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Abstract We prove that the weak-Riemannian exponential map of the L2 metric
on the group of volume-preserving diffeomorphisms of a compact two-dimensional
manifold is not injective in any neighbourhood of its conjugate vectors. This can be
viewed as a hydrodynamical analogue of the classical result of Morse and Littauer.
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1 Introduction

Let M be an n-dimensional compact Riemannian manifold. Suppose that M is
filled with an incompressible inviscid fluid whose particles cannot fuse or split. The
Lagrangian approach to hydrodynamics aims at describing trajectories of these parti-
cles as they trace out a geodesic of a right-invariant metric defined by fluid’s kinetic
energy in the group of Sobolev class diffeomorphisms D s

μ = D s
μ(M) preserving the

volume form μ (the volumorphism group). The metric is given at the identity diffeo-
morphism e by the L2 inner product

〈v,w〉L2 =
∫
M

〈v(x), w(x)〉 dμ (1.1)
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where v,w ∈ TeD s
μ are divergence free Sobolev Hs vector fields on M . This metric

is only weak-Riemannian1 in that the tangent spaces to D s
μ with the induced inner

products are (incomplete) pre-Hilbert spaces. Its geodesics are the critical points of
the associated L2 length functional

L(η) =
∫ T

0
‖η̇(t)‖L2dt (1.2)

and satisfy the equations
d2η

dt2
= −grad p ◦ η (1.3)

which rewritten on the Lie algebra of divergence-free vector fields become the Euler
equations of hydrodynamics

∂v

∂t
+ v · ∇v = −grad p (1.4)

div v = 0 (1.5)

where p is the pressure function of the fluid, v = η̇ ◦ η−1 and v · ∇ denotes the
covariant derivative on M in the direction of v.

As in finite-dimensional differential geometry the weak-Riemannian metric onD s
μ

defined by (1.1) has an exponential map however its global properties are not yet fully
understood. Recall that two points p and q = expp v along a geodesic are conjugate
if the derivative d expp(v) fails to be an isomorphism. In infinite dimensions this may
happen if either the kernel is non-empty or the range is not the whole target space.
Accordingly, one has to distinguish mono-conjugate points and epi-conjugate points,
respectively. Roughly speaking, the former are related to minimizing properties of
geodesics while the latter to covering properties of the exponential map. What further
complicates matters is the fact that conjugate points (of either type) can accumulate
along finite geodesic segments or that their multiplicities can be of infinite order, see
e.g. Grossman (1965).

However, even in finite dimensions singularities of Riemannian exponential maps
are of a rather special kind. Morse and Littauer (1932) proved that a singularity of
d expp(v) necessarily implies non-injectivity of the exponential map near the vector v
for any analytic Riemannian or Finslerianmanifold. Savage (1943) reproved this result
in the smooth case and Warner (1965) extended it to a more general class of maps.
More recently, Biliotti et al. (2006) revisited it in the context of strong-Riemannian
Hilbert manifolds.

It turns out that there is a hydrodynamical analogue of the Morse-Littauer result.
Namely, our main goal is to prove the following

Theorem Let M be a smooth closed Riemannianmanifold of dimension 2 and assume
s > 2. Consider a geodesic η(t) inD s

μ of the L2 metric (1.1) starting from the identity

1 In the (complete) Hilbert case the metric is called strong-Riemannian Ebin and Marsden (1970).
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e with velocity v0 and let η(tc) be the first conjugate point to e. Then the weak-
Riemannian L2 exponential map is not injective at tcv0.

In particular, we have the following simple hydrodynamical interpretation: every
neighbourhood of tcv0 in TeD s

μ contains a vector whose image under the exponential
map corresponds to a configuration of a 2D fluid which can be reached from the initial
state by two distinct fluid flows in the same amount of time.

An important fact used in the proof below is that the weak-Riemannian exponen-
tial map in 2D hydrodynamics is a Fredholm map of index zero. Combined with
a hydrodynamical Morse Index theorem and a Schauder type invariance of domain
result this fact allows us to apply classical Riemannian geometric constructions in
infinite dimensions. In the last section we describe several open problems concerning
the exponential map and its singularities.

