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Abstract The balanced configurations are those n-body configurations which admit a
relative equilibriummotion in aEuclidean space E of high enough dimension 2p. They
are characterized by the commutation of two symmetric endomorphisms of the (n−1)-
dimensional Euclidean space of codispositions, the intrinsic inertia endomorphism B
which encodes the shape and the Wintner–Conley endomorphism A which encodes
the forces. In general, p is the dimension d of the configuration, which is also the
rank of B. Lowering to 2(d − 1) the dimension of E occurs when the restriction of
A to the (invariant) image of B possesses a double eigenvalue. It is shown that, while
in the space of all d × d symmetric endomorphisms, having a double eigenvalue is a
condition of codimension 2 (the avoided crossings of physicists), here it becomes of
codimension 1 provided some condition (H) is satisfied. As the condition is always
satisfied for configurations of themaximal dimension (i.e. if d = n−1), this implies in
particular the existence, in the neighborhood of the regular tetrahedron configuration
of four bodies with no three of the masses equal, of exactly three families of balanced
configurations which admit relative equilibrium motion in a four dimensional space.
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1 Central Configurations, Balanced Configurations and Their Relative
Equilibria

Central configurations are the N -body configurations which collapse homothetically
on their center of mass when released without initial velocity; they are known since
Euler and Lagrange to admit periodic homographic motions of all eccentricities and
in particular periodic relative equilibrium motions. More generally, balanced con-
figurations (see Albouy and Chenciner 1998; Chenciner 2013b) are the N -body
configurations which admit a (in general quasi-periodic) relative equilibrium motion
in a Euclidean space of high enough dimension. They are characterized by the com-
mutation of two endomorphisms of the codisposition space D∗, the first one A which
characterizes the attraction forces between the bodies of the configuration, the second
one B, an intrinsic inertia which encodes the shape of the configuration.

1.1 From B to A: Shapes and Forces

An n-body configuration x = (�r1, · · · , �rn) up to translation in the Euclidean space1

(E, ε) is a mapping

1 The Euclidean structure is identified with an isomorphism ε : E → E∗ from E to its dual.
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Non-avoided Crossings for n-Body Balanced Configurations in… 215

x : D∗ → E, (ξ1, . . . , ξn) �→
n∑

i=1

ξi �ri ,

equivalently an element of D ⊗ E , where

D := R
n/(1, . . . , 1)R

is the dispositions space and D∗ = {(ξ1, . . . , ξn)|∑n
i=1 ξi = 0} is its dual. Fixing the

masses naturally endowsD (resp.D∗) with themass Euclidean structure μ : D → D∗
defined by

μ(x1, . . . , xn) = (m1(x1 − xG), . . . , mn(xn − xG)) ,

where xG = (m1x1 + · · · + mn xn)/
∑

mi is the center of mass of the xi (resp.
μ−1 : D∗ → D defined by μ−1(ξ1, . . . , ξn) = (

ξ1
m1

, . . . ,
ξn
mn

)).
The intrinsic inertia form (resp. the (dual) inertia form) of the configuration x is

the quadratic form β on D∗ (resp. the quadratic form b on E∗), defined by

β = x∗ε = xtr ◦ ε ◦ x ∈ Homs(D∗,D) ≡ Q(D∗) ≡ D 
 D,

resp. b = (xtr )∗μ = x ◦ μ ◦ xtr ∈ Homs(E∗, E) ≡ Q(E∗) ≡ E 
 E .

The form β defines the configuration up to a rigid motion (translation and rotation)
in E . The intrinsic inertia endomorphism (resp. the (dual) inertia endomorphism) are
respectively the μ−1-symmetric (resp. ε-symmetric) endomorphisms

B = μ ◦ β : D∗ → D∗ (resp. S = b ◦ ε : E → E).

Let

U (x) =
∑

i< j

mi m j�(r2i j ), where �(s) = Gs− 1
2 ,

be the potential2 of the n-body configuration x . Its invariance under isometries implies
the factorization U (x) = Û (β) = Ũ (B). The Wintner–Conley endomorphism asso-
ciated to x0 is the (μ−1 − symmetric) endomorphism of D∗ defined by

A = dÛ (β) ◦ μ−1 = μ ◦ dŨ (B) ◦ μ−1.

It is characterized (see Albouy and Chenciner 1998; Chenciner 2013b) by the fact that
the equations of motion are

ẍ = 2x ◦ A.

