Received: 4 March 2017 / Revised: 27 September 2017 / Accepted: 8 October 2017
Exceptional unimodal singularities consist of $ 14$ isolated hypersurface singularities—$ Q_{10}$, $ Q_{11}$, $ Q_{12}$, $ S_{11}$, $ S_{12}$, $ U_{12}$, $ Z_{11}$, $ Z_{12}$, $ Z_{13}$, $ W_{12}$, $ W_{13}$, $ E_{12}$, $ E_{13}$ and $ E_{14}$ in Arnold's notation (see [Arnold et al.2012]). Arnold observed a "strange duality" in this class of singularities, the Dolgachev numbers (a triple of algebraically defined positive integers) of one singularity are equal to the Gabrielov numbers (a triple of positive integers associated to a Coxeter–Dynkin diagram) of another one and vice versa. It is now naturally understood as one of mirror symmetry phenomena (cf. [Ebeling and Takahashi2011] and references therein).
Let the polynomial $ f \in \CC[x_1,\ldots,x_N]$ be invertible (see Definition 1). For such polynomials $ f$ one can associate an a priori new polynomial $ \widetilde f \in \CC[x_1,\ldots,x_N]$, that is also invertible, called Berglund–Hübsch transpose of $ f$ (see Sect. 2 for details).
For any two exceptional unimodal singularities that are strangely dual in the sense of Arnold there is a particular choice of the polynomials $ f_1,f_2$ representing them such that both $ f_1$, $ f_2$ are invertible and also Berglund–Hübsch transposes of each other. This was first observed in [Kawai and Yang1995], where the authors show the coincidence of the elliptic genera of dual pairs up to sign. This fact also plays an essential role in [Ebeling and Takahashi2011] for a precise formulation and generalization of Arnold's strange duality. However, the choice of an invertible polynomial, representing an exceptional unimodal singularity is not unique in general (we list all possible choices of an invertible polynomial, representing an exceptional unimodal singularity in Table 1).
For an invertible polynomial $ f \in \CC[x_1,\ldots,x_N]$ and its symmetry group $ G^\SL(f)$ (see Sect. 2), let $ \Jac(f,G^\SL(f))$ stand for the orbifold Jacobian algebra of the pair $ (f,G^\SL(f))$ and $ \Jac(f)$ be the "usual" Jacobian (or local) algebra. We prove the following theorem.
For a fixed singularity and different choices of the invertible polynomial $ f_2$ representing it, the function $ \widetilde f_2$ can have different symmetry groups $ G^\SL(\widetilde f_2)$ and even different Milnor numbers. In particular for $ U_{12}$ one will get the symmetry groups $ \{\id\}$, $ \ZZ/2\ZZ$, $ \ZZ/3\ZZ$ and Milnor numbers $ 12$, $ 12$, $ 15$ by $ \widetilde f_2$. The algebra $ \Jac(f_1)$ in the theorem above will still be the same up to isomorphism. Hence Theorem 1 shows many non–trivial isomorphisms.
In order to visualize the statement of Theorem 1 consider the Fig. 1.
Type | $ f$ (v1) | $ f$ (v2) | $ f$ (v3) | Strange dual |
$ Q_{10}$ | $ x_1^4+x_2^3+x_1 x_3^2$ | – | – | $ E_{14}$ |
$ Q_{11}$ | $ x_1^3 x_2+x_2^3+x_1 x_3^2$ | – | – | $ Z_{13}$ |
$ Q_{12}$ | $ x_1^3 x_3+x_2^3+x_1 x_3^2$ | $ x_1^5+x_2^3+x_1 x_3^2$ | – | $ Q_{12}$ |
$ S_{11}$ | $ x_1^4 + x_2^2 x_3+x_1 x_3^2$ | – | – | $ W_{13}$ |
$ S_{12}$ | $ x_1^3 x_2+x_2^2 x_3+x_1 x_3^2$ | – | – | $ S_{12}$ |
$ U_{12}$ | $ x_1^4 + x_2^3+x_3^3$ | $ x_1^4+x_2^3+x_3^2 x_2$ | $ x_1^4+x_2^2 x_3+x_3^2 x_2$ | $ U_{12}$ |
$ Z_{11}$ | $ x_1^5 + x_1 x_2^3+x_3^2$ | – | – | $ E_{13}$ |
$ Z_{12}$ | $ x_1^4x_2 + x_1 x_2^3+x_3^2$ | – | – | $ Z_{12}$ |
$ Z_{13}$ | $ x_1^3 x_3 +x_1 x_2^3+x_3^2$ | $ x_1^6+x_2^3 x_1+x_3^2$ | – | $ Q_{11}$ |
$ W_{12}$ | $ x_1^5 + x_2^2 x_3+x_3^2$ | $ x_1^5+x_2^4+x_3^2$ | – | $ W_{12}$ |
$ W_{13}$ | $ x_1^4 x_2 + x_2^2 x_3 + x_3^2$ | $ x_1^4 x_2+x_2^4+x_3^2$ | – | $ S_{11}$ |
$ E_{12}$ | $ x_1^7 + x_2^3+x_3^2$ | – | – | $ E_{12}$ |
$ E_{13}$ | $ x_1^5x_2 + x_2^3 + x_3^2$ | – | – | $ Z_{11}$ |
$ E_{14}$ | $ x_1^4 x_3 + x_2^3 + x_3^2$ | $ x_1^8 + x_2^3 + x_3^2$ | – | $ Q_{10}$ |
It is worth mentioning that Theorem 1 is compatible with mirror symmetry (using Frobenius structures). It was found in [Krawitz et al.2010] that for $ f_1$, $ f_2$ as above there is a Frobenius algebra isomorphism $ \Jac(f_1,\{\id\}) \cong \A^{\mathrm{FJRW}}(f_2, \langle g_{f_2} \rangle) $, where the latter object stands for the so-called FJRW ring , the analogue of the quantum cohomology ring associated to the pair $ (f_2, \langle g_{f_2} \rangle)$ and $ \langle g_{f_2} \rangle$ is the certain symmetry group of $ f_2$ (cf. loc. cit). As a corollary to Theorem 1, we get
\begin{eqnarray*} \A^{\mathrm{FJRW}}(f_2, \langle g_{f_2} \rangle) \cong \Jac(\widetilde{f_2},G^\SL(\widetilde{f_2})), \end{eqnarray*} which is the expected classical mirror symmetry isomorphism.
It's important to note that similar results concerning the unimodal singularities are obtained in an apparently different context, in the study of matrix factorizations by the work of [Carqueville et al.2016] and [Newton and Ros Camacho2046]. We expect that the Hochschild cohomology group of the category of $ G$-equivariant matrix factorizations will naturally yield the relationship between theirs and ours. We hope to elaborate on this subject in the near future.
