Received: 31 December 2016 / Revised: 28 July 2017 / Accepted: 2 August 2017
The main motivation of this paper is to begin a study of irreducible components of zero sets of functions defined by expressions that are polynomial in variables and exponentials of variables. The components are meant to be defined by the same type of expressions. The interesting questions include: do the components have any special structure and what is an upper bound on their number.
Throughout this article we will denote tuples of variables by $ \X:=(X_1,\dots,X_n)$ and $ \Uaa:=(U_1,\ldots,U_n)$, and with a given tuple $ \X$ we associate the tuple of exponential functions $ e^{\X} := (e^{X_1}, \ldots ,e^{X_n})$. We consider the field of real algebraic numbers $ \Real_{alg}$, the field $ \Q$ of rational numbers, and we fix a real algebraic extension $ \mathbb K$ of $ \Q$. Further, $ {\mathbb K}[\X,\Uaa]:={\mathbb K}[X_1,\dots,X_n,U_1,\ldots,U_n]$ will denote the ring of polynomials with coefficients in $ \mathbb K$ in the $ 2n$ variables. Clearly, $ {\mathbb K}[\X,e^{\X}]$ is a ring of functions which we call the ring of exponential polynomials over $ \mathbb K$ (or $ E$ -polynomials , for brevity). The geometry and model theory of zero sets of $ E$-polynomials are well understood (see for example [Gabrielov and Vorobjov2004], [Khovanskii1991], [Macintyre and Wilkie1996]). In the special case when $ P$ is independent of variables $ \X$, the $ E$-polynomial is called exponential sum (with integer spectrum). The theory of zero sets of exponential sums is also developed, in particular in [Kazarnovskii1997] and [Zilber2002], but apparently not for the structure of their irreducible components.
Every $ P\in {\mathbb K}[\X,\Uaa]$ defines an $ E$-polynomial $ f$ via the map \begin{eqnarray*} E:\> {\mathbb K}[\X,\Uaa] \to {\mathbb K}[\X,e^{\X}], \end{eqnarray*} such that $ f(\X)=E(P(\X, \Uaa))=P(\X,e^{\X})$.
A finite set of polynomials $ \mathcal{P}:=\{P_1,\ldots,P_k\}\subset {\mathbb K}[\X,\Uaa]$ defines a real algebraic set \begin{eqnarray*} \ZZ(\mathcal{P}) {\!}:= {\!}\{ (\x,\uu)=(x_1, \ldots ,x_n,u_1,\ldots,u_n) {\!}\in {\!} \Real^{2n}|\> P_1(\x,\uu) {\!}= {\!}\cdots=P_k(\x,\uu) {\!}= {\!}0 \}, \end{eqnarray*} and similarly, we will denote by $ \ZZ(f_1,\ldots,f_l)\subset\R^n$ the zero set of a finite set of $ E$-polynomials. We will call any $ \ZZ(f_1,\ldots,f_l)\subset\R^n$ a (real) exponential-algebraic set or just exponential set , for brevity. By taking the sum of squares, every real algebraic set (respectively, every exponential set) can be defined as a zero set of a single polynomial (respectively, $ E$-polynomial). An exponential set $ V$ will be called reducible (over $ \mathbb K$) if there are two distinct non-empty exponential sets $ V_1,\ V_2$ such that $ V= V_1 \cup V_2$, and irreducible otherwise. It will be shown in Sect. 2 that every exponential set can be uniquely represented as a finite union of irreducible exponential subsets (called irreducible components) neither of which is contained in another.
In this article we will be concerned with the structure of irreducible components and will prove the following main result.
Schanuel's conjecture is formulated at the beginning of Sect. 5. In the case of a single exponential term, i.e., when $ P$ is independent of all, but possibly one, variables $ U_1, \ldots ,U_n$, the theorem can be made stronger and independent of Schanuel's conjecture (see Theorem 3.5 below).
Let us illustrate Theorem 1.1 by some examples.