2 Nothing essential would change for a more general homogeneous �.
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216 A. Chenciner

In some μ−1-orthonormal basis, the two μ−1-symmetric endomorphisms A and B
of D∗, are represented by symmetric matrices. Giving any one of these two matrices
is equivalent to giving the squared mutual distances si j = r2i j , that is defining the
configuration up to isometry (see Albouy and Chenciner 1998), hence the mapping
F : B �→ A is well defined outside of the collisions (that is when all the ri j are
strictly positive) and bijective on its image: the shape of the configuration determines
the forces and the forces determine the shape. Moreover,

Lemma 1 The mapping F is a diffeomorphism.

Indeed, in well chosen bases of the space of symmetric matrices, the coordinates of
B are the squared mutual distances si j = r2i j , 1 ≤ i < j < n while the coordinates

of A are the ϕ(si j ) := �′(si j ) = − 1
2Gs

− 3
2

i j .

1.2 Balanced Configurations and Their Relative Equilibria

A rigid motion is a solution of the equations ofmotion alongwhich themutual distances
ri j remain constant. Such a motion is necessarily a relative equilibrium, that is an
equilibrium of the equations after reduction of their natural symmetry under isometries
(Albouy and Chenciner 1998, Proposition 2.5). Moreover, relative equilibria are of the
following form (Albouy and Chenciner 1998, Propositions 2.8 and 2.9):

x(t) = e�t x,

where� is a constant ε-antisymmetric3 isomorphism4 of the (necessarily even dimen-
sional) Euclidean space (E, ε) and x belongs to the very special class of balanced
configurations which we now characterize: it follows from the equations of motion
that

�2 ◦ x = 2x ◦ A.

From now on, we shall identifyD and E with their respective dualsD∗ and E∗ using
their Euclidean structures μ and ε. Moreover, we shall choose a μ−1-orthonormal
basis of D∗ and an ε-orthonormal basis of E and represent endomorphisms of D∗
and endomorphisms of E by matrices in such bases.

If X is the 2p × (n − 1) matrix representing x0 in these bases, we have:

S = X Xtr , B = Xtr X, �2X = 2X A.

From the symmetry of the matrices 2B A = Xtr�2X and�2S = 2X AXtr , we deduce
the vanishing of the following commutators:

[A, B] = 0, [�2, S] = 0.

3 I.e. such that � = ε ◦ � = �tr ◦ ε = � tr ∈ 	2E∗.
4 It is assumed that E is the space effectively visited by the motion.
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Non-avoided Crossings for n-Body Balanced Configurations in… 217

Of course, as �2 commutes with e�t , one can replace S by the inertia endomor-
phism S(t) = X (t)X (t)tr . The first equation, independent of the dimension of the
ambient space, was shown in Albouy and Chenciner (1998) to define the balanced
configurations. The following diagram summarizes these relations (on the left, the
“side of the bodies”, on the right the “side of ambient space”):

In terms of mutual distances, the equations of balanced configurations are (Albouy
and Chenciner 1998)

Pi jk = −1

2
∇i jk + 1

2

∑

l �=i, j,k

Y l
i jk = 0, i < j < k,

with (recalling that ϕ(s) = − 1
2 s− 3

2 )

∇i jk =

∣∣∣∣∣∣∣

1 1 1

mi

(
r2jk − r2ki − r2i j

)
m j

(
r2ki − r2i j − r2jk

)
mk

(
r2i j − r2jk − r2ki

)

ϕ(r2jk) ϕ(r2ki ) ϕ(r2i j )

∣∣∣∣∣∣∣
,

Y l
i jk = ml

∣∣∣∣∣∣

1 1 1
r2jk + r2il r2ki + r2jl r2i j + r2kl
ϕ(r2il) ϕ(r2jl) ϕ(r2kl)

∣∣∣∣∣∣
.

As soon as the number n of bodies is greater than three, these equations are not
independent: they are obtained by taking the exterior product by (1, 1, . . . , 1) of the
equation [A, B] = 0, that is by embedding the space ∧2D, whose dimension is(n
2

) = (n−1)(n−2)
2 , into the space ∧3

R
n , whose dimension is

(n
3

) = n(n−1)(n−2)
6 .

