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Abstract We study the local classification of higher order Fuchsian linear differential
equations under various refinements of the classical notion of the “type of differential
equation” introduced by Frobenius. The main source of difficulties is the fact that
there is no natural group action generating this classification. We establish a number
of results on higher order equations which are similar but not completely parallel to the
known results on local (holomorphic and meromorphic) gauge equivalence of systems
of first order equations.
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1 Local Classification of Linear Ordinary Differential Equations

1.1 Systems and Higher Order Equations

The local analytic theory of linear ordinary differential equations exists in two parallel
flavours, either that of systems of several first order equations, or of scalar (higher
order) equations. One can relatively easily transform one type of objects to the other,
yet this transformation loses some additional structures.

Let k be a differential field, called the field of coefficients. We will be interested
almost exclusively in the field M = M (C1, 0) of meromorphic germs at the origin
t = 0 on the complex line C = C

1, the quotient field of the ring O = O(C1, 0) of
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holomorphic germs at the origin. The standardC-linear derivation ∂ = d
dt acts on both

O and M according to the Leibniz rule and extends on vector and matrix functions
with entries in k in the natural way.

Let A ∈ Mat(n, k) be an (n × n)-matrix function, called the coefficients matrix,
A = ‖ai j (t)‖ni, j=1, ai j ∈ k. This matrix defines the homogeneous system of linear
ordinary equations

∂x = Ax, x = (x1, . . . , xn) ∈ C
n, t ∈ (C, 0). (1)

The system (1) only exceptionally rarely has a solution x ∈ k
n . However, it always has

n linear independent solutions in the class of functions analytic in a small punctured
neighborhood of the origin, which are multivalued (ramified) over the point t = 0.
Assembling these solutions (as column vectors) into a multivalued matrix function
X = X (t) whose determinant never vanishes for t �= 0, we can without loss of
generality reduce the system (1) to one matrix differential equation ∂X = AX . For
instance, the trivial system is defined by the equation ∂X = 0, and any invertible
constant matrix C ∈ GL(n, C) is its solution.

Alternatively, onemay consider homogeneous linear ordinary differential equations
of the form

a0∂
nu + a1∂

n−1u + · · · + an−1∂u + anu = 0, a0, . . . , am ∈ k, a0 �= 0. (2)

Each Eq. (2) is a linear (over k) relation between the unknown function u and its
derivatives ∂ku up to order k = n. Traditionally, such equations are written using
linear differential operators: if L = ∑n

0 ai∂
n−i ∈ k[∂] is the formal expression,

then the above equation is written under the form Lu = 0. Elements of the field
k are identified with “operators of zeroth order” u �→ au, a ∈ k. The key feature
of differential operators is the possibility of their composition which equips the k-
space of linear operators with the structure of (noncommutative infinite-dimensional)
C-algebra, denoted by W .1

As before, generically solution exists only as a multivalued function defined for
t �= 0 and ramified over the origin.

1.2 Mutual Reduction

One can easily transform the Eq. (2) to a system (1) by introducing the variables
xk = ∂k−1u, k = 1, . . . , n. The corresponding first order identities take the form

∂xk = xk+1, k = 1, . . . , n − 1, ∂xn = −a−1
0 (a1xn−1 + · · · + anx1). (3)

Conversely, each of the variables u = xk of a solution x(t) to the system (1) satisfies
an equation of the form (2). To obtain this equation, note that all derivatives ∂ i u

1 The classical Weyl algebra is generated over C by two elements t, ∂ with the commutativity relation
[∂, t] = 1. It embeds naturally into the algebra k[∂] for the differential field of rational functions k = C(t).
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are k-linear combinations of the formal variables x1, . . . , xn . Indeed, by induction, if
∂ i x = Ai x , Ai ∈ Mat(n, k), A0 = E , A1 = A, then

∂ i+1x = (∂Ai )x + Ai A1x = (∂Ai + Ai A)x = Ai+1x, i = 1, 2, . . . . (4)

Taking the kth line of these identities yields the required linear combination. Since the
space of combinations is n-dimensional (over k), we conclude that n + 1 derivatives
u, ∂u, ∂2u, . . . , ∂nu are necessarily linear dependent over k (the order can be less than
n). This dependence is of the form (2), but the corresponding equation will in general
depend on the choice of k between 1 and n. Slightly modifying this construction, one
can produce a differential equation of order � n2, satisfied by all components xi j of
any fundamental matrix solution X = ‖xi j‖ of the equation ∂X = AX .

1.3 Gauge Equivalence of Linear Systems. Equations of the Same Type

The group G = GL(n, k) of invertible matrix functions with entries in the field k

acts naturally on the space of all linear systems of the form (1). Namely, if H =
‖hi j (t)‖ni, j=1, hi j ∈ k, is such a function with the inverse H−1 ∈ GL(n, k), then
one can “change variables” in (1) by substituting y = Hx , y = (y1, . . . , yn) ∈ C

n .
This substitution transforms (1) to the identity ∂y = (∂H)x + H∂x = (∂H)H−1y +
H AH−1y, so that

∂y = By, B ∈ Mat(n, k), B = (∂H) · H−1 + H AH−1. (5)

This differs from the conjugacy of linear operators by the logarithmic derivative (∂H)·
H−1; this term vanishes if H is constant.

Two systems ∂x = Ax and ∂y = By are called gauge equivalent, if there exists an
element H ∈ G such that (5) holds. Since G is a group, this equivalence naturally is
reflexive, symmetric and transitive. Thus one can formulate the problem of classifica-
tion: what is the simplest form to which a given linear system can be transformed by
a suitable gauge transformation? The corresponding theory is fairly well established,
see below for the initial results.

Remark 1 Systems of linear Eq. (1) can be considered geometrically as flat mero-
morphic connections on a vector bundle over the (complex) 1-dimensional base. The
gauge transform corresponds to the change of a tuple of horizontal sections locally
trivializing this bundle. Such interpretation allows for global and multidimensional
generalizations, see Ilyashenko and Yakovenko (2008, Chapter III) and Novikov and
Yakovenko (2004).

Unfortunately, the notion of gauge equivalence is too restricted to deal with high
order equations: indeed, since the unknown function is scalar, only the transformations
of the form u = hv, h ∈ k, can be considered, but one cannot expect this small group
to produce a meaningful classification.

Instead it is natural to consider k-linear changes of variables of a more general
form which involve the unknown function and its derivatives. More specifically, one

123



144 S. Tanny, S. Yakovenko

can choose a tuple of functions h = (h0, . . . , hn−1) ∈ k
n and use it to change the

dependent variable from u to v as follows,

v = h1∂
n−1u + h2∂

n−2u + · · · + hn−1∂u + hnu. (6)

The reason why derivatives of order n and may be omitted, is rather clear: if the
transformation (6) is applied to an Eq. (2) of order n, then all such higher order
derivatives can be replaced by k-linear combinations of the lower order derivatives by
virtue of the equation.

The new variable v also satisfies a linear differential equation which can be derived
as follows (cf. with Sect. 1.2). Differentiating the formula (6) for v by virtue of the
Eq. (2), one can see that all higher order derivatives ∂ iv can be expressed as linear
combinations (over k) of the formal derivatives ∂ j u, u = 0, . . . , n − 1. The space of
such combinations isn-dimensional, so no later thanon thenth step therewill necessary
appear an identity of the form b0∂mv +b1∂m−1v +· · ·+bm−1∂v +bmv = 0, b0 �= 0,
b j ∈ k, m � n, which is the transform of the Eq. (2) by the action of (6). Classically,
the initial equation and the transformed equation are called equations of the same type,
see Singer (1996), Tsarëv (2009) and Ore (1933), but we would prefer to use the term
“Weyl equivalence” (justifying the fact), with an intention to refine it by imposing
additional restrictions on the transformation (6).

In order for this change of variables to be “faithful”, one has to impose the addi-
tional condition of nondegeneracy: no solution of (2) is mapped into identical zero
by the transformation (6). Indeed, if this extra assumption is violated, one can easily
transform the initial equation to the trivial (meaningless) form 0 = 0. On the other
hand, accepting this condition guarantees (as can be easily shown) that the transformed
equation has the same order m = n.

Still a few questions remain unanswered by this naïve approach. The transformation
(6), unlike the gauge transformation of linear systems, is rather problematic to invert:
transition from u to v always has a nontrivial kernel (solutions of the corresponding
homogeneous equations). In addition, “restoring” u from v is in general a transcen-
dental operation requiring integration of linear equations, and it is by no means clear
how one should proceed.

The algebraic nature of these questions was studied since 1880s by F. Frobenius, E.
Landau, A. Loewy, W. Krull and culminated in the perfect form in the brilliant paper
by Ore (1933). The idea is to consider the noncommutative algebra of differential
operators k[∂] with coefficients in k. The next Sect. 2.1 summarizes the necessary
fundamentals of the “algebraic theory of noncommutative polynomials” following
(Ore 1933).

1.4 Singularities, monodromy

From this moment we focus on the special case where k = M is the differential field
of meromorphic germs at the origin and denote for brevityW = M [∂] the algebra of
operators with meromorphic coefficients.
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For each linear system (1) or a high order Eq. (2) with meromorphic coefficients
one can choose representatives of germs of all coefficients ai j (t), resp., ai (t) in a
punctured neighborhood of the origin (C1, 0)�{0} so small that all representatives
are holomorphic in this punctured neighborhood. The classical theorems of analysis
guarantee that solutions of the system (resp., equation) are holomorphic on the uni-
versal cover of this punctured neighborhood, i.e., in the more traditional terminology,
are multivalued analytic functions on (C1, 0) ramified at the origin.