Consider the polynomial \begin{eqnarray*} P:=(X_1+U-1)((2X_1-U+1)^2+X_2^2)+(2X_1-U+1)^3. \end{eqnarray*} Note that $ \ZZ(P)$ is an affine transformation the Cartan umbrella [Bochnak et al.2013]. The algebraic set $ \ZZ(P) \subset \Real^3$ contains the straight line $ L:= \ZZ( U-1,X_1)$, therefore, it intersects with the surface $ \ZZ(U-e^{X_1})$ along this line. It also contains the straight line $ \ZZ(2X_1-U+1, X_2 \}$, which intersects with $ \ZZ(U-e^{X_1})$ by exactly two points, $ (0,0,1) \in L$ and another point, $ A$, with transcendental coordinates. We now prove that \begin{eqnarray*} \ZZ(P) \cap \ZZ(U-e^{X_1}) = L \cup \{ A \}. \end{eqnarray*}
Let $ f(X_1,X_2):=P(X_1,X_2, e^{X_1})$. Note that $ X_1+e^{X_1}-1$ equals $ 0$ if and only if $ X_1=0$, hence for $ X_1 \neq 0$ the equation $ f=0$ can be rewritten as
\begin{equation}\label{eq:eq} X_2^2=-(2X_1-e^{X_1} +1)^2 \left( \frac{2X_1-e^{X_1}+1}{X_1+e^{X_1}-1}+1 \right). \end{equation} | (1.1) |
\begin{equation}\label{eq:ineq} \frac{2X_1-e^X_1+1}{X_1+e^X_1-1} > -1 \end{equation} | (1.2) |
The polynomial $ P$ is irreducible over $ \Real$, hence the algebraic set $ \ZZ(P) \subset \Real^3$ is irreducible over $ \mathbb K$. On the other hand, the set $ \ZZ(f) \subset \Real^2$ is reducible over $ \mathbb K$, with two irreducible components: one-dimensional $ \ZZ(X_1)$ and zero-dimensional \begin{eqnarray*} \ZZ( 2{X_1}-e^{X_1}+1, X_2) \end{eqnarray*} which consists of two points, rational $ (0,0)$ and transcendental projection of $ A$ along $ U$.
The aim of this section is to prove that taking Zariski closure of a set of all points of a given local dimension does not increase the dimension (Theorem 2.19). The idea is to consider the singular locus of the ambient exponential set. To that end, we adjust to the exponential case the standard routine of definitions and statements regarding regular and singular points. We note some differences with the algebraic case, in particular that the dimension of a singular locus of an exponential set may remain the same as the dimension of the set.
Recall that in the introduction we defined the map \begin{eqnarray*} E:\> {\mathbb K}[\X,\Uaa] \to {\mathbb K}[\X,e^{\X}], \end{eqnarray*} such that $ E(P(\X, \Uaa))=P(\X,e^{\X})$, for every $ P \in {\mathbb K}[\X,\Uaa]$.
Lemma 2.1 immediately implies the following corollary.
Given an exponential set $ V\subset\Real^n$, let $ I(V)\subset {\mathbb K}[\X,e^{\X}]$ denote the set of all $ E$-polynomials in $ {\mathbb K}[\X,e^{\X}]$ that vanish on $ V$. It is easy to see that $ I(V)$ is an ideal in $ {\mathbb K}[\X,e^{\X}]$.
The following corollary is an immediate implication of Noetherianity.
The next corollary is a standard implication of Noetherianity (see [[Hartshorne2013], Proposition 1.1]).
Applying this definition to $ {\mathcal X}= \Real^n$, equipped with the Zariski topology defined in Corollary 2.4, and $ \mathcal Y$ being an exponential set, we get the definition of an irreducible exponential set.
The following corollary is another standard implication of Noetherianity (see [[Hartshorne2013], Proposition 1.5]).
We borrow the definition of a regular point of an exponential set from real algebraic geometry (see [[Benedetti and Risler1990], Definition 3.2.2]). Let $ V \subset \Real^n$ be an exponential set and $ I(V)=(f_1, \ldots ,f_k)$ its ideal generated by exponential polynomials $ f_1, \ldots ,f_k \in {\mathbb K}[\X,e^{\X}]$. Set $ r= \sup_{\x \in V} {\rm rank}\ (V, \x)$, where \begin{eqnarray*} {\rm rank}\ (V, \x) := {\rm rank}\ \left( \frac{\partial (f_1, \ldots ,f_k)}{\partial (X_1, \ldots ,X_n)}(\x) \right). \end{eqnarray*} Note (see [Benedetti and Risler1990]) that the number $ r$ does not depend on the choice of the set of generators $ f_1, \ldots ,f_k$. The number $ r$ is called the rank of the ideal $ I(V)$, and we write $ r= {\rm rank}\ I(V)$.