Finally, let us recall (see Albouy and Chenciner 1998) that the balanced (resp.
central) configurations are those configurations whose intrinsic inertia endomorphism
B is a critical point of the potential function Ũ restricted to its isospectral submanifold,
consisting in all the μ−1-symmetric endomorphisms with the same spectrum (resp.
restricted to the submanifold of symmetric μ−1-symmetric endomorphisms which
have the same trace I ).
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218 A. Chenciner

1.3 The Invariant Subspaces of � and the Minimal Dimension of E

Each n-body balanced configuration x admits relative equilibriummotions in a Euclid-
ean space E of high enough even dimension (twice the rank of x , that is twice the rank
of B, suffices, see Albouy and Chenciner 1998, Proposition 2.8). The smallest possible
dimension allowing such a motion depends on the multiplicities of the eigenvalues of
the Wintner–Conley endomorphism A (Albouy and Chenciner 1998, Remark 2.11).
In order to explain this, we study the invariant subspaces of the instantaneous rotation
matrix �.

Fixing the balanced configuration x , we choose aμ−1-orthonormal basis ofD∗ and
an ε-orthonormal basis of E such that the matrices B and S representing the inertia
endomorphisms of x be diagonal:

{
B = diag(b1, . . . , bn−1),

S = diag(σ1, . . . , σ2p).

From the above mentioned commutations, it follows that such bases can be chosen so
as to satisfy also

{
2A = diag(−λ1, . . . ,−λn−1),

�2 = diag(−ω2
1, . . . ,−ω2

2p).

Note that all the eigenvalues of 2A are strictly negative because the Newton force
is attractive. The non-zero eigenvalues of S = X Xtr and B = Xtr X are the same;
their number is the dimension of the configuration, that is the rank d = dimImX
of X . Moreover, as Im X = Im S is generated by vectors of the basis of E , we can
suppose, after a possible reordering of the bases of D∗ and E , that X is of the form

X =
(

V W
0 0

)
, where the d × d upper left block V is invertible. Moreover, as

B = Xtr X is diagonal, W = 0, that is

X =
(

V 0
0 0

)
, with V : ImB → ImS = ImX = Imx an isomorphism,

and V V tr = diag(σ1, . . . , σd), V tr V = diag(b1, . . . , bd), hence

diag(σ1, . . . , σd)V = V diag(b1, . . . , bd).

Finally, the equation �2X = 2X A, is equivalent to

diag(−ω2
1, . . . ,−ω2

d)V = V diag(−λ1, . . . ,−λd),

hence, after possibly replacing V by its product V P with a permutation matrix, which
amounts to permuting the first d vectors of the basis of D∗, which generate ImB, one
can suppose that
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Non-avoided Crossings for n-Body Balanced Configurations in… 219

ω2
k = λk, for k = 1, . . . , d,

while the bi , i = 1, . . . , d, are a permutation of the σi , i = 1, . . . , d.
This shows in particular, and this comes as no surprise, that it is only the restriction

AB of A to the image of B which plays a role. Recall that a necessary and sufficient
condition for x0 to be a central configuration is that the restriction of A to this subspace
be proportional to the Identity, that is λ1 = λ2 = · · · = λd .

Notation. Bases of D∗ and E with the properties above will be denoted respec-
tively {u1, . . . , un−1} and {ρ1, . . . , ρ2p}. In particular, u1, . . . , ud generate ImB and
ρ1, . . . , ρd generate Im x = Im S.

The real invariant planes of � can be generated either by the couple formed by a
vector ρk ∈ Im x and a vector ρd+l in the orthogonal (Im x)⊥, or by the couple formed
by two vectors ρk, ρl ∈ Im x , both associated with the same eigenvalue λk = λl of A.
Similar descriptions hold for higher dimensional invariant subspaces. It follows that,
writing ω̃2

1, . . . , ω̃
2
r the distinct values taken by the ω2

k = λk, k = 1, . . . , d, a space E
of minimal dimension where a relative equilibrium motion with such a configuration
may take place decomposes into a direct sum E1 ⊕ · · · ⊕ Er of eigenspaces of �,
which are complex5 spaces (El , Jl), and the motion is quasi-periodic of the form

x(t) = (x1(t), . . . , xr (t)) , with xl(t) = eω̃l t xl , l = 1, . . . , r.

When r = 1, that is when λ1 = · · · = λd = ω̃2, which means that the configuration x
is central, the motion becomes periodic, of the form x(t) = eω̃J t x , with J a complex
(hermitian) structure on E .