If the coefficients of the system (1) are holomorphic at the origin, i.e., A ∈
Mat(n,O) � Mat(n,M ), then for the same reasons solutions of the system are
holomorphic (hence single-valued) at the origin. This case is called nonsingular, and
the corresponding matrix equation admits a unique solution X ∈ GL(n,O) with the
initial condition X (0) = E (the identity matrix).

Solution X of a general matrix equation ∂X = AX with A ∈ GL(M , n) after
continuation along a small closed loop around the origin gets transformed into another
solution X ′ = XM of the same equation. The monodromy matrix M ∈ GL(n, C)

depends on X .
A homogeneous Eq. (2) defined by a linear operator L = ∑n

i=0 ai∂
n−i can always

be multiplied by a meromorphic multiplier so that all its coefficients become holomor-
phic and at least one of them is nonvanishing at the origin. The reduction (3) shows
that if it is the leading coefficient a0 that is nonvanishing, then all solutions of the
equation Lu = 0 are holomorphic at the origin (we call such operators nonsingular),
otherwise they may be ramified at the origin.

Choose a neighborhoodU = (C1, 0) andmeromorphic representatives of the germs
a j (·)which have no other poles inU expect for t = 0. If 0 �= t0 ∈ U is any other point
in the domain of the system (equation), then it is well known that germs of solutions
of the system (equation) Lu = 0 form a C-linear subspace in ZL ⊂ O(C, t0) of
dimension dimC ZL exactly equal to n. After the analytic continuation along a small
loop around the origin, this space is mapped into itself by a linear invertible map called
the monodromy transformation (monodromy, for short): for any basis u1, . . . , un in
the space of solutions (considered as a row vector function), we have

�
(
u1 · · · un

) = (
u1 · · · un

)
M (7)

for a suitable nondegenerate matrix M (depending on the basis {ui }ni=1).

1.5 Different Flavors of the Gauge Classification

The gauge transformation group G = GL(n,M ) introduced above, may be too large
for certain problems of analysis, see Sect. 1.4. For several reasons it is interesting to
consider a smaller group Gh = GL(n,O) of holomorphic matrix functions which are
holomorphically invertible. It is the semidirect product of GL(n, C) and the group
G0 of holomorphic matrix germs H which are identical at the origin, G0 = {H ∈
G : H(0) = E}.

Besides, one can identify two types of singularities of linear systems, characterized
by strikingly different behavior of solutions, called respectively regular (in full, regular
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singular, to avoid confusion with nonsingular systems) and irregular singularities.
Recall (Ilyashenko and Yakovenko 2008, Definition 16.1) that the system (1) is called
regular if the norm |X (t)| of any its fundamental matrix solution grows no faster than
polynomially when approaching the singular point in any sector on the t-plane (more
precisely, on the universal cover of (C1, 0)�0):

|X (t)| � Ct−N ∀t ∈ (C1, 0), α < Arg t < β, C > 0, N < +∞, (8)

for some constants C, N depending on the sector (its opening and the radius). This
condition is difficult to verify as it refers to the properties of solutions, but it is auto-
matically satisfied for Fuchsian systems, when the meromorphic matrix function A
has a pole of at most first order [Ilyashenko and Yakovenko 2008, Theorem 16.10
(Sauvage, 1886)].

Example 1 An Euler system is any system of the form ∂X = t−1BX with a constant
matrix B ∈ Mat(n, C). Its fundamental matrix solution is given by the (multivalued)
matrix function X (t) = t B = exp(B ln t), t ∈ (C, 0). If B = diag(λ1, . . . , λn)
is a diagonal matrix with λi ∈ C, then the solution is also diagonal, X (t) =
diag(tλ1, . . . , tλn ). The monodromy matrix of this solution is exp 2π i B ∈ GL(n, C).

In general if λ1, . . . , λn are the eigenvalues of the matrix B, then the corresponding
Euler system is called resonant if some of the differences λi −λk are natural numbers
(nonzero), otherwise the system is called nonresonant.

The principal results on classification of linear systems are summarized in Table 1,
based on Ilyashenko and Yakovenko (2008, §16, §20).

The notions of (ir)regularity can be defined also for linear equations of higher order.
Somewhat mysteriously, unlike in the case of general linear systems, it is equivalent
to a condition on the order of the poles of the ratios ai/a0 ∈ M of the coefficients of
the equation (this condition is also called the Fuchsian condition).

1.6 Goals of the Paper and Main Results

Westudy the classification of nonsingular or Fuchsian (singular) equationswith respect
to the Weyl equivalence (formally introduced below).

It can be easily shown (see below) that nonsingular equations are Weyl equivalent
to the trivial equation ∂nu = 0, whose solutions are polynomials of degrees � n − 1.
An equally simple fact is the Weyl equivalence of any Fuchsian equation to an Euler
equation. Furthermore, we show that the property of a Fuchsian equation to possess
only holomorphic (or meromorphic) solutions can be expressed in terms of Weyl
equivalence.

In our paper we introduce a more fine Fuchsian equivalence, or F -equivalence
for short, using expansion of operators in noncommutative Taylor series. It turns
out that the corresponding classification of Fuchsian operators is very similar to the
holomorphic classification of Fuchsian systems. In particular, in the nonresonant case
any Fuchsian equation isF -equivalent to an Euler equation, while resonant operators
areF -equivalent to operators with polynomial coefficients, i.e., fromC[t][∂]. Finally,
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Table 1 Normal forms of linear systems

Type of singularity / Group Holomorphic 0 Meromorphic

Nonsingular Trivial Trivial

Fuchsian nonresonant Euler

Fuchsian resonant Polynomial integrable Euler

Regular non-Fuchsian Rational

Irregular nonresonant Formally diagonalizable, divergent

Irregular resonant Ramified gauge transforms are required

Polynomial normal form The system takes the form ∂X = t−1(B0 + B1t + B2t
2 + · · · + Bpt p)X , where

p is the maximal integer difference between the eigenvalues of the Jordan matrix B0. The matrices Bk may
have nonzero entry in the (i, j)th position only if λi − λ j = k, that is, are very sparse. The system in the

normal form can be explicitly solved: there exists a fundamental matrix solution of the form X (t) = t P t Q

with two constant matrices P, Q ∈ Mat(n,C) not commuting between themselves.
Rational normal norm In this case the normal form is rational and explicit but its description is off the main
track of this work.
Irregular systems For irregular systems with the matrix of coefficients represented by a Laurent series
A(t) = t−r (A0 + t A1 + · · · ), r � 2, the definition of non-resonance requires that the eigenvalues of
the leading matrix coefficient A0 are pairwise different. In the nonresonant case one can find a formal
matrix series H(t) = E + H1t + H2t

2 + · · · which reduces the system to a diagonal normal form
∂X = t−r D(t)X with a diagonal polynomial normal form, with D(0) = A0, but this series almost always
diverges, see Ilyashenko and Yakovenko (2008, §20). To deal with the resonant case, one has to consider
gauge transformations with entries being themselves ramified, i.e., involving noninteger powers of t . We
will not deal with irregular systems or equations in this paper.

we show that any (resonant) Fuchsian operator is F -equivalent to an operator which
is Liouville integrable, that is, whose solutions can be obtained from rational functions
by iterated integration and exponentiation.

2 Algebras of Differential Operators

In this section we recall the basic facts about the algebra of differential operators with
coefficients from a differential field.

2.1 Noncommutative Polynomials in One Variable Over a Differential Field

Consider the C-algebra k[∂] generated by the differential field k and the symbol ∂

with the noncommutative multiplication satisfying the Leibniz rule,

∂ · a = a · ∂ + a′, a, a′ ∈ k, a′ = ∂a = the derivative of a. (9)

This algebra can be considered as the algebra of differential operators acting on “test
functions”, where elements from k act by multiplication u �→ au and ∂ is the deriva-
tion. The operation corresponds to the composition of operators (and the dot will be
omitted from the notation).
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Any operator from k[∂] can be uniquely represented under the “standard form”

L = a0∂
n + a1∂

n−1 + · · · + an−1∂ + an, a0, . . . , an ∈ k, a0 �= 0 (10)

with the coefficients ai to the left from the powers of ∂ . The number n � 0 is called
the order of the operator L . The composition LM of two operators L and M =
b0∂m + · · · ∈ k[∂] of orders n and m is an operator of order n +m with the (nonzero)
leading coefficient a0b0 ∈ k.

The key property of the algebra k[∂] is the possibility of division with remainder.
Indeed, if n = ord L � m = ord M , then the difference L − a0b

−1
0 ∂n−mM is an

operator with zero (absent) “leading coefficient” before ∂n , i.e., is of order strictly less
than n. Iterating this order depression, one can find two operators Q, R ∈ k[∂] such
that

L = QM + R, ord Q = ord L − ord M, ord R < ord M. (11)

When R = 0 we say that L is divisible by M .
This construction allows to define for any two operators L , M ∈ k[∂] their greatest

common divisor D = gcd(L , M) as the operator of maximal order which divides
both L and M (this operator is defined modulo a multiplication by an element from
k). The Euclid algorithm (Ore 1933, Theorem 4) guarantees that for any L , M there
exist U, V ∈ k[∂] such that

UL + V M = gcd(L , M), ordU < ord M, ord V < ord L . (12)

A less direct computation allows to construct the least common multiple lcm(L , M)

which is by definition the smallest order operator divisible by both L and M (and
also defined modulo a nonzero coefficient from k). Indeed, consider the operators
M, ∂M, ∂2M, . . . , ∂nM modulo L , i.e., their remainders after division by L , n =
ord L . Since all these n + 1 remainders are of order � n − 1, they must be linear
dependent over k, that is, a certain linear combination (c0∂n +· · ·+ cn−1∂ + cn)M =
PM must be divisible by L: PM = QL , ord P � ord L , ord Q � ord M . There
is an explicit formula expressing lcm(L , M) through the operators appearing in the
Euclid’s algorithm, see Ore (1933, Theorem 8).