The proof of the following lemma is exactly the same as the proof of Proposition 3.2.4 in [Benedetti and Risler1990] for algebraic sets.
\begin{equation}\label{eq:singfilt} V \supset {\rm Sing}\ (V) \supset {\rm Sing}\ ({\rm Sing}\ (V)) \supset {\rm Sing}\ ({\rm Sing}\ ({\rm Sing}\ (V))) \supset \cdots \end{equation} | (2.1) |
The proof of the following lemma is exactly the same as the proof of Proposition 3.2.9 in [Benedetti and Risler1990] for algebraic sets.
In particular, $ {\rm Reg}\ (V)$ is a real analytic submanifold of $ \Real^n$ of dimension $ n-r$.
Remark 2.10 and Lemma 2.11 allow to define the notion of the dimension of an exponential set.
For an exponential set $ V \subset \Real^n$ one can also introduce the analogy of the Krull dimension as follows.
Unlike the case of real or complex algebraic sets, $ \dim (V)$ does not necessarily coincide with $ \dim_K (V)$ as is shown in the following example.
In view of this example we emphasize that in the sequel we will be using the concept of dimension exclusively in the sense of Definition 2.12.
We can also observe that unlike the case of real or complex algebraic sets, the dimension of an exponential set $ V$ may coincide with the dimension of its singular locus $ {\rm Sing}\ (V)$ as shown in the following example.
Since, by Lemma 2.8, $ I({\rm Sing}\ (V)) \supset I(V)$, we conclude that \begin{eqnarray*} {\rm rank}\ I({\rm Sing}\ (V)) \ge {\rm rank}\ I(V). \end{eqnarray*} By Lemma 2.11, \begin{eqnarray*} \dim ({\rm Reg}\ (V))= n- {\rm rank}(I(V)) \end{eqnarray*} and \begin{eqnarray*} \dim ({\rm Reg}\ ({\rm Sing}\ (V)))= n- {\rm rank}(I({\rm Sing}\ (V))_), \end{eqnarray*} hence
\begin{equation}\label{eq:one} \dim ({\rm Reg}\ (V)) \ge \dim ({\rm Reg}\ ({\rm Sing}\ (V))). \end{equation} | (2.2) |
By the inductive hypothesis, \begin{eqnarray*} \dim ({\rm Reg}\ ({\rm Sing}\ (V))) \ge \dim ({\rm Sing}\ ({\rm Sing}\ (V))), \end{eqnarray*} which, together with the previous inequality, implies that
\begin{equation}\label{eq:two} \dim ({\rm Reg}\ (V)) \ge \dim ({\rm Sing}\ ({\rm Sing}\ (V))). \end{equation} | (2.3) |
Since \begin{eqnarray*} \dim ({\rm Sing}\ (V))= \max \{ \dim ({\rm Reg}\ ({\rm Sing}\ (V))),\ \dim ({\rm Sing}\ ({\rm Sing}\ (V))) \}, \end{eqnarray*} we conclude from (2.2) and (2.3) that $ \dim ({\rm Reg}\ (V)) \ge \dim ({\rm Sing}\ (V))$.
Now suppose that $ V$ is reducible and $ V^{(1)},\ V^{(2)}$ are two of its irreducible components. Let $ V^{(3)}= V^{(1)} \cap V^{(2)}$. Since $ \dim \left( V^{(3)} \right) \le \min \{ \dim \left( V^{(1)} \right),\ \dim \left( V^{(2)} \right) \}$ and, by the first half of the proof, \begin{eqnarray*} \dim \left( V^{(1)} \right)= \dim \left( {\rm Reg}\ \left( V^{(1)} \right) \right),\> \dim \left( V^{(2)} \right) = \dim \left( {\rm Reg}\ \left( V^{(2)} \right) \right), \end{eqnarray*} we get $ \dim \left( V^{(3)} \right) \le \dim ({\rm Reg}\ (V))$. ⬜
In this section we consider the case of exponential sets that involve only a single exponential, i.e., exponential sets defined by $ E$-polynomials $ f=P(X_1, \ldots , X_n, e^{X_1})$ with $ P \in {\mathbb K}[\X, U_1]$. We denote $ V:=\ZZ(f)$ and $ m:=\dim(V)$. Let $ \pi: \> \Real^{n+1} \to \Real^{n}$ be the projection map along $ U_1$.
