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Evgeny G. Malkovich

1 Introduction

The Heisenberg group 7 is one of the best known and straightforward examples of
nonholonomic geometry. It consists of the three-dimensional space R3 equipped with a
two-dimensional non-integrable subbundle of the tangent bundle TR3. In the context of
the Heisenberg group, the planes IT of admissible directions are spanned by two vector
fields, X and Y:

It is straightforward to verify that the Lie bracket [X,Y] = :—Z According to Frobenius
theorem, there is no foliation of R? into a family of two-dimensional surfaces = such
that X and Y are tangent to Z; this is equivalent to the non-integrability of distribution.
In this scenario, it is quite clear that the normal vector 7 of the plane IT would need to
be the gradient of some function F = F(x, y,z) up to multiplication by a scalar function
A=Ax,y,2):

M= AX XY = /1(%, —3.0) = (FLFy, F).

It is not hard to check that there are no solutions A(x,y, z) and F(x, y, z) of this system of
PDEs: from the first two equations it easy to show that F should be a function depending
only on ¢ = arctan % and z; usind the third equation one will find that F doesn’t depend
on ¢ either; after that it is clear that there are no non-trivial solutiouns. In contrast, in
the integrable (or holonomic) case the family of surfaces ¥ is defined as the level sets of
some function F

T ={p € R3|F(p) = const}.

To discretize a smooth surface %, one can simply define a triangulation of this surface.
If the triangles in this triangulation are sufficiently small, they can approximate the
pieces of the surface accurately.

For the non-holonomic geometry on #¢, we can consider a small disk D, = {aX +pY|a*+

B? < &2} c I as a “two-dimensional piece of the Heisenberg group" [1]. However, it turns

Arnold Mathematical Journal, Vol.11(3), 2025 2


http://dx.doi.org/10.56994/ARMJ

Discretization of the sub-Riemannian Heisenberg Group

out that a discrete model of the Heisenberg group, represented as a set of intersecting
disks, fails to capture the essential geometric features of 7.

To construct a viable discrete model of 7, we define a local sub-Riemannian distance
between sufficiently close points. This distance is generated by the distribution (1), similar
to how it is approached in Heron’s problem. Subsequently, we define a spatial graph T,
as a discretization of the sub-Riemannian Heisenberg group. Numerical experiments
indicate that the metric properties of this graph — such as the shape of the shortest paths
— effectively simulate the corresponding properties of the Heisenberg group.

There is a series of works [2, 3, 4] that explore discrete non-holonomic systems from
the perspectives of finite-difference operators and computational methods. For instance,
in the article titled “On Discrete Geometry of Non-Holonomic Spaces" [5], the authors
examine a discrete version of the Lagrange-d’Alembert-Chaplygin equations without
delving into specific discrete geometric objects. This work aims to construct a tangible

discrete model for # — the simplest example of sub-Riemannian geometry.

2 Local sub-Riemannian Distance

Consider two arbitrary points p; = (x;,y;,z;) and p; = (x;,y;,z;) in 7. Each point defines
a plane spanned by the vectors X; = (1,0, —%) and Y; = (0,1, x?) A normal vector to this
Yi Xi

plane is given by N; = (;, —j, 1). The corresponding planes are:

Y X;

s - x) - 2y -w+ -2 =0
Yj Xj

H] . ?](x—xj)—%(y—yj)‘i'(Z—Zj):O-

The intersection of these planes defines a line [;; = II; () IT;, which can be expressed in

parametric form:

(zj—z)(x;+x;)

XY =Xy 2xj = 2x;
_ (zj—z)(yi+y;)
lij(t) = ﬁ +t 2’y] —2yl-
iVj—XjYi
ary XiYj — XjYi

2
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We define the local sub-Riemannian (IsR) distance between the two points p; and p;
as the length of the shortest broken line consisting of two segments that connect these

points within the union of the two planes IT; | J IT;.
disr (P pj) = min(e(pi, @) + p(g, P))),
ij

where p is the standard Euclidean distance in R3. This approach generalizes the classic
Heron’s problem of finding a point g on a fixed line that minimizes the sum of distances
to two fixed points. One of the planes, let’s say IT;, can be rotate about the line /;; until it
coincides with the another plane IT; and the points p; and p; will be placed in the different

half-planes defined by the line [;;. Then

diir (i, pj)* = p(p}, p;)* = (oi + p)* + (p(p;", PV, ()

as can be seen in the Fig.1. Here pl.l is the projection of p; onto [;; and p; = ,o(pl-,pil).

Pi P
lij Pi
1 - 1
T Pj
'ly’/
Pi

Figure 1: The local sub-Riemannian distance di (p;, p;) and Heron’s problem.

The distances p; and p; can be calculated easily

|x;y: — x;¥; + 2z; — 2z;|
0 2 : / \4+x2+y2, 3)

=
\/4(xi =X+ 4 —y;)? + (xy; — x:)?

Arnold Mathematical Journal, Vol.11(3), 2025 4
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|xiyj — x;y; + 2z; — 2z
pj = 1/4+x12.+y12.. (4)
\/4(xi —Xxj)?+ 4y =y + (x5 — x;y;)?

The distance p(p;", pjl) between the projections of the points on the line [;; is

(206 = x)* +2(v; = ¥j)* + (z; — 2)(xy; — xjyi))2

p(p; pi)* = (5)
b Ax; — X2 + 4y —yj)? + (x5 — xj¥,)?
Gathering (3) — (5) and substituting them into (2) gives the [sR-distance:
1
dlsR(pi,pj) = :
\/4(xi =X +4; —y;)? + (xy; — x,)?

2

-((xl-yj — Xy +2z; — 22j)2(\/4 + X2+ Y2+ \/4 + sz. + yJZ) + (6)

1

2\2
+(20x; — x;)? + 20y — ¥))* + (2j — )%y — X91)) ) .
We will use formula (6) to define weights of the edges in a graph I',. Next we set p, as

an origin point O € # and examine the ball B(O, 1) with respect to the IsR-distance.

di (O, (x,y,2) = Vx2 + y2 - Jl + 2—2(2 +4 4 x2 4 y2)2. (7

(x2 + y2)?

Itis evident that the vertical axis Oz is ‘forbidden’ — points p; and p; having different z
coordinate define parallel planes IT; and IT;. Consequently, the IsR-distance dy (O, (0,0, 2))
becomes infinite (as illustrated in Fig. 2). This contrasts with the standard sub-Riemannian
ball in the Heisenberg group, which takes on an ‘apple’ shape [6, 7]. In contrast, the ISR-
distance results in a pinched ball resembling a donut with an infinitely small hole.

The sub-Riemannian distance d,z from the origin O to the point (x, y, z) in the Heisen-
berg group ¥ is defined as follows [7]:

a) if z = 0, then d (0, (x,y,0)) = V/x2 + y2,

b) if z # 0 and x = y = 0, then d (0, (0,0, 2)) = \/27|z|,

¢)if z # 0 and x2 + y? > 0, then dw (O, (x, y, 2)) = ﬁx/xZ—erZ,

where
2q—sin2q  z

4sin’q X2+ y2

®)

Arnold Mathematical Journal, Vol.11(3), 2025 5
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Figure 2: The hemisphere in the d;z-distance and its co-shaped Oxz-section (red).

The Taylor expansion of (7) gives

diz (0, (x,y,2)) = Vx2 +y2(1 + BE — 2+ VA +x2+y2)? + ).

T

In the general case c) of the sub-Riemannian distance, assuming that q is small enough,

from (8) one gets

3z

1~ iy

Then
2

A/ x2 2
SR(O (xy’z))_ X +y( +2(2+y2)2 )
The second term in this expansion can be interpreted as a sub-Riemannian correction to
the 2-dimensional Euclidean distance function 1/x2 + y2. Notably, both corrections share

a common multiplier of the form (—

2)2 ’

which is a positive indication. It is possible to
introduce an additional parameter A into the IsR-distance (7) that changes the weight of

the (o(p;* pl))2 summand, namely

Vx2+y2. \/1+ 2)2(2+\/4+x2+y2)2

As A approaches zero, the ball B(0,1) becomes thicker; conversely, as A — oo, it flattens
out — transforming from a donut to a pancake: B(0,1) — D,. It is crucial to note that
if the IsR-ball B(O,1) were merely a 2-dimensional disc D;, then the distance between

almost any pair of random points would be infinite.

Arnold Mathematical Journal, Vol.11(3), 2025 6
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If the center of the ball shifts from the origin to the point p;, the ball bends in such a
way that its central plane of symmetry coincides with the plane II; of admissible directions

at p; (Fig.3).

Figure 3: The ball B((2,0,0), 1) in the dz-distance.

3 A spatial graph and a discrete sub-Riemannian distance

Consider the cubic domain Q = [-1,1]® c ¥ with aset D = {p;, € Q|i = 1,..., N} of N points.
These points can form either a regular lattice or they can be randomly and uniformly
distributed in Q. We will consider the scenario with random points. Calculate all distances
dir(p;» p;) using (6) and consider the weighted spatial graph T', with vertices p; and edges
v;; of weight dir (p;, p;) < r, it means that vertices p; € D and p; are connected by the edge
v;; in the graph T, if and only if the local sub-Riemannian distance di(p;, p;) between
them is smaller than a fixed value r.

The graph T, serves as a discrete model for the Heisenberg group. When the parameter
r is too small, most vertices in T, tend to be disjoint. Conversely, if r is excessively large,
nearly all pairs of points (p;, p;) will be connected by an edge. The critical threshold value

r* is influenced by both the number of vertices N and the domain Q. Here, r* refers to

Arnold Mathematical Journal, Vol.11(3), 2025 7
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the specific value of r such that for any r > r*, the graph I', becomes connected for an
average distribution of the points p;.

Next we perform a number of numerical experiments demonstrating that the pre-
sented discrete model possesses features specific for the sub-Riemannian Heisenberg
group. Firstly, using the standard Dijkstra algorithm [8] for finding shortest paths in a
graph, one can find the shortest path in T',. The shortest path is a broken line with vertices
at the points py, p; , ..., p;,» P2, thus the discrete sub-Riemannian (dsR) distance between p,

and p, inT, is

dysr (P15 P2) = dir (P15 piy) + dir(Piy> Pi,) + - + digr (D> P2)- 9)

The distance between close vertices is defined via the local sub-Riemannian distance,
while the distance between arbitrary vertices is the length of the shortest path in T,.
Numerical calculations show that the shortest path between p, = (0,0,0) and p, =
(0,0, z,) has a form of a single-wind helix (Fig.4) — a typical form for the Heisenberg
geodesics [7, 9]
x(t) = (sin(By + hst) — sin )/ hs,

y(t) = (cos 6y, — cos(6 + hst))/hs, (10)
z(t) = (hst — sin hst)/h;.

In (10) the parameter 6, can be chosen in such a way that the initial velocity vector at ¢t = 0
coincides with the first interval [p;, p; ] and the varying parameter s, gives the necessary
height z(27) of the helix (Fig.4, black curve). Note that the discrete sub-Riemannian
distance between points having different z coordinate is finite, contrary to the local
sub-Riemannian distance.

Next we compare the distance d4z between points as the vertices of the graph I', and
the sub-Riemannian distance dg in €. We will consider two situations: horizontal and
vertical. In the horizontal case, when p, = (0,0,0) and p, = (x,, y,,0), the geodesic in #
is a straight horizontal interval [p,, p,] in the plane Oxy. The vertical situation is when

p1 =(0,0,0) and p, = (0,0, z,) and the geodesic is a helix (10) with non-constant slope. In

Arnold Mathematical Journal, Vol.11(3), 2025 8
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Figure 4: Sub-Riemannian geodesic (black, (10)) and typical shortest path (blue) in the

graph I': with N = 1500 vertices connecting points (0, 0,0) and (0, 0, %), various projections.

2

accordance with a) the sub-Riemannian distance in the horizontal case coincides with
the Euclidean length d((0,0,0), (x3,y,,0)) = 4/ x2 + y3.

N =1000 | N =2000 | N = 4000 | N = 6000 | dyx(py, p,)
1.8628 | 0.8971 | 0.8655 | 0.7752 g ~ 0.7071
o 1.9839 | 1.7267 | 1.5965 | V2 ~ 1.4142

|l SR

Table 1. Mean distance d4s ((0, 0, 0), (x5, ¥,,0)) for different N and sub-Riemannian distance,

horizontal case.

If the number of vertices N is small, the graph T, can be disconnected, in which case

the distance between disconnected vertices is equal to infinity. In Table 1 the value 0.8955

Arnold Mathematical Journal, Vol.11(3), 2025 9
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is the averaged distance of d4(p;, p,) calculated for 10 numerical experiments with
4000 random vertices each. As N increases, the dispersion of d,z(p;, p,) decreases and
its value gets closer to the value of dz(p,, p,)- The convergence of the distances in the

vertical case is shown in Table 2.

N =1000 | N =2000 | N =4000 | N = 6000 | dgz(p1, p2)

Z) = é 1.717 1.3617 1.2929 1.2702 @ ~ 0.8355
Z) = g 3.2894 2.8339 2.5877 2.5209 @ ~ 1.671

Table 2. Mean distance d4((0,0,0), (0,0, z,)) for different N and the sub-Riemannian dis-

tance, vertical case.

From Tables 1 and 2 one can see that, as N increases, the discrete sub-Riemannian
distance gets closer to the standard sub-Riemannian distance in ¢, but with different
rates in the horizontal and vertical cases. A more detailed discussion on these results
will be provided in the next section.

The last feature of geodesics in K that is going to be checked for T, is the fact that
the coordinate z(t) of the geodesic that starts at O is proportional to the sectional area
of the projection (x(t), y(t)) onto the Oxy plane. For the considered discrete model this
projection is a polygon, see the upper right picture in Fig.4 The numerical experiment is
the following:

1. Pick M test vertices p in I',, whose third coordinate is z(p);

2. Find the shortest path from O to p;

3. Calculate the polygon area A(p) of the projected path.

For the Heisenberg group z(p) and A(p) are the same values, and, for example, the
Dido’s problem can easily be reformulated as a problem of finding geodesics [7]. The
results for I': with N = 3000 random vertices and with M = 200 test vertices are presented
in the Fig. 52 As the coordinate z(p) is uniformly distributed in [-1,1], the dots with
coordinates (z(p), A(p)) on Fig. 5 lie quite close to the plot of |z(p)|.

Arnold Mathematical Journal, Vol.11(3), 2025 10
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verticesin I':.

2

4 Tortuosity

First let us recall briefly what tortuosity is. Consider a domain Q' ¢ R® modeling a piece
of porous media, such that there is a connected subset P ¢ Q' modeling the system of
the media pores. Next, Q' \ P simulates solid material. One can consider two arbitrary
points A, B € P and the shortest path y(t), t € [0,1] connecting A and B that fully lies in
the system of pores P: Vt € [0,1] y(t) € P. The ratio of the length of y and the standard

Euclidean distance between A and B

Ofl ly()lde
called the tortuosity t of the path y(t). If the media is homogeneous and isotropic and if
distz,.1(A, B) is sufficiently large, the tortuosity will be close to a limit value: it is greater
than 1 and measures the level of entanglement of the system of pores. If the media is
anisotropic then (4, B) will depend on the direction AE.
Secondly, one can study the tortuosity of the Delaunay triangulation of uniformly
distributed points [10]. It turns out that the ratio between the length [;,,,,(A, B) of the

shortest broken line connecting two points via edges of the triangulation and the Eu-
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clidean distance,
ltriang(A, B)

diStEucl(As B) ’
converges from above to a fixed value 7, ~ 1.05 for a two-dimensional domain and
Tpin ~ 1.09 for a three-dimensional domain.

Next we come back to a domain Q with the standard sub-Riemannian metric d;z and

the spatial graph T, in Q with vertices p; € D and metric dy. The following ratio

ddSR (A’ B)

(A= g @A.B)

(11)

is called the tortuosity of the path from A to B. This value depends on the set D of vertices,
on the coordinates of B and on the parameter r of the graph T,. It is a straight-forward
generalization of the previously mentioned tortuosity.

Let us consider again two points A = p; and B = p, from the previous section. From
Table 1, when both points lie in the horizontal plane {z = 0} and the sub-Riemannian
geodesic is a straight line, the tortuosity (11) gets close to 7p,;, in the three-dimensional

case of the Delaunay tortuosity.

N =1000 | N =2000 | N =4000 | N = 6000
X, =y, =+ |26344 |1.2687 |1.2240 | 1.0963
2
X=y,=1| o0 1.4028 | 1.2210 | 1.1289

Table 3. The tortuosity ((0,0, 0), (x,, y,,0)) for different N, horizontal case.

In the case of helicoidal geodesic, the difference between the sub-Riemannian and

discrete sub-Riemannian distances becomes more evident:

N =1000 | N =2000 | N =4000 | N = 6000
Zy = % 2.0551 1.6298 1.5475 1.5203
Zy = g 1.9685 1.6959 1.5486 1.5086

Table 4. The tortuosity 7((0,0,0), (0,0, z,)) for different N, vertical case.

Considering this ‘anisotropic’ behaviour of 7(A, B) we formulate the following

Arnold Mathematical Journal, Vol.11(3), 2025
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Conjecture on the limit tortuosity. Consider a cubic domain Q c J with the sub-
Riemannian distance dsz and the corresponding spatial graph T, with N uniformly dis-
tributed vertices D and the discrete sub-Riemannian distance d4gz. FiX two points A =
(0,0,0) € D and B = (cos ,0,sinp) € D. AS N — oo one can choose a parameter of the graph
[, with the asymptotic

r~c-N-¢ forsomec >0, d>0, (12)

such that the tortuosity (A, B) converges to a limit tortuosity t = 7(¢) depending only on
the coordinate ¢ of B for almost all positions of vertices in D. The limit tortuosity should be
bounded

1<t<C Vpe]0,2r].

Due to the fact that all considered functions are random variables the convergence
of the tortuosity in this conjecture should be almost sure convergence. Finding optimal
bounds for the constants ¢, d and C is another problem to consider. Also, the connection
between d and the dimension (topological or Hausdorf) of the Heisenberg group is not
clear.

We will say that a broken line with vertices A = p; , p;,, ..., p;, = B is e-close to a geodesic
y(t), t € [ty,t;], connecting A and B if there is a cylindrical neighbourhood of y(¢)

Cyl, = U {y(t) + v|Vv € R3, |v| < &},
tE[to,t1]
containing all vertices p; and all edges [pi» Pij+1] of the broken line.

Finally, we can formulate the approximation conjecture:

Approximation Conjecture. Consider a cubic domain Q C JH with the sub-Riemannian
distance dg, the orresponding spatial graph T, with N uniformly distributed vertices D and
the discrete sub-Riemannian distance dygg. Fix two points A = O € D and arbitrary B € D
and a sub-Riemannian geodesic y(t) connecting A = y(t,) and B = y(t,). For any ¢ there is
number N of vertices and a parameter r satisfying (12) such that there is a shortest path

A= p;,Di-»D;, =B inthe graphT, which is e-close to y(t).

Arnold Mathematical Journal, Vol.11(3), 2025 13
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Note that if the point B lies on the Oz axis then there is no uniqueness of the sub-
Riemannian geodesic connecting A = O and B, it is defined up to rotation as it was
mentioned earlier. In this case in the approximate conjecture one should choose an
appropriate geodesic. It seems to be clear how to prove that in a cylindric neighbourhood
of the fixed geodesic there is a broken line with vertices and edges from T,. But how to

prove that this broken line will be globally shortest path in T',?

5 Conclusion.

Here we presented a discrete model T, of the Heisenberg group # as a spatial graph
with weighted edges. The weight of the edge is defined by the local sub-Riemannian
distance d,, generated by the non-integrable Heisenberg distribution (1). The discrete
sub-Riemannian distance d; is the length of a shortest path in I',. Numerical experiments
give a motivation to formulate an approximation conjecture stating that shortest paths
in the graph I', will be sufficiently close to the geodesics in # if the number of vertices N

is large enough and the parameter r is appropriately small.

The constructed model can be considered as a ‘triangulation of the sub-Riemannian
Heisenberg group’, but without triangles. The triangulation of a smooth two-dimensional
surface embedded in R? is a collection of vertices, edges and triangles. In the non-
integrable case there is no surface, so there should be no triangles. It is natural to choose
a spatial graph T,, consisting only of vertices and edges, as a model for non-integrable

geometry.

We believe that the presented construction will be interesting both for specialists in
discrete geometry and in sub-Riemannian geometry. The presented model can be useful
for simulations of various processes in anisotropic medias, such as heat propagation,

diffusion in anisotropic porous materials, deformations of layered solids, etc.
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Introduction

In this paper we introduce the notion of circumscribed circles in integer geometry and

investigate their properties.

The integer distance between two points in the lattice 7?2 is defined in terms of the
number of lattice points on the segment between them; see Section 1.2 for more details.
An integer circle is the locus of all lattice points at a fixed integer distance from a given
lattice point. The properties of integer circles differ substantially from the properties of
their Euclidean counterparts. In fact, using the Basel Problem [Ayo074], it can be shown
that the density of a unit integer circle in 72 is positive and equal to 6 /72 (see also [HW08])
Note that the chords of unit integer circles provide a tessellation which is combinatorially
equivalent to the Farey tessellation of the hyperbolic plane, while their radial segments

correspond to geodesics in the hyperbolic plane (see [Ser, MGO19]).

An integer circumscribed circle of a subset of 72 is defined as an integer circle that
contains this subset. While in Euclidean geometry every non-degenerate triangle has a
unique circumscribed circle, this is no longer the case in integer geometry. In fact, the

number of integer circumscribed circles of an integer triangle is infinite.

This paper aims to provide a comprehensive study of circumscribed circles in integer
geometry. In Theorem 2.9 we introduce necessary and sufficient conditions for a finite
integer set to admit a circumscribed circle. As a special case, we discuss the circumscribed

circles of integer quadrangles and their Euclidean counterparts.

While a finite set might not admit an integer circumscribed circle, it will have integer
dilates that do. The integer circumscribed circles of the dilates can be interpreted as
integer circles with rational centres and radii. We call the set of all such rational radii
the rational spectrum. In Theorem 3.10 we describe the structure of rational spectra of

finite sets.
This paper is organized as follows. In Section 1, we begin with basic definitions of integer
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geometry and introduce the notion of an integer circle. In Section 2 we state and prove
the conditions under which a finite integer set admits an integer circumscribed circle. We
extend the notion of circumscribed circles to the case of rational radii and rational centres
and describe the spectra of the radii of such circles in Section 3. In Section 4 we discuss
integer and rational circumscribed circles for segments, triangles and quadrangles in

more detail.

1 Basic Notions of Integer Geometry

1.1 Objects in Integer Geometry

Consider the plane R? with the fixed basis (1,0), (0,1). An integer point is a point in R?
whose coordinates in this basis are integers, i.e. the set of all integer points is the lattice Z2.
An integer set is a subset of Z2. An integer segment is a segment in R? with endpoints
in Z2. An integer line is a line in R? that contains at least two integer points. An integer
vector is a vector in R? with integer endpoints. An integer polygon is a polygon in R?

whose vertices are integer points.

An integer affine transformation is an affine transformations that preserves the integer
lattice Z2. We denote the set of all integer affine transformations by Aff(2, Z). Similar
to the Euclidean isometries, Aff(2, Z) contains integer translations, integer rotations and
integer symmetries. They correspond to translations by integer vectors, multiplication by

matrices in SL(2, Z) and multiplication by matrices in GL(2, Z)\ SL(2, Z) respectively.

We say that two integer sets are integer congruent if there exists an integer affine

transformation sending one set to another.

An angle in R? with an integer point as its vertex is called an integer angle. An integer
angle that contains an integer point other than its vertex on each of its sides is called a

rational integer angle.
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1.2 Some Integer Invariants

Let usrecall some basic notions of integer geometry (see [Kar22]). The integer length1€(AB)
of a vector AB in 7?2 is defined as the number of lattice points that the vector passes
through, minus one. Note that the integer length is given by the greatest common divisor
of the differences of coordinates. The integer distance 1d(A, B) between integer points A
and B is the integer lengths of AB. The integer distance 1d(O, L) between an integer point O
and an integer line L is the index of the sub-lattice generated by vectors OV, where V

runs through all integer points on the line L.

