γ𝑟 tend to be disjoint. Conversely, if 𝑟 is excessively large,

nearly all pairs of points (𝑝𝑖, 𝑝𝑗) will be connected by an edge. The critical threshold value

𝑟∗ is influenced by both the number of vertices 𝑁 and the domain Ω. Here, 𝑟∗ refers to

Arnold Mathematical Journal, Vol.11(3), 2025 7
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the specific value of 𝑟 such that for any 𝑟 > 𝑟∗, the graph Γ𝑟 becomes connected for an

average distribution of the points 𝑝𝑖.

Next we perform a number of numerical experiments demonstrating that the pre-

sented discrete model possesses features specific for the sub-Riemannian Heisenberg

group. Firstly, using the standard Dijkstra algorithm [8] for finding shortest paths in a

graph, one can find the shortest path in Γ𝑟. The shortest path is a broken line with vertices

at the points 𝑝1, 𝑝𝑖1 , … , 𝑝𝑖𝑘 , 𝑝2, thus the discrete sub-Riemannian (dsR) distance between 𝑝1
and 𝑝2 in Γ𝑟 is

𝐝dsR(𝑝1, 𝑝2) = 𝐝lsR(𝑝1, 𝑝𝑖1) + 𝐝lsR(𝑝𝑖1 , 𝑝𝑖2) + … + 𝐝lsR(𝑝𝑖𝑘 , 𝑝2). (9)

The distance between close vertices is defined via the local sub-Riemannian distance,

while the distance between arbitrary vertices is the length of the shortest path in Γ𝑟.

Numerical calculations show that the shortest path between 𝑝1 = (0, 0, 0) and 𝑝2 =

(0, 0, 𝑧2) has a form of a single-wind helix (Fig.4) — a typical form for the Heisenberg

geodesics [7, 9]:

𝑥(𝑡) = (sin(𝜃0 + ℎ3𝑡) − sin 𝜃0)∕ℎ3,

𝑦(𝑡) = (cos 𝜃0 − cos(𝜃0 + ℎ3𝑡))∕ℎ3, (10)

𝑧(𝑡) = (ℎ3𝑡 − sin ℎ3𝑡)∕ℎ23.

In (10) the parameter 𝜃0 can be chosen in such a way that the initial velocity vector at 𝑡 = 0

coincides with the first interval [𝑝1, 𝑝𝑖1] and the varying parameter ℎ3 gives the necessary

height 𝑧(2𝜋) of the helix (Fig.4, black curve). Note that the discrete sub-Riemannian

distance between points having different 𝑧 coordinate is finite, contrary to the local

sub-Riemannian distance.

Next we compare the distance 𝐝dsR between points as the vertices of the graph Γ𝑟 and

the sub-Riemannian distance 𝐝sR in ℋ. We will consider two situations: horizontal and

vertical. In the horizontal case, when 𝑝1 = (0, 0, 0) and 𝑝2 = (𝑥2, 𝑦2, 0), the geodesic in ℋ

is a straight horizontal interval [𝑝1, 𝑝2] in the plane Oxy. The vertical situation is when

𝑝1 = (0, 0, 0) and 𝑝2 = (0, 0, 𝑧2) and the geodesic is a helix (10) with non-constant slope. In
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Figure 4: Sub-Riemannian geodesic (black, (10)) and typical shortest path (blue) in the

graph Γ 1
2

with 𝑁 = 1500 vertices connecting points (0, 0, 0) and (0, 0, 1
2
), various projections.

accordance with a) the sub-Riemannian distance in the horizontal case coincides with

the Euclidean length 𝐝𝑠𝑅((0, 0, 0), (𝑥2, 𝑦2, 0)) =
√
𝑥22 + 𝑦22 .

𝑁 = 1000 𝑁 = 2000 𝑁 = 4000 𝑁 = 6000 𝐝𝑠𝑅(𝑝1, 𝑝2)

𝑥2 = 𝑦2 =
1
2

1.8628 0.8971 0.8655 0.7752
√
2
2
≈ 0.7071

𝑥2 = 𝑦2 = 1 ∞ 1.9839 1.7267 1.5965
√
2 ≈ 1.4142

Table 1. Mean distance 𝐝dsR((0, 0, 0), (𝑥2, 𝑦2, 0)) for different 𝑁 and sub-Riemannian distance,

horizontal case.

If the number of vertices 𝑁 is small, the graph Γ𝑟 can be disconnected, in which case

the distance between disconnected vertices is equal to infinity. In Table 1 the value 0.8955
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is the averaged distance of 𝐝dsR(𝑝1, 𝑝2) calculated for 10 numerical experiments with

4000 random vertices each. As 𝑁 increases, the dispersion of 𝐝𝑑𝑠𝑅(𝑝1, 𝑝2) decreases and

its value gets closer to the value of 𝐝𝑠𝑅(𝑝1, 𝑝2). The convergence of the distances in the

vertical case is shown in Table 2.

𝑁 = 1000 𝑁 = 2000 𝑁 = 4000 𝑁 = 6000 𝐝𝑠𝑅(𝑝1, 𝑝2)

𝑧2 =
1
9

1.717 1.3617 1.2929 1.2702
√
2𝜋
3

≈ 0.8355

𝑧2 =
4
9

3.2894 2.8339 2.5877 2.5209 2
√
2𝜋
3

≈ 1.671

Table 2. Mean distance 𝐝dsR((0, 0, 0), (0, 0, 𝑧2)) for different 𝑁 and the sub-Riemannian dis-

tance, vertical case.

From Tables 1 and 2 one can see that, as 𝑁 increases, the discrete sub-Riemannian

distance gets closer to the standard sub-Riemannian distance in ℋ, but with different

rates in the horizontal and vertical cases. A more detailed discussion on these results

will be provided in the next section.

The last feature of geodesics in ℋ that is going to be checked for Γ𝑟 is the fact that

the coordinate 𝑧(𝑡) of the geodesic that starts at 𝑂 is proportional to the sectional area

of the projection (𝑥(𝑡), 𝑦(𝑡)) onto the 𝑂𝑥𝑦 plane. For the considered discrete model this

projection is a polygon, see the upper right picture in Fig.4 The numerical experiment is

the following:

1. Pick 𝑀 test vertices 𝑝 in Γ𝑟, whose third coordinate is 𝑧(𝑝);

2. Find the shortest path from 𝑂 to 𝑝;

3. Calculate the polygon area 𝐴(𝑝) of the projected path.

For the Heisenberg group 𝑧(𝑝) and 𝐴(𝑝) are the same values, and, for example, the

Dido’s problem can easily be reformulated as a problem of finding geodesics [7]. The

results for Γ 1
2

with 𝑁 = 3000 random vertices and with 𝑀 = 200 test vertices are presented

in the Fig. 5. As the coordinate 𝑧(𝑝) is uniformly distributed in [−1, 1], the dots with

coordinates (𝑧(𝑝), 𝐴(𝑝)) on Fig. 5 lie quite close to the plot of |𝑧(𝑝)|.
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Figure 5: The coordinate 𝑧(𝑝) and the area 𝐴(𝑝) of the projected polygon for 𝑀 = 200 test

vertices in Γ 1
2
.

4 Tortuosity

First let us recall briefly what tortuosity is. Consider a domain Ω′ ⊂ ℝ3 modeling a piece

of porous media, such that there is a connected subset 𝑃 ⊂ Ω′ modeling the system of

the media pores. Next, Ω′ ⧵ 𝑃 simulates solid material. One can consider two arbitrary

points 𝐴, 𝐵 ∈ 𝑃 and the shortest path 𝛾(𝑡), 𝑡 ∈ [0, 1] connecting 𝐴 and 𝐵 that fully lies in

the system of pores 𝑃: ∀𝑡 ∈ [0, 1] 𝛾(𝑡) ∈ 𝑃. The ratio of the length of 𝛾 and the standard

Euclidean distance between 𝐴 and 𝐵
1
∫
0
|𝛾̇(𝑡)|𝑑𝑡

dist𝐸𝑢𝑐𝑙(𝐴, 𝐵)

called the tortuosity 𝜏 of the path 𝛾(𝑡). If the media is homogeneous and isotropic and if

dist𝐸𝑢𝑐𝑙(𝐴, 𝐵) is sufficiently large, the tortuosity will be close to a limit value: it is greater

than 1 and measures the level of entanglement of the system of pores. If the media is

anisotropic then 𝜏(𝐴, 𝐵) will depend on the direction ⃖⃖⃗𝐴𝐵.

Secondly, one can study the tortuosity of the Delaunay triangulation of uniformly

distributed points [10]. It turns out that the ratio between the length 𝑙𝑡𝑟𝑖𝑎𝑛𝑔(𝐴, 𝐵) of the

shortest broken line connecting two points via edges of the triangulation and the Eu-
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clidean distance,
𝑙𝑡𝑟𝑖𝑎𝑛𝑔(𝐴, 𝐵)
dist𝐸𝑢𝑐𝑙(𝐴, 𝐵)

,

converges from above to a fixed value 𝜏𝐷𝑙𝑛 ≈ 1.05 for a two-dimensional domain and

𝜏𝐷𝑙𝑛 ≈ 1.09 for a three-dimensional domain.

Next we come back to a domain Ω with the standard sub-Riemannian metric 𝐝sR and

the spatial graph Γ𝑟 in Ω with vertices 𝑝𝑖 ∈ 𝐷 and metric 𝐝dsR . The following ratio

𝜏(𝐴, 𝐵) = 𝐝dsR(𝐴, 𝐵)
𝐝sR(𝐴, 𝐵)

(11)

is called the tortuosity of the path from 𝐴 to 𝐵. This value depends on the set 𝐷 of vertices,

on the coordinates of 𝐵 and on the parameter 𝑟 of the graph Γ𝑟. It is a straight-forward

generalization of the previously mentioned tortuosity.

Let us consider again two points 𝐴 = 𝑝1 and 𝐵 = 𝑝2 from the previous section. From

Table 1, when both points lie in the horizontal plane {𝑧 = 0} and the sub-Riemannian

geodesic is a straight line, the tortuosity (11) gets close to 𝜏𝐷𝑙𝑛 in the three-dimensional

case of the Delaunay tortuosity.

𝑁 = 1000 𝑁 = 2000 𝑁 = 4000 𝑁 = 6000

𝑥2 = 𝑦2 =
1
2

2.6344 1.2687 1.2240 1.0963

𝑥2 = 𝑦2 = 1 ∞ 1.4028 1.2210 1.1289

Table 3. The tortuosity 𝜏((0, 0, 0), (𝑥2, 𝑦2, 0)) for different 𝑁, horizontal case.

In the case of helicoidal geodesic, the difference between the sub-Riemannian and

discrete sub-Riemannian distances becomes more evident:

𝑁 = 1000 𝑁 = 2000 𝑁 = 4000 𝑁 = 6000

𝑧2 =
1
9

2.0551 1.6298 1.5475 1.5203

𝑧2 =
4
9

1.9685 1.6959 1.5486 1.5086

Table 4. The tortuosity 𝜏((0, 0, 0), (0, 0, 𝑧2)) for different 𝑁, vertical case.

Considering this ‘anisotropic’ behaviour of 𝜏(𝐴, 𝐵) we formulate the following
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Conjecture on the limit tortuosity. Consider a cubic domain Ω ⊂ ℋ with the sub-

Riemannian distance 𝐝sR and the corresponding spatial graph Γ𝑟 with 𝑁 uniformly dis-

tributed vertices 𝐷 and the discrete sub-Riemannian distance 𝐝dsR . Fix two points 𝐴 =

(0, 0, 0) ∈ 𝐷 and 𝐵 = (cos 𝜑, 0, sin 𝜑) ∈ 𝐷. As 𝑁 → ∞ one can choose a parameter of the graph

Γ𝑟 with the asymptotic

𝑟 ∼ 𝑐 ⋅ 𝑁−𝑑 for some 𝑐 > 0, 𝑑 > 0, (12)

such that the tortuosity 𝜏(𝐴, 𝐵) converges to a limit tortuosity 𝜏̃ = 𝜏̃(𝜑) depending only on

the coordinate 𝜑 of 𝐵 for almost all positions of vertices in 𝐷. The limit tortuosity should be

bounded

1 < 𝜏̃ < 𝐶 ∀𝜑 ∈ [0, 2𝜋].

Due to the fact that all considered functions are random variables the convergence

of the tortuosity in this conjecture should be almost sure convergence. Finding optimal

bounds for the constants 𝑐, 𝑑 and 𝐶 is another problem to consider. Also, the connection

between 𝑑 and the dimension (topological or Hausdorf) of the Heisenberg group is not

clear.

We will say that a broken line with vertices𝐴 = 𝑝𝑖1 , 𝑝𝑖2 , … , 𝑝𝑖𝑘 = 𝐵 is 𝜀-close to a geodesic

𝛾(𝑡), 𝑡 ∈ [𝑡0, 𝑡1], connecting 𝐴 and 𝐵 if there is a cylindrical neighbourhood of 𝛾(𝑡)

𝐶𝑦𝑙𝜀 =
⋃

𝑡∈[𝑡0,𝑡1]
{𝛾(𝑡) + 𝑣|∀𝑣 ∈ ℝ3, |𝑣| ≤ 𝜀},

containing all vertices 𝑝𝑖 and all edges [𝑝𝑖𝑗 , 𝑝𝑖𝑗+1] of the broken line.

Finally, we can formulate the approximation conjecture:

Approximation Conjecture. Consider a cubic domain Ω ⊂ ℋ with the sub-Riemannian

distance 𝐝sR , the orresponding spatial graph Γ𝑟 with 𝑁 uniformly distributed vertices 𝐷 and

the discrete sub-Riemannian distance 𝐝dsR . Fix two points 𝐴 = 𝑂 ∈ 𝐷 and arbitrary 𝐵 ∈ 𝐷

and a sub-Riemannian geodesic 𝛾(𝑡) connecting 𝐴 = 𝛾(𝑡0) and 𝐵 = 𝛾(𝑡1). For any 𝜖 there is

number 𝑁 of vertices and a parameter 𝑟 satisfying (12) such that there is a shortest path

𝐴 = 𝑝𝑖1 , 𝑝𝑖2 , … , 𝑝𝑖𝑘 = 𝐵 in the graph Γ𝑟 which is 𝜀-close to 𝛾(𝑡).
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Note that if the point 𝐵 lies on the 𝑂𝑧 axis then there is no uniqueness of the sub-

Riemannian geodesic connecting 𝐴 = 𝑂 and 𝐵, it is defined up to rotation as it was

mentioned earlier. In this case in the approximate conjecture one should choose an

appropriate geodesic. It seems to be clear how to prove that in a cylindric neighbourhood

of the fixed geodesic there is a broken line with vertices and edges from Γ𝑟. But how to

prove that this broken line will be globally shortest path in Γ𝑟?

5 Conclusion.

Here we presented a discrete model Γ𝑟 of the Heisenberg group ℋ as a spatial graph

with weighted edges. The weight of the edge is defined by the local sub-Riemannian

distance 𝐝𝑙𝑠𝑅, generated by the non-integrable Heisenberg distribution (1). The discrete

sub-Riemannian distance 𝐝𝑑𝑠𝑅 is the length of a shortest path in Γ𝑟. Numerical experiments

give a motivation to formulate an approximation conjecture stating that shortest paths

in the graph Γ𝑟 will be sufficiently close to the geodesics in ℋ if the number of vertices 𝑁

is large enough and the parameter 𝑟 is appropriately small.

The constructed model can be considered as a ‘triangulation of the sub-Riemannian

Heisenberg group’, but without triangles. The triangulation of a smooth two-dimensional

surface embedded in ℝ3 is a collection of vertices, edges and triangles. In the non-

integrable case there is no surface, so there should be no triangles. It is natural to choose

a spatial graph Γ𝑟, consisting only of vertices and edges, as a model for non-integrable

geometry.

We believe that the presented construction will be interesting both for specialists in

discrete geometry and in sub-Riemannian geometry. The presented model can be useful

for simulations of various processes in anisotropic medias, such as heat propagation,

diffusion in anisotropic porous materials, deformations of layered solids, etc.
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Introduction

In this paper we introduce the notion of circumscribed circles in integer geometry and

investigate their properties.

The integer distance between two points in the lattice ℤ2 is defined in terms of the

number of lattice points on the segment between them; see Section 1.2 for more details.

An integer circle is the locus of all lattice points at a fixed integer distance from a given

lattice point. The properties of integer circles differ substantially from the properties of

their Euclidean counterparts. In fact, using the Basel Problem [Ayo74], it can be shown

that the density of a unit integer circle inℤ2 is positive and equal to 6∕𝜋2 (see also [HW08])

Note that the chords of unit integer circles provide a tessellation which is combinatorially

equivalent to the Farey tessellation of the hyperbolic plane, while their radial segments

correspond to geodesics in the hyperbolic plane (see [Ser, MGO19]).

An integer circumscribed circle of a subset of ℤ2 is defined as an integer circle that

contains this subset. While in Euclidean geometry every non-degenerate triangle has a

unique circumscribed circle, this is no longer the case in integer geometry. In fact, the

number of integer circumscribed circles of an integer triangle is infinite.

This paper aims to provide a comprehensive study of circumscribed circles in integer

geometry. In Theorem 2.9 we introduce necessary and sufficient conditions for a finite

integer set to admit a circumscribed circle. As a special case, we discuss the circumscribed

circles of integer quadrangles and their Euclidean counterparts.

While a finite set might not admit an integer circumscribed circle, it will have integer

dilates that do. The integer circumscribed circles of the dilates can be interpreted as

integer circles with rational centres and radii. We call the set of all such rational radii

the rational spectrum. In Theorem 3.10 we describe the structure of rational spectra of

finite sets.

This paper is organized as follows. In Section 1, we begin with basic definitions of integer
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geometry and introduce the notion of an integer circle. In Section 2 we state and prove

the conditions under which a finite integer set admits an integer circumscribed circle. We

extend the notion of circumscribed circles to the case of rational radii and rational centres

and describe the spectra of the radii of such circles in Section 3. In Section 4 we discuss

integer and rational circumscribed circles for segments, triangles and quadrangles in

more detail.

1 Basic Notions of Integer Geometry

1.1 Objects in Integer Geometry

Consider the plane ℝ2 with the fixed basis (1, 0), (0, 1). An integer point is a point in ℝ2

whose coordinates in this basis are integers, i.e. the set of all integer points is the latticeℤ2.

An integer set is a subset of ℤ2. An integer segment is a segment in ℝ2 with endpoints

in ℤ2. An integer line is a line in ℝ2 that contains at least two integer points. An integer

vector is a vector in ℝ2 with integer endpoints. An integer polygon is a polygon in ℝ2

whose vertices are integer points.

An integer affine transformation is an affine transformations that preserves the integer

lattice ℤ2. We denote the set of all integer affine transformations by Aff (2, ℤ). Similar

to the Euclidean isometries, Aff (2, ℤ) contains integer translations, integer rotations and

integer symmetries. They correspond to translations by integer vectors, multiplication by

matrices in SL(2, ℤ) and multiplication by matrices in GL(2,ℤ)⧵ SL(2, ℤ) respectively.

We say that two integer sets are integer congruent if there exists an integer affine

transformation sending one set to another.

An angle in ℝ2 with an integer point as its vertex is called an integer angle. An integer

angle that contains an integer point other than its vertex on each of its sides is called a

rational integer angle.
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1.2 Some Integer Invariants

Let us recall some basic notions of integer geometry (see [Kar22]). The integer length l𝓁(𝐴𝐵)

of a vector 𝐴𝐵 in ℤ2 is defined as the number of lattice points that the vector passes

through, minus one. Note that the integer length is given by the greatest common divisor

of the differences of coordinates. The integer distance ld(𝐴, 𝐵) between integer points 𝐴

and 𝐵 is the integer lengths of 𝐴𝐵. The integer distance ld(𝑂, 𝐿) between an integer point 𝑂

and an integer line 𝐿 is the index of the sub-lattice generated by vectors 𝑂𝑉, where 𝑉

runs through all integer points on the line 𝐿.

The integer area lS(𝐴𝐵𝐶) of a triangle 𝐴𝐵𝐶 is the index of the sub-lattice generated

by 𝐴𝐵 and 𝐴𝐶 in ℤ2. In fact, the integer area is equal to the absolute value of the determi-

nant det(𝐴𝐵,𝐴𝐶), and therefore it is twice the Euclidean area of the triangle 𝐴𝐵𝐶.

1.3 Integer Circles

We define an integer circle with centre 𝑂 ∈ ℤ2 and radius 𝑟 ∈ ℤ, 𝑟 > 0 as the locus of all

points 𝑃 such that l𝓁(𝑂𝑃) = 𝑟.

Proposition 1.1. The intersection of an integer line 𝐿 with an integer circle is either empty,

or an infinite periodic subset of integer points on 𝐿, or two points.

The integer radial line of an integer circle 𝐶 is an integer line passing through the

centre of 𝐶. An integer radial line of 𝐶 intersects 𝐶 in two points. An integer tangent line

to an integer circle 𝐶 of radius 𝑟 with centre 𝑂 is an integer line 𝐿 such that ld(𝑂, 𝐿) = 𝑟.

Remark 1.2. For every pair of integer tangent lines of an integer circle there exists an

integer isometry of the circle mapping one integer tangent line to the other.

Remark 1.3. Two integer circles of the same radius are integer congruent. Moreover, one

can be mapped to the other by a translation by an integer vector.

Figure 1 shows in bold those points of the integer unit circle 𝑆0 centred at the origin 𝑂

whose coordinates do not exceed 5 in absolute value. The polygon in Figure 1 is called a
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Figure 1: An integer circle circumscribed about an integer quadrangle.
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Farey starburst and is obtained by connecting these points by straight segments in the

order of increasing argument. The vertices 𝐴, 𝐵, 𝐶, 𝐷 belong to the integer circle 𝑆0, hence

𝑆0 is a circumscribed circle of the quadrangle 𝐴𝐵𝐶𝐷.

Remark 1.4. Consider the integer unit circle 𝑆0 centred at the origin 𝑂. Let 𝛼 be some

integer angle and 𝐴 the point (1, 0). Then it is possible to find infinitely many points 𝐵

in 𝑆0 such that the angle ∠𝐴𝑂𝐵 is integer congruent to 𝛼. Note the difference with the

Euclidean case, where there are exactly two such points 𝐵.

1.4 Integer Trigonometry

Let us discuss basic definitions of integer trigonometry introduced in [Kar09, Kar08] (for

the multi-dimensional trigonometry see [BKD23]).

Definition 1.5. Let 𝑝, 𝑞 be co-prime integers with 𝑞 ≥ 𝑝 > 0. The integer arctangent of 𝑞∕𝑝

is the angle ∠𝐴𝑂𝐵, where

𝐴 = (1, 0), 𝑂 = (0, 0), and 𝐵 = (𝑝, 𝑞).

We define integer sine, integer cosine and integer tangent as

lsin∠𝐴𝑂𝐵 = 𝑞, lcos∠𝐴𝑂𝐵 = 𝑝, and ltan∠𝐴𝑂𝐵 = 𝑞∕𝑝.

Note that any rational angle is integer congruent to exactly one integer arctangent. So

the values of integer trigonometric functions form in fact a complete set of invariants of

rational angles up to integer congruence.

The integer sine has a nice geometric definition:

lsin∠𝐴𝐵𝐶 =
lS(𝐴𝐵𝐶)

l𝓁(𝐴𝐵) l𝓁(𝐴𝐶)

which directly corresponds to the Euclidean formula for the area of a parallelogram in

terms of the sine of its angle. The integer tangent is closely related to the geometry of

numbers and their connections to continued fractions [Kar13].
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2 Integer Circumscribed Circles

In this section we generalise the notion of a circumscribed circle in the context of integer

geometry.

Definition 2.1. An integer circumscribed circle of 𝑆 ⊂ ℤ2 is an integer circle that contains

𝑆.

In the Euclidean geometry there exists at most one circumscribed circle for a given

set 𝑆 with |𝑆| > 2. This is not the case in integer geometry where a set can have several

circumscribed circles. The radius of the circumscribed circle is an important quantity in

Euclidean geometry. A suitable replacement for this quantity in integer geometry is the

integer circumscribed spectrum.

Definition 2.2. Let 𝑆 be an integer set. The set of all radii of integer circumscribed circles

of 𝑆 is called the integer circumscribed spectrum of 𝑆 and denoted by Λℤ(𝑆).

Note the following.

Proposition 2.3. Let 𝑎, 𝑏 ∈ 𝑆 and let 𝑟 be the radius of a circumscribed circle of 𝑆. Then 𝑟

divides ld(𝑎, 𝑏).

Proof. Let 𝑥 be the centre of the circumscribed circle of 𝑆. Then

𝑎 − 𝑥 ≡ 𝑏 − 𝑥 ≡ (0, 0) mod 𝑟.

Hence 𝑎 − 𝑏 ≡ (0, 0) mod 𝑟, and therefore 𝑟 divides ld(𝑎, 𝑏).

This proposition implies that the integer spectrum is bounded:

Corollary 2.4. The integer spectrum Λℤ(𝑆) of an integer set 𝑆 that contains at least 2 points

is bounded.

The first natural question in the study of integer circumscribed circles is whether

Λℤ(𝑆) is empty. In this section we will introduce a criterion that answers this question
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for a finite set 𝑆 in terms of projections of 𝑆 to integer tori as defined below. Later in

Subsection 3.2 we will study the structure of Λℤ(𝑆).

Definition 2.5. For an integer 𝑚 ≥ 2, let the (mod𝑚) integer torus be

𝒯𝑚 = ℤ2∕⟨(𝑚, 0), (0,𝑚)⟩ ≅ ℤ∕𝑚ℤ × ℤ∕𝑚ℤ.

The projection 𝜋𝑚 ∶ ℤ2 → 𝒯𝑚 is given by (𝑥, 𝑦) → (𝑥mod𝑚, 𝑦 mod𝑚).

We say that two integer points 𝑣1 and 𝑣2 in ℤ2 are equivalent mod 𝑚 if 𝜋𝑚(𝑣1) = 𝜋𝑚(𝑣2),

denoted by 𝑣1 ≡ 𝑣2mod𝑚.

In the statement of the main result of this section we use the following terminology.

Definition 2.6. We say that an integer set 𝑆 is a covering set of 𝒯𝑚 if 𝜋𝑚(𝑆) = 𝒯𝑚.

Definition 2.7. We say that an integer set 𝑆 is tori-transparent if for every integer 𝑚 ≥ 2

we have that 𝑆 is not a covering set of 𝒯𝑚.

Remark 2.8. Note that a covering set of an integer torus 𝒯𝑡 with 𝑡 ≥ 2 must consist of at

least |𝒯𝑡| = 𝑡2 ≥ 4 points, hence all integer sets 𝑆 with |𝑆| ≤ 3 are tori-transparent.

Now we are ready to write down the existence criterion.

Theorem 2.9. Consider a finite integer set 𝑆 ⊂ ℤ2. Then the following three statements are

equivalent:

(i) There exists an integer circumscribed circle of 𝑆, i.e.

Λℤ(𝑆) ≠ ∅.

(ii) There exists an integer unit circumscribed circle of 𝑆, i.e.

1 ∈ Λℤ(𝑆).

(iii) The set 𝑆 is tori-transparent.

We start the proof with the following four lemmas.
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Lemma 2.10. Let 𝑣1, 𝑣2 ∈ ℤ2. Consider two integers 𝑑 and 𝑚 such that 𝑑 is a divisor of 𝑚.

Then 𝜋𝑚(𝑣1) = 𝜋𝑚(𝑣2) implies 𝜋𝑑(𝑣1) = 𝜋𝑑(𝑣2).

Proof. If 𝜋𝑚(𝑣1) = 𝜋𝑚(𝑣2), then 𝑣1 − 𝑣2 ≡ 0mod𝑚 and hence 𝑣1 − 𝑣2 ≡ 0mod𝑑, since 𝑑 is a

divisor of 𝑚. Therefore 𝜋𝑑(𝑣1) = 𝜋𝑑(𝑣2).

Lemma 2.11. Let 𝑆 be any subset of ℤ2. If 𝑆 is a covering set of 𝒯𝑚 then it is a covering set

of 𝒯𝑝 for any prime divisor 𝑝 of 𝑚.

Proof. The set 𝑆 is a covering set of 𝒯𝑚, hence for each 𝑣 ∈ ℤ2 there exists some 𝑠 ∈ 𝑆 such

that 𝜋𝑚(𝑣) = 𝜋𝑚(𝑠). By Lemma 2.10, 𝜋𝑝(𝑣) = 𝜋𝑝(𝑠). Hence, 𝑆 is a covering set of 𝒯𝑝.

Lemma 2.12. For any integer set 𝑆 the following statements are equivalent:

(i) The set 𝑆 is tori-transparent.

(ii) The set 𝑆 is not a covering set of any torus 𝒯𝑝 for prime 𝑝.

Proof. (i) ⇐⇒ (ii) If the set 𝑆 is tori-transparent then 𝑆 is not a covering set of any torus 𝒯𝑚

for integer 𝑚 ≥ 2, hence 𝑆 is not a covering set of any torus 𝒯𝑝 for prime 𝑝.

(ii) ⇐⇒ (i) Consider any integer 𝑚 ≥ 2 and let 𝑝 be a prime divisor of 𝑚. By assumption, 𝑆

is not a covering set of 𝒯𝑝. Hence, by Lemma 2.11, 𝑆 is not a covering set of 𝒯𝑚.

Lemma 2.13. Consider a finite, tori-transparent integer set 𝑆. Then for any finite subset 𝑀

of ℤ there exists a point 𝑣 ∈ ℤ2 such that 𝜋𝑚(𝑣) ∉ 𝜋𝑚(𝑆) for all 𝑚 ∈ 𝑀.

Proof. Let {𝑝1, … , 𝑝𝑛} be the set of all prime divisors of all elements in 𝑀. By Lemma 2.11

for every 𝑖 = 1, … , 𝑛 the set 𝑆 is not a covering set of 𝒯𝑝𝑖 . Hence for every 𝑖 = 1, … , 𝑛 there

exists a point 𝑣𝑖 ∈ ℤ2 such that for any 𝑠 ∈ 𝑆 we have

𝑣𝑖 ≢ 𝑠mod𝑝𝑖.

Then by the Chinese Remainder Theorem (applied coordinate-wise) there exists a point 𝑣

such that for every 𝑖 = 1, … , 𝑛 it holds:

𝑣 ≡ 𝑣𝑖mod𝑝𝑖.
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Hence for every 𝑖 = 1, … , 𝑛 we have

𝜋𝑝𝑖 (𝑣) = 𝜋𝑝𝑖 (𝑣𝑖) ∉ 𝜋𝑝𝑖 (𝑆).

Therefore, by Lemma 2.11 𝜋𝑝𝑖 (𝑣) ∉ 𝜋𝑚(𝑆) for all 𝑚 ∈ 𝑀.

Proof of Theorem 2.9 (iii) ⇐⇒ (ii). The existence of a circumscribed circle and the

property of being a covering set of integer tori 𝒯𝑚 are invariant under translation by

integer vectors. Thus we can assume that the set 𝑆 is contained in the positive quadrant

of ℤ2. Choose 𝑁 satisfying the following two conditions:

• 𝑆 is completely contained in the box [1, 𝑁] × [1,𝑁];

• the number of elements in 𝑆 does not exceed 𝑁.

Consider 𝑍 = {1, 2… ,𝑁} = [1,𝑁]∩ℤ. By Lemma 2.13 there exists (𝑎, 𝑏) such that 𝜋𝑚(𝑎, 𝑏)

is not in 𝜋𝑚(𝑆) for all 𝑚 ∈ 𝑍.

Set 𝛽 = 𝑏 + 𝑁!.

Let 𝑝1, … , 𝑝𝑘 be all prime numbers in the segment [𝑁 + 1, 𝛽]. Now note that the size of

the set 𝑆 is |𝑆| ≤ 𝑁 < 𝑝𝑖. Hence the set of first co-ordinates of points in 𝑆 has fewer than 𝑝𝑖

elements. Therefore, for any 𝑖 = 1, … , 𝑘 we can choose 𝑐𝑖 such that 𝑐𝑖 is not equal modulo

𝑝𝑖 to the first coordinate of any point in 𝑆.

By Chinese Remainder Theorem there exists a solution 𝛼 of the following system of

equations:

⎧

⎨
⎩

𝛼 ≡ 𝑎 mod 𝑁!

𝛼 ≡ 𝑐𝑖 mod 𝑝𝑖

Then we will show that the point (𝛼, 𝛽) has the property that 𝜋𝑚(𝛼, 𝛽) ∉ 𝜋𝑚(𝑆) for every

integer 𝑚, and therefore (𝛼, 𝛽) belongs to the unit integer circle with centre at (𝑥, 𝑦) for

every (𝑥, 𝑦) ∈ 𝑆.
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• If 𝑚 ≤ 𝑁 then 𝜋𝑚(𝛼, 𝛽) = 𝜋𝑚(𝑎, 𝑏) ∉ 𝜋𝑚(𝑆).

• If 𝑚 ∈ [𝑁 + 1, 𝛽] and 𝑚 is a prime, say 𝑚 = 𝑝𝑖, then 𝛼 ≡ 𝑐𝑖 mod 𝑝𝑖 and hence is not

equal to the first coordinate of any point in 𝑆 modulo 𝑝𝑖 (by the above). Therefore

𝜋𝑚(𝛼, 𝛽) ∉ 𝜋𝑚(𝑆).

• If 𝑚 ∈ [𝑁 + 1, 𝛽] and 𝑚 is not a prime then 𝜋𝑚(𝛼, 𝛽) ∉ 𝜋𝑚(𝑆) by Lemma 2.12 and by

the cases considered above.

• If 𝑚 > 𝛽 then the second co-ordinate of any point in 𝑆 is in the interval [1, 𝑁]

while 𝛽 > 𝑁! > 𝑁. Hence the difference of the second coordinates is contained

in [𝛽 − 𝑁, 𝛽 − 1] ⊂ [1,𝑚 − 1] and is therefore not equal to zero modulo 𝑚. Thus

𝜋𝑚(𝛼, 𝛽) ∉ 𝜋𝑚(𝑆).

Proof of Theorem 2.9 (ii) ⇐⇒ (i). This is straightforward.

Proof of Theorem 2.9 (i) ⇐⇒ (iii). Assume that there exists a circumscribed circle of 𝑆 of

some radius 𝑟 centred at 𝑂. Suppose that 𝑆 is a covering set of 𝒯𝑚 for some integer 𝑚 ≥ 2.

Let 𝑝 be a prime divisor of 𝑚. Lemma 2.11 implies that 𝑆 is a covering set of 𝒯𝑝.

On the one hand there exists 𝑠1 ∈ 𝑆 such that 𝜋𝑝(𝑠1) = 𝜋𝑝(𝑂). Therefore, 𝑝 divides 𝑟.

On the other hand there exists 𝑠2 ∈ 𝑆 such that 𝜋𝑝(𝑠2) ≠ 𝜋𝑝(𝑂). Therefore, 𝑝 does not

divide l𝓁(𝑠2, 𝑂) = 𝑟.

This is a contradiction. Hence 𝑆 is tori-transparent.

Remark 2.14. The finiteness of the set 𝑆 is crucial in Theorem 2.9. For instance, the set

𝑆 = {0, 6} × ℤ

is an example of an infinite set, for which Theorem 2.9 does not hold.

Indeed, for every 𝑚, the set 𝑆 is not a covering set of 𝒯𝑚 as [1, 0]𝑚 ∉ 𝜋𝑚(𝑆) for 𝑚 ≠ 5

and [2, 0]𝑚 ∉ 𝜋𝑚(𝑆) for 𝑚 = 5. Assume that there exists a circle through all points of 𝑆

with centre (𝑥, 𝑦). The point (𝑥, 𝑦) is at integer distance one from all points of {0} × ℤ,
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hence gcd(𝑥, 𝑦 − 𝑛) = 1 for all 𝑛 ∈ ℤ and therefore 𝑥 = ±1. Similarly, (𝑥, 𝑦) is at integer

distance one from all points of {6}×ℤ, hence gcd(𝑥−6, 𝑦−𝑛) = 1 for all 𝑛 ∈ ℤ and therefore

𝑥 − 6 = ±1. We arrive at a contradiction.

Finally let us say a few words about the Aff (2, ℤ)-invariance of the property of being

a covering set of a torus.

Proposition 2.15. Let 𝑆 be an integer set and 𝑚 an integer number. The property of 𝑆 to be

a covering set of 𝒯𝑚 is preserved under Aff (2, ℤ).

Proof. Any element of Aff (2, ℤ) can be written as a map 𝑣 ↦→ 𝐴𝑣 + 𝑏 for some matrix 𝐴 ∈

GL(2,ℤ) and vector 𝑏 ∈ ℤ2. Note that the equation 𝑣1 ≡ 𝑣2mod𝑚 (coordinate-wise) is

equivalent to the equation 𝐴𝑣1 + 𝑏 ≡ 𝐴𝑣2 + 𝑏mod𝑚. So the number of points in the image

under the projection 𝜋𝑚 is preserved under Aff (2, ℤ).

Corollary 2.16. The property of a finite set to be tori-transparent is invariant underAff (2, ℤ).

Definition 2.17. Let 𝑆 be an integer set and 𝑘 a positive integer. We say that 𝑆 is shift-

divisible by 𝑘 if there exists an integer point 𝑥 and an integer set 𝑆̂ such that

𝑆 = 𝑥 + 𝑘𝑆̂.

We then say that 𝑆̂ ≈ 𝑆∕𝑘. Note that 𝑆 is shift-divisible by 𝑘 if and only if any two points

in 𝑆 are equivalent modulo 𝑘. Note that the set 𝑆̂ is uniquely defined up to a translation

by an integer vector. We define 𝑆∕𝑘 as the equivalence class of 𝑆̂ under translations by

integer vectors. The property of an integer set to be a covering set of 𝒯𝑚 is preserved

under translations by integer vectors, hence we can say that 𝑆∕𝑘 is a covering set of 𝒯𝑚

or is tori-transparent if the set 𝑆̂ has this property.

Proposition 2.18. Let 𝑆 be a finite integer set and 𝑎, 𝑏 integers. If 𝑆 is shift-divisible by 𝑎

and 𝑏 then 𝑆 is shift-divisible by lcm(𝑎, 𝑏).
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Proof. If 𝑆 is shift-divisible by 𝑎 and 𝑏 then any two points in 𝑆 are equivalent modulo 𝑎 and

modulo 𝑏 and therefore equivalent modulo lcm(𝑎, 𝑏). Hence 𝑆 is shift-divisible by lcm(𝑎, 𝑏).