Alternatively, if the set
\begin{equation}\label{eq:index} \{ \ell \in {\mathbb Z}|\> 0 \le \ell \le m+1,\> (\ZZ (P) {\setminus} \ZZ(X_1))_\ell \neq \emptyset \} \end{equation} | (3.1) |
By Lindemann's theorem, the set $ S {\setminus} \ZZ(U_1-1, X_1)$ does not contain points with algebraic coordinates. Hence, $ \dim_{\x} S < m$ at every $ \x \in S {\setminus} \ZZ(U_1-1, X_1)$. It follows that $ A$ is the union of an algebraic set $ \pi (\ZZ(Q, U_1-1, X_1))$ and a set of points having local dimensions less than $ m$. ⬜
The following corollary is immediate.
For the case of a reducible $ V$ this corollary can be illustrated by Example 1.4.
Observe that the bound in Corollary 3.8 is asymptotically tight because it is tight already for polynomials.
Consider a polynomial $ P \in {\mathbb K}[\X, \Uaa]$. Then every monomial of $ P$, with respect to the variables $ U_1, \ldots , U_n$, is of the kind $ A_\nu U_1^{d_{1 \nu}} \cdots U_n^{d_{n \nu}}$ with $ A_\nu \in {\mathbb K}[\X]$, $ d_{i \nu} \ge 0$. We associate with $ P$ the following union of linear subspaces: \begin{eqnarray*} W_P:= \bigcup_{\nu, \mu} \{ d_{1 \nu}X_1 + \cdots + d_{n \nu}X_v= d_{1 \mu}X_1 + \cdots + d_{n \mu}X_n \}, \end{eqnarray*} where the union is taken over all pairs of different monomials. (If there is at most one monomial with respect to $ \Uaa$, then $ W_P$ is undefined.)
The following lemma is a version of the Lindemann-Weierstrass theorem.
We have: \begin{eqnarray*} Q(e^{x_1}, \ldots ,e^{x_n})= \sum_\nu A_\nu(\x) e^{d_{1 \nu} x_1+ \cdots +d_{n \nu}x_n}=0, \end{eqnarray*} where the coefficients $ A_\nu(\x)$ are not all zero. Removing all terms with zero coefficients, assume that in this sum all coefficients are non-zero. Obviously, at least two terms will remain, one of which may be a non-zero constant. By Baker's reformulation of the Lindemann-Weierstrass theorem [[Baker1990], Theorem 1.4], the powers $ d_{1 \nu} x_1+ \cdots +d_{n \nu}x_n$ are not pair-wise distinct. It follows that $ \x \in W_P$. ⬜
Denote $ f:= E(P)$, $ V:=\ZZ(f) \subset \Real^n$, $ V':=V {\setminus} W_P$.
Suppose now that $ V$ is algebraic and $ V' \neq \emptyset$. Observe that the set $ \{ \x \in V'|\> \{ \x \} \times \Real^n \subset \ZZ(P) \}$ is closed in $ V'$ (with respect to the Euclidean topology). Hence, the complement $ V''$ of this set in $ V'$ is open in $ V'$. Suppose that contrary to the claim, $ V' \times \Real^n \not\subset \ZZ(P)$, i.e., $ V'' \neq \emptyset$. The algebraic points in $ V$ are everywhere dense in $ V$ since, by the assumption, $ V$ is an algebraic set. Therefore, there is a point $ \x=(x_1, \ldots ,x_n) \in V'' \cap \Real_{alg}^n$ such that the polynomial $ Q:=P(\x, \Uaa) \in \Real_{alg}[\Uaa]$ is not identically zero. Since $ (e^{x_1}, \ldots , e^{x_n}) \in \ZZ(Q)$, we conclude, by Lemma 4.1, that $ \x \in W_P$. This contradicts the choice of $ \x$. ⬜
Denote $ A:=(T {\setminus} W_S)_{n-1}$. Suppose that $ A \neq \emptyset$. Observe that the set $ \{ \x \in A|\> \{ \x \} \times \Real^n \subset \ZZ(S) \}$ is closed in $ A$. Thus, the complement $ C$ of this set in $ A$ is open in $ A$. Suppose that contrary to the claim, $ A \times \Real^n \not\subset \ZZ(S)$, i.e., $ C \neq \emptyset$. The algebraic points in $ T_{n-1}$ are everywhere dense in $ T_{n-1}$ since $ T_{n-1} \subset B$. Therefore, there is a point $ \x=(x_1, \ldots ,x_n) \in C \cap \Real_{alg}^n$ such that polynomials \begin{eqnarray*} Q:=S(\x, U_1, \ldots , U_n) \in \Real_{alg}[\Uaa] \end{eqnarray*} are not identically zero. Since $ (e^{x_1}, \ldots , e^{x_n}) \in \ZZ(Q)$, we conclude, by Lemma 4.1, that $ \x \in W_S$. This contradicts the choice of $ \x$. ⬜
Now we assume that $ V=\ZZ(f) \subset \Real^n$ and $ T=\ZZ(g) \subset \Real^n$ are exponential sets, not necessarily algebraic. We will associate with these sets polynomials $ P,\ S$ and sets $ W_P,\ W_S$ as above.