2 The Exponential Map and Conjugate Points on D s
µ

The differential geometric framework for hydrodynamics outlined above was for-
mulated by Arnold (1966). Its functional analytic foundations were developed
subsequently by Ebin and Marsden (1970). For any s > n/2 + 1 the group D s

μ

has the structure of an infinite-dimensional Hilbert manifold modelled on the Sobolev
space of Hs divergence-free vector fields on M and the geodesic equation (1.3) of the
L2 metric is an ordinary differential equation on D s

μ.
This fact provides an important technical advantage of the Lagrangian approach

which allows to solve the equations for the particle trajectories (at least on short time
intervals) using standard Picard iterations. Consequently, as in finite dimensions, it
yields a smooth exponential map, the main object of our study, along with a smooth
Levi-Civita connection∇ and its curvature tensorR. Furthermore, by the inverse func-
tion theorem the exponential map is a local diffeomorphism in an open neighbourhood
U of the origin in the tangent space at the identity

expe : U ⊂ TeD
s
μ → D s

μ, expe tv0 = η(t) (2.1)

where η(t) is the unique L2 geodesic with η(0) = e and η̇(0) = v0, see Ebin and
Marsden (1970).

Motivated by the problems of hydrodynamic stability Arnold (1966) calculated sec-
tional curvatures of (1.1) when M is the flat 2-torus and showed that they can take on
both signs. This led him to conjecture, by analogy with finite dimensions, that positive
curvatures are related to the existence of conjugate points in the volumorphism group,
see also Arnold (2004), Arnold and Khesin (1998). Because the curvature tensorR of
(1.1) is known to be a continuous multilinear operator in the Hs topology, conjugate
points in D s

μ can be studied using the equation of geodesic deviation and the Jacobi
fields.2 First examples of conjugate points inD s

μ were constructed inMisiołek (1993),
Misiołek (1996) and further examples were given by Shnirelman (1994) and Preston
(2006). Epi-conjugate points that are not mono-conjugate and other pathological sit-

2 For these results we refer to Misiołek (1993).
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uations were shown to occur in 3D hydrodynamics, cf. Ebin et al. (2006), Preston
(2006). On the other hand the 2D case turns out to be entirely different.

Lemma 1 The weak-Riemannian exponential map in 2D hydrodynamics is a nonlin-
ear Fredholm map. More precisely, for any v ∈ TeD s

μ the derivative d expe(v) is a
bounded Fredholm operator of index zero between the spaces TeD s

μ and TηD s
μ where

η = expe v.

Proof See Ebin et al. (2006, Th. 1). 
�
In particular, observe that mono-conjugate points and epi-conjugate points along

any L2 geodesic in D s
μ must coincide. Note also that the result of Wolibner (1933)

on global existence and uniqueness of solutions to the Euler equations in 2D implies
that the exponential map can be defined on the whole tangent space TeD s

μ. In order to
prove our Theorem we will need three more lemmas.

Lemma 2 Let v,w ∈ TeD s
μ and let c(t) be a smooth curve joining c(0) = 0 with

c(1) = v. Then we have

1. 〈v,w〉L2 = 〈d expe(v)v, d expe(v)w〉L2

2. if σ(t) = expe c(t) and γ (t) = expe tv then L(γ ) ≤ L(σ ).

Proof Thefirst part is an L2 version of the classicalGauss Lemma and can be proved as
in finite dimensions. Let Y (t) = d expe(tv)tw be the Jacobi field along γ (t) = expe tv
with Y (0) = 0 and ∇γ̇ Y (0) = w. Since

d2

dt2
〈Y, γ̇ 〉L2 = 〈R(Y, γ̇ )γ̇ , γ̇ 〉L2 = 0

we decompose the Jacobi field into Y = Y
 +Y⊥ where Y
(t) = t〈v,w〉L2 γ̇ (t) and
〈Y⊥(t), γ̇ (t)〉L2 = 0. Without loss of generality we are assuming that ‖γ̇ (t)‖L2 = 1.
We have

〈v,w〉L2 = 〈γ̇ (1),Y
(1)〉L2 = 〈γ̇ (1),Y (1)〉L2 = 〈d expe(v)v, d expe(v)w〉L2

and in particular ‖d expe(v)v‖L2 = ‖v‖L2 = 1.
For the second part introduce polar coordinates (r, c̃) by setting c(t) = r(t)c̃(t)

where r(t) = ‖c(t)‖L2 and ‖c̃(t)‖L2 = 1. We continue to assume that v has unit L2

norm and consider a two-parameter family of curves α(t, s) = expe (sc̃(t))where s ∈
(−δ, δ) for some small δ > 0. Observe that r(0) = 0, r(1) = 1 and α(t, r(t)) = σ(t)
so that

σ̇ (t) = ∂α

∂t
(t, r(t)) + ∂α

∂s
(t, r(t))ṙ(t).