The integer area 1S(ABC) of a triangle ABC is the index of the sub-lattice generated
by AB and AC in Z2. In fact, the integer area is equal to the absolute value of the determi-

nant det(AB, AC), and therefore it is twice the Euclidean area of the triangle ABC.

1.3 Integer Circles

We define an integer circle with centre O € Z? and radius r € Z, r > 0 as the locus of all

points P such that 1£(OP) =r.

Proposition 1.1. The intersection of an integer line L with an integer circle is either empty,

or an infinite periodic subset of integer points on L, or two points. O

The integer radial line of an integer circle C is an integer line passing through the
centre of C. An integer radial line of C intersects C in two points. An integer tangent line

to an integer circle C of radius r with centre O is an integer line L such that 1d(O,L) =r.

Remark 1.2. For every pair of integer tangent lines of an integer circle there exists an

integer isometry of the circle mapping one integer tangent line to the other.

Remark 1.3. Two integer circles of the same radius are integer congruent. Moreover, one

can be mapped to the other by a translation by an integer vector.

Figure 1 shows in bold those points of the integer unit circle S, centred at the origin O

whose coordinates do not exceed 5 in absolute value. The polygon in Figure 1 is called a
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Figure 1: An integer circle circumscribed about an integer quadrangle.
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Farey starburst and is obtained by connecting these points by straight segments in the
order of increasing argument. The vertices A, B, C, D belong to the integer circle S,, hence

Sy is a circumscribed circle of the quadrangle ABCD.

Remark 1.4. Consider the integer unit circle S, centred at the origin O. Let « be some
integer angle and A the point (1,0). Then it is possible to find infinitely many points B
in S, such that the angle 2AOB is integer congruent to a. Note the difference with the

Euclidean case, where there are exactly two such points B.

1.4 Integer Trigonometry

Let us discuss basic definitions of integer trigonometry introduced in [Kar09, Kar08] (for

the multi-dimensional trigonometry see [BKD23]).

Definition 1.5. Let p, g be co-prime integers with g > p > 0. The integer arctangent of q/p
is the angle £AOB, where

A=(1,0), 0=(0,0), and B=(p,q).
We define integer sine, integer cosine and integer tangent as
Isin £ZAOB =¢q, lcos«ZAOB =p, and Itan2AOB = q/p.

Note that any rational angle is integer congruent to exactly one integer arctangent. So
the values of integer trigonometric functions form in fact a complete set of invariants of

rational angles up to integer congruence.
The integer sine has a nice geometric definition:

IS(ABC)

Isin#ABC = —M—MM—
s 1£(AB)1£(AC)

which directly corresponds to the Euclidean formula for the area of a parallelogram in
terms of the sine of its angle. The integer tangent is closely related to the geometry of

numbers and their connections to continued fractions [Kar13].
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2 Integer Circumscribed Circles

In this section we generalise the notion of a circumscribed circle in the context of integer

geometry.

Definition 2.1. An integer circumscribed circle of S c 72 is an integer circle that contains

S.

In the Euclidean geometry there exists at most one circumscribed circle for a given
set S with |S| > 2. This is not the case in integer geometry where a set can have several
circumscribed circles. The radius of the circumscribed circle is an important quantity in
Euclidean geometry. A suitable replacement for this quantity in integer geometry is the

integer circumscribed spectrum.

Definition 2.2. Let S be an integer set. The set of all radii of integer circumscribed circles

of S is called the integer circumscribed spectrum of S and denoted by Az(S).
Note the following.

Proposition 2.3. Let a,b € S and let r be the radius of a circumscribed circle of S. Then r
divides 1d(a, b).

Proof. Let x be the centre of the circumscribed circle of S. Then

a—x=b—-—x=(0,0) modr.
Hence a — b =(0,0) mod r, and therefore r divides 1d(a, b). a
This proposition implies that the integer spectrum is bounded:

Corollary 2.4. The integer spectrum Az(S) of an integer set S that contains at least 2 points

is bounded. O

The first natural question in the study of integer circumscribed circles is whether

Az(S) is empty. In this section we will introduce a criterion that answers this question
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for a finite set S in terms of projections of S to integer tori as defined below. Later in

Subsection 3.2 we will study the structure of A,(S).

Definition 2.5. For an integer m > 2, let the (mod m) integer torus be
T =2%/{(m,0),(0,m)) > Z/mZ X Z/mZ.

The projection =, : 7> — 7, is given by (x, y) — (x mod m, y mod m).
We say that two integer points v; and v, in Z? are equivalent mod m if z,,(v;) = 7,,(v),

denoted by v; = v, mod m.
In the statement of the main result of this section we use the following terminology.
Definition 2.6. We say that an integer set S is a covering set of 7, if =,,(S) = T,.

Definition 2.7. We say that an integer set S is tori-transparent if for every integer m > 2

we have that S is not a covering set of 7.

Remark 2.8. Note that a covering set of an integer torus 7, with ¢ > 2 must consist of at

least |7,| = t? > 4 points, hence all integer sets S with |S| < 3 are tori-transparent.

Now we are ready to write down the existence criterion.

Theorem 2.9. Consider a finite integer set S C Z2. Then the following three statements are

equivalent:

() There exists an integer circumscribed circle of S, i.e.
Az(S) # 0.
(i) There exists an integer unit circumscribed circle of S, i.e.
1 € Az(S).
(iii) The set S is tori-transparent.

We start the proof with the following four lemmas.
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Lemma 2.10. Let v,,v, € Z2 Consider two integers d and m such that d is a divisor of m.

Then r,,(v,) = 7,,,(v,) implies 7y(v,) = 7y(Vy).

Proof. If r,,,(v;) = 7,,,(v,), then v; — v, = 0mod m and hence v; — v, = 0modd, since d is a

divisor of m. Therefore 7;(v;) = 74(v,). O

Lemma 2.11. Let S be any subset of Z>2. If S is a covering set of T, then it is a covering set

of T, for any prime divisor p of m.

Proof. The set S is a covering set of 7, hence for each v € 7?2 there exists some s € S such

that 7,,(v) = 7,,(s). By Lemma 2.10, 7,(v) = 7,(s). Hence, S is a covering set of 7 ,. O
Lemma 2.12. For any integer set S the following statements are equivalent:

() The set S is tori-transparent.

(ii) The set S is not a covering set of any torus J , for prime p.

Proof. (i) = (ii) If the set S is tori-transparent then S is not a covering set of any torus 7,

for integer m > 2, hence S is not a covering set of any torus 7, for prime p.

(ii) = (i) Consider any integer m > 2 and let p be a prime divisor of m. By assumption, S

is not a covering set of 77,. Hence, by Lemma 2.11, S is not a covering set of 7,,. O

Lemma 2.13. Consider a finite, tori-transparent integer set S. Then for any finite subset M

of Z there exists a point v € Z? such that r,,(v) & 7,,(S) for allm € M.

Proof. Let{p,,..., p,} be the set of all prime divisors of all elements in M. By Lemma 2.11
for every i =1,...,n the set S is not a covering set of 7, . Hence for every i = 1,...,n there

exists a point v; € 72 such that for any s € S we have
v; Z smod p;.

Then by the Chinese Remainder Theorem (applied coordinate-wise) there exists a point v

such that for everyi =1, ...,n it holds:
v = v; mod p;.
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Hence for every i =1,...,n we have

ﬂpi(v) = n'pi(vi) & 7Tpi(S).
Therefore, by Lemma 2.11 7, (v) & 7,,,(S) for all m € M. .

Proof of Theorem 2.9 (iii) = (ii). The existence of a circumscribed circle and the
property of being a covering set of integer tori 7, are invariant under translation by
integer vectors. Thus we can assume that the set S is contained in the positive quadrant

of Z2. Choose N satisfying the following two conditions:

* Sis completely contained in the box [1,N] x [1,N];

* the number of elements in S does not exceed N.

Consider Z ={1,2...,N} = [1,N]nZ. By Lemma 2.13 there exists (a, b) such that z,,(a, b)

isnot in 7,,(S) for all m € Z.
SetB=b+ N\

Let py, ..., px be all prime numbers in the segment [N + 1, 8]. Now note that the size of
the set Sis |S| < N < p;. Hence the set of first co-ordinates of points in S has fewer than p;
elements. Therefore, for any i = 1, ...,k we can choose ¢; such that ¢; is not equal modulo

p; to the first coordinate of any point in S.

By Chinese Remainder Theorem there exists a solution a of the following system of

equations:

a =a mod N!

a = ¢; mod p;

Then we will show that the point («, 8) has the property that 7,,,(«, 8) & 7,,(S) for every
integer m, and therefore («, ) belongs to the unit integer circle with centre at (x, y) for

every (x,y) € S.
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* If m < N then 7,,(a, B) = n,,(a,b) & 7,,(S).

o If m € [N +1,3] and m is a prime, say m = p;, then a = ¢; mod p; and hence is not

equal to the first coordinate of any point in S modulo p; (by the above). Therefore

T (a, B) & Ty (S).

* If m € [N +1,8] and m is not a prime then z,,(«,8) ¢ 7,,(S) by Lemma 2.12 and by

the cases considered above.

* If m > B then the second co-ordinate of any point in S is in the interval [1, N]
while 8§ > N! > N. Hence the difference of the second coordinates is contained

in [ —N,B—1] c [1,m — 1] and is therefore not equal to zero modulo m. Thus

(et B) & T (S). O

Proof of Theorem 2.9 (ii) = (i). This is straightforward. O

Proof of Theorem 2.9 (i) = (iii). Assume that there exists a circumscribed circle of S of
some radius r centred at O. Suppose that S is a covering set of 7, for some integer m > 2.
Let p be a prime divisor of m. Lemma 2.11 implies that S is a covering set of 7.
On the one hand there exists s; € S such that 7 ,(s;) = 7,(0). Therefore, p divides r.
On the other hand there exists s, € S such that 7,(s,) # 7,(0). Therefore, p does not
divide 1¢(s,,0) = r.

This is a contradiction. Hence S is tori-transparent. O
Remark 2.14. The finiteness of the set S is crucial in Theorem 2.9. For instance, the set
S={0,6}xZ

is an example of an infinite set, for which Theorem 2.9 does not hold.

Indeed, for every m, the set S is not a covering set of 7, as [1,0],, & 7,,,(S) for m # 5

and [2,0],, & 7,,(S) for m = 5. Assume that there exists a circle through all points of S

with centre (x,y). The point (x,y) is at integer distance one from all points of {0} x Z,
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hence ged(x,y —n) = 1 for all n € Z and therefore x = +1. Similarly, (x,y) is at integer
distance one from all points of {6} x Z, hence ged(x—6,y—n) = 1 for all n € Z and therefore

x — 6 = +1. We arrive at a contradiction.

Finally let us say a few words about the Aff(2, Z)-invariance of the property of being

a covering set of a torus.

Proposition 2.15. Let S be an integer set and m an integer number. The property of S to be

a covering set of 7, is preserved under Aff(2, 7).

Proof. Any element of Aff(2, Z) can be written as a map v ~— Av + b for some matrix A €
GL(2,7) and vector b € Z2. Note that the equation v; = v, mod m (coordinate-wise) is
equivalent to the equation Av, + b = Av, + b mod m. So the number of points in the image

under the projection 7, is preserved under Aff(2, Z). O

Corollary 2.16. The property of a finite set to be tori-transparent is invariant under Aff(2, Z).
O

Definition 2.17. Let S be an integer set and k a positive integer. We say that S is shift-

divisible by k if there exists an integer point x and an integer set $ such that
S=x+kS.

We then say that § ~ S/k. Note that S is shift-divisible by k if and only if any two points
in S are equivalent modulo k. Note that the set S is uniquely defined up to a translation
by an integer vector. We define S/k as the equivalence class of § under translations by
integer vectors. The property of an integer set to be a covering set of 7, is preserved
under translations by integer vectors, hence we can say that S/k is a covering set of 7,

or is tori-transparent if the set S has this property.

Proposition 2.18. Let S be a finite integer set and a, b integers. If S is shift-divisible by a
and b then S is shift-divisible by lcm(a, b).
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Proof. If S is shift-divisible by a and b then any two points in S are equivalent modulo a and
modulo b and therefore equivalent modulo Icm(a, b). Hence S is shift-divisible by Icm(a, b).
O

Proposition 2.19. Let S be a finite integer set and r an integer. Then S has a circumscribed

circle of radius r if and only if S is shift-divisible by r and S /r is tori-transparent.

Proof. Suppose that the set S has a circumscribed circle C of radius r with centre x. Then
S—xcrz?andS = (S — x)/r is an integer set such that S = x + rS, i.e. S is shift-divisible
by r and S/r ~ S. Moreover, C = (C —x)/r is a unit integer circumscribed circle of S, hence
1 € Az(S). Theorem 2.9 implies that S/r is tori-transparent.

Now suppose that S is shift-divisible by r and S/r is tori-transparent, i.e. there exists an
integer point x and an integer tori-transparent set S such that S = x + rS. By Theorem 2.9,
the set S admits a unit integer circumscribed circle €. Then C = x + rC is an integer

circumscribed circle of S of radius r. O

Proposition 2.20. Let S be a finite integer set and a,b integers. If a,b € Az(S) then
lem(a, b) € A(S).

Proof. If a,b € Az(S) then Proposition 2.19 implies that S is shift-divisible by a and b and
S/a, S/b are tori-transparent. Proposition 2.18 implies that S is shift-divisible by lem(a, b).
Let S = S/(lem(a, b)). Let d = ged(a,b), @ = a/d and b = b/d, so that ged(d,b) = 1 and
lem(a, b) = dab. The set

aS = a(S/(dab)) = S/(db) = S/b
is tori-transparent, hence S is not a covering set of 7, for all m co-prime with 4. Similarly,
the set

bS = b(S/(dab)) = S/(da) = S/a
is tori-transparent, hence S is not a covering set of 7, for all m co-prime with 5. The
integers a and b are co-prime, hence every integer m is co-prime with at least one of a
and b. Therefore $ is not a covering set of any 7, for m > 2, i.e. § = S/(Icm(a, b)) is

tori-transparent. Proposition 2.19 implies that lcm(a, b) € Az(S). O
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3 Rational Circumscribed Circles

Some sets do not have integer circumscribed circles. However we can extend the defini-
tion of integer circumscribed circles to circles with rational radii. We will see that every

finite set has at least one rational circumscribed circle.

3.1 Definition of a Rational Circumscribed Circle

Definition 3.1. We call a fraction £ irreducible if gcd(p, q) = 1.
q

Definition 3.2. Consider an integer set S and let p and g be two integers. We say that S
has a rational circumscribed circle of radius £ if the set ¢S has a circumscribed circle of
q

radius p.
Definition 3.3. The rational circumscribed spectrum Aq(S) of an integer set S is the set of
all rational values g such that S admits a rational circumscribed circle of radius s.
Remark 3.4. Since every integer circle is also a rational circle, we have

A7(S) C Ag(S).
Proposition 3.5. Let S be an integer set. If s is an irreducible fraction in Ag(S) and a,b € S
then p divides 1d(a, b).

Proof. By definition, § € Ag(S) implies p € Az(gS), i.e. the set ¢S has an integer circum-
scribed circle of radius p. Proposition 2.3 implies that p is a divisor of 1d(qa, gb) = gq-1d(a, b)

for any a,b € S. As p and g are co-prime, it follows that p is a divisor of 1d(a, b). O

This proposition implies that the rational spectrum is bounded.

Corollary 3.6. Let S be an integer set, |S| > 2. Then the rational spectrum Agq(S) of S and

the set of numerators of irreducible fractions in Aq(S) are bounded. O

Proposition 3.7. Let S be a finite integer set. If 22 and 2 are two irreducible fractions
T

q>

in Ag(S) then
lem(p192, P2g1) _ lem(py, py)
019> ged(q1, q2)

€ Ag(S).
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Proof. If % € Ag(S) then p; € Az(q,5), hence p,q, € Az(q,9,S). Similarly, p,q, € Az(q19>5).
1
Proposition 2.20 implies lcm(p; g5, p»q1) € Az(q19,S), hence
lem(p1q,, p2q1)

€ Ag(9).
019 @

Finally, we will use the following identity known in elementary number theory

lem(p195, p2q1) _ lem(py, po)
019> ged(q1,g2)

3.2 Structure of Rational Spectra

Proposition 3.8. Let S be a finite integer set. If £ and £ are two irreducible fractions
q q

in Ag(S) and max(Ag(S)) = § thenp’|pandq|q.

Proof. By Proposition 3.7, the number

lem(p, p")
ged(q,q")
is in Ag(S), hence
lem(p, p')
ged(q.q")
Note that lcm(p, p’) > p and ged(g, ') < g, hence the inequality above can only hold if

< max(Ag(S)) = g.

lem(p,p")=p,  ged(q,q) =q.
Therefore p’ | pand q| ¢’ O

Corollary 3.9. Let S be afinite integer set. If § isanirreducible fraction in Ag(S) and max(Aq(S)) =
5, then p is the largest possible numerator and q is the smallest possible denominator of an

irreducible fraction in Ag(S).

Theorem 3.10. Let S be a finite integer set. Let {t,, ..., t,} be the set of all primes t such that
n

S is a covering set of T,. Let t = [ [ t;. Then there exists p € Z, such that
i=1

P

AQ(S)={%-? ceZ+}.
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In fact, p = max(Az(zS)), p/T = max(Ag(S)), and the greatest common divisor of all integer
distances between pairs of points in S is a multiple of p.

If S is tori-transparent then t = 1,

Ag(S) = {% ce Z+}

and p = max(Az(S)) = max(Ag(S)).
Proof. Let 5 be an irreducible fraction such that max(Ag(S)) = s.

1. We will show that g is a divisor of 7: We know that S and hence zS is not a covering
set of 7, for any prime ¢t ¢ {t,,...,t,}. Fori = 1,...,n, the set ¢;S and hence 7S is
not a covering set of 7. In summary, the set S is not a covering set of 7, for
every prime ¢, i.e. 7S is tori-transparent. Theorem 2.9 implies 1 € Az(zS) and hence

% € Ag(S). Proposition 3.8 implies q | 7.

2. We will now show that g = 7: We have shown that q is a divisor of 7. Suppose that
q # 7 then g is the product of some but not all of ¢, ..., t,. We can assume without loss
of generality that ¢, is not a divisor of g. We know that S is a covering set of 7, and
ged(ty,q) = 1, hence gS is also a covering set of 7, and therefore not tori-transparent.
Theorem 2.9 implies that A,(gS) = #. On the other hand, we know that 5 € Ag(s),

hence p € Az(gS) in contradiction to Az(qS) = #. Hence q = 7.

3. We will next show that

p

AQ(S)C{%-? ceZ+}:

Consider an irreducible fraction £ in Ag(S). We know that the irreducible frac-
q/
tion 2 = £ js the maximum of Ag(S). Proposition 3.8 implies that p’ | p and 7 ¢/,
q T

hence there exists ¢ € Z, such that

’.5\
Q|-
!

4. We will now show that

1 p .
{E? C€Z+}CAQ(S).
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Let ¢ € Z,. We know that % € Ag(S), hence p € Az(zS) and therefore Az(zS) # 0.
Theorem 2.9 implies that the set 7S is tori-transparent. It follows that the set c(zS)
is also tori-transparent. Theorem 2.9 implies that 1 € Ag(ctS) and therefore % €
Ag(tS). We know that p, % € Ag(7S), hence f € Ag(zS) according to Proposition 3.7.

Therefore cﬂf € Ag(9).

5. Finally, we will show that the greatest common divisor of all integer distances
between pairs of points in S is a multiple of p: We know that § = § € Ag(S), hence
p € Az(zS) and therefore 7S has a circumscribed circle of radius p. It follows that
the integer distance between any two points in zS is a multiple of p. We know that
gcd(p, ) = ged(p, @) = 1, hence the integer distance between any two points in S is a

multiple of p. O
Remark 3.11. Let S be a finite integer set. Then
Az(S) = Ag(S)N Z.
In the case Az(S) # @, we additionally get the equality
max(Az(S)) = max(Ag(S)).

Remark 3.12. There is a similarity between the expression for the rational circumscribed
spectrum in Theorem 3.10 and some formulas for coefficients of Ehrhart polynomials,

see for example [BR15].

Note that while Theorem 3.10 states that the greatest common divisor of all integer
distances between pairs of points in S is a multiple of p, it is not necessarily equal to p as

can be seen in the following example:
Example 3.13. Consider the set

S ={(0,0),(2,0),(0,2),(2,2)}.
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On the one hand, the set S is tori-transparent, so Theorem 3.10 implies that there exists a

divisor p of all integer distances between pairs of points in S such that

Aq(S) = {% ce z+}.

The greatest common divisor of all integer distances between points in S is g = 2, hence
either p =1 and Az(S) = {1} or p = g = 2 and Az(S) = {1, 2}. On the other hand, we have
S =28, where

S ={(0,0),(1,0),(0,1),(1, 1)}

Now S is a covering set of 7, hence Theorem 2.9 implies 1 ¢ A,(S) and therefore 2 ¢ A (S).
Thusp=1+#g.

To give a more precise description of circumscribed spectra, we will need the following

definition:

Definition 3.14. An integer set S is called primitive if it is not shift-divisible by k for any

integer k > 1.

Remark 3.15. Note that a set is primitive if and only if the greatest common divisor of the

distances between all pairs of its points equals to one.

Theorem 3.16. Let S be a finite integer set. Let x be an integer point, g an integer and S
a primitive set such that S = x + gS. Let {t,, ..., t,,} be the set of all primes t such that S is a

n
covering set of 7,. Let T = [ t;. Then the rational circumscribed spectrum of S is
i=1

_f1. 8
Ag(S) = {c = |ce Z+}.
If S is tori-transparent then t = 1 and
(g
A@(S) = {E c e Z+} .

Proof. Theorem 3.10 implies that there exists p € Z, such that

p

A 1
AQ(S):{E? C€Z+},
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and that p is a divisor of all integer distances between pairs of points in $. The set S is
primitive, hence the greatest common divisor of all integer distances between pairs of

points in S is equal to 1 and therefore p = 1. It follows that

A@(S’)=ﬁ % CEZ}

and therefore

Aa() = Aa(@) =g Aa®) = 2 - E|cez,]. =

Definition 3.17. The primorial d# of d € Z, is defined as the product of all prime numbers

smaller or equal to d.

Proposition 3.18. Let S be a finite integer set and k = |S| then

1
€ Ag(S).
[Vk]#
Proof. Let k = |S|. Theorem 3.10 implies that —€ Ag(S) for everyn € Z,, where r = Ht
and {t, ..., t,,} is the set of all primes ¢ such that S is a covering set of 7. Note that if S 1s a
covering set of an integer torus 7, then t> = |7,| < |S| = k and therefore ¢t < k. It follows
that {t,, ..., t,} is a subset of the set of all primes smaller or equal to \/E, hence 7 is a divisor

of |[Vk|#, i.e. [Vk|# = nt for some n € Z .. Therefore

=i€/\@() O

1
Wkl#  "*

Example 3.19. Let a,b > 2 be integers. The circumscribed spectra of the integer set

Gap = {1,..,a}x {1, ..., b}

are given by

AZ(Ga,b) = Q, A@(Ga,b) = {l L

C-m C€Z+}.

To prove this, note that G, ;, is a primitive set. Theorem 3.16 implies that

1 1
Aa(Gyp) = {E "T|¢€ Z+},
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n
where {t,, ..., t,} is the set of all primes ¢ such that G, is a covering set of 7, and 7 = [ ¢;.

i=1
The set G, is a covering set for an integer torus 7, if and only if 2 < ¢ < min(a, b).

Hence the set {t,, ..., t,,} consists of all primes smaller or equal to min(a, b) and therefore

7 = (min(a, b))#. Finally, Az(S) = Ag(S)NZ = 0.