Now suppose that $ A = \emptyset$ and $ \dim ((T \cap W_S) {\setminus} W_P)=n-1$.
By analytic continuation, it means that $ (T \cap W_S)_{n-1}$ consists of some hyperplanes in $ W_S$ which are not all in $ W_P$, hence $ (T \cap W_S) {\setminus} W_P$ contains a hyperplane, say $ L$, in $ \Real^n$. By Lemma 4.4 (iii), $ (T \cap W_S) {\setminus} W_P)_{n-1} \times \Real^n \subset \ZZ(P)$. Therefore, $ \ZZ(P)$ contains a hyperplane $ L \times \Real^n$, hence $ \ZZ(P)$ (being irreducible algebraic set) coincides with $ L \times \Real^n$. It follows that both $ T$ and $ V$ coincide with the same hyperplane, $ L$, in $ \Real^n$, thus again, $ T= V$.
If neither of the above alternatives take place, we have $ T_{n-1} \subset W_P$. ⬜
Schanuel's conjecture over real numbers is the following statement. Suppose that for real numbers $ x_1, \ldots , x_n$ the transcendence degree \begin{eqnarray*} {\rm td}_{\mathbb Q}(x_1, \ldots ,x_n,e^{x_1}, \ldots ,e^{x_n}) < n. \end{eqnarray*} Then there are integers $ m_1, \ldots ,m_n$, not all zero, such that $ m_1x_1 + \cdots + m_nx_n=0$.
This statement (along with its other versions) is the central, yet unsettled, conjecture in transcendental number theory (see [Lang1966], [Kirby2007]).
Throughout this section we will assume that for $ P \in {\mathbb K}[\X,\Uaa]$ the real algebraic set $ \ZZ(P)\subset \Real^{2n}$ is irreducible, and that for $ f=E(P)$ the exponential set $ V:=\ZZ(f) \subset \Real^{n}$, is a hypersurface, i.e., $ \dim (V)=n-1$. The case $ n=1$ is covered in Sect. 3, so in the sequel assume that $ n> 1$.
Let $ \dim \ZZ(P)=m$ for some $ n-1 \le m \le 2n-1$, and $ \dim (\ZZ(P, S))= \ell$ for some $ n-1 \le \ell$. Observe that $ \ell < m$, otherwise $ \ZZ(P) \subset \ZZ(S)$ since $ \ZZ(P)$ is irreducible, which contradicts the existence of components of $ V$ different from $ T$. In particular, $ n \le m$ and $ \ell \le 2n-2$.
The projection of the $ (n-1)$-dimensional set \begin{eqnarray*} \ZZ(P, S, U_1-e^{X_1},\ldots , U_n-e^{X_n})=\ZZ(S, U_1-e^{X_1}, \ldots , U_n-e^{X_n}) \end{eqnarray*} to a coordinate subspace of some $ n-1$ coordinates $ X_1, \ldots ,X_{\alpha-1},X_{\alpha+1}, \ldots , X_n$, where $ 1 \le \alpha \le n$, is $ (n-1)$-dimensional. Consider any such $ \alpha$. Then the projection contains a dense (in this projection) set of points $ (x_1, \ldots ,x_{\alpha -1},x_{\alpha +1}, \ldots ,x_n) \in \Real_{alg}^{n-1}$ and for each such point the intersection \begin{eqnarray*} \ZZ(S, P, X_1-x_1, \ldots ,X_{\alpha -1}-x_{\alpha -1}, X_{\alpha +1}-x_{\alpha +1}, \ldots , X_n-x_n ) \end{eqnarray*} is an algebraic set defined over $ \mathbb K$.