For a non-negative integer $ N$ and $ f=f(x_1,\ldots, x_N)\in\CC[x_1,\ldots, x_N]$ a polynomial, the Jacobian algebra $ \Jac(f)$ of $ f$ is a $ \CC$-algebra defined as \begin{eqnarray*} \Jac(f) := {\CC[x_1,\ldots, x_N]}\QR{\left(\frac{\partial f}{\partial x_1},\ldots,\frac{\partial f}{\partial x_N}\right)}. \end{eqnarray*} If $ \Jac(f)$ is a finite–dimensional $ \CC$–algebra, $ f$ has at most an isolated critical point at the origin. Then set $ \mu_f:=\dim_\CC\Jac(f)$ and call it the Milnor number of $ f$. In particular, if $ N=0$ then $ \Jac(f)=\CC$ and $ \mu_f=1$.
The Hessian of $ f$ is defined as
\begin{eqnarray*} \hess(f):=\det \left(\frac{\partial^2 f}{\partial x_{i} \partial x_{j}}\right)_{i,j=1,\ldots,N}. \end{eqnarray*} In particular, if $ N=0$ then $ \hess(f)=1$.
A polynomial $ f\in\CC[x_1,\ldots, x_N]$ is called a weighted homogeneous polynomial if there are positive integers $ w_1,\ldots ,w_N$ and $ d$ such that
\begin{eqnarray*} f(\lambda^{w_1} x_1, \ldots, \lambda^{w_N} x_N) = \lambda^d f(x_1,\ldots ,x_N) \end{eqnarray*} for all $ \lambda \in \CC^\ast$. A weighted homogeneous polynomial $ f$ is called non-degenerate if it has at most an isolated critical point at the origin in $ \CC^N$, equivalently, if the Jacobian algebra $ \Jac(f)$ of $ f$ is finite-dimensional.
\begin{equation}\label{Gspsnotation} g={\rm diag}\left(\epi\left[\frac{a_1}{r}\right], \ldots,\epi\left[\frac{a_N}{r}\right]\right) \quad \mbox{with } 0 \leq a_i < r, \end{equation} | (1) |
Let $ f=f(x_1,\ldots, x_N)$ be an invertible polynomial and $ G$ a subgroup of $ G^\SL(f)$. A $ G$–twisted Jacobian algebra of $ f$ , denoted $ \Jac'(f,G)$, was introduced in [Basalaev et al.2016] axiomatically. It was also shown in Theorem 2 of loc. cit. that it exists and is uniquely defined up to an isomorphism when $ f$ is an invertible polynomial. The structure of $ \Jac'(f,G)$ can be then given as follows (see Section 4 of loc.cit.).
As a $ \CC$-vector space, $ \Jac'(f,G)$ is given by
\begin{equation}\label{eq:JacFGasv.sp.} \Jac'(f,G) = \bigoplus_{g \in G} \Jac(f^g)v_g, \end{equation} | (2) |
We are now ready to introduce the product structure on $ \Jac'(f,G)$. For simplicity, we assume that $ G$ is a cyclic group whose order is a prime number. Denote also $ I_g := \{i \ | \ g(x_i) = x_i\} \subseteq \{1,\ldots,N\}$ for any $ g \in G$.
For each pair $ (g,h)$ of elements in $ G$ and $ \phi(\bx), \psi(\bx)\in \Jac(f)$, the product is defined as follows:
\begin{equation}\label{prodstr} \begin{aligned} &[\phi(\bx)]v_g\circ [\psi(\bx)]v_h \\ &\quad :=(-1)^{\frac{1}{2}(N-N_{g})(N-N_{g}-1)}\cdot \epi\left[-\frac{1}{2}\age(g)\right]\cdot [\phi(\bx)\psi(\bx) H_{g,h}]v_{gh}, \end{aligned} \end{equation} | (3) |
\begin{equation}\label{Handhessians} \frac{1}{\mu_{f^{\left< g,h\right> }}}[\hess(f^{\left< g,h\right> })H_{g,h}]=\frac{1}{\mu_{f^{gh}}}[\hess(f^{gh})], \end{equation} | (4) |
\begin{equation} [\phi(\bx)]v_g\circ [\psi(\bx)]v_h :=0. \end{equation} | (5) |
Note that we have a natural action of $ G$ on $ \Jac(f^g)$ for any $ g \in G$ and that the product structure is invariant under the $ G$-action.
\begin{align} & \eta_{f,G} \left( X \circ Y, Z \right) = \eta_{f,G} \left( X, Y \circ Z \right),\quad X,Y,Z \in \Jac(f,G),\\ & \eta_{f,G} \left( v_\id, [\hess(f)]v_\id \right) = |G|\cdot \mu_f.\label{residue} \end{align} | (6) |
The proof of Theorem 1 is done by direct calculation. In what follows let the notation be as in Theorem 1.
Skipping the trivial cases when $ f_1=\widetilde f_2$ and $ G^\SL(\widetilde f_2)=\{\id\}$, to prove the theorem we only need to show that $ \Jac(f_1) \cong \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ for each row of Table 2.