4 Circumscribed Circles of Polygons

We define an integer circumscribed circle of a polygon P as the integer circumscribed
circle of the set of vertices of P in the sense of Definition 2.1. Note that an integer circle
is an integer circumscribed circle of P if and only if all vertices of P are on the circle
(see Figure 1). We define a rational circumscribed circle of a polygon P as the rational

circumscribed circle of the set of vertices of P in the sense of Definition 3.2.

In this section we summarise the implications of the results of Theorem 3.16 for

integer and rational circumscribed circles of polygons.
4.1 Circumscribed Circles of Segments and Triangles

An integer segment or triangle always admits a unit integer circumscribed circle.

Proposition 4.1. Let S be an integer segment or triangle. Let g be the greatest common
divisor of all integer distances between pairs of vertices of S. Then the integer circumscribed

spectrum Az(S) consists of all positive divisors of g and

A@(S):{§ ceZ+}.

In particular if S is a primitive segment or triangle then
1
AZ(S) =1}, Ag(S) = {E ce z+} .

Proof. There exist an integer point x and a primitive polygon $ such that S = x + gS.

The set of vertices of S consists of at most three points and therefore is tori-transparent.
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Theorem 3.16 implies that

Ag(S) = {% ce Z+}.

It follows that Az(S) = Ag(S) N Z consists of all positive divisors of g. d

We obtain the following corollary:

Corollary 4.2. If an integer set S has a integer circumscribed circle of radius r then the

integer distance between any two points of S is a multiple of r.

Proof. Consider A, B € S. Any integer circumscribed circle of S is in particular an integer
circumscribed circle of the segment AB, hence the integer length of the segment AB is
divisible by r. O

Let us recall the Euclidean Extended Sine Rule: for a triangle ABC we have

JABl  |BC|] _ |CA| R
sin /BCA ~ sin«CAB sinzZABC

where R is the radius of the circumscribed circle.

As was shown in [Kar08], the first two of these equalities hold in lattice geometry:

I6(AB)  1£(BC) _ 1¢(CA)
Isin £/BCA ~ lIsin«CAB lsin ZABC’

Proposition 4.1 tells us that there is no natural generalisation for the last equality. Indeed,
the circumscribed spectrum depends entirely on the integer length of the edges of the

triangle and does not depend on the angles.

For instance consider two triangles, one with vertices (0, 0), (1,0), (0,1) and another with
vertices (0,0), (1,2), (2,1). For both triangles, all edges are of unit integer length. The sets
of integer sines of the angles of these triangles are distinct, for the first triangle all integer
sines are equal to 1 while for the second triangle all integer sines of the angles are equal

to 3. Nevertheless the circumscribed spectra for both triangles coincide.
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4.2 Circumscribed Circles of Quadrangles

We have seen that every triangle has an integer circumscribed circle, however this is no

longer true for quadrangles as the following example shows.

Definition 4.3. An integer polygon P is empty if the only lattice points contained in P are

the vertices.

Proposition 4.4. An empty integer strictly convex quadrilateral does not have a integer

circumscribed circle.

Proof. Note that every empty integer strictly convex quadrilateral is integer congruent
to the coordinate square S; with vertices (0,0), (1,0), (1,1) and (0,1). The square S, is a
covering set of 7, hence it is not tori-transparent. Theorem 2.9 implies that S; does not

admit integer circumscribed circles of any radius. O

However some quadrangles have integer circumscribed circles.

Example 4.5. The quadrilateral with vertices A = (0,0), B = (1,0), C = (0,1) and D = (2,2)

has a unit circumscribed circle centred at (1,1).

The situation is similar to the Euclidean geometry, where a quadrangle has a circum-
scribed circle if and only if its opposite angles add up to . The lattice version of this rule

is as follows:

Proposition 4.6. An integer quadrangle has an integer circumscribed circle if and only if

the set of its vertices is not a covering set of 7.

Proof. Theorem 2.9 implies that a quadrangle admits an integer circumscribed circle if
and only if its set of vertices V is tori-transparent, i.e. is not a covering set of any integer
torus 7, for t > 2. The set V cannot be a covering set of 7, for t > 2 since |V| =4 < 2 = |7|.

Hence the set V is tori-transparent if and only if it is not a covering set of 7. O
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Remark 4.7. The conditions for a quadrangle to admit a circumscribed circle can be
stated in terms of the parity of the six integer distances between its pairs of vertices as
follows: An integer quadrangle admits an integer circumscribed circle if and only if at

least one of the integer distances between its vertices is even.

On the other hand, the existence of an integer circumscribed circle is not determined
solely by the integer angles of the integer quadrangle. For example, the angles of the
quadrangles with vertices A(0, 0), B(0,1), C(1,1), D(1,0) and P(—1,0), Q(—1, 1), R(0,1), S(1,0)
are congruent to each other, however the latter one admits a circumscribed circle, for

example one centred at the origin 0(0, 0), while the former one does not.

B C Q@ R

A D P O S

4.3 Circumscribed Circles of General Polygons
In fact, the argument used in the proof of Proposition 4.6 holds for all n-gons with n < 8:

Proposition 4.8. An integer n-gon with n < 8 has an integer circumscribed circle if and

only if the set of its vertices is not a covering set of T,. O
In general, the following statement holds:

Proposition 4.9. An integer n-gon admits an integer circumscribed circle if and only if its

vertices are not a covering set of T, for every t <+/n. O
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1 Introduction

The g-deformation of a positive integer n, which is given by
1-q" - -
[n]y = =g =q" 4+ ¢+ +q+1,

is a very classical subject of mathematics. Recently, Morier-Genoud and Ovsienko [MO20]

introduced the g-deformation [«], of a rational number « based on some combinatorial
properties of rational numbers. They further extended this notion to arbitrary real num-
bers [M0O22] by some number-theoretic properties of irrational numbers. These works are
related to many directions including Teichmiller spaces [FC99], the 2-Calabi-Yau category
of type A, [BBL23], the Markov-Hurwitz approximation theory [Ko22, LL22, LMOV21,
R22(a)], the modular group and Picard groups [LeM21, MOV24, 021], Jones polynomials
of rational knots [KW19(a), LS19, NT20, M0O20, BBL23, R22(b)], and combinatorics on
fence posets [MSS21, Kan22, KR23].

For an irreducible fraction - > 0, we have
S

R (q)
[f] = for R:(q),8:(q) € Zsolg] With R:(1)=r and 8:(1) =s.
S q Sf(q) N s s N

S

There are many ways to compute [«], (see Section 2 for details). For example, we have

[9] ol P+gt+ P+ +g+1 [Z] 2 +2¢7 +q+1
5, I8l @*+@d+q+q+1 5l B+2¢2+q+1

and observe that the denominators of g and g are the same 5, but the denominator
polynomials of their g-deformation are different. In general, the following problem

arises. When dose the equation 8:(q) = 8~ (g) hold for two irreducible fractions E and

S

%,? By definition, we have 8,,,(q) = S.(q) for n € Z, and hence r = ' (mod s) implies

8r(q) = 8~ (q). However, there are more subtle relations.

N
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Example 1.1. (1) The table of 8,(q) for irreducible fractions « of the form % is the

following.

A=[17],=q"%+q" +--+q+1
B=q¢’+2¢®+2q¢"+2¢°+2¢° +2¢*+2¢*+2¢* +q+1
C=q"+2¢°+3¢°+3q¢* +3¢*+2¢*+2q+1
D=q"+2¢°+3¢°+4¢* +3¢* +2¢*+q+1

E=q°+2¢°+4q*+4¢> +3¢*+2q+1

r (mod 17) | 1,16 | 2,8 | 3,11 | 4 | 5,10 | 6,14 | 7,12 | 9,15 | 13

8r(q) A|B| c |Dp| E |c | E | B |DY
17

Here, for f(q) € Q[q], f¥(g) denotes its reciprocal polynomial g%&) f(g~1). For example,
we have

EV=q¢5+2¢°+3q*+4¢* +4¢°+2q+1.
(2) Next, we give the table of 8,(q) for irreducible fractions « of the form é

A=[23],=q”+¢" +--+q+1

B=g2+2q" +2¢"°+2¢° +2¢®+2q¢" +2¢° +2q¢° +2¢* +2¢* +2¢* +q+ 1
C=q¢"+2¢*+3q¢"+3¢°+3¢° +3¢*+3¢* +2¢*+2q+1
D=q¢*+2q"+3¢°+4¢° +4¢*+3¢* +3¢* +2q+1
E=q"+3¢°+4¢°+5q¢* +4¢*+3¢*+2q+1

F=q"+2¢°+4¢ +5¢*+5¢+3¢*+2q+1

raod23) | 1,22 | 2,11 | 3,15 | 4,17 | 5,9 | 6,19 | 7,13 | 8,20 | 10,16 | 14,18 | 12,21

$:(q| A | B c | p |E|D | F |c | F EY BY
23
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From these examples, the third author of the present paper and Takeshi Sakurai, who
were supervised by the first author, proposed the following conjecture in their master

theses [R21, S21]. This is the main motivation of the present paper.

Conjecture 1.2 (Arithmetic conjecture). Let p be an odd prime integer. For two positive

integers a,b which are coprime to p, 8a(q) = 8»(q) ifand only if ab = —1 (mod p)ora=b
P P

(mod p).

The necessity part of Conjecture 1.2 really requires the assumption that p is prime. In
fact, 8 5 (q) Su (q) holds, while 5- 11 # —1 (mod 24). See Subsection 2.2 for detail. On the
other hand W1thout the assumption that p is prime, we can show the sufficiency (so the
essential part of the conjecture is its necessity). We give two different proofs in Sections
3 and 4.

The proof given in Section 3 is rather direct. Combining an argument here and a
combinatorial result in [KR23], we can show that 8-(q) is palindromic if and only if r*> =
(mod s). Recall that f(q) € Z[q] is said to be palind;omic, if f¥(q) = f(g).

The proof given in Section 4 uses the g-deformation (a,b), € Z[q] of a pair (a, b) of
positive and coprime integers introduced in the previous work [W22] of the fourth author.
In Section 5 we study on behavior of ®,(q) and S,(q) under the operations i, r, ir on the
positive rational numbers «, which are introduced in [KW19(a)].

For a given rational number « € Q N (1, o), the regular continued fraction expansion
of a determines a quiver Q of type A. In [M0O20, Thoerem 4], they provided a method
for computing R.(q) (and S,(gq)) by using combinatorial enumeration with the quiver
Q. Specifically, the coefficients of g* in R,(g) coincides with the number of marking of
circles to k vertices of Q so that there is no arrow from a marked vertex to an unmarked
vertex. Thus, one representation-theoretic view of R, (q) is that it counts the number of
submodules of the largest dimensional indecomposable module M over the path algebra
kQ, where k is a field. Namely, the coefficients of g* in ,(q) is equal to the number of
k-dimensional submodules of M. In Section 6, we give a formula for computing R.(q).

In Section 7, we extend the result [MO20, Proposition 1.8] which states that S,(—1)
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and R,(—1) belong to {0, +1}. First, we will show that

Ro(@), So(w) €10, +1, +w, +w?} for w =

~1++/-3
2

and

R, (D), 8,() € {0, +1, +i, +(1 + i), +(1 — i)}.

Hence, for an irreducible fraction E, 8:(q) € Z[q] can be divided by [3];, = @?+q+1

(resp. [4l; = ¢° + ¢* + ¢ + 1) if and only if s is a multiple of 3 (resp. 4). Inspired by this

fact, we conjecture that if p is a prime integer then S«(q) € Z|q] is irreducible over Q
p

(Conjecture 7.9).

In Section 8, we give an application of the observations in the previous section. For the
rational link L(x) associated with a € Q (for example, see [KL02]), the Jones polynomial
Viw(®) € Z[t*1]u t§Z[til] has the normalized form J,(q) € Z[q] ([LS19]). Since J,(q) for
a > 1 can be expressed using R.(q) and 8,(q) by [MO20, Proposition A.1], one can study
the special values of J,(q) at g = —1,i, +w. There are several classical results on the special
values of the Jones polynomials V;(¢) for general links L, and most of the facts given in
this section easily follow from these results. However, we give a new explanation using

g-deformed rationals.
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2 Preliminaries

Throughout this paper, for a real number x € R, the symbols [x] and |x| mean [x] =
min{n € Z | x < n}and |x] = max{n € Z | n < x}, respectively. For an irreducible fraction E,

we always assume that s > 0. We regard 0 = % as an irreducible fraction.

2.1 g-deformed rational numbers

In this subsection, we review some basics on g-deformations for rational numbers intro-
duced by Morier-Genoud and Ovsienko [MO20, MOV24]. A rational number « € QN (1, )

can be represented by

a=a +
a2+.'

1
+ —
an

with ay,...,a, € Z,, and it can be also represented by

G

with ¢y, ...,¢; € Z;. In this case, we write [q,, ..., a,] and [[cy, ..., ¢]] for these expansions,
respectively. The former expansion is called a regular continued fraction of a, and the
latter is called a Hirzebruch-Jung continued fraction (or negative continued fraction in this
paper) of «. One can always assume that the length n of a regular continued fraction to
be even, since [a, ..., a, + 1] = [a,, ..., a,, 1]. The expression as a regular continued fraction
is uniquely determined if the parity of n is specified, and that as a negative continued
fraction is unique (since ¢; > 2 for all i now).

For an integer a, we set:

a 1 a
M(a) := , M (a):= . (2.1)
1 0 1 0
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Moreover, for a finite sequence of integers (a,, ..., a,), we set
M(ay,...,a,) = M(a;)---M(a,), M (a,..,a,) =M (a;)--- M (a,). 2.2)

It follows from the definitions, we see that M~ (a,, ..., a,) € SL(2, Z), whereas M(a,, ...,a,) €
SL(2, Z)if and only if n is even. These matrices are well-known as the matrices of continued

fractions in elementary number theory because one has the following result.

Lemma 2.1 ([MO19, Proposition 3.1]). Leta = E > 1 be an irreducible fraction, and assume

that it is expressed by
a=lay,..,a,] =[lc1,... ]l
witha; >1(i=1,..,n) and c;22(=1,.,D. Then,
/

ror
M(ay,...,a,) = , M~(cq,...,c) = ,
s s s —S

r/ rl/
where 5= la;,...,a,_,] and == [[cys s ci—1]]-

The g-deformation of positive rational numbers is based on the above lemma. Let q

be a formal symbol. For an integer a, we define a Laurent polynomial [a], € Z[q,q~'] by

qa—1+qa—2+...+q+1 ifa >0,

1_ a
[a]q L= l—qq =10 ifa=0,
—q ¢ —qg ¢l —...—g2_g! ifa<o.

By the definition of [a],, for all a,n € Z, the equation
[a + n]q = qn[a]q + [n]q (2.3)
holds. For an integer a, two g-deformations of (2.1) are defined by

a _~a—1
M,(a) := laly g% M;(a) := laly =™ (2.4)

1 0 1 0
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The next proposition is a g-deformation of Lemma 2.1. Here, for regular continued

fractions, we only use those of even length. The g-deformations of (2.2) are defined as

follows.
Mq(al,...,azm) = Mq(al)Mq—l(az)Mq(a:),) "'Mq—l(azm)
Mq(ali e a2m) = qa2+a4+.”+a2qu(al’ (L) a2m)
Mg (ay,...,a,) = Mg(a;)Mg(ay) - Mg (a,).

Then, the following statements hold.

Proposition 2.2 ([MO20, Propositions 4.3 and 4.9]). Let a = E be a rational number as

given in Lemma 2.1. The polynomials R.(q), S,(q) € Z[q] given by

1 R,
M (c1, ..., 1) =[ (q)]

0 Sa(q)
satisfy
_ 1 Re
My(ay,am)| = @\ 2.5)
0 98.(q)

Moreover; the following statements hold.
(1) R.(q) and 8,(q) are coprime in Z|q].
(2) We have R-(1) =r and 8§:(1) = s.

Based on Proposition 2.2, the g-deformation of a rational number « > 1 is defined by

R
el =@

Remark 2.3. Let PSL,(2, Z) be the subgroup of

PoL (2.Z[¢*']) = 6L (2.Z[¢*']) /1, | N € 7}

generated by the following two matrices
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[LeM21, Proposition 1.1] states that PSL(2, Z) = PSL4(2, 2). Via the equation

— plird2padzray Qm-17 A2
My(ay, ..., @) = Ry L RPLy* -+ R L™

and the classical PSL(2, Z) action on QU{(%)} [MOV24] gives an insightful interpretation of
g-deformed rationals. We can also use negative continued fractions for this interpretation.

For an integer n > 2, since n = [[n]] as a negative continued fraction, we have the

following philosophically trivial equations
Ru(q) =[nly and 8,(¢) =1 (2.6)

Morier-Genoud and Ovsienko pointed out that the definition of g-deformed rational
number [a], can be extended to the case where « < 1 including the negative rational

numbers by the following formulas, see [MO20, page 3]:
[a +1]; = qla], + 1. 2.7

However, for « < 0, R,(g) is not an ordinary polynomial but a Laurent polynomial.
Similarly, for 0 < a < 1, R,(g) is a polynomial, but R, (0) = 0 (if « > 1, we have R,(0) = 1).

It can be easily verified that (2.5) holds for all « € Q, that is, without assuming that « > 1.

Lemma 2.4. For a rational number a and an integer n, we have

Ratn(q) = q"Re(q) + [n]qsa(Q) and  8,.,(q) = 8(q),

equivalently, [« + n], = q"[a], + [n],. In particular; we have

84(q@) = 8u41(q) and Ry (q) = 7 (Ry11(q) — Ses1(q)). (2.8)

Proof. It suffices to show that [« + n], = ¢"[a], + [n],. For n > 1, this is easily shown by
induction on rn using (2.7). For n > 1, replacing « by a — n, we have [a], = ¢"[a — n], + [n],.
Hence

[Ol - n]q = q_n[a]q —q n[n]q = q_n[a]q + [_n]q-
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Lemma 2.5. Let a, x be positive and coprime integers with 1 < a < x, and express x as the

form x = ca +r for some c,r € Z with 0 <r < a. Then the following equations hold:
Rg(q) =[c+ 1]q5€£(q) - chﬁ(q),
Sg(CJ) = ﬁﬁ(é])
Proof. Note that it follows from the equations (2.6) and (2.8) that R,(q) = 8;(q) = 1. If

a =1, then r = 0. Thus, we have

e +1]gR < (@) = g°8 o (@) = [x + 1] R1(@) — g"81(q) = [x]; = Rx(q)-

The second equation obviously holds when a = 1.
If a > 1, then r > 0, and thus ﬁ >1.Byx=ca+r,

X c+la+r—a
—=( ) =c+1- —.
a

a

a—r
So, if —— is expressed as — = [[¢y,...,¢]], then = = [[c + 1,¢;, ..., ¢]] and
a—r a

a-—r

Mz (c+1,¢, ...,cl)[l] = Mg (c + DMy (cy, - ,cl)[ ]
0 0

[c + 1]q5€£(q) —q°S.a (q)

a-r

) R (@
This leads to the equations in the lemma. O
By Lemmas 2.4 and 2.5, we have
{Sa(@ 1 a€Q}={8(q) |a€QNn(,2]} ={Re(q) [a € AN, 0)}.
Lemma 2.6. For coprime positive integers a,x with 1 < a < x, we have
(2.9)

Ra(q) = ﬂ%(q) - 8%(61),
(2.10)

Sa(q) = R = (q).
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Proof. Express — as the negative continued fraction — = [[c,...,¢/]]. Then £ +1 =
X—a X

[[2,01, ’Cl]]: and

Ra _q)| %=
(@ = M; M (e, ) H_ {2l -] [*5@ .
8a,,(q) 0 1 0J|8=(q

X—a

This equation and Lemma 2.4 yield the equation (2.10) and
qRa(q) +8a(g) = [2];R = (q) — ¢S = (@) (2.11)

The equation (2.9) can be obtained by substituting (2.10) to (2.11). O

2.2 The arithmetic conjecture on g-deformed rational numbers

Conjecture 1.2 is the central problem of the present paper. In this subsection, we collect a
few remarks on this conjecture.

If Conjecture 1.2 holds for an odd prime p, then we have

pT“ (p=1 (mod 4)),

#Sa(q)la ez} = (2.12)

pT—l (p=3 (mod 4)).

To see this, recall the result of elementary number theory that there is some a € Z with

a’> = -1 (mod p) if and only if p =1 (mod 4). Thus, if p =1 (mod 4), then
{1,...,p—1}={ay,...,ap3,by,..,bp3,c,d },
> 2
where g;b; = —1 (mod p) for each i and ¢?> = d?> = —1 (mod p). If p = 3 (mod 4),
{1,..,p—1} = {al,...,aqu,bl,...,pr—l}

holds, where q;b; = —1 (mod p) for each i. In the present assumption, we have S« (q) =
p
8 (q) for each i, and this is the only case when S«(q) = 8»(q) holds for distinct a,b €

P p p
{1, ..., p — 1}. Hence Conjecture 1.2 implies (2.12). However, in Theorem 3.5 below, we will
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prove the sufficiency of the conjecture (without assuming that p is prime). So S« (q) =
p

8 () actually holds, and (2.12) is equivalent to Conjecture 1.2.

p
Next, we remark that the assumption that p is prime is really necessary for the

necessity part of Conjecture 1.2. In fact, 2—‘1 =10,4,1,4] and ;—i = 10,2, 5,2] satisfy
85(q) =8u(q) = q* +2q" +3¢° +4q° +4q* +4¢> +3¢> +2q + 1
24 24

by Proposition 2.2 and (2.8), while 5 - 11 + 1 = 56 is not divisible by 24.

The following table shows composite numbers p and pairs of natural numbers (a, b)
(1 <a <b < p <111) which do not satisfy the necessity of Conjecture 1.2. Note that if p
admits a pair (a, b) with this property then it admits other pairs. For example, (p—b, p—a)

is also such a pair by Lemma 3.1 below.

p (ab) | p (ab)

24 (5,11) | 84 (19,25)
51 (11,20) | 91 (19,32)
57 (13,16) | 99 (17,28)
60 (11,19) | 105 (23,38)
63 (13,20) | 110 (19,41)
78 (17,29) | 111 (25,34)

On the other hand, the sufficiency part of Conjecture 1.2 holds without the assumption

that p is prime. In Sections 3 and 4, we will prove this in two ways.

2.3 Closures of a quiver and g-deformed rational numbers

By a quiver we mean a tuple Q = (Q,, Q;, s, t) consisting of two sets Q,, Q; and two maps
s,t : Q; — Q,. Each element of Q, (resp. Q;) is called a vertex (resp. an arrow). For an
arrow o € Q,, we call s(a) (resp. t(«)) the source (resp. the target) of «. We will commonly
write a — b or « : a — b to indicate that an arrow « has the source a and the target b. A
quiver Q is finite if two sets Q, and Q, are finite sets. The opposite quiver of Q, say QY, is

defined by Q¥ = (Qy, Qy, ¢, 9).
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Let Q be a finite quiver. A subset C C Q, is a closure if there is no arrow « € Q, such
that s(a) € C and t(a) € Q, \ C. A closure C is an ¢-closure if the number of elements of C

is £. The number of ¢-closures is denoted by p,(Q). Then the polynomial

cl(Q) := Y, pr(Q)q’ € Z[q],
=0

where n = |Qy|, is called the closure polynomial of Q.
Obviously, the constant term and the coefficient of the leading term of cl(Q) are 1,

including the extremal case cl(@) = 1. We remark that, for any ¢, the equation

pe(Q) = py—e(QY) (2.13)

holds. For a polynomial f(q) € Z|[q], we define a polynomial f¥(q) by
Y@ =q*Pf@™),
which is called the reciprocal polynomial of f(q). By (2.13), we have
cl(Q)Y = cl(QY). (2.14)

For a tuple of integers a := (a;,q,,...,a,) with a;,a, > 0, a,,...,a,_; > 0, we set the
quiver

Q@) i=0«—0:+0«—0— 00— 0¢—0+:0 «— 0 —> -+

s

a, left arrows a, right arrows as left arrows

with the left-right distinction. We understand that if a; = 0, then

Q@) :=— 00— 0¢—0+:0«—0—> -+,

a, right arrows a; left arrows

Note that |Q(a)y| = a; + a, + -+ + a4 + 1, and, for a = (ay, a,, ..., ay), the equation

cl(Q(0,a)) = cl(Q(a))" (2.15)
holds since Q(0,a) ~ Q(a)¥ as quivers. Here we have cl(Q(0, 0)) = cl(Q(0)) = 1 + q.
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Remark 2.7. We note that the closure polynomial cl(Q(a)) of a quiver Q(a) can be realized
with the rank polynomials of a finite fence poset, which is more common in combinatorics

(see [MSS21] and [KR23] for detail).