2.2 Algebra vs. Analysis

Denote byW the local Weyl algebra k[∂] in the case where k = M is the differential
field of meromorphic germs.

If an operator L is divisible byM inW , then their spaces of solutions ZL , resp., ZM ,
are subject to the inclusion ZM ⊆ ZL . Conversely, if for two operators L , M ∈ W we
have ZM ⊆ ZL , then L is divisible by M . Indeed, otherwise the remainder of division
of L by M would be an operator of order strictly less than ord M , whose solutions
form the space of superior dimension dim ZM = ord M . In terms of solutions,

D = gcd(L , M) ⇐⇒ ZD = ZL ∩ ZM ,

P = lcm(L , M) ⇐⇒ ZP = ZL + ZM
(13)

123



On Local Weyl Equivalence of Higher… 149

(the sum of linear subspaces in O(C, t0) is assumed).
Thus two equations Lu = 0 and Mv = 0 are of the same type in the sense of

Sect. 1.3, if their order is the same and there exists an operator H ∈ W which maps
ZL to ZM isomorphically: for any u such that Lu = 0, the function v = Hu is
annulled by M .

Definition 1 Two operators L , M ∈ W of the same order n are calledWeyl equivalent
(or Weyl conjugate), if there exist two operators H, K ∈ W of order � n − 1, such
that

MH = K L , gcd(L , H) = 1, ord H, K < ord L , M. (14)

The operator H is said to be the conjugacy between L and M .

Remark 2 Ø. Ore uses the notation M = lcm(L , H)H−1 = HLH−1 to denote the
fact of conjugacy to stress its resemblance with the “similarity” in the noncommuta-
tive algebra W . It has its mnemonic advantages, although the formal construction of
(noncommutative) field of ratios forW requires additional efforts (Ore 1933, p. 487).

We will abbreviate the words “Weyl equivalence” (resp., conjugacy) to W -
equivalence (conjugacy) for simplicity.

Theorem 1 W -conjugacy is indeed an equivalence relation: it is reflexive, transitive
and symmetric.

Proof It is obvious that this relationship is reflexive (suffices to choose H = K = 1).
To prove its transitivity, assume that L1 is W -conjugate with L2, and L2 with L3.
This means that there exist operators Hi , Ki ∈ W , i = 1, 2, of order � n − 1 such
that L2H1 = K1L1 and L3H2 = K2L2. Then L3H2H1 = K2K1L1. To produce a
pair (H ′, K ′) conjugating L1 with L3, it suffices to define H ′ = H2H1 mod L1: the
order of this remainder will not exceed n − 1 by construction. One has to check that
gcd(H ′, L1) = 1, but this is obvious: if u is a nontrivial solution of L1u = 0 and
gcd(H1, L1) = 1, then v = H1u is a nontrivial solution of L2v = 0, hence H2v �= 0.
Replacing H2H1 by its remainder modulo L1 cannot change the fact that H2H1u �= 0
for any solution of L1u = 0.

The symmetry is less trivial, see Ore (1933, Theorem 13). For the reader’s con-
venience we provide here a short direct proof due to Yu. Berest. It is convenient to
formulate it as a separate lemma. ��
Lemma 1 For any two operators L , M satisfying (14), there exists a pair of operators
V,W ∈ W such that LV = WM and gcd(V, M) = 1.

Proof By (12), the condition gcd(L , H) = 1 implies that there exist U, V ∈ W such
UL+V H = 1. Multiplying this identity by L from the left, we see that (LU −1)L =
LV H , that is, the operator Q, expressed by each side of the identity, is divisible by both
H and L . This means that the operator LV H is divisible by P = lcm(H, L), which in
turn has two representations, P = MH = K L as in (14). The last divisibility means
that LV H = WP = WMH in W . Yet since W has no zero divisors (the leading
coefficient of any composition is nonzero), we can cancel H and arrive at the identity
LV = WM . It is a simple exercise to see that gcd(V, M) = 1. ��
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2.3 Nonsingular Operators

An operator L ∈ W of the form (10) is referred to as nonsingular, if all its coefficients
are holomorphic, ai ∈ O(C, 0), and the leading coefficient is invertible, a0(0) �= 0.
Nonsingular operators can be reduced by the transformation (3) to a holomorphic
(nonsingular) system of first order equations. An immediate conclusion is that the
corresponding equation Lu = 0 has only holomorphic solutions, and a fundamental
system of solutions {uk}nk=1 can always be chosen so that uk(t) = tk + · · · where the
dots stand for terms of order greater than k.

2.4 Fuchsian Operators

There exists another special subclass of linear operators L ∈ W with the property
that the respective linear equations Lu = 0 enjoy a certain regularity, namely, all their
solutions grow moderately when approaching the singular point at the origin. Unlike
the general linear systems (1), such operators admit precise algebraic description. It
can be given in several equivalent forms.

Note that together with the “basic” derivation ∂ any other element a∂ ∈ W is also
a derivation of the field M (C-linear self-map satisfying the Leibniz rule). It can be
used as the generator of the algebra W . We will be mostly interested in the Euler
derivation ε = t∂ ∈ W with the commutation rule

ε = t · ∂, ε · tm = tm · (ε + m), ∀m ∈ Z, (15)

cf. with (9). Though the derivations ∂ and ε are very simply related, their algebraic
nature is radically different. Restricted on the finite-dimensional subspace of poly-
nomials of any finite degree, the standard derivation ∂ is nilpotent, while the Euler
derivation is semisimple (ε is diagonal in the monomial basis, ε(tm) = mtm).

For any polynomial w ∈ C[ε] in the variable ε denote by w[ j], j ∈ Z, the shift of
the argument:

w �→ w[ j], w[ j](ε) = w(ε + j), j ∈ Z. (16)

This operator preserves the degree of the polynomial, and using it one can rewrite the
commutation rule (15) as follows,

∀w ∈ C[ε], ∀ j ∈ Z, wt j = t jw[ j]. (17)

Substituting ∂ = t−1ε and re-expanding terms, any operator L ∈ W can be repre-
sented under the form

L = r0ε
n + r1ε

n−1 + · · · + rn−1ε + rn, ri ∈ M , r0 �= 0. (18)

Definition 2 An operator L is called Fuchsian, if in the representation (18) all coef-
ficients ri are holomorphic and the leading coefficient r0 is invertible (nonvanishing):

r0, r1, . . . , rn ∈ O(C1, 0), r0(0) �= 0. (19)
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The operator is pre-Fuchsian, if it has a form hL with any nonzero h ∈ M ; without
loss of generality one may assume that h = tk , k ∈ Z.

An operator is called Eulerian, if all coefficients r0, . . . , rn ∈ C are constant.

Remark 3 In the classical literature the notion of Fuchsian operators is not defined,
only the notion of a (homogeneous) Fuchsian equation of the form Lu = 0 is discussed,
see Ince (1944). Clearly, two operators L ∈ W and hL , h ∈ M , define the same
homogeneous equation. For operators written in the form (18), the corresponding
homogeneous equationwill be Fuchsian if and only if all ratios ri/r0 ∈ M are actually
holomorphic at t = 0 for all i = 1, . . . , n. Our choice may seem to be artificial, yet it
is justified by subsequent computations.

We will denote by F ⊂ W the set of all Fuchsian operators. It is convenient to
assume that holomorphically invertible germs and meromorphic germs belong inF ,
resp., pre-F as “differential operators of zero order”.

A Fuchsian differential equation Lu = 0 with L as in (18) can be reduced to a
Fuchsian system in the sense (1.5) by slightly modifying the computation (3): one has
to introduce the new variables as follows, x1 = u, and then

εxk = xk+1, k = 1, . . . , n − 1, εxn = −r−1
0 (r1xn−1 + · · · + rnx1) (20)

(recall that r0 is invertible hence r−1
0 ∈ O), or in the matrix form, εx = Rx , with

the holomorphic matrix R ∈ Mat(n,O) of coefficients. This computation explains
the relation of two Fuchsian objects of different nature. However, unlike the case of
systems, in the case of scalar equations the Fuchsian condition is not only sufficient,
but also necessary for the regularity (moderate growth of solutions).

Theorem 2 [L. Fuchs (1868), see Ilyashenko andYakovenko (2008, Theorem 19.20)]
The operator L ∈ W is pre-Fuchsian if and only if all solutions of the equation Lu = 0
and all their derivatives grow at most polynomially in any sector with the vertex at
the origin in the sense (8).

2.5 First Results on W -Classification

The initial results on W -equivalence are completely parallel to Gh-classification of
nonsingular systems and G -classification of regular systems: even the ideas of the
proofs remain the same.

Theorem 3 A nonsingular operator is W -conjugate to the operator M = ∂n by a
nonsingular operator H of order n − 1.

