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Abstract We study cubic rational maps that take lines to plane curves. A complete
description of such cubic rational maps concludes the classification of all planariza-
tions, i.e., maps taking lines to plane curves.
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1 Introduction

Let P
n be the projective space of dimension n over R or C. In Timorin (2012), a

planarization was defined as a mapping � : U → P
n , where U ⊂ P

2 is an open
subset, such that�(λ∩U ) is a subset of a hyperplane, for every line λ ⊂ P

2. Studying
planarizations is closely related to studyingmaps taking lines to curves of certain linear
systems; a classical result of this type is theMöbius–vonStaudt theorem (Möbius 1885;
von Staudt 1847) about maps taking lines to lines, sometimes called the Fundamental
Theorem of Projective Geometry. We will always assume that the planarizations are
sufficiently smooth, i.e., sufficientlymany times differentiable. If the ground field isC,
then we assume analyticity. The main result of this paper, stated below, is a complete
description of all planarizations in case n = 3.
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2 V. Petrushchenko, V. Timorin

Before stating the main result, we recall the motivation for studying planarizations
(Timorin 2012). An interesting class of problems consists of finding all transforma-
tions of a planar domain into a (in general) different planar domain that take line
segments to arcs of curves in a given linear system L. Say, if L is the linear system
of all circles, then we are finding transformations taking lines to circles (including
degenerations, i.e., straight lines). This particular problem was initially motivated by
Nomography (Khovanskii 1976), and it was solved in Khovanskii (1980).Maps taking
lines to circles have also been investigated in higher dimensions (Izadi 2005; Timorin
2003, 2004). Large classes of such maps are provided by generalized Hopf fibra-
tions (Timorin 2006) and, more generally, by quadratic rational parameterizations of
spheres (Timorin 2005). Another motivation comes from freeform architecture, for
which surfaces formed by simple planar curves are of special interest, see Deng et al.
(2011).

We now state the problem more precisely. Let L be a linear system of algebraic
curves in P

2, and letU ⊂ P
2 be an open set. We say that a map f : U → P

2 takes all
lines to L-curves if f (U ∩ L) is a subset of a curve from L, for every line L ⊂ P

2. For
various linear systemsL, we would like to know all sufficiently smooth maps that take
lines to L-curves. If a sufficiently smooth map f : U → P

2 takes lines to L-curves,
then it gives rise to a planarization F = �L ◦ f : U ��� P

n , where �L : P
2 ��� P

n

is the rational map, whose homogeneous components are generating equations for L.
This was the original motivation for studying planarizations. For example, to describe
maps taking line segments to conics, we need to consider planarizations with values
in P

5.

Main Theorem Let � : U → P
3 be a planarization. Then there is a nonempty open

subset V ⊂ U, for which the planarization �|V : V → P
3 is trivial, or co-trivial, or

quadratic, or dual quadratic.

Weneed to explain the terminology.Aplanarization� : V → P
3 is said to be trivial

if �(V ) is a subset of a plane. A planarization � : V → P
3 is said to be co-trivial

if there exists a point b ∈ P
3 such that, for every line λ ⊂ P

2, the set �(λ ∩ V ) lies
in a plane containing b. Of course, logically, co-trivial planarizations include trivial
planarizations. On the other hand, there are “more” trivial planarizations than co-trivial
planarizations that are not trivial. This is one of the reasons for distinguishing trivial
planarizations as a separate class; the second reason being a partial duality between
trivial and co-trivial planarizations. Trivial planarizations can be described in terms
of an arbitrary map from P

2 to P
2, and co-trivial planarizations can be described in

terms of an arbitrary function on P
2 (see Theorem 6.1).

A map � : V → P
3 is said to be a quadratic rational map if in some (hence any)

system of homogeneous coordinates it is given by quadratic homogeneous polynomi-
als. In other words, there are quadratic homogeneous polynomials Q0, Q1, Q2 and
Q3 in x0, x1, x2 such that�maps a point with homogeneous coordinates [x0 : x1 : x2]
to the point with homogeneous coordinates [y0 : y1 : y2 : y3], where

yα = Qα(x0, x1, x2), α = 0, 1, 2, 3.
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On Maps Taking Lines to Plane Curves 3

It is easy to see that every quadratic rational map takes lines to conics, in particular,
every quadratic rational map is a planarization. Some quadratic planarizations are
neither trivial nor co-trivial.

Another class of examples is provided by duality. Let � : V → P
3 be a planariza-

tion. Recall that the dual projective plane P
2∗ consists of lines in P

2, and the dual
projective space P

3∗ consists of planes in P
3. Let V ∗ be the subset of P

2∗ consisting of
all lines λ ⊂ P

2 with the following property: the set�(λ∩V ) lies in a unique plane Pλ.
Note that the set V ∗ is open, possibly empty. The dual planarization �∗ : V ∗ → P

3∗
is by definition the map taking λ to Pλ. Given a coordinate representation of �, it
is easy to write explicit formulas for �∗. It turns out that a planarization dual to a
quadratic rational map is a special kind of cubic rational map. Such planarization is
called dual quadratic. It is rather obvious that the duality is symmetric: if� : V → P

3

is a planarization, �∗ : V ∗ → P
3∗ is the dual planarization with a nonempty domain

V ∗, and V ∗∗ ∩ V �= ∅, then � = �∗∗ on V ∗∗ ∩ V .
It is proved in Timorin (2012) that a planarization � : U → P

3 that is neither
trivial nor co-trivial must be a rational map of degree two or three, at least on some
nonempty open subset of U . Thus, to prove the Main Theorem, it suffices to describe
all cubic planarizations. A cubic planarization is defined globally as a rational map
from P

2 to P
3 (it may have some points of indeterminacy). Moreover, it suffices to

assume that the ground field is C.
It is natural to consider the following equivalence relation on the set of all pla-

narizations. Given two planarizations � : V → P
3, �′ : V ′ → P

3 we say that they
are equivalent if they coincide on some nonempty open set after suitable projective
coordinate changes in P

2 and in P
3. In other terms, there are projective automor-

phisms η ∈ PGL2, μ ∈ PGL3, and a nonempty open subset W ⊂ V ∩ η−1(V ′)
such that � = μ ◦ �′ ◦ η on W . In Sect. 6, we describe all equivalence classes
of planarizations over real numbers by specifying a representative in each class.
These representatives will also be called normal forms of planarizations, so that
every planarization is projectively equivalent to some normal form. Of course, there
are infinitely many classes of trivial and co-trivial planarizations. These classes can
be described by means of function parameters, i.e., they depend on some arbi-
trary functions. Other than that, there are 16 classes. Our classification is based on
the classification of equivalence classes of quadratic rational maps (Coffman et al.
1996).

Studying planarizations for n > 3 is also important, e.g., the case n = 5 relates to
studying maps that take lines to conics. As in the case n = 3, we expect that, apart
from (co-)trivial cases, planarizations must be rational maps of low degree. An explicit
upper bound for the degree is easy to conjecture: n(n−1)

2 . On the other hand, we do not
know even a conjectural description of all planarizations for n > 3.