Proposition 2.19. Let 𝑆 be a finite integer set and 𝑟 an integer. Then 𝑆 has a circumscribed

circle of radius 𝑟 if and only if 𝑆 is shift-divisible by 𝑟 and 𝑆∕𝑟 is tori-transparent.

Proof. Suppose that the set 𝑆 has a circumscribed circle 𝐶 of radius 𝑟 with centre 𝑥. Then

𝑆 − 𝑥 ⊂ 𝑟ℤ2 and 𝑆̂ = (𝑆 − 𝑥)∕𝑟 is an integer set such that 𝑆 = 𝑥 + 𝑟𝑆̂, i.e. 𝑆 is shift-divisible

by 𝑟 and 𝑆∕𝑟 ≈ 𝑆̂. Moreover, 𝐶̂ = (𝐶 −𝑥)∕𝑟 is a unit integer circumscribed circle of 𝑆̂, hence

1 ∈ Λℤ(𝑆̂). Theorem 2.9 implies that 𝑆∕𝑟 is tori-transparent.

Now suppose that 𝑆 is shift-divisible by 𝑟 and 𝑆∕𝑟 is tori-transparent, i.e. there exists an

integer point 𝑥 and an integer tori-transparent set 𝑆̂ such that 𝑆 = 𝑥 + 𝑟𝑆̂. By Theorem 2.9,

the set 𝑆̂ admits a unit integer circumscribed circle 𝐶̂. Then 𝐶 = 𝑥 + 𝑟𝐶̂ is an integer

circumscribed circle of 𝑆 of radius 𝑟.

Proposition 2.20. Let 𝑆 be a finite integer set and 𝑎, 𝑏 integers. If 𝑎, 𝑏 ∈ Λℤ(𝑆) then

lcm(𝑎, 𝑏) ∈ Λℤ(𝑆).

Proof. If 𝑎, 𝑏 ∈ Λℤ(𝑆) then Proposition 2.19 implies that 𝑆 is shift-divisible by 𝑎 and 𝑏 and

𝑆∕𝑎, 𝑆∕𝑏 are tori-transparent. Proposition 2.18 implies that 𝑆 is shift-divisible by lcm(𝑎, 𝑏).

Let 𝑆̂ = 𝑆∕(lcm(𝑎, 𝑏)). Let 𝑑 = gcd(𝑎, 𝑏), 𝑎̂ = 𝑎∕𝑑 and 𝑏̂ = 𝑏∕𝑑, so that gcd(𝑎̂, 𝑏̂) = 1 and

lcm(𝑎, 𝑏) = 𝑑𝑎̂𝑏̂. The set

𝑎̂𝑆̂ = 𝑎̂(𝑆∕(𝑑𝑎̂𝑏̂)) = 𝑆∕(𝑑𝑏̂) = 𝑆∕𝑏

is tori-transparent, hence 𝑆̂ is not a covering set of 𝒯𝑚 for all 𝑚 co-prime with 𝑎̂. Similarly,

the set

𝑏̂𝑆̂ = 𝑏̂(𝑆∕(𝑑𝑎̂𝑏̂)) = 𝑆∕(𝑑𝑎̂) = 𝑆∕𝑎

is tori-transparent, hence 𝑆̂ is not a covering set of 𝒯𝑚 for all 𝑚 co-prime with 𝑏̂. The

integers 𝑎̂ and 𝑏̂ are co-prime, hence every integer 𝑚 is co-prime with at least one of 𝑎̂

and 𝑏̂. Therefore 𝑆̂ is not a covering set of any 𝒯𝑚 for 𝑚 ≥ 2, i.e. 𝑆̂ = 𝑆∕(lcm(𝑎, 𝑏)) is

tori-transparent. Proposition 2.19 implies that lcm(𝑎, 𝑏) ∈ Λℤ(𝑆).
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3 Rational Circumscribed Circles

Some sets do not have integer circumscribed circles. However we can extend the defini-

tion of integer circumscribed circles to circles with rational radii. We will see that every

finite set has at least one rational circumscribed circle.

3.1 Definition of a Rational Circumscribed Circle

Definition 3.1. We call a fraction 𝑝
𝑞

irreducible if gcd(𝑝, 𝑞) = 1.

Definition 3.2. Consider an integer set 𝑆 and let 𝑝 and 𝑞 be two integers. We say that 𝑆

has a rational circumscribed circle of radius 𝑝
𝑞

if the set 𝑞𝑆 has a circumscribed circle of

radius 𝑝.

Definition 3.3. The rational circumscribed spectrum Λℚ(𝑆) of an integer set 𝑆 is the set of

all rational values 𝑝
𝑞

such that 𝑆 admits a rational circumscribed circle of radius 𝑝
𝑞

.

Remark 3.4. Since every integer circle is also a rational circle, we have

Λℤ(𝑆) ⊂ Λℚ(𝑆).

Proposition 3.5. Let 𝑆 be an integer set. If 𝑝
𝑞

is an irreducible fraction in Λℚ(𝑆) and 𝑎, 𝑏 ∈ 𝑆

then 𝑝 divides ld(𝑎, 𝑏).

Proof. By definition, 𝑝
𝑞
∈ Λℚ(𝑆) implies 𝑝 ∈ Λℤ(𝑞𝑆), i.e. the set 𝑞𝑆 has an integer circum-

scribed circle of radius 𝑝. Proposition 2.3 implies that 𝑝 is a divisor of ld(𝑞𝑎, 𝑞𝑏) = 𝑞⋅ld(𝑎, 𝑏)

for any 𝑎, 𝑏 ∈ 𝑆. As 𝑝 and 𝑞 are co-prime, it follows that 𝑝 is a divisor of ld(𝑎, 𝑏).

This proposition implies that the rational spectrum is bounded.

Corollary 3.6. Let 𝑆 be an integer set, |𝑆| ≥ 2. Then the rational spectrum Λℚ(𝑆) of 𝑆 and

the set of numerators of irreducible fractions in Λℚ(𝑆) are bounded.

Proposition 3.7. Let 𝑆 be a finite integer set. If 𝑝1
𝑞1

and 𝑝2
𝑞2

are two irreducible fractions

in Λℚ(𝑆) then
lcm(𝑝1𝑞2, 𝑝2𝑞1)

𝑞1𝑞2
=
lcm(𝑝1, 𝑝2)
gcd(𝑞1, 𝑞2)

∈ Λℚ(𝑆).
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Proof. If 𝑝1
𝑞1
∈ Λℚ(𝑆) then 𝑝1 ∈ Λℤ(𝑞1𝑆), hence 𝑝1𝑞2 ∈ Λℤ(𝑞1𝑞2𝑆). Similarly, 𝑝2𝑞1 ∈ Λℤ(𝑞1𝑞2𝑆).

Proposition 2.20 implies lcm(𝑝1𝑞2, 𝑝2𝑞1) ∈ Λℤ(𝑞1𝑞2𝑆), hence

lcm(𝑝1𝑞2, 𝑝2𝑞1)
𝑞1𝑞2

∈ Λℚ(𝑆).

Finally, we will use the following identity known in elementary number theory

lcm(𝑝1𝑞2, 𝑝2𝑞1)
𝑞1𝑞2

=
lcm(𝑝1, 𝑝2)
gcd(𝑞1, 𝑞2)

.

3.2 Structure of Rational Spectra

Proposition 3.8. Let 𝑆 be a finite integer set. If 𝑝
𝑞

and 𝑝′

𝑞′
are two irreducible fractions

in Λℚ(𝑆) and max(Λℚ(𝑆)) =
𝑝
𝑞

, then 𝑝′ | 𝑝 and 𝑞 | 𝑞′.

Proof. By Proposition 3.7, the number

lcm(𝑝, 𝑝′)
gcd(𝑞, 𝑞′)

is in Λℚ(𝑆), hence
lcm(𝑝, 𝑝′)
gcd(𝑞, 𝑞′)

≤ max(Λℚ(𝑆)) =
𝑝
𝑞 .

Note that lcm(𝑝, 𝑝′) ≥ 𝑝 and gcd(𝑞, 𝑞′) ≤ 𝑞, hence the inequality above can only hold if

lcm(𝑝, 𝑝′) = 𝑝, gcd(𝑞, 𝑞′) = 𝑞.

Therefore 𝑝′ | 𝑝 and 𝑞 | 𝑞′.

Corollary 3.9. Let 𝑆 be a finite integer set. If 𝑝
𝑞

is an irreducible fraction inΛℚ(𝑆) andmax(Λℚ(𝑆)) =
𝑝
𝑞

, then 𝑝 is the largest possible numerator and 𝑞 is the smallest possible denominator of an

irreducible fraction in Λℚ(𝑆).

Theorem 3.10. Let 𝑆 be a finite integer set. Let {𝑡1, … , 𝑡𝑛} be the set of all primes 𝑡 such that

𝑆 is a covering set of 𝒯𝑡. Let 𝜏 =
𝑛∏

𝑖=1
𝑡𝑖. Then there exists 𝑝 ∈ ℤ+ such that

Λℚ(𝑆) = {1𝑐 ⋅
𝑝
𝜏

|||||||
𝑐 ∈ ℤ+} .
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In fact, 𝑝 = max(Λℤ(𝜏𝑆)), 𝑝∕𝜏 = max(Λℚ(𝑆)), and the greatest common divisor of all integer

distances between pairs of points in 𝑆 is a multiple of 𝑝.

If 𝑆 is tori-transparent then 𝜏 = 1,

Λℚ(𝑆) = {
𝑝
𝑐

|||||||
𝑐 ∈ ℤ+}

and 𝑝 = max(Λℤ(𝑆)) = max(Λℚ(𝑆)).

Proof. Let 𝑝
𝑞

be an irreducible fraction such that max(Λℚ(𝑆)) =
𝑝
𝑞

.

1. We will show that 𝑞 is a divisor of 𝜏: We know that 𝑆 and hence 𝜏𝑆 is not a covering

set of 𝒯𝑡 for any prime 𝑡 ∉ {𝑡1, … , 𝑡𝑛}. For 𝑖 = 1, … , 𝑛, the set 𝑡𝑖𝑆 and hence 𝜏𝑆 is

not a covering set of 𝒯𝑡𝑖 . In summary, the set 𝜏𝑆 is not a covering set of 𝒯𝑡 for

every prime 𝑡, i.e. 𝜏𝑆 is tori-transparent. Theorem 2.9 implies 1 ∈ Λℤ(𝜏𝑆) and hence
1
𝜏
∈ Λℚ(𝑆). Proposition 3.8 implies 𝑞 | 𝜏.

2. We will now show that 𝑞 = 𝜏: We have shown that 𝑞 is a divisor of 𝜏. Suppose that

𝑞 ≠ 𝜏 then 𝑞 is the product of some but not all of 𝑡1, … , 𝑡𝑛. We can assume without loss

of generality that 𝑡1 is not a divisor of 𝑞. We know that 𝑆 is a covering set of 𝒯𝑡1 and

gcd(𝑡1, 𝑞) = 1, hence 𝑞𝑆 is also a covering set of 𝒯𝑡1 and therefore not tori-transparent.

Theorem 2.9 implies that Λℤ(𝑞𝑆) = ∅. On the other hand, we know that 𝑝
𝑞
∈ Λℚ(𝑠),

hence 𝑝 ∈ Λℤ(𝑞𝑆) in contradiction to Λℤ(𝑞𝑆) = ∅. Hence 𝑞 = 𝜏.

3. We will next show that

Λℚ(𝑆) ⊂ {1𝑐 ⋅
𝑝
𝜏

|||||||
𝑐 ∈ ℤ+} ∶

Consider an irreducible fraction 𝑝′

𝑞′
in Λℚ(𝑆). We know that the irreducible frac-

tion 𝑝
𝑞
= 𝑝

𝜏
is the maximum of Λℚ(𝑆). Proposition 3.8 implies that 𝑝′ | 𝑝 and 𝜏 | 𝑞′,

hence there exists 𝑐 ∈ ℤ+ such that

𝑝′

𝑞′ =
1
𝑐 ⋅

𝑝
𝜏 .

4. We will now show that

{1𝑐 ⋅
𝑝
𝜏

|||||||
𝑐 ∈ ℤ+} ⊂ Λℚ(𝑆) ∶
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Let 𝑐 ∈ ℤ+. We know that 𝑝
𝜏
∈ Λℚ(𝑆), hence 𝑝 ∈ Λℤ(𝜏𝑆) and therefore Λℤ(𝜏𝑆) ≠ ∅.

Theorem 2.9 implies that the set 𝜏𝑆 is tori-transparent. It follows that the set 𝑐(𝜏𝑆)

is also tori-transparent. Theorem 2.9 implies that 1 ∈ Λℚ(𝑐𝜏𝑆) and therefore 1
𝑐
∈

Λℚ(𝜏𝑆). We know that 𝑝, 1
𝑐
∈ Λℚ(𝜏𝑆), hence 𝑝

𝑐
∈ Λℚ(𝜏𝑆) according to Proposition 3.7.

Therefore 𝑝
𝑐𝜏
∈ Λℚ(𝑆).

5. Finally, we will show that the greatest common divisor of all integer distances

between pairs of points in 𝑆 is a multiple of 𝑝: We know that 𝑝
𝑞
= 𝑝

𝜏
∈ Λℚ(𝑆), hence

𝑝 ∈ Λℤ(𝜏𝑆) and therefore 𝜏𝑆 has a circumscribed circle of radius 𝑝. It follows that

the integer distance between any two points in 𝜏𝑆 is a multiple of 𝑝. We know that

gcd(𝑝, 𝜏) = gcd(𝑝, 𝑞) = 1, hence the integer distance between any two points in 𝑆 is a

multiple of 𝑝.

Remark 3.11. Let 𝑆 be a finite integer set. Then

Λℤ(𝑆) = Λℚ(𝑆) ∩ ℤ.

In the case Λℤ(𝑆) ≠ ∅, we additionally get the equality

max(Λℤ(𝑆)) = max(Λℚ(𝑆)).

Remark 3.12. There is a similarity between the expression for the rational circumscribed

spectrum in Theorem 3.10 and some formulas for coefficients of Ehrhart polynomials,

see for example [BR15].

Note that while Theorem 3.10 states that the greatest common divisor of all integer

distances between pairs of points in 𝑆 is a multiple of 𝑝, it is not necessarily equal to 𝑝 as

can be seen in the following example:

Example 3.13. Consider the set

𝑆 = {(0, 0), (2, 0), (0, 2), (2, 2)}.
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On the one hand, the set 𝑆 is tori-transparent, so Theorem 3.10 implies that there exists a

divisor 𝑝 of all integer distances between pairs of points in 𝑆 such that

Λℚ(𝑆) = {
𝑝
𝑐

|||||||
𝑐 ∈ ℤ+} .

The greatest common divisor of all integer distances between points in 𝑆 is 𝑔 = 2, hence

either 𝑝 = 1 and Λℤ(𝑆) = {1} or 𝑝 = 𝑔 = 2 and Λℤ(𝑆) = {1, 2}. On the other hand, we have

𝑆 = 2𝑆̂, where

𝑆̂ = {(0, 0), (1, 0), (0, 1), (1, 1)}.

Now 𝑆̂ is a covering set of𝒯2, hence Theorem 2.9 implies 1 ∉ Λℤ(𝑆̂) and therefore 2 ∉ Λℤ(𝑆).

Thus 𝑝 = 1 ≠ 𝑔.

To give a more precise description of circumscribed spectra, we will need the following

definition:

Definition 3.14. An integer set 𝑆 is called primitive if it is not shift-divisible by 𝑘 for any

integer 𝑘 > 1.

Remark 3.15. Note that a set is primitive if and only if the greatest common divisor of the

distances between all pairs of its points equals to one.

Theorem 3.16. Let 𝑆 be a finite integer set. Let 𝑥 be an integer point, 𝑔 an integer and 𝑆̂

a primitive set such that 𝑆 = 𝑥 + 𝑔𝑆̂. Let {𝑡1, … , 𝑡𝑛} be the set of all primes 𝑡 such that 𝑆̂ is a

covering set of 𝒯𝑡. Let 𝜏 =
𝑛∏

𝑖=1
𝑡𝑖. Then the rational circumscribed spectrum of 𝑆 is

Λℚ(𝑆) = {1𝑐 ⋅
𝑔
𝜏

|||||||
𝑐 ∈ ℤ+} .

If 𝑆̂ is tori-transparent then 𝜏 = 1 and

Λℚ(𝑆) = {
𝑔
𝑐

|||||||
𝑐 ∈ ℤ+} .

Proof. Theorem 3.10 implies that there exists 𝑝 ∈ ℤ+ such that

Λℚ(𝑆̂) = {1𝑐 ⋅
𝑝
𝜏

|||||||
𝑐 ∈ ℤ+} ,
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and that 𝑝 is a divisor of all integer distances between pairs of points in 𝑆̂. The set 𝑆̂ is

primitive, hence the greatest common divisor of all integer distances between pairs of

points in 𝑆̂ is equal to 1 and therefore 𝑝 = 1. It follows that

Λℚ(𝑆̂) = {1𝑐 ⋅
1
𝜏

|||||||
𝑐 ∈ ℤ+}

and therefore

Λℚ(𝑆) = Λℚ(𝑔𝑆̂) = 𝑔 ⋅ Λℚ(𝑆̂) = {1𝑐 ⋅
𝑔
𝜏

|||||||
𝑐 ∈ ℤ+} .

Definition 3.17. The primorial 𝑑# of 𝑑 ∈ ℤ+ is defined as the product of all prime numbers

smaller or equal to 𝑑.

Proposition 3.18. Let 𝑆 be a finite integer set and 𝑘 = |𝑆| then

1

⌊
√
𝑘⌋#

∈ Λℚ(𝑆).

Proof. Let 𝑘 = |𝑆|. Theorem 3.10 implies that 1
𝑛𝜏
∈ Λℚ(𝑆) for every 𝑛 ∈ ℤ+, where 𝜏 =

𝑛∏

𝑖=1
𝑡𝑖

and {𝑡1, … , 𝑡𝑛} is the set of all primes 𝑡 such that 𝑆 is a covering set of 𝒯𝑡. Note that if 𝑆 is a

covering set of an integer torus 𝒯𝑡 then 𝑡2 = |𝒯𝑡| ≤ |𝑆| = 𝑘 and therefore 𝑡 ≤
√
𝑘. It follows

that {𝑡1, … , 𝑡𝑛} is a subset of the set of all primes smaller or equal to
√
𝑘, hence 𝜏 is a divisor

of ⌊
√
𝑘⌋#, i.e. ⌊

√
𝑘⌋# = 𝑛𝜏 for some 𝑛 ∈ ℤ+. Therefore

1

⌊
√
𝑘⌋#

= 1
𝑛𝜏 ∈ Λℚ(𝑆).

Example 3.19. Let 𝑎, 𝑏 ≥ 2 be integers. The circumscribed spectra of the integer set

𝐺𝑎,𝑏 = {1, … , 𝑎} × {1, … , 𝑏}

are given by

Λℤ(𝐺𝑎,𝑏) = ∅, Λℚ(𝐺𝑎,𝑏) = {1𝑐 ⋅
1

(min(𝑎, 𝑏))#

|||||||
𝑐 ∈ ℤ+} .

To prove this, note that 𝐺𝑎,𝑏 is a primitive set. Theorem 3.16 implies that

Λℚ(𝐺𝑎,𝑏) = {1𝑐 ⋅
1
𝜏

|||||||
𝑐 ∈ ℤ+} ,
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where {𝑡1, … , 𝑡𝑛} is the set of all primes 𝑡 such that 𝐺𝑎,𝑏 is a covering set of 𝒯𝑡 and 𝜏 =
𝑛∏

𝑖=1
𝑡𝑖.

The set 𝐺𝑎,𝑏 is a covering set for an integer torus 𝒯𝑡 if and only if 2 ≤ 𝑡 ≤ min(𝑎, 𝑏).

Hence the set {𝑡1, … , 𝑡𝑛} consists of all primes smaller or equal to min(𝑎, 𝑏) and therefore

𝜏 = (min(𝑎, 𝑏))#. Finally, Λℤ(𝑆) = Λℚ(𝑆) ∩ ℤ = ∅.

4 Circumscribed Circles of Polygons

We define an integer circumscribed circle of a polygon 𝑃 as the integer circumscribed

circle of the set of vertices of 𝑃 in the sense of Definition 2.1. Note that an integer circle

is an integer circumscribed circle of 𝑃 if and only if all vertices of 𝑃 are on the circle

(see Figure 1). We define a rational circumscribed circle of a polygon 𝑃 as the rational

circumscribed circle of the set of vertices of 𝑃 in the sense of Definition 3.2.

In this section we summarise the implications of the results of Theorem 3.16 for

integer and rational circumscribed circles of polygons.

4.1 Circumscribed Circles of Segments and Triangles

An integer segment or triangle always admits a unit integer circumscribed circle.

Proposition 4.1. Let 𝑆 be an integer segment or triangle. Let 𝑔 be the greatest common

divisor of all integer distances between pairs of vertices of 𝑆. Then the integer circumscribed

spectrum Λℤ(𝑆) consists of all positive divisors of 𝑔 and

Λℚ(𝑆) = {
𝑔
𝑐
||||||
𝑐 ∈ ℤ+} .

In particular if 𝑆 is a primitive segment or triangle then

Λℤ(𝑆) = {1}, Λℚ(𝑆) = { 1𝑐
||||||
𝑐 ∈ ℤ+} .

Proof. There exist an integer point 𝑥 and a primitive polygon 𝑆̂ such that 𝑆 = 𝑥 + 𝑔𝑆̂.

The set of vertices of 𝑆̂ consists of at most three points and therefore is tori-transparent.
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Theorem 3.16 implies that

Λℚ(𝑆) = {
𝑔
𝑐

|||||||
𝑐 ∈ ℤ+} .

It follows that Λℤ(𝑆) = Λℚ(𝑆) ∩ ℤ consists of all positive divisors of 𝑔.

We obtain the following corollary:

Corollary 4.2. If an integer set 𝑆 has a integer circumscribed circle of radius 𝑟 then the

integer distance between any two points of 𝑆 is a multiple of 𝑟.

Proof. Consider 𝐴, 𝐵 ∈ 𝑆. Any integer circumscribed circle of 𝑆 is in particular an integer

circumscribed circle of the segment 𝐴𝐵, hence the integer length of the segment 𝐴𝐵 is

divisible by 𝑟.

Let us recall the Euclidean Extended Sine Rule: for a triangle 𝐴𝐵𝐶 we have

|𝐴𝐵|
sin∠𝐵𝐶𝐴

= |𝐵𝐶|
sin∠𝐶𝐴𝐵

= |𝐶𝐴|
sin∠𝐴𝐵𝐶

= 2𝑅,

where 𝑅 is the radius of the circumscribed circle.

As was shown in [Kar08], the first two of these equalities hold in lattice geometry:

l𝓁(𝐴𝐵)
lsin∠𝐵𝐶𝐴

=
l𝓁(𝐵𝐶)

lsin∠𝐶𝐴𝐵
=

l𝓁(𝐶𝐴)
lsin∠𝐴𝐵𝐶

.

Proposition 4.1 tells us that there is no natural generalisation for the last equality. Indeed,

the circumscribed spectrum depends entirely on the integer length of the edges of the

triangle and does not depend on the angles.

For instance consider two triangles, one with vertices (0, 0), (1, 0), (0, 1) and another with

vertices (0, 0), (1, 2), (2, 1). For both triangles, all edges are of unit integer length. The sets

of integer sines of the angles of these triangles are distinct, for the first triangle all integer

sines are equal to 1 while for the second triangle all integer sines of the angles are equal

to 3. Nevertheless the circumscribed spectra for both triangles coincide.
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4.2 Circumscribed Circles of Quadrangles

We have seen that every triangle has an integer circumscribed circle, however this is no

longer true for quadrangles as the following example shows.

Definition 4.3. An integer polygon 𝑃 is empty if the only lattice points contained in 𝑃 are

the vertices.

Proposition 4.4. An empty integer strictly convex quadrilateral does not have a integer

circumscribed circle.

Proof. Note that every empty integer strictly convex quadrilateral is integer congruent

to the coordinate square 𝑆1 with vertices (0, 0), (1, 0), (1, 1) and (0, 1). The square 𝑆1 is a

covering set of 𝒯2, hence it is not tori-transparent. Theorem 2.9 implies that 𝑆1 does not

admit integer circumscribed circles of any radius.

However some quadrangles have integer circumscribed circles.

Example 4.5. The quadrilateral with vertices 𝐴 = (0, 0), 𝐵 = (1, 0), 𝐶 = (0, 1) and 𝐷 = (2, 2)

has a unit circumscribed circle centred at (1, 1).

The situation is similar to the Euclidean geometry, where a quadrangle has a circum-

scribed circle if and only if its opposite angles add up to 𝜋. The lattice version of this rule

is as follows:

Proposition 4.6. An integer quadrangle has an integer circumscribed circle if and only if

the set of its vertices is not a covering set of 𝒯2.

Proof. Theorem 2.9 implies that a quadrangle admits an integer circumscribed circle if

and only if its set of vertices 𝑉 is tori-transparent, i.e. is not a covering set of any integer

torus 𝒯𝑡 for 𝑡 ≥ 2. The set 𝑉 cannot be a covering set of 𝒯𝑡 for 𝑡 > 2 since |𝑉| = 4 < 𝑡2 = |𝒯𝑡|.

Hence the set 𝑉 is tori-transparent if and only if it is not a covering set of 𝒯2.

Arnold Mathematical Journal, Vol.11(3), 2025 38

http://dx.doi.org/10.56994/ARMJ


Circumscribed Circles in Integer Geometry

Remark 4.7. The conditions for a quadrangle to admit a circumscribed circle can be

stated in terms of the parity of the six integer distances between its pairs of vertices as

follows: An integer quadrangle admits an integer circumscribed circle if and only if at

least one of the integer distances between its vertices is even.

On the other hand, the existence of an integer circumscribed circle is not determined

solely by the integer angles of the integer quadrangle. For example, the angles of the

quadrangles with vertices 𝐴(0, 0), 𝐵(0, 1), 𝐶(1, 1), 𝐷(1, 0) and 𝑃(−1, 0), 𝑄(−1, 1), 𝑅(0, 1), 𝑆(1, 0)

are congruent to each other, however the latter one admits a circumscribed circle, for

example one centred at the origin 𝑂(0, 0), while the former one does not.

A

B C

D P

Q R

SO

4.3 Circumscribed Circles of General Polygons

In fact, the argument used in the proof of Proposition 4.6 holds for all 𝑛-gons with 𝑛 ≤ 8:

Proposition 4.8. An integer 𝑛-gon with 𝑛 ≤ 8 has an integer circumscribed circle if and

only if the set of its vertices is not a covering set of 𝒯2.

In general, the following statement holds:

Proposition 4.9. An integer 𝑛-gon admits an integer circumscribed circle if and only if its

vertices are not a covering set of 𝒯𝑡 for every 𝑡 ≤
√
𝑛.
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Abstract:

Recently, Morier-Genoud and Ovsienko introduced a 𝑞-deformation of ratio-

nal numbers. More precisely, for an irreducible fraction 𝑟
𝑠
> 0, they constructed

coprime polynomials ℛ 𝑟
𝑠
(𝑞), 𝒮 𝑟

𝑠
(𝑞) ∈ ℤ[𝑞] with ℛ 𝑟

𝑠
(1) = 𝑟, 𝒮 𝑟

𝑠
(1) = 𝑠. Their theory

has a rich background and many applications. By definition, if 𝑟 ≡ 𝑟′ (mod 𝑠),

then 𝒮 𝑟
𝑠
(𝑞) = 𝒮 𝑟′

𝑠

(𝑞). We show that 𝑟𝑟′≡ − 1 (mod 𝑠) implies 𝒮 𝑟
𝑠
(𝑞) = 𝒮 𝑟′

𝑠

(𝑞), and it

is conjectured that the converse holds if 𝑠 is prime (and 𝑟 ≢ 𝑟′ (mod 𝑠)). We also

show that 𝑠 is a multiple of 3 (resp. 4) if and only if 𝒮 𝑟
𝑠
(𝜁) = 0 for 𝜁 = (−1+

√
−3)∕2

(resp. 𝜁 = 𝑖). We give applications to the representation theory of quivers of

type 𝐴 and the Jones polynomials of rational links.
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1 Introduction

The 𝑞-deformation of a positive integer 𝑛, which is given by

[𝑛]𝑞 =
1 − 𝑞𝑛

1 − 𝑞 = 𝑞𝑛−1 + 𝑞𝑛−2 +⋯+ 𝑞 + 1,

is a very classical subject of mathematics. Recently, Morier-Genoud and Ovsienko [MO20]

introduced the 𝑞-deformation [𝛼]𝑞 of a rational number 𝛼 based on some combinatorial

properties of rational numbers. They further extended this notion to arbitrary real num-

bers [MO22] by some number-theoretic properties of irrational numbers. These works are

related to many directions including Teichmüller spaces [FC99], the 2-Calabi-Yau category

of type 𝐴2 [BBL23], the Markov-Hurwitz approximation theory [Ko22, LL22, LMOV21,

R22(a)], the modular group and Picard groups [LeM21, MOV24, O21], Jones polynomials

of rational knots [KW19(a), LS19, NT20, MO20, BBL23, R22(b)], and combinatorics on

fence posets [MSS21, Kan22, KR23].

For an irreducible fraction 𝑟
𝑠
> 0, we have

[𝑟
𝑠

]

𝑞
=
ℛ 𝑟

𝑠
(𝑞)

𝒮 𝑟
𝑠
(𝑞)

for ℛ 𝑟
𝑠
(𝑞), 𝒮 𝑟

𝑠
(𝑞) ∈ ℤ>0[𝑞] with ℛ 𝑟

𝑠
(1) = 𝑟 and 𝒮 𝑟

𝑠
(1) = 𝑠.

There are many ways to compute [𝛼]𝑞 (see Section 2 for details). For example, we have

[65]𝑞
=
[6]𝑞
[5]𝑞

=
𝑞5 + 𝑞4 + 𝑞3 + 𝑞2 + 𝑞 + 1
𝑞4 + 𝑞3 + 𝑞2 + 𝑞 + 1

, [75]𝑞
=
𝑞4 + 2𝑞3 + 2𝑞2 + 𝑞 + 1

𝑞3 + 2𝑞2 + 𝑞 + 1
,

and observe that the denominators of 6
5

and 7
5

are the same 5, but the denominator

polynomials of their 𝑞-deformation are different. In general, the following problem

arises. When dose the equation 𝒮 𝑟
𝑠
(𝑞) = 𝒮 𝑟′

𝑠

(𝑞) hold for two irreducible fractions 𝑟
𝑠

and
𝑟′

𝑠
? By definition, we have 𝒮𝛼+𝑛(𝑞) = 𝒮𝛼(𝑞) for 𝑛 ∈ ℤ, and hence 𝑟 ≡ 𝑟′ (mod 𝑠) implies

𝒮 𝑟
𝑠
(𝑞) = 𝒮 𝑟′

𝑠

(𝑞). However, there are more subtle relations.
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Example 1.1. (1) The table of 𝒮𝛼(𝑞) for irreducible fractions 𝛼 of the form 𝑟
17

is the

following.

𝐴 = [17]𝑞 = 𝑞16 + 𝑞15 +⋯+ 𝑞 + 1

𝐵 = 𝑞9 + 2𝑞8 + 2𝑞7 + 2𝑞6 + 2𝑞5 + 2𝑞4 + 2𝑞3 + 2𝑞2 + 𝑞 + 1

𝐶 = 𝑞7 + 2𝑞6 + 3𝑞5 + 3𝑞4 + 3𝑞3 + 2𝑞2 + 2𝑞 + 1

𝐷 = 𝑞7 + 2𝑞6 + 3𝑞5 + 4𝑞4 + 3𝑞3 + 2𝑞2 + 𝑞 + 1

𝐸 = 𝑞6 + 2𝑞5 + 4𝑞4 + 4𝑞3 + 3𝑞2 + 2𝑞 + 1

𝑟 (mod 17) 1, 16 2, 8 3, 11 4 5, 10 6, 14 7, 12 9, 15 13

𝒮 𝑟
17
(𝑞) 𝐴 𝐵 𝐶 𝐷 𝐸 𝐶∨ 𝐸∨ 𝐵∨ 𝐷∨

Here, for 𝑓(𝑞) ∈ ℚ[𝑞], 𝑓∨(𝑞) denotes its reciprocal polynomial 𝑞𝖽𝖾𝗀(𝑓)𝑓(𝑞−1). For example,

we have

𝐸∨ = 𝑞6 + 2𝑞5 + 3𝑞4 + 4𝑞3 + 4𝑞2 + 2𝑞 + 1.

(2) Next, we give the table of 𝒮𝛼(𝑞) for irreducible fractions 𝛼 of the form 𝑟
23

.

𝐴 = [23]𝑞 = 𝑞22 + 𝑞21 +⋯+ 𝑞 + 1

𝐵 = 𝑞12 + 2𝑞11 + 2𝑞10 + 2𝑞9 + 2𝑞8 + 2𝑞7 + 2𝑞6 + 2𝑞5 + 2𝑞4 + 2𝑞3 + 2𝑞2 + 𝑞 + 1

𝐶 = 𝑞9 + 2𝑞8 + 3𝑞7 + 3𝑞6 + 3𝑞5 + 3𝑞4 + 3𝑞3 + 2𝑞2 + 2𝑞 + 1

𝐷 = 𝑞8 + 2𝑞7 + 3𝑞6 + 4𝑞5 + 4𝑞4 + 3𝑞3 + 3𝑞2 + 2𝑞 + 1

𝐸 = 𝑞7 + 3𝑞6 + 4𝑞5 + 5𝑞4 + 4𝑞3 + 3𝑞2 + 2𝑞 + 1

𝐹 = 𝑞7 + 2𝑞6 + 4𝑞5 + 5𝑞4 + 5𝑞3 + 3𝑞2 + 2𝑞 + 1

𝑟 (mod 23) 1, 22 2, 11 3, 15 4, 17 5, 9 6, 19 7, 13 8, 20 10, 16 14, 18 12, 21

𝒮 𝑟
23
(𝑞) 𝐴 𝐵 𝐶 𝐷 𝐸 𝐷∨ 𝐹 𝐶∨ 𝐹∨ 𝐸∨ 𝐵∨
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From these examples, the third author of the present paper and Takeshi Sakurai, who

were supervised by the first author, proposed the following conjecture in their master

theses [R21, S21]. This is the main motivation of the present paper.

Conjecture 1.2 (Arithmetic conjecture). Let 𝑝 be an odd prime integer. For two positive

integers 𝑎, 𝑏 which are coprime to 𝑝, 𝒮 𝑎
𝑝
(𝑞) = 𝒮 𝑏

𝑝
(𝑞) if and only if 𝑎𝑏 ≡ −1 (mod 𝑝) or 𝑎 ≡ 𝑏

(mod 𝑝).

The necessity part of Conjecture 1.2 really requires the assumption that 𝑝 is prime. In

fact, 𝒮 5
24
(𝑞) = 𝒮 11

24
(𝑞) holds, while 5 ⋅ 11 ≢ −1 (mod 24). See Subsection 2.2 for detail. On the

other hand, without the assumption that 𝑝 is prime, we can show the sufficiency (so the

essential part of the conjecture is its necessity). We give two different proofs in Sections

3 and 4.

The proof given in Section 3 is rather direct. Combining an argument here and a

combinatorial result in [KR23], we can show that 𝒮 𝑟
𝑠
(𝑞) is palindromic if and only if 𝑟2 ≡ 1

(mod 𝑠). Recall that 𝑓(𝑞) ∈ ℤ[𝑞] is said to be palindromic, if 𝑓∨(𝑞) = 𝑓(𝑞).

The proof given in Section 4 uses the 𝑞-deformation (𝑎, 𝑏)𝑝 ∈ ℤ[𝑞] of a pair (𝑎, 𝑏) of

positive and coprime integers introduced in the previous work [W22] of the fourth author.

In Section 5 we study on behavior of ℛ𝛼(𝑞) and 𝒮𝛼(𝑞) under the operations 𝔦, 𝔯, 𝔦𝔯 on the

positive rational numbers 𝛼, which are introduced in [KW19(a)].

For a given rational number 𝛼 ∈ ℚ ∩ (1,∞), the regular continued fraction expansion

of 𝛼 determines a quiver 𝑄 of type 𝐴. In [MO20, Thoerem 4], they provided a method

for computing ℛ𝛼(𝑞) (and 𝒮𝛼(𝑞)) by using combinatorial enumeration with the quiver

𝑄. Specifically, the coefficients of 𝑞𝑘 in ℛ𝛼(𝑞) coincides with the number of marking of

circles to 𝑘 vertices of 𝑄 so that there is no arrow from a marked vertex to an unmarked

vertex. Thus, one representation-theoretic view of ℛ𝛼(𝑞) is that it counts the number of

submodules of the largest dimensional indecomposable module 𝑀 over the path algebra

𝗄𝑄, where 𝗄 is a field. Namely, the coefficients of 𝑞𝑘 in ℛ𝛼(𝑞) is equal to the number of

𝑘-dimensional submodules of 𝑀. In Section 6, we give a formula for computing ℛ𝛼(𝑞).

In Section 7, we extend the result [MO20, Proposition 1.8] which states that 𝒮𝛼(−1)

Arnold Mathematical Journal, Vol.11(3), 2025 45

http://dx.doi.org/10.56994/ARMJ


T. Kogiso, K. Miyamoto, X. Ren, M. Wakui, K. Yanagawa

and ℛ𝛼(−1) belong to {0, ±1}. First, we will show that

ℛ𝛼(𝜔), 𝒮𝛼(𝜔) ∈ {0, ±1, ±𝜔,±𝜔2} for 𝜔 =
−1 +

√
−3

2

and

ℛ𝛼(𝑖), 𝒮𝛼(𝑖) ∈ {0, ±1, ±𝑖, ±(1 + 𝑖), ±(1 − 𝑖)}.

Hence, for an irreducible fraction 𝑟
𝑠
, 𝒮 𝑟

𝑠
(𝑞) ∈ ℤ[𝑞] can be divided by [3]𝑞 = 𝑞2 + 𝑞 + 1

(resp. [4]𝑞 = 𝑞3 + 𝑞2 + 𝑞 + 1) if and only if 𝑠 is a multiple of 3 (resp. 4). Inspired by this

fact, we conjecture that if 𝑝 is a prime integer then 𝒮 𝑎
𝑝
(𝑞) ∈ ℤ[𝑞] is irreducible over ℚ

(Conjecture 7.9).