Then, we have

∂α

∂s
(t, s) = d expe(sc̃(t))c̃(t) and

∂α

∂t
(t, s) = d expe(sc̃(t))s ˙̃c(t)
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and since c̃(t) and its time derivative are L2-orthogonal applying the Gauss Lemma
above gives

〈
∂α

∂t
(t, r(t)),

∂α

∂s
(t, r(t))

〉
L2

= 0.

Using this and the fact that d expe is an isometry of the L2 metric in the radial direction,
we now obtain

‖σ̇ (t)‖2L2 =
∥∥∥∥∂α

∂t
(t, r(t))

∥∥∥∥
2

L2
+

∥∥∥∥∂α

∂s
(t, r(t))ṙ(t)

∥∥∥∥
2

L2
≥ |ṙ(t)|2

from which integrating in t we get

L(σ ) ≥
∫ 1

0
|ṙ(t)| dt ≥ r(1) − r(0) =

∫ 1

0
‖γ̇ (t)‖L2dt = L(γ ).


�
Next, we have the following result.3

Lemma 3 Any finite geodesic segment inD s
μ contains at most finitely many conjugate

points.

Proof This result is a consequence of the hydrodynamical analogue of the Morse
Index theorem (cf. Misiołek and Preston 2010, Th. 8.2) according to which the index
of a geodesic segment of finite length in the volumorphism group D s

μ (of a closed
surface) is necessarily finite and equal to the number of conjugate points along the
segment each counted with its multiplicity. 
�

The last lemma we will need is the following extension of Schauder’s invariance
of domain result.

Lemma 4 A locally injective smooth Fredholm map of index zero between Banach
manifolds is an open map.

Proof Cf. Tromba (1972, Th. 4). 
�

3 Proof of the Theorem

Suppose to the contrary that the L2 exponentialmap is injective in someneighbourhood
of its conjugate vector tcv0 in TeD s

μ. Since it is a Fredholm map of index zero it then
follows from Lemma 4 that expe is bijective (in fact a homeomorphism) on some open
ball B(δ) of radius δ > 0 centered at tcv0 onto the open set V = expe B(δ). We will

3 Lemma 3 can also be proved using a result of A. Shnirelman on analyticity of the L2 exponential map
and decomposing d expe into a sum of an invertible and a compact operator as in Ebin et al. (2006). See
also Problem 2 below.
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show that together with Lemma 2 this leads to a contradiction with the fact that η(t)
can be embedded in a family of curves of strictly shorter L2 lengths. As before we
assume that ‖v0‖L2 = 1.

To this end observe that since by Lemma 3 conjugate points along η(t) are isolated
we can choose t1 and t2 such that

0 < t1 < tc < t2 < T and t2 − t1 < δ

for some T > 0. Furthermore, we can arrange so that η(tc) is the only conjugate
point to e in the segment η([t1, t2]) ⊂ V . Let Y be a Jacobi field along η(t) with
Y (0) = Y (tc) = 0 and extend it to a broken Jacobi field by setting Y (t) = 0 for
tc ≤ t ≤ T . Let ϕ : R → R be any smooth function such that

ϕ(tc) > 0 and ϕ(t) = 0 for t ∈ [0, t1]∪[t2, T ].

Recall that the Levi-Civita connection of the L2 metric induces a parallel translation
operator along curves inD s

μ which is an isometry of the tangent spaces with their pre-
Hilbert structure (1.1) and commutes with ∇, cf. Misiołek (1993). Let Z denote the
parallel translation along η(t) of the vector −∇η̇Y (tc) �= 0 and for any ε > 0 set
Xε = Y + εϕZ . Then, a standard calculation of the L2 index form using integration
by parts gives

I (Xε, Xε) =
∫ T

0
(‖∇η̇Xε‖2L2 − 〈R(Xε, η̇)η̇, Xε〉L2)dt (3.1)

=
∫ tc

0
(‖∇η̇Y‖2L2 − 〈R(Y, η̇)η̇,Y 〉L2)dt

+ 2ε
∫ tc

t1
(ϕ′〈∇η̇Y, Z〉L2 − ϕ〈R(Y, η̇), η̇, Z〉L2)dt + O(ε2)

= −2εϕ(tc)‖∇η̇Y‖2L2(tc) + O(ε2) < 0

provided that ε is chosen sufficiently small. Next, define a piecewise smooth variation
of η(t) by

α(s, t) =
{
expe(tv0 + s(d expe (tv0))−1Y (t)), 0 ≤ t ≤ t1
expηt

(sXε(t)), t1 ≤ t ≤ T
(3.2)

for any −δ < s < δ. Note that the variation field of α(s, t) is precisely Xε. Thus,
choosing ε > 0 as in (3.1) we find that

∂

∂s

∣∣
s=0L(α(s)) = 0 and

∂2

∂s2
∣∣
s=0L(α(s)) = I (Xε, Xε) < 0.