Type of $ f_1$ | $ f_1$ | $ \widetilde f_2$ | $ G^\SL(\widetilde f_2)$ | Type of $ f_2$ |
$ E_{14}$ | $ x_1^8+x_2^3+x_3^2$ | $ x_1^4 x_2+x_2^2+x_3^3$ | $ \{\id\}$ | $ Q_{10}$ |
$ Q_{10}$ | $ x_1^4+x_2^3+x_1 x_3^2$ | $ x_1^8+x_2^3+x_3^2$ | $ \langle(1/2,0,1/2)\rangle$ | $ E_{14}$ |
$ Q_{11}$ | $ x_1^3 x_2+x_2^3+x_1 x_3^2$ | $ x_1^6 x_2+x_2^3+x_3^2$ | $ \langle(1/2,0,1/2)\rangle$ | $ Z_{13}$ |
$ Q_{12}$ | $ x_2^3+x_1^3 x_3+x_1 x_3^2$ | $ x_1^5 x_2+x_2^2+x_3^3$ | $ \langle (1/2,1/2,0) \rangle$ | $ Q_{12}$ |
$ Q_{12}$ | $ x_1^5+x_2^3+x_1 x_3^2$ | $ x_1^3+x_2^3 x_3+x_2 x_3^2$ | $ \{\id\}$ | $ Q_{12}$ |
$ Q_{12}$ | $ x_1^5+x_2^3+x_1 x_3^2$ | $ x_1^5 x_2+x_2^2+x_3^3$ | $ \langle(1/2,1/2,0)\rangle$ | $ Q_{12}$ |
$ S_{11}$ | $ x_1^4+x_2^2 x_3+x_1 x_3^2$ | $ x_1^4+x_1 x_2^4+x_3^2$ | $ \langle(0,1/2,1/2)\rangle$ | $ W_{13}$ |
$ U_{12}$ | $ x_1^4+x_2^3+x_3^3$ | $ x_1^4+x_2^3+x_3^3$ | $ \langle (0,2/3,1/3)\rangle$ | $ U_{12}$ |
$ U_{12}$ | $ x_1^4+x_2^3+x_3^3$ | $ x_1^4+x_2^3 x_3+x_3^2$ | $ \langle (0,1/2,1/2)\rangle$ | $ U_{12}$ |
$ U_{12}$ | $ x_1^4+x_2^3+x_3^3$ | $ x_1^4+x_2^2 x_3+x_2 x_3^2$ | $ \{\id\}$ | $ U_{12}$ |
$ U_{12}$ | $ x_1^4+x_2^3+x_2 x_3^2$ | $ x_1^4+x_2^3+x_3^3$ | $ \langle (0,2/3,1/3)\rangle$ | $ U_{12}$ |
$ U_{12}$ | $ x_1^4+x_2^3+x_2 x_3^2$ | $ x_1^4+x_2^3 x_3+x_3^2$ | $ \langle (0,1/2,1/2)\rangle$ | $ U_{12}$ |
$ U_{12}$ | $ x_1^4+x_2^3+x_2 x_3^2$ | $ x_1^4+x_2^2 x_3+x_2 x_3^2$ | $ \{\id\}$ | $ U_{12}$ |
$ U_{12}$ | $ x_1^4+x_2^2 x_3+x_2 x_3^2$ | $ x_1^4+x_2^3+x_3^3$ | $ \langle (0,2/3,1/3)\rangle$ | $ U_{12}$ |
$ U_{12}$ | $ x_1^4+x_2^2 x_3+x_2 x_3^2$ | $ x_1^4+x_2^3 x_3+x_3^2$ | $ \langle (0,1/2,1/2)\rangle$ | $ U_{12}$ |
$ W_{12}$ | $ x_1^5+x_2^2 x_3+x_3^2$ | $ x_1^5+x_2^4+x_3^2$ | $ \langle (0,1/2,1/2)\rangle$ | $ W_{12}$ |
$ W_{12}$ | $ x_1^5+x_2^4+x_3^2$ | $ x_1^5+x_2^2+x_2 x_3^2$ | $ \{\id\}$ | $ W_{12}$ |
$ W_{12}$ | $ x_1^5+x_2^4+x_3^2$ | $ x_1^5+x_2^4+x_3^2$ | $ \langle (0,1/2,1/2)\rangle$ | $ W_{12}$ |
$ W_{13}$, | $ x_1^4 x_2+x_2^4+x_3^2$ | $ x_1^4 x_2+x_2^2 x_3+x_3^2$ | $ \{\id\}$ | $ S_{11}$ |
$ Z_{13}$, | $ x_1^6+x_1 x_2^3+x_3^2$ | $ x_1^3 x_2+x_2^2+x_1 x_3^3$ | $ \{\id\}$ | $ Q_{11}$ |
Further, note that if $ G^\SL(\widetilde f_2) = \{1\}$ and $ f_1,\widetilde f_2$ do not coincide but belong to the same right-equivalence class, the proof follows since the Jacobian algebra is an invariant of the right-equivalence class. Therefore, it is enough to show the statement for each row of Table 3.
Type of $ f_1$ | $ f_1$ | $ \widetilde f_2$ | $ G^\SL(\widetilde f_2)$ | Type of $ f_2$ |
$ Q_{10}$ | $ x_1^4+x_2^3+x_1 x_3^2$ | $ x_1^8+x_2^3+x_3^2$ | $ \langle(1/2,0,1/2)\rangle$ | $ E_{14}$ |
$ Q_{11}$ | $ x_1^3 x_2+x_2^3+x_1 x_3^2$ | $ x_1^6 x_2+x_2^3+x_3^2$ | $ \langle(1/2,0,1/2)\rangle$ | $ Z_{13}$ |
$ Q_{12}$ | $ x_1^5+x_2^3+x_1 x_3^2$ | $ x_1^5 x_2+x_2^2+x_3^3$ | $ \langle (1/2,1/2,0) \rangle$ | $ Q_{12}$ |
$ S_{11}$ | $ x_1^4+x_2^2 x_3+x_1 x_3^2$ | $ x_1^4+x_1 x_2^4+x_3^2$ | $ \langle(0,1/2,1/2)\rangle$ | $ W_{13}$ |
$ U_{12}$ | $ x_1^4+x_2^3+x_3^3$ | $ x_1^4+x_2^3+x_3^3$ | $ \langle (0,2/3,1/3)\rangle$ | $ U_{12}$ |
$ U_{12}$ | $ x_1^4+x_2^3+x_2 x_3^2$ | $ x_1^4+x_2^3 x_3+x_3^2$ | $ \langle (0,1/2,1/2)\rangle$ | $ U_{12}$ |
$ W_{12}$ | $ x_1^5+x_2^4+x_3^2$ | $ x_1^5+x_2^4+x_3^2$ | $ \langle (0,1/2,1/2)\rangle$ | $ W_{12}$ |
From now on, we shall use the notation of Table 2. In order to
check that two algebras are isomorphic, we represent $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ as a
quotient algebra of a polynomial ring in three variables. Namely, we will
compute relations in $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ and show the existence of a surjective
algebra homomorphism from $ \Jac(f_1)$, which turns out to be an
isomorphism for dimension reasons.
For $ \widetilde f_2 = x_1^8+x_2^3+x_3^2$, and $ G^\SL(\widetilde f_2) = \langle g \rangle =\langle(\frac{1}{2},0,\frac{1}{2})\rangle$, $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ is a
$ 10$-dimensional $ \CC$-vector space, whose basis can be
chosen as \begin{align*} & v_\id, [x_1^2]v_\id, [x_1^4]v_\id, [x_1^6]v_\id, [x_2]v_\id, [x_1^2 x_2]v_\id, [x_1^4x_2]v_\id, [x_1^6 x_2]v_\id, \\ & v_g, [x_2]v_g. \end{align*} The only non–trivial Here and henceforth we
skip the products of the unit $ v_\id$ with the other basis vectors.
