Erratum to: Abundance of 3-Planes on Real Projective Hypersurfaces

S. Finashin ${ }^{1}$ • V. Kharlamov ${ }^{2}$

Published online: 31 July 2015
© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2015

Erratum to: Arnold Math J DOI 10.1007/s40598-015-0015-5

When we published this article, there was a typo in the first line of Theorem 5.3.1. Please find the corrected text below.

The publisher apologises for this mistake.

Theorem 5.3.1 Assume that $X \subset P^{m+2 k-1}$ is a generic real hypersurface of odd degree d and that $\binom{d+2 k-1}{2 k-1}=2 \mathrm{~km}$. Then the number, $\mathcal{N}_{d}^{\mathbb{R}}$ of real $(2 k-1)$-subspaces in X is finite and bounded from below by the number $\mathcal{N}_{d}^{e} \geqslant 0$ that is given by the multivariate integral formula

$$
\mathcal{N}_{d}^{e}= \pm \frac{1}{k!(2 \pi i)^{k}} \int_{T^{k}} \frac{f_{d}(x)}{x^{\mathbf{m}}} V_{2 \delta}(x) \overline{V_{2 \delta}}(x) \frac{d x}{x},
$$

where $f_{d}(x)$ is the polynomial satisfying the formula of Proposition 4.1.1.

The online version of the original article can be found under doi:10.1007/s40598-015-0015-5.

[^0]
[^0]: \boxtimes V. Kharlamov
 kharlam@unistra.fr
 S. Finashin
 serge@metu.edu.tr
 1 Department of Mathematics, Middle East Technical University, Universiteler Mahallesi, Dumlupinar Bulvari 1, Ankara 06800, Turkey
 2 Université de Strasbourg et IRMA (CNRS), 7 rue René-Descartes, 67084 Strasbourg Cedex, France