In Section 8, we give an application of the observations in the previous section. For the

rational link 𝐿(𝛼) associated with 𝛼 ∈ ℚ (for example, see [KL02]), the Jones polynomial

𝑉𝐿(𝛼)(𝑡) ∈ ℤ[𝑡±1] ∪ 𝑡
1
2ℤ[𝑡±1] has the normalized form 𝐽𝛼(𝑞) ∈ ℤ[𝑞] ([LS19]). Since 𝐽𝛼(𝑞) for

𝛼 > 1 can be expressed using ℛ𝛼(𝑞) and 𝒮𝛼(𝑞) by [MO20, Proposition A.1], one can study

the special values of 𝐽𝛼(𝑞) at 𝑞 = −1, 𝑖, ±𝜔. There are several classical results on the special

values of the Jones polynomials 𝑉𝐿(𝑡) for general links 𝐿, and most of the facts given in

this section easily follow from these results. However, we give a new explanation using

𝑞-deformed rationals.
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2 Preliminaries

Throughout this paper, for a real number 𝑥 ∈ ℝ, the symbols ⌈𝑥⌉ and ⌊𝑥⌋ mean ⌈𝑥⌉ =

min{𝑛 ∈ ℤ ∣ 𝑥 ≤ 𝑛} and ⌊𝑥⌋ = max{𝑛 ∈ ℤ ∣ 𝑛 ≤ 𝑥}, respectively. For an irreducible fraction 𝑟
𝑠
,

we always assume that 𝑠 > 0. We regard 0 = 0
1

as an irreducible fraction.

2.1 𝑞-deformed rational numbers

In this subsection, we review some basics on 𝑞-deformations for rational numbers intro-

duced by Morier-Genoud and Ovsienko [MO20, MOV24]. A rational number 𝛼 ∈ ℚ∩(1,∞)

can be represented by

𝛼 = 𝑎1 +
1

𝑎2 +
1

⋱
+ 1
𝑎𝑛

with 𝑎1, … , 𝑎𝑛 ∈ ℤ>0 and it can be also represented by

𝛼 = 𝑐1 −
1

𝑐2 −
1

⋱
− 1
𝑐𝑙

with 𝑐1, … , 𝑐𝑙 ∈ ℤ>1. In this case, we write [𝑎1, … , 𝑎𝑛] and [[𝑐1, … , 𝑐𝑙]] for these expansions,

respectively. The former expansion is called a regular continued fraction of 𝛼, and the

latter is called a Hirzebruch-Jung continued fraction (or negative continued fraction in this

paper) of 𝛼. One can always assume that the length 𝑛 of a regular continued fraction to

be even, since [𝑎1, … , 𝑎𝑛+1] = [𝑎1, … , 𝑎𝑛, 1]. The expression as a regular continued fraction

is uniquely determined if the parity of 𝑛 is specified, and that as a negative continued

fraction is unique (since 𝑐𝑖 ≥ 2 for all 𝑖 now).

For an integer 𝑎, we set:

𝑀(𝑎) ∶=
⎛
⎜
⎝

𝑎 1

1 0

⎞
⎟
⎠
, 𝑀−(𝑎) ∶=

⎛
⎜
⎝

𝑎 −1

1 0

⎞
⎟
⎠
. (2.1)
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Moreover, for a finite sequence of integers (𝑎1, … , 𝑎𝑛), we set

𝑀(𝑎1, … , 𝑎𝑛) = 𝑀(𝑎1)⋯𝑀(𝑎𝑛), 𝑀−(𝑎1, … , 𝑎𝑛) = 𝑀−(𝑎1)⋯𝑀−(𝑎𝑛). (2.2)

It follows from the definitions, we see that 𝑀−(𝑎1, … , 𝑎𝑛) ∈ 𝖲𝖫(2, ℤ), whereas 𝑀(𝑎1, … , 𝑎𝑛) ∈

𝖲𝖫(2, ℤ) if and only if 𝑛 is even. These matrices are well-known as the matrices of continued

fractions in elementary number theory because one has the following result.

Lemma 2.1 ([MO19, Proposition 3.1]). Let 𝛼 = 𝑟
𝑠
> 1 be an irreducible fraction, and assume

that it is expressed by

𝛼 = [𝑎1, … , 𝑎𝑛] = [[𝑐1, … , 𝑐𝑙]]

with 𝑎𝑖 ≥ 1 (𝑖 = 1, … , 𝑛) and 𝑐𝑗 ≥ 2 (𝑗 = 1,… , 𝑙). Then,

𝑀(𝑎1, … , 𝑎𝑛) =
⎛
⎜
⎝

𝑟 𝑟′

𝑠 𝑠′
⎞
⎟
⎠
, 𝑀−(𝑐1, … , 𝑐𝑙) =

⎛
⎜
⎝

𝑟 −𝑟′′

𝑠 −𝑠′′
⎞
⎟
⎠
,

where 𝑟′

𝑠′
= [𝑎1, … , 𝑎𝑛−1] and 𝑟′′

𝑠′′
= [[𝑐1, … , 𝑐𝑙−1]].

The 𝑞-deformation of positive rational numbers is based on the above lemma. Let 𝑞

be a formal symbol. For an integer 𝑎, we define a Laurent polynomial [𝑎]𝑞 ∈ ℤ[𝑞, 𝑞−1] by

[𝑎]𝑞 ∶=
1 − 𝑞𝑎

1 − 𝑞 =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑞𝑎−1 + 𝑞𝑎−2 +⋯+ 𝑞 + 1 if 𝑎 > 0,

0 if 𝑎 = 0,

−𝑞−𝑎 − 𝑞−𝑎+1 −⋯− 𝑞−2 − 𝑞−1 if 𝑎 < 0.

By the definition of [𝑎]𝑞, for all 𝑎, 𝑛 ∈ ℤ, the equation

[𝑎 + 𝑛]𝑞 = 𝑞𝑛[𝑎]𝑞 + [𝑛]𝑞 (2.3)

holds. For an integer 𝑎, two 𝑞-deformations of (2.1) are defined by

𝑀𝑞(𝑎) ∶=
⎛
⎜
⎝

[𝑎]𝑞 𝑞𝑎

1 0

⎞
⎟
⎠
, 𝑀−

𝑞 (𝑎) ∶=
⎛
⎜
⎝

[𝑎]𝑞 −𝑞𝑎−1

1 0

⎞
⎟
⎠
. (2.4)
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The next proposition is a 𝑞-deformation of Lemma 2.1. Here, for regular continued

fractions, we only use those of even length. The 𝑞-deformations of (2.2) are defined as

follows.

𝑀𝑞(𝑎1, … , 𝑎2𝑚) ∶= 𝑀𝑞(𝑎1)𝑀𝑞−1(𝑎2)𝑀𝑞(𝑎3)⋯𝑀𝑞−1(𝑎2𝑚)

𝑀̃𝑞(𝑎1, … , 𝑎2𝑚) ∶= 𝑞𝑎2+𝑎4+⋯+𝑎2𝑚𝑀𝑞(𝑎1, … , 𝑎2𝑚)

𝑀−
𝑞 (𝑎1, … , 𝑎𝑛) ∶= 𝑀−

𝑞 (𝑎1)𝑀−
𝑞 (𝑎2)⋯𝑀−

𝑞 (𝑎𝑛).

Then, the following statements hold.

Proposition 2.2 ([MO20, Propositions 4.3 and 4.9]). Let 𝛼 = 𝑟
𝑠

be a rational number as

given in Lemma 2.1. The polynomials ℛ𝛼(𝑞), 𝒮𝛼(𝑞) ∈ ℤ[𝑞] given by

𝑀−
𝑞 (𝑐1, … , 𝑐𝑙)

⎛
⎜
⎝

1

0

⎞
⎟
⎠
=
⎛
⎜
⎝

ℛ𝛼(𝑞)

𝒮𝛼(𝑞)

⎞
⎟
⎠

satisfy

𝑀̃𝑞(𝑎1, … , 𝑎2𝑚)
⎛
⎜
⎝

1

0

⎞
⎟
⎠
=
⎛
⎜
⎝

𝑞ℛ𝛼(𝑞)

𝑞𝒮𝛼(𝑞)

⎞
⎟
⎠
. (2.5)

Moreover, the following statements hold.

(1) ℛ𝛼(𝑞) and 𝒮𝛼(𝑞) are coprime in ℤ[𝑞].

(2) We have ℛ 𝑟
𝑠
(1) = 𝑟 and 𝒮 𝑟

𝑠
(1) = 𝑠.

Based on Proposition 2.2, the 𝑞-deformation of a rational number 𝛼 > 1 is defined by

[𝛼]𝑞 ∶=
ℛ𝛼(𝑞)
𝒮𝛼(𝑞)

.

Remark 2.3. Let 𝖯𝖲𝖫𝑞(2, ℤ) be the subgroup of

𝖯𝖦𝖫
(
2,ℤ

[
𝑞±1

])
= 𝖦𝖫

(
2,ℤ

[
𝑞±1

])
∕
{
±𝑞𝑁𝐸2 ∣ 𝑁 ∈ ℤ

}

generated by the following two matrices

𝑅𝑞 ∶=
⎛
⎜
⎝

𝑞 1

0 1

⎞
⎟
⎠
, 𝐿𝑞 =

⎛
⎜
⎝

1 0

1 𝑞−1
⎞
⎟
⎠
.
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[LeM21, Proposition 1.1] states that 𝖯𝖲𝖫(2, ℤ) ≅ 𝖯𝖲𝖫𝑞(2, ℤ). Via the equation

𝑀𝑞(𝑎1, … , 𝑎2𝑚) = 𝑅𝑎1𝑞 𝐿
𝑎2
𝑞 𝑅

𝑎3
𝑞 𝐿

𝑎4
𝑞 ⋯𝑅𝑎2𝑚−1𝑞 𝐿𝑎2𝑚𝑞

and the classical 𝖯𝖲𝖫(2, ℤ) action onℚ∪
{( 1

0

)}
, [MOV24] gives an insightful interpretation of

𝑞-deformed rationals. We can also use negative continued fractions for this interpretation.

For an integer 𝑛 ≥ 2, since 𝑛 = [[𝑛]] as a negative continued fraction, we have the

following philosophically trivial equations

ℛ𝑛(𝑞) = [𝑛]𝑞 and 𝒮𝑛(𝑞) = 1. (2.6)

Morier-Genoud and Ovsienko pointed out that the definition of 𝑞-deformed rational

number [𝛼]𝑞 can be extended to the case where 𝛼 ≤ 1 including the negative rational

numbers by the following formulas, see [MO20, page 3]:

[𝛼 + 1]𝑞 = 𝑞[𝛼]𝑞 + 1. (2.7)

However, for 𝛼 < 0, ℛ𝛼(𝑞) is not an ordinary polynomial but a Laurent polynomial.

Similarly, for 0 < 𝛼 < 1, ℛ𝛼(𝑞) is a polynomial, but ℛ𝛼(0) = 0 (if 𝛼 ≥ 1, we have ℛ𝛼(0) = 1).

It can be easily verified that (2.5) holds for all 𝛼 ∈ ℚ, that is, without assuming that 𝛼 > 1.

Lemma 2.4. For a rational number 𝛼 and an integer 𝑛, we have

ℛ𝛼+𝑛(𝑞) = 𝑞𝑛ℛ𝛼(𝑞) + [𝑛]𝑞𝒮𝛼(𝑞) and 𝒮𝛼+𝑛(𝑞) = 𝒮𝛼(𝑞),

equivalently, [𝛼 + 𝑛]𝑞 = 𝑞𝑛[𝛼]𝑞 + [𝑛]𝑞. In particular, we have

𝒮𝛼(𝑞) = 𝒮𝛼+1(𝑞) and ℛ𝛼(𝑞) = 𝑞−1(ℛ𝛼+1(𝑞) − 𝒮𝛼+1(𝑞)). (2.8)

Proof. It suffices to show that [𝛼 + 𝑛]𝑞 = 𝑞𝑛[𝛼]𝑞 + [𝑛]𝑞. For 𝑛 ≥ 1, this is easily shown by

induction on 𝑛 using (2.7). For 𝑛 ≥ 1, replacing 𝛼 by 𝛼 − 𝑛, we have [𝛼]𝑞 = 𝑞𝑛[𝛼 − 𝑛]𝑞 + [𝑛]𝑞.

Hence

[𝛼 − 𝑛]𝑞 = 𝑞−𝑛[𝛼]𝑞 − 𝑞−𝑛[𝑛]𝑞 = 𝑞−𝑛[𝛼]𝑞 + [−𝑛]𝑞.
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Lemma 2.5. Let 𝑎, 𝑥 be positive and coprime integers with 1 ≤ 𝑎 ≤ 𝑥, and express 𝑥 as the

form 𝑥 = 𝑐𝑎 + 𝑟 for some 𝑐, 𝑟 ∈ ℤ with 0 ≤ 𝑟 < 𝑎. Then the following equations hold:

ℛ 𝑥
𝑎
(𝑞) = [𝑐 + 1]𝑞ℛ 𝑎

𝑎−𝑟
(𝑞) − 𝑞𝑐𝒮 𝑎

𝑎−𝑟
(𝑞),

𝒮 𝑥
𝑎
(𝑞) = ℛ 𝑎

𝑎−𝑟
(𝑞).

Proof. Note that it follows from the equations (2.6) and (2.8) that ℛ1(𝑞) = 𝒮1(𝑞) = 1. If

𝑎 = 1, then 𝑟 = 0. Thus, we have

[𝑐 + 1]𝑞ℛ 𝑎
𝑎−𝑟
(𝑞) − 𝑞𝑐𝒮 𝑎

𝑎−𝑟
(𝑞) = [𝑥 + 1]𝑞ℛ1(𝑞) − 𝑞𝑥𝒮1(𝑞) = [𝑥]𝑞 = ℛ 𝑥

𝑎
(𝑞).

The second equation obviously holds when 𝑎 = 1.

If 𝑎 > 1, then 𝑟 > 0, and thus 𝑎
𝑎−𝑟

> 1. By 𝑥 = 𝑐𝑎 + 𝑟,

𝑥
𝑎 =

(𝑐 + 1)𝑎 + 𝑟 − 𝑎
𝑎 = 𝑐 + 1 − 1

𝑎
𝑎−𝑟

.

So, if 𝑎
𝑎−𝑟

is expressed as 𝑎
𝑎−𝑟

= [[𝑐1, … , 𝑐𝑙]], then 𝑥
𝑎
= [[𝑐 + 1, 𝑐1, … , 𝑐𝑙]] and

𝑀−
𝑞 (𝑐 + 1, 𝑐1, … , 𝑐𝑙)

⎛
⎜
⎝

1

0

⎞
⎟
⎠
= 𝑀−

𝑞 (𝑐 + 1)𝑀−
𝑞 (𝑐1, … , 𝑐𝑙)

⎛
⎜
⎝

1

0

⎞
⎟
⎠

=
⎛
⎜
⎜
⎝

[𝑐 + 1]𝑞ℛ 𝑎
𝑎−𝑟
(𝑞) − 𝑞𝑐𝒮 𝑎

𝑎−𝑟
(𝑞)

ℛ 𝑎
𝑎−𝑟
(𝑞)

⎞
⎟
⎟
⎠

.

This leads to the equations in the lemma.

By Lemmas 2.4 and 2.5, we have

{ 𝒮𝛼(𝑞) ∣ 𝛼 ∈ ℚ }= { 𝒮𝛼(𝑞) ∣ 𝛼 ∈ ℚ ∩ (1, 2] } = {ℛ𝛼(𝑞) ∣ 𝛼 ∈ ℚ ∩ (1,∞) }.

Lemma 2.6. For coprime positive integers 𝑎, 𝑥 with 1 ≤ 𝑎 ≤ 𝑥, we have

ℛ 𝑎
𝑥
(𝑞) = ℛ 𝑥

𝑥−𝑎
(𝑞) − 𝒮 𝑥

𝑥−𝑎
(𝑞), (2.9)

𝒮 𝑎
𝑥
(𝑞) = ℛ 𝑥

𝑥−𝑎
(𝑞). (2.10)
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Proof. Express 𝑥
𝑥−𝑎

as the negative continued fraction 𝑥
𝑥−𝑎

= [[𝑐1, … , 𝑐𝑙]]. Then 𝑎
𝑥
+ 1 =

[[2, 𝑐1, … , 𝑐𝑙]], and

⎛
⎜
⎜
⎝

ℛ 𝑎
𝑥
+1(𝑞)

𝒮 𝑎
𝑥
+1(𝑞)

⎞
⎟
⎟
⎠

= 𝑀−
𝑞 (2)𝑀−

𝑞 (𝑐1, … , 𝑐𝑙)
⎛
⎜
⎝

1

0

⎞
⎟
⎠
=
⎛
⎜
⎝

[2]𝑞 −𝑞

1 0

⎞
⎟
⎠

⎛
⎜
⎜
⎝

ℛ 𝑥
𝑥−𝑎
(𝑞)

𝒮 𝑥
𝑥−𝑎
(𝑞)

⎞
⎟
⎟
⎠

.

This equation and Lemma 2.4 yield the equation (2.10) and

𝑞ℛ 𝑎
𝑥
(𝑞) + 𝒮 𝑎

𝑥
(𝑞) = [2]𝑞ℛ 𝑥

𝑥−𝑎
(𝑞) − 𝑞𝒮 𝑥

𝑥−𝑎
(𝑞) (2.11)

The equation (2.9) can be obtained by substituting (2.10) to (2.11).

2.2 The arithmetic conjecture on 𝑞-deformed rational numbers

Conjecture 1.2 is the central problem of the present paper. In this subsection, we collect a

few remarks on this conjecture.

If Conjecture 1.2 holds for an odd prime 𝑝, then we have

#{𝒮 𝑎
𝑝
(𝑞) ∣ 𝑎 ∈ ℤ} =

⎧
⎪

⎨
⎪
⎩

𝑝 + 1
2 (𝑝 ≡ 1 (mod 4)),

𝑝 − 1
2 (𝑝 ≡ 3 (mod 4)).

(2.12)

To see this, recall the result of elementary number theory that there is some 𝑎 ∈ ℤ with

𝑎2 ≡ −1 (mod 𝑝) if and only if 𝑝 ≡ 1 (mod 4). Thus, if 𝑝 ≡ 1 (mod 4), then

{1, … , 𝑝 − 1} = { 𝑎1, … , 𝑎 𝑝−3
2
, 𝑏1, … , 𝑏 𝑝−3

2
, 𝑐, 𝑑 },

where 𝑎𝑖𝑏𝑖 ≡ −1 (mod 𝑝) for each 𝑖 and 𝑐2 ≡ 𝑑2 ≡ −1 (mod 𝑝). If 𝑝 ≡ 3 (mod 4),

{1, … , 𝑝 − 1} = { 𝑎1, … , 𝑎 𝑝−1
2
, 𝑏1, … , 𝑏 𝑝−1

2
}

holds, where 𝑎𝑖𝑏𝑖 ≡ −1 (mod 𝑝) for each 𝑖. In the present assumption, we have 𝒮 𝑎𝑖
𝑝
(𝑞) =

𝒮 𝑏𝑖
𝑝
(𝑞) for each 𝑖, and this is the only case when 𝒮 𝑎

𝑝
(𝑞) = 𝒮 𝑏

𝑝
(𝑞) holds for distinct 𝑎, 𝑏 ∈

{1, … , 𝑝 − 1}. Hence Conjecture 1.2 implies (2.12). However, in Theorem 3.5 below, we will
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prove the sufficiency of the conjecture (without assuming that 𝑝 is prime). So 𝒮 𝑎𝑖
𝑝
(𝑞) =

𝒮 𝑏𝑖
𝑝
(𝑞) actually holds, and (2.12) is equivalent to Conjecture 1.2.

Next, we remark that the assumption that 𝑝 is prime is really necessary for the

necessity part of Conjecture 1.2. In fact, 5
24
= [0, 4, 1, 4] and 11

24
= [0, 2, 5, 2] satisfy

𝒮 5
24
(𝑞) = 𝒮 11

24
(𝑞) = 𝑞8 + 2𝑞7 + 3𝑞6 + 4𝑞5 + 4𝑞4 + 4𝑞3 + 3𝑞2 + 2𝑞 + 1

by Proposition 2.2 and (2.8), while 5 ⋅ 11 + 1 = 56 is not divisible by 24.

The following table shows composite numbers 𝑝 and pairs of natural numbers (𝑎, 𝑏)

(1 < 𝑎 < 𝑏 < 𝑝 ≤ 111) which do not satisfy the necessity of Conjecture 1.2. Note that if 𝑝

admits a pair (𝑎, 𝑏) with this property then it admits other pairs. For example, (𝑝−𝑏, 𝑝−𝑎)

is also such a pair by Lemma 3.1 below.

𝑝 (𝑎, 𝑏) 𝑝 (𝑎, 𝑏)

24 (5,11) 84 (19,25)

51 (11,20) 91 (19,32)

57 (13,16) 99 (17,28)

60 (11,19) 105 (23,38)

63 (13,20) 110 (19,41)

78 (17,29) 111 (25,34)

On the other hand, the sufficiency part of Conjecture 1.2 holds without the assumption

that 𝑝 is prime. In Sections 3 and 4, we will prove this in two ways.

2.3 Closures of a quiver and 𝑞-deformed rational numbers

By a quiver we mean a tuple 𝑄 = (𝑄0, 𝑄1, 𝑠, 𝑡) consisting of two sets 𝑄0, 𝑄1 and two maps

𝑠, 𝑡 ∶ 𝑄1 → 𝑄0. Each element of 𝑄0 (resp. 𝑄1) is called a vertex (resp. an arrow). For an

arrow 𝛼 ∈ 𝑄1, we call 𝑠(𝛼) (resp. 𝑡(𝛼)) the source (resp. the target) of 𝛼. We will commonly

write 𝑎
𝛼
,→ 𝑏 or 𝛼 ∶ 𝑎 → 𝑏 to indicate that an arrow 𝛼 has the source 𝑎 and the target 𝑏. A

quiver 𝑄 is finite if two sets 𝑄0 and 𝑄1 are finite sets. The opposite quiver of 𝑄, say 𝑄∨, is

defined by 𝑄∨ = (𝑄0, 𝑄1, 𝑡, 𝑠).
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Let 𝑄 be a finite quiver. A subset 𝐶 ⊂ 𝑄0 is a closure if there is no arrow 𝛼 ∈ 𝑄1 such

that 𝑠(𝛼) ∈ 𝐶 and 𝑡(𝛼) ∈ 𝑄0 ⧵ 𝐶. A closure 𝐶 is an 𝓁-closure if the number of elements of 𝐶

is 𝓁. The number of 𝓁-closures is denoted by 𝜌𝓁(𝑄). Then the polynomial

𝖼𝗅(𝑄) ∶=
𝑛∑

𝓁=0
𝜌𝓁(𝑄)𝑞𝓁 ∈ ℤ[𝑞],

where 𝑛 = |𝑄0|, is called the closure polynomial of 𝑄.

Obviously, the constant term and the coefficient of the leading term of 𝖼𝗅(𝑄) are 1,

including the extremal case 𝖼𝗅(∅) = 1. We remark that, for any 𝓁, the equation

𝜌𝓁(𝑄) = 𝜌𝑛−𝓁(𝑄∨) (2.13)

holds. For a polynomial 𝑓(𝑞) ∈ ℤ[𝑞], we define a polynomial 𝑓∨(𝑞) by

𝑓∨(𝑞) = 𝑞𝖽𝖾𝗀(𝑓)𝑓(𝑞−1),

which is called the reciprocal polynomial of 𝑓(𝑞). By (2.13), we have

𝖼𝗅(𝑄)∨ = 𝖼𝗅(𝑄∨). (2.14)

For a tuple of integers 𝐚 ∶= (𝑎1, 𝑎2, … , 𝑎𝑠) with 𝑎1, 𝑎𝑠 ≥ 0, 𝑎2, … , 𝑎𝑠−1 > 0, we set the

quiver

𝑄(𝐚) ∶= ◦ ←, ◦⋯◦ ←, ◦⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑎1 left arrows

,→ ◦⋯◦ ,→ ◦⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑎2 right arrows

←, ◦⋯◦ ←, ◦⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑎3 left arrows

,→ ⋯,

with the left-right distinction. We understand that if 𝑎1 = 0, then

𝑄(𝐚) ∶= ,→ ◦⋯◦ ,→ ◦⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑎2 right arrows

←, ◦⋯◦ ←, ◦⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑎3 left arrows

,→ ⋯.

Note that |𝑄(𝐚)0| = 𝑎1 + 𝑎2 +⋯+ 𝑎𝑠 + 1, and, for 𝐚 = (𝑎1, 𝑎2, … , 𝑎𝑠), the equation

𝖼𝗅(𝑄(0, 𝐚)) = 𝖼𝗅(𝑄(𝐚))∨ (2.15)

holds since 𝑄(0, 𝐚) ≃ 𝑄(𝐚)∨ as quivers. Here we have 𝖼𝗅(𝑄(0, 0)) = 𝖼𝗅(𝑄(0)) = 1 + 𝑞.
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Remark 2.7. We note that the closure polynomial 𝖼𝗅(𝑄(𝐚)) of a quiver 𝑄(𝐚) can be realized

with the rank polynomials of a finite fence poset, which is more common in combinatorics

(see [MSS21] and [KR23] for detail).

Lemma 2.8. For 𝐚 = (𝑎1, 𝑎2, … , 𝑎𝑠), we put 𝐚𝗉𝖺𝗅 ∶= (𝑎𝑠, 𝑎𝑠−1, … , 𝑎1). Then, there is an isomor-

phism of quivers

𝑄(𝐚𝗉𝖺𝗅) ≃
⎧

⎨
⎩

𝑄(𝐚) if 𝑠 is even,

𝑄(𝐚)∨ if 𝑠 is odd.

Therefore, we have

𝖼𝗅(𝑄(𝐚𝗉𝖺𝗅)) =
⎧

⎨
⎩

𝖼𝗅(𝑄(𝐚)) if 𝑠 is even,

𝖼𝗅(𝑄(𝐚))∨ if 𝑠 is odd.

Proof. First, we assume that 𝑠 is even. Then, the direction of the 𝑖-th arrow of 𝑄(𝐚) from

the left is the opposite of that of the 𝑖-th arrow of 𝑄(𝐚𝗉𝖺𝗅) from the right end. Thus, 𝑄(𝐚𝗉𝖺𝗅)

is the “𝜋-rotation”of 𝑄(𝐚), and hence 𝑄(𝐚) ≃ 𝑄(𝐚𝗉𝖺𝗅) as quivers. We leave the case 𝑛 is odd

to the reader as an easy exercise.

According to [MO20, Section 3], Morier-Genoud and Ovsienko gave a combinatorial

interpretation of the coefficients in ℛ𝛼(𝑞) and 𝒮𝛼(𝑞).

Let 𝛼 > 1 be a rational number, and write 𝛼 as the regular continued fraction 𝛼 =

[𝑎1, 𝑎2, … , 𝑎2𝑚]. Then, we set

𝑄ℛ
𝛼 ∶= 𝑄(𝑎1 − 1, 𝑎2, … , 𝑎2𝑚−1, 𝑎2𝑚 − 1),

𝑄𝒮
𝛼 ∶=

⎧

⎨
⎩

𝑄(0, 𝑎2 − 1, 𝑎3, … , 𝑎2𝑚−1, 𝑎2𝑚 − 1) if 𝑚 > 1,

𝑄(0, 𝑎2 − 2) if 𝑚 = 1.

Here, if 𝑎2 = 1 and 𝑚 > 1 (resp. 𝑎2 = 2 and 𝑚 = 1, 𝑎2 = 1 and 𝑚 = 1), we understand

that 𝑄𝒮
𝛼 = 𝑄(𝑎3, … , 𝑎2𝑚−1, 𝑎2𝑚 − 1) (resp. 𝑄𝒮

𝛼 = 𝑄(0), 𝑄𝒮
𝛼 = ∅). The quiver 𝑄𝒮

𝛼 is obtained by

deleting the first 𝑎1 arrows from 𝑄ℛ
𝛼 .

Remark 2.9. If 𝛼 ∉ ℤ and 𝛼 > 1, the above construction of 𝑄ℛ
𝛼 and 𝑄𝒮

𝛼 also works for the

expression as a regular continued fraction of odd length.
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Following the notation used in [MO20], we will use the symbols 𝜌𝓁(𝛼) and 𝜎𝓁(𝛼) to

denote the numbers of 𝓁-closures of 𝑄ℛ
𝛼 and 𝑄𝒮

𝛼, respectively.

Theorem 2.10 ([MO20, Theorem 4]). Let 𝛼 > 1 be an irreducible fraction. Then, the

following equations hold:

ℛ𝛼(𝑞) =
∑

𝓁≥0
𝜌𝓁(𝛼)𝑞𝓁

(
= 𝖼𝗅(𝑄ℛ

𝛼 )
)
, (2.16)

𝒮𝛼(𝑞) =
∑

𝓁≥0
𝜎𝓁(𝛼)𝑞𝓁

(
= 𝖼𝗅(𝑄𝒮

𝛼)
)
. (2.17)

2.4 Farey neighbors and Farey sums

In this subsection, we recall the definitions of Farey neighbors and Farey sums.

Two irreducible fractions 𝑥
𝑎
, 𝑦
𝑏

are said to be Farey neighbors if 𝑎𝑦 − 𝑏𝑥 = 1. Here we

regard ∞ = 1
0

as an irreducible fraction.

For two irreducible fractions 𝑥
𝑎
, 𝑦
𝑏
, the operation ♯ is defined as follows:

𝑥
𝑎♯
𝑦
𝑏
∶=

𝑥 + 𝑦
𝑎 + 𝑏

.

If 𝑥
𝑎
, 𝑦
𝑏

are Farey neighbors, then 𝑥
𝑎
♯𝑦
𝑏

is called the Farey sum of 𝑥
𝑎

and 𝑦
𝑏
. The Farey sum

of two irreducible fractions is also irreducible. Farey neighbors have the following

fundamental properties.

Lemma 2.11. The following assertions hold.

(1) Any non-negative rational number can be obtained from 0
1

and 1
0

applying ♯ in finitely

many times.

(2) For any positive rational number 𝛼 ∈ (0,∞), there uniquely exist Farey neighbors 𝑥
𝑎
, 𝑦
𝑏

such that 𝛼 = 𝑥
𝑎
♯𝑦
𝑏
. The pair (𝑥

𝑎
, 𝑦
𝑏
) is called the Farey parent of 𝛼, and the fraction 𝑥

𝑎

(resp. 𝑦
𝑏
) is called the left parent (resp. the right parent).

For proof of the above lemma, see [A13, Theorem 3.9] or [KW19(b), Lemma 3.5].
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Let 𝛼 and 𝛽 be two fractions with 𝛼, 𝛽 ≥ 1. If 𝛼♯𝛽 = [[𝑐1, … , 𝑐𝑙]], then the equation

[𝛼♯𝛽]𝑞 =
ℛ𝛼(𝑞) + 𝑞𝑐𝑙−1ℛ𝛽(𝑞)
𝒮𝛼(𝑞) + 𝑞𝑐𝑙−1𝒮𝛽(𝑞)

(2.18)

holds, see [MO20, Theorem 3].

3 A proof of the sufficiency of the conjecture

In this section, without the assumption that 𝑝 is a prime number, we will show that

𝑎𝑏 ≡ −1 (mod 𝑝) implies 𝒮 𝑎
𝑝
(𝑞) = 𝒮 𝑏

𝑝
(𝑞), that is, the sufficiency part of Conjecture 1.2 holds.

Recall that 𝒮𝛼+𝑛(𝑞) = 𝒮𝛼(𝑞) for all 𝛼 ∈ ℚ and 𝑛 ∈ ℤ.

In the rest of the paper, 𝑝 means a (not necessarily prime) integer with 𝑝 ≥ 2, unless

otherwise specified.

Lemma 3.1. Let 𝑎
𝑝
, 𝑏
𝑝

be irreducible fractions with 𝑎 ≡ −𝑏 (mod 𝑝). We may assume that
𝑎
𝑝
−
⌊
𝑎
𝑝

⌋
≤ 1

2
, and hence 𝑎

𝑝
= [𝑎1, 𝑎2, … , 𝑎𝑘] with 𝑎2 ≥ 2 as a regular continued fraction. Then

we have 𝑏
𝑝
= [𝑏1, 1, 𝑎2 − 1, 𝑎3, … , 𝑎𝑘], where 𝑏1 =

⌊
𝑏
𝑝

⌋
.

Proof. Since the assertion only depends on the decimal parts of 𝑎
𝑝

and 𝑏
𝑝

, we may assume

that 0 < 𝑎
𝑝
≤ 𝑏

𝑝
< 1. Then we have 𝑏 = 𝑝 − 𝑎,

𝑎
𝑝 =

1

𝑝

𝑎

=
1

𝑎2 +
𝑝 − 𝑎𝑎2

𝑎

and

𝑏
𝑝 =

𝑝 − 𝑎

𝑝 = 1

𝑝

𝑝 − 𝑎

=
1

1 +
𝑎

𝑝 − 𝑎

=
1

1 +
1

𝑝 − 𝑎

𝑎

=
1

1 +
1

(𝑎2 − 1) +
𝑝 − 𝑎𝑎2

𝑎

.

If 𝑘 > 2, we have 𝑝 − 𝑎𝑎2
𝑎 = [𝑎3, 𝑎4, … , 𝑎𝑘], and the assertion follows.
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Proposition 3.2. Let 𝑎
𝑝
, 𝑏
𝑝

be irreducible fractions with 𝑎 ≡ −𝑏 (mod 𝑝). Then we have

𝒮 𝑎
𝑝
(𝑞) = 𝒮∨𝑏

𝑝

(𝑞).

Proof. We may assume that 1 < 𝑎
𝑝
, 𝑏
𝑝
< 2, and 𝑎

𝑝
= [1, 𝑎2, … , 𝑎𝑘] with 𝑎2 ≥ 2. Then we have

𝑏
𝑝
= [1, 1, 𝑎2 − 1, 𝑎3, … , 𝑎𝑘] by Lemma 3.1. With the notation of the previous section, we

have

𝑄𝒮
𝑎
𝑝

= 𝑄(0, 𝑎2 − 1, 𝑎3, … , 𝑎𝑘 − 1) and 𝑄𝒮
𝑏
𝑝

= 𝑄(𝑎2 − 1, 𝑎3, … , 𝑎𝑘 − 1)

(by Remark 2.9, we do not have to care about the parity of the length of the regular

continued fraction). Hence we have 𝑄𝒮
𝑏
𝑝

= (𝑄𝒮
𝑎
𝑝

)∨ by (2.15), and

𝒮 𝑏
𝑝
(𝑞) = 𝖼𝗅(𝑄𝒮

𝑏
𝑝

) = 𝖼𝗅((𝑄𝒮
𝑎
𝑝

)∨) = 𝖼𝗅(𝑄𝒮
𝑎
𝑝

)∨ = 𝒮∨𝑎
𝑝

(𝑞)

by Theorem 2.10 and (2.15).

The following lemma is a variant of “Palindrome Theorem" (for example, see [KL02,

Theorem 4]) for continued fractions. We will give a direct proof here for the reader’s

convenience.

Lemma 3.3. Let 𝑎
𝑝
, 𝑏
𝑝

be irreducible fractions with 𝑎
𝑝
= [𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛] as a regular contin-

ued fraction. Set 𝑏1 ∶=
⌊
𝑏
𝑝

⌋
. Then 𝑏

𝑝
= [𝑏1, 𝑎𝑛, 𝑎𝑛−1, … , 𝑎2] if and only if 𝑎𝑏 ≡ (−1)𝑛 (mod 𝑝).

Proof. Clearly, it suffices to show the case 𝑎1 = 𝑏1 = 0. First, assume that 𝑏
𝑝
= [0, 𝑎𝑛, … , 𝑎2].

By Lemma 2.1, we have

⎛
⎜
⎝

𝑎 𝑘

𝑝 𝑙

⎞
⎟
⎠
=
⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠

⎛
⎜
⎝

𝑎2 1

1 0

⎞
⎟
⎠
⋯
⎛
⎜
⎝

𝑎𝑛 1

1 0

⎞
⎟
⎠

for some 𝑘, 𝑙 ∈ ℤ. Hence we have

⎛
⎜
⎝

𝑝 𝑙

𝑎 𝑘

⎞
⎟
⎠
=
⎛
⎜
⎝

𝑎2 1

1 0

⎞
⎟
⎠

⎛
⎜
⎝

𝑎3 1

1 0

⎞
⎟
⎠
⋯
⎛
⎜
⎝

𝑎𝑛 1

1 0

⎞
⎟
⎠
.

Taking the transpose of both sides, we get

⎛
⎜
⎝

𝑝 𝑎

𝑙 𝑘

⎞
⎟
⎠
=
⎛
⎜
⎝

𝑎𝑛 1

1 0

⎞
⎟
⎠

⎛
⎜
⎝

𝑎𝑛−1 1

1 0

⎞
⎟
⎠
⋯
⎛
⎜
⎝

𝑎2 1

1 0

⎞
⎟
⎠
.
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Hence we have
⎛
⎜
⎝

𝑙 𝑘

𝑝 𝑎

⎞
⎟
⎠
=
⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠

⎛
⎜
⎝

𝑎𝑛 1

1 0

⎞
⎟
⎠
⋯
⎛
⎜
⎝

𝑎2 1

1 0

⎞
⎟
⎠
, (3.1)

and it implies that 𝑙
𝑝
= [0, 𝑎𝑛, … , 𝑎2] =

𝑏
𝑝

, and hence 𝑙 = 𝑏. The determinant of the right

side of (3.1) is (−1)𝑛, so that of the left side is also. It implies that 𝑎𝑏 − 𝑝𝑘 = (−1)𝑛, and

hence 𝑎𝑏 ≡ (−1)𝑛 (mod 𝑝).

The converse implication follows from the above observation and the uniqueness of

the solution of 𝑎 ⋅ 𝑥 = ±1 in ℤ∕𝑝ℤ.

Proposition 3.4. Let 𝑎
𝑝
, 𝑏
𝑝

be irreducible fractions with 𝑎𝑏 ≡ 1 (mod 𝑝). Then we have

𝒮 𝑎
𝑝
(𝑞) = 𝒮∨𝑏

𝑝

(𝑞).

Proof. We may assume that 1 < 𝑎
𝑝
, 𝑏
𝑝
< 2. If 𝑎

𝑝
= [1, 𝑎2, … , 𝑎2𝑚], then 𝑏

𝑝
= [1, 𝑎2𝑚, … , 𝑎2] by

Lemma 3.3. Hence we have

𝑄𝒮
𝑏
𝑝

= 𝑄(𝑎2𝑚 − 1, 𝑎2𝑚−1, … , 𝑎2 − 1)∨ ≃ 𝑄(𝑎2 − 1, 𝑎3, … , 𝑎2𝑚 − 1) = (𝑄𝒮
𝑎
𝑝

)∨

by Lemma 2.8. So the assertion follows from Theorem 2.10 and (2.15).