× 2 non-zero products in
$ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$, calculated by
(3)
, are given by \begin{align*} & [x_1^2]v_{\id}\circ [x_1^2]v_{\id}= [x_1^4] v_{\id}, && [x_1^2]v_{\id}\circ [x_1^4]v_{\id} = [x_1^6 ]v_{\id}, \\ & [x_1^2]v_{\id}\circ [x_2]v_{\id} = [x_1^2 x_2] v_{\id}, && [x_1^4] v_{\id}\circ [x_2] v_{\id} = [x_1^4 x_2] v_{\id}, \\ & [x_1^6] v_{\id}\circ [x_2] v_{\id} = [x_1^6 x_2]v_{\id}, && [x_2] v_{\id}\circ v_{g} = [x_2]v_{g},\\ & [x_1^2]v_{\id}\circ [x_1^2 x_2] v_{\id} = [x_1^4 x_2] v_{\id}, && [x_1^4] v_{\id}\circ [x_1^2 x_2] v_{\id} = [x_1^6 x_2] v_{\id}, \\ & [x_1^2]v_{\id}\circ [x_1^4 x_2] v_{\id} = [x_1^6 x_2] v_{\id}, && v_{g}\circ v_g = 16 [x_1^6] v_{\id}, \\ & v_{g}\circ [x_2] v_{g} = 16 [x_1^6 x_2] v_{\id}. \end{align*} For example the product $ v_{g}\circ [x_2] v_{g}$ is
calculated as follows. We have $ f^g=x_2^3=f^{\left< g,g\right> }$ and \begin{eqnarray*} &\displaystyle \frac{1}{\mu_{f^{\left< g,g\right> }}}[\hess(f^{\left< g,g\right> })H_{g,g}]= \frac{1}{2}[3\cdot 2x_2H_{g,g}],\\ &\displaystyle \frac{1}{\mu_{f^{g^2}}}[\hess(f^{g^2})]=\frac{1}{\mu_{f}}[\hess(f)]=\frac{1}{14}[8 \cdot 7 x_1^6 \cdot 3 \cdot 2x_2 \cdot 2]. \end{eqnarray*} So we see by
equation
(4)
, that $ H_{g,g}=16x_1^6$. With this we get by equation
(3)
\begin{eqnarray*} v_{g}\circ [x_2] v_{g}{=}(-1)^{\frac{1}{2}(3-1)(3-1-1)}\cdot \epi\left[-\frac{1}{2}\cdot 1\right]\cdot [x_2 H_{g,g}]v_{g^2} {=}(-1)(-1)[x_2\cdot 16 x_1^6]v_\id. \end{eqnarray*} From the multiplication table above we see that $ [x_1^2]v_\id$,
$ [x_2]v_\id$, $ v_g$ generate $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ and are subject to the
following relations \begin{eqnarray*} 16([x_1^2]v_\id)^{\circ 3}-v_g^{\circ 2}=0,\quad ([x_2]v_\id)^{\circ 2}=0,\quad [x_1^2]v_\id\circ v_g=0. \end{eqnarray*} On the other hand, the Jacobian algebra $ \Jac(f_1)$ is given by
\begin{eqnarray*} \Jac(f_1)= {\CC[y_1,y_2,y_3]}\QR{\left(4y_1^3+y_3^2,y_2^2,y_1y_3\right)}. \end{eqnarray*} Therefore, we have an algebra isomorphism \begin{eqnarray*} \Jac(f_1)\stackrel{\cong}{\longrightarrow}\Jac(\widetilde f_2,G^\SL(\widetilde f_2)),\quad y_1 \mapsto [x_1^2]v_\id, \ y_2 \mapsto [x_2]v_\id, \ y_3 \mapsto \frac{1}{2}\sqrt{-1}v_g, \end{eqnarray*} which is,
moreover, an isomorphism of Frobenius algebras since by
(6)
we have \begin{align*} &\eta_{\widetilde f_2,G^\SL(\widetilde f_2)} \left( v_\id, [x_1^6x_2]v_\id \right) = \frac{1}{672}\cdot \eta_{\widetilde f_2,G^\SL(\widetilde f_2)} \left( v_\id, [\hess(\widetilde f_2)]v_\id \right) = \frac{2\cdot 14}{672}=\frac{1}{24},\\ & \eta_{f_1,\{\id\}} \left( v_\id, [y_1^3y_2]v_\id \right) = \frac{1}{240}\cdot \eta_{f_1,\{\id\}} \left( v_\id, [\hess(f_1)]v_\id \right) =\frac{1\cdot 10}{240} =\frac{1}{24}. \end{align*}
For $ \widetilde f_2 = x_1^6 x_2+x_2^3+x_3^2$, and G f ) = [U+27E8]g[U+27E9] = [U+27E8]( ,0, )[U+27E9], $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ is a
2 2 2
$ 11$-dimensional $ \CC$-vector space, whose basis can be
chosen as \begin{align*} & v_\id, [x_1^2]v_\id, [x_1^4]v_\id, [x_2]v_\id, [x_1^2x_2]v_\id, [x_1^4x_2]v_\id, [x_2^2]v_\id, \\ & [x_1^2 x_2^2]v_\id, [x_1^4x_2^2]v_\id, v_g, [x_2]v_g. \end{align*} The only non-trivial non-zero products in
$ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$, calculated by
(3)
, are given by \begin{align*} & [x_1^2]v_{\id}\circ [x_1^2]v_{\id} = [x_1^4]v_{\id}, &&[x_1^2]v_{\id} \circ [x_1^4]v_{\id} = -3 [x_2^2]v_{\id} ,\\ & [x_1^4]v_{\id}\circ [x_1^4]v_{\id} = -3 [x_1^2 x_2^2]v_{\id} , && [x_1^2]v_{\id} \circ [x_2] v_{\id} = [x_1^2 x_2] v_{\id}, \\ &[x_1^4]v_{\id}\circ [x_2]\widetilde v_{\id} = [x_1^4 x_2]v_{\id} , &&[x_2] v_{\id}\circ [x_2] v_{\id} = [x_2^2]v_{\id} , \\ &[x_2]v_{\id} \circ v_{g} = [x_2]v_{g}, &&[x_1^2]v_{\id} \circ [x_1^2 x_2]\widetilde v_{\id} = [x_1^4 x_2]v_{\id}, \\ &[x_2]v_{\id} \circ [x_1^2 x_2]\widetilde v_{\id} = [x_1^2 x_2^2]v_{\id} && [x_1^2 x_2] v_{\id}\circ [x_1^2 x_2] v_{\id} = [x_1^4 x_2^2]v_{\id}, \\ &[x_2]\widetilde v_{\id} \circ [x_1^4 x_2]\widetilde v_{\id} = [x_1^4 x_2^2]v_{\id}, &&[x_1^2]v_{\id} \circ [x_2^2]v_{\id} = [x_1^2 x_2^2]v_{\id},\\ & [x_1^4]v_{\id} \circ [x_2^2]v_{\id} = [x_1^4 x_2^2]v_{\id}, &&[x_1^2]v_{\id} \circ [x_1^2 x_2^2]v_{\id}= [x_1^4 x_2^2]v_{\id},\\ &v_{g} \circ v_{g} = 12 [x_1^4 x_2]v_{\id} , & & v_{g} \circ [x_2]v_{g} = 12 [x_1^4 x_2^2]v_{\id}, \end{align*} which show that $ [x_1^2]v_\id$, $ [x_2]v_\id$,