Proof Anynonsingular equation Lu = 0of ordern always admitsn linear independent
solutions of the form uk(t) = tk−1(1 + · · · ), k = 1, . . . , n. Indeed, one should look
for solutions of the companion system (3) with a suitable initial condition xk(0) = 1,
x j (0) = 0 for all j �= k.

A linear operator H transforming solutions vk = tk−1 of the equation ∂n = 0 to
solutions of the equation Lu = 0 by the formulas (6) can be obtained by the method of
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indeterminate coefficients: H = h1∂n−1+· · ·+hn−1∂+hn . The equations Hvk = uk ,
k = 1, . . . , n correspond to a system of linear algebraic equations over O for the
unknown coefficients hi :

(
hn hn−1 · · · h1

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 t t2 · · · tn−1

1 2t · · · (n − 1)tn−2

2
...

. . .
...

(n − 1)!

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (
u1 u2 · · · un

)

The matrix J of coefficients, the companion matrix of the tuple of solutions v1 = 1,
v2 = t, . . . , vn = tn−1, is holomorphic and invertible (it is upper triangular with
nonzero diagonal entries). A simple inspection shows that the leading coefficient h1
cannot vanish at t = 0, hence the operator H will be nonsingular. ��

A minor modification of this argument proves the following general result.

Theorem 4 Any (pre-)Fuchsian operator isW -equivalent to an Euler operator from
C[ε].
Proof Let, as before, J denote the Euler-companion matrix of n linear independent
solutions u1, . . . , un of the equation Lu = 0: unlike the usual companion matrix, it is
obtained by applying the iterated Euler derivation ε instead of ∂ to the functions ui :

J = J (t) =

⎛

⎜
⎜
⎜
⎝

1
ε
...

εn−1

⎞

⎟
⎟
⎟
⎠

· (
u1 u2 . . . un

) =

⎛

⎜
⎜
⎜
⎝

u1 u2 . . . un
εu1 εu2 . . . εun
...

...
. . .

...

εn−1u1 εn−1u2 . . . εn−1un

⎞

⎟
⎟
⎟
⎠

Unlike in the nonsingular case, we cannot guarantee anymore that J (t) is holomorphic
and invertible: its entries are in general multivalued and grow moderately at the origin
(Ince 1944). The companion matrix J (t) has a monodromy factor C ∈ GL(n, C):
�J (t) = J (t)C exactly as in (7) which applies to each row of the matrix J . Yet one
can always find an Euler equation whose tuple of solutions v = (v1, · · · , vn) will
exhibit exactly the same monodromy matrix factor C , see Ilyashenko and Yakovenko
(2008, Proposition 19.29): �v = vC . The corresponding linear system of algebraic
equations takes the form

(
hn hn−1 · · · h1

)
J (t) = (

v1 v2 · · · vn
)

The solution is given by the product
(
hn hn−1 · · · h1

) = (
v1 v2 · · · vn

) · J−1(t). This
product is single-valued: after analytic continuation around the origin we have

�
(
hn · · · h1

) = (
v1 · · · vn

)
C · C−1 J−1(t) = (

hn · · · h1
)
.
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Because of the moderate growth assumption, the coefficients h j of the conjugating
operator H must be meromorphic germs at the origin, thus H ∈ W . ��
Remark 4 There is no reason to expect that the operator H conjugating two Fuchsian
operators is necessarily (pre)-Fuchsian. Indeed, let L be any Fuchsian operator and
H an irregular conjugacy. Applying H to any basis tuple of solutions u1, . . . , un of
Lu = 0, we obtain another tuple vi = Hui which also grow moderately and have
the same monodromy as ui . By the Fuchs theorem, they satisfy a Fuchsian equation
Mv = 0. Thus, the two Fuchsian operators L , M are conjugated by a (unique for the
reasons of order/dimension) irregular operator H .

In other words, the (general) Weyl classification of (pre)-Fuchsian operators
coincides with the classification of their monodromy matrices, very much like the
meromorphic gauge classification of linear systems (1).

3 Fuchsian Equivalence

It appears that a comprehensive analog of the holomorphic gauge equivalence between
Fuchsian linear systems is the Fuchsian equivalence of Fuchsian operators: modulo
technical details, this equivalence means theWeyl conjugacy (14) by a Fuchsian oper-
ator H subject to certain nondegeneracy constraints. We start with developing the
formal theory of such equivalence via noncommutative formal power series.

3.1 Noncommutative Taylor Expansions for Fuchsian Operators

Together with the representation of differential operators from the ring W = M [ε]
as polynomials in ε ∈ W with coefficients in M , we can expand them in convergent
noncommutative Laurent series in the variable t ∈ (C1, 0) with (right) coefficients
from the (commutative) ring C[ε]. Any operator L ∈ W of order n = ord L can be
expanded under the form

L =
+∞∑

k=−N

tk pk(ε), max
k

degε pk = n, N < +∞.

The operator is Fuchsian if and only if all powers are nonnegative and the leading
coefficient p0 is of the maximal degree: L ∈ F if and only if

L =
∞∑

k=0

tk pk(ε), pk ∈ C[ε], deg pk � n, deg p0 = n. (21)

The differential operator p0 ∈ C[ε] ⊂ F is called the Euler part of L , or its Euler-
ization (in analogy with linearization) and denoted by E (L).

Very informally, an operator with holomorphic coefficients can be considered as a
small perturbation of its Eulerization. The Fuchsian condition means that this pertur-
bation is nonsingular, i.e., it does not increase the order of the Euler part, in the same
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way as the nonsingularity condition means that the operator can be considered as a
small nonsingular perturbation of the operator p(∂).

The key tool used in this paper will be a systematic use of the Taylor expansion (21)
in exactly the sameway the theory of formal series with matrix coefficients of the form
H(t) = ∑∞

k=0 t
k Hk , H ∈ Mat(n, C), is used in the theory of formal normal forms

of vector fields (Ilyashenko and Yakovenko 2008, §4 and §16). Note the difference in
the algebraic nature of the noncommutativity: in the matrix case the coefficients Hk

commute with the variable t but in general do not commute between themselves. In
the operator case the polynomial coefficients pk ∈ C[ε] commute between themselves
but do not commute with t .

Together with the convergent noncommutative Taylor series, it is convenient to
introduce the class of formal Fuchsian operators.

Definition 3 A formal Fuchsian operator is a formal series of the form (21) without
any convergence assumption. The set of formal Fuchsian operators is denoted by F̂ .

Remark 5 For any two Fuchsian operators L , M ∈ F their composition is again a
Fuchsian operator of order ord L + ord M . If ord M � ord L , then the incomplete
ratio Q as in (11) is a Fuchsian operator of order ord L − ord M . The same applies to
F̂ . This follows from direct inspection of the division algorithm.

However, the set F is not a subalgebra of W : the sum of two Fuchsian operators
may well be non-Fuchsian. Hence the remainder R as in (11) after the incomplete
division may well turn non-Fuchsian (the leading coefficient may vanish). Yet for any
two given Fuchsian operators L , M of degrees n > m one can construct a relaxed
division with remainder L = Q′M + R′ with ord Q′ = n − m and ord R′ = m and
Q′, R′ Fuchsian. Indeed, it suffices to modify the standard division with remainder
L = QM + R with ord R � m − 1 (assuming Q, R with holomorphic coefficients)
and replace Q′ = Q − 1, R′ = M + R: the latter operators will be automatically
Fuchsian.

3.2 Main Definition

Definition 4 Two operators L , M ∈ W of the same order n are called Fuchsian
equivalent (or F -equivalent), if there exist two Fuchsian operators H, K ∈ F
such that MH = K L (exactly as in Definition 1), but with the additional property
that the Euler parts of H and L are mutually prime (have no common roots), i.e.,
gcd(E (H), E (L)) = 1 ∈ C[ε].

Two formal Fuchsian operators L , M ∈ F̂ are called formallyF -equivalent (F̂ -
equivalent in short) if there exist H, K ∈ F̂ such that MH = K L and the Euler parts
of H, L are mutually prime.

We expect that the Fuchsian classification (and its formal counterpart) for arbitrary
operators from W will be a very challenging problem with the Stokes phenomenon
(Ilyashenko and Yakovenko 2008, §20) manifesting itself in a new way. However,
everywhere below we will deal only with theF -equivalence between Fuchsian oper-
ators.
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Note that we dropped the condition on the order of H, K which can now be higher
than n. Besides, in this definition we replaced the condition gcd(H, L) = 1 ∈ W from
(14) by the stronger condition on the mutual primality of the respective Eulerizations.

Theorem 5 F̂ -conjugacy is indeed an equivalence relation: it is reflexive, symmetric
and transitive.

Reflexivity is obvious: each operator L is F -equivalent to itself by admissible
conjugacy H = 1 (which is a zero order Fuchsian operator).

The transitivity is even simpler compared to the proof of Theorem 1: we do not
replace the composition H2H1 of F -conjugacies, which is always Fuchsian, by its
remainder mod L1, which may be non-Fuchsian.

However, the proof of the symmetry, given in Lemma 1 relies on the possibility of
representing the identical operator 1 by a combination 1 = UL + V H with Fuchsian
operatorsU, V ∈ F̂ . Simple example shows that even under the stronger assumption
gcd(E (L), E(H)) = 1, this representation is not always possible with operators of
the minimal order n − 1.

To correct the situation, one has to allow operators of above-the-minimal order.

3.3 Fuchsian Invertibility

It will be convenient to introduce the following notation:

∀L , H ∈ F gcd0(L , H) = gcd(E (L), E (H)) ∈ C[ε]. (22)

Using this notation, the second condition of F -equivalence can be shortened to
gcd0(L , H) = 1.