Lemma 2.8. For a = (a;,a,, ..., a,), we put aP := (a,a,_y,...,a,). Then, there is an isomor-

phism of quivers

( Q(a) ifsiseven,
Q(aP) 4
Q)Y ifsisodd
Therefore, we have
cl(Q(a)) ifsiseven,
cl(Q(ar)) = |
cl(Q(a))Y ifsisodd.

Proof. First, we assume that s is even. Then, the direction of the i-th arrow of Q(a) from
the left is the opposite of that of the i-th arrow of Q(aP) from the right end. Thus, Q(a)
is the “z-rotation”of Q(a), and hence Q(a) ~ Q(aP?) as quivers. We leave the case n is odd

to the reader as an easy exercise. O

According to [MO20, Section 3], Morier-Genoud and Ovsienko gave a combinatorial
interpretation of the coefficients in R, (g) and S.(q).
Let « > 1 be a rational number, and write « as the regular continued fraction a =

[a;,a,, ..., ay,]. Then, we set

Qgce = Q(al - 1, az, ceey a2m_1, a2m - 1),
Q(O, a, — 1, Az, ..., Aopp—1, Aoy — 1) 1fm > 1,
Q=
Q(0,a, —2) ifm=1.
Here, ifa, = 1and m > 1 (resp. a, = 2and m = 1, a, = 1 and m = 1), we understand
that Q5 = Q(as, ..., aym_1, Azm — 1) (resp. Q5 = Q(0), Q5 = @). The quiver QS is obtained by
deleting the first a; arrows from QZX.
Remark 2.9. If « ¢ Z and «a > 1, the above construction of Q¥ and Q¢ also works for the

expression as a regular continued fraction of odd length.
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Following the notation used in [M020], we will use the symbols p,(«) and o,(«) to

denote the numbers of ¢-closures of Q¥ and Q3, respectively.

Theorem 2.10 ([MO20, Theorem 4]). Let « > 1 be an irreducible fraction. Then, the

following equations hold:

Re(@) = D) pe()g? (= clQF)), (2.16)
>0

84(q) = D) op(a)q’ (= cl(QP)). (2.17)
>0

2.4 Farey neighbors and Farey sums

In this subsection, we recall the definitions of Farey neighbors and Farey sums.

Two irreducible fractions % % are said to be Farey neighbors if ay — bx = 1. Here we
regard oo = % as an irreducible fraction.

For two irreducible fractions § % the operation { is defined as follows:

xX+y
a+b’

X.y . _
a'p =

If f % are Farey neighbors, then gﬂ% is called the Farey sum of 3 and % The Farey sum
of two irreducible fractions is also irreducible. Farey neighbors have the following

fundamental properties.
Lemma 2.11. The following assertions hold.

(1) Any non-negative rational number can be obtained from % and % applying 4 in finitely

many times.

P

(2) For any positive rational number a € (0, ), there uniquely exist Farey neighbors =, %

a
such that a = Eﬂ% The pair (g, %) is called the Farey parent of a, and the fraction 3

(resp. % ) is called the left parent (resp. the right parent).
For proof of the above lemma, see [A13, Theorem 3.9] or [KW19(b), Lemma 3.5].
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Let @ and g be two fractions with a, 8 > 1. If afif = [[cy, ..., ¢;]], then the equation

Ra(q) + g Rg(q)

2.18
5.0) + 0 15,(@) (2.18)

[afiBl, =

holds, see [MO20, Theorem 3].

3 A proof of the sufficiency of the conjecture

In this section, without the assumption that p is a prime number, we will show that
ab = —1 (mod p) implies Sa(q) = 8»(q), that is, the sufficiency part of Conjecture 1.2 holds.
Recall that 8., ,(q) = Sa(q)Pfor all o? e€eQandn e Z.

In the rest of the paper, p means a (not necessarily prime) integer with p > 2, unless

otherwise specified.

Lemma 3.1. Let %, % be irreducible fractions with a = —b (mod p). We may assume that

2 lEJ < %, and hence = = [ay, a,, ..., a;] With a, > 2 as a regular continued fraction. Then

p p p

we have 2 = [b1,1,a, — 1,as,...,a;], where b, = lEJ
P P

Proof. Since the assertion only depends on the decimal parts of = and 2, we may assume
p p

thato < 2 < 2 < 1. Then we have b = p — a,
p p

a_ 1 _ 1
P p b —aa;
— a, +
a a
and
p P—a 1 1 1 1
P p a 1 1
2 1+ s 1+ 1+
P P p—a p—aaq,
a (a;—1)+
pb—aa; .
If k > 2, we have = |as, a4, ..., a; ], and the assertion follows. O
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Proposition 3.2. Let %,% be irreducible fractions with a = —b (mod p). Then we have
8a(q) = 8} (q).
- b

p

Proof. We may assume that 1 < 2 b« 2,and £ =1, a,, ..., a; ] with a, > 2. Then we have
pp p
b~ [1,1,a, — 1,a3,...,a;] by Lemma 3.1. With the notation of the previous section, we
14

have

Q“Z =Q(0,a, —1,as,..,a, —1) and Q“Z =Q(a, —1,as,...,a; — 1)

p p

(by Remark 2.9, we do not have to care about the parity of the length of the regular

continued fraction). Hence we have Qtz = (Q%)¥ by (2.15), and
p p

8u(q) = cl(Q3) = cl((QD)") = cl(Q2)" = Si(a)

p p p

by Theorem 2.10 and (2.15). O

The following lemma is a variant of “Palindrome Theorem" (for example, see [KL02,
Theorem 4]) for continued fractions. We will give a direct proof here for the reader’s

convenience.

Lemma 3.3. Let 2, b be irreducible fractions with 2= [ay, a5, as, ..., a,] as a regular contin-
P D p
ued fraction. Set b; := [%J Then % = by, a,,a,_1,-..,a;] ifand only if ab = (-1)" (mod p).

Proof. Clearly, it suffices to show the case a; = b; = 0. First, assume that L [0,a,,...,a,].

T B R Wl |

for some k,l € Z. Hence we have

AR B E

Taking the transpose of both sides, we get

)

Arnold Mathematical Journal, Vol.11(3), 2025 58

By Lemma 2.1, we have


http://dx.doi.org/10.56994/ARMJ

Arithmetic on g-deformed rational numbers

M R

and it implies that é = [0,a,,..,a;] = %, and hence | = b. The determinant of the right

Hence we have

side of (3.1) is (—1)", so that of the left side is also. It implies that ab — pk = (-1)", and
hence ab = (-1)" (mod p).
The converse implication follows from the above observation and the uniqueness of

the solution of a - x = +1in Z/pZ. O

Proposition 3.4. Let %,% be irreducible fractions with ab = 1 (mod p). Then we have
8a(q) = 8} (q).
p b

p
Proof, We may assume that1 < 2,2 < 2. If £ = [1,ay, ...,y ], then 2 = [1, ayp, .., a5] by
b p p p
Lemma 3.3. Hence we have

Q(Z = Q(aZm -1, Aom—15---,02 — 1)V = Q(a2 -1, as, ..., Aoy, — 1) = (QCZ)V
p p

by Lemma 2.8. So the assertion follows from Theorem 2.10 and (2.15). O
The following implies the sufficiency of Conjecture 1.2.

Theorem 3.5. Let p be a positive integer. For irreducible fractions =, b with ab = -1
p p

(mod p), we have Sa(q) = 8»(q).

p P
Proof. The assertion follows from Propositions 3.2, 3.4 and the fact that fVV(q) = f(q) for
general f(q) € Z[q]. O

We note that, for the numerator Rg(q) for E > 1, a similar result holds. See Lemma 4.1
below.

Regarding Q¢ as a finite poset, Kantarci Oguz and Ravichandran [KR23] intensely
studied 8,(q) from a purely combinatorial point of view. Among other things, they showed
that 8,(q) is always unimodal. Here we apply another result of their. A polynomial f(q) is

said to be palindromic if f¥(q) = f(q).
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Theorem 3.6. For an irreducible fraction -, 8:(q) is palindromic ifand only if > = 1 (mod s).
S s

Proof. Letb = (by, ..., by) be an integer sequence such that b,, b, > 0, b,, ...,b_; > 0 and k is
odd. [KR23, Theorem 1.3 (c)], which was first conjectured in [MSS21], states that cl(Q(b))
is palindromic if and only if b; = by,;_; forall1 <i < k.

Set E = [ay, ..., @y, ]. By the above mentioned result, the g-polynomial Sg(q) = cl(Q(a, —

1,as,..., 4y, — 1)¥) is palindromic if and only if

Q; = Qypap—; forall2 <i<2om. (3.2)
By Lemma 3.3, the condition (3.2) holds if and only if a*> =1 (mod p). O
Corollary 3.7. The following hold.

(1) For an irreducible fraction zii" such that p is an odd prime, S (q) is palindromic, if
pn

and only if a = +1 (mod p"), ifand only if S« (¢) = [p"l; =1+ g+ + ¢/ %
pl’l
(2) Forn > 2, 82 (q) is palindromic if and only ifa = +1 (mod 2") or a =2""!+1 (mod 2").

Proof. (1) The latter equivalence is clear, so we prove the former. By Theorem 3.6, it is
sufficient to show that a> =1 (mod p") implies a = +1 (mod p"). If a®> =1 (mod p"), then
p" divides (a + 1)(a — 1). Since p is an odd prime, p does only divide one of a + 1 and a — 1.
In fact, if p divides both a + 1 and a — 1, then p divides 2, which is a contradiction. This
means that all n copies of p that appear in the prime decomposition of (a + 1)(a — 1) must
come from either a + 1 or a — 1. Thus, p" divides either a + 1 or a — 1, equivalently, a = +1
(mod p™).

(2) Since 4 cannot divide both a + 1 and a — 1 at the same time, an argument similar to

the above works. 0

Combining the above results with Chinese remainder theorem, for a general s, we

can easily detect all r such that 8- is palindromic (equivalently, 7> = 1 (mod s)).

Corollary 3.8. For an irreducible fraction - > 1, R:(q) is palindromic if and only if s> =
S s
(mod r).
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Proof. By (2.10), we have R:(q) = S-s(q). Hence we have
Rr(q) is palindromic < S8r:(q)is palindromic

= (r—-s572=1 (modr)

& =1 (modr),

where the second equivalence follows from Corollary 3.6. O

4 Another proof of the sufficiency of the conjecture

In [W22], the fourth author introduced the g-deformed integers derived from pairs of
positive and coprime integers. In this section, by using them we give the second proof of
the sufficiency of Conjecture 1.2. To do this we need the following interpretation of the

conjecture.
Lemma 4.1. Conjecture 1.2 is equivalent to the following statement.

(x) Let p be an odd prime integer. For two integers a,b with1 <a <b < p, Re(q) = Rr(q)
a b
if and only if ab = —1 (mod p).

Proof. This follows from Lemmas 2.4 and 2.6. O

Definition 4.2 ([W22, Definition 4.3]). For a pair (a, b) of positive and coprime integers

we define a polynomial (a, b), in g with integer coefficients by

(a—r,r),+q(a,b—a) ifa<b,
(a,b), := R ! (4.1)
(@a—b,b),+q'+\(r,b—r), ifa>b,

where r is the remainder when b is divided by a in case where a < b, and when a is
divided by b in case where a > b, and also (1,n), = (n,1), := [1 + n], for any non-negative

integer n.
The polynomial (a, b), is convenient to compute [aff],.
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Theorem 4.3 ((W22, Theorem 4.4]). Ifa ==, § = % > 1 are Farey neighbors, then
a

Socﬁﬁ(Q) = (Cl, b)q’ fRaﬁﬁ(Q) = (xa y)q

Thus, we have
(%)

5410 = (G

Any rational number « > 0 is associated with a link L(«) in the 3-sphere S* which is
given by the diagram D(«) below, and such a link is called a rational link or two-bridge
link. If a belongs to the open interval (0, 1), then the diagram D(«) is given as in Figure 1

after the expression of « = [0, a4, ..., a,,] with odd n.
C__ az | _Jama )

Figure 1: the diagram D(«) of rational link

where

a
r 4
-

N\ N\

If « > 1, then D(«) is defined by D(«) := D(a~"), and if « = 1, then D(a) = g For a

negative rational number «, a rational link L(x) and its diagram D(«) are defined in the

[ e [ -

same way as the positive case. Then we see that the link L(«) is the mirror image of L(—a).
However, for any a € Q, there is some 3 € QN (1, o0) such that L(a) and L(j) are isotopic.
See, for example, [KL0O2, Theorem 2]. In this sense, we may assume that o > 1.

As a useful isotopy invariant for an oriented link L in S3, the Jones polynomial V;(¢)

[J85, Kau87], which is valued in Z[t*2], is well-studied. Lee and Schiffler [LS19] introduced
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the following normalization J,(q) of the Jones polynomial V,(t) := V) (t) of a rational
link L(x):
To(q) 1= it_hVa(t)h:_q_l, 4.2)

where +t" is the leading term of V(¢). This indicates the normalization such that the
constant term is 1 as a polynomial in g. We note that

Ji@=1, J.(@=q.

By Lee and Schiffler [L.S19], it is known that the Jones polynomial V,(t) can be recov-
ered from J,(q). By [MO20, Proposition A.1] and the equation (2.18), we see that, for a

rational number « > 1, the normalized Jones polynomial J,(q) can be computed by

Ta(@) = qRa(q) + (1 — @)S(q). (4.3)
Using this formula, the fourth author showed the following.

Theorem 4.4 ((W22, Theorem 5.3]). Let (a, p) be a pair of coprime integers with1 < a < p.
Then
(a,p)g =Je(@) +qla—r,r)g, (4.4)

where r is the remainder when p is divided by a.

The equation (4.4) corresponds to the equation J:(q) = R’ — g8’ in [MO20, p.45] under
the setting E = g. In fact, since 8’ = 8»(g) and R’ - qR»(q) + 8»(g) as shown in [M020,
p.45], we have §' = (a —r,r), by (4.6) baelow and R’ = q(il,p - a)aq +(a—r,r)q = (a,p)q by
(4.1) and (4.5) below.

As an application of Theorem 4.4 we have:

Theorem 4.5 ((W22, Theorem 5.4]). Let (a, p) be a pair of coprime integers with1 < a < p,

and r the remainder when p is divided by a. Then, the following equations hold.

532(61) = (a’p - a)q’ (4-5)

Sg(q) =(a—r,1)y (4.6)
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By using the above theorem, one can give another proof of Theorem 3.5, that is, the

sufficiency of Conjecture 1.2.

Another proof of Theorem 3.5. Since ab = —1 (mod p), there is some m € Zwithmp—ab =

1. Since 1 < a < b < p, we have 0 < m < a. Thus, (ﬁ, p—a

m -m

) is the Farey parents of %. By

using Theorem 4.3, we have

Rf(q) =(a,p — a)g.

(See also the proof of [KW22, Theorem 3.2].) Combining this equation with (4.5), we get
Re(q) = Re(q)- O

Remark 4.6. By Corollary 3.8 and (4.5), (a, b), is palindromic if and only if a* = 1 (mod a+b).
Combining this observation with Theorem 4.3, one can show the following. For a positive
irreducible fractions g whose Farey parent is (%, S), 8¢(q) is palindromic, if and only of

x?> =1 (mod x + y) (equivalently, y> =1 (mod x + y)).

5 Three operations on the positive rational numbers and g-

deformed rational numbers

In the study of Conway-Coxeter friezes of zigzag-type developed by the first and the
fourth authors [KW19(b), KW19(a)] crucial three operators i, r, ir on the positive rational
numbers are introduced. In this section we examine effect of the operators t,r,ir on
Ra(q), Sa(Q)-

Leta = E > 0 be an irreducible fraction. In the case where a € (0,1), irreducible

fractions i(a), t(a), (ir)(«) in the interval (0, 1) are defined as follows [KW19(a)]:

. =z, . _a . ._b
i(a) 1= . (=1-a), x(a):= o ir(a) 1= o (5.1)
where (%, %) is the Farey parent of a. Note that
az=1 (modc) and b=-a (modc). (5.2)
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In fact, sincez = x + y,c = a+ b and ay — bx = 1 now, we have
az=a(x+y)=ax+ay=ax+1+bx=1+(a+b)x=1+cx.

Hence as operations on Q n (0,1), we have 1> = v?> = id and ir = ri. By Theorem 3.6, for

a € Qn(0,1), x(a) = a if and only if 8,(q) is palindromic.

In the case where o > 1, i(«), t(«), and ir(«) are defined as follows:

i@ = (Ha™D) . @)=, )@ = (). (5.3)

Here we also have i> = 1> = id and ir = ri. Moreover, r(x) = « if and only if R,(q) is

palindromic.

By Lemmas 3.1 and 3.3, and the equation (5.2), one can show that for a positive rational

number a = [0, a,, ..., a,],

[0,a,,...,as,a,] if n is odd,
(ir)(@) =1[0,1,a, — 1,a,_1,...,a3,0a,] ifnisevenanda, > 2, (5.4)

[0,a,_; +1,a,_,,...,03,a,] ifnisevenanda, =1,

\

[0,1,a, —1,qa3,...,a,] ifa, >2,
i(@) = 4 2o 2 (5.5)

[0,a5 +1,ay,...,a,] ifa, =1,

-

[0,1,a,-1,a,_1,...,03,a,] ifnisoddanda, > 2,
r(@) =41[0,a,_1 + 1,a,_s, ..., a3,a,] ifnisoddanda, =1, (5.6)

[0,a,,...,a3,a;] if n is even.

\

Lemma 5.1. Let a € QN (0, c0) whose expression as a regular continued fraction is a =
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[ay,as, ..., a,]. If n is odd, then

-

a1, ...,ap_1,a, — 1] ifa,>2,
B=1lay,...,a,_,] ifa,=1andn > 3,

[0] ifa,=1landn =1,

\

[a,.sap_1] ifn>3

[ ] ifn=1

‘)/:4

\

are Farey neighbors and a = ftty, where | | expresses co = % If nis even, then

6 = [als LA an—l]
(@ s Gyt 0y =11 a2 2,
Y =1la, ..., a,-5] ifa,=1andn >4,

[ ] ifa,=1landn =2

\

are Farey neighbors and a = ffy.

Proof. Note that, as a regular continued fraction, each rational number has expressions
in both odd and even lengths. It is easy to check that two definitions (the odd case and
the even case) coincide.

We will prove the equation « = Sty by induction on n. The casesn = 0andn = 1
are clear. Now, we suppose that the statement holds for n — 1. We only show the case
n > 3is odd and a, > 2; the proofs in other cases are similar. Not that we have g =
la;,...,a,_1,a, —1]and y = [a,, ..., a,_; ]| now. Set [a,, ...,a,_;] = g, lay,...,a,_1,a, — 1] = Z—:
By induction hypothesis, (2, :—:) is the Farey parents of ::—:: = [a,,a;,...,a,]. Since

g ="y =" and s’ —rs’ = 1, B and y are Farey neighbors. Moreover, it follows
.

r/
from induction hypothesis that we have
a(r+r)+s+s 1 1
— 7 =a1+ 7 :a1+—=[a1,a2,...,an]=<x.
r+r r+r [as,...,a,]
s+ s

Bty

Arnold Mathematical Journal, Vol.11(3), 2025 66


http://dx.doi.org/10.56994/ARMJ

Arithmetic on g-deformed rational numbers

d

For a quiver Q of type A, let denote by Q™! the quiver obtained from Q by z-rotation.

Since Q ~ Q™! as quivers, their closure polynomials are same;

cl(Q) = cl(Q™). (5.7)

For « € @n (1, o), the equations (5.4), (5.5) and (5.6) imply that

Qi = Q)" (5.8)
(n:)(oc) (Qé}f)mt (5.9)
r(a) (Qﬂ%)rotv (Qﬁ)vrot (5-10)

Except for the denominator of i(«), the denominator and numerator polynomials of
g-deformations of i(a), r(a), (ir)(a) are computed from that of « and its Farey parent as

follows.
Theorem 5.2. Let « € QN (1,00) and (B,y) be its parents. Then, the following hold.
(1) "Ri(cx)(q) = "Rr(cx)(q) = :Rc\x/(q) and :R(ir)(a)(q) = Ra(q)-

2) S(ir)(ot)(q) = Rﬁ(Q), and 'Sr(a)(q) = :R;//(q)

Proof. (1) By the equations (2.14) and (5.7), these follow from (5.8), (5.9), and (5.10).
(2) We write a as a = [a;,a,,...,a,,]. Then, it follows from Lemma 5.1 that § =
[ay, ..., a5,_1]. Since a=! = [0,a;,...,a5,] € QN (0,1), we have (ir)(a™!) = [0,as,,...,a;]

by (5.4). Thus, (ir)(@) = [ayy, -, a;]. Hence, Theorem 2.10 and (5.7) imply that

S(tr)(a)(q) = Cl(Q(O’ AGom-1 — 1, Aom—2s -, A2, A1 — 1))
= cl(Q(0, agm—1 = 1, Gz, - » Az, @1 — 1))
= C|(Q(a1 - 1, a2, ey azm_z, a2m_1 - 1))

= Rp(q).
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Finally, we consider 8,.(q). Suppose that a,,, > 1. In this case, it follows from Lemma

5.1thaty =[ay,...,a5n_1, a2, — 1]. By (5.6), t(a) = [1, ay,, — 1, ayp_1, ---» a1 ]. Thus, we have

Sue)(@) = cl(Q(azy, — 2, a1, -, Az, a7 — 1))
= cl(Q(ay, — 2, Ayp_i, > Ay, a1 — 1))V
= cl(Q(agy, — 2, Ayp—1, - » Az, a; — 1))V
=cl(Q(a; —1,0ay, .., Agpp_1, Ay — 2))V

=Ry (Q).
In the case where a,,, = 1, by the same argument the same equation is derived. O

For a rational number « with 0 < a < 1, the g-deformations of i(«), r(x) and (ir)(x)

behave as follows.
Proposition 5.3. For a rational number o« € Q N (0,1), we have the followings.
(1) Sy (@) = 85(q) = Si()(@) = Re-1(q).
(2) Riw)(@) = Ra1(q) — Sa-1(@)s Rra)(@) = Ra-1(q) — R,-1(q), where (B,y) is the parent of a.

Proof. (1) The first (resp. second) equality follows from (5.1), (5.2), and Proposition 3.4
(resp. Proposition 3.2). To see the third equality, express i(a) = % as an irreducible
fraction. Then we have a = xx;a and o = xxTa So the equality follows from (2.10).
(2) The first equation immediately follows from (2.9). Since i(ir(a)) = r(a) and
(ir(a))~! = ix(a™!), replacing « by ir(a), the first equation yields
Re@)( @) = Riinya1)(@) = S(irya1)(@)-
Applying Theorem 5.2, we have Ry(q) = Rg-1(q) — Ry-1(q). O

As an application of Proposition 3.2 we have:

Theorem 5.4. Let « € Q n (1,), and express it as a regular continued fraction a =

[a;,a,,...,a,].
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(1) Ifa; = 1, then
81(0‘)((]) = 8\(/az+1)(or—l)+a—2 (q)

a-1

(2) If a; > 2, then
SI(“)(q) = S\;l(zx—l)ﬂx—z (q)'

a—1

Proof. Seta = g with 1 < a < x. Then, 8;)(q) = 8_x (g), and hence by Proposition 3.2

S (=85, (@ (5.11)

X—a

!

for x’ € Z such that x’ = —x (mod x —a) and | =—| = | = |.