The following implies the sufficiency of Conjecture 1.2.

Theorem 3.5. Let 𝑝 be a positive integer. For irreducible fractions 𝑎
𝑝
, 𝑏
𝑝

with 𝑎𝑏 ≡ −1

(mod 𝑝), we have 𝒮 𝑎
𝑝
(𝑞) = 𝒮 𝑏

𝑝
(𝑞).

Proof. The assertion follows from Propositions 3.2, 3.4 and the fact that 𝑓∨∨(𝑞) = 𝑓(𝑞) for

general 𝑓(𝑞) ∈ ℤ[𝑞].

We note that, for the numerator ℛ 𝑟
𝑠
(𝑞) for 𝑟

𝑠
> 1, a similar result holds. See Lemma 4.1

below.

Regarding 𝑄𝒮
𝛼 as a finite poset, Kantarcı Oǧuz and Ravichandran [KR23] intensely

studied 𝒮𝛼(𝑞) from a purely combinatorial point of view. Among other things, they showed

that 𝒮𝛼(𝑞) is always unimodal. Here we apply another result of their. A polynomial 𝑓(𝑞) is

said to be palindromic if 𝑓∨(𝑞) = 𝑓(𝑞).

Arnold Mathematical Journal, Vol.11(3), 2025 59

http://dx.doi.org/10.56994/ARMJ


T. Kogiso, K. Miyamoto, X. Ren, M. Wakui, K. Yanagawa

Theorem 3.6. For an irreducible fraction 𝑟
𝑠
, 𝒮 𝑟

𝑠
(𝑞) is palindromic if and only if 𝑟2 ≡ 1 (mod 𝑠).

Proof. Let 𝐛 = (𝑏1, … , 𝑏𝑘) be an integer sequence such that 𝑏1, 𝑏𝑘 ≥ 0, 𝑏2, … , 𝑏𝑘−1 > 0 and 𝑘 is

odd. [KR23, Theorem 1.3 (c)], which was first conjectured in [MSS21], states that 𝖼𝗅(𝑄(𝐛))

is palindromic if and only if 𝑏𝑖 = 𝑏𝑘+1−𝑖 for all 1 ≤ 𝑖 ≤ 𝑘.

Set 𝑟
𝑠
= [𝑎1, … , 𝑎2𝑚]. By the above mentioned result, the 𝑞-polynomial 𝒮 𝑟

𝑠
(𝑞) = 𝖼𝗅(𝑄(𝑎2 −

1, 𝑎3, … , 𝑎2𝑚 − 1)∨) is palindromic if and only if

𝑎𝑖 = 𝑎2𝑚+2−𝑖 for all 2 ≤ 𝑖 ≤ 2𝑚. (3.2)

By Lemma 3.3, the condition (3.2) holds if and only if 𝑎2 ≡ 1 (mod 𝑝).

Corollary 3.7. The following hold.

(1) For an irreducible fraction 𝑎
𝑝𝑛

such that 𝑝 is an odd prime, 𝒮 𝑎
𝑝𝑛
(𝑞) is palindromic, if

and only if 𝑎 ≡ ±1 (mod 𝑝𝑛), if and only if 𝒮 𝑎
𝑝𝑛
(𝑞) = [𝑝𝑛]𝑞 = 1 + 𝑞 +⋯+ 𝑞𝑝𝑛−1.

(2) For 𝑛 ≥ 2, 𝒮 𝑎
2𝑛
(𝑞) is palindromic if and only if 𝑎 ≡ ±1 (mod 2𝑛) or 𝑎 ≡ 2𝑛−1 ±1 (mod 2𝑛).

Proof. (1) The latter equivalence is clear, so we prove the former. By Theorem 3.6, it is

sufficient to show that 𝑎2 ≡ 1 (mod 𝑝𝑛) implies 𝑎 ≡ ±1 (mod 𝑝𝑛). If 𝑎2 ≡ 1 (mod 𝑝𝑛), then

𝑝𝑛 divides (𝑎 + 1)(𝑎 − 1). Since 𝑝 is an odd prime, 𝑝 does only divide one of 𝑎 + 1 and 𝑎 − 1.

In fact, if 𝑝 divides both 𝑎 + 1 and 𝑎 − 1, then 𝑝 divides 2, which is a contradiction. This

means that all 𝑛 copies of 𝑝 that appear in the prime decomposition of (𝑎 + 1)(𝑎 − 1) must

come from either 𝑎 + 1 or 𝑎 − 1. Thus, 𝑝𝑛 divides either 𝑎 + 1 or 𝑎 − 1, equivalently, 𝑎 ≡ ±1

(mod 𝑝𝑛).

(2) Since 4 cannot divide both 𝑎 + 1 and 𝑎 − 1 at the same time, an argument similar to

the above works.

Combining the above results with Chinese remainder theorem, for a general 𝑠, we

can easily detect all 𝑟 such that 𝒮 𝑟
𝑠

is palindromic (equivalently, 𝑟2 ≡ 1 (mod 𝑠)).

Corollary 3.8. For an irreducible fraction 𝑟
𝑠
> 1, ℛ 𝑟

𝑠
(𝑞) is palindromic if and only if 𝑠2 ≡ 1

(mod 𝑟).
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Proof. By (2.10), we have ℛ 𝑟
𝑠
(𝑞) = 𝒮 𝑟−𝑠

𝑟
(𝑞). Hence we have

ℛ 𝑟
𝑠
(𝑞) is palindromic ⇐⇒ 𝒮 𝑟−𝑠

𝑟
(𝑞) is palindromic

⇐⇒ (𝑟 − 𝑠)2 ≡ 1 (mod 𝑟)

⇐⇒ 𝑠2 ≡ 1 (mod 𝑟),

where the second equivalence follows from Corollary 3.6.

4 Another proof of the sufficiency of the conjecture

In [W22], the fourth author introduced the 𝑞-deformed integers derived from pairs of

positive and coprime integers. In this section, by using them we give the second proof of

the sufficiency of Conjecture 1.2. To do this we need the following interpretation of the

conjecture.

Lemma 4.1. Conjecture 1.2 is equivalent to the following statement.

(∗) Let 𝑝 be an odd prime integer. For two integers 𝑎, 𝑏 with 1 ≤ 𝑎 < 𝑏 < 𝑝, ℛ 𝑝
𝑎
(𝑞) = ℛ 𝑝

𝑏
(𝑞)

if and only if 𝑎𝑏 ≡ −1 (mod 𝑝).

Proof. This follows from Lemmas 2.4 and 2.6.

Definition 4.2 ([W22, Definition 4.3]). For a pair (𝑎, 𝑏) of positive and coprime integers

we define a polynomial (𝑎, 𝑏)𝑞 in 𝑞 with integer coefficients by

(𝑎, 𝑏)𝑞 ∶=
⎧

⎨
⎩

(𝑎 − 𝑟, 𝑟)𝑞 + 𝑞(𝑎, 𝑏 − 𝑎)𝑞 if 𝑎 < 𝑏,

(𝑎 − 𝑏, 𝑏)𝑞 + 𝑞⌈
𝑎
𝑏
⌉(𝑟, 𝑏 − 𝑟)𝑞 if 𝑎 > 𝑏,

(4.1)

where 𝑟 is the remainder when 𝑏 is divided by 𝑎 in case where 𝑎 < 𝑏, and when 𝑎 is

divided by 𝑏 in case where 𝑎 > 𝑏, and also (1, 𝑛)𝑞 = (𝑛, 1)𝑞 ∶= [1 + 𝑛]𝑞 for any non-negative

integer 𝑛.

The polynomial (𝑎, 𝑏)𝑞 is convenient to compute [𝛼♯𝛽]𝑞.
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Theorem 4.3 ([W22, Theorem 4.4]). If 𝛼 = 𝑥
𝑎
, 𝛽 = 𝑦

𝑏
≥ 1 are Farey neighbors, then

𝒮𝛼♯𝛽(𝑞) = (𝑎, 𝑏)𝑞, ℛ𝛼♯𝛽(𝑞) = (𝑥, 𝑦)𝑞.

Thus, we have

[𝛼♯𝛽]𝑞 =
(𝑥, 𝑦)𝑞
(𝑎, 𝑏)𝑞

.

Any rational number 𝛼 > 0 is associated with a link 𝐿(𝛼) in the 3-sphere 𝕊3 which is

given by the diagram 𝐷(𝛼) below, and such a link is called a rational link or two-bridge

link. If 𝛼 belongs to the open interval (0, 1), then the diagram 𝐷(𝛼) is given as in Figure 1

after the expression of 𝛼 = [0, 𝑎1, … , 𝑎𝑛] with odd 𝑛.

a an–

– an– a

Figure 1: the diagram 𝐷(𝛼) of rational link

where

a =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

a

if 𝑎 ≥ 0,

– a

if 𝑎 < 0.

If 𝛼 > 1, then 𝐷(𝛼) is defined by 𝐷(𝛼) ∶= 𝐷(𝛼−1), and if 𝛼 = 1, then 𝐷(𝛼) = . For a

negative rational number 𝛼, a rational link 𝐿(𝛼) and its diagram 𝐷(𝛼) are defined in the

same way as the positive case. Then we see that the link 𝐿(𝛼) is the mirror image of 𝐿(−𝛼).

However, for any 𝛼 ∈ ℚ, there is some 𝛽 ∈ ℚ ∩ (1,∞) such that 𝐿(𝛼) and 𝐿(𝛽) are isotopic.

See, for example, [KL02, Theorem 2]. In this sense, we may assume that 𝛼 > 1.

As a useful isotopy invariant for an oriented link 𝐿 in 𝕊3, the Jones polynomial 𝑉𝐿(𝑡)

[J85, Kau87], which is valued inℤ[𝑡±
1
2 ], is well-studied. Lee and Schiffler [LS19] introduced
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the following normalization 𝐽𝛼(𝑞) of the Jones polynomial 𝑉𝛼(𝑡) ∶= 𝑉𝐿(𝛼)(𝑡) of a rational

link 𝐿(𝛼):

𝐽𝛼(𝑞) ∶= ±𝑡−ℎ𝑉𝛼(𝑡)|𝑡=−𝑞−1 , (4.2)

where ±𝑡ℎ is the leading term of 𝑉𝛼(𝑡). This indicates the normalization such that the

constant term is 1 as a polynomial in 𝑞. We note that

𝐽1(𝑞) = 1, 𝐽 1
0
(𝑞) = 𝑞.

By Lee and Schiffler [LS19], it is known that the Jones polynomial 𝑉𝛼(𝑡) can be recov-

ered from 𝐽𝛼(𝑞). By [MO20, Proposition A.1] and the equation (2.18), we see that, for a

rational number 𝛼 > 1, the normalized Jones polynomial 𝐽𝛼(𝑞) can be computed by

𝐽𝛼(𝑞) = 𝑞ℛ𝛼(𝑞) + (1 − 𝑞)𝒮𝛼(𝑞). (4.3)

Using this formula, the fourth author showed the following.

Theorem 4.4 ([W22, Theorem 5.3]). Let (𝑎, 𝑝) be a pair of coprime integers with 1 ≤ 𝑎 < 𝑝.

Then

(𝑎, 𝑝)𝑞 = 𝐽 𝑝
𝑎
(𝑞) + 𝑞(𝑎 − 𝑟, 𝑟)𝑞, (4.4)

where 𝑟 is the remainder when 𝑝 is divided by 𝑎.

The equation (4.4) corresponds to the equation 𝐽 𝑟
𝑠
(𝑞) = ℛ′ − 𝑞𝒮′ in [MO20, p.45] under

the setting 𝑟
𝑠
= 𝑝

𝑎
. In fact, since 𝒮′ = 𝒮 𝑝

𝑎
(𝑞) and ℛ′ = 𝑞ℛ 𝑝

𝑎
(𝑞) + 𝒮 𝑝

𝑎
(𝑞) as shown in [MO20,

p.45], we have 𝒮′ = (𝑎 − 𝑟, 𝑟)𝑞 by (4.6) below and ℛ′ = 𝑞(𝑎, 𝑝 − 𝑎)𝑞 + (𝑎 − 𝑟, 𝑟)𝑞 = (𝑎, 𝑝)𝑞 by

(4.1) and (4.5) below.

As an application of Theorem 4.4 we have:

Theorem 4.5 ([W22, Theorem 5.4]). Let (𝑎, 𝑝) be a pair of coprime integers with 1 ≤ 𝑎 ≤ 𝑝,

and 𝑟 the remainder when 𝑝 is divided by 𝑎. Then, the following equations hold.

ℛ 𝑝
𝑎
(𝑞) = (𝑎, 𝑝 − 𝑎)𝑞, (4.5)

𝒮 𝑝
𝑎
(𝑞) = (𝑎 − 𝑟, 𝑟)𝑞. (4.6)
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By using the above theorem, one can give another proof of Theorem 3.5, that is, the

sufficiency of Conjecture 1.2.

Another proof of Theorem 3.5. Since 𝑎𝑏 ≡ −1 (mod 𝑝), there is some𝑚 ∈ ℤwith𝑚𝑝−𝑎𝑏 =

1. Since 1 ≤ 𝑎 ≤ 𝑏 < 𝑝, we have 0 ≤ 𝑚 < 𝑎. Thus,
( 𝑎
𝑚
, 𝑝−𝑎
𝑏−𝑚

)
is the Farey parents of 𝑝

𝑏
. By

using Theorem 4.3, we have

ℛ 𝑝
𝑏
(𝑞) = (𝑎, 𝑝 − 𝑎)𝑞.

(See also the proof of [KW22, Theorem 3.2].) Combining this equation with (4.5), we get

ℛ 𝑝
𝑎
(𝑞) = ℛ 𝑝

𝑏
(𝑞).

Remark 4.6. By Corollary 3.8 and (4.5), (𝑎, 𝑏)𝑞 is palindromic if and only if 𝑎2 ≡ 1 (mod 𝑎+𝑏).

Combining this observation with Theorem 4.3, one can show the following. For a positive

irreducible fractions 𝑐
𝑧

whose Farey parent is (𝑎
𝑥
, 𝑏
𝑦
), 𝒮 𝑐

𝑧
(𝑞) is palindromic, if and only of

𝑥2 ≡ 1 (mod 𝑥 + 𝑦) (equivalently, 𝑦2 ≡ 1 (mod 𝑥 + 𝑦)).

5 Three operations on the positive rational numbers and 𝑞-

deformed rational numbers

In the study of Conway-Coxeter friezes of zigzag-type developed by the first and the

fourth authors [KW19(b), KW19(a)] crucial three operators 𝔦, 𝔯, 𝔦𝔯 on the positive rational

numbers are introduced. In this section we examine effect of the operators 𝔦, 𝔯, 𝔦𝔯 on

ℛ𝛼(𝑞), 𝒮𝛼(𝑞).

Let 𝛼 = 𝑧
𝑐
> 0 be an irreducible fraction. In the case where 𝛼 ∈ (0, 1), irreducible

fractions 𝔦(𝛼), 𝔯(𝛼), (𝔦𝔯)(𝛼) in the interval (0, 1) are defined as follows [KW19(a)]:

𝔦(𝛼) ∶= 𝑐 − 𝑧
𝑐 (= 1 − 𝛼), 𝔯(𝛼) ∶= 𝑎

𝑐 , 𝔦𝔯(𝛼) ∶= 𝑏
𝑐 , (5.1)

where (𝑥
𝑎
, 𝑦
𝑏
) is the Farey parent of 𝛼. Note that

𝑎𝑧 ≡ 1 (mod 𝑐) and 𝑏 ≡ −𝑎 (mod 𝑐). (5.2)
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In fact, since 𝑧 = 𝑥 + 𝑦, 𝑐 = 𝑎 + 𝑏 and 𝑎𝑦 − 𝑏𝑥 = 1 now, we have

𝑎𝑧 = 𝑎(𝑥 + 𝑦) = 𝑎𝑥 + 𝑎𝑦 = 𝑎𝑥 + 1 + 𝑏𝑥 = 1 + (𝑎 + 𝑏)𝑥 = 1 + 𝑐𝑥.

Hence as operations on ℚ ∩ (0, 1), we have 𝔦2 = 𝔯2 = id and 𝔦𝔯 = 𝔯𝔦. By Theorem 3.6, for

𝛼 ∈ ℚ ∩ (0, 1), 𝔯(𝛼) = 𝛼 if and only if 𝒮𝛼(𝑞) is palindromic.

In the case where 𝛼 > 1, 𝔦(𝛼), 𝔯(𝛼), and 𝔦𝔯(𝛼) are defined as follows:

𝔦(𝛼) ∶=
(
𝔦(𝛼−1)

)−1
, 𝔯(𝛼) ∶=

(
𝔯(𝛼−1)

)−1
, (𝔦𝔯)(𝛼) ∶=

(
(𝔦𝔯)(𝛼−1)

)−1
. (5.3)

Here we also have 𝔦2 = 𝔯2 = id and 𝔦𝔯 = 𝔯𝔦. Moreover, 𝔯(𝛼) = 𝛼 if and only if ℛ𝛼(𝑞) is

palindromic.

By Lemmas 3.1 and 3.3, and the equation (5.2), one can show that for a positive rational

number 𝛼 = [0, 𝑎2, … , 𝑎𝑛],

(𝔦𝔯)(𝛼) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

[0, 𝑎𝑛, … , 𝑎3, 𝑎2] if 𝑛 is odd,

[0, 1, 𝑎𝑛 − 1, 𝑎𝑛−1, … , 𝑎3, 𝑎2] if 𝑛 is even and 𝑎𝑛 ≥ 2,

[0, 𝑎𝑛−1 + 1, 𝑎𝑛−2, … , 𝑎3, 𝑎2] if 𝑛 is even and 𝑎𝑛 = 1,

(5.4)

𝔦(𝛼) =
⎧

⎨
⎩

[0, 1, 𝑎2 − 1, 𝑎3, … , 𝑎𝑛] if 𝑎2 ≥ 2,

[0, 𝑎3 + 1, 𝑎4, … , 𝑎𝑛] if 𝑎2 = 1,
(5.5)

𝔯(𝛼) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

[0, 1, 𝑎𝑛 − 1, 𝑎𝑛−1, … , 𝑎3, 𝑎2] if 𝑛 is odd and 𝑎𝑛 ≥ 2,

[0, 𝑎𝑛−1 + 1, 𝑎𝑛−2, … , 𝑎3, 𝑎2] if 𝑛 is odd and 𝑎𝑛 = 1,

[0, 𝑎𝑛, … , 𝑎3, 𝑎2] if 𝑛 is even.

(5.6)

Lemma 5.1. Let 𝛼 ∈ ℚ ∩ (0,∞) whose expression as a regular continued fraction is 𝛼 =
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[𝑎1, 𝑎2, … , 𝑎𝑛]. If 𝑛 is odd, then

𝛽 =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

[𝑎1, … , 𝑎𝑛−1, 𝑎𝑛 − 1] if 𝑎𝑛 ≥ 2,

[𝑎1, … , 𝑎𝑛−2] if 𝑎𝑛 = 1 and 𝑛 ≥ 3,

[0] if 𝑎1 = 1 and 𝑛 = 1,

𝛾 =
⎧

⎨
⎩

[𝑎1, … , 𝑎𝑛−1] if 𝑛 ≥ 3,

[ ] if 𝑛 = 1

are Farey neighbors and 𝛼 = 𝛽♯𝛾, where [ ] expresses ∞ = 1
0
. If 𝑛 is even, then

𝛽 = [𝑎1, … , 𝑎𝑛−1]

𝛾 =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

[𝑎1, … , 𝑎𝑛−1, 𝑎𝑛 − 1] if 𝑎𝑛 ≥ 2,

[𝑎1, … , 𝑎𝑛−2] if 𝑎𝑛 = 1 and 𝑛 ≥ 4,

[ ] if 𝑎2 = 1 and 𝑛 = 2

are Farey neighbors and 𝛼 = 𝛽♯𝛾.

Proof. Note that, as a regular continued fraction, each rational number has expressions

in both odd and even lengths. It is easy to check that two definitions (the odd case and

the even case) coincide.

We will prove the equation 𝛼 = 𝛽♯𝛾 by induction on 𝑛. The cases 𝑛 = 0 and 𝑛 = 1

are clear. Now, we suppose that the statement holds for 𝑛 − 1. We only show the case

𝑛 ≥ 3 is odd and 𝑎𝑛 ≥ 2; the proofs in other cases are similar. Not that we have 𝛽 =

[𝑎1, … , 𝑎𝑛−1, 𝑎𝑛 − 1] and 𝛾 = [𝑎1, … , 𝑎𝑛−1] now. Set [𝑎2, … , 𝑎𝑛−1] =
𝑟
𝑠
, [𝑎2, … , 𝑎𝑛−1, 𝑎𝑛 − 1] = 𝑟′

𝑠′
.

By induction hypothesis, ( 𝑟
𝑠
, 𝑟

′

𝑠′
) is the Farey parents of 𝑟+𝑟′

𝑠+𝑠′
= [𝑎2, 𝑎3, … , 𝑎𝑛]. Since

𝛽 = 𝑟′𝑎1+𝑠′

𝑟′
, 𝛾 = 𝑟𝑎1+𝑠

𝑟
and 𝑠𝑟′ − 𝑟𝑠′ = 1, 𝛽 and 𝛾 are Farey neighbors. Moreover, it follows

from induction hypothesis that we have

𝛽♯𝛾 =
𝑎1(𝑟 + 𝑟′) + 𝑠 + 𝑠′

𝑟 + 𝑟′ = 𝑎1 +
1

𝑟 + 𝑟′

𝑠 + 𝑠′

= 𝑎1 +
1

[𝑎2, … , 𝑎𝑛]
= [𝑎1, 𝑎2, … , 𝑎𝑛] = 𝛼.
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For a quiver 𝑄 of type 𝐴, let denote by 𝑄𝗋𝗈𝗍 the quiver obtained from 𝑄 by 𝜋-rotation.

Since 𝑄 ≃ 𝑄𝗋𝗈𝗍 as quivers, their closure polynomials are same;

𝖼𝗅(𝑄) = 𝖼𝗅(𝑄𝗋𝗈𝗍). (5.7)

For 𝛼 ∈ ℚ ∩ (1,∞), the equations (5.4), (5.5) and (5.6) imply that

𝑄ℛ
𝔦(𝛼) = (𝑄ℛ

𝛼 )∨, (5.8)

𝑄ℛ
(𝔦𝔯)(𝛼) = (𝑄ℛ

𝛼 )𝗋𝗈𝗍, (5.9)

𝑄ℛ
𝔯(𝛼) = (𝑄ℛ

𝛼 )𝗋𝗈𝗍∨ = (𝑄ℛ
𝛼 )∨𝗋𝗈𝗍. (5.10)

Except for the denominator of 𝔦(𝛼), the denominator and numerator polynomials of

𝑞-deformations of 𝔦(𝛼), 𝔯(𝛼), (𝔦𝔯)(𝛼) are computed from that of 𝛼 and its Farey parent as

follows.

Theorem 5.2. Let 𝛼 ∈ ℚ ∩ (1,∞) and (𝛽, 𝛾) be its parents. Then, the following hold.

(1) ℛ𝔦(𝛼)(𝑞) = ℛ𝔯(𝛼)(𝑞) = ℛ∨
𝛼(𝑞) and ℛ(𝔦𝔯)(𝛼)(𝑞) = ℛ𝛼(𝑞).

(2) 𝒮(𝔦𝔯)(𝛼)(𝑞) = ℛ𝛽(𝑞), and 𝒮𝔯(𝛼)(𝑞) = ℛ∨
𝛾 (𝑞).

Proof. (1) By the equations (2.14) and (5.7), these follow from (5.8), (5.9), and (5.10).

(2) We write 𝛼 as 𝛼 = [𝑎1, 𝑎2, … , 𝑎2𝑚]. Then, it follows from Lemma 5.1 that 𝛽 =

[𝑎1, … , 𝑎2𝑚−1]. Since 𝛼−1 = [0, 𝑎1, … , 𝑎2𝑚] ∈ ℚ ∩ (0, 1), we have (𝔦𝔯)(𝛼−1) = [0, 𝑎2𝑚, … , 𝑎1]

by (5.4). Thus, (𝔦𝔯)(𝛼) = [𝑎2𝑚, … , 𝑎1]. Hence, Theorem 2.10 and (5.7) imply that

𝒮(𝔦𝔯)(𝛼)(𝑞) = 𝖼𝗅(𝑄(0, 𝑎2𝑚−1 − 1, 𝑎2𝑚−2, … , 𝑎2, 𝑎1 − 1))

= 𝖼𝗅(𝑄(0, 𝑎2𝑚−1 − 1, 𝑎2𝑚−2, … , 𝑎2, 𝑎1 − 1)𝗋𝗈𝗍)

= 𝖼𝗅(𝑄(𝑎1 − 1, 𝑎2, … , 𝑎2𝑚−2, 𝑎2𝑚−1 − 1))

= ℛ𝛽(𝑞).
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Finally, we consider 𝒮𝔯(𝛼)(𝑞). Suppose that 𝑎2𝑚 > 1. In this case, it follows from Lemma

5.1 that 𝛾 = [𝑎1, … , 𝑎2𝑚−1, 𝑎2𝑚 − 1]. By (5.6), 𝔯(𝛼) = [1, 𝑎2𝑚 − 1, 𝑎2𝑚−1, … , 𝑎1]. Thus, we have

𝒮𝔯(𝛼)(𝑞) = 𝖼𝗅(𝑄(𝑎2𝑚 − 2, 𝑎2𝑚−1, … , 𝑎2, 𝑎1 − 1)∨)

= 𝖼𝗅(𝑄(𝑎2𝑚 − 2, 𝑎2𝑚−1, … , 𝑎2, 𝑎1 − 1))∨

= 𝖼𝗅(𝑄(𝑎2𝑚 − 2, 𝑎2𝑚−1, … , 𝑎2, 𝑎1 − 1)𝗋𝗈𝗍)∨

= 𝖼𝗅(𝑄(𝑎1 − 1, 𝑎2, … , 𝑎2𝑚−1, 𝑎2𝑚 − 2))∨

= ℛ∨
𝛾 (𝑞).

In the case where 𝑎2𝑚 = 1, by the same argument the same equation is derived.

For a rational number 𝛼 with 0 < 𝛼 < 1, the 𝑞-deformations of 𝔦(𝛼), 𝔯(𝛼) and (𝔦𝔯)(𝛼)

behave as follows.

Proposition 5.3. For a rational number 𝛼 ∈ ℚ ∩ (0, 1), we have the followings.

(1) 𝒮𝔯(𝛼)(𝑞) = 𝒮∨𝛼(𝑞) = 𝒮𝔦(𝛼)(𝑞) = ℛ𝛼−1(𝑞).

(2) ℛ𝔦(𝛼)(𝑞) = ℛ𝛼−1(𝑞) − 𝒮𝛼−1(𝑞), ℛ𝑟(𝛼)(𝑞) = ℛ𝛼−1(𝑞) − ℛ𝛾−1(𝑞), where (𝛽, 𝛾) is the parent of 𝛼.

Proof. (1) The first (resp. second) equality follows from (5.1), (5.2), and Proposition 3.4

(resp. Proposition 3.2). To see the third equality, express 𝔦(𝛼) = 𝑎
𝑥

as an irreducible

fraction. Then we have 𝛼 = 𝑥−𝑎
𝑥

and 𝛼−1 = 𝑥
𝑥−𝑎

. So the equality follows from (2.10).

(2) The first equation immediately follows from (2.9). Since 𝔦(𝔦𝔯(𝛼)) = 𝔯(𝛼) and

(𝔦𝔯(𝛼))−1 = 𝔦𝔯(𝛼−1), replacing 𝛼 by 𝔦𝔯(𝛼), the first equation yields

ℛ𝔯(𝛼)(𝑞) = ℛ(𝔦𝔯)(𝛼−1)(𝑞) − 𝒮(𝔦𝔯)(𝛼−1)(𝑞).

Applying Theorem 5.2, we have ℛ𝔯(𝛼)(𝑞) = ℛ𝛼−1(𝑞) − ℛ𝛾−1(𝑞).

As an application of Proposition 3.2 we have:

Theorem 5.4. Let 𝛼 ∈ ℚ ∩ (1,∞), and express it as a regular continued fraction 𝛼 =

[𝑎1, 𝑎2, … , 𝑎𝑛].
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(1) If 𝑎1 = 1, then

𝒮𝔦(𝛼)(𝑞) = 𝒮∨(𝑎2+1)(𝛼−1)+𝛼−2
𝛼−1

(𝑞).

(2) If 𝑎1 ≥ 2, then

𝒮𝔦(𝛼)(𝑞) = 𝒮∨𝑎1(𝛼−1)+𝛼−2
𝛼−1

(𝑞).

Proof. Set 𝛼 = 𝑥
𝑎

with 1 ≤ 𝑎 < 𝑥. Then, 𝒮𝔦(𝛼)(𝑞) = 𝒮 𝑥
𝑥−𝑎
(𝑞), and hence by Proposition 3.2

𝒮 𝑥
𝑥−𝑎
(𝑞) = 𝒮∨𝑥′

𝑥−𝑎

(𝑞) (5.11)

for 𝑥′ ∈ ℤ such that 𝑥′ ≡ −𝑥 (mod 𝑥 − 𝑎) and
⌊ 𝑥
𝑥−𝑎

⌋
=
⌊ 𝑥′

𝑥−𝑎

⌋
.

(1) Since 𝑎1 = 1, we have 𝑎
𝑥−𝑎

= [𝑎2, … , 𝑎𝑛], and 0 ≤ 𝑎 − 𝑎2(𝑥 − 𝑎) < 𝑥 − 𝑎. As 𝑥′ one can

take 𝑥′ ∶= −𝑥 + (𝑎2 + 3)(𝑥 − 𝑎). Thus by (5.11) we have

𝒮 𝑥
𝑥−𝑎
(𝑞) = 𝒮∨−𝑥+(𝑎2+3)(𝑥−𝑎)

𝑥−𝑎

(𝑞)

= 𝒮∨−𝛼+(𝑎2+3)(𝛼−1)
𝛼−1

(𝑞)

= 𝒮∨(𝑎2+1)(𝛼−1)+𝛼−2
𝛼−1

(𝑞).

(2) Since 𝑎1 ≥ 2, we have 𝑥
𝑎
− 𝑎1 = [0, 𝑎2, … , 𝑎𝑛] and 0 ≤ 𝑥 − 𝑎𝑎1 < 𝑎. In this case one can

take 𝑥′ ∶= −𝑥 + (𝑎1 + 2)(𝑥 − 𝑎). Then, by the same argument of the proof of Part (1), the

assertion is derived.

6 A formula for computing closure polynomials of type 𝐴

For an irreducible fraction 𝛼 > 1, the denominator and numerator polynomials of [𝛼]𝑞
are given by closure polynomials of some quivers of type 𝐴 (see Theorem 2.10). On the

other hand, from a representation theoretical viewpoint, the closure polynomial of a

type 𝐴 quiver 𝑄 counts subrepresentations of “the full interval representation" of 𝑄 in

which a field 𝗄 corresponds to each vertex and the identity map corresponds to each

arrow. In this section, we give an expression to calculate 𝖼𝗅(𝑄) that explicitly gives the
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number of subrepresentations of the full interval representation.

Let 𝑄 be a quiver of type 𝐴, that is, the underlying graph of 𝑄 is 𝐴𝑛 = 1−2−3−⋯−𝑛. A

representation of 𝑄 over a field 𝗄 is a system 𝑀 = (𝑀𝑎, 𝜑𝛼)𝑎∈𝑄0,𝛼∈𝑄1 (𝑀 = (𝑀𝑎, 𝜑𝛼) for short)

consisting of 𝗄-vector spaces 𝑀𝑎 (𝑎 ∈ 𝑄0), and 𝗄-linear maps 𝜑𝛼 ∶ 𝑀𝑠(𝛼) → 𝑀𝑡(𝛼) (𝛼 ∈ 𝑄1).

The dimension of 𝑀 is the sum of 𝗄-dimensions of 𝑀𝑎. A representation 𝑀′ = (𝑀′
𝑎, 𝜑′𝛼)

is said to be a subrepresentation of 𝑀 if 𝑀′
𝑎 is a subspace of 𝑀𝑎, and 𝜑′𝛼 = 𝜑𝛼|𝑀′

𝑎
. For two

representations 𝑀 = (𝑀𝑎, 𝜑𝛼) and 𝑁 = (𝑁𝑎, 𝜓𝛼), a morphism of representations 𝑓 ∶ 𝑀 → 𝑁

is a family 𝑓 = (𝑓𝑎)𝑎∈𝑄0 of 𝗄-linear maps 𝑓𝑎 ∶ 𝑀𝑎 → 𝑁𝑎 such that 𝜓𝛼𝑓𝑠(𝛼) = 𝑓𝑡(𝛼)𝜑𝛼 for any

arrow 𝛼.

The category of finite dimensional representations of 𝑄 is denoted by 𝗋𝖾𝗉(𝑄). It is

well-known that there is an 𝗄-linear equivalence between 𝗋𝖾𝗉(𝑄) and the category of

finitely generated 𝗄𝑄-modules, where 𝗄𝑄 is the path algebra of 𝑄. For a vertex 𝑖 ∈ 𝑄0,

we denote by 𝑆(𝑖) the corresponding simple 𝗄𝑄-module. For a 𝗄𝑄-module 𝑀, we also

denote by 𝗋𝖺𝖽(𝑀), 𝗍𝗈𝗉(𝑀), and 𝗌𝗈𝖼(𝑀) the Jacobson radical, the top, and the socle of 𝑀,

respectively. The support of 𝑀 is the set of composition factors, which is denoted by

𝗌𝗎𝗉𝗉(𝑀). In this subsection, any objects of 𝗋𝖾𝗉(𝑄) are freely regarded as objects of 𝗆𝗈𝖽 𝗄𝑄.

For representations of quivers, see [ASS06, Chapters II and III] for more details.

By the Gabriel theorem (for example, see [ASS06, Chapter VII, Theorem 5.10]), there is

one-to-one corresponding between indecomposable objects of 𝗋𝖾𝗉(𝑄) and positive roots of

𝐴𝑛, that is, pairs (𝑖, 𝑗) with 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. In this correspondence, each pair (𝑖, 𝑗) is assigned

with the interval representation 𝕀[𝑖, 𝑗] = (𝑀𝑎, 𝜑𝛼), where

𝑀𝑎 =
⎧

⎨
⎩

𝗄 if 𝑖 ≤ 𝑎 ≤ 𝑗,

{0} otherwise,
𝜑𝛼 =

⎧

⎨
⎩

1 if 𝑖 ≤ 𝑠(𝛼) and 𝑡(𝛼) ≤ 𝑗,

0 otherwise.

Following this notation, 𝕀[1, 𝑛] is called the full interval representation of𝑄. Then, it follows

from the definition of the closure polynomial that the coefficient of 𝑞𝓁 of 𝖼𝗅(𝑄) is equal to

the number of 𝓁-dimensional subrepresentations of 𝕀[1, 𝑛].
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Throughout this section, we fix a type𝐴 quiver𝑄 = 𝑄(𝐚) for some tuple 𝐚 = (𝑎1, 𝑎2, … , 𝑎𝑠) ∈

ℤ𝑠
≥0, which has 𝑛 vertices, and denote by 𝕀(𝐚) the full representation of 𝑄(𝐚). It is clear

that 𝜌1(𝑄(𝐚)) = 𝖽𝗂𝗆𝗄 𝗌𝗈𝖼(𝕀(𝐚)), which equals to the number of sinks of 𝑄(𝐚). Note that the

Jordan-Hölder theorem implies that any coefficients of 𝖼𝗅(𝑄(𝐚)) are greater than or equal

to 1. This yields that, for any irreducible fraction 𝛼 > 1, any coefficients of the polynomials

ℛ𝛼(𝑞) and 𝒮𝛼(𝑞) are greater than 1. We also remark that the top and the socle of 𝕀(𝐚) are

given by

𝗍𝗈𝗉(𝕀(𝐚)) =
⨁

𝑘≥1
𝑆(1 + 𝑎1 + 𝑎2 +⋯+ 𝑎2𝑘−1)

𝗌𝗈𝖼(𝕀(𝐚))) =

⎧
⎪

⎨
⎪
⎩

𝑆(1) ⊕
⨁

𝑘≥1
𝑆(1 + 𝑎1 + 𝑎2 +⋯+ 𝑎2𝑘) if 𝑎1 ≠ 0,

⨁

𝑘≥1
𝑆(1 + 𝑎1 + 𝑎2 +⋯+ 𝑎2𝑘) if 𝑎1 = 0.

Now, we choose 1 ≤ 𝑘1 < 𝑘2 < ⋯ < 𝑘𝑡 and 1 ≤ 𝓁1 < 𝓁2 < ⋯ < 𝓁𝑡′ to be

𝗍𝗈𝗉(𝕀(𝐚)) = 𝑆(𝑘1) ⊕⋯⊕ 𝑆(𝑘𝑡),

𝗌𝗈𝖼(𝕀(𝐚)) = 𝑆(𝓁1) ⊕⋯⊕ 𝑆(𝓁𝑡′).

Here, we put

𝒯𝐚 ∶= {(𝑘𝑖1 , … , 𝑘𝑖𝑠) ∈ ℤ𝑠 ∣ 1 ≤ 𝑖1 < ⋯ < 𝑖𝑠 ≤ 𝑡, 𝑠 ∈ ℕ}.

A subquiver of 𝑄(𝐚) of the form

◦ ,→ ◦⋯◦ ,→ ◦⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑝1 arrows

←, ◦⋯◦ ←, ◦⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑝2 arrows

is called a (𝑝1, 𝑝2)-valley. For a (𝑝1, 𝑝2)-valley, we define a polynomial 𝗏𝖺𝗅𝑞(𝑝1, 𝑝2) by

𝗏𝖺𝗅𝑞(𝑝1, 𝑝2) ∶= 𝖼𝗅(𝑄(0, 𝑝1, 𝑝2)).

Observe that the equation 𝗏𝖺𝗅𝑞(𝑝1, 𝑝2) = 𝗏𝖺𝗅𝑞(𝑝2, 𝑝1) holds by (5.7) and this can be calculated

through the following.
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Lemma 6.1. For a (𝑝1, 𝑝2)-valley with 𝑝1 ≥ 𝑝2, we have

𝗏𝖺𝗅𝑞(𝑝1, 𝑝2) = 1 +
𝑝2+1∑

𝑘=1
𝑘𝑞𝑘 + (𝑝2 + 1)

𝑝1+1∑

𝑘=𝑝2+2
𝑞𝑘 +

𝑝1+𝑝2+1∑

𝑘=𝑝1+2
(𝑝1 + 𝑝2 + 2 − 𝑘)𝑞𝑘

Proof. This lemma follows from direct computation.