Observe that the set of points $ (x_1, \ldots ,x_{\alpha -1},x_{\alpha +1}, \ldots ,x_n)$ such that the dimension \begin{eqnarray*} \dim (\ZZ( S, P, X_1-x_1, \ldots ,X_{\alpha -1}-x_{\alpha -1}, X_{\alpha +1}-x_{\alpha +1}, \ldots , X_n-x_n )) \end{eqnarray*} is larger than $ \ell -n+1$ is a semialgebraic set in $ \Real^{n-1}$ having dimension less than $ n-1$. Hence, for a dense subset of algebraic points $ (x_1, \ldots ,x_{\alpha -1},x_{\alpha +1}, \ldots ,x_n)$ in $ \Real^{n-1}$ the dimension of the algebraic set \begin{eqnarray*} \ZZ(S, P, X_1-x_1, \ldots ,X_{\alpha -1}-x_{\alpha -1}, X_{\alpha +1}-x_{\alpha +1}, \ldots , X_n-x_n ) \end{eqnarray*} is at most $ \ell -n+1$, i.e., at most $ n-1$.
Represent $ P$ as a polynomial in $ \Uaa$ with coefficients in $ {\mathbb K} [\X]$. Every monomial is then of the kind \begin{eqnarray*} A_\nu U_{1}^{d_{1 \nu}} \cdots U_{n}^{d_{n \nu}}, \end{eqnarray*} with $ A_\nu \in {\mathbb K}[\X]$, $ d_{j \nu} \ge 0$. Consider the real algebraic set \begin{eqnarray*} B:= \bigcup_\nu \{A_\nu=0 \} \cup \bigcup_{\nu,\mu} \{ d_{1 \nu}X_{1}+ \cdots + d_{n \nu}X_{n} = d_{1 \mu}X_{1}+ \cdots + d_{n \mu}X_{n} \}, \end{eqnarray*} where the first union is taken over all monomials, while the second union is taken over all pairs of different monomials.
Suppose first that $ \dim (T {\setminus} B)< n-1$. Then $ T_{n-1} \subset B$. By Lemma 4.5, either $ V= T$ or $ T_{n-1} \subset W_P$. The first of these alternatives contradicts the reducibility of $ V$, hence, $ T_{n-1}$ is a union of rational hyperplanes through the origin, and the lemma is proved.
Suppose now that $ \dim (T {\setminus} B)= n-1$. Then there exists a number $ \alpha,\ 1 \le \alpha \le n$, a point $ (x_1, \ldots ,x_{\alpha -1}, x_{\alpha +1}, \ldots ,x_n) \in \Real_{alg}^{n-1}$, and a number $ x_\alpha \in \Real$ such that
Thus, the point $ (x_1, \ldots ,x_n)$ has real algebraic coordinates. Then $ (x_1, \ldots ,x_n) \in B$, either because all coefficients $ A_\nu$ vanish (hence the polynomial $ P(x_1, \ldots ,x_n, \Uaa)$ is identically zero with respect to $ \Uaa$), or otherwise, by Lemma 4.1, since \begin{eqnarray*} (e^{x_1}, \ldots , e^{x_n}) \in \ZZ(S(x_1, \ldots ,x_n, \Uaa)). \end{eqnarray*} This contradicts condition (1). It follows that components $ T$, with the property \begin{eqnarray*} \dim (T {\setminus} B)= n-1, \end{eqnarray*} do not exist. ⬜
Recall the definition of the ring $ {\mathbb K}[\X, e^{\X_k}]$, for $ 0 \le k \le n$, in Remark 2.20. Assuming Schanuel's conjecture, the following statement is a generalization of Corollary 4.7.
In this section we prove a transversality property for $ E$- polynomials depending on a single exponential.
The following statement is well known to experts but we could not find an exact reference to it in literature.
To prove the second statement of the proposition, observe that, according to [Rannou1998], the existence of the required Whitney stratification for a fixed $ \mathcal X$ can be expressed by a formula of the first-order theory of real closed fields. Now the statement follows from the transfer principle in real closed fields [[Bochnak et al.2013], Proposition 5.2.3]. ⬜
Let $ P \in {\mathbb K}[\X, U_1]$, $ f=E(P)$, $ V= \ZZ (f)$, and $ \pi:\> \Real^{n+1} \to \Real^{n}$ be the projection map along $ U_1$.