Let us denote by

� = ε ◦ � ∈ ∧2E∗

the instantaneous rotation bivector. The main possibilities of invariant spaces for �

can be read on the inverse image of � by x :

x∗� = xtr ◦ � ◦ x = −ρ,

which is nothing (up to sign) but the antisymmetric part of xtr ◦ ε ◦ y:

ρ = 1

2

(−xtr ◦ ε ◦ y + ytr ◦ ε ◦ x
)
,

which was introduced in Lagrange (1772) in the case of three bodies and in Albouy
and Chenciner (1998) in the general case of n bodies. In term of matrices, the endo-
morphism R = μ ◦ ρ of D∗ is represented by

R = 1

2

(−Xtr Y + Y tr X
) = −Xtr�X.

5 More precisely “hermitian”, that is such that each Jl is an isometry.
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220 A. Chenciner

Indeed, only contribute to ρ the invariant subspaces of � entirely contained in Im x0.
In particular, ρ vanishes in the generic case where the eigenvalues λi of A|ImB are all
distinct, that is when the motion takes place in a space of dimension twice the one of
Im x (compare Albouy and Chenciner 1998, Remark 2.11).

1.4 A Criterion for Degeneracy

The equalities �2X = 2X A and R = −Xtr�X imply the commutation of R with the
Wintner–Conley matrix: [A, R] = 0 (compare to the equations of relative equilibrium
in Albouy and Chenciner 1998). This looks quite natural in view of the following
lemma, where “degenerate” means “possess a multiple eigenvalue”:

Lemma 2 (Lax 1998) A real symmetric matrix A is degenerate if and only if it com-
mutes with some real antisymmetric matrix R �= 0.

The proof is obvious in an orthonormal basis where A is diagonal.
Of course, the existence of a double eigenvalue is also equivalent to the vanishing of

the discriminant, that is the resultant of the characteristic polynomial and its derivative.
But already for 3 × 3 symmetric matrices, the discriminant is a quite long homoge-
neous degree six polynomial in the six coefficients of the matrix, which can be written
as a sum of five squares see Domokos (2011); and it is not even clear on this expression
that, as was already known to Von Neuman and Wigner, its regular part (correspond-
ing to the existence of exactly one pair of equal eigenvalues) defines a codimension
2 submanifold (this is the classical phenomenon of avoided crossings in quantum
mechanics, the obvious geometric proof of which can be found in Arnold 1989).

One is tempted to use this criterion in the study of degeneracies of the Wintner–
Conley matrix A but this appears to be impracticable in the general case. Fortunately,
another approach succeeds as will be seen in the next section. It is only in the case of
four different masses that, using computer algebra, this criterion could be used to find
the tangents to the three branches of degenerate balanced configurations stemming
from the regular tetrahedron (see Sects. 3.2 and 3.7). We shall also use it when char-
acterizing in Proposition 9 the configurations of four bodies of general type (which
are defined in Sect. 1.5).

1.5 Central Configurations of General Type

Definition 1 The balanced configuration x0 is said to be of general type if

(1) the non-zero eigenvalues of its intrinsic inertia endomorphism B0 are all distinct;
(2) B0 is a non-degenerate critical point of the restriction of the potential Ũ to its

isospectral submanifold.

Lemma 3 The intrinsic inertia endomorphisms B of balanced configurations x close
enough to a balanced configuration x0 of general type and of the same rank d, form a
d-dimensional submanifold of the space of (n−1)×(n−1)-symmetric endomorphisms
of rank d, which intersects transversally the isospectral submanifold of B0.
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Non-avoided Crossings for n-Body Balanced Configurations in… 221

Proof Isospectral submanifolds of endomorphisms B close to B0 and with the same
rank d all have the same codimension d as they may be labelled by their non-zero (and
distinct) eigenvalues. As a non-degenerate critical point is isolated and differentiably
stable under perturbations, the lemma follows : the non-zero eigenvalues of B define
coordinates in the set formed by the inertia matrices B of balanced configurations
close to B0. ��

1.5.1 The Case of Maximal Rank (d = n − 1)

In this case, one can replace B by A in the parametrization given by Lemma 3 and
this implies that, for generic balanced configurations, the degeneracy of A becomes a
codimension 1 property (hence the “non avoided crossings”):

Proposition 4 If x0 is an n-body central configuration of general type of rank n−1, the
intrinsic inertia endomorphisms B of the balanced configurations x close enough to x0
form an (n − 1)-dimensional submanifold, which can be parametrized either by their
eigenvalues (b1, . . . , bn−1) or by the eigenvalues [up to the factor -1/2] (λ1, . . . , λn−1)

of their Wintner–Conley endomorphisms A.