Now, we define a sequence of pairs of integers as follows:

(i) Compute 𝐚 − 𝟏 ∶=
⎧

⎨
⎩

(𝑎1 − 1, 𝑎2 − 1,… , 𝑎𝑠 − 1) if 𝑎1 ≠ 0,

(𝑎2 − 1, 𝑎3 − 1… , 𝑎𝑠 − 1) if 𝑎1 = 0.

(ii) We put

(𝑏1, 𝑏2, … , 𝑏2𝑚) ∶=

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

(0, 𝐚 − 𝟏, 0) if 𝑎1 ≠ 0 and 𝑠 is even,

(0, 𝐚 − 𝟏) if 𝑎1 ≠ 0 and 𝑠 is odd,

(𝐚 − 𝟏, 0) if 𝑎1 = 0 and 𝑠 is even,

(𝐚 − 𝟏) if 𝑎1 = 0 and 𝑠 is odd.

(iii) We set 𝒥𝐚 ∶= {(𝑏1, 𝑏2), (𝑏3, 𝑏4), … , (𝑏2𝑚−1, 𝑏2𝑚)}.

Proposition 6.2. The number of 𝓁-dimensional subrepresentations of 𝗋𝖺𝖽(𝕀(𝐚)) coincides

with the coefficient of 𝑞𝓁 of

𝗏𝖺𝗅𝑞(𝑏1, 𝑏2) ⋅ 𝗏𝖺𝗅𝑞(𝑏3, 𝑏4)⋯𝗏𝖺𝗅𝑞(𝑏2𝑚−1, 𝑏2𝑚).

Proof. We show the case that 𝑎1 > 0 and 𝑠 is even: the proof of other cases are similar. In

this case, 𝑚 = 𝑡 + 1 and the quiver 𝑄(𝐚) is of the form:

1 ← ◦⋯◦ ← ◦⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑏2 arrows

← 𝑘1 → ◦ → ◦⋯◦ → ◦⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑏3 arrows

← ◦⋯◦ ← ◦⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑏4 arrows

← 𝑘2

→ ◦ → ◦⋯◦ → ◦⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑏5 arrows

← ◦⋯◦ ← ◦⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑏6 arrows

← 𝑘3 →⋯← 𝑘𝑡 → ◦ → ◦⋯◦ → 𝑛⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑏2𝑚−1 arrows

.

This yields that 𝗋𝖺𝖽(𝕀(𝐚)) is decomposed as

𝗋𝖺𝖽(𝕀(𝐚))) = 𝕀[1, 𝑘1 − 1] ⊕ 𝕀[𝑘1 + 1, 𝑘2 − 1] ⊕⋯⊕ 𝕀[𝑘𝑡 + 1, 𝑘𝑡 − 1] ⊕ 𝕀[𝑘𝑡 + 1, 𝑛].

Arnold Mathematical Journal, Vol.11(3), 2025 72

http://dx.doi.org/10.56994/ARMJ


Arithmetic on 𝑞-deformed rational numbers

Thus, each subrepresentation 𝑁 ⊂ 𝗋𝖺𝖽(𝕀(𝐚)) is the direct sum of subrepresentations 𝑁1 ⊂

𝕀[1, 𝑘1 − 1], 𝑁𝑖 ⊂ 𝕀[𝑘𝑖 + 1, 𝑘𝑖+1 − 1] (𝑖 = 1, … , 𝑡 − 1), and 𝑁𝑡 ⊂ 𝕀[𝑘𝑡 + 1, 𝑛]. Since the numbers of

subrepresentations of 𝕀[1, 𝑘1 − 1], 𝕀[𝑘𝑖 + 1, 𝑘𝑖+1 − 1] (𝑖 = 1, … , 𝑡 − 1), and 𝕀[𝑘𝑡 + 1, 𝑛] are equal

to 𝗏𝖺𝗅𝑞(𝑏1, 𝑏2), 𝗏𝖺𝗅𝑞(𝑏2𝑖+1, 𝑏2𝑖+2) (𝑖 = 1, … , 𝑡 − 1), and 𝗏𝖺𝗅𝑞(𝑏2𝑚−1, 𝑏2𝑚), respectively, the assertion

follows.

For each 𝑘𝑖 (𝑖 = 1, … , 𝑡), a polynomial ∆𝑞(𝑘𝑖) is defined as follows.

(i) Suppose that 𝑎1 > 0. In this case, we define ∆𝑞(𝑘𝑖) by

∆𝑞(𝑘𝑖) ∶=

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑞𝓁𝑖+1−𝓁𝑖+1[𝓁𝑖 − 𝑘𝑖−1]𝑞[𝑘𝑖+1 − 𝓁𝑖+1]𝑞 if 𝑖 ≠ 1, 𝑡,

𝑞𝓁2[𝑘2 − 𝓁2]𝑞 if 𝑖 = 1,

𝑞𝑛−𝓁𝑡+1[𝓁𝑡 − 𝑘𝑡−1]𝑞 if 𝑖 = 𝑡.

(ii) Suppose that 𝑎1 = 0. In this case, we define ∆𝑞(𝑘𝑖) by

∆𝑞(𝑘𝑖) ∶=

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑞𝓁𝑖−𝓁𝑖−1+1[𝓁𝑖−1 − 𝑘𝑖−1]𝑞[𝑘𝑖+1 − 𝓁𝑖]𝑞 if 𝑖 ≠ 1, 𝑡,

𝑞𝓁1[𝑘2 − 𝓁1]𝑞 if 𝑖 = 1,

𝑞𝑛−𝓁𝑡−1+1[𝓁𝑡−1 − 𝑘𝑡−1]𝑞 if 𝑖 = 𝑡.

For each 𝑘𝑖, take a subset

{(𝑣(𝑘𝑖)2𝑗−1, 𝑣
(𝑘𝑖)
2𝑗 ) ∣ 𝑗 = 1, 2, … , 𝑟𝑘𝑖 } ⊂ 𝒥𝐚

such that any (𝑣(𝑘𝑖)2𝑗−1, 𝑣
(𝑘𝑖)
2𝑗 )-valley is not adjacent to vertex 𝑘𝑖. Then, we set

∆̃𝑞(𝑘𝑖) ∶= ∆𝑞(𝑘𝑖)
𝑟𝑘𝑖∏

𝑗=1
𝗏𝖺𝗅(𝑣(𝑘𝑖)2𝑗−1, 𝑣

(𝑘𝑖)
2𝑗 ).

Lemma 6.3. The coefficient of 𝑞𝓁 of ∆̃𝑞(𝑘𝑖) coincides with the number of 𝓁-dimensional

subrepresentations 𝑁 of 𝕀(𝐚) such that 𝑆(𝑘𝑖) ∈ 𝗌𝗎𝗉𝗉(𝑁), but 𝑆(𝑘𝑗) ∉ 𝗌𝗎𝗉𝗉(𝑁) for 𝑖 ≠ 𝑗.
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Proof. We only show the statement when 𝑎1 > 0 and 𝑠 is even; the proofs in other cases

are similar.

Let 𝑁(𝑘𝑖) be the largest dimensional subrepresentation of 𝕀(𝐚) such that 𝑆(𝑘𝑖) ∈ 𝗌𝗎𝗉𝗉(𝑁),

but 𝑆(𝑘𝑗) ∉ 𝗌𝗎𝗉𝗉(𝑁) for 𝑖 ≠ 𝑗. It is sufficient to show that the coefficient of 𝑞𝓁 of ∆̃𝑞(𝑘𝑖)

coincides with the number of 𝓁-dimensional subrepresentations of 𝑁(𝑘𝑖). Observe that

𝕀[𝑘𝑖−1 + 1, 𝑘𝑖+1 − 1] ⊂ 𝑁(𝑘𝑖) and every subrepresentation of 𝑁(𝑘𝑖) must have 𝕀[𝓁𝑖, 𝓁𝑖+1] as a

subrepresentation whose dimension is 𝓁𝑖+1 −𝓁𝑖 +1. Here, if 𝑘𝑖−1 (resp. 𝑘𝑖+1) is not in 𝑄(𝐚)0,

then we replace 𝑘𝑖−1 + 1 by 𝓁1 (resp. 𝑘𝑖+1 − 1 by 𝓁𝑖+1). Now, we consider an isomorphism

𝕀[𝑘𝑖−1 + 1, 𝑘𝑖+1 − 1]∕𝕀[𝓁𝑖, 𝓁𝑖+1] ≃ 𝕀[𝑘𝑖−1 + 1, 𝓁𝑖 − 1] ⊕ 𝕀[𝓁𝑖+1 + 1, 𝑘𝑖+1 − 1].

Since the number of 𝓁-dimensional subrepresentations of 𝕀[𝑘𝑖−1 + 1, 𝓁𝑖 − 1] (resp. 𝕀[𝓁𝑖+1 +

1, 𝑘𝑖+1−1]) corresponds to the coefficient of 𝑞𝓁 of [𝓁𝑖−𝑘𝑖−1]𝑞 (resp. [𝑘𝑖+1−𝓁𝑖+1]𝑞), the number

of 𝓁-dimensional subrepresentations 𝑁′ of 𝕀[𝑘𝑖−1 + 1, 𝑘𝑖+1 − 1] such that 𝑆(𝑘𝑖) ∈ 𝗌𝗎𝗉𝗉(𝑁′) is

the coefficient of 𝑞𝓁 of ∆𝑞(𝑘𝑖). Remaining subrepresentations that must be counted come

from subrepresentations of 𝗋𝖺𝖽(𝕀(𝐚))∕(𝕀[𝑘𝑖−1 + 1, 𝑘𝑖+1 − 1]∕𝑆(𝑘𝑖)). Therefore, the assertion

follows from Proposition 6.2.

Next, for two 𝑘𝑖1 < 𝑘𝑖2 , we define

∆𝑞(𝑘𝑖1 , 𝑘𝑖2) ∶=

⎧
⎪

⎨
⎪
⎩

∆𝑞(𝑘𝑖1)∆𝑞(𝑘𝑖2)
𝑞[𝓁𝑖2 − 𝑘𝑖2−1]𝑞[𝑘𝑖1+1 − 𝓁𝑖1+1]𝑞

if 𝑖2 = 𝑖1 + 1,

∆𝑞(𝑘𝑖1)∆𝑞(𝑘𝑖2) otherwise.

Inductively, for 𝑘𝑖1 < 𝑘𝑖2 < ⋯ < 𝑘𝑖𝑟 , we define

∆𝑞(𝑘𝑖1 , 𝑘𝑖2 , … , 𝑘𝑖𝑟) ∶=

⎧
⎪

⎨
⎪
⎩

∆𝑞(𝑘𝑖1 , 𝑘𝑖2 , … , 𝑘𝑖𝑟−1)∆𝑞(𝑘𝑖𝑟)
𝑞[𝓁𝑖𝑟 − 𝑘𝑖𝑟−1]𝑞

if 𝑖𝑟 = 𝑖𝑟−1 + 1,

∆𝑞(𝑘𝑖1 , 𝑘𝑖2 , … , 𝑘𝑖𝑟−1)∆𝑞(𝑘𝑖𝑟) otherwise.

Take a subset

{(𝑣
(𝑘𝑖1 ,…,𝑘𝑖𝑟 )
2𝑗−1 , 𝑣

(𝑘𝑖1 ,…,𝑘𝑖𝑟 )
2𝑗 ) ∣ 𝑗 = 1, 2, … , 𝑟(𝑘𝑖1 ,…,𝑘𝑖𝑟 )} ⊂ 𝒥𝐚
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such that any (𝑣
(𝑘𝑖1 ,…,𝑘𝑖𝑟 )
2𝑗−1 , 𝑣

(𝑘𝑖1 ,…,𝑘𝑖𝑟 )
2𝑗 )-valley is not adjacent to one of vertices 𝑘𝑖1 , … , 𝑘𝑖𝑟 . Then,

for 𝑟 = 1,… , 𝑡, we set

∆̃𝑞(𝑘1, … , 𝑘𝑟) ∶= ∆𝑞(𝑘1, … , 𝑘𝑟)
𝑟(𝑘1,…,𝑘𝑟)∏

𝑗=1
𝗏𝖺𝗅(𝑣(𝑘1,…,𝑘𝑟)2𝑗−1 , 𝑣(𝑘1,…,𝑘𝑟)2𝑗 ).

Theorem 6.4. The equation

𝖼𝗅(𝑄(𝐚)) =
∏

(𝑏𝑖 ,𝑏𝑖+1)∈𝒥𝐚

𝗏𝖺𝗅𝑞(𝑏𝑖, 𝑏𝑖+1) +
∑

(𝑘𝑖1 ,…,𝑘𝑖𝑠 )∈𝒯𝐚

∆̃𝑞(𝑘𝑖1 , … , 𝑘𝑖𝑠) (6.1)

holds.

Proof. By Proposition 6.2, the first term of the right-hand side of (6.1) counts𝓁-dimensional

subrepresentations of 𝗋𝖺𝖽(𝕀(𝐚)). Therefore, counting the cases where each 𝑆(𝑘𝑖) (𝑖 =

1, … , 𝑡) belongs to the support is sufficient. By the proof of Lemma 6.3, the number

of 𝓁-dimensional subrepresentations 𝑁 of 𝕀(𝐚) such that 𝑆(𝑘𝑖1), … , 𝑆(𝑘𝑖𝑟) ∈ 𝗌𝗎𝗉𝗉(𝑁) but

𝑆𝑗 ∉ 𝗌𝗎𝗉𝗉(𝑁) for 𝑗 ≠ 𝑘𝑖1 , … , 𝑘𝑖𝑟 is the coefficient of 𝑞𝓁 of ∆̃𝑞(𝑘𝑖1 , … , 𝑘𝑖𝑟). Thus, the assertion

follows.

Example 6.5. (1) Let 𝐚 = (1, 3, 1, 1). Then, the quiver 𝑄(𝐚) is of the form

𝑄(𝐚) = 1 ←, 2 ,→ 3 ,→ 4 ,→ 5 ←, 6 ,→ 7,

and ((𝑏1, 𝑏2), (𝑏3, 𝑏4), (𝑏5, 𝑏6)) = ((0, 0), (2, 0), (0, 0)). So, we compute

𝗏𝖺𝗅𝑞(0, 0)𝗏𝖺𝗅𝑞(2, 0)𝗏𝖺𝗅𝑞(0, 0) = 𝑞5 + 3𝑞4 + 4𝑞3 + 4𝑞2 + 3𝑞 + 1,

∆̃𝑞(2) = 𝑞5[1]𝑞[1]𝑞𝗏𝖺𝗅𝑞(0, 0) = 𝑞6 + 𝑞5,

∆̃𝑞(6) = 𝑞3[3]𝑞𝗏𝖺𝗅𝑞(0, 0) = 𝑞6 + 2𝑞5 + 2𝑞4 + 𝑞3,

∆̃𝑞(2, 6) =
∆𝑞(2)∆𝑞(6)
𝑞[3]𝑞[1]𝑞

= 𝑞7.

Thus, we have

𝖼𝗅(𝑄(𝐚)) = 𝑞7 + 2𝑞6 + 4𝑞5 + 5𝑞4 + 5𝑞3 + 4𝑞2 + 3𝑞 + 1.

(2) Let 𝐚 = (0, 3, 1, 5, 1). Then, the quiver 𝑄(𝐚) is of the form

𝑄(𝐚) = 1 ,→ 2 ,→ 3 ,→ 4 ←, 5 ,→ 6 ,→ 7 ,→ 8 ,→ 9 ,→ 10 ←, 11,
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and ((𝑏1, 𝑏2), (𝑏3, 𝑏4)) = ((2, 0), (4, 0)). So, we compute

𝗏𝖺𝗅𝑞(2, 0)𝗏𝖺𝗅𝑞(4, 0) = 𝑞8 + 2𝑞7 + 3𝑞6 + 4𝑞5 + 4𝑞4 + 4𝑞3 + 3𝑞2 + 2𝑞 + 1,

∆̃𝑞(1) = 𝑞4𝗏𝖺𝗅𝑞(4, 0) = 𝑞9 + 𝑞8 + 𝑞7 + 𝑞6 + 𝑞5 + 𝑞4,

∆̃𝑞(5) = 𝑞7[3]𝑞 = 𝑞9 + 𝑞8 + 𝑞7,

∆̃𝑞(11) = 𝑞2[5]𝑞𝗏𝖺𝗅𝑞(2, 0) = 𝑞9 + 2𝑞8 + 3𝑞7 + 4𝑞6 + 4𝑞5 + 3𝑞4 + 2𝑞3 + 𝑞2,

∆̃𝑞(1, 5) =
∆𝑞(1)∆𝑞(5)
𝑞[3]𝑞

= 𝑞10,

∆̃𝑞(1, 11) = ∆𝑞(1)∆𝑞(11) = 𝑞10 + 𝑞9 + 𝑞8 + 𝑞7 + 𝑞6,

∆̃𝑞(5, 11) =
∆𝑞(5)∆𝑞(11)

𝑞[5]𝑞
= 𝑞10 + 𝑞9 + 𝑞8,

∆̃𝑞(1, 5, 11) =
∆𝑞(1)∆𝑞(5)∆𝑞(11)

𝑞2[3]𝑞[5]𝑞
= 𝑞11.

Thus, we have

𝖼𝗅(𝑄(𝐚)) = 𝑞11 + 3𝑞10 + 5𝑞9 + 7𝑞8 + 8𝑞7 + 9𝑞6 + 9𝑞5 + 8𝑞4 + 6𝑞3 + 4𝑞2 + 2𝑞 + 1.

7 Special values of the 𝑞-deformed rational numbers

In [MO20, Proposition 1.8], it is shown that both 𝒮𝛼(−1) and ℛ𝛼(−1) belong to {0, ±1}. From

this, we see that for an irreducible fraction 𝑟
𝑠
, 𝑠 is even if and only if 𝒮 𝑟

𝑠
(𝑞) is divisible by

[2]𝑞 = 1 + 𝑞. In this section, we extend this observation. Set

𝜔 ∶=
−1 +

√
−3

2 .

Theorem 7.1. For a rational number 𝛼, we have ℛ𝛼(𝜔), 𝒮𝛼(𝜔) ∈ {0, ±1, ±𝜔,±𝜔2}.

Proof. First, we assume that 𝛼 > 1, and write 𝛼 = [[𝑐1, … , 𝑐𝑙]]. By Proposition 2.2, we have

⎛
⎜
⎝

ℛ𝛼(𝜔)

𝒮𝛼(𝜔)

⎞
⎟
⎠
=
(
𝑀−
𝑞 (𝑐1)𝑀−

𝑞 (𝑐2)⋯𝑀−
𝑞 (𝑐𝑙)

)
|𝑞=𝜔

⎛
⎜
⎝

1

0

⎞
⎟
⎠
.
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It is easy to check that 𝑀−
𝑞 (𝑐)|𝑞=𝜔 for a positive integer 𝑐 is one of the following forms:

𝑀−
𝑞 (𝑐)|𝑞=𝜔 =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝑋 ∶=
⎛
⎜
⎝

0 −𝜔2

1 0

⎞
⎟
⎠

if 𝑐 ≡ 0 (mod 3),

𝑌 ∶=
⎛
⎜
⎝

1 −1

1 0

⎞
⎟
⎠

if 𝑐 ≡ 1 (mod 3),

𝑍 ∶=
⎛
⎜
⎝

−𝜔2 −𝜔

1 0

⎞
⎟
⎠

if 𝑐 ≡ 2 (mod 3).

Let 𝐺 be the subgroup of 𝖦𝖫(2, ℂ) generated by 𝑋,𝑌 and 𝑍. A direct computation shows

that the equation 𝑋12 = 𝑌6 = 𝑍3 = 𝐸2. Set

𝐴 ∶=
⎧

⎨
⎩

𝜁
⎛
⎜
⎝

1

0

⎞
⎟
⎠
, 𝜁
⎛
⎜
⎝

1

−𝜔

⎞
⎟
⎠
, 𝜁
⎛
⎜
⎝

1

1

⎞
⎟
⎠
, 𝜁
⎛
⎜
⎝

0

1

⎞
⎟
⎠

|||||||||||
𝜁 = ±1, ±𝜔,±𝜔2

⎫

⎬
⎭

⊂ ℂ2. (7.1)

Then, easy calculation shows that 𝐴 is closed under the natural action of 𝐺. Thus, for

any 𝑊 ∈ 𝐺, all entries of 𝑊, especially ℛ𝛼(𝜔) and 𝒮𝛼(𝜔) for 𝛼 > 1, belong to the set

{0, ±1, ±𝜔,±𝜔2}.

Let us consider the case 𝛼 ≤ 1. By (2.8), we have

⎛
⎜
⎝

ℛ𝛼(𝜔)

𝒮𝛼(𝜔)

⎞
⎟
⎠
=
⎛
⎜
⎝

𝜔2 −𝜔2

0 1

⎞
⎟
⎠

⎛
⎜
⎝

ℛ𝛼+1(𝜔)

𝒮𝛼+1(𝜔)

⎞
⎟
⎠
. (7.2)

It is easy to check that the set 𝐴 is closed under the multiplication of
⎛
⎜
⎝

𝜔2 −𝜔2

0 1

⎞
⎟
⎠
, so we

can show that
⎛
⎜
⎝

ℛ𝛼+1(𝜔)

𝒮𝛼+1(𝜔)

⎞
⎟
⎠
∈ 𝐴 implies

⎛
⎜
⎝

ℛ𝛼(𝜔)

𝒮𝛼(𝜔)

⎞
⎟
⎠
∈ 𝐴. Since 𝛼 + 𝑛 > 1 for sufficiently large 𝑛,

the desired assertion follows from repeated use of the above implication.

Since the leading coefficient of [𝑛]𝑞 = 1+ 𝑞 +⋯+ 𝑞𝑛−1 is 1, when we divide 𝑓(𝑞) ∈ ℤ[𝑞]

by [𝑛]𝑞, the quotient and the remainder belong to ℤ[𝑞]. It is clear that if 𝒮 𝑟
𝑠
(𝑞) can be

divided by [3]𝑞 = 1 + 𝑞 + 𝑞2, then 𝑠 = 𝒮 𝑟
𝑠
(1) is a multiple of 3. The following states that the

converse is also true.
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Corollary 7.2. The following assertions hold.

(1) If 𝑠 = 𝒮 𝑟
𝑠
(1) is a multiple of 3, 𝒮 𝑟

𝑠
(𝑞) can be divided by [3]𝑞. Moreover, for an irreducible

fraction 𝑟
𝑠
, we have

𝒮 𝑟
𝑠
(𝜔) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

0 if 𝑠 ≡ 0 (mod 3),

1, 𝜔, 𝜔2 if 𝑠 ≡ 1 (mod 3),

−1,−𝜔,−𝜔2 if 𝑠 ≡ 2 (mod 3).

(2) Similarly, we have

ℛ 𝑟
𝑠
(𝜔) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

0 if 𝑟 ≡ 0 (mod 3),

1, 𝜔, 𝜔2 if 𝑟 ≡ 1 (mod 3),

−1,−𝜔,−𝜔2 if 𝑟 ≡ 2 (mod 3).

Proof. (1) Note that 𝜔2 = −(𝑤 + 1). By Theorem 7.1, the remainder of the polynomial 𝒮 𝑟
𝑠
(𝑞)

divided by [3]𝑞 is 𝑎𝑞 + 𝑏 for 𝑎, 𝑏 ∈ {0, ±1} with (𝑎, 𝑏) ≠ (1, −1), (−1, 1). Since 𝑠 = 𝒮 𝑟
𝑠
(1) ≡ 𝑎 + 𝑏

(mod 3), the assertion easily follows.

(2) While ℛ 𝑟
𝑠
(𝑞) ∈ ℤ[𝑞, 𝑞−1] has terms of negative degree for 𝑟

𝑠
< 0, we have 𝑓(𝑞) ∶=

𝑞3𝑛ℛ 𝑟
𝑠
(𝑞) ∈ ℤ[𝑞] for 𝑛 ≫ 0. Since 𝑓(1) = ℛ 𝑟

𝑠
(1) = 𝑟 and 𝑓(𝜔) = ℛ 𝑟

𝑠
(𝜔), we can use the

argument of the proof of (1).

Example 7.3. Even if we fix 𝑠, 𝒮 𝑟
𝑠
(𝜔) depends on 𝑟. For example, we have 𝒮 12

11
(𝜔) = −𝜔2,

𝒮 13
11
(𝜔) = −𝜔, 𝒮 14

11
(𝜔) = −𝜔2, 𝒮 15

11
(𝜔) = −1, and so on.

Corollary 7.4. For an irreducible fraction 𝑟
𝑠
, 𝑠 ≡ 𝑟 (mod 3) if and only if ℛ 𝑟

𝑠
(𝜔) = 𝒮 𝑟

𝑠
(𝜔).

Proof. By (2.8), we have ℛ 𝑟
𝑠
−1(𝑞) = 𝑞−1(ℛ 𝑟

𝑠
(𝑞) − 𝒮 𝑟

𝑠
(𝑞)). By Corollary 7.2, we have

ℛ 𝑟
𝑠
(𝜔) = 𝒮 𝑟

𝑠
(𝜔) ⇐⇒ ℛ 𝑟−𝑠

𝑠
(𝜔) = 0 ⇐⇒ 𝑟 − 𝑠 is a multiple of 3.

So we are done.
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In the rest of this section, 𝑖 means
√
−1.

Proposition 7.5. We have ℛ𝛼(𝑖), 𝒮𝛼(𝑖) ∈ {0, ±1, ±𝑖, ±(1 + 𝑖), ±(1 − 𝑖)}, and the remainder of

𝒮𝛼(𝑞) divided by 𝑞2 + 1 is 𝑎𝑞 + 𝑏 for 𝑎, 𝑏 ∈ {0, ±1}.

Proof. It suffices to show the first assertion. The proof is similar to that of Theorem 7.1.

First, assume that 𝛼 > 1. It is easy to check that 𝑀−
𝑞 (𝑐)|𝑞=𝑖 is of the form

𝑀−
𝑞 (𝑐)|𝑞=𝑖 =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝑋0 ∶=
⎛
⎜
⎝

0 𝑖

1 0

⎞
⎟
⎠

if 𝑐 ≡ 0 (mod 4),

𝑋1 ∶=
⎛
⎜
⎝

1 −1

1 0

⎞
⎟
⎠

if 𝑐 ≡ 1 (mod 4),

𝑋2 ∶=
⎛
⎜
⎝

1 + 𝑖 −𝑖

1 0

⎞
⎟
⎠

if 𝑐 ≡ 2 (mod 4),

𝑋3 ∶=
⎛
⎜
⎝

𝑖 1

1 0

⎞
⎟
⎠

if 𝑐 ≡ 3 (mod 4).

A direct computation shows that 𝑋8
0 = 𝑋6

1 = 𝑋4
2 = 𝑋12

3 = 𝐸2. Let 𝐺′ be the subgroup of

𝖦𝖫(2, ℂ) generated by 𝑋0, 𝑋1, 𝑋2 and 𝑋3. The set

𝐵 ∶=
⎧

⎨
⎩

𝜁
⎛
⎜
⎝

1

0

⎞
⎟
⎠
, 𝜁
⎛
⎜
⎝

0

1

⎞
⎟
⎠
, 𝜁
⎛
⎜
⎝

1

1

⎞
⎟
⎠
, 𝜁
⎛
⎜
⎝

𝑖

1

⎞
⎟
⎠
, 𝜁
⎛
⎜
⎝

1 + 𝑖

1

⎞
⎟
⎠
, 𝜁
⎛
⎜
⎝

1

1 − 𝑖

⎞
⎟
⎠

|||||||||||
𝜁 = ±1, ±𝑖

⎫

⎬
⎭

.

is closed under the natural action of 𝐺′. Hence all entries of any element in 𝐺′ belong to

{0, ±1, ±𝑖, ±(1 + 𝑖), ±(1 − 𝑖)}. Since ℛ𝛼(𝑖) and 𝒮𝛼(𝑖) are entries of a suitable element of 𝐺′, we

are done.

For the case 𝛼 ≤ 1, we can use the same argument as the last part of the proof of

Theorem 7.1.

Theorem 7.6. For an irreducible fraction 𝑟
𝑠
, the following are equivalent.

(1) 𝑠 is a multiple of 4,
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(2) 𝒮 𝑟
𝑠
(𝑞) is divisible by [4]𝑞 = 𝑞3 + 𝑞2 + 𝑞 + 1,

(3) 𝒮 𝑟
𝑠
(𝑞) is divisible by 𝑞2 + 1.

Proof. (1) ⇒ (2) : Let 𝑔(𝑞) ∈ ℤ[𝑞] be the remainder of 𝒮 𝑟
𝑠
(𝑞) divided by 1 + 𝑞2, that is,

𝒮 𝑟
𝑠
(𝑞) = 𝑓(𝑞) ⋅ (1 + 𝑞2) + 𝑔(𝑞) (𝑓(𝑞) ∈ ℤ[𝑞], 𝖽𝖾𝗀(𝑔) ≤ 1).

Since [4]𝑞 = (1 + 𝑞)(1 + 𝑞2) and 𝒮 𝑟
𝑠
(−1) = 0 by [MO20, Proposition 1.8], it suffices to show

that 𝒮 𝑟
𝑠
(𝑞) is divisible by 1 + 𝑞2 (equivalently, 𝑔(𝑞) = 0). For a contradiction, assume

that 𝑔(𝑞) ≠ 0. Proposition 7.5 states that 𝑔(𝑞) = ±1,±𝑞, ±(1 + 𝑞), ±(1 − 𝑞). However, since

𝑔(1) = 𝑠 − 2𝑓(1) and 𝑠 is a multiple of 4, 𝑔(1) is even, and hence 𝑔(𝑞) ≠ ±1, ±𝑞. Finally, we

have 𝑔(𝑞) = ±(1 + 𝑞), ±(1 − 𝑞).

In what follows, for 𝑓(𝑞) ∈ ℤ[𝑞], (𝑓(𝑞)) denotes the ideal of ℤ[𝑞] generated by 𝑓(𝑞), and

ℤ[𝑞]∕(𝑓(𝑞))denotes the quotient ring. For the canonical surjections𝜋1 ∶ ℤ[𝑞] → ℤ[𝑞]∕(1+𝑞)

and 𝜋2 ∶ ℤ[𝑞] → ℤ[𝑞]∕(1 + 𝑞2) (if there is no danger of confusion, we denote 𝜋𝑖(𝑓(𝑞)) by

𝑓(𝑞)), consider the ring homomorphism

𝜙 ∶ ℤ[𝑞] ∋ 𝑓(𝑞) ↦,→ (𝜋1(𝑓(𝑞)), 𝜋2(𝑓(𝑞))) ∈ (ℤ[𝑞]∕ (1 + 𝑞)) ×
(
ℤ[𝑞]∕

(
1 + 𝑞2

))
.

Since ℤ[𝑞] is a UFD, and 1+𝑞 and 1+𝑞2 are coprime, we have 𝗄𝖾𝗋(𝜙) = ([4]𝑞). In the present

situation, we have

𝜙(𝒮 𝑟
𝑠
(𝑞)) = (0, 𝑔(𝑞)).

Recall that 𝑔(𝑞) = ±(1 + 𝑞), ±(1 − 𝑞), but we have

𝜙(±(1 + 𝑞)) = (0, ±(1 + 𝑞)) or 𝜙(±(𝑞 + 𝑞2)) = (0, ∓(1 − 𝑞)).

Hence, we have either

±(1 + 𝑞) − 𝒮 𝑟
𝑠
(𝑞) ∈ ([4]𝑞) or ± (𝑞 + 𝑞2) − 𝒮 𝑟

𝑠
(𝑞) ∈ ([4]𝑞).

In both cases, ±2 − 𝒮 𝑟
𝑠
(1) ∈ 4ℤ, and it means that 𝒮 𝑟

𝑠
(1) ≡ 2 (mod 4). It contradicts the

assumption that 𝒮 𝑟
𝑠
(1) ∈ 4ℤ.
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(2) ⇒ (3) : Obvious.

(3) ⇒ (2) : If 𝒮 𝑟
𝑠
(𝑞) is divisible by 1 + 𝑞2, then there is some 𝑓(𝑞) ∈ ℤ[𝑞] such that

𝒮 𝑟
𝑠
(𝑞) = (1 + 𝑞2)𝑓(𝑞). It follows that 𝑠 = 𝒮 𝑟

𝑠
(1) = 2𝑓(1) is even, and hence 𝒮 𝑟

𝑠
(𝑞) is also

divisible by 1 + 𝑞. Since [4]𝑞 = (1 + 𝑞)(1 + 𝑞2), the assertion follows.

The next result can be proved by an argument similar to the corresponding results

for 𝑞 = 𝜔.

Corollary 7.7. The following assertions hold.

(1) We have

𝒮 𝑟
𝑠
(𝑖) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

0 if 𝑠 ≡ 0 (mod 4),

±(1 + 𝑖), ±(1 − 𝑖) if 𝑠 ≡ 2 (mod 4),

±1, ±𝑖 if 𝑠 ≡ 1 (mod 2),

and

ℛ 𝑟
𝑠
(𝑖) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

0 if 𝑟 ≡ 0 (mod 4),

±(1 + 𝑖), ±(1 − 𝑖) if 𝑟 ≡ 2 (mod 4),

±1, ±𝑖 if 𝑟 ≡ 1 (mod 2).

(2) For an irreducible fraction 𝑟
𝑠
, we have 𝑠 ≡ 𝑟 (mod 4) if and only if ℛ 𝑟

𝑠
(𝑖) = 𝒮 𝑟

𝑠
(𝑖).

Example 7.8. It is clear that the analog of Corollaries 7.2 and 7.7 does not hold for

primitive 𝑛-th roots of unity with 𝑛 ≥ 5. In fact, since 𝒮 7
5
(𝑞) = 𝑞3 + 2𝑞2 + 𝑞 + 1, we have

𝒮 7
5
(𝜁) ≠ 0, where 𝜁 is a primitive 5th root of unity (i.e., a root of 𝑞4 + 𝑞3 + 𝑞2 + 𝑞 + 1).

Moreover, using a computer system, we see that 𝒮 37
35
(𝑞) is irreducible over ℚ, while 35 is a

composite number.

Conjecture 7.9. If 𝑝 is a prime integer, then 𝒮 𝑎
𝑝
(𝑞) is irreducible over ℚ.

Using the computer program Maple, we checked the conjecture for prime numbers

up to 739. The following is another piece of evidence.
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Theorem 7.10. Let 𝑝 be a prime integer. If 𝒮 𝑎
𝑝
(𝑞) is reducible in ℚ[𝑞] (i.e., Conjecture 7.9

does not hold), all of its factors have degree at least 7.

Proof. Consider the factorization

𝒮 𝑎
𝑝
(𝑞) =

𝑘∏

𝑗=1
𝑓𝑗(𝑞)

in the polynomial ring ℚ[𝑞]. It is a classical result that we can take 𝑓𝑗(𝑞) from ℤ[𝑞] for

all 𝑗. Assume that 𝑘 ≥ 2. Since 𝑓𝑗(1) ∈ ℤ for all 𝑗 and 𝑝 = 𝒮 𝑎
𝑝
(1) =

∏𝑘
𝑗=1 𝑓𝑗(1) is a prime

number, we may assume that 𝑓1(1) = 𝑝 and 𝑓𝑗(1) = 1 for all 𝑗 ≥ 2.

Since both the leading coefficient and constant term of 𝒮 𝑎
𝑝
(𝑞) are 1, those of 𝑓𝑗(𝑞)

are ±1. Since all coefficients of 𝒮 𝑎
𝑝
(𝑞) are positive, if 𝑞 = 𝛼 is a real root of the equation

𝒮 𝑎
𝑝
(𝑞) = 0 then 𝛼 < 0. Clearly, the same is true for each 𝑓𝑗(𝑞), so both the leading coefficient

and constant term of 𝑓𝑗(𝑞) are 1 (note that 𝑓𝑗(1) > 0 now).

If 𝑝 = 2, 3, the assertion is clear. So we may assume that 𝑝 ≥ 5. Since 𝑝 = 𝒮 𝑎
𝑝
(1) is odd,

𝒮 𝑎
𝑝
(−1) =

∏𝑘
𝑗=1 𝑓𝑗(−1) = ±1. Since 𝑓𝑗(−1) ∈ ℤ for all 𝑗, we have 𝑓𝑗(−1) = ±1, and hence the

remainder of 𝑓𝑗(𝑞) divided by 𝑞 + 1 is ±1. Similarly, we have 𝒮 𝑎
𝑝
(𝑖) =

∏𝑘
𝑗=1 𝑓𝑗(𝑖) = ±1, ±𝑖 by

Corollary 7.7. Since 𝑓𝑗(𝑖) ∈ ℤ[𝑖] for all 𝑗, we have 𝑓𝑗(𝑖) = ±1, ±𝑖, and the remainder of 𝑓𝑗(𝑞)

divided by 𝑞2 + 1 is ±1,±𝑞. Since 𝑝 = 𝒮 𝑎
𝑝
(1) is not a multiple of 3, 𝒮 𝑎

𝑝
(𝜔) =

∏𝑘
𝑗=1 𝑓𝑗(𝜔) =

±1, ±𝜔,±𝜔2. Since 𝑓𝑗(𝜔) ∈ ℤ[𝜔] for all 𝑗, we have 𝑓𝑗(𝜔) = ±1,±𝜔,±𝜔2 by Corollary 7.2, and

the remainder of 𝑓𝑗(𝑞) divided by 𝑞2 + 𝑞 + 1 is ±1,±𝑞, ±(1 + 𝑞).

Set 𝑔(𝑞) = 𝑞(𝑞 + 1)(𝑞2 + 1)(𝑞2 + 𝑞 + 1), and consider the natural ring homomorphism

Ψ ∶ ℤ[𝑞]∕(𝑔(𝑞)) ,→ ℤ[𝑞]∕(𝑞) × ℤ[𝑞]∕(𝑞 + 1) × ℤ[𝑞]∕(𝑞2 + 1) × ℤ[𝑞]∕(𝑞2 + 𝑞 + 1).

Since ℤ[𝑞] is a UFD, Ψ is injective. Let us find polynomials in ℤ[𝑞] whose images under Ψ

are characteristic.