Note that $ S$ and $ \ZZ(U_1-e^{X_1})$ are real analytic submanifolds of $ \Real^{n+1}$.
To begin, we prove the following claim. Claim: The manifolds $ S$ and $ \ZZ( U_1-e^{X_1})$ cannot be tangent at $ \z$.
This claim implies that if $ \dim (S)> 0$, then $ S$ and $ \ZZ( U_1-e^{X_1})$ are transverse at $ \z$ in $ \Real^{n+1}$.
To verify this claim we proceed by induction on $ \dim S$. Since any algebraic point in $ \ZZ(U_1-e^{X_1})$ will require $ x_1=0$, the base case of the induction, with $ \dim (S)=0$, is immediate.
For the induction step assume that $ \dim (S)=n-k+1$ for some $ 1 \le k < n+1$. Then, we can deduce from Lemma 2.11 the existence of a neighbourhood $ \mathcal V$ of $ \z$ in $ \Real^{n+1}$ such that \begin{eqnarray*} \mathcal V \cap S= \mathcal V \cap \ZZ(P_1,\cdots,P_k), \end{eqnarray*} where all $ P_i$ are polynomials in $ I(S')$, and the Jacobian $ (k \times (n+1))$-matrix of the system $ P_1= \cdots =P_k=0$ has the maximal rank $ k$ at $ \z$. Now, assume that $ S$ and $ \ZZ(U_1-e^{X_1})$ intersect tangentially at $ \z$. Then all $ (k+1) \times (k+1)$-minors of the Jacobian $ (k+1) \times (n+1)$-matrix \begin{eqnarray*} \frac{ \partial (U-e^{X_1}, P_1, \ldots , P_k)}{\partial(U,X_1, \ldots , X_n)} \end{eqnarray*} vanish at $ \z$. In particular, all of the following minors vanish:
\begin{equation}\label{eq:jacob1} \frac{\partial (U-e^{X_1}, P_1, \ldots , P_k)}{\partial (U, X_1, X_{i_1}, \ldots ,X_{i_{k-1}})} \end{equation} | (7.1) |
Also, if $ k < n$, all of the following minors vanish:
\begin{equation}\label{eq:jacob2} \frac{\partial(P_1, \ldots ,P_k)}{\partial(X_{i_1}, \ldots ,X_{i_k})} \end{equation} | (7.2) |
Clearly, the determinant of (7.1) equals \begin{eqnarray*} D (U,X_1, \ldots ,X_n)= \det \frac{\partial (P_1, \ldots, P_k)}{\partial (X_1,X_{i_1}, \ldots ,X_{i_{k-1}})} - e^{X_1} \det \frac{ \partial (P_1, \ldots ,P_k)}{\partial (U, X_{i_1}, \ldots , X_{i_{k-1}})}. \end{eqnarray*} Define $ \widehat{D}$ by replacing $ e^{X_1}$ by $ U$ in $ D$. Then $ \widehat D(\z)= D(\z)$.
Observe that \begin{eqnarray*} A(U, X_1, \ldots ,X_n):=\det \frac{\partial (P_1, \ldots ,P_k)}{\partial (U,X_{i_1}, \ldots ,X_{i_{k-1}})} \neq 0 \end{eqnarray*} at $ \z$ for some subset $ \{ i_1, \ldots ,i_{k-1} \} \subset \{2, \ldots ,n \}$. Indeed, otherwise for all subsets $ \{ i_1, \ldots ,i_{k-1} \}$ the condition $ D(U,X_1, \ldots ,X_n)=0$ would imply that \begin{eqnarray*} B(U, X_1, \ldots ,X_n):=\det \frac{\partial (P_1, \ldots, P_k)}{\partial (X_1,X_{i_1}, \ldots ,X_{i_{k-1}})} =0 \end{eqnarray*} at $ \z$. Hence, all $ k \times k$-minors for the system $ P_1= \cdots =P_k=0$ vanish at $ \z$, taking into the account that all minors (7.2) vanish at $ \z$ when $ k< n$. This contradicts the supposition that the Jacobian matrix of the system has the maximal rank at $ \z$.