As follows from the proof of Lemma 1, the key step is to show that if H is a Fuchsian
operator such that gcd0(L , H) = 1, then there exist two Fuchsian operatorsU, V ∈ F
such that UL + V H = 1 ∈ F and gcd0(V, L) = 1. Recall that if p, q ∈ C[ε] are
two relatively prime polynomials of respective degrees n,m, then the linear Sylvester
map from C

m × C
n to C

m+n

S = Sp,q : (u, v) �→ pu + qv, deg u � m − 1, deg v � n − 1, (23)

is injective and surjective (here we identify C
m and C

n with the linear spaces of
polynomials of degree � m − 1, resp., � n − 1). In particular, any equation in C[ε]
of the form

up + vq = r, deg r � deg p + deg q − 1,

is solvable with respect to u, v constrained as above.
The following result is the analog of the implicit function theorem for differential

operators.
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Lemma 2 If L , M ∈ F are two Fuchsian operators with gcd0(L , M) = 1, then
for any operator R = ∑

tkrk(ε) of order � ord L + ord M − 1 with holomorphic
coefficients the equation

UL + V M = R

is solvable with respect to the operators U, V of orders ord M − 1 and ord L − 1
respectively, also with holomorphic coefficients.

Note that we do not assume R Fuchsian, nor claim the Fuchsianity of U and V .

Proof The proof is achieved by inductive determination of the coefficients of the
unknown operators U, V .

Substitute the expansions for L = ∑∞
0 tk pk and M = ∑∞

0 tkqk and the unknown
operators U = ∑∞

0 tkuk , V = ∑∞
0 tkvk , pk, qk, uk, vk ∈ C[ε] into the equation

UL + V M = R:

(u0 + tu1 + t2u2 + · · · )(p0 + tp1 + t2 p2 + · · · )
+ (v0 + tv1 + · · · )(q0 + tq1 + · · · ) = r0 + tr1 + t2r2 . . .

Using the commutation rules (16), we reduce this operator identity to an infinite series
of identities in C[ε],

u0 p0 + v0q0 = r0,

u[1]
0 p1 + u1 p0 + v

[1]
0 q1 + v1q0 = r1,

u[2]
0 p2 + u[1]

1 p1 + u2 p0 + v
[2]
0 q2 + v

[1]
1 q1 + v2q0 = r2,

........................

· · · + uk p0 + vkq0 = rk, ∀k � 0.

This system has a “triangular” form: each left hand side is the sum of the term uk p0 +
vkq0 = S(uk, vk) and terms involved shifted polynomials u[ j]

i , v[ j]
i with i, j < k. By

the relative primality of p0, q0, for any combination of previously defined coefficients
the equation number k is always uniquely solvable with respect to some polynomials
deg uk � deg q0 − 1, deg vk � deg p0 − 1. ��
Remark 6 The proof of the convergence of the series for U and V can be obtained
directly by control over the growth of the polynomial coefficients.

However, a simpler argument works. Expanding U, V as polynomials of ε with
analytic coefficients from O(C, 0),

U =
∑

k

ak(t)ε
k, V =

∑

j

b j (t)ε
j ,

we see that the operator equation UL + V M = R reduces to a system of linear non-
homogeneous algebraic equations with respect to the unknown coefficients a(t), b(t):
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in a symbolic way, this system can be written as C(t)z = f (t), where C(t) is an
(n + m) × (n + m)-matrix with holomorphic entries (produced from the coefficients
of the operators L and M and their ε-derivatives), and f (t) is an (n+m)-dimensional
holomorphic vector function.

One can easily see that the condition gcd0(L , M) = 1 implies that the matrix C(0)
is nondegenerate and the system has a holomorphic solution. The formal computa-
tion amounts to the formal inversion of the corresponding matrix C(t) without even
explicitly writing it down.

Unfortunately, the goal of solving the equation UL + V H = 1 in the class of
Fuchsian operators cannot be achieved using only this Lemma: indeed, there is no
way to ensure that the polynomial v0 = E (V ) has the maximal degree equal to ord V .
The way out is to look for a solution of higher order.

We look for a Fuchsian solution of the equation UL + V H = 1 in the class of
operators ordU � ord H = m, ord V � ord L = n as follows,

U = H +Um−1, V = −L + Vn−1, ordUm−1 � m − 1, ord Vn−1 � n − 1.

Substituting these formulas into the original equation, we transform it to the equation

Um−1L + Vn−1H = 1 − [H, L], [H, L] = HL − LH. (24)

The commutator [L , H ] of the two Fuchsian operators possesses two obvious proper-
ties. It is an operator of order no greater than ord L+ord H−1 (the highest order terms,
in the expansion (18), the symbols of operators cancel each other when computing the
commutator). On the other hand, its Euler part vanishes.

Thus the equation is solvable by virtue of Lemma 2, and

E (Um−1)E (L) + E (Vn−1)E (H) = 1 ∈ C[ε].

In other words, gcd0(Vn−1, L) = 1. The operator V = −L + Vn−1 is Fuchsian (since
L is Fuchsian of order n), and gcd0(V, L) = gcd0(Vn−1, L) = 1.

This completes the proof of the symmetry of the F -equivalence.

4 FormalF -Classification of Fuchsian Operators

This and the next section contain the main results of the paper. They are established on
the formal level, yet at the endwewill show that any F̂ -conjugacy between convergent
Fuchsian operators in fact converges.

4.1 Nonresonant Case: Eulerization

We start by establishing an analog of the linearization theorem for nonresonant sys-
tems, cf. with the second line in Table 1.
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Definition 5 A Fuchsian operator L ∈ F is nonresonant, if no two roots of E (L) ∈
C[ε] differ by a positive integer number (multiple roots are allowed).

Proposition 1 A nonresonant Fuchsian operator isF -equivalent to its Euler part.

Proof Consider the expansion of the operator: L = ∑∞
j=0 t

j p j (ε), p0 = E (L). We

look for an operator H = ∑
t j h j (ε) which would solve (together with some other

Fuchsian operator K = ∑
t j k j (ε) ∈ F ) the operator equation p0(ε)H = K L . After

substituting the expansions and using the commutation rule (15), we obtain in the left
hand side the operator

p0(ε)H = p0h0 + tp[1]
0 h1 + · · · + t j p[ j]

0 h j + · · · ,

cf. with the notation (16)–(17). In the right hand side the expansion for

K L = (k0 + tk1 + t2k2 + · · · )(p0 + tp1 + t2 p2 + · · · )

will have more complicated form: the term proportional to t j has the form

t j (k j p0 + k [1]
j−1 p1 + k [2]

j−2 p2 + · · · + k [ j]
0 p j ).

The operator equation thus splits into an infinite number of polynomial equations
involving the known polynomials p j and unknown h j , k j as follows,

p0h0 = k0 p0,

p[1]
0 h1 = k1 p0 + k [1]

0 p1,

p[2]
0 h2 = k2 p0 + k [1]

1 p1 + k [2]
0 p2,

........................

p[ j]
0 h j = k j p0 + k [1]

j−1 p1 + · · · + k [ j]
0 p j ,

........................ (25)

This system can be solved inductively: on the first step we choose h0 = k0 any
polynomial of degree n − 1 relatively prime with p0. The remaining equations all
have the common structure:

p[ j]
0 h j − p0k j = u j , (26)

where u j ∈ C[ε] is a polynomial of degree � 2n − 1 built from the already obtained
polynomials k0, . . . , k j−1 and known p1, . . . , p j .

If L is nonresonant, no two roots of p0 differ by a positive integer j , hence
gcd(p0, p

[ j]
0 ) = 1 for all j = 1, 2, . . . and any such equation is (uniquely) solv-

able by a suitable pair (h j , k j ) of polynomials of degree � n − 1. Thus the entire
infinite system admits a formal solution (H, K ).

It remains to show that if the series for L = ∑
t j p j was convergent, so will be the

series for L and K . This can be done by the direct estimates, yet we give a general
proof avoiding all computations later, in Sect. 6. ��
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4.2 F -Normal Form and Apparent Singularities

Some properties of solutions can be easily described in terms ofF -equivalence. Recall
that a singular point of a differential equation is called apparent, if all solutions of this
equation are holomorphic at this point.

Proposition 2 A Fuchsian operator has only meromorphic solutions if and only if it is
F -equivalent to an Euler operator L = E (L) = p0(ε) with integer pairwise different
roots, p0(ε) = ∏n

i=1(ε − λi ), λi ∈ Z, λi �= λk for i �= k.
A Fuchsian operator has only holomorphic solutions, if and only if it is F -

equivalent to an Euler operator as above, with nonnegative pairwise distinct roots,
λi ∈ Z+.

Proof In one direction both statements are obvious. We show that Fuchsian operators
with only meromorphic (resp., holomorphic) solutions are F -equivalent to an Euler
equation as above.

One can easily show that any n-dimensionalC-linear subspace 	 inM (C, 0) (resp.,
inO(C, 0)) admits a basis of the germsof the form fi = tλi ui (t)withpairwise different
integer (resp., nonnegative integer) powers λi , ui ∈ O(C, 0) and ui (0) = 1. Indeed,
we can start with anyC-basis f1, . . . , fn in 	 and normalize them so that each function
has a monic leading term tλi (1+ · · · ). If there are two equal powers among the initial
collection, λi = λk , then their difference (which cannot be identically zero by linear
independence) has the leading term proportional to tμ, λi = λk < μ ∈ Z. Repeating
this procedure finitely many steps, one can always achive the situation when λi �= λk .