For 𝑡(𝑞) ∶= (𝑞 + 1)(𝑞2 + 1)(𝑞2 + 𝑞 + 1), we have Ψ(𝑡(𝑞)) = (1, 0, 0, 0) and 𝑡(1) = 12. For

𝑢1(𝑞) ∶= 𝑞(𝑞2 + 𝑞 + 1), 𝑢2(𝑞) ∶= 𝑞2(𝑞2 + 𝑞 + 1),

𝑢3(𝑞) ∶= 𝑞3(𝑞2 + 𝑞 + 1), 𝑢4(𝑞) ∶= 𝑞(𝑞2 + 𝑞 + 1)2,
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we have
Ψ(𝑢1(𝑞)) = (0, −1, −1, 0), Ψ(𝑢2(𝑞)) = (0, 1, −𝑞, 0),

Ψ(𝑢3(𝑞)) = (0, −1, 1, 0), Ψ(𝑢4(𝑞)) = (0, −1, −𝑞, 0),

and 𝑢𝑘(1) = 3 for 𝑘 = 1, 2, 3, 𝑢4(1) = 9. For

𝑣1(𝑞) ∶= 𝑞(𝑞 + 1)(𝑞2 + 1), 𝑣2(𝑞) ∶= 𝑞(𝑞 + 1)2(𝑞2 + 1), 𝑣3(𝑞) ∶= 𝑞2(𝑞 + 1)(𝑞2 + 1),

we have

Ψ(𝑣1(𝑞)) = (0, 0, 0, 𝑞), Ψ(𝑣2(𝑞)) = (0, 0, 0, −1), Ψ(𝑣3(𝑞)) = (0, 0, 0, −1 − 𝑞)

and 𝑣1(1) = 𝑣3(1) = 4, 𝑣2(1) = 8.

The possible values ofΨ(𝑓(𝑞)) have been determined above, and the leading coefficient

of 𝑓𝑗(𝑞) is 1. Hence, if 𝖽𝖾𝗀 𝑓𝑗(𝑞) ≤ 6, we have

𝑓𝑗(𝑞) = 𝑐1𝑔(𝑞) + 𝑡(𝑞) + 𝑐2𝑢𝑘(𝑞) + 𝑐3𝑣𝑙(𝑞)

for some 𝑐1 = 0, 1, 𝑐2, 𝑐3 = ±1, 𝑘 = 1,… , 4 and 𝑙 = 1, 2, 3. If 𝑗 ≥ 2, 𝑓𝑗(𝑞) must satisfy the

following conditions:

• 𝑓𝑗(𝑞) ≠ 1 and 𝑓𝑗(1) = 1.

• The leading coefficient is 1.

However, easy calculation shows that no choice of 𝑐1, … , 𝑐3, 𝑗, 𝑘 satisfies these conditions.

Finally, we consider 𝑓1(𝑞). We have

𝑝 = 𝑓1(1) ≤ 𝑔(1) + 𝑡(1) + 𝑢𝑘(1) + 𝑣𝑙(1) ≤ 12 + 12 + 9 + 8 = 41.

However, Conjecture 7.9 has been checked in this range by using Maple.

8 Application to Jones polynomials of rational knots

Using the results in the previous section, we study the special values of the Jones polyno-

mial 𝑉𝛼(𝑡) and the normalized one 𝐽𝛼(𝑞) of a rational link 𝐿(𝛼).
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For a general link 𝐿, it is a classical fact that

𝑉𝐿(1) = (−2)𝑐(𝐿)−1,

where 𝑐(𝐿) is the number of the components of 𝐿. On the other hand, for an irreducible

fraction 𝑟
𝑠
, it is well-known that 𝑐(𝐿( 𝑟

𝑠
)) = 1, 2, and 𝑐(𝐿( 𝑟

𝑠
)) = 1 if and only if 𝑟 is odd. Hence

we have

𝑉 𝑟
𝑠
(1) =

⎧

⎨
⎩

−2 if 𝑟 is even,

1 if 𝑟 is odd.

We can explain this equation using 𝑞-deformed rationals.

Recall the equation (4.3), which states that the normalized Jones polynomial 𝐽𝛼(𝑞) of a

rational link 𝐿(𝛼) can be computed by the following formula:

𝐽𝛼(𝑞) = 𝑞 ⋅ ℛ𝛼(𝑞) + (1 − 𝑞) ⋅ 𝒮𝛼(𝑞).

By an argument similar to the previous section, we can show that

⎛
⎜
⎜
⎝

ℛ 𝑟
𝑠
(−1)

𝒮 𝑟
𝑠
(−1)

⎞
⎟
⎟
⎠

= ±
⎛
⎜
⎝

1

0

⎞
⎟
⎠
, ±

⎛
⎜
⎝

0

1

⎞
⎟
⎠
, ±

⎛
⎜
⎝

1

1

⎞
⎟
⎠

(this is a refinement of [MO20, Proposition 1.8]). Hence we have

|𝑉 𝑟
𝑠
(1)| = |𝐽 𝑟

𝑠
(−1)| =

⎧

⎨
⎩

2 if 𝑟 is even,

1 if 𝑟 is odd.
(8.1)

Next, we will consider the special values of 𝐽𝛼(𝑞) at 𝑞 = 𝑖, 𝜔, −𝜔. Many parts of the fol-

lowing results should be well-known, but we are interested in the relation to 𝑞-deformed

rationals.

Theorem 8.1. For an irreducible fraction 𝑟
𝑠
> 1, we have

𝐽 𝑟
𝑠
(𝜔) ∈ {±1, ±𝜔,±𝜔2},
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if 𝑟 is not a multiple of 3, and

𝐽 𝑟
𝑠
(𝜔) ∈ {±(1 − 𝜔), ±𝜔(1 − 𝜔), ±𝜔2(1 − 𝜔)},

if 𝑟 is a multiple of 3. In particular,

|𝑉 𝑟
𝑠
(−𝜔)| = |𝐽 𝑟

𝑠
(𝜔)| =

⎧

⎨
⎩

√
3 if 𝑟 is a multiple of 3,

1 otherwise.
(8.2)

Proof. The assertion easily follows from (the proof of) Theorem 7.1. By (4.3), we have

𝐽 𝑟
𝑠
(𝜔) = (𝜔 1 − 𝜔)

⎛
⎜
⎜
⎝

ℛ 𝑟
𝑠
(𝜔)

𝒮 𝑟
𝑠
(𝜔)

⎞
⎟
⎟
⎠

and
⎛
⎜
⎜
⎝

ℛ 𝑟
𝑠
(𝜔)

𝒮 𝑟
𝑠
(𝜔)

⎞
⎟
⎟
⎠

∈ 𝐴,

where 𝐴 is the set given in (7.1). So the assertion follows.

Remark 8.2. For a general link 𝐿, Lickorish and Millett ([LiM86, Theorem 3]) showed that

𝑉𝐿(−𝜔) = ±𝑖𝑐(𝐿)−1(
√
3𝑖)𝑑, (8.3)

where 𝑑 = 𝖽𝗂𝗆𝐻1(Σ(𝐿); ℤ3) with Σ(𝐿) the double cover of the 3-sphere 𝕊3 branched over 𝐿.

By (4.2), we have

𝑉 𝑟
𝑠
(−𝜔) = ±(−𝜔)ℎ𝐽 𝑟

𝑠
(𝜔−1)

(note that 𝜔−1 = 𝜔2 = 𝜔). Hence, comparing (8.3) with (8.2), we have

𝖽𝗂𝗆𝐻1(Σ(𝐿(𝑟∕𝑠)); ℤ3) =
⎧

⎨
⎩

1 if 𝑟 is a multiple of 3,

0 otherwise.

The next result can be proved similarly to Theorem 8.1, but we use Proposition 7.5

this time.

Theorem 8.3. For an irreducible fraction 𝑟
𝑠
> 1, we have

𝐽 𝑟
𝑠
(𝑖) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

0 if 𝑟 ≡ 2 (mod 4),

±(1 + 𝑖), ±(1 − 𝑖) if 𝑟 ≡ 0 (mod 4),

±1,±𝑖 if 𝑟 ≡ 1, 3 (mod 4).
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Remark 8.4. For a general link 𝐿, Murakami [M86] (see also [LiM86, Theorem 1]) showed

that

𝑉𝐿(𝑖) =
⎧

⎨
⎩

(−
√
2)𝑐(𝐿)−1(−1)𝖠𝗋𝖿(𝐿) if 𝖠𝗋𝖿(𝐿) exists,

0 otherwise.

Comparing this equation with Theorem 8.3, we see that 𝖠𝗋𝖿(𝐿( 𝑟
𝑠
)) exists if and only if 𝑟 ≢ 2

(mod 4). We were unable to find this statement in literature, but it must be possible to

prove it directly.

For a general link 𝐿, it is known that 𝑉𝐿(𝜔) = (−1)𝑐(𝐿)−1. Hence, for a rational link 𝐿( 𝑟
𝑠
),

we have 𝑉 𝑟
𝑠
(𝜔) = (−1)𝑟−1 and hence

𝐽 𝑟
𝑠
(−𝜔) ∈ {±1, ±𝜔,±𝜔2}. (8.4)

We can give a new interpretation to this equation using 𝑞-deformed rationals. Note that

𝑀−
𝑞 (𝑐)|𝑞=−𝜔 is of the form

𝑋0 ∶=
⎛
⎜
⎝

0 𝜔2

1 0

⎞
⎟
⎠

if 𝑐 ≡ 0 (mod 6),

𝑋1 ∶=
⎛
⎜
⎝

1 −1

1 0

⎞
⎟
⎠

if 𝑐 ≡ 1 (mod 6),

𝑋2 ∶=
⎛
⎜
⎝

1 − 𝜔 𝜔

1 0

⎞
⎟
⎠

if 𝑐 ≡ 2 (mod 6),

𝑋3 ∶=
⎛
⎜
⎝

1 − 𝜔 + 𝜔2 −𝜔2

1 0

⎞
⎟
⎠

if 𝑐 ≡ 3 (mod 6),

𝑋4 ∶=
⎛
⎜
⎝

−𝜔 + 𝜔2 1

1 0

⎞
⎟
⎠

if 𝑐 ≡ 4 (mod 6),

𝑋5 ∶=
⎛
⎜
⎝

𝜔2 −𝜔

1 0

⎞
⎟
⎠

if 𝑐 ≡ 5 (mod 6).

By (4.3), for 𝛼 = [[𝑐1, … , 𝑐𝑙]], we have

(𝐽𝛼(−𝜔) ∗) = (−𝜔 1 + 𝜔) ⋅
(
𝑀−
𝑞 (𝑐1)𝑀−

𝑞 (𝑐2)⋯𝑀−
𝑞 (𝑐𝑙)

)
|𝑞=−𝜔,
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where (𝐽𝛼(−𝜔) ∗) and (−𝜔 1 + 𝜔) are 1×2matrices, and ⋅means the product of matrices.

Easy calculation shows that (−𝜔 1 + 𝜔) = −𝜔 (1 𝜔) and there exists 𝜁𝑖 ∈ {±1, ±𝜔,±𝜔2}

such that

(1 𝜔) ⋅ 𝑋𝑖 = 𝜁𝑖 (1 𝜔)

for each 0 ≤ 𝑖 ≤ 5. So we can show (8.4) by induction on 𝑙.

Remark 8.5. In the above notation, the matrix 𝑋3 is not diagonalizable, and hence 𝑋𝑛
3 ≠ 𝐸2

for all positive integers 𝑛. It means that the subgroup of𝖦𝖫(2, ℂ) generated by𝑋3 is infinite,

and hence {𝒮𝛼(−𝜔) ∣ 𝛼 ∈ ℚ} is an infinite set.
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[Kan22] E. Kantarcı Oǧuz, Oriented posets, Rank Matrices and 𝑞-deformed Markov

Numbers, Discrete Math. 348 (2025), no. 2, Paper No. 114256, 17 pp. 43

[Kau87] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987),

no.3, 395–407. 62

[KL02] L. H. Kauffman and S. Lambropoulou, On the classification of rational knots,

Enseign. Math. (2) 49 (2003), no.3-4, 357–410. 46, 58, 62

[Ko22] T. Kogiso, 𝑞-deformations and 𝑡-deformations of Markov triples, Preprint (2020),

arXiv:2008.12913. 43
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Abstract:

Given any non-central interior point 𝑜 of the unit disc 𝐷, the diameter

𝐿 through 𝑜 is the union of two linear arcs emanating from 𝑜 which meet

𝜕𝐷 orthogonally, the shorter of them stable and the longer unstable (under

these boundary conditions). In each of the two half discs bounded by 𝐿, we

construct a convex eternal solution to curve shortening flow which fixes 𝑜

and meets 𝜕𝐷 orthogonally, and evolves out of the unstable critical arc at

𝑡 = −∞ and into the stable one at 𝑡 = +∞. We then prove that these two

(congruent) solutions are the only non-flat convex ancient solutions to the

curve shortening flow satisfying the specified boundary conditions. We obtain

analogous conclusions in the “degenerate” case 𝑜 ∈ 𝜕𝐷 as well, although in

this case the solution contracts to the point 𝑜 at a finite time with asymptotic

shape that of a half Grim Reaper, thus providing an interesting example for

which an embedded flow develops a collapsing singularity.
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1 Introduction

Variational problems subject to boundary constraints are ubiquitous in pure and applied

mathematics and physics. One of the simplest such problems is to find and study paths

of critical (e.g. minimal) length amongst those joining a given point 𝑜 in some domain Ω

to its boundary 𝜕Ω. When Ω is a Euclidean domain, such paths are, of course, straight

linear arcs from 𝑜 to 𝜕Ω which meet 𝜕Ω orthogonally.

While characterizing all such curves is a non-trivial problem in general (even for

convex Euclidean domains, say), the “Dirichlet–Neumann geodesics” in the unit disc in

ℝ2 are easily found: when 𝑜 is the origin, they are the radii; when 𝑜 is not the origin, there

are exactly two, and their union is the diameter through 𝑜.

One useful tool for analyzing such variational problems is the (formal) gradient

flow (a.k.a. steepest descent flow), which in this case is the “Dirichlet–Neuman curve

shortening flow”; this equation evolves each point of a given curve with velocity equal

to the curvature vector at that point, subject to holding one endpoint fixed at 𝑜 with the

other constrained to 𝜕Ω, which is met orthogonally.

While curve shortening flow is now well-studied under other boundary conditions

— particularly the “periodic” (i.e. no-boundary) [And12, AB11a, AB11b, BLT20, DHS10,

GH86, Gag84, Gra87, Hui98], “Neumann–Neumann” (a.k.a. free boundary) [BBC, BL23,

Buc05, Ede20, Hui89, Ko, LZ, Sta96a, Sta96b] and “Dirichlet–Dirichlet” [ALT, Hui98] con-

ditions — we are aware of no literature considering the mixed “Dirichlet–Neumann”

condition.

Our main result (inspired by [BL23]) is the following classification of the convex

ancient solutions which arise in the simple setting of the unit disc.

Theorem 1.1. Given any 𝑑 ∈ (0, 1], there exists a convex, locally uniformly convex ancient

solution {Γ𝑑𝑡 }𝑡∈(−∞,𝜔𝑑) to curve shortening flow in the unit disc 𝐷 with one endpoint fixed at

Arnold Mathematical Journal, Vol.11(3), 2025 94

http://dx.doi.org/10.56994/ARMJ


Ancient CSF in the disc with mixed boundary condition

𝑜 ∶= (−𝑑, 0) and the other meeting 𝜕𝐷 orthogonally. The timeslices Γ𝑑𝑡 each lie in the upper

half-disc, and converge uniformly in the smooth topology as 𝑡 → −∞ to the unstable critical

arc {(𝑥, 0) ∶ 𝑥 ∈ [−𝑑, 1]}; as a graph over the 𝑥-axis,

e𝜆2𝑡𝑦(𝑥, 𝑡) → 𝐴 sinh(𝜆(𝑥 + 𝑑)) uniformly in 𝑥 as 𝑡 → −∞

for some 𝐴 > 0, where 𝜆 is the positive solution to tanh(𝜆(1 + 𝑑)) = 𝜆.

When 𝑑 < 1, 𝜔𝑑 = +∞ and the timeslices converge uniformly in the smooth topology

as 𝑡 → +∞ to the minimizing arc {(𝑥, 0) ∶ 𝑥 ∈ [−1,−𝑑]}. When 𝑑 = 1, 𝜔𝑑 < ∞ and the

timeslices contract uniformly as 𝑡 → 𝜔𝑑 to the point 𝑜 and, after performing a standard

type-II blow-up, converge locally uniformly in the smooth topology to the right half of the

downward translating Grim Reaper.

Modulo time translations and reflection about the 𝑥-axis, {Γ𝑑𝑡 }𝑡∈(−∞,𝜔𝑑) is the only non-flat

convex ancient curve shortening flow subject to the same boundary conditions.

En route to proving Theorem 1.1, we establish the following convergence result (cf.

[ALT, GH86, Gag84, Gra87, LZ]), which is of independent interest (see the proof of Lemma

3.1).

Theorem 1.2. Let Γ be an oriented smooth convex arc in the upper unit half-disc 𝐷+ with

left endpoint 𝑜 = (−𝑑, 0), 𝑑 ∈ (0, 1], where its curvature vanishes, and right endpoint on 𝜕𝐷,

which is met orthogonally. Suppose that the curvature of Γ increases monotonically with

arclength from 𝑜. If 𝑑 < 1, then the Dirichlet–Neumann curve shortening flow starting from

Γ exists for all positive time 𝑡 and converges uniformly in the smooth topology as 𝑡 → ∞ to

the minimizing arc joining 𝑜 to 𝜕𝐷. If 𝑑 = 1, then the Dirichlet–Neumann curve shortening

flow starting from Γ converges uniformly to the point 𝑜 as 𝑡 → 𝜔 < ∞ and, after performing

a standard type-II blow-up, converges locally uniformly in the smooth topology to a half

Grim Reaper.

Though the curvature monotonicity hypothesis appears unnaturally restrictive in

Theorem 1.2, we note that some such additional condition is required to prevent the

development of self-intersections at the Dirichlet endpoint (resulting in subsequent
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cusplike singularities). Moreover, as Theorem 1.2 demonstrates in case the Dirichlet

endpoint lies on the boundary, collapsing singularities may form at the Dirichlet endpoint

even when the flow remains embedded. It is not hard to see that this can also occur when

the Dirichlet endpoint lies to the interior (as a limiting case of the flow forming a cusp

singularity just after losing embeddedness, say).
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2 Preliminaries

Fix a point 𝑜 = (−𝑑, 0) ∈ 𝐷 in the unit disc 𝐷 ⊂ ℝ2, with 𝑑 ∈ (0, 1]. Denote by 𝐶𝜃 ⊂ 𝐷

the circular arc which passes through 𝑜 and meets the boundary of 𝐷 orthogonally at

(sin 𝜃, cos 𝜃); that is,

𝐶𝜃 ∶= {(𝑥, 𝑦) ∈ 𝐷 ∶ (𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 = 𝑟2} ,

where, defining 𝑎 ∶= 1
2
(𝑑−1 + 𝑑),

(𝜉, 𝜂) ∶= (cos 𝜃, sin 𝜃) + 𝑟(− sin 𝜃, cos 𝜃) and 𝑟 ∶= 1 + 𝑑2 + 2𝑑 cos 𝜃
2𝑑 sin 𝜃 = 𝑎 + cos 𝜃

sin 𝜃 .

Consider also the circular arc 𝐶̌𝜃 ⊂ 𝐷 which is symmetric about the 𝑦-axis and meets

𝜕𝐷 orthogonally at (cos 𝜃, sin 𝜃). That is,

𝐶̌𝜃 ∶= {𝑥2 + (𝑦 − 𝜂)2 = 𝑟2} ,

where

𝜂 ∶= csc 𝜃 and 𝑟 ∶= cot 𝜃 .
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Proposition 2.1. The family {𝐶̌𝜃+(𝑡)}𝑡∈(−∞,0), where 𝜃+(𝑡) ∶= arcsin e2𝑡, is a supersolution to

curve shortening flow. The family {𝐶𝜃−(𝑡)}𝑡∈(−∞,𝜔𝑑), where 𝜃− is the solution to

⎧

⎨
⎩

𝑑𝜃
𝑑𝑡 =

sin 𝜃
𝑎 + cos 𝜃

𝜃(0) = 𝜋
2
,

(1)

is a subsolution to curve shortening flow.

Remark 1. Separating variables, the problem (1) becomes

∫
0

𝑡
𝑑𝑡 = ∫

𝜋
2

𝜃

𝑎 + cos𝜔
sin𝜔 𝑑𝜔 = ∫

𝜋
2

𝜔=𝜃
𝑑 log

(
2 sin1+𝑎

(𝜔
2

)
cos1−𝑎

(𝜔
2

))
,

and hence

e𝑡 = 2 sin1+𝑎
(𝜃−(𝑡)

2

)
cos1−𝑎

(𝜃−(𝑡)
2

)
.

In particular, for all 𝑑 ∈ (0, 1], the solution certainly exists for all 𝑡 < 0, with 𝜃−(𝑡) ∼ 2
𝑎

1+𝑎 e
𝑡

𝑎+1

as 𝑡 → −∞. When 𝑑 ∈ (0, 1), the solution exists up to time 𝜔𝑑 = +∞, and lim𝑡→+∞ 𝜃−(𝑡) = 𝜋.

When 𝑑 = 1, the solution exists up to time 𝜔𝑑 = log 2, and lim𝑡→𝜔𝑑 𝜃
−(𝑡) = 𝜋.

Proof of Proposition 2.1. The first claim is proved in [BL23, Proposition 2.1].

To prove the second claim, consider any monotone increasing function 𝜃 of 𝑡, and

let 𝛾(𝑢, 𝑡) = (𝑥(𝑢, 𝑡), 𝑦(𝑢, 𝑡)) be a general parametrization of 𝐶𝜃(𝑡). Differentiation of the

equation

(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 = 𝑟2

with respect to 𝑡 along 𝛾 and 𝜃 yields

(𝑥 − 𝜉)(𝑥𝑡 − 𝜉𝜃𝜃𝑡) + (𝑦 − 𝜂)(𝑦𝑡 − 𝜂𝜃𝜃𝑡) = 𝑟𝑟𝜃𝜃𝑡 .

Since the outward unit normal to 𝐶𝜃 at (𝑥, 𝑦) is 𝜈 = 1
𝑟
(𝑥 − 𝜉, 𝑦 − 𝜂), this becomes

−𝛾𝑡 ⋅ 𝜈 = −(
𝑥 − 𝜉
𝑟 𝜉𝜃 +

𝑦 − 𝜂
𝑟 𝜂𝜃 + 𝑟𝑟𝜃) 𝜃𝑡 .

We claim that
1
𝑟 (𝑥 − 𝜉, 𝑦 − 𝜂) ⋅ (𝜉𝜃, 𝜂𝜃) + 𝑟𝜃 = − 𝑦

sin 𝜃 .
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Indeed,

1
𝑟 (𝑥 − 𝜉, 𝑦 − 𝜂) ⋅ (𝜉𝜃, 𝜂𝜃)

= 1
𝑟
(
(𝑥, 𝑦) − (cos 𝜃, sin 𝜃) − 𝑟(− sin 𝜃, cos 𝜃))

)
⋅
(
(1 + 𝑟𝜃)(− sin 𝜃, cos 𝜃) − 𝑟(cos 𝜃, sin 𝜃)

)

= − ((𝑥, 𝑦) − (cos 𝜃, sin 𝜃) − 𝑟(− sin 𝜃, cos 𝜃))) ⋅ (cot 𝜃(− sin 𝜃, cos 𝜃) + (cos 𝜃, sin 𝜃))

= − (𝑥, 𝑦) ⋅ (cot 𝜃(− sin 𝜃, cos 𝜃) + (cos 𝜃, sin 𝜃)) + 1 + 𝑟 cot 𝜃

= − (𝑥, 𝑦) ⋅ (0, csc 𝜃) − 𝑟𝜃 ,

from which the claim follows.

Since, 𝑦 ≤ sin 𝜃 along 𝐶𝜃, taking 𝜃 to be the solution to the specified initial value

problem yields

−𝛾𝑡 ⋅ 𝜈 =
𝑦

sin 𝜃𝜃𝑡 =
𝑦

sin 𝜃
1
𝑟 ≤

1
𝑟 = 𝜅 ,

as claimed.

Next consider {H𝑡}𝑡∈(−∞,∞), the fundamental domain of the horizontally oriented hair-

clip solution to curve shortening flow centred at 𝑜; that is,

H𝑡 ∶= {(𝑥, 𝑦) ∈ [0,∞) × [0, 𝜋
2
] ∶ sin(𝑦) = e𝑡 sinh(𝑥 + 𝑑)} .

Figure 1: Some timeslices of (one period of) the “hairclip” solution.

Given any 𝜆 > 0, define {H𝜆
𝑡 }𝑡∈(−∞,∞) by parabolically rescaling the hairclip by 𝜆. That is,

H𝜆
𝑡 ∶= 𝜆−1H𝜆2𝑡 = {(𝑥, 𝑦) ∈ [0,∞) × [0, 𝜋

2𝜆
] ∶ sin(𝜆𝑦) = e𝜆2𝑡 sinh(𝜆(𝑥 + 𝑑))} .
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Observe that {H𝜆
𝑡 }𝑡∈(−∞,∞) satisfies

𝜅
cos 𝜃 = 𝜆 tan(𝜆𝑦) and 𝜅

sin 𝜃 = 𝜆 tanh(𝜆(𝑥 + 𝑑)) ,

where 𝜃 ∈ [0, 𝜋
2
] is the angle the tangent vector makes with the 𝑥-axis. From this we see,

in particular, that 𝜅 is positive and monotone increasing with respect to arclength from 𝑜.

Proposition 2.2. For each 𝜃 ∈ (0, 𝜋
2
) there exists a unique pair (𝜆, 𝑡) such that H𝜆

𝑡 intersects

𝜕𝐷 orthogonally at (cos 𝜃, sin 𝜃).

Proof. Given any 𝜃 ∈ (0, 𝜋
2
), substituting the point (cos 𝜃, sin 𝜃) for (𝑥, 𝑦) in the defining

equation sin(𝜆𝑦) = e𝜆2𝑡 sinh(𝜆(𝑥 + 𝑑)) and solving for 𝑡 yields for each 𝜆 ∈ (0, 𝜋
2 sin 𝜃

) the

unique timeslice of the (fundamental domain of the) Hairclip solution which intersects

𝜕𝐷 at (cos 𝜃, sin 𝜃); namely,

𝑡 = 𝜆−2 ln ( sin(𝜆 sin 𝜃)
sinh(𝜆(cos 𝜃 + 𝑑))

) .

At that point, the normal satisfies

𝜈𝜆(cos 𝜃, sin 𝜃) ⋅ (cos 𝜃, sin 𝜃) =
sin(𝜆 sin 𝜃) cos 𝜃 − tanh(𝜆(cos 𝜃 + 𝑑)) cos(𝜆 sin 𝜃) sin 𝜃

tanh(𝜆(cos 𝜃 + 𝑑)) cos(𝜆 sin 𝜃)

= − tan(𝜆 sin 𝜃) cos 𝜃
tanh(𝜆(cos 𝜃 + 𝑑))

𝑔(𝜆, 𝜃) ,

where

𝑔(𝜆, 𝜃) ∶= tanh(𝜆(cos 𝜃 + 𝑑)) cot(𝜆 sin 𝜃) tan 𝜃 − 1 .

Observe that

lim
𝜆↘0

𝑔(𝜆, 𝜃) = 𝑑 ⋅ sec 𝜃 > 0, lim
𝜆↗ 𝜋

2 sin 𝜃

𝑔(𝜆, 𝜃) = −1 < 0
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and

𝑑𝑔
𝑑𝜆 = tan 𝜃

[
(cos 𝜃 + 𝑑) cot(𝜆 sin 𝜃) sech2(𝜆(cos 𝜃 + 𝑑))

− sin 𝜃 csc2(𝜆 sin 𝜃) tanh(𝜆(cos 𝜃 + 𝑑))
]

= tan 𝜃 tanh(𝜆(cos 𝜃 + 𝑑))
𝜆 sin(𝜆 sin 𝜃)

[ 𝜆(cos 𝜃 + 𝑑)
sinh(𝜆(cos 𝜃 + 𝑑))

cos(𝜆 sin 𝜃) sech(𝜆(cos 𝜃 + 𝑑))

− 𝜆 sin 𝜃
sin(𝜆 sin 𝜃)

]

≤ tan 𝜃 tanh(𝜆(cos 𝜃 + 𝑑))
𝜆 sin(𝜆 sin 𝜃) [cos(𝜆 sin 𝜃) sech(𝜆(cos 𝜃 + 𝑑)) − 1]

< 0

for 𝜆 ∈ (0, 𝜋
2 sin 𝜃

). It follows that there exists a unique 𝜆 such that

𝜈𝜆(cos 𝜃, sin 𝜃) ⋅ (cos 𝜃, sin 𝜃) = 0 .

The claim follows.

Remark 2. Note that, since lim𝜃→0 𝑔(𝜆, 𝜃) =
tanh(𝜆(𝑑+1)))

𝜆
−1, the function 𝑔(𝜆, 𝜃) is non-negative

at 𝜃 = 0 so long as 𝜆 ≥ 𝜆0, where 𝜆0 is the unique positive solution to the equation

𝜆 = tanh(𝜆(𝑑 + 1)) .

Proposition 2.3 (A priori estimates). Let Γ ⊂ 𝐷+ be a smooth, convex embedding of a

closed interval with left endpoint 𝑜 = (−𝑑, 0), 𝑑 ∈ (0, 1], and right endpoint meeting 𝜕𝐷

orthogonally, and suppose that the curvature 𝜅 of Γ increases monotonically with respect

to arclength from 𝑜. Denote by 𝜃 resp. 𝜃 the least resp. greatest value taken by the turning

angle along Γ and by 𝜅 = 𝜅(𝜃) the greatest value taken by 𝜅.

The circle 𝐶𝜃 lies below Γ. Thus,

𝜅 ≥ sin 𝜃
𝑎 + cos 𝜃

(2)

and

𝜃 ≥ arccot (1 + 𝑎 cos 𝜃
𝑏 sin 𝜃

) , (3)
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where 𝑏 ∶= 1
2
(𝑑−1 − 𝑑) and we recall that 𝑎 ∶= 1

2
(𝑑−1 + 𝑑), with the right hand side taken to

be zero in case 𝑑 = 1.

Proof. Suppose, to the contrary, that 𝐶𝜃 does not lie below Γ. Then some point of Γmust lie

strictly below 𝐶𝜃, and hence (since the endpoints of the two curves agree) upon translating

𝐶𝜃 downwards, the two curves will continue to intersect until some final moment, at

which they must make first order contact at some interior point 𝑞 ∈ Γ. At this point,

the curvature 𝜅 of Γ must be no less than 1∕𝑟(𝜃) (the curvature of 𝐶𝜃). But then, by the

monotonicity of 𝜅, 𝜅 must exceed 1∕𝑟(𝜃) on the whole segment of Γ joining 𝑞 to 𝜕𝐷, in

which case (since Γ and 𝐶𝜃 make first order contact at 𝜕𝐷) the point 𝑞 must lie strictly

above 𝐶𝜃, which is absurd. So 𝐶𝜃 must indeed lie below Γ. The first inequality is then

immediate and the second is straightforward.

Figure 2: Scaled hairclip timeslice and circular arcs through the prescribed boundary

points 𝑜 and (cos 𝜃, sin 𝜃).

3 Existence

For each 𝑑 ∈ (0, 1] and 𝜌 ∈ (0, 𝜋
2
), let Γ𝜌 ⊂ 𝐷+ be a smooth oriented arc satisfying the

following properties.

– The left endpoint of Γ𝜌 is 𝑜 = (−𝑑, 0), where its curvature vanishes, and its right

endpoint meets 𝜕𝐷 orthogonally at (cos 𝜌, sin 𝜌).

– Γ𝜌 is convex.
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– The curvature of Γ𝜌 is monotone increasing with respect to arclength from 𝑜.

For example, we could take Γ𝜌 ∶= H𝜆𝜌
𝑡𝜌 ∩ 𝐷, where (𝜆𝜌, 𝑡𝜌) are the unique choice of (𝜆, 𝑡)

which ensure that H𝜆
𝑡 meets 𝜕𝐷 orthogonally at (cos 𝜌, sin 𝜌).

Lemma 3.1 (Very old (but not ancient) solutions). For each 𝑑 ∈ (0, 1] and 𝜌 ∈ (0, 𝜋
2
) there

exist 𝛼𝜌 < 0 such that 𝛼𝜌 → −∞ as 𝜌 → 0 and a smooth1 curve shortening flow {Γ𝜌𝑡 }𝑡∈[𝛼𝜌,𝜔𝑑)
in 𝐷 exhibiting the following properties.

– Γ𝜌𝛼𝜌 = Γ𝜌.

– For each 𝑡 ∈ [𝛼𝜌, 𝜔𝑑), Γ
𝜌
𝑡 is an oriented embedding of a closed interval, with left endpoint

𝑜 = (−𝑑, 0) and right endpoint meeting 𝜕𝐷 orthogonally.

– For each 𝑡 ∈ [𝛼𝜌, 𝜔𝑑), Γ
𝜌
𝑡 is convex.

– For each 𝑡 ∈ [𝛼𝜌, 𝜔𝑑), the curvature of Γ𝜌𝑡 is monotone increasing with respect to

arclength from 𝑜.

– If 𝑑 < 1, then 𝜔𝑑 = ∞ and Γ𝜌𝑡 converges uniformly in the smooth topology as 𝑡 → ∞ to

the minimizing arc {(𝑥, 0) ∶ 𝑥 ∈ [−1,−𝑑]}.

– If 𝑑 = 1, then 𝜔𝑑 ∈ (0,∞) and Γ𝜌𝑡 converges uniformly as 𝑡 → 𝜔𝑑 to the point 𝑜, and

there are sequences of times 𝑡𝑗 ↗ 𝜔𝑑, points 𝑝𝑗 ∈ Γ𝜌𝑡𝑗 , and scales 𝜆𝑗 ↗ ∞ such that

the sequence {𝜆𝑗(Γ
𝜌
𝜆−2𝑗 𝑡+𝑡𝑗

− 𝑝𝑗)}𝑡∈[𝜆2𝑗 (𝛼𝜌−𝑡𝑗),𝜆2𝑗 (𝜔𝜌−𝑗−1−𝑡𝑗)) converges locally uniformly in the

smooth topology as 𝑗 → ∞ to the right half of the downwards translating Grim Reaper.

Proof. Form the “odd doubling” Γ̌𝜌 of Γ𝜌 by taking the union of Γ𝜌 with its rotation through

angle 𝜋 about 𝑜. Since Γ̌𝜌 is a regular curve of class 𝐶2 and there exists a ball 𝐵 about
1More precisely,{Γ𝜌𝑡 }𝑡∈[𝛼𝜌 ,𝜔𝑑) is given by a family of immersions of the interval [0, 1] which is of class

𝐶∞([0, 1] × (𝛼𝜌, 𝜔𝑑)) ∩ 𝐶3+𝛽,1+ 𝛽
2 ([0, 1) × [𝛼𝜌, 𝜔𝑑)) ∩ 𝐶2+𝛽,1+ 𝛽

2 ((0, 1] × [𝛼𝜌, 𝜔𝑑)) for any 𝛽 ∈ (0, 1). Without additional

compatibility conditions at the boundary points, higher regularity at the initial time may fail. However, if

the curvature of Γ𝜌 is odd resp. even at its left resp. right boundary point, then the solution will be smooth

up to the left resp. right boundary point at the initial time.
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(cos 𝜌, sin 𝜌) (of radius 1∕10, say) which is disjoint from the rotation of Γ𝜌 through angle

𝜋 about 𝑜, where Γ𝜌 meets 𝜕𝐷 orthogonally, Stahl’s short-time existence theorem for

free boundary mean curvature flow [Sta96b, Theorem 2.1] yields a solution {Γ̌𝜌𝑡 }𝑡∈[0,𝛿)
to Neumann–Neumann curve shortening flow with boundary on the odd doubling of

𝜕𝐷 ∩ 𝐵 for a short time 𝛿 > 0. Since this solution is uniquely determined by its initial

condition, it must be invariant under rotation through angle 𝜋 about 𝑜, and hence descend

to a solution {Γ̂𝜌𝑡 }𝑡∈[0,𝛿) to Dirichlet–Neumann curve shortening flow in 𝐷 with Dirichlet

condition 𝑜 and initial condition Γ𝜌. Denote by 𝑇 the maximal time of existence of the

latter.

Since the curvature of {Γ̂𝜌𝑡 }𝑡∈[0,𝑇) satisfies

⎧
⎪
⎨
⎪
⎩

(𝜕𝑡 − ∆)𝜅 = 𝜅3

𝜅 = 0 at 𝑜, and

𝜅𝑠 = 𝜅 at 𝜕𝐷 ,

where 𝑠 denotes arclength from 𝑜, the maximum principle (and Hopf boundary point

lemma) ensure that 𝜅 remains positive on Γ̂𝜌𝑡 ⧵ {𝑜} for 𝑡 > 0.

For similar reasons, positivity of 𝜅𝑠 is also preserved. Indeed, using the commutator

relation

[𝜕𝑡, 𝜕𝑠] = 𝜅2𝜕𝑠 ,

the identity 0 = 𝜅𝑡 = ∆𝜅 at 𝑜, and the positivity of 𝜅 away from 𝑜, we find that

⎧
⎪
⎨
⎪
⎩

(𝜕𝑡 − ∆)𝜅𝑠 = 4𝜅2𝜅𝑠

(𝜅𝑠)𝑠 = 0 at 𝑜, and

𝜅𝑠 > 0 at 𝜕𝐷 ,

so the claim once again follows from the maximum principle.