$ v_g$ generate $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ and are subject to the following
relations \begin{align*} &12([x_1^2]v_\id)^{\circ 2} [x_2]v_\id - (v_g)^{\circ 2}\,=\,0, \ ([x_1^2]v_\id)^{\circ 3} + 3([x_2]v_\id)^{\circ 2}\,=\,0, \\ &\quad [x_1^2]v_\id \circ v_g\,=\,0. \end{align*} On the other hand, the Jacobian algebra $ \Jac(f_1)$ is given by
\begin{eqnarray*} \Jac(f)={\CC[y_1,y_2,y_3]}\QR{\left(3y_1^2y_2+y_3^2,y_1^3+3y_2^2,2y_1y_3\right)} \end{eqnarray*} Therefore, we have an algebra isomorphism \begin{eqnarray*} \Jac(f_1)\stackrel{\cong}{\longrightarrow}\Jac(\widetilde f_2,G^\SL(\widetilde f_2)),\quad y_1 \mapsto [x_1^2]v_\id, \ y_2 \mapsto [x_2]v_\id, \ y_3 \mapsto \frac{1}{2}\sqrt{-1}v_g, \end{eqnarray*} which is,
moreover, an isomorphism of Frobenius algebras since by
(6)
we have \begin{align*} &\eta_{\widetilde f_2,G^\SL(\widetilde f_2)} \left( v_\id, [x_1^4x_2^2]v_\id \right) = \frac{1}{18}, \\ &\eta_{f_1,\{\id\}} \left( v_\id, [y_1^2y_2^2]v_\id \right) = \frac{1}{198}\cdot \eta_{f_1,\{\id\}} \left( v_\id, [\hess(f_1)]v_\id \right) = \frac{1\cdot 11}{198} =\frac{1}{18}. \end{align*}
For $ \widetilde f_2 = x_1^5 x_2+x_2^2+x_3^3$, and $ G^\SL(\widetilde f_2)=\langle g\rangle=\langle(\frac{1}{2},\frac{1}{2},0)\rangle$, $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ is a
$ 12$-dimensional $ \CC$-vector space, whose basis can be
chosen as \begin{align*} & v_\id, [x_1^2] v_\id, [x_1^4]v_\id, [x_1x_2]v_\id, [x_1^3 x_2]v_\id, [x_3]v_\id, [x_1^2 x_3]v_\id,\\ & [x_1^4 x_3]v_\id, [x_1 x_2 x_3]v_\id, [x_1^3 x_2 x_3]v_\id, \ v_g, [x_3]v_g. \end{align*} The only non-trivial non-zero products in
$ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$, calculated by
(3)
, are given by \begin{align*} & [x_1^2]v_{\id} \circ [x_1^2]v_{\id} = [x_1^4]v_{\id}, &&[x_1^2] v_{\id} \circ [x_1^4]v_{\id} = -2 [x_1 x_2]v_{\id}, \\ &[x_1^4] v_{\id}\circ [x_1^4]v_{\id} = -2 [x_1^3 x_2]v_{\id}, && [x_1^2]v_{\id} \circ [x_1 x_2]v_{\id} = [x_1^3 x_2]v_{\id} ,\\ &[x_1^2]v_{\id} \circ [x_3]v_{\id} = [x_1^2 x_3]v_{\id} , &&[x_1^4]v_{\id} \circ [x_3] v_{\id} = [x_1^4 x_3]v_{\id} ,\\ & [x_1x_2]v_{\id} \circ [x_3]v_{\id} = [x_1x_2 x_3]v_{\id} , &&[x_1^3 x_2]v_{\id} \circ [x_3]v_{\id} = [x_1^3x_2 x_3]v_{\id} ,\\ &[x_3]v_{\id} \circ v_{g} = [x_3]v_{g} , && [x_1^2]v_{\id} \circ [x_1^2 x_3]v_{\id} = [x_1^4 x_3]v_{\id} ,\\ &[x_1^4]v_{\id} \circ [x_1^2 x_3]v_{\id} = -2 [x_1 x_2 x_3]v_{\id} , && [x_1x_2]v_{\id} \circ [x_1^2 x_3]v_{\id} = [x_1^3 x_2 x_3]v_{\id} ,\\ &[x_1^2]v_{\id} \circ [x_1^4 x_3]v_{\id} = -2 [x_1 x_2 x_3]v_{\id} , && [x_1^4]v_{\id} \circ [x_1^4 x_3]v_{\id} = -2 [x_1^3x_2 x_3]v_{\id},\\ &[x_1^2]v_{\id} \circ [x_1 x_2 x_3]v_{\id} = [x_1^3 x_2 x_3]v_{\id}, && v_{g} \circ v_{g} = 10 [x_1^3 x_2]v_{\id} ,\\ &v_{g} \circ [x_3]v_{g} = 10 [x_1^3 x_2 x_3]v_{\id}, \end{align*} which show that $ [x_1^2]v_\id$, $ [x_3]v_\id$,
$ v_g$ generate $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ and are subject to the following
relations \begin{eqnarray*} [x_1^2]v_\id \circ v_g = 0, \ (v_g)^{\circ 2} + 5([x_1^2]v_\id)^{\circ 4} = 0,\ ([x_3]v_{\id})^{\circ 2} = 0. \end{eqnarray*} On the other hand, the Jacobian algebra $ \Jac(f_1)$ is given by
\begin{eqnarray*} \Jac(f_1)= {\CC[y_1,y_2,y_3]}\QR{\left(5y_1^4+y_3^2,3y_2^2,2y_1y_3\right)}. \end{eqnarray*} Therefore, we have an algebra isomorphism \begin{eqnarray*} \Jac(f_1)\stackrel{\cong}{\longrightarrow}\Jac(\widetilde f_2,G^\SL(\widetilde f_2)),\quad y_1 \mapsto [x_1^2]v_\id, \ y_2 \mapsto -\frac{1}{4} [x_3]v_\id, \ y_3 \mapsto v_g, \end{eqnarray*} which is,