X—a X—a

(1) Since a; = 1, we have —— = [a,, ...,a,], and 0 < a — a,(x — a) < x — a. As x’ one can

X—a

take x’ := —x + (a, + 3)(x — a). Thus by (5.11) we have

Sxf_a(q) = 8 aprniea @

X—a

— Qv
- 8—0{+(a2+3)(a—1) (q)

a-1

— QV
- 8(a2+1)(a—1)+a—2 (q)

a—1
(2) Since a; > 2, we have = —a, =[0,a,, ...,a,] and 0 < x — aa; < a. In this case one can
a
take x' := —x + (a; + 2)(x — a). Then, by the same argument of the proof of Part (1), the

assertion is derived. O

6 A formula for computing closure polynomials of type A

For an irreducible fraction « > 1, the denominator and numerator polynomials of [«],
are given by closure polynomials of some quivers of type A (see Theorem 2.10). On the
other hand, from a representation theoretical viewpoint, the closure polynomial of a
type A quiver Q counts subrepresentations of “the full interval representation” of Q in
which a field k corresponds to each vertex and the identity map corresponds to each

arrow. In this section, we give an expression to calculate cl(Q) that explicitly gives the
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number of subrepresentations of the full interval representation.

Let Q be a quiver of type A, that is, the underlying graph of Qis A, =1-2-3—---—n. A
representation of Q over a field k is a system M = (M, 9¢)acq, wco, M = (Mg, ¢,) for short)
consisting of k-vector spaces M, (a € Q,), and k-linear maps ¢, : M) = M) (@ € Qy).
The dimension of M is the sum of k-dimensions of M,. A representation M’ = (M}, ¢.,)
is said to be a subrepresentation of M if M, is a subspace of M,, and ¢, = @[y . For two
representations M = (M,, ¢,) and N = (N, 3,), a morphism of representations f : M - N
is a family f = (f4)qeq, Of k-linear maps f, : M, — N, such that i, fyu) = fua)® fOr any
arrow a.

The category of finite dimensional representations of Q is denoted by rep(Q). It is
well-known that there is an k-linear equivalence between rep(Q) and the category of
finitely generated kQ-modules, where kQ is the path algebra of Q. For a vertex i € Q,,
we denote by S(i) the corresponding simple kQ-module. For a kQ-module M, we also
denote by rad(M), top(M), and soc(M) the Jacobson radical, the top, and the socle of M,
respectively. The support of M is the set of composition factors, which is denoted by
supp(M). In this subsection, any objects of rep(Q) are freely regarded as objects of mod kQ.
For representations of quivers, see [ASS06, Chapters II and III] for more details.

By the Gabriel theorem (for example, see [ASS06, Chapter VII, Theorem 5.10]), there is
one-to-one corresponding between indecomposable objects of rep(Q) and positive roots of
A, that is, pairs (i, j) with 1 < i < j < n. In this correspondence, each pair (i, j) is assigned

with the interval representation [[i, j] = (M,, ¢,), Where

k ifi<ac<y, 1 ifi <s(ax)and t(a) < j,

Pu
{0} otherwise, 0 otherwise.

Following this notation, I[1, n] is called the full interval representation of Q. Then, it follows
from the definition of the closure polynomial that the coefficient of q° of cl(Q) is equal to

the number of ¢-dimensional subrepresentations of [[1, n].
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Throughout this section, we fix a type A quiver Q = Q(a) for some tuplea = (a;,a,, ..., a,) €
ZSZO, which has n vertices, and denote by I(a) the full representation of Q(a). Itis clear
that p;(Q(a)) = dim, soc(l(a)), which equals to the number of sinks of Q(a). Note that the
Jordan-Holder theorem implies that any coefficients of cl(Q(a)) are greater than or equal
to 1. This yields that, for any irreducible fraction « > 1, any coefficients of the polynomials
R.(q) and 8S,(q) are greater than 1. We also remark that the top and the socle of I(a) are

given by

top(I(@)) = P SU + a; + ay + - + aze_y)

k>1
S1) & @S(l +a;+ay,+ - +ay) ifa; #0,
soc(l(a))) = !
EBS(1+a1+a2+~-+a2k) ifa; =0.
k>1

Now, we choose1 <k; <k,<--<k;and1<¢,<¢,<--<t,tobe

top(l(a)) = S(ky) & --- @ S(ky),
soc(l(a)) = S(€1) @ --- & S(C).

Here, we put

Ta i={ky, sy ) €28 |1 <0y <o <ig<t, s€N}L
A subquiver of Q(a) of the form

0O—> 0:++0—>0«—0:+0«—0

P arrows D, arrows
is called a (p,, po)-valley. For a (p;, p,)-valley, we define a polynomial val,(p;, p,) by
valy(p1, p2) 1= cl(Q(0, py, p,))-

Observe that the equation val,(p;, p,) = valg(p,, p1) holds by (5.7) and this can be calculated
through the following.
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Lemma 6.1. For a (p,, p,)-valley with p, > p,, we have

P+l p1+1 p1+p+1
valy(pr, p2) =1+ Z kg* + (p, +1) Z q + Z (pr+ pa+2—k)q*
k=1 k=p,+2 k=p;+2
Proof. This lemma follows from direct computation. O

Now, we define a sequence of pairs of integers as follows:

() Computea —1 := (ay —1,a,—1,...,a,—1) ifa; #0,
(a;—1,a3—1...,a,—1) ifa; =0.

(i) We put

(0,a—1,0) ifa; #0andsis even,

(0,a—1) if a; # 0 and s is odd,

(bl’ bz, ey bzm) M

(a—1,0) if a; = 0 and s is even,

(a—-1) if a; = 0 and s is odd.

(iii) We set g, := {(by, b,), (b3, by), ..., (by—1, bam)}-

Proposition 6.2. The number of ¢-dimensional subrepresentations of rad(l(a)) coincides

with the coefficient of q* of
valy(by, by) - valg(bs, by) -+ valg(bapm—1, bam)-

Proof. We show the case that a; > 0 and s is even: the proof of other cases are similar. In

this case, m =t + 1 and the quiver Q(a) is of the form:

l<ovco«—o«kj >0—>0:-:0>0«0-0«0<«k,

N— o
b, arrows bs arrows b, arrows
—0—>0::0—>0« 00« 0«k;—>-+ <k >0—>0:---0>n.
N— —
bs arrows bg arrows byy—1 ATTOWS

This yields that rad(l(a)) is decomposed as
rad(u(a))) = I][la kl - 1] @ I][kl + 1: kZ - 1] @ T @ [l[kt + 15kt - 1] @ H[k[ + 1’n]'
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Thus, each subrepresentation N c rad(l(a)) is the direct sum of subrepresentations N; C
0[1,k; =1, N; c l[k; + 1,k;;; — 1] (i = 1,...,t — 1), and N, C I[k; + 1, n]. Since the numbers of
subrepresentations of I[1,k; — 1], I[k; + 1,k;;; —1] (i = 1,...,t — 1), and [[k; + 1,n] are equal
to valy(by, by), valg(byiy1, baito) (i = 1,...,t — 1), and valy(by,_1, by, ), respectively, the assertion

follows. O

For each k; (i = 1,...,t), a polynomial A4 (k;) is defined as follows.

(i) Suppose that a; > 0. In this case, we define A, (k;) by

-

qfi+1—fi+1[€l_ _ ki—l]q[ki+1 — €i+1]q ].fl ;é 1, t,

Ak =1 qPlk, — €3], ifi =1,

qn_€t+1[€[ — k[—l]q lfl =t.

(ii) Suppose that a; = 0. In this case, we define A,(k;) by

-

qilm ey — kgl — €]y ifi# 1,8,
Ak =1 qfilk, — €4], ifi =1,

q ety — kg ifi=r

\

For each k;, take a subset

ki k[ .
{(vgjzl,vgj)) |j=1,2,...r} Ca

such that any (vg’;i_)l, vé’}‘.”)-valley is not adjacent to vertex k;. Then, we set

rkl.
A k; ki
Rolk) 2= Agli) [T val(w§?, o5,
j=1

Lemma 6.3. The coefficient of q° of A,(k;) coincides with the number of ¢-dimensional

subrepresentations N of I(a) such that S(k;) € supp(N), but S(k;) & supp(N) for i # j.
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Proof. We only show the statement when a, > 0 and s is even; the proofs in other cases
are similar.

Let N, be the largest dimensional subrepresentation of I(a) such that S(k;) € supp(N),
but S(k;) ¢ supp(N) for i # j. It is sufficient to show that the coefficient of q’ of Zq(kl—)
coincides with the number of #-dimensional subrepresentations of N,,. Observe that
I[ki—y + 1,k;4; — 1] C N,y and every subrepresentation of N, must have I[¢;,¢;,,] as a
subrepresentation whose dimension is ¢;,; — ¢; + 1. Here, if k;_; (resp. k;,;) is not in Q(a),,

then we replace k;_; + 1 by ¢, (resp. k;;; — 1 by ¢;,,). Now, we consider an isomorphism
Ikioy + L ki —1/1€L ] = Mk + 1,6 = 1] @ 1[€141 + 1, kiyq — 1]

Since the number of ¢-dimensional subrepresentations of I[k;_; + 1,¢; — 1] (resp. I[€;;; +
1,k;,; —1]) corresponds to the coefficient of g of [¢; —ki_1]q (resp. [kir1—ti41]g), the number
of £-dimensional subrepresentations N’ of I[k;_; + 1, k;;; — 1] such that S(k;) € supp(N’) is
the coefficient of ¢* of A(k;). Remaining subrepresentations that must be counted come
from subrepresentations of rad(i(a))/(I[k;_, + 1, k;4; — 1]/S(k;)). Therefore, the assertion

follows from Proposition 6.2. O

Next, for two k; < k;,, we define

Ay A (k)

lflzzll‘l‘l,

Ag(ki )Aq (ki) otherwise.
Inductively, for k; <k;, < --- <k; , we define

Aq(ki19 k ceey kir—l)Aq(kir)

1%

1f ir == ir—l + 1,

t; —k;_
Ag(ki s ks ki) = qlty, —ki—1lg
Ag(ki kiys . s ki —1)Ag(k; ) otherwise.

Take a subset

(kiysoreskiy ) (K 5k .
{(vzjil ’vzjl ) | J= 1,2, ""r(ki1 ..... kir)} c ga
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(Kiyveskiy) (e

kl . . .
N Y ’))—valley is not adjacent to one of vertices k; , ..., k; . Then,

such that any (v

forr=1,...,t, we set

T(kq kr)

ZQ(kla L] kr) = Aq(kl’ ceey kr) H Va|(v§l‘;1_"i"k7)’ Ué’;l ----- kr)).
j=1
Theorem 6.4. The equation
d@y= [ valyibi)+ 3 Bylkyses ki) (6.1)
(bisbiy1)E€Ta (kiy serski)ET

holds.

Proof. By Proposition 6.2, the first term of the right-hand side of (6.1) counts ¢£-dimensional
subrepresentations of rad(l(a)). Therefore, counting the cases where each S(k;) (i =
1,...,t) belongs to the support is sufficient. By the proof of Lemma 6.3, the number
of ¢-dimensional subrepresentations N of i(a) such that S(k; ), ...,S(k;) € supp(N) but
S; & supp(N) for j # k; , ..., k;_is the coefficient of g* of A (k; ,...,k; ). Thus, the assertion

follows. O
Example 6.5. (1) Leta = (1,3,1,1). Then, the quiver Q(a) is of the form
Qa)=1«—2—3—54—5—6—17,
and ((by, by), (b3, by), (bs, b)) = ((0,0),(2,0),(0,0)). So, we compute
valy(0,0)valy(2,0)val,(0,0) = g° + 3¢* + 49> + 49> + 3 + 1,
Aq(2) = ¢°[1]4[1]4valy(0,0) = ¢° + ¢°,

A (6) = g°[3]qvaly(0,0) = ¢° + 2¢° + 2¢* + ¢°,

~ _ Ag(2)A4(6) _

8@0 =L ~ 7

Thus, we have
cl(Q(@)) = q” +2q° + 4q¢° + 5¢* + 5¢° + 4¢> + 3¢ + 1.

(2) Leta = (0,3,1,5,1). Then, the quiver Q(a) is of the form

Qa)=1—2—>3—>4«—5—H56—D7—8—9— 10 «—11

’
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and ((by, b,), (b3, by)) = ((2,0),(4,0)). So, we compute

valg(2,0)valy(4,0) = ¢® + 297 + 3q° +4¢° + 4q* + 4¢° + 3¢ + 29 + 1,
A1) = g*valy(4,0) = ¢° + ¢® + ¢7 + ¢° + ¢° + ¢*,
A =9l =" +¢®+ ¢,

A (11) = g*[5]valy(2,0) = ¢° + 2¢° + 3q7 + 4¢° + 4¢° + 3¢* + 2¢° + ¢,

- Ag(1)A,(5)
A , — q q — 10,
a(1>3) ql3],
A(1,11) = A;(DA,(11) = ¢ + ¢° + ¢® + q7 + ¢5,
— B A4(5)A4(11) o . o
Ay(5,11) = q[—s]q =q +q +q°,
. A;(DA(5)A,(11)
A y . = =
N

Thus, we have

cl(Q@)) = gt +3¢'° +5¢° + 7¢® + 8q7 + 9¢° + 9¢° + 8q* + 6¢> + 4¢> + 2q + 1.

7 Special values of the g-deformed rational numbers

In [MO20, Proposition 1.8], it is shown that both 8,(-1) and R, (—1) belong to {0, +1}. From
this, we see that for an irreducible fraction 2, s is even if and only if 8- (q) is divisible by

[2] = 1 + q. In this section, we extend this observation. Set

1443
w .= 7

Theorem 7.1. For a rational number a, we have R (w), S, (w) € {0, +1, +w, +w?}.
Proof. First, we assume that « > 1, and write « = [[cy, ..., ¢;|]. By Proposition 2.2, we have

Ra(@)

1
5 o = (Mg (c)M; () -+ M7(c) g .
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It is easy to check that M (c)|,-,, for a positive integer c is one of the following forms:

-

0 —w? )
X = ifc=0 (mod 3),
1 0
B 1 -1 _
M;(Olg=w =9 Y := ifc=1 (mod 3),
1 0
- —w]| .
Z = ifc=2 (mod 3).
1 0

Let G be the subgroup of GL(2, C) generated by X, Y and Z. A direct computation shows
that the equation X2 = Y% = Z3 = E,. Set

M)

Then, easy calculation shows that A is closed under the natural action of G. Thus, for

¢ = +1,+w,+w? t C C2. (7.1

any W € G, all entries of W, especially R, (w) and S,(w) for « > 1, belong to the set
{0, £1, +w, +w?}.

Let us consider the case a < 1. By (2.8), we have

(7.2)

‘(Ra(w) _ wz _w2 ‘(ch+1(a’)
S@) Lo 1\ Sen@)

w? —w?
It is easy to check that the set A is closed under the multiplication of { , SO we
0 1

Rey1(@) . | Ra(w) . .

can show that € A implies € A. Since « + n > 1 for sufficiently large n,
SoH_l(CL)) Sa(a))

the desired assertion follows from repeated use of the above implication. O

Since the leading coefficient of [n], = 14+q+--- + q"!is 1, when we divide f(q) € Z[q]

by [n],, the quotient and the remainder belong to Z[q]. It is clear that if 8-(g) can be

divided by [3]; =1+ q + q%, then s = 8-(1) is a multiple of 3. The following states that the

converse is also true.
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Corollary 7.2. The following assertions hold.

(1) If s = 8:(1) is a multiple of 3, 8-(q) can be divided by [3],. Moreover, for an irreducible

fraction *, we have
S

0 ifs=0 (mod 3),
8;(60) =11, 0, w? ifs=1 (mod 3),

-1,—w,—w? ifs=2 (mod 3).

(2) Similarly, we have

0 ifr=0 (mod 3),
Rr(w) =11, w, w? ifr=1 (mod 3),

—1,—w,—w? ifr=2 (mod 3).

\

Proof. (1) Note that w? = —(w + 1). By Theorem 7.1, the remainder of the polynomial 8:(q)
divided by [3], is aq + b for a, b € {0, 1} with (a,b) # (1,-1),(~1,1). Since s = 8:(1) = as+ b
(mod 3), the assertion easily follows. S

(2) While R:(q) € Z[q,q~'] has terms of negative degree for § < 0, we have f(q) :=
g R:(q) € Z[qs] for n > 0. Since f(1) = R:(1) = r and f(w) = Rr(w), we can use the
argu;nent of the proof of (1). s S O

Example 7.3. Even if we fix s, 8- (w) depends on r. For example, we have S (w) = —w?

11

b

Si(w) = —w, S1u(w) = —w?, 815(w) = —1, and so on.

11 11 11

Corollary 7.4. For an irreducible fraction E s=r (mod 3) if and only if Rr(w) = 8r(w).

s

Proof. By (2.8), we have Rr_,(q) = ¢~ (R:(q) — 8:(q)). By Corollary 7.2, we have
Rr(w) =8 (w) < Rs(w)=0 < r—sisamultiple of 3.
So we are done. ]
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In the rest of this section, i means v/ —1.

Proposition 7.5. We have R,(i), 8,(i) € {0, +1, +i, +(1 + i), +(1 — i)}, and the remainder of
8.(q) divided by g*> + 1 is aq + b for a,b € {0, +1}.

Proof. It suffices to show the first assertion. The proof is similar to that of Theorem 7.1.

First, assume that a > 1. It is easy to check that M (c)|,-; is of the form

)
0 1 .
X, := ifc=0 (mod 4),
1 0
1 -1 ,
X, := ifc=1 (mod 4),
1 0
MG (@lgei =
1+i —i| .
X, = ifc=2 (mod 4),
1 0
i1 .
X5 1= ifc=3 (mod 4).
1 0

A direct computation shows that X3 = X% = X = X1? = E,. Let G’ be the subgroup of
GL(2,C) generated by X, X;,X, and X;. The set

i 14+ 1

1 0 1
Be=del Lol el L el T el T || =
0 1 1 1 1

is closed under the natural action of G’. Hence all entries of any element in G’ belong to
{0, +1, +i, +(1 + i), (1 — i)}. Since R, (i) and S8,(i) are entries of a suitable element of G/, we
are done.

For the case o« < 1, we can use the same argument as the last part of the proof of

Theorem 7.1. -
Theorem 7.6. For an irreducible fraction -, the following are equivalent.
S
(1) s is a multiple of 4,
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(2) 8:(q)isdivisible by [4], =q* +* +q + 1,
(3) 8:(q) is divisible by g* + 1.

Proof. (1)= (2): Let g(q) € Z[q] be the remainder of S:(g) divided by 1 + ¢?, that is,

S:(@)=f (@ -A+g»)+gl@  (f(g) € Zql, deg(g) < 1).

Since [4]; = 1+ @)1 + q%) and 8:(—1) = 0 by [MO20, Proposition 1.8], it suffices to show
that Sr(q) is divisible by 1 + qzs(equivalently, g(g) = 0). For a contradiction, assume
that g(sq) # 0. Proposition 7.5 states that g(q) = +1,+q,+(1 + q), +(1 — q). However, since
g(1) =s—2f(1) and s is a multiple of 4, g(1) is even, and hence g(q) # +1, +q. Finally, we
have g(q) = +(1 + q), +(1 — q).

In what follows, for f(q) € Z|[q], (f(q)) denotes the ideal of Z[q] generated by f(gq), and
Z[ql/(f(q)) denotes the quotient ring. For the canonical surjections z; : Z[q] — Z[q]/(1+q)
and 7, : Z[q] = Z[q]/(1 + ¢?) (if there is no danger of confusion, we denote 7;(f(q)) by

f(g)), consider the ring homomorphism

¢ 1 Zlql 3 f(@) — (m(f (@), m(f (@) € (ZIgl/ (1 +q) x (ZIq]/ (1 + ¢*)).

Since Z[q]is a UFD, and 1+q and 1+ ¢ are coprime, we have ker(¢) = ([4]y). In the present

situation, we have
$(8:(q) = (0, 8(q))-
Recall that g(q) = +(1 + q), (1 — q), but we have
p+1+q) =0,+0+¢q) or ¢(x(q+q?)=0,F1-q)).
Hence, we have either
+(1+q) - Sg(q) €([4]y) or =x(g+q*)— SE(Q) € ([4]p)-

In both cases, +2 — §:(1) € 47, and it means that $-(1) = 2 (mod 4). It contradicts the

assumption that 8-(1) € 4Z.

Arnold Mathematical Journal, Vol.11(3), 2025 80


http://dx.doi.org/10.56994/ARMJ

Arithmetic on g-deformed rational numbers

(2) = (3) : Obvious.

(3) = (2) : If 8:(q) is divisible by 1 + g2, then there is some f(q) € Z[q] such that
Sr(q) = 1+ qz)f((;). It follows that s = 8:(1) = 2f(1) is even, and hence 8r(q) is also
d;visible by 1+ q. Since [4], = (1 + @)1 + qZ;, the assertion follows. s O

The next result can be proved by an argument similar to the corresponding results

for g = w.

Corollary 7.7. The following assertions hold.

(1) We have
0 ifs=0 (mod 4),
Sg(i) =1+(1+i),+Q—i) ifs=2 (mod 4),
+1, +i ifs=1 (mod 2),
and

o

ifr=0 (mod 4),

ﬂg(i) =1x1+i),+1 —i) ifr=2 (mod 4),

+1, +i ifr=1 (mod 2).

(2) For an irreducible fraction E we have s = r (mod 4) if and only if R:(i) = 8- (i).

Example 7.8. It is clear that the analog of Corollaries 7.2 and 7.7 does not hold for
primitive n-th roots of unity with n > 5. In fact, since 87(q) = ¢> + 2¢*> + ¢ + 1, we have
87(¢) # 0, where ¢ is a primitive 5th root of unity (i.e.,5 arootof g* +¢> +¢* +q + 1).
Msoreover, using a computer system, we see that S§:7(q) is irreducible over Q, while 35 is a

35

composite number.
Conjecture 7.9. If p is a prime integer, then Sa«(q) is irreducible over Q.
p

Using the computer program Maple, we checked the conjecture for prime numbers

up to 739. The following is another piece of evidence.
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Theorem 7.10. Let p be a prime integer. If Sa(q) is reducible in Q|q] (i.e., Conjecture 7.9
p

does not hold), all of its factors have degree at least 7.

Proof. Consider the factorization
k
Sa(@) =[] fi@
p j=1

in the polynomial ring Q[q]. It is a classical result that we can take f;(g) from Z[q] for
all j. Assume that k > 2. Since f;(1) € Z for all jand p = Sg(l) = Hl;zl fj(@) is a prime
number, we may assume that f;(1) = p and f;(1) = 1 for all j > 2.

Since both the leading coefficient and constant term of S«(q) are 1, those of f;(q)
are +1. Since all coefficients of Sa(q) are positive,ifg = ais a ;eal root of the equation
8a(q) = 0then a < 0. Clearly, the s;me is true for each f;(q), so both the leading coefficient
a;d constant term of f;(q) are 1 (note that f;(1) > 0 now).

If p = 2,3, the assertion is clear. So we may assume that p > 5. Since p = 8$a(1) is odd,
Sa(-1) = H?zlfj(—l) = +1. Since f;(-1) € Z for all j, we have f;(-1) = +1, andphence the
rgmainder of f;(¢) divided by g + 1 is +1. Similarly, we have Sﬁ(i) = H?zl fj(®) = +1,+i by
Corollary 7.7. Since f;(i) € Z[i] for all j, we have f;(i) = +1, +i, and the remainder of f;(q)
divided by ¢? + 1 is +1, +q. Since p = 85(1) is not a multiple of 3, Si(w) = HI;=1 fi(w) =
+1, +w, +w? Since f;(w) € Z[w] for all j, we have f;(w) = +1, +w, +w* by Corollary 7.2, and
the remainder of f;(q) divided by ¢* + g + 1is +1,+q, +(1 + g).

Set g(q) = q(q + 1)(¢* + 1)(¢*> + q + 1), and consider the natural ring homomorphism

¥ : Zlql/(g(@) — Zlql/(@) x Z[q]/(q + 1) X Z[q]/(¢* + ) X Z[q]/(g* + q + 1).