Since 𝜃𝑡 = 𝜅 > 0 and 𝜃 < 𝜋 (when 𝑑 < 1, the maximum principle prevents Γ̂𝜌𝑡 from

ever reaching the minimizing arc — a stationary solution to the flow) we find that 𝜃

must attain a limit as 𝑡 → 𝑇. We claim that this limit is 𝜋. Indeed, if 𝜃 ≤ 𝜃0 < 𝜋 for all
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𝑡 ∈ [0, 𝑇), then, representing the solution as a graph over the line {(−𝑑, 𝑦) ∶ 𝑦 ∈ ℝ}, the

“gradient estimate” (3) yields a uniform bound for the gradient, at least when 𝑑 < 1. But

then, by applying parabolic regularity theory (see, for instance, [Lie96]) to the graphical

Dirichlet–Neumann curve shortening flow equation

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑥𝑡 =
𝑥𝑦𝑦

1 + 𝑥2𝑦
in [0, 𝑦(𝑡)]

𝑥(0, 𝑡) = 0

𝑥𝑦(𝑦(𝑡), 𝑡) = cot 𝜃(𝑡) ,

where 𝑦(𝑡) ∶= sin 𝜃(𝑡), we obtain uniform estimates for all derivatives of the graph func-

tions 𝑥(⋅, 𝑡) (cf. [Sta96b]). To obtain corresponding estimates when 𝑑 = 1, we instead rep-

resent the solution as a graph over the “tilted” line through (−1, 0) and (cos(𝜃(𝑇)), sin(𝜃(𝑇)))

and use the “gradient estimate” 𝜃 ≥ 0. The Arzelà–Ascoli theorem and monotonicity of

the flow now ensure that 𝑥(⋅, 𝑡) takes a smooth limit as 𝑡 → 𝑇, at which point the flow

can be smoothly continued by the above short time existence argument, violating the

maximality of 𝑇. We conclude that 𝜃(𝑡) → 𝜋 as 𝑡 → 𝑇.

It now follows from (3) that 𝜃(𝑡) → 𝜋 as 𝑡 → 𝑇. When 𝑑 = 1, we conclude that Γ̂𝜌𝑡
contracts to 𝑜 as 𝑡 → 𝑇. Note that in this case 𝑇 < ∞ since the lower barriers 𝐶𝜃−(𝑡) contract

to 𝑜 in finite time. A more or less standard “type-I vs type-II" blow-up argument (cf. [LZ])

then guarantees convergence to the half Grim Reaper after performing a standard type-II

blow-up. (The flow must be type-II because the limit of a standard type-I blow-up — a

shrinking semi-circle — violates the Dirichlet boundary condition.)

When 𝑑 < 1, we conclude that Γ̂𝜌𝑡 converges uniformly to the minimizing arc {(𝑥, 0) ∶

𝑥 ∈ [−1,−𝑑]} as 𝑡 → 𝑇. But then, for large enough 𝑡, Γ̂𝜌𝑡 may be represented as a graph over

the 𝑥-axis with small gradient, at which point parabolic regularity, short-time existence

and the Arzelà–Ascoli theorem guarantee that 𝑇 = ∞ and Γ̂𝜌𝑡 converges uniformly in the

smooth topology to the minimizing arc.

Finally, since 𝜃 is monotone, there is a unique time −𝛼𝜌 > 0 such that 𝜃(−𝛼𝜌) =
𝜋
2

;

since the Neumann–Neumann circle 𝐶̌𝜃𝜌 , where sin 𝜃𝜌 =
2 sin 𝜌
1+sin2 𝜌

, lies above Γ𝜌, we find (by
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suitably time translating the upper barrier {𝐶̌𝜃+(𝑡)}𝑡∈(−∞,0), as in [BL23]) that

𝛼𝜌 <
1
2 log (

2 sin 𝜌
1 + sin2 𝜌

) .

Time-translating the solution {Γ̂𝜌}𝑡∈[0,∞) by 𝛼𝜌 now yields the desired very old (but not

ancient) solution {Γ𝜌𝑡 }𝑡∈[𝛼𝜌,∞).

Taking the limit as 𝜌 → 0 of these very old (but not ancient) solutions yields our desired

ancient solution.

Theorem 3.2. Given any 𝑑 ∈ (0, 1], there exists a convex ancient Dirichlet–Neumann curve

shortening flow {Γ𝑡}𝑡∈(−∞,𝜔𝑑) in the upper half disc 𝐷+ which converges uniformly in the

smooth topology to the unstable critical arc [−𝑑, 1] × {0} as 𝑡 → −∞. When 𝑑 < 1, 𝜔𝑑 = ∞

and {Γ𝑡}𝑡∈(−∞,𝜔𝑑) converges uniformly in the smooth topology as 𝑡 → +∞ to the minimizing

arc [−1, −𝑑] × {0}. When 𝑑 = 1, 𝜔𝑑 < ∞ and Γ𝜌𝑡 converges uniformly as 𝑡 → 𝜔𝑑 to the point 𝑜,

and there are a sequence of times 𝑡𝑗 ↗ 𝜔𝑑, right endpoints 𝑝𝑗 ∈ Γ𝜌𝑡𝑗 , and scales 𝜆𝑗 ↗∞ such

that the sequence {𝜆𝑗(Γ
𝜌
𝜆−2𝑗 𝑡+𝑡𝑗

− 𝑝𝑗)}𝑡∈[𝜆2𝑗 (𝛼𝜌−𝑡𝑗),𝜆2𝑗 (𝜔𝜌−𝑗−1−𝑡𝑗)) converges locally uniformly in the

smooth topology as 𝑗 → ∞ to the right half of the downwards translating Grim Reaper.

Proof. Given any sequence of angles 𝜌𝑗 ↘ 0, consider the sequence of corresponding very

old (but not ancient) solutions {Γ𝑗𝑡 }𝑡∈[𝛼𝑗 ,∞) constructed in Lemma 3.1. Differentiating the

Neumann boundary condition and applying the estimate (2) yields the inequality

𝜃𝑡 = 𝜅 ≥ sin 𝜃
𝑎 + cos 𝜃

on each of these solutions. It follows, by the ODE comparison principle, that each

{Γ𝑗𝑡 }𝑡∈[𝛼𝑗 ,∞) satisfies

𝜃 ≤ 𝜃− (4)

for 𝑡 ∈ [𝛼𝑗, 0], where we recall that 𝜃− is the solution to (1). Since 𝜃− is independent of 𝑗,

this implies uniform estimates for the gradient on any time interval of the form [−∞,−𝑇],

𝑇 > 0, when we represent {Γ𝑗𝑡 }𝑡∈[𝛼𝑗 ,−𝑇] graphically over the 𝑥-axis. By parabolic regularity

theory and the Arzelà–Ascoli theorem, we may then extract a smooth limit of the very old
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solutions {Γ𝑗𝑡 }𝑡∈(−∞,0) after passing to a subsequence. This limit is ancient, since 𝛼𝜌 → −∞

as 𝜌 → 0, reaches the point (0, 1) at time zero (since each Γ𝑗𝑡 intersects the convex domain

bounded by 𝐶̌𝜃+(𝑡) for each 𝑡 ∈ (−∞, 0)), and converges uniformly in the smooth topology

as 𝑡 → −∞ to the unstable Dirichlet–Neumann geodesic from 𝑜 due to the estimate (4)

(and parabolic regularity theory). The longtime behaviour follows from the argument

presented above.

3.1 Asymptotics

We now prove precise asymptotics for the height of the ancient solution constructed

in Theorem 3.2, assuming the initial conditions for the old-but-not-ancient solutions

{Γ𝜌𝑡 }𝑡∈[𝛼𝜌,𝜔𝑑) are given by the hairclip timeslices Γ𝜌 = H𝜆𝜌
𝑡𝜌 ∩ 𝐷.

Lemma 3.3. On each old-but-not-ancient solution {Γ𝜌𝑡 }𝑡∈[𝛼𝜌,𝜔𝑑),

𝜅
cos 𝜃 ≥ 𝜆𝜌 tan(𝜆𝜌𝑦) .

Proof. Note that equality holds on the initial curve Γ𝜌 = H𝜆𝜌
𝑡𝜌 ∩ 𝐷. Thus, given any 𝜇 < 𝜆𝜌,

the function

𝑤 ∶= 𝜅
cos 𝜃 − 𝜇 tan(𝜇𝑦)

is strictly positive on the initial curve Γ𝜌, except at the left endpoint, where it vanishes.

Observe that

𝑤𝑠 =
𝜅𝑠

cos 𝜃 + sin 𝜃 ( 𝜅2
cos2 𝜃

− 𝜇2 sec2(𝜇𝑦)) .

In particular, at the left endpoint on the initial curve,

𝑤𝑠 =
𝜅𝑠

cos 𝜃 − 𝜇2 sin 𝜃 = (𝜆2𝜌 − 𝜇2) sin 𝜃 > 0 .

Thus (since 𝑤𝑠 is continuous at 𝑜 at time zero), if 𝑤 fails to remain non-negative at positive

times, then this failure must occur immediately following some interior time 𝑡∗ > 0.

There are three possibilities: 1. 𝑤𝑠(⋅, 𝑡∗) = 0 at the left endpoint, 2. 𝑤(⋅, 𝑡∗) = 0 at the right

endpoint; or 3. 𝑤(⋅, 𝑡∗) = 0 at some interior point, 𝑝∗.
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The first of the three possibilities is immediately ruled out by the Hopf boundary point

lemma.

In the second case, the Hopf boundary point lemma and the Neumann boundary

condition yield, at the right endpoint,

0 > 𝑤𝑠 =
𝜅

cos 𝜃 + sin 𝜃 ( 𝜅2
cos2 𝜃

− 𝜇2(1 + tan2(𝜇𝑦))) = 𝜇 tan(𝜇𝑦) − 𝜇2𝑦 ≥ 0 ,

which is absurd.

In the final case (having ruled out the first two), 𝑤 must attain a negative interior

minumum just following time 𝑡∗. But at such a point, 𝑤 < 0, 𝑤𝑠 = 0 and

0 ≥ (𝜕𝑡 − ∆)𝑤

= (𝜕𝑡 − ∆)𝜅
cos 𝜃 − 𝜅(𝜕𝑡 − ∆) cos 𝜃

cos2 𝜃
+ 2 ( 𝜅

cos 𝜃)𝑠
(cos 𝜃)𝑠
cos 𝜃 − (𝜕𝑡 − ∆)(𝜇 tan(𝜇𝑦)) .

Since

(𝜕𝑡 − ∆)𝜅 = 𝜅3 , (𝜕𝑡 − ∆) cos 𝜃 = 𝜅2 cos 𝜃 and (𝜕𝑡 − ∆)𝑦 = 0 ,

we conclude that

0 ≥ − 2 ( 𝜅
cos 𝜃)𝑠

𝜅 tan 𝜃 + 2𝜇 tan(𝜇𝑦)(𝜇 tan(𝜇𝑦))𝑠 sin 𝜃

= 2(𝜇 tan(𝜇𝑦))𝑠 sin 𝜃 (𝜇 tan(𝜇𝑦) −
𝜅

cos 𝜃)

= 2𝜇2 sec2(𝜇𝑦) (𝜇 tan(𝜇𝑦) − 𝜅
cos 𝜃)

> 0 ,

which is absurd.

Having ruled out each of the three possibilities, we conclude that 𝑤 ≥ 0 for any 𝜇 < 𝜆𝜌.

The claim follows.

In the limit as 𝜌 → 0, we then obtain

𝜅
cos 𝜃 ≥ 𝜆0 tan(𝜆0𝑦) (5)

on the ancient solution, where 𝜆0 = lim𝜌→0 𝜆𝜌.
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We now find that, as a graph over the 𝑥-axis (for 𝑡 sufficiently negative),

(sin(𝜆0𝑦))𝑡 = 𝜆 cos(𝜆0𝑦)𝑦𝑡 = 𝜆0 cos(𝜆0𝑦)
√
1 + 𝑦2𝑥𝜅 = 𝜆0 cos(𝜆0𝑦)

𝜅
cos 𝜃 ≥ 𝜆20 sin(𝜆𝑦) ,

and hence
(
e−𝜆20𝑡 sin(𝜆0𝑦)

)
𝑡
≥ 0 ,

which implies that the limit

𝐴(𝑥) ∶= lim
𝑡→−∞

e−𝜆20𝑡𝑦(𝑥, 𝑡)

exists in [0,∞) for each 𝑥 ∈ (−𝑑, 1).

Recall that 𝜃−(𝑡) ∼ e
𝑡

𝑎+1 for 𝑡 ∼ −∞. In particular, 𝜃(𝑡) ≤ 𝜃−(𝑡) is integrable. We will

exploit this fact to show that the limit 𝐴(𝑥) is positive (at least near 𝑥 = 1). First, we shall

show that 𝜅 is integrable.

Lemma 3.4. There exist 𝜌0 > 0, 𝑇 > −∞, 𝐶 < ∞ and 𝛿 > 0 such that

𝜅 ≤ 𝐶e𝛿𝑡 for 𝑡 ≤ 𝑇

on each old-but-not-ancient solution {Γ𝜌𝑡 }𝑡∈[𝛼𝜌,𝜔𝑑) with 𝜌 < 𝜌0.

Proof. Since

(𝜕𝑡 − ∆) sin 𝜃 = 𝜅2 sin 𝜃 ,

we find that

(𝜕𝑡 − ∆) 𝜅
sin 𝜃 = 2∇ 𝜅

sin 𝜃 ⋅
∇ sin 𝜃
sin 𝜃 .

So the maximum principle guarantees that the maximum of 𝜅
sin 𝜃

occurs at the parabolic

boundary. Now, at the left boundary point, 𝜅
sin 𝜃

= 0, while at the right,

( 𝜅
sin 𝜃)𝑠

= 𝜅
sin 𝜃 (

𝜅𝑠
𝜅 − cos 𝜃𝜅

sin 𝜃 ) = 𝜅
sin 𝜃

(1 − 𝜅
tan 𝜃

) .

By (4), we can find 𝑇 > −∞ (independent of 𝜌) so that cos 𝜃(𝑡) ≥ 1
2

for all 𝑡 ≤ 𝑇. We thereby

conclude that
𝜅

sin 𝜃 ≤ max {2,max
𝑡=𝛼𝜌

𝜅
sin 𝜃 }
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for all 𝑡 ≤ 𝑇. Since max𝑡=𝛼𝜌
𝜅

sin 𝜃
≤ 𝜆𝜌 tanh(𝜆𝜌(1 + 𝑑)) → 𝜆20 < 1 as 𝜌 → 0, we find that

𝜅 ≤ 2 sin 𝜃 ≤ 2 sin 𝜃− (6)

for all 𝜌 sufficiently small. The claim follows since 𝜃− is comparable to 21+
𝑎

1+𝑎 e
𝑡

1+𝑎 as

𝑡 → −∞.

Corollary 3.5. There exist 𝑇 > −∞, 𝐶 < ∞ and 𝛿 > 0 such that

𝜅
𝑦 ≤ 𝜆20 + 𝐶e𝛿𝑡 for 𝑡 < 𝑇

on the ancient solution.

Proof. Given 𝜌 < 𝜌0, set

𝜂𝜌(𝑡) ∶= 𝜆2𝜌 (exp
(𝐶2
2𝛿
e2𝛿𝑡

)
− 1) ,

where 𝜌0, 𝐶 and 𝛿 are the constants from Lemma 3.4, so that

𝜂′𝜌
𝜆2𝜌 + 𝜂𝜌

= 𝐶2e2𝛿𝑡

and hence, for 𝑡 < 𝑇,

(𝜕𝑡 − ∆)
(
𝜅 − (𝜆2𝜌 + 𝜂𝜌)𝑦

)
= 𝜅3 − 𝜂′𝜌𝑦

≤ 𝐶2e2𝛿𝑡𝜅 −
𝜂′𝜌

𝜆2𝜌 + 𝜂𝜌
(𝜆2𝜌 + 𝜂𝜌)𝑦

= 𝐶2e2𝛿𝑡
(
𝜅 − (𝜆2𝜌 + 𝜂𝜌)𝑦

)
.

Since 𝜅 − (𝜆2𝜌 + 𝜂𝜌)𝑦 = 0 at the left endpoint and (𝜅 − (𝜆2𝜌 + 𝜂𝜌)𝑦)𝑠 = 𝜅 − (𝜆2𝜌 + 𝜂𝜌)𝑦 at the right

endpoint, we find that

𝜅 − (𝜆2𝜌 + 𝜂𝜌)𝑦 ≤ exp (𝐶
2

2𝛿 e
2𝛿𝑡)

(
𝜅 − (𝜆2𝜌 + 𝜂𝜌)𝑦

)|||||𝑡=𝛼𝜌

on each of the old-but-not-ancient solutions with 𝜌 < 𝜌0, and hence, taking 𝜌 → 0,

𝜅 ≤ (𝜆20 + 𝜂0)𝑦

on the ancient solution. The claim follows since, by the mean value theorem, we may

estimate 𝜂0 ≤
𝜆20𝐶

4

4𝛿2
e2𝛿𝑡 for 𝑡 < 0.
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By the estimate (4) and Corollary 3.5, we can find 𝑇 > −∞, 𝐶 < ∞ and 𝛿 > 0 such that

our ancient solution satisfies

(log 𝑦)𝑡 =
𝜅

𝑦 cos 𝜃
≤ 1
√
1 − 4𝐶2e2𝛿𝑡

𝜅
𝑦
≤ (1 + 8𝐶2e2𝛿𝑡)𝜅

𝑦
≤ 𝜆20 + 𝐶4e2𝛿𝑡

for 𝑡 < 𝑇. Integrating from time 𝑡 < 𝑇 to time 𝑇 and rearranging then yields

𝑦 ≥ 𝐵e𝜆20𝑡 , 𝐵 > 0 .

Since the gradient of the solution is bounded by tan 𝜃 ≤ 𝐶e𝜆20𝑡 for 𝑡 ≤ 𝑇, this guarantees

that the limit 𝐴(𝑥) ∶= e−𝜆20𝑡𝑦(𝑥, 𝑡) is positive for all 𝑥 > 𝑥0 where 𝑥0 < 1.

4 Uniqueness

4.1 Unique asymptotics

Consider now any convex ancient Dirichlet–Neumann curve shortening flow {Γ𝑡}𝑡∈(−∞,𝜔)

with Dirichlet endpoint 𝑜 ∈ 𝐷 ⧵ {0}.

Lemma 4.1. Up to a time-translation, a rotation about the origin, and a reflection about

the 𝑥-axis, we may arrange that

– 𝑜 = (−𝑑, 0) for some 𝑑 ∈ (0, 1],

– (0, 1) ∈ Γ0,

– Γ𝑡 lies in the upper half disc for all 𝑡, and

– Γ𝑡 → {(𝑥, 0) ∶ 𝑥 ∈ [−𝑑, 1]} uniformly in the smooth topology as 𝑡 → −∞.

Proof. Up to a time translation, we may arrange that 𝜔 > 0. Up to rotation and a reflection,

we may then arrange that 𝑜 = (−𝑑, 0), 𝑑 ∈ (0, 1], and (cos 𝜃(0), sin 𝜃(0)) lies in the upper

half-disc. This ensures that (cos 𝜃(𝑡), sin 𝜃(𝑡)) lies in the upper half-disc for all 𝑡 < 0. Indeed,

if 𝜃(𝑡∗) = 0 for some 𝑡∗ < 0, then convexity and the boundary conditions guarantee that

Γ𝑡∗ = {(𝑥, 0) ∶ 𝑥 ∈ [−𝑑, 1]}; so {Γ𝑡}𝑡∈(−∞,𝜔) is the stationary unstable critical arc.
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Denote by Ω𝑡 the region lying above Γ𝑡 ∪ {(0, 𝑥) ∶ 𝑥 ∈ [−1,−𝑑]} and set Ω ∶= ∪𝑡<𝜔Ω𝑡. The

first variation formula for enclosed area yields

𝑑
𝑑𝑡 area(Ω𝑡) = −∫

Γ𝑡
𝜅 𝑑𝑠 = −(𝜃(𝑡) − 𝜃(𝑡))

and hence

area(Ω𝑡) = area(Ω0) + ∫
0

𝑡
(𝜃(𝜏) − 𝜃(𝜏)) 𝑑𝜏 .

Since area(Ω) is finite, 𝜃 − 𝜃 must converge to zero along some sequence of times 𝑡𝑗 → −∞.

Since 𝜃 > 0, this ensures thatΩ is the upper half-disc, and hence Γ𝑡 converges uniformly to

the unstable critical arc as 𝑡 → −∞. Parabolic regularity theory then guarantees smooth

convergence.

Since the flow is monotone, Γ𝑡 must then lie in the upper half disc for all 𝑡. We have

thus shown, when 𝑑 < 1, that 𝜔 = ∞ and Γ𝑡 converges smoothly to the minimizing arc

as 𝑡 → ∞ and, when 𝑑 = 1, that 𝜔 < ∞ and Γ𝑡 converges uniformly to 𝑜 as 𝑡 → 𝜔. Up to a

further time-translation, we may therefore arrange that the point (0, 1) lies in Γ0.

Lemma 4.2. For every 𝑡 ∈ (−∞,𝜔), 𝜅𝑠 > 0.

Proof. Since 𝜅𝑠 ≥ 0 at both endpoints, the claim may be obtained by applying the maxi-

mum principle exactly as in [BL23, Lemma 3.3].

Proposition 4.3. There exists 𝐴 ∈ [0,∞) such that

𝑦(𝑥, 𝑡) = 𝐴e𝜆20𝑡(sinh(𝜆(𝑥 + 𝑑)) + 𝑜(1)) (7)

uniformly as 𝑡 → −∞.

Proof. Denote by {Γ∗𝑡 }𝑡∈(−∞,𝜔) the constructed solution. Since Γ0 and Γ∗0 both contain the

point (0, 1), the contrapositive of the avoidance principle guarantees that Γ𝑡 must intersect

Γ∗𝑡 away from 𝑜 at every time 𝑡 < 0. It follows that the value of 𝜃 on the second solution

must at no time exceed the value of 𝜃∗ on the constructed solution. But then, applying

the gradient bound (3) and estimating sin 𝜃∗ ≤ 𝐴e𝜆20𝑡 + 𝑜(e𝜆20𝑡) yields

𝑏
1 + 𝑎𝑦 ≤

𝑏 sin 𝜃
1 + 𝑎 cos 𝜃

≤ tan 𝜃 ≤ 2 sin 𝜃 ≤ 2 sin 𝜃∗ ≤ 2(𝐴e𝜆20𝑡 + 𝑜(e𝜆20𝑡))
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as 𝑡 → −∞, and hence, when 𝑑 < 1,

lim sup
𝑡→−∞

e𝜆20𝑡𝑦(𝑡) < ∞. (8)

Since the height function 𝑦 satisfies the (intrinsic) Dirichlet–Robin heat equation

⎧

⎨
⎩

(𝜕𝑡 − ∆)𝑦 = 0

𝑦 = 0 at 𝑜 , 𝑦𝑠 = 𝑦 at (cos 𝜃, sin 𝜃) ,

we may apply Alaoglu’s theorem and elementary Fourier analysis as in [BL23, Proposition

3.4] to obtain (7).

When 𝑑 = 1, we need to work a little harder to obtain (8): at any time 𝑡 < 0, either

𝑦(𝑡) ≤ 𝑦∗(𝑡), as desired, or 𝑦(𝑡) > 𝑦∗(𝑡). In the latter case, the avoidance principle and

the Dirichlet condition ensure that 𝑦∗(⋅, 𝑡) − 𝑦(⋅, 𝑡) attains a positive maximum at an

interior point. Since the Dirichlet–Neumann circular arc 𝐶𝜃(𝑡) lies below Γ𝑡 (with common

boundary), we can find some 𝑡0 > 𝑡 and 𝑥0 ∈ (−1, cos 𝜃(𝑡0)) such that the advanced arc

𝐶𝜃(𝑡0) touches Γ∗𝑡 from above at the interior point (𝑥0, 𝑦∗(𝑥0, 𝑡)), and hence

𝑦𝜃(𝑡0)(𝑥0) = 𝑦∗(𝑥0, 𝑡) =∶ 𝐴0 and (𝑦𝜃(𝑡0))𝑥(𝑥0) = 𝑦∗𝑥(𝑥0, 𝑡) =∶ 𝐵0 ,

where

𝑦𝜃(𝑥) = 𝑟(𝜃) −
√
𝑟2(𝜃) − (𝑥 + 1)2 , 𝑟(𝜃) ∶= 1 + cos 𝜃

sin 𝜃 .

That is,

𝑟0 −
√
𝑟20 − (𝑥0 + 1)2 = 𝐴0 and 𝑥0 + 1

√
𝑟20 − (𝑥0 + 1)2

= 𝐵0 ,

where 𝑟0 ∶= 𝑟(𝜃(𝑡0)). Rearranging, these become

𝑥0 + 1 = 𝐵0𝑟0√
1+ 𝐵20

and 𝑟0 = 𝐴0 +
𝑥0 + 1
𝐵0

= 𝐴0 +
𝑟0√
1+ 𝐵20

,

which together imply that

(
√
1 + 𝐵20 − 1) 𝑟0 = 𝐴0

√
1+ 𝐵20 =

𝐴0
𝑥0 + 1𝐵0𝑟0 .
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Eliminating 𝑟0 and rearranging, we conclude that

𝐴0
(𝑥0 + 1)𝐵0

= 1

1 +
√
1 + 𝐵20

. (9)

We claim that this is only possible (when −𝑡 is sufficiently large) if 𝑥0 is close to one.

Indeed, the asymptotic linear analysis yields, for some 𝐴 ∈ (0,∞),

⎧

⎨
⎩

𝐴0 = 𝑦∗(𝑥0, 𝑡) = 𝐴e𝜆20𝑡 (sinh(𝜆0(𝑥0 + 1)) + 𝑜(1))

𝐵0 = 𝑦∗𝑥(𝑥0, 𝑡) = 𝐴𝜆0e𝜆
2
0𝑡 (cosh(𝜆0(𝑥0 + 1)) + 𝑜(1))

as 𝑡 → −∞ .

(Note that, recalling (6), we may estimate 𝑦∗𝑥𝑥 ≲ 𝜅∗ ≤ 2 sin 𝜃∗ ≤ 𝐶e𝜆20𝑡, which justifies the

uniform 𝐶1 convergence of e−𝜆20𝑡𝑦∗(⋅, 𝑡).) Recalling (9), we conclude that

tanh(𝜆0(𝑥0 + 1))
𝜆0(𝑥0 + 1)

→ 1
2 as 𝑡 → −∞ .

This implies that 𝑥0 = 1 − 𝑜(1) as 𝑡 → −∞ and hence, as 𝑡 → −∞,

sin 𝜃(𝑡) ≤ sin 𝜃(𝑡0) = (1 + 𝑥(𝑡0))𝑟−10 ∼ (1 + 𝑥0)𝑟−10 = 𝐵0√
1+ 𝐵20

≤ 𝐵0 ∼ e𝜆20𝑡

as desired.

4.2 Uniqueness

Uniqueness may now be established using the avoidance principle, as in [BL23, Proposi-

tion 3.5]. Combined with Theorem 3.2 and the asymptotics (7), this completes the proof

of Theorem 1.1.
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Abstract: We introduce a new class of billiard-like system, “bouncing outer

billiards", which are 3-dimensional cousins of outer billiards of Neumann

and Moser. We prove that the bouncing outer billiards system on a smooth

convex body has at least four 1-parameter families of fixed points. We also

fully describe the dynamics of bouncing outer billiards on a line segment.

Finally, we carry out numerical experiments suggesting very complicated

(non-ergodic) behavior for several shapes, including the square and an ellipse.
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1 Introduction

Outer billiards are dynamical systems introduced by Neumann in 1959 [Neu58] and

then popularized by Moser in his lecture on stability of the solar system [Mos73, Mos78].
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Figure 1: Bouncing Outer Billiards Dynamics

The field of outer billiards became very active about 20 years ago. In this paper, we

suggest similar more complicated billiard systems called bouncing outer billiards, which

we proceed to define.

Let 𝑆 ⊂ ℝ2 be a compact convex set with smooth boundary. The visibility domain 𝑉𝑆
consists of all pairs (𝑝, 𝑣) where 𝑝 ∈ ℝ2 ⧵ 𝑖𝑛𝑡(𝑆), and 𝑣 ∈ 𝑇1𝑝ℝ2 is a unit vector based at 𝑝

such that the ray 𝑅 spanned by 𝑣 has a nonempty intersection with 𝑆.

We now define the dynamical system 𝐹𝑆 ∶ 𝑉𝑆 → 𝑉𝑆 in the following way. Given an

initial condition (𝑝, 𝑣) ∈ 𝑉𝑆 the corresponding ray 𝑅 reflects off the convex body at a point

𝑤 as 𝑅′ in the usual way — the angle of incidence equals the angle of reflection. Next we

apply the outer billiard law and consider the point 𝑝′ ∈ ⃖⃗𝑅′ such that ‖𝑝 −𝑤‖ = ‖𝑝′ −𝑤‖ as

indicated in Figure 1.

Finally, we will use the visibility angle reflection rule as follows. Let ⃖⃗𝐻 and ⃖⃗𝐾 be the

rays at 𝑝′ which are tangent to 𝑆. Let 𝑢 be the unit vector based at 𝑝′ pointing to 𝑤 (in the
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direction opposite to 𝑅′). Clearly, 𝑢 is inside the angle defined by ⃖⃗𝐻 and ⃖⃗𝐾. Let 𝑣′ be the

reflection of 𝑢 across the angle bisector of ∠(⃖⃗𝐻, ⃖⃗𝐾) as shown on Figure 1. This completes

the definition of bouncing billiard dynamics.

𝐹𝑆(𝑝, 𝑣) = (𝑝′, 𝑣′).

We will drop the subscript 𝑆 and simply write 𝐹 when no confusion is possible.

Remark 1.1. It is easy to see that if 𝑅 is tangent to 𝑆 then we have the classical outer billiard

dynamics. Hence, the outer billiard is simply the restriction 𝐹|𝜕𝑉𝑆 of the bouncing outer

billiard to the boundary of the visibility space.

Remark 1.2 If 𝑆 is not smooth, e.g. a polygon, then the angle reflection law is undefined

for some initial conditions. However, such initial conditions form a set of zero Lebesgue

measure since the boundary of a convex body is differentiable almost everywhere. Hence,

bouncing billiard dynamics still makes sense for almost every initial condition, but the

above relation to outer billiard is obscured.

Remark 1.3 S. Tabachnikov considered unfolding the outer billiard map into a family of

symplectomorphisms given by the first two steps in the definition of the bouncing outer

billiard [Tab95]. However, to the best of our knowledge, the visibility angle reflection rule

was not considered before.

In the next section, we establish the existence of families of fixed points for bouncing

outer billiards. Then, we fully describe integrable twist map dynamics of bouncing outer

billiards on a line segment. Finally, we present results of our numerical explorations in

the last section.

We would like to pose two questions.

Question 1.2. Does every orbit of the bouncing outer billiard on a smooth convex body

remain bounded?

We were not able to detect any unbounded orbits numerically.
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It is easy to check that bouncing outer billiards are conservative, that is, they preserve

the Lebesgue measure on 𝑉𝑆 (see Appendix A).

Question 1.3. Does there exist positive volume ergodic components?

We have found some orbits which appear to fill up 2-dimensional sets. However, in

the 3-dimensional space 𝑉𝑆, such orbits seem to be confined to 2-dimensional surfaces.

Acknowledgements. This paper is a result of an REU project of summer 2024 at The

Ohio State University. The authors are very grateful to Sergei Tabachnikov who provided

several illuminating remarks on earlier drafts. The authors would like to acknowledge

the support provided by the NSF grant DMS-2247747.

2 Fixed points

A natural question for any dynamical system is whether or not there exist fixed points,

and if so, how to find them.

Theorem 2.1. For any convex 𝑆 with 𝐶3 boundary, the associated billiard map has uncount-

ably many fixed points, which come in at least four local 1-parameter families.

Clearly, a point (𝑝, 𝑣) can only be a fixed point if 𝑣 is the bisector of the angle formed

by the tangent rays from 𝑝 to 𝑆. Therefore, given a point 𝑝 ∉ 𝑆, consider the angle given

by the two tangent lines from 𝑝 to 𝑆 and let 𝑣𝑝 ∈ 𝑇𝑝ℝ2 be the vector spanning the angle

bisector. The idea of the proof is to find a curve connecting two points, say 𝑝 and 𝑞 such

that the ray of 𝑣𝑝 “bounces to the left” and the ray of 𝑣𝑞 “bounces to the right.” Then, by

the intermediate value theorem, there exists a fixed point (𝑟, 𝑣𝑟) on such a curve.

We note right away that if 𝜕𝑆 has a circle subarc with constant curvature, then there

is a whole 2-parameter family of fixed points in proximity of such arc. Hence we can

assume, due to 𝐶3 regularity of the boundary, that there exists a subarc of 𝜕𝑆 with strictly

increasing curvature, as well as a subarc with strictly decreasing curvature.

The following is our main lemma.
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Lemma 2.2. Let 𝑓∶ [𝑠0, 𝑠2] → 𝜕𝑆 be a counter-clockwise arc-length parameterization of

a subarc of 𝜕𝑆 along which the curvature is strictly increasing. Assume that this arc is

sufficiently short so that the tangent lines at 𝑓(𝑠0) and 𝑓(𝑠2) intersect at a point 𝑝 as indicated

on Figure 2.

Then the angle bisector ray spanned by 𝑣𝑝 will “bounce off in the direction of 𝑓(𝑠0)”, that

is, after reflecting off 𝑆, the ray will intersect the tangent segment 𝑎.

Proof. Let 𝑘(𝑠) be the curvature at 𝑓(𝑠), and let 𝐾(𝑠) = ∫ 𝑠𝑠0 𝑘(𝑡)𝑑𝑡. Since we are using arc-

length parameterization,𝐾(𝑠) is the angle between the tangent lines at 𝑓(𝑠0) and 𝑓(𝑠). There

is a unique 𝑠1 such that 𝐾(𝑠1) = 𝐾(𝑠2)∕2. Then the tangent line at 𝑓(𝑠1) is perpendicular to

𝑣𝑝. Hence, to prove the claim of the lemma it suffices to show that the distance from 𝑓(𝑠1)

to the tangent line 𝑏 is less than the distance from 𝑓(𝑠1) to the tangent line 𝑎. This can be

expressed by the following inequality:

∫
𝑠2

𝑠1
sin(𝐾(𝑠2) − 𝐾(𝑠))𝑑𝑠 < ∫

𝑠1

𝑠0
sin(𝐾(𝑠))𝑑𝑠 (∗)

To prove this inequality, we can start with the following statements by change of variables:

∫
𝑠2

𝑠1
sin(𝐾(𝑠2) − 𝐾(𝑠))𝑘(𝑠)𝑑𝑠 = ∫

𝐾(𝑠1)

0
𝑠𝑖𝑛(𝑢)𝑑𝑢

∫
𝑠1

𝑠0
sin(𝐾(𝑠))𝑘(𝑠)𝑑𝑠 = ∫

𝐾(𝑠1)

0
𝑠𝑖𝑛(𝑣)𝑑𝑣

This gives

∫
𝑠2

𝑠1
𝑘(𝑠) sin(𝐾(𝑠2) − 𝐾(𝑠))𝑑𝑠 = ∫

𝑠1

𝑠0
𝑘(𝑠) sin(𝐾(𝑠))𝑑𝑠

Since curvature 𝑘∶ [𝑠0, 𝑠2] → ℝ+ is increasing the posited inequality follows proving the

lemma.

Proof of Theorem 2.1. Consider a local minimum (or maximum) of the curvature of 𝜕𝑆.

(By the 4-vertex theorem at least four local extrema exist.) On one side there is a short

arc with increasing curvature and on the other side there is short arc with decreasing

curvature. Applying the above lemma to the first arc we obtain an initial condition (𝑝, 𝑣𝑝)
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Figure 2: Fixed Point Lemma Setup
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which “bounces to the left” and similarly, applying (the analogue of) the lemma to the

arc with increasing curvature we obtain an initial condition (𝑞, 𝑣𝑞) which “bounces to the

right.” It remains to connect 𝑝 and 𝑞 by an arc disjoint with 𝑆 an apply the intermediate

value theorem.

It is clear from the above proof that each vertex of 𝜕𝑆 yields a 1-parameter family

of fixed points. These families could merge away from 𝑆. We would like to pose the

following question.

Question 2.3. Let 𝑆 be a convex domain with 𝐶3 boundary. Does every closed curve around

it contain at least one fixed point of the bouncing outer billiard map on 𝑆?

S. Tabachnikov considered a question of very similar flavor and eventually found a

counterexample [Tab12].

3 Bouncing on a Line Segment

3.1 Parameterizing the Dynamics

This section focuses on the behavior of the bouncing outer billiards system on a line

segment. Since all segments are congruent up to scaling, we only consider the segment

on the 𝑥-axis from -1 to 1. For convenience, we will consider only initial points 𝑝 with

positive 𝑦-values, as points with negative 𝑦-values are symmetric.

Recall that we denote the visibility domain by 𝑉. Consider initial condition (𝑝, 𝑣) ∈ 𝑉,

where 𝑝 = (𝑥, 𝑦), and let 𝜃 = arg(𝑣) + 𝜋
2

. The initial conditions define a ray from the point

𝑝 with slope tan(𝜃 − 𝜋
2
). Using this equation, we can derive:

𝑤 = (𝑥 + 𝑦 tan(𝜃), 0)

𝑝′ = (𝑥′, 𝑦′) = (𝑥 + 2𝑦 tan(𝜃), 𝑦)
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Note that the 𝑦-coordinate of the initial point will remain constant on the orbit. From

this point forward, we will refer to the 𝑦-value of the initial point as height and denote it

by ℎ.

Next, we obtain that the angle from 𝑝′ to the left and right endpoints of the segment

are given by arctan
( 1−𝑥′

ℎ

)
and arctan

(−1−𝑥′
ℎ

)
, respectively. Also, the angle from 𝑝′ to 𝑤 is

given by −𝜃. Applying the visibility angle reflection rule yields:

𝜃′ = arctan (1 − 𝑥′
ℎ ) + 𝜃 + arctan (−1 − 𝑥′

ℎ )

Summing up, the dynamics, 𝐹(𝑥, ℎ, 𝜃) = (𝑥′, ℎ, 𝜃′) is given by:

𝑥′ = 𝑥 + 2ℎ tan(𝜃)

𝜃′ = 𝜃 + arctan (1 − 𝑥′
ℎ ) + arctan (−1 − 𝑥′

ℎ )
(1)

3.2 A Second Invariant

In Section 3.1, we observed that the height ℎ is invariant. In this section, we will demon-

strate the existence of a second invariant.