Organization of the paper In Sect. 2, we recall some basic properties of cubic rational
maps and the associated linear webs of plane cubic curves. In Sect. 3, we address
specific properties of cubic planarizations. The main result of this section is that
a cubic planarization that is neither trivial nor co-trivial and that has only finitely
many points of indeterminacy must map P

2 many-to-one to its image surface. In
Sect. 4, we complete the description of all cubic planarizations thus proving the Main
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4 V. Petrushchenko, V. Timorin

Theorem. Section 5 is a digression needed for a classification of all planarizations
up to equivalence. In this section, we classify all quadratic planarizations. Finally, in
Sect. 6, we give a list of normal forms for planarizations.

2 Cubic Maps and Base Points

Let us introduce some notation and conventions that will be used throughout the paper.
First, all spaces and maps are defined over complex numbers. Let � : P

2 ��� P
3 be a

cubic rational map sending a point of P
2 with homogeneous coordinates [x0 : x1 : x2]

to a point of P
3 with homogeneous coordinates [y0 : y1 : y2 : y3], where

yα = ϕα(x0, x1, x2), α = 0, 1, 2, 3,

and ϕα is a homogeneous polynomial in three variables of degree 3. Recall that an
indeterminacy point of � is a point x in P

2 such that ϕα(x) = 0 for all α = 0, 1, 2, 3.
This is precisely a point that does not have an image under �.

Recall that � defines a linear system L� of plane cubics of dimension 3 (a three-
dimensional linear system is called a linear web). By definition, L� is generated by
the cubics ϕα = 0, i.e., the equation of any cubic in L� has the form

c0ϕ0 + c1ϕ1 + c2ϕ2 + c3ϕ3 = 0,

where the coefficients c0, c1, c2, c3 are complex numbers not vanishing simultaneously,
thus [c0 : c1 : c2 : c3] can be thought of as a point in P

3, or, in more invariant terms,
as a point in the dual projective space P

3∗ defining a plane P in P
3. Indeterminacy

points of � are also called the base points of L�. We will write B� for the set of all
base points of L�. Every cubic from L� contains the set B�. To each plane P in P

3,
we may associate the set �P = B� ∪�−1(P) in P

2; clearly, if ϕ0, . . . , ϕ3 are linearly
independent, then �P is a plane cubic curve, possibly degenerate.

Lemma 2.1 If B� contains an irreducible curve β, then this curve has degree at most
three.Moreover, the restriction of� to the complementP2\β coincides with a rational
map of degree less than 3.

Proof Let ξ = 0 be an irreducible equation defining the curve β. Note that the com-
ponents of � are divisible by ξ . Therefore, the restriction of � to the complement of
β coincides with the rational map ξ−1� of degree 3 − deg(β). ��

For this reason, we will mostly assume that B� is a finite set of points. There is a
natural way of assigning multiplicity to every point b ∈ B�. Namely, the multiplicity
m(b) is equal to the minimum intersection index of two cubics in L� at b. Since all
cubics in L� pass through b, we have m(b) ≥ 1. We will write |B�| for the number
of points in B� counting multiplicities. In other terms, we have by definition

|B�| =
∑

b∈B�

m(b).
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On Maps Taking Lines to Plane Curves 5

We will write S� = �(P2\B�) for the image of� and S� for its projective closure
in P

3. Note that if � is a planarization and dimension of S� is one, then S� is a planar
curve, hence � is trivial. Thus, the case when S� is a curve is not interesting.

In what follows, we recall how to define the topological degree of the map �.
Suppose that B� is finite and that S� has dimension two. By Beauville (1996, The-
orem II.7) (elimination of indeterminacy), there exists a smooth compact projective
surface X , a regular morphism π : X → P

2 that is a finite composition of blow-ups,
and a regular morphism � : X → P

3 with the property � = � ◦ π , which holds
where the right-hand side is defined. By the Specialization Principle, cf. Mumford
(1976, Theorem (3.25)), and since the dimension of �(X) ⊃ S� is 2, a generic point
in �(X) has exactly k preimages in X , where k is the degree of the field extension
C(X)/�∗

C(�(X)). The difference X\π−1(P2\B�) consists of exceptional curves,
whose images under � lie in a proper Zariski closed subset of �(X). Therefore, a
generic point of S� has exactly k preimages in P

2\B�. We will call the number k the
topological degree of � : P

2\B� → S�.
The following proposition is classical and well known but we recall the proof for

completeness.

Proposition 2.2 Suppose that |B�| < ∞ and dim(S�) = 2. Let k be the topological
degree of � : P

2\B� → S�. Then the projective closure of S� is a surface of degree
(9 − |B�|)/k, in particular, |B�| < 9.

Proof Let d denote the degree of the surface S�. By the Kleiman transversality theo-
rem, there is a proper Zariski closed set Z1 of lines in P

3 such that every line L /∈ Z1
intersects the set S� transversely at exactly d points. There is some at most one-
dimensional exceptional subvariety E of S� such that all points outside of E have
exactly k preimages under � : P

2\B� → S�. There is a proper Zariski closed set Z2
of lines in P

3 containing all lines intersecting E . Every line L ⊂ P
3 defines a pencil

L�(L) ⊂ L� consisting of all cubics �P , where P runs through all planes containing
L . Let ν(L) be the sum of intersection indices of two generic curves inL�(L) at points
of B�. Clearly, there is a proper Zariski closed set Z3 of lines containing all lines L
with ν(L) �= |B�|.

Consider a line L not inZ1 ∪Z2 ∪Z3. Then the set S� ∩ L consists of d transverse
intersection points. The line L can be represented as the intersection of two planes
P1 and P2. Note that the curves P1 ∩ S� and P2 ∩ S� intersect transversely, since all
intersection points of L = P1 ∩ P2 and S� are transverse. Let �1 and �2 be the corre-
sponding cubics in L�. Since L /∈ Z1 ∪Z2, the intersection �1 ∩�2 is a disjoint union
of dk intersection points and the set B�. At each of these dk points, the intersection
is transverse since � is locally a diffeomorphic embedding, and the images of �1, �2
intersect transversely. Since L /∈ Z3, the sum of intersection indices of �1 and �2 at
points of B� is equal to |B�|. By the Bezout theorem, we have 9 = 32 = dk+|B�|. ��

3 Planarizations

As before, we consider a cubic rational map �. We now assume that � is a planariza-
tion, i.e., the �-image of every line in P

2 is a subset of some plane in P
3. We say that
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6 V. Petrushchenko, V. Timorin

� is strictly cubic if there is no Zariski open subset U ⊂ P
2 such that the restriction

of � to U coincides with some quadratic rational map. It follows from Lemma 2.1
that for every strictly cubic planarization �, the set B� is finite.

The next proposition is needed to formulate the theorem we will prove in this
section.

Proposition 3.1 Suppose that � : P
2 ��� P

3 is a strictly cubic planarization that is
not co-trivial. Then the dimension of S� is two.

To prove this proposition we need the following lemma.

Lemma 3.2 Suppose that � is not co-trivial. Then all fibers of � are finite, i.e., there
is no semi-algebraic subset of dimension one in P

2 mapping to a point.