Since Z|q] is a UFD, ¥ is injective. Let us find polynomials in Z[q] whose images under ¥
are characteristic.

For t(q) := (q + 1)(¢® + 1)(¢* + q + 1), we have ¥(¢(q)) = (1,0,0,0) and ¢(1) = 12. For

u(q) :=q(@®*+q+1), uqg :=qg*(@g*+q+1),
() :=q*(@* +q+1), uyq) :=q@*+q+1)y7
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we have
lP(u'l(q)) = (6’ _I’ _T’ 6)’ lP(“’Z(q)) = (6’ I, _a’ 6);

lp(”@(q)) = (69 _I’ I’ 6)’ III(u4(q)) = (6a —I, _69 6),
and u, (1) =3 for k =1,2,3, uy(1) = 9. For

vi(@) :=q(@+ (@ +1), vxq) :=qlg+D*g*+1), v3(q) :=q*(q+1(g*+1),
we have
]P(Ul(q)) = (6’ 61 6’ 5), IP(Uz(Q)) = (6’ 6’ 6’ _T)’ IP(U3(Q)) = (6’ 61 6’ _T - a)

and Ul(l) = U3(1) =4, 02(1) = 8.
The possible values of ¥(f(gq)) have been determined above, and the leading coefficient

of f;(q) is 1. Hence, if deg f;(q) < 6, we have

[ i@ = c18(q) + t(q) + c;ui(q) + c3vi(q)

for some ¢; = 0,1, ¢,c3 = 1,k = 1,..,4and | = 1,2,3. If j > 2, f;(q) must satisfy the

following conditions:
e filg) #1and f;(1) = 1.
* The leading coefficient is 1.

However, easy calculation shows that no choice of ¢, ..., c3, j, k satisfies these conditions.

Finally, we consider f,(q). We have
p= 1) <gM)+tD) +u () +v(1) 12412+ 9+ 8 =41,

However, Conjecture 7.9 has been checked in this range by using Maple. O

8 Application to Jones polynomials of rational knots

Using the results in the previous section, we study the special values of the Jones polyno-

mial V(¢) and the normalized one J,(q) of a rational link L(«).
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For a general link L, it is a classical fact that
V(1) = (=20,

where ¢(L) is the number of the components of L. On the other hand, for an irreducible
fraction E, it is well-known that C(L(E)) =1,2, and c(L(g)) = 1if and only if r is odd. Hence
we have

—2 ifriseven,
Vi) =

1 if r is odd.

We can explain this equation using g-deformed rationals.
Recall the equation (4.3), which states that the normalized Jones polynomial J(q) of a

rational link L(«) can be computed by the following formula:

Jo(@) = q-Re(@) + (1 —q) - 8o(q).

By an argument similar to the previous section, we can show that

R:(-1) 1 0 1
§ = i ’i ’i
8Sr(-1) 0 1 1

(this is a refinement of [MO20, Proposition 1.8]). Hence we have

2 ifriseven,
V)| = |[J:(=1)| = 8.1)
* * 1 ifrisodd.

Next, we will consider the special values of J,(q) at q = i, w, —w. Many parts of the fol-
lowing results should be well-known, but we are interested in the relation to g-deformed

rationals.
Theorem 8.1. For an irreducible fraction > 1, we have
S
Jr(w) € {+1, +w, +w?},
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if r is not a multiple of 3, and
JE () € {+(1 — ), +0(1 — w), +@0*(1 — w)},
if r is a multiple of 3. In particular
V3 ifris a multiple of 3,

[Vi(=w)| = [T (w)| = 8.2)
* : 1  otherwise.

Proof. The assertion easily follows from (the proof of) Theorem 7.1. By (4.3), we have

Rr(w) Rr(w)
J:(CU)=(co 1—cu) ‘ and s €A,
: Sr(w) Sr(w)
where A is the set given in (7.1). So the assertion follows. O

Remark 8.2. For a general link L, Lickorish and Millett ([LiM86, Theorem 3]) showed that
Vi(—w) = +i€B-1(/30)d, (8.3)

where d = dimH;(Z(L); Z5) with (L) the double cover of the 3-sphere S* branched over L.
By (4.2), we have
Vi(—w) = +(-w)"Tr(@™)

(note that ™! = w? = w). Hence, comparing (8.3) with (8.2), we have

1 if r is a multiple of 3,
dimH, (Z(L(r/s)); Z3) =
0 otherwise.

The next result can be proved similarly to Theorem 8.1, but we use Proposition 7.5

this time.

Theorem 8.3. For an irreducible fraction > 1, we have
S

0 ifr=2 (mod 4),
Jg(i)=‘i(1+i),i(1—i) ifr=0 (mod 4),

+1, +i ifr=1,3 (mod 4).
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Remark 8.4. For a general link L, Murakami [M86] (see also [LiM86, Theorem 1]) showed

that

(=20 (—)ATD i Arf(L) exists,
Vi) =
0 otherwise.

Comparing this equation with Theorem 8.3, we see that Arf(L(g)) exists if and only if r # 2
(mod 4). We were unable to find this statement in literature, but it must be possible to
prove it directly.

For a general link L, it is known that V;(w) = (—1)“Y~1. Hence, for a rational link L(E),

we have Vr(w) = (-1)"! and hence
Jr(—w) € {#1, +w, +w?}. (8.4)

We can give a new interpretation to this equation using g-deformed rationals. Note that

Mg (c)g=—q is of the form

0 w? )
Xy := ifc=0 (mod 6),
1
1 -1 ,
X, := ifec=1 (mod 6),
1 0
l-w w .
X, := ifc=2 (mod 6),
1 0
l-w+w? —-w?| .
X5 = ifc=3 (mod 6),
1 0
—w+w? 1 )
X, := ifc=4 (mod 6),
1 0
w? —w ,
X5 := ifc=5 (mod 6).
1 0

By (4.3), for « = [[cy, ..., ¢;]], we have
(face) +)=(-0 1+0) (MM Mye) g
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where (Ja(—a)) *> and <_w 1+ w) are 1x2 matrices, and - means the product of matrices.

Easy calculation shows that (_w 1+ w) = —w (1 w) and there exists ¢; € {+1, +w, +w?}

(1 co>.X,-=§,-<1 co)

for each 0 <i < 5. So we can show (8.4) by induction on 1.

such that

Remark 8.5. In the above notation, the matrix X; is not diagonalizable, and hence X} #E,
for all positive integers n. It means that the subgroup of GL(2, C) generated by Xj; is infinite,

and hence {S,(—w) | « € @} is an infinite set.
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Abstract:

Given any non-central interior point o of the unit disc D, the diameter
L through o is the union of two linear arcs emanating from o which meet
aD orthogonally, the shorter of them stable and the longer unstable (under
these boundary conditions). In each of the two half discs bounded by L, we
construct a convex eternal solution to curve shortening flow which fixes o
and meets D orthogonally, and evolves out of the unstable critical arc at
t = —oo and into the stable one at t = +0. We then prove that these two
(congruent) solutions are the only non-flat convex ancient solutions to the
curve shortening flow satisfying the specified boundary conditions. We obtain
analogous conclusions in the “degenerate” case o € dD as well, although in
this case the solution contracts to the point o at a finite time with asymptotic
shape that of a half Grim Reaper, thus providing an interesting example for

which an embedded flow develops a collapsing singularity.
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1 Introduction

Variational problems subject to boundary constraints are ubiquitous in pure and applied
mathematics and physics. One of the simplest such problems is to find and study paths
of critical (e.g. minimal) length amongst those joining a given point o in some domain Q
to its boundary Q. When Q is a Euclidean domain, such paths are, of course, straight
linear arcs from o to 6Q which meet 4Q orthogonally.

While characterizing all such curves is a non-trivial problem in general (even for
convex Euclidean domains, say), the “Dirichlet-Neumann geodesics” in the unit disc in
R? are easily found: when o is the origin, they are the radii; when o is not the origin, there
are exactly two, and their union is the diameter through o.

One useful tool for analyzing such variational problems is the (formal) gradient
flow (a.k.a. steepest descent flow), which in this case is the “Dirichlet-Neuman curve
shortening flow”; this equation evolves each point of a given curve with velocity equal
to the curvature vector at that point, subject to holding one endpoint fixed at o with the
other constrained to 6Q, which is met orthogonally.

While curve shortening flow is now well-studied under other boundary conditions
— particularly the “periodic” (i.e. no-boundary) [And12, AB11a, AB11b, BLT20, DHS10,
GH86, Gag84, Gra87, Hui98], “Neumann-Neumann” (a.k.a. free boundary) [BBC, BL23,
Buc05, Ede20, Hui89, Ko, LZ, Sta96a, Sta96b] and “Dirichlet-Dirichlet” [ALT, Hui98] con-
ditions — we are aware of no literature considering the mixed “Dirichlet-Neumann”
condition.

Our main result (inspired by [BL23]) is the following classification of the convex

ancient solutions which arise in the simple setting of the unit disc.

Theorem 1.1. Given any d € (0, 1], there exists a convex, locally uniformly convex ancient

solution {Ff}te(_m,wd) to curve shortening flow in the unit disc D with one endpoint fixed at
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o := (—d,0) and the other meeting oD orthogonally. The timeslices T each lie in the upper
half-disc, and converge uniformly in the smooth topology ast — —oo to the unstable critical

arc {(x,0) : x € [—d, 1]}, as a graph over the x-axis,
eF’ty(x,t) - Asinh(A(x + d)) uniformly inx as t -» —oo

for some A > 0, where 1 is the positive solution to tanh(A(1 + d)) = 1.

When d < 1, wy = +o0 and the timeslices converge uniformly in the smooth topology
ast — +oo to the minimizing arc {(x,0) : x € [-1,—d]}. Whend = 1, w; < oo and the
timeslices contract uniformly ast — w, to the point o and, after performing a standard
type-1I blow-up, converge locally uniformly in the smooth topology to the right half of the
downward translating Grim Reaper.

Modulo time translations and reflection about the x-axis, {Ff}te(_m,wd) is the only non-flat

convex ancient curve shortening flow subject to the same boundary conditions.

En route to proving Theorem 1.1, we establish the following convergence result (cf.
[ALT, GH86, Gag84, Gra87, LZ]), which is of independent interest (see the proof of Lemma
3.1).

Theorem 1.2. Let T be an oriented smooth convex arc in the upper unit half-disc D, with
left endpoint o = (—d,0), d € (0,1], where its curvature vanishes, and right endpoint on oD,
which is met orthogonally. Suppose that the curvature of T increases monotonically with
arclength from o. If d < 1, then the Dirichlet-Neumann curve shortening flow starting from
[ exists for all positive time t and converges uniformly in the smooth topology ast — o to
the minimizing arc joining o to dD. If d = 1, then the Dirichlet-Neumann curve shortening
flow starting from T converges uniformly to the point o ast - w < oo and, after performing
a standard type-II blow-up, converges locally uniformly in the smooth topology to a half

Grim Reaper.

Though the curvature monotonicity hypothesis appears unnaturally restrictive in
Theorem 1.2, we note that some such additional condition is required to prevent the

development of self-intersections at the Dirichlet endpoint (resulting in subsequent
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cusplike singularities). Moreover, as Theorem 1.2 demonstrates in case the Dirichlet
endpoint lies on the boundary, collapsing singularities may form at the Dirichlet endpoint
even when the flow remains embedded. It is not hard to see that this can also occur when
the Dirichlet endpoint lies to the interior (as a limiting case of the flow forming a cusp

singularity just after losing embeddedness, say).

Acknowledgements
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ANU by YL and GM under the supervision of ML. We are grateful to the MSI for funding
the project. ML thanks Julie Clutterbuck for bringing the mixed boundary value problem
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2 Preliminaries

Fix a point o = (—d,0) € D in the unit disc D ¢ R?, with d € (0,1]. Denote by C; ¢ D
the circular arc which passes through o and meets the boundary of D orthogonally at

(sin 6, cos 0); that is,

Co :={(x,y)€D: (x—=&*+y—n’=r%,
where, defining a := %(d‘1 +d),

_1+d*+2dcos6® a+cosb

(&,7m) :=(cosB,sinf) + r(—sinf,cos6) and r : 2dsing Sino

Consider also the circular arc Cy ¢ D which is symmetric about the y-axis and meets

oD orthogonally at (cos 6, sin 6). That is,
Co i={x*+(y—1)?=#},

where

7 :=cscH and ¥ :=cotH.
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Proposition 2.1. The family {Cs+)}ic(—c00) Where 6 (t) := arcsine?, is a supersolution to

curve shortening flow. The family {Co-(;)}ie(—cow,)» Where 67 is the solution to

dé _ sinf
dt  a+cosf 1)
mm:%

is a subsolution to curve shortening flow.

Remark 1. Separating variables, the problem (1) becomes

[ [ [ oo (2) s (2)
and hence
el =2sin' ™ (6 2(0) cos!™¢ (6_2(0) )

t

In particular, for all d € (0, 1], the solution certainly exists for all t < 0, with 6~(¢) ~ 21+aea+t
ast - —oo. When d € (0, 1), the solution exists up to time wy; = +o0, and lim,_, , , 67(t) = 7.

When d = 1, the solution exists up to time w,; = log2, and lim,_,,,, 67(t) = 7.

Proof of Proposition 2.1. The first claim is proved in [BL23, Proposition 2.1].

To prove the second claim, consider any monotone increasing function 6 of ¢, and
let y(u,t) = (x(u,t),y(u,t)) be a general parametrization of Cy(. Differentiation of the
equation

=&+ -n)=r

with respect to ¢ along y and 6 yields

(x = &)x; — &g6) + (v — (Y — 1eO;) = 176, .

Since the outward unit normal to Cy at (x,y)isv = l(x — &,y —n), this becomes
r

r

x—§ y—1
—Vt'V=—< §o + . 776+”’e)9z-

We claim that
1 __ Y
~(x §,y—n)-(Eg.mo) +ro= S

Arnold Mathematical Journal, Vol.11(3), 2025 97


http://dx.doi.org/10.56994/ARMJ

Mat Langford, Yuxing Liu, George McNamara

Indeed,

L=y -m- Ene)

= %((x, ) — (cos 8, sin §) — r(—sin 6, cos e))) : ((1 + rg)(—sin 6, cos 0) — r(cos 6, sin e))

—((x,y) — (cos 8,sin 0) — r(—sin 6, cos 0))) - (cot 6(— sin 6, cos 6) + (cos B, sin O))

—(x,y) - (cot8(—sin B, cosO) + (cos O,sinB)) + 1 + rcotb

—(x,y)-(0,cscB) —rg,

from which the claim follows.
Since, y < sin6 along Cy, taking 6 to be the solution to the specified initial value
problem yields

_y .'V=L9 —
! sin6 '~ sin®

as claimed. O

Next consider {H;};e(—c ), the fundamental domain of the horizontally oriented hair-

clip solution to curve shortening flow centred at o; that is,

H, :={(x,y) € [0, ) x [0, %] : sin(y) = e’ sinh(x + d)}.

-
-
-

-
-
.

T
4
L ]
H
H
L
N . N
SN e ~ ~ ~ ~ N

.
~a oS

~~.

........

Figure 1: Some timeslices of (one period of) the “hairclip” solution.

Given any 4 > 0, define {H/},c(_« ) by parabolically rescaling the hairclip by 4. That is,
H? 1= A"'Hy = {(x,y) € [0, 0) x [0, %] : sin(y) = e’ sinh(A(x + d))}.
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Observe that {H};c(_o.c0) Satisfies

L] tan(1y) and L = Atanh(A(x + d)),
cosf sin 6
where 6 € [0, 2] is the angle the tangent vector makes with the x-axis. From this we see,
> g g

in particular, that x is positive and monotone increasing with respect to arclength from o.

Proposition 2.2. For each 6 € (0, %) there exists a unique pair (4,t) such that Hf intersects

oD orthogonally at (cos 6, sin ).

Proof. Given any 6 € (0, %), substituting the point (cos8,sin6) for (x,y) in the defining
equation sin(ly) = e’ sinh(A(x + d)) and solving for ¢ yields for each 1 € (0, ﬁ) the
unique timeslice of the (fundamental domain of the) Hairclip solution which intersects

oD at (cos 6, sin 0); namely,

fo -2 ln( sin(4 sin 6) ) .

sinh(A(cos 6 + d))
At that point, the normal satisfies

sin(A sin 8) cos 8 — tanh(A(cos 6 + d)) cos(Asin 8) sin 6
tanh(A(cos 6 + d)) cos(A sin 6)
tan(A sin 6) cos 6
= — 1,0),
tanh(A(cos 6 + d))g( )

v,(cos8,sinB) - (cosB,sinf) =

where

g(4,0) := tanh(A(cos 6 + d))cot(AsinO)tanb — 1.

Observe that

limg(4,0) =d-sec6 >0, lim g4,6)=-1<0
AN\0 2 T

2sin@
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and
dg _ . 2
Fr i tan 9[(003 6 + d) cot(A sin 8) sech”(A1(cos 6 + d))
—sin 8 csc?(A sin 6) tanh(A(cos 8 + d))]
tan 6 tanh(A(cos 6 + d)) A(cos6 + d) }
= Asin 6 h(4 0+d
A sin(Asin 6) sinh(A(cos @ + d)) cos(4sind) sech(4(cos 6 + d))
B Asin6 ]
sin(4 sin 6)
h
< tan O tan' (/1((:,08 9 +d) [cos(A sin 8) sech(A(cos O + d)) — 1]
Asin(Asin 6)
<0
for 2 € (o, 28;6). It follows that there exists a unique 4 such that
v,(cos6,sinB) - (cosH,sinb) = 0.
The claim follows. O

tanh(A(d+1)))

Remark 2. Note that, since limg_,; g(1,6) = —1, the function g(4, 6) isnon-negative

at 6 = 0solong as 1 > 4, where 4, is the unique positive solution to the equation
A =tanh(A(d + 1)).

Proposition 2.3 (A priori estimates). Let ' ¢ D, be a smooth, convex embedding of a
closed interval with left endpoint o = (—d,0), d € (0,1], and right endpoint meeting D
orthogonally, and suppose that the curvature x of T increases monotonically with respect
to arclength from o. Denote by 6 resp. 0 the least resp. greatest value taken by the turning
angle along T and by x = x(6) the greatest value taken by .

The circle Cy lies below T. Thus,

sin 6

K> — (2)
a+cos6
and _
6 > arccot (ﬂ) , (3)
bsin6
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where b := %(d‘1 —d) and we recall that a := %(d‘1 + d), with the right hand side taken to

be zeroin cased = 1.

Proof. Suppose, to the contrary, that C; does not lie below T'. Then some point of ' must lie
strictly below C3, and hence (since the endpoints of the two curves agree) upon translating
Cs downwards, the two curves will continue to intersect until some final moment, at
which they must make first order contact at some interior point g € I'. At this point,
the curvature x of I must be no less than 1/ r(5) (the curvature of C3). But then, by the
monotonicity of x, x must exceed 1/r(6) on the whole segment of T joining g to 8D, in
which case (since I and C3 make first order contact at D) the point g must lie strictly
above Cz, which is absurd. So C; must indeed lie below T. The first inequality is then

immediate and the second is straightforward. O

(cos b, sin0)

Figure 2: Scaled hairclip timeslice and circular arcs through the prescribed boundary

points o and (cos 6, sin 6).

3 Existence

For each d € (0,1] and p € (0,2), let I* C D, be a smooth oriented arc satisfying the
2

following properties.

— The left endpoint of I* is 0 = (—d, 0), where its curvature vanishes, and its right

endpoint meets 6D orthogonally at (cos p, sin p).

— I'? is convex.
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— The curvature of I* is monotone increasing with respect to arclength from o.

For example, we could take I'* := Hf: N D, where (4,,t,) are the unique choice of (4, t)

which ensure that H} meets 6D orthogonally at (cos p, sin p).

Lemma 3.1 (Very old (but not ancient) solutions). For each d € (0,1] and p € (0, %) there
exist a, < 0 such that a, > —c as p — 0 and a smooth' curve shortening flow {ry Stela, w0

in D exhibiting the following properties.
- TG =T%,

- Foreacht € [a,,w,), I} is an oriented embedding of a closed interval, with left endpoint

o = (—d, 0) and right endpoint meeting 6D orthogonally.
— For eacht € [a,,wy), T} is convex.

— For each t € [a,,wy), the curvature of I is monotone increasing with respect to

arclength from o.

- Ifd < 1, then w; = co and I converges uniformly in the smooth topology as t — oo to

the minimizing arc {(x,0) : x € [-1,—d]}.

— Ifd =1, then wy € (0,0) and I'Y converges uniformly as t — wy to the point o, and
there are sequences of times t; /' wy, points p; € l“fj , and scales 1; /' o such that

el . .
the sequence {1;( Ater, T p j)}te[/ljmp—tj),/lj%(wp— j-1-1)) converges locally uniformly in the

smooth topology as j — o to the right half of the downwards translating Grim Reaper.

Proof. Form the “odd doubling” I'* of T'* by taking the union of I'* with its rotation through

angle 7 about o. Since I*? is a regular curve of class C? and there exists a ball B about

) 18 given by a family of immersions of the interval [0, 1] which is of class

Co([0,1] % (@, 00)) N CTP15([0,1) % [, 00)) N C7P15((0,1] % [, @,)) for any § € (0,1). Without additional

'More precisely,{I7 }e,

compatibility conditions at the boundary points, higher regularity at the initial time may fail. However, if
the curvature of I'” is odd resp. even at its left resp. right boundary point, then the solution will be smooth

up to the left resp. right boundary point at the initial time.
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(cos p, sin p) (of radius 1/10, say) which is disjoint from the rotation of I'* through angle
7 about o, where I'* meets 4D orthogonally, Stahl’s short-time existence theorem for
free boundary mean curvature flow [Sta96b, Theorem 2.1] yields a solution {I%},c()
to Neumann-Neumann curve shortening flow with boundary on the odd doubling of
oD n B for a short time § > 0. Since this solution is uniquely determined by its initial
condition, it must be invariant under rotation through angle 7 about o, and hence descend
to a solution {I% }tefo.6) to Dirichlet-Neumann curve shortening flow in D with Dirichlet
condition o and initial condition I'*. Denote by T the maximal time of existence of the
latter.

Since the curvature of {I},c(o ) satisfies

6, — Ak =3
x =0 ato, and
x, =x at oD,
where s denotes arclength from o, the maximum principle (and Hopf boundary point
lemma) ensure that x remains positive on I \ {o} for ¢ > 0.

For similar reasons, positivity of x; is also preserved. Indeed, using the commutator

relation

[at’ as] = Kzas s
the identity 0 = x; = Ax at o, and the positivity of x away from o, we find that
(0, — A)xg = 4x’xg
(x,) =0 at o, and
x, >0 at dD,

so the claim once again follows from the maximum principle.
Since 6, = ¥ > 0 and 6 < 7 (when d < 1, the maximum principle prevents I from
ever reaching the minimizing arc — a stationary solution to the flow) we find that 6

must attain a limit as ¢t — T. We claim that this limit is 7. Indeed, if 0 < 6, < « for all
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t € [0,T), then, representing the solution as a graph over the line {(—d,y) : y € R}, the
“gradient estimate” (3) yields a uniform bound for the gradient, at least when d < 1. But
then, by applying parabolic regularity theory (see, for instance, [Lie96]) to the graphical

Dirichlet-Neumann curve shortening flow equation

x . p—
X = T s In [0,57(1)]
1 x0,0)=0
x,(¥(8), 1) = cotB(r),

where y(t) :=sin 5(t), we obtain uniform estimates for all derivatives of the graph func-
tions x(-, t) (cf. [Sta96b]). To obtain corresponding estimates when d = 1, we instead rep-
resent the solution as a graph over the “tilted” line through (-1, 0) and (cos(8(T)), sin(6(T)))
and use the “gradient estimate” 6 > 0. The Arzela-Ascoli theorem and monotonicity of
the flow now ensure that x(-,t) takes a smooth limit as t — T, at which point the flow
can be smoothly continued by the above short time existence argument, violating the
maximality of T. We conclude that 5(t) —mast—T.