moreover, an isomorphism of Frobenius algebras since by
(6)
we have \begin{align*} \eta_{\widetilde f_2,G^\SL(\widetilde f_2)} \left( v_\id, [x_1^3x_2x_3]v_\id \right) &=\frac{1}{15},\\ - \frac{4}{10} \cdot \eta_{f_1,\{\id\}} \left( v_\id, [y_2y_3^2]v_\id \right) &= \frac{4}{720}\cdot \eta_{f_1,\{\id\}} \left( v_\id, [\hess(f_1)]v_\id \right)\\ &= \frac{4\cdot 12}{720} =\frac{1}{15}. \end{align*}
For $ \widetilde f_2 = x_1^4+x_1 x_2^4+x_3^2$, and $ G^\SL(\widetilde f_2) = \langle g \rangle =\langle(0,\frac{1}{2},\frac{1}{2})\rangle$, $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ is a
$ 11$-dimensional $ \CC$-vector space, whose basis can be
chosen as \begin{align*} & v_\id, [x_1]v_\id, [x_1^2]v_\id, [x_1^3]v_\id, [x_2^2]v_\id, [x_1x_2^2]v_\id, [x_1^2 x_2^2]v_\id, [x_1^3 x_2^2]v_\id,\\ & v_g, [x_1]v_g, [x_1^2]v_g. \end{align*} The only non-trivial non-zero products in
$ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$, calculated by
(3)
, are given by \begin{align*} & [x_1]v_{\id} \circ [x_1]v_{\id} = [x_1^2]v_{\id}, &&[x_1]v_{\id} \circ v_{g} = [x_1]v_{g},\\ &[x_1]v_{\id} \circ [x_1]v_{g} = [x_1^2]v_{g}, &&[x_1]v_{\id} \circ [x_1^2]v_{\id} = [x_1^3]v_{\id} ,\\ &[x_1^2]v_{\id} \circ v_{g} = [x_1^2]v_{g} ,\ &&[x_1]v_{\id} \circ [x_2^2]v_{\id} = [x_1 x_2^2]v_{\id},\\ &[x_1^2]v_{\id} \circ [x_2^2]v_{\id} = [x_1^2 x_2^2]v_{\id}, &&[x_1^3]v_{\id} \circ [x_2^2]v_{\id} = [x_1^3 x_2^2]v_{\id} ,\\ &[x_2^2]v_{\id} \circ [x_2^2]v_{\id} = -4 [x_1^3]v_{\id} , &&[x_1]v_{\id} \circ [x_1 x_2^2]v_{\id} = [x_1^2 x_2^2]v_{\id} ,\\ &[x_1^2]v_{\id} \circ [x_1 x_2^2]v_{\id} = [x_1^3 x_2^2]v_{\id} ,\ &&[x_1]v_{\id} \circ [x_1^2 x_2^2]v_{\id} = [x_1^3 x_2^2]v_{\id} ,\\ & v_{g} \circ v_{g} = 8 [x_1 x_2^2]v_{\id} , && v_{g} \circ [x_1]v_{g} = 8 [x_1^2 x_2^2]v_{\id} ,\\ &[x_1]v_{g} \circ [x_1]v_{g} = 8 [x_1^3 x_2^2]v_{\id}, && v_{g}\circ [x_1^2]v_{g} = 8 [x_1^3 x_2^2]v_{\id}, \end{align*} which show that $ [x_1]v_\id$, $ [x_2^2]v_\id$,
$ v_g$ generate $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ and are subject to the following
relations \begin{align*} &([x_2^2]v_\id)^{\circ 2} + 4([x_1]v_\id)^{\circ 3} = 0, \ [x_2^2]v_\id \circ v_g =0,\\ & (v_g)^{\circ 2} - 8 [x_1]v_\id \circ [x_2^2]v_\id = 0. \end{align*} On the other hand, the Jacobian algebra $ \Jac(f_1)$ is given by
\begin{eqnarray*} \Jac(f_1)= {\CC[y_1,y_2,y_3]}\QR{\left(4y_1^3+y_3^2,2y_2y_3,y_2^2+2y_1y_3\right)}. \end{eqnarray*} Therefore, we have an algebra isomorphism \begin{eqnarray*} \Jac(f_1)\stackrel{\cong}{\longrightarrow}\Jac(\widetilde f_2,G^\SL(\widetilde f_2)),\quad y_1\mapsto [x_1]v_\id,\ y_2\mapsto \frac{1}{2}\sqrt{-1}v_g,\ y_3\mapsto [x_2^2]v_\id, \end{eqnarray*} which is,
moreover, an isomorphism of Frobenius algebras since by
(6)
we have \begin{align*} &\eta_{\widetilde f_2,G^\SL(\widetilde f_2)} \left( v_\id, [x_1^3x_2^2]v_\id \right) =\frac{1}{16},\\ & \eta_{f_1,\{\id\}} \left( v_\id, [y_1^3y_3]v_\id \right) = \frac{1}{176}\cdot \eta_{f_1,\{\id\}} \left( v_\id, [\hess(f_1)]v_\id \right) = \frac{1 \cdot 11}{176} = \frac{1}{16}. \end{align*}
For $ \widetilde f_2 = x_1^4+x_2^3+x_3^3$, and $ G^\SL(\widetilde f_2) = \langle g \rangle =\langle(0,\frac{2}{3},\frac{1}{3})\rangle$, $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ is a
$ 12$-dimensional $ \CC$-vector space, whose basis can be
chosen as \begin{align*} & v_\id, [x_1]v_\id, [x_1^2]v_\id, [x_2x_3]v_\id, [x_1 x_2 x_3]v_\id, [x_1^2 x_2 x_3]v_\id,\\ & v_{g^2}, [x_1]v_{g^2}, [x_1^2]v_{g^2}, \ v_g, [x_1]v_g, [x_1^2]v_g. \end{align*} The only non-trivial non-zero products in
$ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$, calculated by
(3)