Proof Suppose that  ⊂ P
2\B� is a semi-algebraic subset of dimension one such

that �() is a point. Note that a generic line λ ⊂ P
2 intersects . Therefore, the plane

Pλ passes through the point �(). It follows that � is co-trivial. ��
Proof of Proposition 3.1 Suppose that on the contrary S� has dimension one. Then
by the inverse function theorem and Sard’s lemma there is x ∈ S� such that �−1(x)
in P

2 is semi-algebraic set of dimension one, contradiction to the Lemma 3.2. ��
The following theorem is proved in this section.

Theorem 3.3 Suppose that � : P
2 ��� P

3 is a strictly cubic planarization, which is
not co-trivial. Then the topological degree of � : P

2\B� → S� is greater than one.

Note that, under the assumptions of Theorem 3.3, the topological degree of � :
P
2\B� → S� is well defined by Proposition 3.1.
First, we examine general properties of strictly cubic planarizations that are needed

to prove Theorem 3.3.

Lemma 3.4 Suppose that � is a strictly cubic planarization. For a generic choice of
line λ in P

2, the curve �(λ) is cubic.

Proof Suppose that the degree of �(λ) is at most 2, for a Zariski open set of
lines λ. Then, by Timorin (2012, Lemma 2.8), the map � is not strictly cubic, a
contradiction. ��

We will write J� for the semi-algebraic set in P
2, on which the Jacobian of � :

P
2\B� → S� vanishes. In other terms, J� consists of all points p ∈ P

2 such that
the differential dp� of � at p is degenerate, i.e., has a nontrivial kernel. Note that if
� is strictly cubic and not co-trivial, then, by Proposition 3.1, S� has dimension two.
Then, by the Sard lemma, the Jacobian of� cannot vanish everywhere. Therefore, the
dimension of J� is at most one.

Proposition 3.5 Suppose that � is not co-trivial and dim(J�) = 1. Then every com-
ponent of J� of dimension one is mapped to a subset of a plane.

To prove Proposition 3.5, we need the following simple and general lemma:
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On Maps Taking Lines to Plane Curves 7

Lemma 3.6 If a germ of a holomorphic curve T ⊂ P
3 has the property that all

tangent lines of T pass through some point b ∈ P
3, then in fact T lies in a line passing

through b.

Proof We may choose homogeneous coordinates in P
3 so that b = [0 : 0 : 0 : 1].

In the affine chart (x1, x2, x3) �→ [1 : x1 : x2 : x3], the lines passing through b are
tangent to the vertical line field. The only integral curves of the vertical line field are
vertical lines. ��
Proof of Proposition 3.5 Let K be a component of J�, whose dimension is one. The
set �(K ) is not a point, by Lemma 3.2. Since K is not mapped to a point under �,
the restriction of � to K has only finitely many critical points. Note that, if K lies in a
line, then the statement follows from the definition of a planarization. Thus, we may
assume that K is not a subset of a line.

We now define three proper Zariski closed subsets Z1, Z2 and Z3 of K × K . The
setZ1 is defined as the set of pairs (p, q) ∈ K ×K such that p or q is a critical point of
�|K . Since �|K has finitely many critical points, Z1 is a proper Zariski closed subset
of K × K . The set Z2 is by definition the closure of the set of pairs (p, q) ∈ K × K
with p �= q such that the line connecting p and q is non-special, i.e., the image of
this line is not a subset of a line. This set is closed by definition. Since a generic line
is non-special (by the Möbius–von Staudt theorem), the set Z2 is proper. Finally, we
define the set Z3 as the closure of the set of pairs (p, q) ∈ K × K with the following
properties: there is a unique line λ connecting p and q; the restriction of the differential
dp� to the tangent line of λ at p vanishes or the restriction of the differential dq� to
the tangent line of λ at q vanishes. By definition, Z3 is closed. Since the restriction of
� to a generic line has finitely many critical points, the set Z3 is proper.

We now assume that (p, q) does not belong to Z1 ∪Z2 ∪Z3. Since p, q ∈ J�, the
curve �(K ) is tangent to �(λ) at points �(p) and �(q). Moreover, since (p, q) /∈
Z1 ∪ Z3, the point �(p) is nonsingular for �(K ∩ Up) and �(λ ∩ Up), where Up

is a small neighborhood of p, and the point �(q) is nonsingular for �(K ∩ Uq) and
�(λ ∩ Uq), where Uq is a small neighborhood of q. Therefore, the submanifolds
�(K ∩Up), �(λ ∩Up) have well-defined tangent lines at �(p), and similarly for q.

It follows that the curve�(K ) is tangent to the plane Pλ at�(p) and�(q). Tangent
lines of �(K ) at �(p) and �(q) lie in the same plane Pλ, hence they intersect. Since
this is true for a Zariski dense set of pairs (p, q), it follows that every pair of tangent
lines of �(K ) intersect. Fix two tangent lines �1 and �2 of �(K ). Any other tangent
line � of �(K ) must intersect both �1 and �2. Thus, either � lies in the plane
containing �1 ∪ �2, or � passes through the intersection point �1 ∩ �2. We see that
the only possibilities for �(K ) are that

1. all tangent lines of this curve lie in the same plane, OR
2. all tangent lines of this curve pass through the same point.

In case (2), we have that �(K ) is a subset of some line by Lemma 3.6, therefore,
�(K ) is a subset of a plane. In case (1), we have that all tangent lines of �(K ) belong
to the same plane, therefore, the curve �(K ) itself lies in this plane. ��
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8 V. Petrushchenko, V. Timorin

Corollary 3.7 Suppose that � is not co-trivial and K is one-dimensional component
of J� that is not contained in any line. Then the �-image of a generic line λ ⊂ P

2 is
tangent to �(K ) at two or more points.

Proof By the assumption, the curve K has degree at least two. Hence, a generic line
λ ⊂ P

2 intersects K at two different points p, q with a property �(p) �= �(q). Thus,
�(λ) is tangent to �(K ) at �(p),�(q). ��
Proposition 3.8 Suppose that � is strictly cubic, not co-trivial, and not dual
quadratic. Suppose also that the topological degree of � is equal to one. Then the
set J� is finite, possibly empty.

To prove this proposition, we need the following lemma:

Lemma 3.9 Suppose that � is strictly cubic, the topological degree of � is one, and
S� is a two-dimensional subset of some surface of degree 2 or 3. Then � is trivial or
co-trivial.

We need to introduce some terminology. A line λ ⊂ P
2 is called non-special for a

planarization � if �(λ) is not a line. By the Möbius–von Staudt theorem and since �

is strictly cubic, a generic line in P
2 is non-special for �. Since � is a planarization,

for every non-special line λ, there is a unique plane Pλ in P
3 containing �(λ). If �

is cubic and not (co)-trivial, then the preimage �−1(Pλ) lies in a unique cubic curve
�λ ∈ L� containing λ. In fact, �−1(Pλ) coincides with �λ\B�. Then �λ = λ ∪ σλ,
where σλ is a conic. The curves �(λ) and �(σλ) are two plane curves in P

3.