It now follows from (3) that 6(t) - = ast — T. When d = 1, we conclude that I
contracts to o as t — T. Note that in this case T < oo since the lower barriers Cy-(;) contract
to o in finite time. A more or less standard “type-I vs type-II" blow-up argument (cf. [LZ])
then guarantees convergence to the half Grim Reaper after performing a standard type-II
blow-up. (The flow must be type-II because the limit of a standard type-I blow-up —a
shrinking semi-circle — violates the Dirichlet boundary condition.)

When d < 1, we conclude that [’ converges uniformly to the minimizing arc {(x,0) :
x € [-1,—d]} as t — T. But then, for large enough ¢, I’ may be represented as a graph over
the x-axis with small gradient, at which point parabolic regularity, short-time existence
and the Arzela-Ascoli theorem guarantee that T = co and I converges uniformly in the
smooth topology to the minimizing arc.

T

Finally, since 6 is monotone, there is a unique time —a, > 0 such that 5(—ocp) =3

2sin

since the Neumann-Neumann circle C‘ep, where sin6, = e f , lies above I'*, we find (by
sin” p

Arnold Mathematical Journal, Vol.11(3), 2025 104


http://dx.doi.org/10.56994/ARMJ

Ancient CSF in the disc with mixed boundary condition

suitably time translating the upper barrier {Co+()}e(_w.0)> @s in [BL23]) that
5 i
4y < Llog (_P) .
2 1+sin”p
Time-translating the solution {I**},¢o ) by @, now yields the desired very old (but not

ancient) solution {I' }ie(a, c0)- O

Taking the limit as p — 0 of these very old (but not ancient) solutions yields our desired

ancient solution.

Theorem 3.2. Given any d € (0, 1], there exists a convex ancient Dirichlet-Neumann curve
shortening flow {T;};e(_w 0, N the upper half disc D, which converges uniformly in the
smooth topology to the unstable critical arc [-d,1] x {0} ast - —co. When d < 1, wy = o
and {T'}1e(—co ) CONVerges uniformly in the smooth topology as t — +co to the minimizing
arc [-1,—d] x {0}. Whend = 1, wy < co and I'{ converges uniformly as t — w, to the point o,
and there are a sequence of times t; / wg, right endpoints p; € Ffj , and scales A; /' oo such

that the sequence {1 j(Fi -p j)}te[a}%(ap—tj),aj%(wp— j-1-1))) converges locally uniformly in the

21+
j J
smooth topology as j — oo to the right half of the downwards translating Grim Reaper.

Proof. Given any sequence of angles p; \, 0, consider the sequence of corresponding very
old (but not ancient) solutions {I”/ btela; o) CONStructed in Lemma 3.1. Differentiating the

Neumann boundary condition and applying the estimate (2) yields the inequality

= = sin@

0, =%> ————
a+ cosf

on each of these solutions. It follows, by the ODE comparison principle, that each

(r/ btela, c0) Satisfies

6<6- (4)

for ¢ € [«;,0], where we recall that 0~ is the solution to (1). Since 6~ is independent of j,
this implies uniform estimates for the gradient on any time interval of the form [—c0, —T],
T > 0, when we represent {Ff }ela,~1) graphically over the x-axis. By parabolic regularity

theory and the Arzela-Ascoli theorem, we may then extract a smooth limit of the very old
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solutions {I‘{ }re(—0,0) after passing to a subsequence. This limit is ancient, since a, - —oo
as p — 0, reaches the point (0,1) at time zero (since each F{ intersects the convex domain
bounded by Cg.(, for each ¢ € (—,0)), and converges uniformly in the smooth topology
ast — —oo to the unstable Dirichlet-Neumann geodesic from o due to the estimate (4)
(and parabolic regularity theory). The longtime behaviour follows from the argument

presented above. O

3.1 Asymptotics

We now prove precise asymptotics for the height of the ancient solution constructed
in Theorem 3.2, assuming the initial conditions for the old-but-not-ancient solutions
. e : A
{rr btela, g are given by the hairclip timeslices I* = Ht: ND.
. . 0
Lemma 3.3. On each old-but-not-ancient solution {I; Stelay wq)

K

“osO > A, tan(4,y).

Proof. Note that equality holds on the initial curve I'* = Hif N D. Thus, given any u < 4,

the function

wi= tan(uy)
e 4

is strictly positive on the initial curve I'*, except at the left endpoint, where it vanishes.

Observe that

W, = 2 4 sing ©__ 2sec’(uy)
57 cosB cos2e M K]

In particular, at the left endpoint on the initial curve,

Ks 2w 22N
w, = —— — u*sinf = (12 — sin6 > 0.

Thus (since wy is continuous at o at time zero), if w fails to remain non-negative at positive
times, then this failure must occur immediately following some interior time t, > 0.
There are three possibilities: 1. w(-,¢,) = 0 at the left endpoint, 2. w(-,¢t,) = 0 at the right

endpoint; or 3. w(-,t,) = 0 at some interior point, p.,.
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The first of the three possibilities is immediately ruled out by the Hopf boundary point
lemma.

In the second case, the Hopf boundary point lemma and the Neumann boundary
condition yield, at the right endpoint,

x . i
0>ws= s + sin 6 (0052 5~ w1+ tanz(uy))) = utan(uy) — u2y >0,

which is absurd.
In the final case (having ruled out the first two), w must attain a negative interior

minumum just following time ¢,.. But at such a point, w < 0, w, = 0 and

_ (6, =AMk x(8; —A)cosb ( x ) (cos B),
~ cosf oo *\cose coso (6; — A)(u tan(uy)) .

Since

@, —Ax=x>, (3, —A)cosO =x%cos6 and (3, —A)y =0,

we conclude that
0> -2 <L> xtan 6 + 2u tan(uy)(u tan(uy)), sin 6
cosf/,

= 2(u tan(uy)), sin 6 (l‘ tan(uy) — ﬁ)

= 21> sec*(uy) (M tan(uy) — ﬁ)

>0,

which is absurd.
Having ruled out each of the three possibilities, we conclude that w > 0 for any u < 4,.

The claim follows. O
In the limit as p — 0, we then obtain
£ > 2, tan(Ay) (5)
cosf =0 oY

on the ancient solution, where 4, = lim,_ 4,.
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We now find that, as a graph over the x-axis (for ¢ sufficiently negative),
(sin(Ao)); = cos(Aoy)y; = Ao cos(Aoy )\ 1+ ¥ = Ao cos(Aoy) ——= > 23 sin(A).
and hence
(e‘/lgt sin(/loy)) >0,
t

which implies that the limit

A(x) 1= lim e %ly(x, 1)
t—>—o00

exists in [0, o0) for each x € (—d, 1).
Recall that 6 (t) ~ es+1 for t ~ —oo. In particular, 5(t) < 67(¢) is integrable. We will
exploit this fact to show that the limit A(x) is positive (at least near x = 1). First, we shall

show that % is integrable.

Lemma 3.4. There exist p, > 0, T > —oo, C < co and § > 0 such that
k<Ce for t<T

on each old-but-not-ancient solution {T” btefa, wy) With p < po.

Proof. Since

(0, — A)sin® = x?sin 8,

we find that

X x  Vsinf
0, —A)—— =2V—- .
@ ) sin 6 sin6 sin6
So the maximum principle guarantees that the maximum of L@ occurs at the parabolic
sin

boundary. Now, at the left boundary point, ﬁ = 0, while at the right,

(K)_ x (E_COS@K)_ x 1 K
sin6/, siné\x  sin6/ up tand /|

By (4), we can find T > —oo (independent of p) so that cos 6(¢) > % for all t < T. We thereby

conclude that

x x
—— <max3{2, max —
sin t=a, sin®
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forallt < T. Since MaX;—q, ﬁ < A, tanh(4,(1 + d)) — /13 <1asp — 0,we find that

X <2sinf < 2sinf~ (6)

for all p sufficiently small. The claim follows since 6~ is comparable to 2P Teemn as

t > —o0. O
Corollary 3.5. There exist T > —oo, C < oo and § > 0 such that

<AZ+cCe® for t<T

on the ancient solution.

Proof. Given p < p,, set
CZ
np(t) =23 (exp (Eez‘”) - 1) :
where p,, C and § are the constants from Lemma 3.4, so that
!/
2779 = (220t
A5+ 1,

and hence, for¢t < T,

(6 = &) = (A3 +1p)y) =1 =Ly
77/
<C2Mi— —2 249y
= 2 ot
A+ 1

= C2e®(x — (A5 +7,)y).

Since x — (43 +7,)y = 0 at the left endpoint and (x — (13 +7,)y); = x — (13 +17),)y at the right
endpoint, we find that

CZ
K — (A2 +7,)y <exp| =<e® | (x— (47 + np)y)'
26 t=a,
on each of the old-but-not-ancient solutions with p < p,, and hence, taking p — 0,

K < (A3 +10)y

on the ancient solution. The claim follows since, by the mean value theorem, we may

. A2ct
estimate 7, < szem fort <o. O
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By the estimate (4) and Corollary 3.5, we can find T > —o0, C < o0 and & > 0 such that

our ancient solution satisfies

_ x 1 x
(logy); = <

}cosé B V1 —4C2e25t y

for ¢t < T. Integrating from time ¢ < T to time T and rearranging then yields

<1+ 8C2625t)§ < A%+ Cle®
y

y > Bel!, B>0.

Since the gradient of the solution is bounded by tan 6 < celt for ¢ < T, this guarantees

that the limit A(x) := e"l(z)ty(x, t) is positive for all x > x, where x, < 1.

4 Uniqueness

4.1 Unique asymptotics

Consider now any convex ancient Dirichlet-Neumann curve shortening flow {I';};¢(— o 0

with Dirichlet endpoint o € D \ {0}.

Lemma 4.1. Up to a time-translation, a rotation about the origin, and a reflection about

the x-axis, we may arrange that

o = (—d,0) for some d € (0,1],

(Oa 1) (S FO)

I; lies in the upper half disc for all t, and

I; = {(x,0) : x € [-d, 1]} uniformly in the smooth topology ast — —co.

Proof. Up to a time translation, we may arrange that w > 0. Up to rotation and a reflection,
we may then arrange that o = (—d,0), d € (0,1], and (cos@(O), sin5(0)) lies in the upper
half-disc. This ensures that (cos §(t), sin 5(t)) lies in the upper half-disc for all t < 0. Indeed,
if 6(¢,) = 0 for some ¢, < 0, then convexity and the boundary conditions guarantee that

I, ={(x,0) : x € [=d,1]}; S0 {[';};e(—0 ) 1 the stationary unstable critical arc.
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Denote by Q, the region lying above I’ U{(0,x) : x € [-1,—d]} and set Q := U,.,Q;. The

first variation formula for enclosed area yields

iuwmg=—fxm=—@m—gm
dt .

t

and hence o
area(Q;) = area(Qg) + f (5(1') —-0(1))dr.
t

Since area(Q) is finite, 6 — 6 must converge to zero along some sequence of times ¢; - —oco.
Since 6 > 0, this ensures that Q is the upper half-disc, and hence I, converges uniformly to
the unstable critical arc as t — —oo. Parabolic regularity theory then guarantees smooth
convergence.

Since the flow is monotone, I, must then lie in the upper half disc for all t. We have
thus shown, when d < 1, that w = o0 and I', converges smoothly to the minimizing arc
ast — oo and, when d = 1, that w < oo and I', converges uniformly too ast - w. Up to a

further time-translation, we may therefore arrange that the point (0, 1) lies in T, O

Lemma 4.2. For every t € (—o0,w), k; > 0.

Proof. Since x, > 0 at both endpoints, the claim may be obtained by applying the maxi-

mum principle exactly as in [BL23, Lemma 3.3]. O

Proposition 4.3. There exists A € [0, o) such that
y(x, 1) = Al (sinh(A(x + d)) + 0(1)) (7)
uniformly as t - —oo.

Proof. Denote by {I'; };¢_ ) the constructed solution. Since T, and I'; both contain the
point (0, 1), the contrapositive of the avoidance principle guarantees that I’ must intersect
I'; away from o at every time ¢ < 0. It follows that the value of 8 on the second solution
must at no time exceed the value of 6* on the constructed solution. But then, applying
the gradient bound (3) and estimating sin 6* < Ae%! + o(e!) yields
b y< bsin® — <tan6 < 2sin < 2sin 6* < 2(Aeh’ + o(ehi"))
1+a 1+ acosb B a
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ast — —oo, and hence, whend < 1,
lim sup €%y (1) < oo. (8)
t—>—o00

Since the height function y satisfies the (intrinsic) Dirichlet-Robin heat equation

(6 —A)y=0

y=0 at o, y,=y at (cosg,sing),

we may apply Alaoglu’s theorem and elementary Fourier analysis as in [BL.23, Proposition
3.4] to obtain (7).

When d = 1, we need to work a little harder to obtain (8): at any time ¢ < 0, either
y(t) < y*(t), as desired, or y(t) > y*(¢t). In the latter case, the avoidance principle and
the Dirichlet condition ensure that y*(-,t) — y(-,t) attains a positive maximum at an
interior point. Since the Dirichlet-Neumann circular arc Ca lies below I'; (with common
boundary), we can find some ¢, > ¢t and x, € (-1, cos 6(t,)) such that the advanced arc

Céao) touches I'; from above at the interior point (x,, y*(xo, t)), and hence

Yo Xo) = ¥ (X, 1) =1 Ag and 3¢,))x(Xo) = Yx(x0, 1) =: By,

where

1+ cosb

Yo(x) = r(0) =\Vr2(6) — (x + 1)2, r(6) := pr

/ Xo+1
VO— rg—(x0+1)2=A0 and 0 =Bo,
2
\Jr?2 = (3 + 1)2
0

That is,

where ry := r(5(t0)). Rearranging, these become

Byr Xo+1 r
00 and 70=A0+O—:A0+ 0

\/1+ B2 Bo \/1+ B2
which together imply that

AJ1+B2—1)ry=An/1+B2= 4 p
+t 5y~ L)l =4Ap\ L+ 0= Xo+1 000
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Eliminating r, and rearranging, we conclude that

Ao 1

(xo +1)Bo 1+w/1+B§

We claim that this is only possible (when —t is sufficiently large) if x, is close to one.

9

Indeed, the asymptotic linear analysis yields, for some A € (0, ),

Ag = Y*(xp,t) = Aehot (sinh(4y(xg + 1)) + 0o(1))
s as t - —oo.
By = yi(xo, ) = Adget (cosh(Ag(xp + 1)) + 0(1))

(Note that, recalling (6), we may estimate y*_ < %* < 2sin6* < celt, which justifies the

uniform C! convergence of et *(-,t).) Recalling (9), we conclude that

tanh(1g(xp + 1)) 1
— — aS t —» —oo.
Ao(xo + 1) 2

This implies that x, =1 —o0(1) ast - —c0 and hence, as t - —oo,

_ — _ B
sin 8(t) < sin6(ty) = (1 + X(to)ry" ~ (L + x)ry" = —0  <B,~el
\/1+ B}
as desired. O

4.2 TUniqueness

Uniqueness may now be established using the avoidance principle, as in [BL23, Proposi-
tion 3.5]. Combined with Theorem 3.2 and the asymptotics (7), this completes the proof
of Theorem 1.1.
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Abstract: We introduce a new class of billiard-like system, “bouncing outer
billiards", which are 3-dimensional cousins of outer billiards of Neumann
and Moser. We prove that the bouncing outer billiards system on a smooth
convex body has at least four 1-parameter families of fixed points. We also
fully describe the dynamics of bouncing outer billiards on a line segment.
Finally, we carry out numerical experiments suggesting very complicated

(non-ergodic) behavior for several shapes, including the square and an ellipse.
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1 Introduction

Outer billiards are dynamical systems introduced by Neumann in 1959 [Neu58] and

then popularized by Moser in his lecture on stability of the solar system [Mos73, Mos78].
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Figure 1: Bouncing Outer Billiards Dynamics

The field of outer billiards became very active about 20 years ago. In this paper, we
suggest similar more complicated billiard systems called bouncing outer billiards, which
we proceed to define.

Let S ¢ R? be a compact convex set with smooth boundary. The visibility domain Vg
consists of all pairs (p,v) where p € R\ int(S), and v € TllJ[R{2 is a unit vector based at p
such that the ray R spanned by v has a nonempty intersection with .

We now define the dynamical system Fg: Vg — V in the following way. Given an
initial condition (p,v) € Vg the corresponding ray R reflects off the convex body at a point
w as R’ in the usual way — the angle of incidence equals the angle of reflection. Next we
apply the outer billiard law and consider the point p’ € R’ such that llp—w| =|lp’ —w]| as
indicated in Figure 1.

Finally, we will use the visibility angle reflection rule as follows. Let H and K be the

rays at p’ which are tangent to S. Let u be the unit vector based at p’ pointing to w (in the
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direction opposite to R’). Clearly, u is inside the angle defined by H and K. Let v’ be the
reflection of u across the angle bisector of ~(H,K) as shown on Figure 1. This completes

the definition of bouncing billiard dynamics.

Fs(p,v) = (p',v").
We will drop the subscript S and simply write F when no confusion is possible.

Remark 1.1. It is easy to see that if R is tangent to S then we have the classical outer billiard
dynamics. Hence, the outer billiard is simply the restriction F|sy, of the bouncing outer

billiard to the boundary of the visibility space.

Remark 1.2 If S is not smooth, e.g. a polygon, then the angle reflection law is undefined
for some initial conditions. However, such initial conditions form a set of zero Lebesgue
measure since the boundary of a convex body is differentiable almost everywhere. Hence,
bouncing billiard dynamics still makes sense for almost every initial condition, but the

above relation to outer billiard is obscured.

Remark 1.3 S. Tabachnikov considered unfolding the outer billiard map into a family of
symplectomorphisms given by the first two steps in the definition of the bouncing outer
billiard [Tab95]. However, to the best of our knowledge, the visibility angle reflection rule

was not considered before.

In the next section, we establish the existence of families of fixed points for bouncing
outer billiards. Then, we fully describe integrable twist map dynamics of bouncing outer
billiards on a line segment. Finally, we present results of our numerical explorations in
the last section.

We would like to pose two questions.

Question 1.2. Does every orbit of the bouncing outer billiard on a smooth convex body

remain bounded?

We were not able to detect any unbounded orbits numerically.
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It is easy to check that bouncing outer billiards are conservative, that is, they preserve

the Lebesgue measure on Vg (see Appendix A).
Question 1.3. Does there exist positive volume ergodic components?

We have found some orbits which appear to fill up 2-dimensional sets. However, in

the 3-dimensional space V§, such orbits seem to be confined to 2-dimensional surfaces.

Acknowledgements. This paper is a result of an REU project of summer 2024 at The
Ohio State University. The authors are very grateful to Sergei Tabachnikov who provided
several illuminating remarks on earlier drafts. The authors would like to acknowledge
the support provided by the NSF grant DMS-2247747.

2 Fixed points

A natural question for any dynamical system is whether or not there exist fixed points,

and if so, how to find them.

Theorem 2.1. For any convex S with C3 boundary, the associated billiard map has uncount-

ably many fixed points, which come in at least four local 1-parameter families.

Clearly, a point (p,v) can only be a fixed point if v is the bisector of the angle formed
by the tangent rays from p to S. Therefore, given a point p ¢ S, consider the angle given
by the two tangent lines from p to S and let v, € T,R? be the vector spanning the angle
bisector. The idea of the proofis to find a curve connecting two points, say p and g such
that the ray of v, “bounces to the left” and the ray of v, “bounces to the right.” Then, by
the intermediate value theorem, there exists a fixed point (r,v,) on such a curve.

We note right away that if S has a circle subarc with constant curvature, then there
is a whole 2-parameter family of fixed points in proximity of such arc. Hence we can
assume, due to C3 regularity of the boundary, that there exists a subarc of 4S with strictly
increasing curvature, as well as a subarc with strictly decreasing curvature.

The following is our main lemma.
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Lemma 2.2. Let f: [sq,5,] — S be a counter-clockwise arc-length parameterization of
a subarc of 3S along which the curvature is strictly increasing. Assume that this arc is
sufficiently short so that the tangent lines at f(sy) and f(s,) intersect at a point p as indicated
on Figure 2.

Then the angle bisector ray spanned by v, will “bounce off in the direction of f(s,)”, that

is, after reflecting off’ S, the ray will intersect the tangent segment a.

Proof. Let k(s) be the curvature at f(s), and let K(s) = fsz k(t)dt. Since we are using arc-
length parameterization, K(s) is the angle between the tangent lines at f(s,) and f(s). There
is a unique s; such that K(s;) = K(s,)/2. Then the tangent line at f(s;) is perpendicular to
vp. Hence, to prove the claim of the lemma it suffices to show that the distance from f(s;)
to the tangent line b is less than the distance from f(s;) to the tangent line a. This can be

expressed by the following inequality:

/ 2 sin(K(s,) — K(s))ds < f 1 sin(K(s))ds (%)

1 0

To prove this inequality, we can start with the following statements by change of variables:

52 K(s1)
f sin(K(s,) — K(s))k(s)ds = f sin(u)du
N 0

1

51 K(s1)
f sin(K(s))k(s)ds = f sin(v)dv
S 0

0
This gives

f 2 k(s)sin(K(s,) — K(s))ds = f 1 k(s)sin(K(s))ds

1 0

Since curvature k : [sy,s,] = R, is increasing the posited inequality follows proving the

lemma. O

Proof of Theorem 2.1. Consider a local minimum (or maximum) of the curvature of 4S.
(By the 4-vertex theorem at least four local extrema exist.) On one side there is a short
arc with increasing curvature and on the other side there is short arc with decreasing

curvature. Applying the above lemma to the first arc we obtain an initial condition (p, v,)
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Figure 2: Fixed Point Lemma Setup
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which “bounces to the left” and similarly, applying (the analogue of) the lemma to the
arc with increasing curvature we obtain an initial condition (g, v,) which “bounces to the
right.” It remains to connect p and g by an arc disjoint with S an apply the intermediate

value theorem. O

It is clear from the above proof that each vertex of 3S yields a 1-parameter family
of fixed points. These families could merge away from S. We would like to pose the

following question.

Question 2.3. Let S be a convex domain with C3 boundary. Does every closed curve around

it contain at least one fixed point of the bouncing outer billiard map on S?

S. Tabachnikov considered a question of very similar flavor and eventually found a

counterexample [Tab12].

3 Bouncing on a Line Segment

3.1 Parameterizing the Dynamics

This section focuses on the behavior of the bouncing outer billiards system on a line
segment. Since all segments are congruent up to scaling, we only consider the segment
on the x-axis from -1 to 1. For convenience, we will consider only initial points p with
positive y-values, as points with negative y-values are symmetric.

Recall that we denote the visibility domain by V. Consider initial condition (p,v) € V,
where p = (x,y), and let 6 = arg(v) + % The initial conditions define a ray from the point

p with slope tan(6 — %). Using this equation, we can derive:
w = (x + ytan(6),0)

p'=(,y") = (x+2ytan(),y)
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Note that the y-coordinate of the initial point will remain constant on the orbit. From
this point forward, we will refer to the y-value of the initial point as height and denote it
by h.

Next, we obtain that the angle from p’ to the left and right endpoints of the segment
are given by arctan (1_7)6’) and arctan (%_x,) respectively. Also, the angle from p’ to w is
given by —6. Applying the visibility angle reflection rule yields:

!/

_ 1+
6’=arctan(1 hx>+6+arctan< lhx>

Summing up, the dynamics, F(x, h,0) = (x’, h,6’) is given by:

x" = x + 2h tan(6)
1)

/

1 — !
9’=6+arctan< hx)+arctan< 1hx>

3.2 A Second Invariant

In Section 3.1, we observed that the height & is invariant. In this section, we will demon-
strate the existence of a second invariant.
We define a new coordinate system in which it becomes easier to see a second invari-

ant. First, consider the change of coordinates g(x, i, 9) = (w, h, d) given by

w = x + htan(6)
(2)
d = htan(f)

with the h-coordinate remaining unchanged. The coordinate w represents the x-value of

the bounce point and the coordinate d represents the signed difference between the w

and the x-value of the initial point. The inverse coordinate transformation is given by:

x=w-—d
3)
6= arctan(%)
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Now, we seek to understand the dynamics in these new coordinates. Let f(w, h,d) =
goFog~Y(w, h,d). We let f(w, h,d) be denoted by (w’, h,d"), which we wish to write in terms
of w, h, and d. First, combining (1) and (2) yields:

x'=w+d 4)

Now, we will use (1) to rewrite the equation for d’. Following this, we simplify and

use (2) and (4) to rewrite all instances of x” and A tan(6) in terms of w and d.

d" = htan(6)

_ / 1 — !
=htan<6+arctan(1 hx>+arctan< 1hx>)

—2x'h
1+h2—(x'?