We define a new coordinate system in which it becomes easier to see a second invari-

ant. First, consider the change of coordinates 𝑔(𝑥, ℎ, 𝜃) = (𝑤, ℎ, 𝑑) given by

⎧

⎨
⎩

𝑤 = 𝑥 + ℎ tan(𝜃)

𝑑 = ℎ tan(𝜃)
(2)

with the ℎ-coordinate remaining unchanged. The coordinate 𝑤 represents the 𝑥-value of

the bounce point and the coordinate 𝑑 represents the signed difference between the 𝑤

and the 𝑥-value of the initial point. The inverse coordinate transformation is given by:

⎧

⎨
⎩

𝑥 = 𝑤 − 𝑑

𝜃 = arctan
(𝑑
ℎ

) (3)
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Now, we seek to understand the dynamics in these new coordinates. Let 𝑓(𝑤, ℎ, 𝑑) =

𝑔◦𝐹◦𝑔−1(𝑤, ℎ, 𝑑). We let 𝑓(𝑤, ℎ, 𝑑) be denoted by (𝑤′, ℎ, 𝑑′), which we wish to write in terms

of 𝑤, ℎ, and 𝑑. First, combining (1) and (2) yields:

𝑥′ = 𝑤 + 𝑑 (4)

Now, we will use (1) to rewrite the equation for 𝑑′. Following this, we simplify and

use (2) and (4) to rewrite all instances of 𝑥′ and ℎ tan(𝜃) in terms of 𝑤 and 𝑑.

𝑑′ = ℎ tan(𝜃′)

= ℎ tan (𝜃 + arctan (1 − 𝑥′
ℎ ) + arctan (−1 − 𝑥′

ℎ ))

= ℎ
⎛
⎜
⎜
⎝

tan(𝜃) + −2𝑥′ℎ
1+ℎ2−(𝑥′)2

1 + 2𝑥′ℎ
1+ℎ2−(𝑥′)2

⎞
⎟
⎟
⎠

= ℎ tan(𝜃) + ℎ3 tan(𝜃) − ℎ(𝑥′)2 tan(𝜃) − 2𝑥′ℎ2
1 + ℎ2 − (𝑥′)2 + 2𝑥′ℎ tan(𝜃)

= 𝑑3 + 2ℎ2𝑤 + 2𝑑2𝑤 + 𝑑𝑤2 + ℎ2𝑑 − 𝑑
𝑤2 − 𝑑2 − ℎ2 − 1

(5)

Finally, we can calculate 𝑤′ by using the relationship 𝑤′ = 𝑑′ + 𝑥′, which gives:

𝑤′ = 𝑤 + 𝑑 + 𝑑3 + 2ℎ2𝑤 + 2𝑑2𝑤 + 𝑑𝑤2 + ℎ2𝑑 − 𝑑
𝑤2 − 𝑑2 − ℎ2 − 1

= 𝑤3 + 𝑑2𝑤 + ℎ2𝑤 + 2𝑑𝑤2 − 𝑤 − 2𝑑
𝑤2 − 𝑑2 − ℎ2 − 1

(6)

We will now show the existence of a second invariant denoted 𝑎2, as 𝑎 will later be

shown to be the semi-axis of an ellipse.

Proposition 3.1. The quantity 𝑎2 ∶= ℎ2𝑤2+𝑑2

ℎ2+𝑑2
∈ (−1, 1) is preserved under dynamics. That is,

ℎ2𝑤2 + 𝑑2
ℎ2 + 𝑑2 = ℎ2(𝑤′)2 + (𝑑′)2

ℎ2 + (𝑑′)2
.

The proof involves substituting 𝑤′ and 𝑑′ into the equation for 𝑎2 to get (𝑎′)2 =
ℎ2(𝑤′)2+(𝑑′)2

ℎ2+(𝑑′)2
. After using (5) and (6) to simplify, we obtain:
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(𝑎′)2 = (ℎ2𝑤2 + 𝑑2)(𝑝(𝑤, ℎ, 𝑑))
(ℎ2 + 𝑑2)(𝑝(𝑤, ℎ, 𝑑))

= ℎ2𝑤2 + 𝑑2
ℎ2 + 𝑑2 = 𝑎2,

where

𝑝(𝑤, ℎ, 𝑑) = 𝑑4 + ℎ4 + 2𝑑2ℎ2 + 4𝑑3𝑤 + 6𝑑2𝑤2 + 4𝑑ℎ2𝑤

+ 4𝑑𝑤3 + 𝑤4 + 2ℎ2𝑤2 − 4𝑑𝑤 − 2𝑤2 + 1 + 2ℎ2 − 2𝑑2.

Related to this is an equivalent invariant:

𝑏2 = ℎ2𝑤2 + 𝑑2
1 − 𝑤2 = ℎ2𝑎2

1 − 𝑎2 .

3.3 Invariant Ellipses

In our altered coordinate system, the invariants 𝑎 and 𝑏 are actually the semi-axes of an

invariant ellipse in the (𝑤, ℎ, 𝑑) coordinate system.

Proposition 3.2. Let 𝑤, ℎ, 𝑑 ∈ ℝ. Recalling the definitions 𝑎2 = ℎ2𝑤2+𝑑2

ℎ2+𝑑2
and 𝑏2 = ℎ2𝑤2+𝑑2

1−𝑤2
, we

have 𝑤2

𝑎2
+ 𝑑2

𝑏2
= 1 (when 𝑎2, 𝑏2 ≠ 0).

Proof.
𝑤2

𝑎2 +
𝑑2

𝑏2 =
𝑤2

ℎ2𝑤2 + 𝑑2

ℎ2 + 𝑑2

+
𝑑2

ℎ2𝑤2 + 𝑑2

1 − 𝑤2

=
ℎ2𝑤2 + 𝑑2𝑤2 + 𝑑2 − 𝑑2𝑤2

ℎ2𝑤2 + 𝑑2

= 1

By Proposition 3.1, we have that 𝑎2 = (𝑎′)2, and by the relationship between 𝑎 and 𝑏

we have that 𝑏2 = (𝑏′)2. Together with Proposition 3.2, we get
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Figure 3: Several Invariant Ellipses with Height One

(𝑤′)2
𝑎2 + (𝑑′)2

𝑏2 = 1,

thus showing that any orbit belongs to an ellipse in the (𝑤, 𝑑)-coordinate system.

Note that if 𝑎 or 𝑏 are equal to zero, then the other must be as well by the equation

relating them. If they are both zero, we have that 𝑤 = 𝑑 = 0 for all points in the orbit.

Using (3), this implies that 𝑥 = 𝜃 = 0 for all points in the orbit, which means such initial

conditions correspond to fixed points.

3.4 Twist Dynamics

For this section, we will fix a height ℎ and an invariant ellipse, thereby fixing invariants

𝑎 and 𝑏, which are defined to be the positive square roots of 𝑎2 and 𝑏2, respectively. We

can parameterize the ellipse with 𝑟(𝜃) = (𝑤, 𝑑) = (𝑎 cos(𝜃), 𝑏 sin(𝜃)). We now define the
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function 𝑓 ∶ 𝑆1 → 𝑆1 as 𝑓 = 𝑟−1◦𝑓◦𝑟, which allows us to view the restriction of 𝑓 to our

invariant ellipse as a circle diffeomorphism.

Theorem 3.3. There exists some 𝜑 ∈ 𝑆1 such that 𝑓(𝜃) = 𝜃 + 𝜑, where 𝜑 = 𝜑(𝑎) is a strictly

increasing function, 𝜑′(𝑎) > 0 given by:

𝜑(𝑎) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

arctan( 2𝑎𝑏
𝑏2−𝑎2

) + 𝜋 𝑎 < 𝑏

arctan( 2𝑎𝑏
𝑏2−𝑎2

) 𝑎 > 𝑏
3𝜋
2

𝑎 = 𝑏

with

𝜑′(𝑎) =
2𝑏

𝑏2 + 𝑎2.

The proof of this theorem is computational and will be included in the Appendix B.

3.5 Periodic Orbits for the Billiard on the Segment

Clearly, the middle perpendicular (the 𝑦-axis) gives a 1-parameter family of fixed points

(these correspond to degenerate ellipses with 𝑎 = 𝑏 = 0). Points of higher period are

due to rational rotation numbers and come in 2-parameter families as one can vary the

height as well.

Figure 4: “M" and “W" period 4 orbits
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We point out two aesthetically pleasing sub-families of period 4 orbits on Figure 4.

The 𝑀-orbits fill out a semi-circle and the 𝑊-orbits fill out a semi-ellipse. For the “W"

case on the right, the horizontal semi-axis is
√
2 and the foci of this ellipse are the ±1

endpoints of the segment.

It is easy to calculate from the formula for the rotation number in Theorem 1.3 that

for a given height ℎ the interval of possible rotation numbers 𝜑 has the form (𝜋, 𝜌(ℎ)),

where 𝜌 is an explicit decreasing function, 𝜌(ℎ) → 0, ℎ → ∞; 𝜌(ℎ) → 2𝜋, ℎ → 0. In

particular, (𝜋, 𝜌(ℎ)) ⊂ (𝜋, 2𝜋) and, hence, there are no orbits of period 2. Clearly, for all

sufficiently small heights orbits of all periods ≥ 3 are present. As height increases smaller

period orbits begin to disappear. For example orbits of period 4 with rotation number 3𝜋
2

disappear at ℎ = 1 and orbits of period 3 with rotation number 4𝜋
3

disappear at ℎ ≃ 1.8.

The explicit formula of Theorem 1.3 allows to explicitly calculate periodic orbits.

For example, if one wished to find periodic orbits of least period 7, one can calculate

parameter values that correspond to the rotation number 10𝜋
7

.

Figure 5 depicts a family of period seven orbits of height one. Note that the depicted

orbit is symmetric about the line 𝑥 = 0, which unfolds into the family of asymmetric

period seven orbits as indicated on the figure.

4 Numerical Simulations

4.1 Bouncing on Parabola Arcs

After fully understanding the dynamics on the segment, we can perturb the dynamics

and examine how integrability is being destroyed. Probably the simplest way is to

consider the unfolding of the segment into a piece of a downward-facing parabola given

by 𝑓(𝑥) = −𝑎𝑥2 + 𝑎 {−1 ≤ 𝑥 ≤ 1}. We will make a slight modification to our visibility

domain to make sure that bouncing billiard still makes sense.

Recall that our definition required that for (𝑝, 𝑣) in the visibility domain, the ray
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Figure 5: Family of Orbits of Period 7

spanned by 𝑣 has a nonempty intersection with the boundary of the set. For the parabola,

we will require that the ray has a nonempty intersection with the parabola, but we will

impose the additional requirement that the segment 𝑝𝑤 lies entirely above the parabola

given by −𝑎𝑥2 + 𝑎, where 𝑤 is the closest intersection point to 𝑝 of the ray and parabola.

In other words, a point 𝑝 must not be able to “see" the underside of the parabola. The

dynamics rule remains the same, simply utilizing the newly defined visibility domain for

the visibility angle reflection.

Remark 4.1. Despite the fact that our integrable model is a perfect twist map, KAM theory

doesn’t apply directly since we are in a 3-dimensional situation. Still, as we see below, KAM

features such as elliptic islands seem to be present in our unfolding.
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Figure 6 depicts some orbits on a parabola of height 3
10

. We observe that most of the

orbits that begin close to the parabola fill invariant arcs which align themselves along

the parabola (see the red orbit marked with a (2) in the figure). Others, such as the blue

(1) and yellow (3) orbits, fill up periodic curves. Finally, some orbits, such as the black

(4) one, exhibit more complicated behavior similar to Aubry-Mather sets with positive

Lyapunov exponent.

Figure 6: Orbits on Parabola of Height 3
10

As we increase the height, the observed behaviors become more complicated. Figure 7

and Figure 8 depict orbits on parabolas of heights 1
2

and 1, respectively. On these more

extreme parabolas, we still observe periodic curves which take more complicated shapes,

including non-symmetric orbits such as the blue (1) orbit on Figure 8. Additionally, with

increased height, we more easily detect chaotic behavior, such as the black (4) orbits of

both figures and the yellow (3) orbit of Figure 8.
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Figure 7: Orbits on Parabola of Height 1
2

Figure 8: Orbits on Parabola of Height 1
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4.2 Bouncing on the Square

It is also interesting to investigate bouncing billiards on polygons. For the sake of simplic-

ity, we will focus solely on the system on the square. On the square, we classify observed

orbits into five categories.

Figure 9: Orbits on a Square

The first category, such as the red (2) orbit in Figure 9, consists of points staying a

fixed perpendicular distance away from one side of the square. For some such orbits, the

orbit never extend in the direction parallel to that side further than the endpoints of the

side. In this case, the system is identical to that on the line segment. In other cases, such

orbit can extend past the corners of the square while still remaining on one side; in this
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case the orbit is not the same as an orbit on the segment.

The second kind are those orbits which fill up four closed curves, with one near each

corner of the square. This can be seen in the cyan (5) orbit of Figure 9. Most of these

orbits observed appeared to be rotationally symmetric, but the one pictured is not.

The third kind involves what appears to be an invariant loop near each corner, but

actually consists of many smaller closed curves making up the apparent larger circle.

This is depicted in the blue (1) orbit of the figure.

The fourth kind is another chaotic variety. It involves a period 4 non-smooth set,

possibly a Cantor set. This kind is depicted in the yellow (3) orbit of the figure.

The final class of orbits occupy all sides of the square and seem to behave chaotically

such as the black (4) orbit. Such orbits appear to fill up positive area domains. However,

numerics become very tricky for such orbits, as we clearly detected positive Lyapunov

exponents for such orbits.

Figure 10: Period Twelve Orbit on Square with Large Eigenvalue

Another finding on the square is the existence of periodic points whose Jacobian

Arnold Mathematical Journal, Vol.11(3), 2025 134

http://dx.doi.org/10.56994/ARMJ


Bouncing Outer Billiards

matrix has eigenvalues greater than one. Figure 10 shows one such example. It depicts a

period twelve orbit whose Jacobian matrix has eigenvalues approximately 0.086, 1, and

11.592.

Remark 4.2. It is easy to see from the form of the differential of the bouncing outer billiard

on a convex polygon that every periodic point of such a billiard has at least one eigenvalue

equal to 1.

4.3 Bouncing on an Ellipse

While we fully understand the segment and the circle, in between fall ellipses, which also

show very complex behavior. We consider bouncing outer billiard on the ellipse with

major and minor semi-axis equal to 1 and 0.4, respectively. As expected, we can have

orbits which are similar to the segment and circle, as shown in Figure 11 and Figure 12,

respectively.

Figure 11: Segment-like behavior
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Figure 12: Circle-like behavior

We also have cases where the orbit closure fill periodic closed curves, such as those

in Figure 13 and Figure 14.
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Figure 13: Four closed invariant curves

Figure 14: Many closed invariant curves
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Finally, “in between" the circle-like behavior and four closed curve behavior, we detect

an orbit which appears to fill up positive area domain, as shown in Figure 15.

We notice that the types of orbits we observe for the parabola arc and the ellipse are

the same.

Figure 15: A chaotic orbit

Appendix A: The Conservative Property

Here we verify that bouncing outer billiard dynamics 𝐹 preserves the Lebesgue measure.

Let 𝑑𝐴 be the standard 2-dimensional Lebesgue measure restricted to ℝ2 and let 𝑑𝜃 be

the Lebesgue on the circle.

Proposition 4.3. Assume that the boundary of 𝑆 is a 𝐶2 curve; then the restriction of 𝑑𝐴⊗𝑑𝜃

to 𝑉𝑆 is an infinite measure which is invariant under 𝐹.

Remark 4.4. It is easy to verify invariance of the Lebesgue measure for polygons and seems
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likely to be true for any convex 𝑆, but we haven’t verified it in such generality.

Proof. We begin by noticing that the proposition holds true if 𝑆 is a closed disc. Indeed,

in this case it is easy to see that the visibility domain can be decomposed into circles on

each of which 𝐹 is a rigid rotation preserving the length (conditional measure). Hence 𝐹

preserves 𝑑𝐴 ⊗ 𝑑𝜃.

Now, given a general domain 𝑆 with 𝐶2 boundary, we will verify that 𝐹𝑆 is measure-

preserving by checking that the Jacobian 𝐽𝐹 = det(𝐷𝐹) equals 1. Let (𝑝, 𝑣) ∈ 𝑉𝑆, we can

assume that (𝑝, 𝑣) is in fact in the interior of 𝑉𝑆 since 𝜕𝑉𝑆 has measure zero. Therefore,

the ray starting at 𝑣 intersect 𝜕𝑆 at the bounce point 𝑤 transversely. This implies that

infinitesimal variations of (𝑝, 𝑣) result in infinitesimal variations of 𝑤 of the same order

of magnitude.

Consider the (unique) closed disc 𝐷 such that 𝜕𝐷 is tangent to 𝜕𝑆 at 𝑤 to the second

order. Clearly, we have 𝐹𝑆(𝑝, 𝑣) = 𝐹𝐷(𝑝, 𝑣). In fact, second-order tangency ensures that

𝐷𝐹𝑆(𝑝, 𝑣) = 𝐷𝐹𝐷(𝑝, 𝑣). Indeed, to see this, first note that infinitesimal variation of (𝑝, 𝑣)

results in infinitesimal variations of 𝑤 (on 𝜕𝑆 and 𝜕𝐷), agreeing up to the second order.

The angles of reflection of 𝑤 are controlled by the derivatives of 𝜕𝑆 and 𝜕𝐷 at 𝑤 and,

hence, agree up to the first order (again due to second-order tangency at 𝑤) and the claim

follows. Hence we have

𝐽𝐹𝑆(𝑝, 𝑣) = det 𝐷𝐹𝑆(𝑝, 𝑣) = det 𝐷𝐹𝐷(𝑝, 𝑣) = 1,

where the last equality is by measure-preserving property of 𝐹𝐷 pointed out at the

beginning of the proof.

It is easy to show that the total Lebesgue measure of 𝑉𝑆 is infinite when integrating in

the correct order. For any angle 𝜃, there is an infinitely long strip of constant width 𝑤 of

points whose rays at angle 𝜃 will hit 𝑆, where 𝑤 is the length of 𝑆 projected onto the axis

perpendicular to 𝜃.

Alternatively, one can verify the above proposition by a direct calculation of 𝐷𝐹(𝑝, 𝑣)

without any reference to the disc case. Specifically, we can center the (𝑥, 𝑦)-coordinate
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system at the bounce point 𝑤 so that the 𝑥-axis is tangent to 𝜕𝑆 and denote by 𝜃 the

circular coordinate. We write (𝑝, 𝑣) = (𝑎, 𝑏, 𝜃0). Clearly 𝑑𝐴 ⊗ 𝑑𝜃 = 𝑑𝑥 ⊗ 𝑑𝑦 ⊗ 𝑑𝜃 and we

need to verify that the Jacobian is 1 in (𝑥, 𝑦, 𝜃)-coordinates. Prior to the last visibility

angle reflection step we have (𝑎, 𝑏, 𝜃0) ↦→ (−𝑎, 𝑏, −𝜃0) and a routine calculation gives the

following expression for its derivative:

⎛
⎜
⎜
⎜
⎝

1 + 2𝑘𝑏 −2𝑘𝑎 − 2𝑎
𝑏

2𝑐2

𝑏
+ 2𝑘𝑐2

2𝑘𝑎 1 − 2𝑘𝑎2

𝑏
2𝑘𝑎𝑐2

𝑏

−2𝑘 2𝑘𝑎
𝑏

−1 − 2𝑘𝑐2

𝑏

⎞
⎟
⎟
⎟
⎠

where 𝑘 is the curvature at 𝑤 and 𝑐 =
√
𝑎2 + 𝑏2. The determinant of this matrix is −1,

which becomes 1, after composing with the reflection 𝜃 ↦→ 𝑐𝑜𝑛𝑠𝑡 − 𝜃 according to the

visibility angle reflection rule.

Appendix B: Proof of Theorem 3.3

First, we will find an explicit formula for 𝑟−1(𝑤, 𝑑) for 𝑤 and 𝑑 lying on the ellipse. We

have 𝑤 = 𝑎 cos(𝜃) and 𝑑 = 𝑏 sin(𝜃), meaning tan(𝜃) = 𝑎𝑑
𝑏𝑤

. This yields:

𝜃 = 𝑟−1(𝑤, 𝑑) = arctan ( 𝑎𝑑𝑏𝑤) + 𝜋𝑛(𝑤) (7)

In this formula, we use

𝑛(𝑥) ∶=
⎧

⎨
⎩

1 𝑥 < 0

0 𝑥 ≥ 0

to compensate for the fact that arctan only outputs between −𝜋
2

to 𝜋
2

. This explicit formula

has the slight flaw that it fails for 𝑤 = 0. However, it can be shown separately that this

case matches the behavior of all other cases. Applying 𝑟−1 to the right of both sides of the

equation 𝑓 = 𝑟−1◦𝑓◦𝑟 yields 𝑓◦𝑟−1(𝑤, 𝑑) = 𝑟−1◦𝑓(𝑤, 𝑑) = 𝑟−1(𝑤′, 𝑑′). Applying (7) yields:

𝑓(arctan ( 𝑎𝑑𝑏𝑤) + 𝜋𝑛(𝑤)) = arctan ( 𝑎𝑑
′

𝑏𝑤′ ) + 𝜋𝑛(𝑤′)
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Thus 𝑓(𝜃) = 𝜃 + 𝜑(𝑤, 𝑑), where

𝜑(𝑤, 𝑑) = arctan ( 𝑎𝑑
′

𝑏𝑤′ ) + 𝜋𝑛(𝑤′) − arctan ( 𝑎𝑑𝑏𝑤) − 𝜋𝑛(𝑤).

We will first show that 𝜑(𝑤, 𝑑) is constant mod 𝜋. The terms 𝜋𝑛(𝑤′) and −𝜋𝑛(𝑤) are

equivalent to zero mod 𝜋, so we will revisit these later.

Thus, we currently seek to show that arctan( 𝑎𝑑
′

𝑏𝑤′
)−arctan( 𝑎𝑑

𝑏𝑤
) is constant mod 𝜋. We will

use the arc-tangent subtraction formula arctan(𝑥) − arctan(𝑦) = arctan( 𝑥−𝑦
1+𝑥𝑦

) + 𝑚𝜋, where

𝑚 is either 0 or 1 depending on 𝑥 and 𝑦. The term 𝑚𝜋 is equivalent to zero mod 𝜋 in all

cases, so we will revisit this term later as well.

For the purposes of the following calculation, we will set 𝑥 = 𝑎𝑑′

𝑏𝑤′
and 𝑦 = 𝑎𝑑

𝑏𝑤
. Our goal

is to show that 𝑥−𝑦
1+𝑥𝑦

is constant for any 𝑤 and 𝑑 on the fixed ellipse. First, since 𝑥 and 𝑦

each have a factor of 𝑎
𝑏

, which is constant for points on the ellipse, we can pull this out of

the fraction:

𝑥 − 𝑦
1 + 𝑥𝑦 = (𝑎𝑏)

⎛
⎜
⎜
⎝

𝑑′

𝑤′
− 𝑑

𝑤

1 + 𝑎2𝑑𝑑′

𝑏2𝑤𝑤′

⎞
⎟
⎟
⎠

Next, multiply the numerator and denominator by 𝑏2𝑤𝑤′ to get:

(𝑎𝑏 ) (
𝑏2𝑑′𝑤 − 𝑏2𝑑𝑤′

𝑏2𝑤𝑤′ + 𝑎2𝑑𝑑′)

We can pull out another 𝑏2 to bring the total constant factored out to 𝑎𝑏:

(𝑎𝑏) ( 𝑑′𝑤 − 𝑑𝑤′

𝑏2𝑤𝑤′ + 𝑎2𝑑𝑑′ )

After replacing 𝑤′ and 𝑑′ with their equivalent expressions in terms of 𝑤, ℎ, and 𝑑,

then multiplying the numerator and denominator by (𝑤2 − 𝑑2 − ℎ2 − 1), we get:

(𝑎𝑏)(2ℎ2𝑤2 + 2𝑑2)
𝑏2(𝑤4 + 𝑑2𝑤2 + ℎ2𝑤2 + 2𝑑𝑤3 − 𝑤2 − 2𝑑𝑤) + 𝑎2(𝑑4 + 2𝑑ℎ2𝑤 + 2𝑑3𝑤 + 𝑑2𝑤2 + 𝑑2ℎ2 − 𝑑2)
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After substituting in the expressions for 𝑎2 and 𝑏2, multiplying the numerator and

denominator by (1 − 𝑤2)(ℎ2 + 𝑑2), and simplifying, we get:

2𝑎𝑏(1 − 𝑤2)(ℎ2 + 𝑑2)
𝑑2ℎ2𝑤2 + ℎ4𝑤2 + ℎ2𝑤4 + 𝑑4 + 𝑑2ℎ2 + 𝑑2𝑤2 − ℎ2𝑤2 − 𝑑2

Factoring the denominator yields:

2𝑎𝑏(1 − 𝑤2)(ℎ2 + 𝑑2)
(ℎ2𝑤2 + 𝑑2)(ℎ2 + 𝑑2) − (ℎ2𝑤2 + 𝑑2)(1 − 𝑤2)

Finally, dividing the numerator and denominator by (1 − 𝑤2)(ℎ2 + 𝑑2) gives:

2𝑎𝑏
ℎ2𝑤2+𝑑2

1−𝑤2
− ℎ2𝑤2+𝑑2

(ℎ2+𝑑2)

= 2𝑎𝑏
𝑏2 − 𝑎2

Thus, we end up with the equation:

𝜑 = arctan ( 2𝑎𝑏
𝑏2 − 𝑎2 )𝑚𝑜𝑑 𝜋

Next, we will go back and carefully consider each of the extra terms we set aside

earlier to show that 𝜑 is actually constant mod 2𝜋. Each of these components individually

may depend on 𝑤, 𝑑, 𝑎, and 𝑏, but we will show that together they only depend on 𝑎 and

𝑏, which remain constant within an orbit.

We will begin with the term denoted as 𝑚𝜋 earlier. Recall that this arose out of the

extra term from the arc-tangent sum formula. Again using the definitions 𝑥 = 𝑎𝑑′

𝑏𝑤′
and

𝑦 = 𝑎𝑑
𝑏𝑤

, we get that 𝑚 = 0 if −𝑥𝑦 < 1 and 𝑚 = 1 if −𝑥𝑦 > 1. This is equivalent to saying

𝑚 = 0 if 1 + 𝑥𝑦 > 0 and 𝑚 = 1 if 1 + 𝑥𝑦 < 0. After substituting in expressions to get 1 + 𝑥𝑦

in terms of 𝑤, ℎ, and 𝑑 as well as simplifying and factoring, we get:

1 + 𝑥𝑦 = (𝑑2 + ℎ2𝑤2)(𝑑2 + ℎ2 + 𝑤2 − 1)
(𝑑2 + ℎ2)(𝑑2𝑤2 + ℎ2𝑤2 + 2𝑑𝑤3 + 𝑤4 − 2𝑑𝑤 − 𝑤2)

Since we are only concerned about the sign of 1 + 𝑥𝑦, and 𝑑2+ℎ2𝑤2

𝑑2+ℎ2
≥ 0, we can factor

this out and ignore it. This leaves us with:
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𝑑2 + ℎ2 + 𝑤2 − 1
𝑑2𝑤2 + ℎ2𝑤2 + 2𝑑𝑤3 + 𝑤4 − 2𝑑𝑤 − 𝑤2 =

𝑑2 + ℎ2 + 𝑤2 − 1
𝑤2(𝑑2 + ℎ2 + 𝑤2 − 1) + 2𝑑𝑤3 − 2𝑑𝑤

This has the same sign as its reciprocal, which after simplification becomes:

𝑤2 + 2𝑑𝑤3 − 2𝑑𝑤
𝑑2 + ℎ2 + 𝑤2 − 1

Next, it will benefit us to rewrite 𝑑 in terms of 𝑤, 𝑎, and 𝑏. Starting from the ellipse

equation 𝑤2

𝑎2
+ 𝑑2

𝑏2
= 1, we can derive the equation 𝑑2 = 𝑏2 − 𝑤2𝑏2

𝑎2
. Rewriting our previous

expression yields:

𝑤2 +
(2𝑤3 − 𝑤) (±

√
𝑏2 − 𝑤2𝑏2

𝑎2
)

𝑏2 − 𝑤2𝑏2

𝑎2
+ ℎ2 + 𝑤2 − 1

Next, we will remove ℎ from the expression. Recall the relationship between 𝑎2 and

𝑏2 given by 𝑏2 = ℎ2𝑎2

1−𝑎2
. From this, we can derive ℎ2 = 𝑏2−𝑎2𝑏2

𝑎2
. From here, we can perform a

series of simplifications:

𝑤2 +
(2𝑤3 − 𝑤) (±

√
𝑏2 − 𝑤2𝑏2

𝑎2
)

𝑏2 − 𝑤2𝑏2

𝑎2
+ ℎ2 + 𝑤2 − 1

= 𝑤2 +
2𝑤(𝑤2 − 1) (±

√
𝑏2 − 𝑤2𝑏2

𝑎2
)

𝑏2

𝑎2
− 𝑤2𝑏2

𝑎2
+ 𝑤2𝑎2

𝑎2
− 𝑎2

𝑎2

= 𝑤2 +
2𝑤𝑎2(𝑤2 − 1) (±

√
𝑏2(𝑎2−𝑤2)

𝑎2
)

(𝑤2 − 1)(𝑎2 − 𝑏2)

= 𝑤2 +
2𝑤𝑎𝑏(±

√
𝑎2 − 𝑤2)

𝑎2 − 𝑏2

=
𝑎2𝑤2 − 𝑏2𝑤2 + 2𝑤𝑎𝑏(±

√
𝑎2 − 𝑤2)

𝑎2 − 𝑏2
Next, we want to find the zeros of this expression with respect to 𝑤. Clearly, 𝑤 = 0 is a

zero. To find other zeros, we will set the numerator of our expression equal to zero and

assume 𝑤 ≠ 0. 𝑎2𝑤2 − 𝑏2𝑤2 + 2𝑤𝑎𝑏(±
√
𝑎2 − 𝑤2) = 0 ⇐⇒ 𝑎2𝑤 − 𝑏2𝑤 + 2𝑎𝑏(±

√
𝑎2 − 𝑤2) = 0.

After rearranging and squaring both sides, we get:
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𝑎2 − 𝑤2 = 𝑏4𝑤2 − 2𝑎2𝑏2𝑤2 + 𝑎4𝑤2

4𝑎2𝑏2

Solving for 𝑤 yields:

𝑤 = ± 2𝑎2𝑏
𝑎2 + 𝑏2

From this point forward, we will assume 𝑑 is positive. The calculations play out

similarly if 𝑑 is negative, and the results will be given with the positive case. This means

our fraction is zero when 𝑎2𝑤 − 𝑏2𝑤 + 2𝑎𝑏
√
𝑎2 − 𝑤2 = 0, removing the plus or minus

present earlier. We have the possible zeros of ± 2𝑎2𝑏
𝑎2+𝑏2

, but determining which is a true

zero will depend on the values of 𝑎 and 𝑏. This is because
√
𝑎2 − 𝑤2 becomes 𝑎(𝑎2−𝑏2)

𝑎2+𝑏2
if

𝑎 > 𝑏 or 𝑎(𝑏2−𝑎2)
𝑎2+𝑏2

if 𝑎 < 𝑏. This means that if 𝑎 > 𝑏 we have −2𝑎2𝑏
𝑎2+𝑏2

is a zero, whereas if 𝑏 > 𝑎

we have 2𝑎2𝑏
𝑎2+𝑏2

is a zero.

To find the sign of the expression, we can solve the derivatives at the zeros:

𝑑
𝑑𝑤

⎛
⎜
⎜
⎝

𝑎2𝑤2 − 𝑏2𝑤2 + 2𝑤𝑎𝑏
√
𝑎2 − 𝑤2

𝑎2 − 𝑏2

⎞
⎟
⎟
⎠

=
2𝑎2𝑤 − 2𝑏2𝑤 + 2𝑎𝑏

√
𝑎2 − 𝑤2 − 2𝑎𝑏𝑤2

𝑎2−𝑤2

𝑎2 − 𝑏2 (8)

We will first analyze the derivative values for 𝑎 > 𝑏. The denominator is positive in

this case, and we see that the derivative is positive at 𝑤 = 0. For 𝑤 = −2𝑎2𝑏
𝑎2+𝑏2

, we have that

the numerator of (8) becomes:

2𝑎2𝑏(𝑏2 − 𝑎2)
𝑎2 + 𝑏2 + −2𝑎𝑏𝑤2

𝑎2 − 𝑤
The second term of this expression is always negative. Since we assumed 𝑎 > 𝑏, the

first term is also negative, meaning the derivative is negative for this 𝑤-value.

In the case where 𝑎 < 𝑏, the denominator is always negative, and we have that the

derivative is negative at 𝑤 = 0. For 𝑤 = 2𝑎2𝑏
𝑎2+𝑏2

, the numerator becomes:

2𝑎2𝑏(𝑎2 − 𝑏2)
𝑎2 + 𝑏2 + −2𝑎𝑏𝑤2

𝑎2 − 𝑤
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This is again negative, but the derivative is positive, since the denominator of (8) is

negative. In summary, we have the following results:

In 𝑑 > 0 Case: If 𝑎 < 𝑏 and 𝑤 ∈ ( 2𝑎2𝑏
𝑎2+𝑏2

, 1] ∪ [−1, 0), then 1 + 𝑥𝑦 > 0.

If 𝑎 < 𝑏 and 𝑤 ∈ (0, 2𝑎2𝑏
𝑎2+𝑏2

), then 1 + 𝑥𝑦 < 0.

If 𝑎 > 𝑏 and 𝑤 ∈ [−1, −2𝑎
2𝑏

𝑎2+𝑏2
) ∪ (0, 1], then 1 + 𝑥𝑦 > 0.

If 𝑎 > 𝑏 and 𝑤 ∈ (−2𝑎
2𝑏

𝑎2+𝑏2
, 0), then 1 + 𝑥𝑦 < 0.

The case where 𝑑 < 0 works similarly, with results as follows:

In 𝑑 < 0 Case: If 𝑎 < 𝑏 and 𝑤 ∈ [−1, −2𝑎
2𝑏

𝑎2+𝑏2
) ∪ (0, 1], then 1 + 𝑥𝑦 > 0.

If 𝑎 < 𝑏 and 𝑤 ∈ (−2𝑎
2𝑏

𝑎2+𝑏2
, 0), then 1 + 𝑥𝑦 < 0.

If 𝑎 > 𝑏 and 𝑤 ∈ ( 2𝑎2𝑏
𝑎2+𝑏2

, 1] ∪ [−1, 0), then 1 + 𝑥𝑦 > 0.

If 𝑎 > 𝑏 and 𝑤 ∈ (0, 2𝑎2𝑏
𝑎2+𝑏2

), then 1 + 𝑥𝑦 < 0.

Next, we will tackle the 𝜋𝑛(𝑤′) term. Recall that 𝑛(𝑤′) is defined to be 1 when 𝑤′ is

negative and 0 otherwise. Thus, our next goal is to determine the sign of 𝑤′ under all

possible conditions. We will again take 𝑑 > 0 and present the results for the 𝑑 < 0 case

later.

𝑤′ = 𝑤3 + 𝑑2𝑤 + ℎ2𝑤 + 2𝑑𝑤2 − 𝑤 − 2𝑑
𝑤2 − 𝑑2 − ℎ2 − 1

=
𝑤3 − 𝑏2𝑤3

𝑎2
+ 𝑏2𝑤

𝑎2
+ 2𝑤2

√
𝑏2 − 𝑏2𝑤2

𝑎2
− 𝑤 − 2

√
𝑏2 − 𝑏2𝑤2

𝑎2

𝑤2 + 𝑏2𝑤2

𝑎2
− 𝑏2

𝑎2
− 1

= (𝑤2 − 1)(𝑎2𝑤 − 𝑏2𝑤 + 2𝑎𝑏
√
𝑎2 − 𝑤2)

(𝑤2 − 1)(𝑎2 + 𝑏2)

= 𝑎2𝑤 − 𝑏2𝑤 + 2𝑎𝑏
√
𝑎2 − 𝑤2

𝑎2 + 𝑏2

(9)

We have already examined the zeros of this expression when working through the

𝑚𝜋 term. It has a zero at 𝑤 = 2𝑎2𝑏
𝑎2+𝑏2

when 𝑎 < 𝑏 and one at −2𝑎2𝑏
𝑎2+𝑏2

when 𝑎 > 𝑏. Notably, this

expression does not have a zero at 𝑤 = 0 like the previous. In this case, we have that the
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derivative is negative at 𝑤 = 2𝑎2𝑏
𝑎2+𝑏2

when 𝑎 < 𝑏 and positive at −2𝑎2𝑏
𝑎2+𝑏2

when 𝑎 > 𝑏.

In 𝑑 > 0 Case: If 𝑎 < 𝑏 and 𝑤 ∈ [−1, 2𝑎2𝑏
𝑎2+𝑏2

), then 𝑤′ > 0.

If 𝑎 < 𝑏 and 𝑤 ∈ ( 2𝑎2𝑏
𝑎2+𝑏2

, 1], then 𝑤′ < 0.

If 𝑎 > 𝑏 and 𝑤 ∈ (−2𝑎
2𝑏

𝑎2+𝑏2
, 1], then 𝑤′ > 0.

If 𝑎 > 𝑏 and 𝑤 ∈ [−1, −2𝑎
2𝑏

𝑎2+𝑏2
), then 𝑤′ < 0.

Similarly, if 𝑑 < 0, we get:

In 𝑑 < 0 Case: If 𝑎 < 𝑏 and 𝑤 ∈ [−1, −2𝑎
2𝑏

𝑎2+𝑏2
), then 𝑤′ > 0.

If 𝑎 < 𝑏 and 𝑤 ∈ (−2𝑎
2𝑏

𝑎2+𝑏2
, 1], then 𝑤′ < 0.

If 𝑎 > 𝑏 and 𝑤 ∈ ( 2𝑎2𝑏
𝑎2+𝑏2

, 1], then 𝑤′ > 0.

If 𝑎 > 𝑏 and 𝑤 ∈ [−1, 2𝑎2𝑏
𝑎2+𝑏2

), then 𝑤′ < 0.

Finally, we have the −𝜋𝑛(𝑤) term, which requires no extra analysis since our results are

currently allowed to be dependent on 𝑤.

The final step in this proof is to check how many 𝜋 terms are added for each initial

condition for 𝑤 and 𝑑, as well as 𝑎 and 𝑏 values. This will be omitted since it solely

involves going through each relevant interval for 𝑤 and 𝑑 for both the 𝑎 > 𝑏 and 𝑎 < 𝑏

case. The results are as follows:

𝜑 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

arctan( 2𝑎𝑏
𝑏2−𝑎2

) + 𝜋 𝑎 < 𝑏

arctan( 2𝑎𝑏
𝑏2−𝑎2

) 𝑎 > 𝑏
−𝜋
2

𝑎 = 𝑏

Taking the derivative of 𝜑 with respect to 𝑎 yields:

𝜑′(𝑎) =
2𝑏

𝑏2 + 𝑎2

This is clearly positive for all values 𝑎 > 0 since 𝑏 is nonzero and positive for such 𝑎.
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