, are given by \begin{align*} & [x_1]v_{\id} \circ [x_1]v_{\id} = [x_1^2]v_{\id}, &&[x_1]v_{\id} \circ v_{g^2} = [x_1]v_{g^2} ,\\ &[x_1]v_{\id} \circ [x_1]v_{g^2} = [x_1^2]v_{g^2}, &&[x_1]v_{\id} \circ v_{g} = [x_1]v_{g},\\ &[x_1]v_{\id} \circ [x_1]v_{g} = [x_1^2]v_{g} , &&[x_1^2]v_{\id} \circ v_{g^2} = [x_1^2]v_{g^2} ,\\ &[x_1^2v_{\id}] \circ v_{g} = [x_1^2]v_{g} , &&[x_1]v_{\id} \circ [x_2 x_3]v_{\id}) = [x_1 x_2 x_3]v_{\id} ,\\ &[x_1^2]v_{\id} \circ [x_2 x_3]v_{\id} = [x_1^2 x_2 x_3]v_{\id} , &&[x_1]v_{\id} \circ [x_1 x_2 x_3]v_{\id}) = [x_1^2 x_2 x_3]v_{\id} ,\\ & v_{g} \circ v_{g^2} = 9 [x_2 x_3]v_{\id} , && v_{g} \circ [x_1]v_{g^2} = 9 [x_1 x_2 x_3]v_{\id} ,\\ & v_{g} \circ [x_1^2]v_{g^2} = 9[x_1^2 x_2 x_3]v_{\id} , &&[x_1]v_{g} \circ v_{g^2} = 9 [x_1 x_2 x_3]v_{\id} ,\\ &[x_1]v_{g} \circ [x_1]v_{g^2} = 9[x_1^2 x_2 x_3]v_{\id} , && [x_1^2]v_{g} \circ v_{g^2} = 9 [x_1^2 x_2 x_3]v_{\id}, \end{align*} which show that $ [x_1]v_\id$, $ v_g$,
$ v_{g^2}$ generate $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ and are subject to the following
relations \begin{eqnarray*} ([x_1]v_\id)^{\circ 3} = 0, \ (v_g)^{\circ 2} = 0, \ (v_{g^2})^{\circ 2} = 0. \end{eqnarray*} On the other hand, the Jacobian algebra $ \Jac(f_1)$ is given by
\begin{eqnarray*} \Jac(f_1)= {\CC[y_1,y_2,y_3]}\QR{\left(4y_1^3,3y_2^2,3y_3^2\right)}. \end{eqnarray*} Therefore, we have an algebra isomorphism \begin{eqnarray*} \Jac(f_1)\stackrel{\cong}{\longrightarrow}\Jac(\widetilde f_2,G^\SL(\widetilde f_2)),\quad y_1\mapsto \frac{1}{3} [x_1]v_\id,\ y_2\mapsto \frac{1}{\sqrt{3}} v_g,\ y_3\mapsto \frac{1}{\sqrt{3}} v_{g^2}, \end{eqnarray*} which is,
moreover, an isomorphism of Frobenius algebras since by
(6)
we have \begin{align*} \eta_{\widetilde f_2,G^\SL(\widetilde f_2)} \left( v_\id, [x_1^2x_2x_3]v_\id \right) &=\frac{1}{12},\\ 3 \cdot \eta_{f_1,\{\id\}} \left( v_\id, [y_1^2y_2y_3]v_\id \right) &= \frac{3}{432}\cdot \eta_{f_1,\{\id\}} \left( v_\id, [\hess(f_1)]v_\id \right)\\ &=\frac{3\cdot 12}{432} =\frac{1}{12}. \end{align*}
For $ \widetilde f_2 = x_1^4+x_2^3 x_3+x_3^2$, and $ G^\SL(\widetilde f_2) = \langle g \rangle =\langle(0,\frac{1}{2},\frac{1}{2})\rangle$, $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ is a
$ 12$-dimensional $ \CC$-vector space, whose basis can be
chosen as \begin{align*} & v_\id, [x_1]v_\id, [x_1^2]v_\id, [x_2^2]v_\id, [x_1 x_2^2]v_\id, [x_1^2 x_2^2]v_\id, [x_2 x_3]v_\id, \\ & [x_1 x_2 x_3]v_\id, [x_1^2 x_2 x_3]v_\id, v_g, [x_1]v_g, [x_1^2]v_g. \end{align*} The only non-trivial non-zero products in $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$,
calculated by
(3)
, are given by \begin{align*} &[x_1]v_{\id} \circ [x_1]v_{\id} = [x_1^2]v_{\id}, &&[x_1]v_{\id} \circ v_{g} = [x_1]v_{g} ,\\ &[x_1]v_{\id} \circ [x_1]v_{g} = [x_1^2]v_{g}, &&[x_1^2]v_{\id} \circ v_{g} = [x_1^2]v_{g} ,\\ &[x_1]v_{\id} \circ [x_2^2]v_{\id} = [x_1 x_2^2]v_{\id} , &&[x_1^2]v_{\id} \circ [x_2^2]v_{\id} = [x_1^2 x_2^2]v_{\id},\\ &[x_2^2]v_{\id} \circ [x_2^2]v_{\id} = -2 [x_2 x_3]v_{\id} , &&[x_1]v_{\id} \circ [x_1 x_2^2]v_{\id} = [x_1^2 x_2^2]v_{\id} ,\\ &[x_2^2]v_{\id} \circ [x_1 x_2^2]v_{\id} = -2[x_1 x_2x_3] v_{\id} , &&[x_1 x_2^2]v_{\id} \circ [x_1 x_2^2]v_{\id} = -2 [x_1^2 x_2 x_3]v_{\id} ,\\ &[x_2^2] v_{\id} \circ [x_1^2 x_2^2]v_{\id} = -2 [x_1^2 x_2 x_3]v_{\id} , &&[x_1]v_{\id} \circ [x_2 x_3]v_{id} = [x_1 x_2 x_3]v_{\id} ,\\ &[x_1^2]v_{\id} \circ [x_2 x_3]v_{\id} = [x_1^2 x_2 x_3]v_{\id} , &&[x_1]v_{\id} \circ [x_1 x_2 x_3]v_{\id} = [x_1^2 x_2 x_3]v_{\id} ,\\ & v_{g} \circ v_{g} = 6 [x_2 x_3]v_{\id} , && v_{g} \circ [x_1]v_{g} = 6[x_1 x_2 x_3] v_{\id}, \\ & [x_1]v_{g} \circ [x_1]v_{g} = 6 [x_1^2 x_2 x_3]v_{\id} , && v_{g} \circ [x_1^2]v_{g} = 6[x_1^2 x_2 x_3] v_{\id}, \end{align*} which show that $ [x_1]v_\id$, $ [x_2^2]v_\id$,
$ v_g$ generate $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ and are subject to the following