Now we construct explicitly the Fuchsian operator H = ∑
t j h j (ε) which would

transform the monomials tλi , i = 1, . . . , n, to the functions ci fi for suitable coeffi-
cients ci ∈ C. Note that each monomial tλi is an eigenfunction for any Euler operator,
in particular, h j (ε)tλi = h j (λi )tλi , and therefore

Htλi = ϕi (t)t
λi , ϕi (t) =

∑

j�0

t j h j (λi ).

The equations Htλi = tλi (ci + ci1t + ci2t2 + · · · ) are thus transformed to the infinite
number of interpolation problems,

h0(λi ) = ci , h j (λi ) = ci j , i = 1, . . . , n, j = 1, 2, . . .

Such problems are always solvable by polynomials h j ∈ C[ε] of degree � n − 1, and
since ci = h0(λi ) �= 0, we have gcd(h0, p0) = 1. By a suitable (generic) choice of
the constants ci �= 0, one may guarantee that deg h0 = n − 1, that is, H is indeed a
Fuchsian operator, as required for theF -equivalence. ��

Note that in both cases the normal form is maximally resonant: all differences
between the roots of the Euler part are integer.

Remark 7 This results shows to what extent the F -equivalence is more fine than
the W -equivalence. Indeed, given the trivial monodromy, all operators having only
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meromorphic solutions, are W -equivalent to the same Euler operator t−n∂n = ε(ε −
1) · · · (ε − n + 1). On the other hand, two different Euler operators are never F -
equivalent: if gcd(p0, h0) = 1, then the identity p0h0 = q0k0 in C[ε], the first line
from (25), implies that p0 = q0 and h0 = k0.

4.3 Resonant Case: Homological Equation and its Solvability

If some of the roots of the Euler part p0 differ by a natural number, then the cor-
responding Eq. (26) may become unsolvable and in general transforming a resonant
Fuchsian operator L ∈ F to its Euler part E (L) ∈ C[ε] is impossible, see Example
2 below. However, one can useF -equivalence to simplify Fuchsian operators.

If a Fuchsian operator H = ∑
t j h j (ε) conjugates L with another operator M =∑

t j q j (ε) ∈ F , then the left hand side of the identity p0(ε)H = K L should be
replaced by

MH = (p0 + tq1 + t2q2 + · · · )(h0 + th1 + t2h2 + · · · )
= p0h0 + t (q1h0 + p[1]

0 h1) + · · ·
+ t j (q j h0 + q j−1h

[1]
1 + · · · + p0h

[ j]
j ) + · · · , (27)

and, accordingly, the Eq. (26) should be replaced by the equations

p[ j]
0 h j − p0k j + q j h0 = v j , j = 1, 2, . . . , (28)

where, as before, v j ∈ C[ε] is a polynomial of degree� 2n−1 formed by (eventually
shifted) combinations of qi , hi , ki with smaller indices 0 < i < j and p1, . . . , p j .

First, we use the fact that although some of the Eq. (28) may be non-solvable, they
are always solvable for sufficiently large orders.

Proposition 3 Let L = p0 + tp1 + · · · ∈ F be a Fuchsian operator and N the
maximal natural difference between the roots of p0 = Cn[ε].

Then L is F -equivalent to the polynomial operator M obtained by truncation of
the Taylor series at the order N,

M =
N∑

j=0

t j p j (ε) =
n∑

k=0

bk(t)ε
n−k ∈ C[t, ε]

with polynomial coefficients bk ∈ C[t] of degree degt bk � N, obtained by truncation
of the analytic coefficients ak ∈ O(C, 0) of the initial operator L at the order N.

Proof First we find a pair of operators H0, K0 ∈ W of order n − 1 with holomorphic
coefficients, which almost conjugate L with M in the form H0 = 1 + ∑

j>N t j h j ,

K = 1 + ∑
j>N t j k j , so that MH0 = K0M . Substituting these expansions in the

Eq. (28), we see that all equations of order j = 0, 1, . . . , N are satisfied automatically
if we set q j = p j and 0 = h j = k j for all j = 1, . . . , N .
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The operators H0, K0 are (usually) non-Fuchsian, since 0 = ord h0 < ord H0 =
n − 1. However, the operators H = H0 + L and K = K0 + M are Fuchsian, satisfy
the identity MH = M(H0 + L) = K0L + ML = (K0 + M)L = K L and the
nondegeneracy condition gcd0(L , H) = gcd(p0, p0 + 1) = 1 is satisfied. ��

4.4 Integrable Normal Form

The polynomial normal form established in Proposition 3, lacks any integrability
properties. Yet using the same method, one can construct a Liouville integrable F -
normal form for any Fuchsian operator.

Proposition 4 A Fuchsian operator = p0 + tp1 + · · · ∈ F with the Eulerization
p0(ε) = ∏n

i=1(ε − λi ), isF -equivalent to an operator M ∈ F of the form

M = (ε − λ1 + r1) · · · (ε − λn + rn), ri = ri (t) ∈ C[t], ri (0) = 0. (29)

In other words, M is a (noncommutative) product of polynomial operators of order
1. The degrees of the polynomials ri (t) are explicitly bounded, degt ri (t) � N, where
N, as before, is the maximal order of resonance between roots of p0.

Remark 8 If λi−1 = λi is a multiple root of p0, still the polynomials ri−1 and ri in
general will be different.

Lemma 3 Any analytic Fuchsian operator L ∈ F can be factorized as

L = (ε−λ1 + R1) · · · (ε−λn + Rn), Ri = Ri (t) ∈ O(C1, 0), Ri (0) = 0, (30)

with analytic (rather than polynomial) functions R1, . . . , Rn.

Proof of the Lemma Consider an eigenfunctionu(t)of themonodromyoperator, asso-
ciated with the equation Lu = 0: the corresponding eigenvalue is nonzero, hence
�u = e2π iλu for some λ ∈ C. Then u = tλv(t), where v is a meromorphic germ,
and modulo replacing λ by λ + j for some j ∈ Z, we may assume that v is holo-
morphic invertible, v ∈ O(C, 0), v(0) �= 0. Applying ε to this function, we see that
εu = λtλv + tλ(εv) = λu − Ru, R = − εv

v
∈ O(C, 0), in other words, u satisfies a

Fuchsian equation of the first order and L is divisible from the right by ε − λ + R(t).
The quotient is again a Fuchsian operator of order n − 1, and the process can be
continued by induction. ��
Proof of the Proposition 4 Consider the factorization (30) of the operator L as pro-
vided by Lemma 3, and replace each analytic function Ri by its polynomial truncation
ri to order N , so that ordt=0(ri −Ri ) > N . The (polynomial) operatorM thus obtained
has the same N -jet with respect to t as the initial operator L . By Proposition 3, M is
F -equivalent to L . ��

The normal form established by Proposition 4 has an advantage of being Liouville
integrable. Each linear equation of the first order is explicitly solvable “in quadratures”.
In particular, the homogeneous equation
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Lu = 0, L = ε − λ + r(t), r ∈ C[t], r(0) = 0,

has a 1-dimensional space of solutions u(t) = Ctλ exp ρ(t), where ρ(t) = − ∫ r(t)
t dt

is a polynomial in t .
To solve the nonhomogeneous equations, the method of variation of constants can

be used to produce a particular solution using operations of integration (computation
of the primitive), exponentiation and the field operations in the field C(t) of rational
functions (the details are left to the reader). Iterating this computation, one can find a
general solution of the equation Mu = 0 with a completely reduced operator M as in
(29): if M = L1L2 . . . Ln , ord Li = 1, then solution of the equation Mu = 0 amounts
to solving a chain of equations of order 1,

L1u1 = 0, L2u2 = u1, . . . , Lnun = un−1, u = un . (31)

Corollary 1 Any Fuchsian operator is F̂ -equivalent to a Liouville integrable oper-
ator. ��

4.5 Non-Eulerizability of Resonant Fuchsian Equations

The explicit integrability of the factorized equations allows to show that the resonant
Fuchsian equations, “as a rule”, are even not W -equivalent to their Euler part.

Example 2 Consider the Fuchsian operator

L = (ε + t)(ε − 1) = E (L) + t (ε − 1) ∈ F , E (L) = ε(ε − 1).

The Euler part of L has simple integer roots, hence the trivial monodromy. On the
other hand, the equation Lu = 0 can be explicitly solved. One solution, u1(t) =
t , satisfying the equation (ε − 1)u = 0, is obvious. The equation (ε + t)v = 0
has solution v(t) = e−t , and another solution u2(t) of the linear non-homogeneous
equation (ε − 1)u(t) = e−t , can be found by the method of variation of constants,
u2(t) = t

∫
e−t t−2 dt. Themonodromy transformation of the pair of solutions (u1, u2)

is given by the non-identical matrix

(
1 2π i

1

)

. This means that the full operator is even

not W -equivalent to its Euler part.

5 Minimal Normal Form

The polynomial normal forms established in the preceding section are of rather limited
interest: indeed, no attempt was made to modify the lower order terms of the Taylor
expansion of the resonant Fuchsian operators.

The system of Eq. (28) can be solved recursively with respect to h j , k j even in the
resonant case gcd(p0, p

[ j]
0 ) �= 1, provided that q j are chosen in a suitable way: the

difference v j − q j h0 should belong to the image of the Sylvester map S j = S
p0,p

[ j]
0
,

cf. with (23). This image consists of all polynomials of degree � 2n − 1 divisible by
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w j = gcd(p0, p
[ j]
0 ) ∈ C[ε]. In this section we describe possible choices for the terms

q j .