Observe that the equality in the second formula above holds because η(t) has L2

unit speed and the Jacobi field Y and its covariant derivative are L2 orthogonal to
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the geodesic (note that Y vanishes at two distinct points). Consequently, the variation
α(s, t) is length decreasing, that is

L(α(s)) < L(η) (3.3)

for sufficiently small s.
On the other hand observe that, by construction, expe is a bijection from the ball

B(δ) onto V . Therefore, for any such s we can also write

α(s, t) = expe cs(t)

where

cs(t) =

⎧⎪⎨
⎪⎩
tv0 + s(d expe (tv0))−1Y (t), 0 ≤ t ≤ t1
(expe |B(δ))

−1α(s, t), t1 ≤ t ≤ t2
tv0, t2 ≤ t ≤ T .

Approximating cs(t) in TeD s
μ by a smooth curve, if necessary, we conclude from

Lemma 2 that

L(α(s)) ≥ L(η)

which contradicts (3.3) and proves the Theorem.

4 Discussion and Open Problems

Since the L2 exponential map on D s
μ is the (Lagrangian) solution map for the Euler

equations (1.4)–(1.5) further in-depth studies of its analytic and geometric properties
are certainly amatter of considerable interest. Let us first point out a possible alternative
strategy which was suggested to us by P. Piccione.

Problem 1 Prove the Theorem using techniques of bifurcation theory of Krasnosel-
skii, see e.g., Krasnoselskii (1964).

It seems plausible that such an approach could in fact produce a stronger result which
we can formulate as

Problem 2 Show that the L2 exponential maps fails to be radially injective.

A result of this type in the finite-dimensional case can be found in Piccione et al.
(2004) while a more Riemannian-oriented strategy was described by B. Schmidt.
Another possible approach when M is real analytic would be to apply Shnirelman’s
result Shnirelman (2012) in order to make use of the powerful methods of Gohberg
et al. (1978) developed for holomorphic Fredholm operator-valued functions.

As mentioned above, Fredholmness of the exponential map suggests strong simi-
larities with Riemannian exponential maps on finite dimensional manifolds. Since by
Wolibner’s result Wolibner (1933) the volumorphism groupD s

μ equipped with the L2
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metric is geodesically complete it is a natural question whether there is a hydrody-
namical analogue of the classical Hopf–Rinow theorem. The most complete results
on this to date can be found in Shnirelman (1994) and Misiołek and Preston (2010).
A related problem of independent interest is the following

Problem 3 Determine the multiplicity of conjugate points along the L2 geodesics in
D s

μ(M2).

Combined with the fact that the exponential map is Fredholm of index zero the answer
to this question could help in determiningwhether expe is a coveringmap, seeMisiołek
and Preston (2010). Some recent progress in this direction has been made in Benn
(2014) in the case of certain stationary geodesics.

Problem 4 Quantify the failure of the L2 exponential map on D s
μ(M3) to be a Fred-

holm map.

The failure of Fredholmness in 3D and the possible consequences that this may entail
need to be well understood. Explicit examples where this happens can be found in
Ebin et al. (2006) and Preston (2006). In fact, it is known that this phenomenon is
borderline in that the exponential map of any right-invariant Hr metric on D s

μ(M3)

with r > 0 is Fredholm of index zero, cf. Misiołek and Preston (2010). The proofs of
Fredholmness in the above papers rely essentially on expressing the derivative of expe
as a sum of an invertible and a compact operator. In the 3D case it may be possible to
measure the deviation from compactness using the tools of spectral theory. A closer
examination of explicit examples would be very useful.

Problem 5 Investigate the Fredholmness propertywhenM is a two-dimensionalman-
ifold with boundary ∂M .

The existing Fredholmness results were obtained for closed manifolds. A different
sort of difficulty arises when the underlying manifold M has a boundary. Even the
situation in 2D has not yet been fully understood although it is known that in this case
the kernel of d expe must be finite-dimensional, see Ebin et al. (2006), Misiołek and
Preston (2010).

Problem 6 Determine the normal forms for the exponentialmap in the neighbourhood
of a regular conjugate point in D s

μ(M2).

The result of this paper above can be viewed as a starting point for an in-depth study
of the conjugate locus. This should be possible in certain special cases using the tools
of singularity theory and the Fredholm property of the exponential map in 2D. For
finite dimensional Riemannian manifolds such a study was carried out by Warner in
his thesis Warner (1965) and may serve as a useful guide.
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