Proof of Lemma 3.9 Suppose that S� is a two-dimensional subset of some surface of
degree 3. By Proposition 2.2, we have |B�| = 6. Suppose that � is not co-trivial,
then for every non-special line λ ⊂ P

2 disjoint from B�, consider the corresponding
conic σλ. Then σλ contains the set B�. Moreover, we have (σλ · �)B� ≥ 6, where � is
any cubic from the linear web L�, and (σλ · �)B� denotes the sum of the intersection
multiplicities of σλ and � at all points of B�. Indeed, if λ∩B� = ∅, then the inequality
(σλ · �)B� ≥ 6 follows from ((σλ + λ) · �)B� ≥ 6. The latter inequality holds by
definition of |B�|: any pair of cubics from the linear system L� intersects at |B�| or
more points of B�, counting multiplicities. The case when λ ∩ B� �= ∅ follows from
the upper-semicontinuity of the intersection multiplicities.

If a line λ′ is disjoint from B�, then (σλ · σλ′)B� = (σλ · �λ′)B� ≥ 6. On the
other hand, two different conics either share a line component or intersect by at most
4 points, counting multiplicities. It follows that all conics σλ share a line component
λ0, in particular, all σλ have a point a /∈ B� in common. Then, for every line λ ⊂ P

2,
the plane Pλ containing the image of λ contains also �(a), which means that � must
be co-trivial.

The same proof by contradiction works for the case of degree 2. ��
Proof of Proposition 3.8 Assume the contrary: there is a component K of J� that has
dimension one. By Proposition 3.5, the image �(K ) is a plane curve. Consider the
following cases.

First, suppose that neither K nor �(K ) is a subset of a line. We will write P for
the plane containing �(K ). By the Corollary 3.7, the image of a generic line λ ⊂ P

2
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On Maps Taking Lines to Plane Curves 9

under the map� is tangent to�(K ) at two or more points. Moreover, we may assume
that the tangent lines of �(K ) at these points do not coincide and therefore define a
unique plane. It follows that Pλ = P . Since λ is generic, this implies that � is trivial
and hence co-trivial, a contradiction.

Second, suppose now that �(K ) lies in a line L ⊂ P
3. Then, since, for a generic

line λ ⊂ P
2, the curve �(λ) is tangent to �(K ), the plane Pλ must contain L . It

follows that � is co-trivial, a contradiction.
Finally, suppose that K is a subset of a line but �(K ) is not a subset of a line.

Then �(K ) lies in a plane algebraic curve � of degree two or three. Consider the dual
planarization �∗. If � is strictly cubic, then �∗ is defined on some nonempty Zariski
open subset of P

2∗. If�∗ is trivial, then�must be co-trivial. If�∗ is co-trivial, then�

must be trivial. Thus we may assume that�∗ is neither trivial nor co-trivial. Note that,
for a generic line λ ⊂ P

2, the image �(λ) is tangent to �(K ) at the point �(λ ∩ K ).
It follows that the plane Pλ is tangent to �(K ). We see that the image �∗(P2∗\B�∗)
lies in the set of all tangent planes of �.

The set �∗ of all tangent planes of � is a cone in P
3∗ (indeed, every plane in �∗

is an element of a linear pencil of planes, i.e., of a line in P
3∗, containing the plane

of �). A plane section of the cone �∗ not passing through the vertex of this cone is
a curve projectively equivalent to the dual curve of �. Since �∗ is a planarization
that is neither co-trivial nor dual quadratic, it must be a strictly cubic planarization
by Timorin (2012, Theorem 1.1). It follows that the projectively dual curve of � has
degree at most three. Indeed, the image of a line under a cubic rational map lies in
a curve of degree at most three. Then the degree of the surface �∗ is also at most
three. By Proposition 3.1, we may assume that �∗(P2∗\B�∗) has dimension two, i.e.,
includes an open subset of �∗. It now follows from Lemma 3.9 that the planarization
� is trivial or co-trivial, a contradiction. ��

By Lemma 3.4, if � is a strictly cubic planarization then the image �(λ) of a
generic line λ ⊂ P

2, is a cubic curve. We need the following proposition.

Proposition 3.10 Suppose � is strictly cubic, not co-trivial and not dual quadratic.
Assume also that the topological degree of � is one. Then the set of all lines λ ⊂ P

2,

such that their �-images are cuspidal cubics, is not Zariski dense.

Proof We will write γ for the Zariski closure of the set of all points p with the
following property: there is a line λ � p, whose �-image is a cuspidal cubic curve,
the point �(p) being the cusp of this curve. If p and λ are as above, then p ∈ J�.
It follows that γ ⊂ J� has dimension at most one. Since a generic line intersects γ ,
we conclude that γ is a curve rather than a finite set of points. But this contradicts the
results of Proposition 3.8, which states that J� and hence γ are finite sets. ��

A plane rational cubic curve is either nodal or cuspidal. Let �� denote the set of
lines λ ⊂ P

2, such that the cubic �(λ) is nodal. For every line λ ∈ ��, we let �(λ)

be the set of points of λ mapping to the singular point of the unique nodal cubic curve
containing �(λ). Thus the set �(λ) consists of pairs of points such that each pair is
mapped to the node of the unique nodal cubic containing �(λ). Let � be the Zariski
closure of the union of �(λ) over all lines λ ∈ ��.
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10 V. Petrushchenko, V. Timorin

Lemma 3.11 Suppose that � is a non co-trivial planarization such that the set �� is
non-empty and Zariski open. Then the set � coincides with the whole of P

2 and the
topological degree of � is greater than one.

Proof Assume the contrary: the set � has dimension one or less. Then the set Z of
lines λ such that � : λ∩� → P

3 is not injective has dimension at most one. Indeed,
given a point a ∈ �, there are only finitely many lines connecting a with some other
point in the finite set �−1(�(a)) (the latter set is finite by Lemma 3.2). Consider a
line λ /∈ Z . Moreover, we may assume that �(λ) is a nodal cubic and λ ∩ B� = ∅.
Then the set �(λ) contains some point b �= a. This is a contradiction with the fact
that � is injective on the set λ ∩ �. Thus, the set � coincides with the whole of P

2.
In turn, this means that a generic point of S� is a node of some nodal cubic lying on
S�. Hence, the topological degree of � is greater than one. ��

We are now ready to give the proof of Theorem 3.3.

Proof of Theorem 3.3 First, suppose � is a dual quadratic planarization satisfying all
the assumptions of Theorem 3.3. Then we prove that the topological degree of � is
greater than one, i.e. in this case the conclusion of Theorem 3.3 holds.

Indeed, let�∗ be the dual planarization of�. It is defined on some nonemptyZariski
open subset of P

2∗. Since � is dual quadratic, the map �∗ is a quadratic rational map.
Recall that lines in P

2∗ correspond to points in P
2: namely, a point a ∈ P

2 defines the
line a∗ ∈ P

2∗ consisting of all lines in P
2 passing through a. If a line a∗ ⊂ P

2∗ is non-
special for �∗, we will write P∗

a for the plane in P
3∗ containing the set �∗(a∗\B�∗).

The plane P∗
a , of course, identifies with the point �∗∗(a) = �(a). Taking a �∗-

preimage of the plane P∗
a in P

3∗ defines a conic in P
2∗ containing a∗. This conic

consists of a∗ and another line a∗
1 . Clearly, we have a1 �= a for a generic a ∈ P

2

(there is no nontrivial linear systems of double lines in P
2) and that �(a1) = �(a).