5.1 Abstract Normal Forms

Denote by P = C[ε]/ 〈p0〉 � Cn−1[ε] the quotient algebra: as a C-space it is n-
dimensional and can be identified with the residues modulo p0, polynomials of degree
� n − 1.

This quotient algebra in the simplest case where all n roots λ1, . . . , λn ∈ C of
p0 are simple, can be identified with the C-algebra of functions on n points Λ =
{λ1, . . . , λn} ⊆ C : P = {ϕ : Λ → C} � C × · · · × C: any such function can be
represented as the restriction of a polynomialh ∈ Cn−1[ε]of degree� n−1 : h|Λ = ϕ.
The functions ϕi equal to 1 at one point λi ∈ Λ and vanishing at all other points
λk �= λi , form a natural basis of P.

Remark 9 In the general case where the roots λi may have nontrivial multiplicities
μi ∈ N,

p0(ε) =
∏

i

(ε − λi )
μi ,

∑

i

μi = deg p0 = n,

the quotient algebra P is naturally isomorphic to the direct sum of the local algebras
Ji � C[ε]/(ε − λi )

μi of dimension μi : each element ofP = ⊕
i Ji can be identified

with a multijet, a collection of (μi − 1)-jets (Taylor polynomials of order μi − 1) at
the points λi ∈ Λ ⊂ C.

For any polynomial s ∈ C[ε] the multiplication by s is an endomorphism of the
algebra P. It is invertible (automorphism of P) if and only if gcd(p0, s) = 1.

The Eq. (28) induce the equations in the algebra P:

p[ j]
0 h j + q j h0 = v j , j = 1, 2, . . . (32)

They can be re-written in the operator form as

P j h j + Hq j = v j (33)

where P j , H are endomorphisms (self-maps) of P, induced by multiplication,

P j : h �−→ p[ j]
0 h, H : q j �−→ h0q j . (34)

The endomorphisms commute between themselves and H is invertible.

Definition 6 An affine normal form for the polynomial p0 is a family of subspaces
Vj ⊆ P (not necessarily subalgebras) such that Vj is complementary to the image of
P j ,

P jP + Vj = P j = 1, 2, . . . . (35)

The affine normal form is minimal, if dim Vj = dimKer P j .
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Without loss of generality we may assume that Vj = 0 for all sufficiently large
values of j (for minimal normal forms this condition is automatically satisfied).

Note that the choice of an affine normal form is by no means unique: moreover,
being a normal form is an open property (small perturbation of the subspaces Vj does
not violate the property (35).

These definitions are tailored to make the following statement trivial.

Theorem 6 Let {Vj } be an abstract affine normal form for the polynomial p0 ∈ Cn[ε].
Then any Fuchsian operator L = p0(ε) + tp1(ε) + · · · is F -equivalent to an

operator M = p0 + ∑N
j=1 t

j q j (ε) with q j ∈ Vj .

Proof By invertibility of H , we have H−1P = P = HP. By (35), P jH−1P +
Vj = P. Applying to both parts of the latter equality the operator H and using the
commutativity, we see that

P jP + HVj = P,

that is, each homological Eq. (33), regardless of the right hand side v j , admits a solution
h j ∈ P, q j ∈ Vj . This solution generates (by definition of P) a solution (h j , k j ) of
(28). ��

5.2 Minimal Affine Normal Form

One possibility to chose an affine normal form is to stick to the polynomials of
minimal degree modulo p0. Denote by w j ∈ C[ε] the greatest common divisor
w j = gcd(p0, p

[ j]
0 ); this is a polynomial of degree ν j � n − 1.

Proposition 5 Any Fuchsian operator L = p0(ε) + tp1(ε) + · · · isF -equivalent to
a polynomial operator of the form M = p0 + ∑

j t
j q j (ε) with deg q j � ν j − 1. In

particular, q j = 0 for all nonresonant orders.

Proof It suffices to note that the subspace Vj � Cν j−1[ε] ⊆ Cn−1[ε] � P is
naturally complementary to the image P jP which consists of all polynomials of
degree � n−1, divisible by w j . This follows from the division with remainder by w j

in P � Cn−1[ε]. ��
Note that the family of the subspaces Vj � Cν j−1[ε] is a minimal normal form.

Example 3 Assume that the operator L has a single resonance, i.e., only one pair of
roots of p0 differs by an integer k. Then the operator L isF -equivalent to p0(ε)+ctk ,
c ∈ C.

5.3 Separation of Resonances

A different strategy of choice of the subspaces {Vj } constituting a normal form, is to
reproduce the strategy which results in the Poincaré–Dulac normal form for Fuchsian
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systems with diagonal residue matrix A ∈ Mat(n, C). Recall that in this case instead
of solving the homological Eq. (28), one has to solve matrix equations of the form
[A, H ]+ j H = Bj , where Bj are given matrices fromMat(n, C), cf. with Ilyashenko
and Yakovenko (2008, Theorem 16.15). The operator taking a matrix H into the
twisted commutator as above, is diagonal in the natural basis of matrices having only
one nonzero entry, and kernel of this operator is naturally complementary to its image.

An analogous construction can be applied in the case of operators P j if the polyno-
mial p0 = E (L) has simple roots. Then multiplication by any polynomial, including
w j , is diagonal, hence one can choose Vj = Ker P j . The polynomials q j which
appear in the corresponding normal form, will be vanishing at all roots of p0/w j ,
hence divisible by the latter polynomial (recall that we consider polynomials of degree
� deg p0−1). In particular, if a certain root λi of p0 does not appear in any resonance,
then all polynomials q j in the normal form will be divisible by ε − λi , and therefore
the operator M in the normal form established in Theorem 6 will be divisible (from
the right) by the first order Euler operators ε − λi ∈ F .

This claim gives a partial effective factorization of the normal form (29), which
allows to identify factors with ri = 0. In the next section we explain how one can give
an accurate description of the factors in (29) in general.

5.4 Completely Reducible Minimal Normal Form

Occurrence of resonances between the rootsΛ = {λ1, . . . , λn} ⊂ C of the polynomial
p0 ∈ Cn[ε] allows to introduce certain combinatorial structures. First, the (natural
linear) order on Z induces a partial order on the roots: λi � λk ⇐⇒ λi − λk ∈ Z+.

Remark 10 If the Euler part has multiple roots, then the set Λ contains repetitions.
To simplify the subsequent arguments, it is convenient to extend the partial order to a
full order as follows. The roots of p0 are subdivided in resonant groups in such a way
that inside each group all roots have integer differences (and hence are comparable
in the sense of the partial order). Different resonant groups can be arranged between
themselves in any way. The corresponding order is conveniently represented by the
enumeration of the set of all roots Λ = {λi } in the non-decreasing order. This will
make Λ into an ordered set naturally isomorphic to {1, 2, . . . , n}: multiple roots of p0
occupy consecutive positions in this list. We call this order a natural order on Λ (it
is not unique, since different resonant groups can be transposed, but is convenient for
the formulations).

Second, for each order we can list all roots which produce resonances of this order.
Given a natural index j ∈ N, we define

Λ j = {λ ∈ Λ : λ + j ∈ Λ} ⊂ Λ, j = 1, 2, . . . . (36)

This definition, unambiguous in the case where p0 has only simple roots, should
be modified as follows: if μ + j = � are two roots in resonance and the multiplicities
of μ, � in Λ (the list which now may have repetitions) are m, k respectively, then μ
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enters Λ j with the multiplicity equal to min(m, k), that is, with its multiplicity as the
root of the polynomial w j = gcd(p0, p

[ j]
0 ).

Together with the sets Λ j ⊂ Λ it is convenient to consider also their fully
ordered counterparts (cf. with Remark 10), the sets of the corresponding indices
I j ⊂ {1, 2, . . . , n}. In the case where λ a root of p0 with multiplicity m > 1 and
of p[ j]

0 with multiplicity k < m, we include in I j the last k instances where λ enters
Λ (out of the total m).

The dual description can be given by the sets J (λ), which for any root λ ∈ Λ

consists of the natural numbers j ∈ N such that λ+ j ∈ Λ. The case of multiple roots
needs no special treatment.

Recall that support (or the Newton diagram) of a polynomial r = ∑
cktk ∈ C[t]

is the set of indices k ∈ N such that the corresponding coefficient ck is nonzero:
supp r = {k : ck �= 0} ⊂ N.

Theorem 7 Any Fuchsian operator is F -equivalent to a completely reducible oper-
ator of the form

L = (ε − λ1 + r1(t)) · · · (ε − λn + rn(t)),

ri ∈ C[t], supp ri ⊆ J (λi ), i = 1, . . . , n. (37)

In particular, deg ri � max{ j ∈ N : λi + j ∈ Λ}.
The rest of this section contains the proof of this theorem.

5.5 Expansion of Noncommutative Products

From that moment we assume that the roots λi are labeled in a natural order, see
Remark 10.

Consider the operators Ei j ∈ F of the form (37) in the case where only one
polynomial ri is different from zero and is itself a monomial of degree j :

Ei j = (ε − λ1) · · · (ε − λi−1)(ε − λi + t j )(ε − λi+1) · · · (ε − λn), i = 1, . . . , n.