2x'h (5)
1+h2—(x/ )2
_ htan(8) + h* tan(6) — h(x)* tan(6) — 2x’h?
B 1+ h2 —(x')? + 2x'h tan(6)
_ d®+2h*w+2d%w + dw? + h*d —d
B w2—d?—h2-1

tan(6) +
=h

Finally, we can calculate w’ by using the relationship w’ = d’ + x/, which gives:

d? + 2h*w + 2d*w + dw? + h*d — d
w2—d?2—h2-1 (6)
w3 4+ d’w + hPw + 2dw? —w — 2d
w2—d2—h2-1

w=w+d+

We will now show the existence of a second invariant denoted a?, as a will later be

shown to be the semi-axis of an ellipse.

2.2 2
Proposition 3.1. The quantity a® := hhi’;f

€ (—1,1) is preserved under dynamics. That is,

h2w2 +d2 B hZ(wl)Z _I_(dl)z
Rid2 R+ (d)

The proof involves substituting w’ and d’ into the equation for a? to get (a’)* =
2(:1 )2 12
%. After using (5) and (6) to simplify, we obtain:
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(h*w? + d*)(p(w, h, d))

N2 _—
@ = T & pw, kD)
_Rwtd
T h24az

where

p(w, h,d) = d* + h* + 2d*h? + 4d3w + 6d*w? + 4dh’w

+ 4dw? + w* + 2h?*w? — 4dw — 2w? + 1 + 2h? — 2d>.

O
Related to this is an equivalent invariant:

, _ hw?*+d* _ h%a?

b = .
1—w? 1—a?

3.3 Invariant Ellipses

In our altered coordinate system, the invariants a and b are actually the semi-axes of an

invariant ellipse in the (w, h, d) coordinate system.

Proposition 3.2. Let w, h,d € R. Recalling the definitions a* = h:f:jz and b? = hzlli;dz, we
have l:—j + ‘Z—j =1 (when a?,b* # 0).
Proof.
w?  d? w? d?
@ pT h2w2+d2+ h2w? + d?
h? +d? 1—w?
hw? + d*>w? + d? — d*w?
- h2w? + d2
=1
]

By Proposition 3.1, we have that a? = (a’)?, and by the relationship between a and b

we have that b? = (b')?. Together with Proposition 3.2, we get
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Figure 3: Several Invariant Ellipses with Height One

w2 @)y
a? b2 =1

thus showing that any orbit belongs to an ellipse in the (w, d)-coordinate system.

Note that if a or b are equal to zero, then the other must be as well by the equation
relating them. If they are both zero, we have that w = d = 0 for all points in the orbit.
Using (3), this implies that x = 6 = 0 for all points in the orbit, which means such initial

conditions correspond to fixed points.

3.4 Twist Dynamics

For this section, we will fix a height 4 and an invariant ellipse, thereby fixing invariants
a and b, which are defined to be the positive square roots of a? and b?, respectively. We

can parameterize the ellipse with r(6) = (w,d) = (acos(f), bsin(f)). We now define the
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function f : S! - S! as f = r-lofor, which allows us to view the restriction of f to our

invariant ellipse as a circle diffeomorphism.

Theorem 3.3. There exists some ¢ € S! such that f(6) = 6 + ¢, Wwhere ¢ = @(a) is a strictly

increasing function, ¢'(a) > 0 given by:

2ab
arctan(—-)+7 a<b
b2—q2

p(a) = {arctan(222) a>b
h2—q2
R a=b>b
2
with
2b
/ —

p(a)= 13 e

The proof of this theorem is computational and will be included in the Appendix B.

3.5 Periodic Orbits for the Billiard on the Segment

Clearly, the middle perpendicular (the y-axis) gives a 1-parameter family of fixed points
(these correspond to degenerate ellipses with a = b = 0). Points of higher period are

due to rational rotation numbers and come in 2-parameter families as one can vary the

height as well.
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Figure 4: “M" and “W" period 4 orbits
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We point out two aesthetically pleasing sub-families of period 4 orbits on Figure 4.
The M-orbits fill out a semi-circle and the W-orbits fill out a semi-ellipse. For the “W"
case on the right, the horizontal semi-axis is /2 and the foci of this ellipse are the +1
endpoints of the segment.

It is easy to calculate from the formula for the rotation number in Theorem 1.3 that
for a given height h the interval of possible rotation numbers ¢ has the form (7, p(h)),
where p is an explicit decreasing function, p(h) - 0, h — oo; p(h) - 27, h — 0. In
particular, (7, p(h)) C (7, 27) and, hence, there are no orbits of period 2. Clearly, for all
sufficiently small heights orbits of all periods > 3 are present. As height increases smaller
period orbits begin to disappear. For example orbits of period 4 with rotation number 37”
disappear at h = 1 and orbits of period 3 with rotation number 4?” disappear at h ~ 1.8.

The explicit formula of Theorem 1.3 allows to explicitly calculate periodic orbits.
For example, if one wished to find periodic orbits of least period 7, one can calculate
parameter values that correspond to the rotation number 107”

Figure 5 depicts a family of period seven orbits of height one. Note that the depicted
orbit is symmetric about the line x = 0, which unfolds into the family of asymmetric

period seven orbits as indicated on the figure.

4 Numerical Simulations

4.1 Bouncing on Parabola Arcs

After fully understanding the dynamics on the segment, we can perturb the dynamics
and examine how integrability is being destroyed. Probably the simplest way is to
consider the unfolding of the segment into a piece of a downward-facing parabola given
by f(x) = —ax? + a {-1 < x < 1}. We will make a slight modification to our visibility
domain to make sure that bouncing billiard still makes sense.

Recall that our definition required that for (p,v) in the visibility domain, the ray
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Figure 5: Family of Orbits of Period 7

spanned by v has a nonempty intersection with the boundary of the set. For the parabola,
we will require that the ray has a nonempty intersection with the parabola, but we will
impose the additional requirement that the segment pw lies entirely above the parabola
given by —ax? + a, where w is the closest intersection point to p of the ray and parabola.
In other words, a point p must not be able to “see" the underside of the parabola. The
dynamics rule remains the same, simply utilizing the newly defined visibility domain for

the visibility angle reflection.

Remark 4.1. Despite the fact that our integrable model is a perfect twist map, KAM theory
doesn’t apply directly since we are in a 3-dimensional situation. Still, as we see below, KAM

features such as elliptic islands seem to be present in our unfolding.
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Figure 6 depicts some orbits on a parabola of height 1—30 We observe that most of the
orbits that begin close to the parabola fill invariant arcs which align themselves along
the parabola (see the red orbit marked with a (2) in the figure). Others, such as the blue
(1) and yellow (3) orbits, fill up periodic curves. Finally, some orbits, such as the black

(4) one, exhibit more complicated behavior similar to Aubry-Mather sets with positive
Lyapunov exponent.

Figure 6: Orbits on Parabola of Height %

As we increase the height, the observed behaviors become more complicated. Figure 7
and Figure 8 depict orbits on parabolas of heights % and 1, respectively. On these more
extreme parabolas, we still observe periodic curves which take more complicated shapes,
including non-symmetric orbits such as the blue (1) orbit on Figure 8. Additionally, with

increased height, we more easily detect chaotic behavior, such as the black (4) orbits of
both figures and the yellow (3) orbit of Figure 8.
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Figure 8: Orbits on Parabola of Height 1
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4.2 Bouncing on the Square

It is also interesting to investigate bouncing billiards on polygons. For the sake of simplic-
ity, we will focus solely on the system on the square. On the square, we classify observed

orbits into five categories.

' (4)\)” K
(2)
e LA
A " J '
. . T
1 (3)
(1)
(5)
\ - e

Figure 9: Orbits on a Square

The first category, such as the red (2) orbit in Figure 9, consists of points staying a
fixed perpendicular distance away from one side of the square. For some such orbits, the
orbit never extend in the direction parallel to that side further than the endpoints of the
side. In this case, the system is identical to that on the line segment. In other cases, such

orbit can extend past the corners of the square while still remaining on one side; in this
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case the orbit is not the same as an orbit on the segment.

The second kind are those orbits which fill up four closed curves, with one near each
corner of the square. This can be seen in the cyan (5) orbit of Figure 9. Most of these
orbits observed appeared to be rotationally symmetric, but the one pictured is not.

The third kind involves what appears to be an invariant loop near each corner, but
actually consists of many smaller closed curves making up the apparent larger circle.
This is depicted in the blue (1) orbit of the figure.

The fourth kind is another chaotic variety. It involves a period 4 non-smooth set,
possibly a Cantor set. This kind is depicted in the yellow (3) orbit of the figure.

The final class of orbits occupy all sides of the square and seem to behave chaotically
such as the black (4) orbit. Such orbits appear to fill up positive area domains. However,
numerics become very tricky for such orbits, as we clearly detected positive Lyapunov
exponents for such orbits.

P1, P9 P2,Ps8
ps

P4, D6 p3, P

P10, P12 P11

Figure 10: Period Twelve Orbit on Square with Large Eigenvalue

Another finding on the square is the existence of periodic points whose Jacobian
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matrix has eigenvalues greater than one. Figure 10 shows one such example. It depicts a
period twelve orbit whose Jacobian matrix has eigenvalues approximately 0.086, 1, and
11.592.

Remark 4.2. It is easy to see from the form of the differential of the bouncing outer billiard
on a convex polygon that every periodic point of such a billiard has at least one eigenvalue

equalto 1.

4.3 Bouncing on an Ellipse

While we fully understand the segment and the circle, in between fall ellipses, which also
show very complex behavior. We consider bouncing outer billiard on the ellipse with
major and minor semi-axis equal to 1 and 0.4, respectively. As expected, we can have
orbits which are similar to the segment and circle, as shown in Figure 11 and Figure 12,

respectively.

Figure 11: Segment-like behavior

Arnold Mathematical Journal, Vol.11(3), 2025 135


http://dx.doi.org/10.56994/ARMJ

Andrey Gogolev, Levi Keck, Kevin Lewis

Figure 12: Circle-like behavior

We also have cases where the orbit closure fill periodic closed curves, such as those

in Figure 13 and Figure 14.
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Figure 14: Many closed invariant curves
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Finally, “in between" the circle-like behavior and four closed curve behavior, we detect
an orbit which appears to fill up positive area domain, as shown in Figure 15.
We notice that the types of orbits we observe for the parabola arc and the ellipse are

the same.

Figure 15: A chaotic orbit

Appendix A: The Conservative Property

Here we verify that bouncing outer billiard dynamics F preserves the Lebesgue measure.
Let dA be the standard 2-dimensional Lebesgue measure restricted to R? and let dé be

the Lebesgue on the circle.

Proposition 4.3. Assume that the boundary of S is a C* curve; then the restriction of dA®d6

to Vg is an infinite measure which is invariant under F.
Remark 4.4. It is easy to verify invariance of the Lebesgue measure for polygons and seems
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likely to be true for any convex S, but we haven’t verified it in such generality.

Proof. We begin by noticing that the proposition holds true if S is a closed disc. Indeed,
in this case it is easy to see that the visibility domain can be decomposed into circles on
each of which F is a rigid rotation preserving the length (conditional measure). Hence F
preserves dA ® d6.

Now, given a general domain S with C? boundary, we will verify that Fg is measure-
preserving by checking that the Jacobian JF = det(DF) equals 1. Let (p,v) € Vg, we can
assume that (p, v) is in fact in the interior of V since V¢ has measure zero. Therefore,
the ray starting at v intersect S at the bounce point w transversely. This implies that
infinitesimal variations of (p, v) result in infinitesimal variations of w of the same order
of magnitude.

Consider the (unique) closed disc D such that 6D is tangent to dS at w to the second
order. Clearly, we have F¢(p,v) = Fp(p,v). In fact, second-order tangency ensures that
DF4(p,v) = DFp(p,v). Indeed, to see this, first note that infinitesimal variation of (p,v)
results in infinitesimal variations of w (on 4S and dD), agreeing up to the second order.
The angles of reflection of w are controlled by the derivatives of 6S and 4D at w and,
hence, agree up to the first order (again due to second-order tangency at w) and the claim

follows. Hence we have
JF¢(p,v) = det DF¢(p,v) = det DFp(p,v) = 1,

where the last equality is by measure-preserving property of F, pointed out at the
beginning of the proof.

It is easy to show that the total Lebesgue measure of Vg is infinite when integrating in
the correct order. For any angle 6, there is an infinitely long strip of constant width w of
points whose rays at angle 6 will hit S, where w is the length of S projected onto the axis

perpendicular to 6. O

Alternatively, one can verify the above proposition by a direct calculation of DF(p,v)

without any reference to the disc case. Specifically, we can center the (x, y)-coordinate
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system at the bounce point w so that the x-axis is tangent to dS and denote by 6 the
circular coordinate. We write (p,v) = (a, b, 6,). Clearly dA ® d6 = dx ® dy ® d6 and we
need to verify that the Jacobian is 1 in (x, y,8)-coordinates. Prior to the last visibility
angle reflection step we have (a,b,6,) — (—a, b, —6,) and a routine calculation gives the

following expression for its derivative:

2
1+2kb —2ka— %" 2% + 2kc?

2ka? 2kac?
2ka 1- -
2ka 2kc?
-2k — -1-—
b b

where k is the curvature at w and ¢ = Va2 + b2. The determinant of this matrix is —1,
which becomes 1, after composing with the reflection 6 ~— const — 6 according to the

visibility angle reflection rule.

Appendix B: Proof of Theorem 3.3

First, we will find an explicit formula for r~!(w, d) for w and d lying on the ellipse. We

have w = acos(f) and d = bsin(f), meaning tan(0) = %. This yields:

6 = r~Y(w,d) = arctan <ﬂ) + Tn(w) @)
bw
In this formula, we use
1 x<0
n(x) :=
0 x>0

to compensate for the fact that arctan only outputs between _—2” to % This explicit formula
has the slight flaw that it fails for w = 0. However, it can be shown separately that this
case matches the behavior of all other cases. Applying r~! to the right of both sides of the
equation f = rlofor yields for—(w,d) = rlof(w,d) = r (w’,d"). Applying (7) yields:

/

f(arctan (%) + n(w)) = arctan (Z—i) + 7n(w’)
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Thus f(6) = 6 + ¢(w, d), where

!/

p(w, d) = arctan (£> + n(w’) — arctan (ﬂ) — n(w).
bw bw

!/

We will first show that ¢(w,d) is constant mod 7. The terms zn(w’) and —zn(w) are
equivalent to zero mod 7z, so we will revisit these later.

Thus, we currently seek to show that arCtan(Z_Z") - arctan(%) is constant mod 7. We will
use the arc-tangent subtraction formula arctan(x) — arctan(y) = arCtan(lir;xyy) + mm, where
m is either 0 or 1 depending on x and y. The term m is equivalent to zero mod 7 in all
cases, so we will revisit this term later as well.

For the purposes of the following calculation, we will set x = Z—i', andy = %. Our goal
is to show that % is constant for any w and d on the fixed ellipse. First, since x and y
each have a factor of %, which is constant for points on the ellipse, we can pull this out of

the fraction:

d d

x—y :(g> v
1+ xy b 1+a2dd’

bZww’

Next, multiply the numerator and denominator by b?>ww’ to get:
(g) b*d'w — b*dw’
b/ \ b2ww’ + a2dd’
We can pull out another b? to bring the total constant factored out to ab:
d'w - dw’ )

b2ww’ + a2dd’

After replacing w’ and d’ with their equivalent expressions in terms of w, h, and d,

(ab)
then multiplying the numerator and denominator by (w? — d? — h? — 1), we get:

(ab)(2h?w? + 2d?)
bZ2(w* + d2w? + h2w? + 2dw3 — w? — 2dw) + a2(d* + 2dh2w + 2d3w + d?w? + d2h? — d?)
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After substituting in the expressions for a? and b2, multiplying the numerator and

denominator by (1 — w?)(h? + d?), and simplifying, we get:

2ab(1 — w)(h? + d?)
d2h2w? + hw? + h2w* + d* + d2h2 + d2w? — h2w? — d2

Factoring the denominator yields:

2ab(1 — w?)(h? + d?)
(h2w? + d2)(h? + d2) — (h2w? + d2)(1 — w?)
Finally, dividing the numerator and denominator by (1 — w?)(h? + d?) gives:

Rw+d?  h2wi+d?  p2 — g2
1-w? (h2+d?)

Thus, we end up with the equation:

@ = arctan ( ) mod 7

b2 — a2

Next, we will go back and carefully consider each of the extra terms we set aside
earlier to show that ¢ is actually constant mod 27z. Each of these components individually
may depend on w,d, a, and b, but we will show that together they only depend on a and
b, which remain constant within an orbit.

We will begin with the term denoted as mz earlier. Recall that this arose out of the
extra term from the arc-tangent sum formula. Again using the definitions x = Z—i and
y= %, we get that m = 0if —xy < 1 and m = 1 if —xy > 1. This is equivalent to saying
m=01if1+xy >0and m =1if 1 + xy < 0. After substituting in expressions to get 1 + xy

in terms of w, h, and d as well as simplifying and factoring, we get:

(d? + h*w?)(d* + h? +w? -1)

1+xy=
Y (d? + h?)(d?w? + h2w? + 2dw3 + w* — 2dw — w?)
2 2.2
Since we are only concerned about the sign of 1 + xy, and ddﬁhf > 0, we can factor

this out and ignore it. This leaves us with:
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d2+h*+uw?-1 d2+h*+uw?-1

d2w? + h2w? + 2dw3 + w* — 2dw —w?  w2(d?2 + h2 + w? — 1) + 2dw3 — 2dw

This has the same sign as its reciprocal, which after simplification becomes:

5 2dw? — 2dw
d2+h?2+w?-1

Next, it will benefit us to rewrite d in terms of w, a, and b. Starting from the ellipse
2 2 212
equation w—2 + % = 1, we can derive the equation d? = b? — % Rewriting our previous
a a

expression yields:

Qw3 —w) (i\ /b2 — w;fz)

w?2b2

b2——+h?+w? -1
a

w? +

Next, we will remove & from the expression. Recall the relationship between a? and
b2_a2b2

. h%a? . .
b? given by b? = l—az From this, we can derive h? = . From here, we can perform a
—a

series of simplifications:

Quw? —w) <i\ /b2 — w:fz>

2w(w? — 1) (i\/bz——wgz)

2

w? +

=w
2H2 2 2hH2 272 2
p2 — ¥ w21 b wb? | wla?  a?
a? a? a? a? a?
2(a2—1p2
2wa*(w? — 1) (i\/ b(a—zw))
2 a
=w? +
(w? —1)(a? - b2)
2wab(xVa? — w?)
=w?+
a2 — b2
a’w? — b?w? + 2wab(+V a2 — w?)
= a2 — b2

Next, we want to find the zeros of this expression with respect to w. Clearly,w = 0is a
zero. To find other zeros, we will set the numerator of our expression equal to zero and
assume w # 0. a’w? — b*w? + 2wab(+Va2 —w?) = 0 = a’w — b?w + 2ab(+V a2 — w?) = 0.

After rearranging and squaring both sides, we get:
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, 5 b*w?—2a’b*w? + a*w?
a’?—w? =
4a2b?

Solving for w yields:

2a°b
a? + b?

w==4

From this point forward, we will assume d is positive. The calculations play out
similarly if d is negative, and the results will be given with the positive case. This means
our fraction is zero when a’*w — b?>w + 2abV a2 — w? = 0, removing the plus or minus

2
present earlier. We have the possible zeros of i%, but determining which is a true
a

2_p2y .,
zero will depend on the values of a and b. This is because Va2 — w? becomes aa-b) if

a?+b?
bz— 2 . . . -2 2b . .
a 2+baz) if a < b. This means that if a > b we have zjbz is a zero, whereas if b > a
a a

2a%b .
1S a Zero.
a2+b?2

To find the sign of the expression, we can solve the derivatives at the zeros:

a>bor

we have

2

4 | @w? = b*w? + 2wabVa? —w?| 2a’w —2b%w + 2abVa? — w? — 2‘21bw2
—_— — a“—w

dw a2 — b2 - a2 — b2 (8)

We will first analyze the derivative values for a > b. The denominator is positive in
—2a%b
a2+b2’

we have that

this case, and we see that the derivative is positive at w = 0. For w =

the numerator of (8) becomes:

2a’b(b? — a?) N —2abw?
a? + b? az—-w

The second term of this expression is always negative. Since we assumed a > b, the
first term is also negative, meaning the derivative is negative for this w-value.
In the case where a < b, the denominator is always negative, and we have that the

. .. . 2a’b
derivative is negative at w = 0. For w = ﬁ, the numerator becomes:
a

2a’b(a? — b?) N —2abw?
a’ + b? az—-w
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This is again negative, but the derivative is positive, since the denominator of (8) is

negative. In summary, we have the following results:

In d > 0 Case: Ifa<bandwe(2ab 1]u[-1,0),then1+ xy > 0.

Ifa <band w € (0, 2“b),then1+xy<0
2ab

Ifa>bandw € [— 1 )U(Ol] then1+ xy > 0.

Ifa>bandwe( 0) then1+ xy < 0.

The case where d < 0 works similarly, with results as follows:

In d < 0 Case: Ifa<bandwe[ )U(Ol] then1+ xy > 0.
Ifa<bandwe( 0),then1+xy<0
[-1,0), then 1 + xy > 0.

Ifa>bandwe(0 )then1+xy<0

Next, we will tackle the 7#n(w’) term. Recall that n(w’) is defined to be 1 when w’ is
negative and 0 otherwise. Thus, our next goal is to determine the sign of w’ under all
possible conditions. We will again take d > 0 and present the results for the d < 0 case

later.

W w3+d2w+h2w+2dw2—w—2d

d2 h?2—-1
w3 — b2w3 by ow b2 -2 2 /p2 - 2
= bZw?
2 - — —
Wit a? a? 1 (9)

_ (w? - D(a*w — b*w + 2abV a2 — w?)
B (w2 —1)(a? + b?)
_ a*w — b*w + 2abVa? — w?
- a’ + b?
We have already examined the zeros of this expression when working through the

this

2a2
mr term. It has a zero at w =
a

expression does not have a zero at w = 0 like the previous. In thlS case, we have that the
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. .. . 2a’b i —2a%b
derivative is negative at w = % when a < b and positive at ﬁ when a > b.
a a

2
Ind>0Case: Ifa<bandw e [-1, ZZaTsz), then w’ > 0.
a

2a2b ’
Ifa<bandwe(— 1], then w’ < 0.

2a b

Ifa>bandwe( -~ 1], then w’ > 0.

2

Ifa>bandw e [— 1 ab),thenw <0.

Similarly, if d < 0, we get:

Ind<o0Case: Ifa<bandw €[-1, azab) then w’ > 0.

—2a%b

Ifa<bandwe( > 1], then w’ < 0.

Ifa>bandwe(2ab 1], then w’ > 0.

Ifa>bandwe[-1,- 2a%b

)thenw <0.

Finally, we have the —zn(w) term, which requires no extra analysis since our results are
currently allowed to be dependent on w.

The final step in this proof is to check how many 7 terms are added for each initial
condition for w and d, as well as a and b values. This will be omitted since it solely

involves going through each relevant interval for w and d for both thea >band a < b

case. The results are as follows:

® = jarctan
b2

This is clearly positive for all values a > 0 since b is nonzero and positive for such a. O
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