It follows that the topological degree of � is greater than one.
The remaining part is proved by contradiction based on the above results. Namely,

let � be a strictly cubic planarization that is not co-trivial and not dual quadratic.
Assume that the topological degree of � equals one. By Proposition 3.10, we know
that, for a generic line λ, the cubic �(λ) is not cuspidal. Therefore, the set �� is
non-empty and Zariski open. Now, it follows from Lemma 3.11 that the topological
degree of the map � is strictly greater than one, a contradiction. This concludes the
proof of Theorem 3.3. ��

4 Description of Cubic Planarizations

In this section, we give a complete description of cubic planarizations thus completing
the description of all planarizations.Wewill assume throughout this section that� is a
strictly cubic planarization that is neither trivial nor co-trivial. Then S� has dimension
two, and the set B� is finite. By Theorem 3.3, the topological degree of the map
� : P

2\B� → S� is at least two. We can now make this result stronger.

Proposition 4.1 If � is not dual quadratic, then the topological degree of the map
� : P

2\B� → S� is equal to three.
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On Maps Taking Lines to Plane Curves 11

Proof Consider the dual planarization �∗. Recall that it is defined on some nonempty
Zariski open subset of P

2∗. By the Timorin (2012, Theorem 1.1), the map �∗ must be
cubic. Moreover, �∗ is neither trivial, nor co-trivial (otherwise � would be trivial or
co-trivial).

Consider the set B�∗ ⊂ P
2∗ of all indeterminacy points of �∗. Since � is not dual

quadratic, the planarization �∗ is strictly cubic. It follows by Lemma 2.1 that the set
B�∗ is finite.

All facts established earlier for � apply also to �∗. In particular, a generic fiber of
the map�∗ consists of at least two points by Theorem 3.3, and a generic line a∗ ⊂ P

2∗
is mapped to a cubic under �∗ by Lemma 3.4. If a line a∗ ⊂ P

2∗ is non-special for
�∗, then we will write P∗

a∗ for the unique plane in P
3∗ containing �∗(a∗). Recall

that P∗
a∗ is identified with �(a) under the natural identification between P

3∗∗ and P
3.

Similarly to the properties of �, the full preimage of P∗
a∗ under �∗ is a cubic curve

�∗
a∗ consisting of a∗ and some conic σ ∗

a∗ .
Since the topological degree of � is at least two, we know that, for a generic line

a∗
1 ⊂ P

2∗, there is another line in P
2∗ mapping to the same plane P∗

a∗
1
under �∗.

Hence the conic σ ∗
a∗
1
splits into the union of two lines. We will write a∗

2 and a∗
3 for

these two lines. Thus, the cubic �∗
a∗
1
splits into the union of the three lines a∗

1 , a
∗
2 and

a∗
3 . Generically, these three lines are different, and they map to the same plane P∗

a∗
1
.

This property of �∗ translates to the following property of �: a generic point of S�

(corresponding to the plane P∗
a∗
1
) has exactly three preimages a1, a2, a3. ��

We also need the following lemma.

Lemma 4.2 Let � be a strictly cubic, not co-trivial planarization. Suppose a line
λ ⊂ P

2 does not contain base points of �. Then the following assertions hold.

1. The line λ cannot be mapped by � to an irreducible conic;
2. If the line λ is mapped by � to a line L ⊂ P

3, then the map �|λ : λ → L is
three-to-one.

Proof To prove the first assertion, consider a conic C that coincides with �(λ). A
generic plane P ⊂ P

3 intersects the conicC in two points. The cubic �P intersects the
line λ in three points counting multiplicities. Therefore, we must have 3 = 2k, where
k is the topological degree of the branch covering �|λ : λ → C . Thus, by way of this
contradiction the first assertion is proved.

To prove the second one, consider a point p ∈ L and a generic plane P ⊂ P
3, such

that P ∩ L = p. We may assume that �P = �−1(P) is a cubic curve. The set �P ∩ λ

consists of three points countingmultiplicities.Moreover, a multiple intersection point
is necessarily a critical point of �|λ since the intersection of P and L is transverse.
This proves the second assertion. ��
Proof of the Main Theorem We now assume that � is not dual quadratic. Then, by
Proposition 4.1, the topological degree of the map� : P

2\B� → S� is equal to three,
and the same is true for the dual planarization �∗. Let d denote the degree of the
surface S�. By Proposition 2.2, we have 3d = 9 − |B�|. It follows that d is at most
three, i.e., the surface S� is at most cubic.
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12 V. Petrushchenko, V. Timorin

If the degree of S� is at most two, then S� must be an irreducible quadric (because
we assume� is not trivial). Since the�-image of every line is a plane curve, this plane
curve must be a conic, possibly degenerate. According to Timorin (2012, Lemma 2.8),
such a map� (a rational map of degree at most 3 that takes lines to conics) is a rational
map of degree at most two, unless �(P2\B�) is contained in a line. Thus, from now
on, we may assume that S� is a cubic surface.

All of the above is applicable to the dual planarization �∗. Hence, it follows by
Proposition 2.2 that the sets B� and B�∗ are empty, hence S� (and S�∗ ) is compact.
It is a classical fact that S� contains at least one line (recall that a smooth cubic
surface contains 27 lines, and any cubic surface can be approximated by smooth cubic
surfaces). Let L be a line contained in S�.

We claim that the set �−1(L) is a union of at most three lines. Indeed, let L∗ be
the line in P

3∗ consisting of all planes in P
3 that contain the line L . The line L∗ must

intersect the surface �∗(P2∗) at some point b∗. Let Pb∗ be the plane in P
3 correspond-

ing to the point b∗ ∈ P
3∗. Clearly, L ⊂ Pb∗ , therefore, �−1(L) ⊂ �−1(Pb∗) and the

set �−1(Pb∗) is the union of at most three lines. Let λ ⊂ �−1(Pb∗) be a line that is
mapped to L .

We will now argue that this λ must be a point of indeterminacy for �∗. Choose
any point p ∈ λ and let p∗ be the corresponding line in P

2∗. As a set of lines in P
2,

it consists of all lines through p. In Timorin (2012, Proposition 2.1), a cubic rational
map �p∗ from p∗ to P

3∗ was constructed that coincides with �∗ almost everywhere
on p∗ and that has λ as a point of indeterminacy. If λ is not a point of indeterminacy for
�∗, then�∗|p∗ must coincide with some quadratic rational map, so that the expression
for �p∗ in homogeneous coordinates has a nontrivial polynomial factor common to
all components. The image �∗(p∗) is then a subset of a conic or of a line. The first
option is impossible by the first assertion of Lemma 4.2. If �∗(p∗) is a subset of a
line, then, by the second assertion of Lemma 4.2 the dual planarization �∗ must map
p∗ three-to-one to its image. However, this is impossible for a quadratic rational map:
the topological degree of a quadratic rational map is at most two.

It follows that λ is a point of indeterminacy for �∗, which contradicts the fact that
B�∗ = ∅. ��

5 Quadratic Planarizations

Throughout this section, we suppose that � : P
2 ��� P

3 is a quadratic rational map
such that the image of� lies in some quadratic surface S but does not lie in a plane.We
will classify all such quadratic maps up to projective equivalence. The classification
must be classical but we failed to find a modern reference. The following theorem
describes the classification over C.