After complete expansion of Ei j we obtain

Ei j = p0(ε) + t j pi j (ε), pi j ∈ C[ε], i = 1, . . . , n,

pi j = (ε − λ1 + j) · · · (ε − λi−1 + j)(ε − λi+1) · · · (ε − λn). (38)

In other words, pi j is obtained by shifting the argument by j in the first i − 1 terms
of the ordered factorization of p0, while keeping the last terms the same as in p0.
Accordingly, the roots of pi j are obtained by shifting the first i − 1 roots of Λ to the
left by j units, removing the i th root from the list and keeping the remaining (larger)
roots in place. Speaking informally, pi j has a gap on i th place in the (partially) ordered
set Λ.
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Lemma 4 For each j � 1 the polynomials p1 j , . . . , pnj ∈ Cn−1[ε] are linear inde-
pendent over C.

Proof A vanishing C-linear combination of polynomials p1 j , . . . , pnj after division
by p0 would result in a vanishing C-linear combination between the corresponding
rational functions. However, this is impossible, since the first fraction will have a pole
at λ1, and in a similar way

pi j
p0

will have either a pole at λi , or (if λi = λi−1 was a
multiple root of p0) the order of the pole will increase compared with the previous
fraction. Since the roots were ordered, this new poles appear at the points where all
previous ratios were holomorphic, which means that no linear combination can arise
in the process. ��

Corollary 2 For any j the polynomials p1 j , . . . , pnj span Cn−1[ε].

Proof Since these polynomials are linear independent, they span an n-dimensional
C-subspace in Cn−1[ε] which for the reasons of dimension must coincide with
Cn−1[ε]. ��

A minor modification of this argument proves a similar statement.

Lemma 5 Let j ∈ N be a natural number and w j = gcd(p0, p
[ j]
0 ). Then the polyno-

mials pi j for i ∈ I j are linear independent modulo w j .

Note that the polynomials pi j and pi+1, j in general are different even if λi = λi+1.

Proof Arguing as before, consider the rational fractions
pi j
w j

. Since the roots of w j

constitute only a proper subset of Λ, then not all of these fractions have either a new
pole at λi , or a pole of larger order. On the other hand, if λi ∈ Λ j , then this means
that one or more (depending on multiplicity) of the larger roots when shifted by j will
coincide with λi and hence create a pole of 1

w j
of the corresponding order. In the case

where λi is a multiple root, we have to consider the fractions
pi j
w j

for i ∈ I j

Thismeans that in the ordered subsequence
pi j
w j

, i ∈ I j , the behavior of the poleswill
be as before (either a new pole appears or the order of the previous pole is increased).
In both cases the linear dependence is impossible. ��

Corollary 3 The linear span Vj of polynomials {pi j : i ∈ I j } ⊂ Cn−1[ε] � C[ε]
mod p0 is a linear subspace transversal to the image of the operator P j from (35),
and hence these subspaces form a minimal abstract normal form in the sense of
Definition 6.

Proof This follows from the linear independence above and the fact that the number
of these polynomials is equal to the codimension of the image (which consists of
polynomials of degree � n − 1 divisible by w j ). ��
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5.6 Proof of Theorem 7

Assume (by way of induction) that the a Fuchsian operator L ∈ F is already shown
to beF -equivalent to an operator L j−1 ∈ F whose ( j − 1)-jet is as in (37), i.e.,

L j−1 = (ε − λ1 + r1, j−1) · · · (ε − λn + rn, j−1) + t jv j (ε) + · · · ,

ri, j−1 ∈ C[t], supp ri ⊆ J (λi ) ∩ [1, j − 1], i = 1, . . . , n.

We will show that there exists an operator L j of the same form but with supp ri, j ∈
J (λi ) ∩ [1, j], which isF -equivalent to L j−1. Indeed, adding monomials of order j
to the polynomials ri, j−1,

ri, j = ri, j−1 + ci t
j , ci �= 0 ⇐⇒ j ∈ J (λi ), i = 1, . . . , n

will affect only terms of order j and higher after the expansion: the (polynomial)
coefficient v j will be replaced by v j + ∑

ci pi j by definition (38) of the polynomials
pi j . By a suitable choice of the coefficients ci for i ∈ I j , one can bring this sum into
the range of the homological operator P j , as follows from Corollary 3.

For this choice the homological Eq. (28) will be solvable with respect to h j , k j by
setting h0 = 1, q j = −∑

ci pi j . Continuing this way, we eventually reach the values
of j which exceed the maximal order N of possible resonances. The corresponding
operator LN , by constructionF -equivalent to the initial operator L , isF -equivalent
to its product part

∏n
i=1(ε − λi + ri N (t)) with supp ri N ∈ J (λi ) by Proposition 3. ��

Remark 11 The same argument allows to construct an effective factorization of any
Fuchsian operator. Indeed, by Corollary 2, one can always construct a linear combi-
nation

∑n
i=1 ci pi j ∈ C[ε] which cancels the term v j . Proceeding this way, one can

construct the formal factorization L = ∏n
i=1(ε − λi + r̂i (t)), r̂i ∈ C[[t]]. One can

show that in the Fuchsian case this factorization is always converging.

5.7 Concluding Remarks

The minimality of the normal form (37) does not imply that coefficients of the first
order factors r1, . . . , rn ∈ C[t] areF -invariant. Nevertheless, one can expect that for
operators of sufficiently high order there will appear moduli (numeric invariants) of
F -classification: for holomorphic gauge classification of Fuchsian systems this was
discovered by Kleptsyn and Rabinovich (2004).

6 Convergence of the Formal Series

Here we prove that the formal and analytic Fuchsian classifications for Fuchsian
operators coincide.

More precisely, assume that two formal operators H, K ∈ F̂ , H = ∑n−1
k=0 uk(t)ε

k ,
K = ∑n−1

k=0 vk(t)εk with formal coefficients uk, vk ∈ C[[t]] conjugate two Fuchsian
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operators L = ∑n
k=0 ak(t)ε

k , M = ∑n
k=0 bk(t)ε

k with analytic coefficients ak, bk ∈
O(C, 0), an(0)bn(0) �= 0.

Theorem 8 The formal series for the coefficients uk, vk ∈ C[[t]] necessarily con-
verge, hence H, K ∈ F .

Proof One possibility of proving this result is to control explicitly the growth rate of
the Taylor coefficients. However, a simple strategy is to use the fact that a (vector)
formal Taylor series which solves a holomorphic Fuchsian system of equations, is
necessarily convergent.

The conjugacy equation MH = K L takes the form of a noncommutative identity

( n∑

k=0

bk(t)ε
k
)(n−1∑

k=0

uk(t)ε
k
)

=
(n−1∑

k=0

vk(t)ε
k
)( n∑

k=0

ak(t)ε
k
)

. (39)

We claim that this identity implies that the coefficients uk(t) of the operator H ,
after passing to a companion form (20), together satisfy a Fuchsian system of linear
ordinary differential equation. This follows from the direct inspection of the way the
highest order derivatives of uk enter the expressions in (39).

The identity (39), using the commutation relationship in the Weyl algebra

ε f = f ε + g, g = ε( f ) ∈ O(C, 0) the Euler derivative of f , (40)

can be rewritten as equality of two differential operators

2n−1∑

j=0

l jε
j =

2n−1∑

j=0

r jε
j

of order 2n−1, implying the identical coincidence of their coefficients, l j = r j . Thus
we have a system of 2n linear ordinary differential equations of order n involving 2n
unknown functions uk, vk and their derivatives. We will show that this system can be
reduced to a Fuchsian system of n2 differential equations of order 1.

One can instantly verify that these equations have the following structure.

(1) All expressions for l j are linear with respect to the functions uk = uk,0 and their
iterated Euler derivatives uki = εuk,i−1 of orders 1 � i � n with holomorphic
coefficients.

(2) All expressions for r j are linear with respect to the functions vk with holomorphic
coefficients.

It is rather easy to control the coefficients with which the highest order derivatives
ukn and vk enter these equations.

The coefficients with which the variables vk enter the linear forms r j , form an
“upper triangular” n × 2n-matrix with the same invertible diagonal entry an : the
highest number forms r2n−1, . . . , r2n−k depend only on the variables vn−1, . . . , vn−k ,
and the variable vn−k enters with the coefficient an for all k = 1, . . . , n.
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The coefficients with which the highest order derivatives ukn enter the linear forms
l j , are zero for l2n−1, . . . , ln and form a “diagonal” n × 2n-matrix with the same
invertible diagonal entry bn in the forms ln−1, . . . , l0. Indeed, the formulas (40) imply
that a highest order derivative ukn can appear only after iterated transposition with the
term bnεn and only before the powers of the type ε j−n .

Together these two observations imply that the system of the linear equations l j =
r j , j = 2n − 1, . . . , 1, 0 can be resolved with respect to the variables ukn, vk , in
particular,

ukn(t) =
n−1∑

i=0

n−1∑

j=0

ckni j (t)ui j (t), ckni j ∈ O(C, 0), k = 0, . . . , n − 1 (41)

(and of course similar expressions for the vk).
This system of n linear ordinary differential equations of order n with respect to the

functions uk = uk(t) is explicitly resolvedwith respect to the highest order derivatives,
hence is a Fuchsian system of n2 first order equations in exactly the same way as in
(20).

It remains only to refer to the well-known fact: any formal solution of a Fuchsian
system converges, see Ilyashenko and Yakovenko (2008, Lemma 16.17 and The-
orem 16.16). Thus any noncommutative series for an operator H conjugating two
Fuchsian operators L , M , converges. Convergence of the series for K follows by the
uniqueness of the right division of MH by L . ��
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