We conclude that $ A(U, X_1, \ldots ,X_n) \neq 0$ at $ \z$ for some subset $ \{ i_1, \ldots ,i_{k-1} \} \subset \{2, \ldots ,n \}$. Fix such a subset $ \{ i_1, \ldots ,i_{k-1} \} \subset \{2, \ldots ,n \}$. Then we can consider $ P_1= \cdots =P_k=0$ as an implicit map $ F=(F_1,F_{i_1}, \ldots , F_{i_{k-1}})$ from the vector space of variables $ X_1, X_{j_1}, \ldots ,X_{j_{n-k}}$ to the vector space of variables $ U, X_{i_1}, \ldots ,X_{i_{k-1}}$, with \begin{eqnarray*} \{ j_1, \ldots ,j_{n-k} \}= \{2, \ldots , n\} {\setminus} \{i_1, \ldots , i_{k-1} \}. \end{eqnarray*} In particular, there is a differentiable function $ F_1(X_1, X_{j_1}, \ldots ,X_{j_{n-k}})=U$, whose partial derivative with respect to $ X_1$ in the neighbourhood of $ \z$ is given, according to formulae for differentiating of implicit functions, by \begin{eqnarray*} \frac{\partial F_1}{\partial X_1}(X_1, X_{j_1}, \ldots ,X_{j_{n-k}})= - \frac{B(U, X_1, \ldots ,X_n)} {A(U, X_1, \ldots ,X_n)}. \end{eqnarray*}
Suppose that $ \widehat D$ vanishes identically in the neighbourhood of $ \z$ in $ S$. Then, in the neighbourhood, \begin{eqnarray*} U= \frac{B(U, X_1, \ldots ,X_n)}{A(U, X_1, \ldots ,X_n)}, \end{eqnarray*} and therefore, \begin{eqnarray*} \frac{\partial F_1}{\partial X_1}(X_1, X_{j_1}, \ldots ,X_{j_{n-k}})=- F_1(X_1, X_{j_1}, \ldots ,X_{j_{n-k}}). \end{eqnarray*} Let $ G$ be the restriction of $ F_1$ to the straight line $ \ZZ( X_{j_1}-x_{j_1}, \ldots , X_{j_{n-k}}-x_{j_{n-k}})$. Then $ G$ satisfies the differential equation $ dG/dX_1=-G$, hence $ G(X_1)=e^{-X_1}$. Since $ \ZZ(G(X_1)-U )$ is a semialgebraic curve at $ \z$, we get a contradiction. Therefore, $ \widehat D$ does not vanish identically in the neighbourhood of $ \z$ in $ S$.
It follows that $ \dim_{\z} (\widehat D \cap S) < n-k+1$. The set $ \widehat D \cap S$ is either smooth at $ \z$, or $ \z$ is its singular point. In the first case, $ T_{\z}(\widehat D \cap S) \subset T_{\z}(S)$, hence $ \widehat D \cap S$ is tangent to $ \ZZ(U-e^{X_1})$ at $ \z$, which is impossible by the inductive hypothesis. In the second case, $ \z$ belongs to a stratum of a smooth stratification of $ \widehat D \cap S$, which has even smaller dimension than $ \dim_{\z} (\widehat D \cap S)$. This is again impossible by the inductive hypothesis. Therefore, $ S$ and $ \ZZ( U-e^{X_1} )$ do not meet tangentially at $ \z$. The claim is proved.
To finish the proof of the theorem, we can assume that $ S$ is transverse to $ \ZZ(U-e^{X_1})$ at $ \z$. Let $ R$ be any other stratum of the stratification such that $ S \subset \overline R$. Since $ \ZZ (U-e^{X_1} )$ is an oriented hypersurface in $ \Real^n$, there are two points $ {\bf a}, {\bf b} \in S$ on different sides of $ \ZZ(U-e^{X_1})$. There is an open curve interval $ \gamma \subset R$ such that $ {\bf a}, {\bf b} \in \overline \gamma$. Then $ \gamma \cap \ZZ(U-e^{X_1}) \neq \emptyset$, thus $ \ZZ( U-e^{X_1} ) \cap R \neq \emptyset$. Since, by [Trotman1976], Whitney's $ (a)$-regularity implies Thom's $ (t)$-regularity, the manifolds $ \ZZ(U-e^{X_1})$ and $ R$ are transverse in a neighbourhood of $ \z$. But $ \dim_{\z} (\ZZ(P, U-e^{X_1}))=p$, while $ \dim (\ZZ( U-e^{X_1}))=n-1$. It follows that $ \dim_{\z} (\ZZ(P))=p+1$. ⬜