Theorem 5.1 Suppose that the ground field is C. Then � is projectively equivalent to
one and only one of the following three maps:

�1 : [x0 : x1 : x2] �→ [x20 : x0x1 : x0x2 : x1x2],
�2 : [x0 : x1 : x2] �→ [x20 : x0x1 : x21 : x0x2],

123



On Maps Taking Lines to Plane Curves 13

�3 : [x0 : x1 : x2] �→ [x20 : x0x1 : x21 : x22 ].

The planarizations �1 and �2 are co-trivial. The dual planarization of �3 is projec-
tively equivalent to �3.

The corresponding real classification differs only in that the complex equivalence
class of �1 splits into two real equivalence classes �1a and �1b.

Theorem 5.2 Suppose that the ground field is R. Then � is projectively equivalent to
one and only one of the following four maps:

�1a : [x0 : x1 : x2] �→ [x20 : x0x1 : x0x2 : x1x2],
�1b : [x0 : x1 : x2] �→ [x20 : x0x1 : x0x2 : x21 + x22 ],
�2 : [x0 : x1 : x2] �→ [x20 : x0x1 : x21 : x0x2],
�3 : [x0 : x1 : x2] �→ [x20 : x0x1 : x21 : x22 ].

The planarizations �1a,�1b and �2 are co-trivial. The dual planarization of �3 is
projectively equivalent to �3.

In Sect. 5.1, we prove Theorem 5.1, and in Sect. 5.2, we prove Theorem 5.2.

5.1 Complex Classification

In this section, we assume that the ground field isC. The proof of Theorem 5.1 consists
of several lemmas. We first assume that the quadric S is non-degenerate.

Lemma 5.3 If the surface S is given by the equation u0u1 = u2u3 with respect to
some system of homogeneous coordinates [u0 : u1 : u2 : u3] in P

3, then � has the
form

[x0 : x1 : x2] �→ [ψ0ψ1 : ψ2ψ3 : ψ0ψ2 : ψ1ψ3],

where ψα, α = 0, . . . , 3,are homogeneous linear forms in x0, x1, x2.

Proof The map � can be written in coordinates as uα = ϕα(x0, x1, x2), where x0,
x1, x2 are homogeneous coordinates in P

2, ϕα are quadratic forms not vanishing
identically, and the index α runs from 0 to 3.

We claim that every quadratic polynomial ϕα is reducible. Indeed, if one of these
polynomials, say,ϕ0 is irreducible, then, sinceϕ0ϕ1 = ϕ2ϕ3 by the unique factorization
property, ϕ2 or ϕ3 is divisible by ϕ0, hence is proportional to ϕ0. It follows however that
the image of� lies in a plane, a contradiction. Thus every ϕα is a product of two linear
factors. We write ϕ0 as ψ0ψ1, where ψ0 and ψ1 are linear homogeneous polynomials
in x0, x1, x2. Then ϕ2 or ϕ3 is divisible by ψ0. Relabeling ϕ2 and ϕ3 if necessary,
we may assume that ϕ2 is divisible by ψ0. Set ϕ2 = ψ0ψ2, where ψ2 is some linear
polynomial. It now follows from the identity ϕ0ϕ1 = ϕ2ϕ3 that ψ1ϕ1 = ψ2ϕ3. The
formsψ1 andψ2 are not proportional, since otherwise ϕ0 and ϕ2 are also proportional,
and the image of � is a subset of a plane. We see that ϕ3 is divisible by ψ1, therefore,
ϕ3 can be written as ψ1ψ3. It follows that ϕ1 = ψ2ψ3. ��
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14 V. Petrushchenko, V. Timorin

We can now classify all maps �, for which S is non-singular.

Lemma 5.4 Suppose that S is nonsingular. Then � is equivalent to the following
map:

�1 : [x0 : x1 : x2] �→ [x20 : x0x1 : x0x2 : x1x2].

In particular, � is co-trivial.

Proof There is a system of homogeneous coordinates u0, u1, u2, u3 in the target space
P
3 such that the surface S is given by the equation u0u1 = u2u3. By Lemma 5.3,

the map � has the form [x0, x1, x2] �→ [ψ0ψ1 : ψ2ψ3 : ψ0ψ2 : ψ1ψ3], where
ψα are linear forms in x0, x1, x2. The set of indeterminacy points of � is equal to
B� = {ψ0 = ψ3 = 0} ∪ {ψ1 = ψ2 = 0}. Indeed, if ψ0 �= 0, then we must have
ψ1 = ψ2 = 0, and if ψ1 �= 0, then we must have ψ0 = ψ3 = 0.

We claim that the set B� consists of exactly two points. The system of equations
ψ0 = ψ3 = 0 defines a point a. Indeed, otherwise the linear functionals ψ0 and ψ3
must be proportional, and we may assume ψ0 = ψ3. In this case, we have ϕ0 = ϕ3,
which means that the image of � lies in a plane section of S, a contradiction with our
assumption that S is non-singular. Similarly, the system of equations ψ1 = ψ2 = 0
defines a point b. It remains to show that a �= b. Indeed, otherwise the map � factors
through the central projection of P

2\{a} onto P
1. It follows that the image of � lies

in a conic, a contradiction with our assumption. Thus we have B� = {a, b}.
Consider the linear web of conics L� associated with �. All conics of L� pass

through a and b. On the other hand, the linear system L of all conics passing through
a and b has dimension 3. Therefore, L� = L. We can now choose homogeneous
coordinates [x0 : x1 : x2] in P

2 so that a = [0 : 1 : 0] and b = [0 : 0 : 1]. Then
L is spanned by the following degenerate conics: x20 = 0, x0x1 = 0, x0x2 = 0 and
x1x2 = 0. The map � corresponding to this choice of generators coincides with �1,
as desired. The planarization �1 is co-trivial: indeed, every line is mapped under �1
to a plane passing through [0 : 0 : 0 : 1]. ��

Continuing the complex classification of quadratic planarizations, we now assume
that S is contained in a degenerate quadric.

Lemma 5.5 Suppose that S is given by the equation u21 = u0u2 with respect to some
system of homogeneous coordinates [u0 : u1 : u2 : u3] in P

3. Then, possibly after a
projective coordinate change in P

2 and P
3, the map � has the form

[x0 : x1 : x2] �→ [x20 : x0x1 : x21 , ϕ3(x0, x1, x2)],

where ϕ3 is some homogeneous quadratic form in the variables x0, x1, x2.

Proof Suppose that � is given by the equations uα = ϕα(x0, x1, x2). As before, we
argue that ϕ1 is reducible, otherwise it would be proportional either to ϕ0 or to ϕ2.
Similarly, ϕ0 and ϕ2 are reducible. We can write ϕ1 as ψ0ψ1, where ψ0 and ψ1 are
linear functions. Then ϕ0 or ϕ2 is divisible by ψ0; we may assume the former and
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On Maps Taking Lines to Plane Curves 15

write ϕ0 = ψ0ψ̃0. It follows from the equation ϕ2
1 = ϕ0ϕ2 that ψ0ψ

2
1 = ψ̃0ϕ2.