relations \begin{eqnarray*} ([x_1]v_\id)^{\circ 3} = 0, \ (v_g)^{\circ 2} + 3([x_2^2]v_\id)^{\circ 2}, \ [x_2^2]v_\id \circ v_g = 0. \end{eqnarray*} On the other hand, the Jacobian algebra $ \Jac(f_1)$ is given by
\begin{eqnarray*} \Jac(f_1)= {\CC[y_1,y_2,y_3]}\QR{\left(4y_1^3,3y_2^2+y_3^2,2y_2y_3\right)}. \end{eqnarray*} Therefore, we have an algebra isomorphism \begin{eqnarray*} \Jac(f_1)\stackrel{\cong}{\longrightarrow}\Jac(\widetilde f_2,G^\SL(\widetilde f_2)),\quad y_1\mapsto \frac{1}{\sqrt{-6}} [x_1]v_\id,\ y_2\mapsto [x_2^2]v_\id,\ y_3\mapsto v_{g}, \end{eqnarray*}
which is, moreover, an isomorphism of Frobenius algebras since by
(6)
we have \begin{align*} \eta_{\widetilde f_2,G^\SL(\widetilde f_2)} \left( v_\id, [x_1^2x_2x_3]v_\id \right) &=\frac{1}{12},\\ \frac{6}{9} \cdot \eta_{f_1,\{\id\}} \left( v_\id, [y_1^2y_3^2]v_\id \right) &= \frac{6}{9\cdot 96}\cdot \eta_{f_1,\{\id\}} \left( v_\id, [\hess(f_1)]v_\id \right)\\ &= \frac{6\cdot 12}{9\cdot 96} = \frac{1}{12}. \end{align*}
For $ \widetilde f_2 = x_1^5+x_2^4+x_3^2$, and $ G^\SL(\widetilde f_2) = \langle g \rangle =\langle(0,\frac{1}{2},\frac{1}{2})\rangle$, $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ is a
$ 12$-dimensional $ \CC$-vector space, whose basis can be
chosen as \begin{align*} &v_\id, [x_1]v_\id, [x_1^2]v_\id, [x_1^3]v_\id, [x_2^2]v_\id, [x_1 x_2^2]v_\id, [x_1^2 x_2^2]v_\id, [x_1^3 x_2^2]v_\id,\\ &v_g, [x_1]v_g, [x_1^2]v_g, [x_1^3]v_g. \end{align*} The only non-trivial non-zero products in $ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$,
calculated by
(3)
, are given by \begin{align*} & [x_1]v_{\id} \circ [x_1]v_{\id} = [x_1^2]v_{\id}, &&[x_1]v_{\id} \circ v_{g} = [x_1] v_{g},\\ &[x_1]v_{\id} \circ [x_1]v_{g} = [x_1^2]v_{g} , &&[x_1] v_{\id} \circ [x_1^2]v_{g} = [x_1^3]v_{g},\\ &[x_1]v_{\id} \circ [x_1^2]v_{\id} = [x_1^3]v_{\id}, &&[x_1^2]v_{\id} \circ v_{g} = [x_1^2]v_{g},\\ &[x_1^2]v_{\id} \circ [x_1] v_{g} = [x_1^3]v_{g}, &&[x_1^3]v_{\id} \circ v_{g} = [x_1^3]v_{g}, \\ &[x_1]v_{\id} \circ [x_2^2]v_{\id} = [x_1 x_2^2]v_{\id}, &&[x_1^2]v_{\id} \circ [x_2^2]v_{\id} =[x_1^2 x_2^2] v_{\id} ,\\ &[x_1^3]v_{\id} \circ [x_2^2]v_{\id} = [x_1^3 x_2^2]v_{\id} , &&[x_1]v_{\id} \circ [x_1 x_2^2]v_{\id} = [x_1^2 x_2^2]v_{\id},\\ &[x_1^2] v_{\id} \circ [x_1 x_2^2]v_{\id} = [x_1^3 x_2^2]v_{\id} , &&[x_1] v_{\id} \circ [x_1^2 x_2^2] v_{\id} = [x_1^3 x_2^2]v_{\id} ,\\ & v_{g} \circ v_{g} = 8 [x_2^2]v_{\id} , && v_{g} \circ [x_1]v_g = 8[x_1 x_2^2] v_{\id} , \\ &[x_1]v_{g} \circ [x_1]v_{g} = 8[x_1^2 x_2^2] v_{\id} , && v_{g} \circ [x_1^2]v_{g} = 8 [x_1^2 x_2^2]v_{\id},\\ &[x_1]v_{g} \circ [x_1^2]v_{g} = 8 [x_1^3 x_2^2]v_{\id} , && v_{g} \circ [x_1^3] v_{g} = 8 [x_1^3 x_2^2]v_{\id}, \end{align*} which show that $ [x_1]v_\id$ and $ v_g$ generate
$ \Jac(\widetilde f_2,G^\SL(\widetilde f_2))$ and are subject to the following relations \begin{eqnarray*} ([x_1]v_\id)^{\circ 4} = 0, \ (v_{g})^{\circ 3} = 0. \end{eqnarray*} On the other hand, the Jacobian algebra $ \Jac(f_1)$ is given by
\begin{eqnarray*} \Jac(f_1)= {\CC[y_1,y_2,y_3]}\QR{\left(5y_1^4,4y_2^3,y_3\right)}. \end{eqnarray*} Therefore, we have an algebra isomorphism \begin{eqnarray*} \Jac(f_1)\stackrel{\cong}{\longrightarrow}\Jac(\widetilde f_2,G^\SL(\widetilde f_2)),\quad y_1\mapsto \frac{1}{2} [x_1]v_\id,\ y_2\mapsto \frac{1}{\sqrt{2}} v_g, \end{eqnarray*} which is, moreover, an isomorphism of Frobenius algebras
since by
(6)
we have \begin{align*} \eta_{\widetilde f_2,G^\SL(\widetilde f_2)} \left( v_\id, [x_1^3x_2^2]v_\id \right) &=\frac{1}{20},\\ \frac{16}{8} \cdot \eta_{f_1,\{\id\}} \left( v_\id, [y_1^3y_2^2]v_\id \right) &= \frac{16}{8 \cdot 480}\cdot \eta_{f_1,\{\id\}} \left( v_\id, [\hess(f_1)]v_\id \right)\\ &= \frac{16\cdot 12}{480} = \frac{1}{20}. \end{align*}
3.1.1. $ Q_{10}$ and
$ E_{14}$
3.1.2. $ Q_{11}$ and
$ Z_{13}$
( 1 1
~
3.1.3. $ Q_{12}$ and
$ Q_{12}$
3.1.4. $ S_{11}$ and
$ W_{13}$
3.1.5. $ U_{12}$ and $ U_{12}$, part
1
3.1.6. $ U_{12}$ and $ U_{12}$, part
2
3.1.7. $ W_{12}$ and
$ W_{12}$