Therefore, ψ̃0 is proportional toψ0 or toψ1. In the former case, we have ϕ0 = ψ2
0 and

ϕ2 = ψ2
1 , up to a projective coordinate change in P

3 (multiplying the homogeneous
coordinates by different constants). In the latter case, ϕ0 would be proportional to ϕ1,
a contradiction with our assumption.

Thus we have ϕ1 = ψ0ψ1, ϕ0 = ψ2
0 , ϕ2 = ψ2

1 for some non-proportional linear
forms ψ0, ψ1. We can choose the homogeneous coordinates [x0 : x1 : x2] in P

2 so
that ψ0 = x0 and ψ1 = x1. The map � now takes the form [x0 : x1 : x3] �→ [x20 :
x0x1 : x21 : ϕ3(x0, x1, x2)], where ϕ3 is a quadratic form in the variables x0, x1, x2, as
desired. ��

The following lemma provides normal forms for � in the case, where S is an
irreducible cone.

Lemma 5.6 Suppose that S is a singular irreducible quadric, i.e., a quadratic cone.
Then � is equivalent to at least one of the maps

�2 : [x0 : x1 : x2] �→ [x20 : x0x1 : x21 : x2x0]
�3 : [x0 : x1 : x2] �→ [x20 : x0x1 : x21 : x22 ].

Proof There is a homogeneous coordinate system u0, u1, u2, u3 in the space P
3 such

that the cone S is given by the equation u21 = u0u2. By Lemma 5.5, we may assume
that the map � has the form [x0 : x1 : x3] �→ [x20 : x0x1 : x21 : ϕ3(x0, x1, x2)], where
ϕ3 is a quadratic form in the variables x0, x1, x2. We may change ϕ3 by adding any
linear combination of x20 , x0x1, x

2
1 , i.e., by adding any quadratic form in x0, x1 only:

this can be implemented bymeans of a projective coordinate change in the target space
P
3. Thus we may assume that ϕ3(x0, x1, x2) = x2(a0x0 + a1x1 + a2x2).
Suppose first that a2 = 0. Then at least one of the coefficients a0, a1 is nonzero.

Assume e.g. that a0 �= 0 (the case a1 �= 0 is obtained from this case by interchanging
x0 and x1). Then we set x̃0 = a0x0 +a1x1, x̃1 = x1, x̃2 = x2. In the new variables, the
map � has the form � : [̃x0 : x̃1 : x̃2] �→ [U0 : U1 : U2 : x̃2 x̃0], where U0, U1 and
U2 are linearly independent quadratic forms in x̃0, x̃1. Since the space of quadratic
forms in x̃0, x̃1 is three-dimensional, the monomials x̃20 , x̃0 x̃1, x̃

2
1 can be represented

as linear combinations of U0,U1,U2. Therefore, changing homogeneous coordinates
in the target space P

3, we can reduce � to the form � : [̃x0 : x̃1 : x̃2] �→ [̃x20 : x̃0 x̃1 :
x̃21 : x̃2 x̃0], i.e., to the form �2.

Suppose now that a2 �= 0. Then we make the following change of variables: x0 =
x̃0, x1 = x̃1, x2 = c0 x̃0 + c1 x̃1 + c2 x̃2. In the new variables, the map � has the form

[̃x0 : x̃1 : x̃2] �→ [̃x20 : x̃0 x̃1 : x̃21 : ϕ̃3(̃x0, x̃1, x̃2)],
ϕ̃3(̃x0, x̃1, x̃2) = (c0 x̃0 + c1 x̃1 + c2 x̃2)((a0 + a2c0)̃x0 + (a1 + a2c1)̃x1 + a2c2 x̃2)

= c2 x̃2((a0 + 2a2c0)̃x0 + (a1 + 2a2c1)̃x1 + a2c2 x̃2) + · · ·
The dots mean a quadratic form in x̃0, x̃1. We now set

c0 = − a0
2a2

, c1 = − a1
2a2

, c2 = 1√
a2
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16 V. Petrushchenko, V. Timorin

(we choose any one of the two complex values of
√
a2). Then we have ϕ̃3 = x̃22 +· · · ,

where dots mean a quadratic form in x̃0, x̃1. The latter can be killed by a suitable
change of variables in the target space (more precisely, by adding a certain linear
combination of the coordinates u0, u1, u2 to the last coordinate u3). Thus we reduced
� to the form [̃x0 : x̃1 : x̃2] �→ [̃x20 : x̃0 x̃1 : x̃21 : x̃22 ], i.e., to the form �3. ��
Proof of Theorem 5.1 Finally, we need to distinguish between �2 and �3, i.e., to
prove that these two maps are not equivalent. To this end, it suffices to compute the
dual planarizations of�2 and�3 and observe that equivalent planarizations must have
equivalent dual planarizations. The planarization �2 is co-trivial: the image of every
line is contained in a plane passing through [0 : 0 : 1 : 0]. On the other hand, a
straightforward computation shows that the dual planarization of �3 is equivalent to
�3, in particular, is not trivial. This concludes the proof of Theorem 5.1. ��

5.2 Real Classification

In this subsection, we assume that the ground field is R. The proof of Theorem 5.2
splits into the following two lemmas.

Lemma 5.7 Suppose that S is nonsingular. Then � is equivalent to one and only one
of the following maps:

�1a : [x0 : x1 : x2] �→ [x20 : x0x1 : x0x2 : x1x2],
�1b : [x0 : x1 : x2] �→ [x20 : x0x1 : x0x2 : x21 + x22 ].

Proof Consider the linear web of conics L� associated with the complexification of
�. By the proof of Lemma 5.4, the web L� has two different complex base points
a �= b and consists of all conics passing through a and b. There are two possibilities:
a and b can be real or complex conjugate. Suppose first that a and b are real. Then,
as in the proof of Lemma 5.4, we show that � is equivalent to �1a . Suppose now
that a and b are complex conjugate. Performing a suitable change of homogeneous
coordinates [x0 : x1 : x2] in P

2 over real numbers, we may assume that a = [0 : 1 : i]
and b = [0 : 1 : −i]. Then the web of all conics passing through a and b is spanned
by the degenerate conics x20 = 0, x0x1 = 0, x0x2 = 0 and x21 + x22 = 0. Indeed, these
four degenerate conics are given by linearly independent quadratic forms and do pass
through a and b. Note that, in the affine chart x0 = 1 with affine coordinates x1, x2,
the web L� is exactly the web of all circles (including degenerate ones). With this
choice of generating conics, � coincides with �1b.

The maps �1a and �1b are not equivalent over reals because the corresponding
linear webs of conics have different number of real base points. ��
Lemma 5.8 Suppose that S is singular but irreducible. Then � is equivalent to one
and only one of the following maps:

�2 : [x0 : x1 : x2] �→ [x20 : x0x1 : x21 : x2x0]
�3 : [x0 : x1 : x2] �→ [x20 : x0x1 : x21 : x22 ].
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Proof The proof of Lemma 5.6 applies verbatim over reals, except that it is not always
possible to take

√
a2. If a2 < 0, then we set instead c2 = 1/

√−a2 and reduce � to
the form [̃x0 : x̃1 : x̃2] �→ [̃x20 : x̃0 x̃1 : x̃21 : −x̃22 ]. However, changing sign of the last
coordinate in P

3 gets it back to the form �3. Since �2 and �3 are not equivalent over
complex numbers, neither are they over reals. ��

6 Normal Forms of Planarizations

In this section, we give a complete list of local normal forms of planarizations. We
assume that the ground field is R.

Theorem 6.1 Suppose that U ⊂ P
2 is an open subset and � : U → P

3 is a pla-
narization. Then, for every open subset V ⊂ U there exists a (possibly smaller) open
subset W ⊂ V such that � : W → P

3 is projectively equivalent to at least one of the
following normal forms:
(T ): [x : y : z] �→ [ f (x, y, z) : g(x, y, z) : h(x, y, z) : 0]
(CT ): [x : y : z] �→ [x : y : z : f (x, y, z)]
(Q1): [x : y : z] �→ [xy : xz : yz : x2 + y2 + z2]
(Q2): [x : y : z] �→ [xy : xz : yz : x2 − y2 + z2]
(Q3): [x : y : z] �→ [x2 + y2 : y2 + z2 : xz : yz]
(Q4): [x : y : z] �→ [x2 − y2 : xy : yz : z2]
(Q5): [x : y : z] �→ [xz − yz : x2 : y2 : z2]
(Q6): [x : y : z] �→ [x2 : xz − y2 : yz : z2]
(Q7): [x : y : z] �→ [y2 − z2 : xy : xz : yz]
(Q8): [x : y : z] �→ [xy : xz : y2 : z2]
(Q9): [x : y : z] �→ [xy : xz − y2 : yz : z2]
(Q10): [x : y : z] �→ [x2 : xy : y2 : z2]
(C1): [x : y : z] �→ [z(x2 + y2) : y(x2 + z2) : x(y2 + z2) : xyz]
(C2): [x : y : z] �→ [z(x2 − y2) : y(x2 + z2) : x(y2 − z2) : xyz]
(C3): [x : y : z] �→ [x2z : z(x2 + y2) : x(x2 + y2 − z2) : y(x2 + y2 + z2)]
(C4): [x : y : z] �→ [x2y : x(x2 − y2) : z(x2 + y2) : yz2]
(C5): [x : y : z] �→ [x2(x + y) : y2(x + y) : z2(x − y) : xyz]
(C6): [x : y : z] �→ [x3 : xy2 : 2xyz − y3 : z(xz − y2)].
Here f, g and h are sufficiently smooth degree 1 homogeneous functions of x, y, z.
In normal form (T ), the mapping [x : y : z] �→ [ f : g : h] represents an arbitrary
sufficiently smooth embedding of W into P

2.

In Theorem6.1, the form (T ) represents all trivial planarizations, and the form (CT )

represents all co-trivial planarizations that are not trivial. These items correspond to
infinitely many projective equivalence classes. However, note that there are finitely
many classes of nontrivial non-co-trivial planarizations.

Proof By the Main Theorem, every point a ∈ U has a neighborhood V ⊂ U such
that the planarization � : V → P

3 is trivial, co-trivial, quadratic or dual quadratic.
Suppose first that � : V → P

3 is trivial. This means by definition that there is a plane
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P ⊂ P
3 such that �(V ) ⊂ P . By a projective coordinate change, we may assume

that the plane P is given in homogeneous coordinates [u0 : u1 : u2 : u3] by u3 = 0.
Then the map � : V → P

3 has form (T ).
Suppose now that the planarization � : V → P

3 is co-trivial but not trivial. Then,
by definition, there is a point b ∈ P

3 such that, for every line L ⊂ P
2, there is a plane

PL containing the set �(L ∩ V ) ∪ {b}. We may assume that b = [0 : 0 : 0 : 1]. There
is a nonempty open subset W ⊂ V such that �(W ) �� b. Let P

2(b) be the projective
plane formed by all lines in P

3 passing through b, and let π : P
3\{b} → P

2(b) be
the canonical projection mapping a point c �= b to the line bc. Note that the map
� = π ◦ � : W → P

2(b) has the following property. For every line L ⊂ P
2,

the set �(W ∩ L) is a subset of a line. By the Möbius–von Staudt theorem, a map
with this property must be a restriction of a projective transformation or a mapping
from W to a line, possibly after replacing W with a smaller open set. In the second
case, � : W → P

3 is trivial, and therefore is equivalent to the form (T ). In the first
case, the map � is given by [x : y : z] �→ [x : y : z] provided that we choose a
suitable system of projective coordinates in P

2(b). Then the map � : W → P
3 is

given by [x : y : z] �→ [x : y : z : f (x, y, z)] for some (sufficiently smooth) function
f .
Suppose now that the planarization � : V → P

3 is quadratic but neither trivial nor
co-trivial. Note that the image �(V ) lies in a surface S of degree 2, 3 or 4. Indeed,
since� is not trivial, the degree is greater than one; on the other hand, the image of the
plane under a quadratic rational map lies in a surface of degree at most four. If S has
degree 2, then� is equivalent to one of the maps�1a ,�1b,�2,�3 from Theorem 5.2.
Since, by our assumption, � is not co-trivial, it must be equivalent to �3; the latter is
redenoted by (Q10) in the statement of the theorem. Suppose now that S has degree
3 or 4. In this case, we refer to the results of Coffman et al. (1996). By Coffman et al.
(1996), every quadratic rational map � such that �(P2\B�) is dense in a surface of
degree 3 or 4 is equivalent to one of the maps (Q1)–(Q9).

Finally, suppose that the planarization� : V → P
3 is dual quadratic but not trivial,

not co-trivial, and not quadratic. Then its dual planarization is equivalent to one of the
maps (Q1)–(Q9). A straightforward computation shows that the dual planarizations to
(Q1)–(Q6) are equivalent, respectively, to (C1)–(C6). The planarizations (Q7)–(Q9),
characterized by the property that the corresponding surfaces in P

3 are cubic, turn out
to be equivalent to their dual planarizations. In particular, the dual planarizations of
(Q7)–(Q9) are quadratic. ��

The equations of the surfaces parameterized by dual-quadratic planarizations (C1)–
(C6) are

(C1): 4t3 − t (u2 + v2 + w2) + uvw = 0
(C2): 4t3 + t (u2 − v2 + w2) + uvw = 0
(C3): 4vu2 + u(t2 − 4v2 + w2) − vw2 = 0
(C4): 4tu2 − uw2 + tv2 = 0
(C5): u(vw − t2) + vt2 = 0
(C6): u(4tv − w2) + v3 = 0,
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Fig. 1 The surfaces parameterized by (C1) (left) and by (C2) (right) in the affine chart t = 1

Fig. 2 The surfaces parameterized by (C3) in the affine chart t = 1 (left) and by (C4) in the affine chart
w = 1 (right)

Fig. 3 The surface parameterized by (C5) in the affine chart t = 1 (left) and by (C6) in the affine chart
w = 1 (right)

where [u : v : w : t] are homogeneous coordinates inP
3. These equations are obtained

by eliminating the three variables x , y, z from the four equations

[u : v : w : t] = �[x : y : z].

We used Mathematica to perform the computations. We provide figures of these sur-
faces below, see Figs. 1, 2 and 3.

The surfaces that are parameterized by maps (Q1)–(Q9) have been studied in
Coffman et al. (1996). In particular, pictures of all these surfaces can be found there.
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