Proof Thefirst part is nothing but Lemma3. For the second part, we represent symmet-
ric endomorphisms of D∗ by symmetric matrices in the unique (up to permutation)
μ−1-orthonormal basis of D∗ which diagonalizes B0, and hence also diagonalizes
A0 = A(B0); given any balanced configuration B close enough to B0, there exists a
unique rotation R = R(B) ∈ O(D∗) such that RB R−1 (and hence also R AR−1) is
diagonal. The conclusion follows from the ��
Lemma 5 Under the hypotheses of Proposition 4, the map A from balanced config-
urations B close enough to B0 to diagonal matrices defined by

A(B) = R(B)A(B)R(B)−1 = −1

2
diag(λ1, . . . , λn−1),

is a diffeomorphism onto its image.

Proof The derivative of A at the central configuration B0 is

dA(B0)�B = d A(B0)�B + [d R(B0)�B, A0] = d A(B0)�B,

because A0 is proportional to the Identity. The conclusion follows because, by
Lemma 1, the map F : B �→ A(B) is a diffeomorphism. ��

1.5.2 The General Case

If the rank d of the configuration is strictly smaller than n − 1, it is natural to look
at the balanced configurations x close enough to x0 with the same rank d. For such
configurations, the analogue of Proposition 4 now requires that the following condition
(automatic if the rank of x0 is n − 1) be satisfied by x0:
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222 A. Chenciner

(H) The balanced configuration x0 (or its inertia B0) is said to satisfy condition
(H) if the mapping B �→ A|I m B, which to the intrinsic inertia of a balanced
configuration x of the same rank d associates the restriction to its image of the
Wintner–Conley endomorphism, is a local diffeomorphism at B0.

Proposition 6 If x0 is an n-body central configuration of general type of rank d
satisfying (H), the intrinsic inertia endomorphisms B of the balanced configurations
x close enough to x0 and of the same rank d form a d-dimensional submanifold,
which can be parametrized either by their non-zero eigenvalues (b1, . . . , bd) or by
the eigenvalues [up to the factor −1/2] (λ1, . . . , λd) of the restriction A|I m B to their
image of their Wintner–Conley endomorphism. In particular, for generic balanced
configurations satisfying (H), the degeneracy of A is a codimension 1 property:

Proof If B is close to B0, the unique (up to permutation) isometry of I m B onto I m B0
sending an eigenbasis of B|I m B onto an eigenbasis of B0|I m B0 can be extended in
a smooth way into an isometry R(B) of D∗ close to Identity. In the eigenbasis of
B0|I m B0 , we have

RB R−1|I m B0 = diag(b1, . . . , bd), and R AR−1|I m B0 = −1

2
diag(λ1, . . . , λd).

Now, letA be as above the map from the set of balanced configurations of rank d near
B0 to the set of diagonal matrices, defined by:

A(B) = R(B)A(B)R(B)−1 = −1

2
diag(λ1, . . . , λd , D),

where D is an (n − 1 − d) × (n − 1 − d) matrix. The difference with the case of
maximal rank is that, A0 being only proportional to the Identity in restriction to the
image of B0, the second term [d R(B0)�B, A0] does not vanish. More precisely, If
we write

d R(B0)�B = �R =
(

a b
−btr d

)
, and A0 =

(
λ0 I d 0
0 D0

)

we have

[�R, A0] =
(

0 b(D0 − λ0 I d)

(D0 − λ0 I d)btr [d, D0]
)

.

Hence, in restriction to I m B0, the derivative ofA at the central configuration B0 again
reduces to the derivative at B0 of B �→ A|I m B . ��
Remarks. (1) Property (H) can be checked to hold in the (much too) simple case of
Z/2Z-symmetric balanced configurations of rank 2 of two pairs of equal masses in
the neighborhood of a generic (i.e. if some explicit condition K �= 0 holds) planar
rhombus central configuration; moreover, if the two masses are distinct and their ratio
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Non-avoided Crossings for n-Body Balanced Configurations in… 223

avoids one single value γ , close to 0.575, or its inverse, the inertia ellipsoid of the
central configuration is generic; see Sect. 5.2.

(2) Let us suppose that x0 is a balanced configuration of general type of rank d =
n−2. As there is only one zero eigenvalue in the spectrum of the inertia endomorphism
B0, the dimension of its isospectral manifold is the same as the one of the nearby
isospectral manifolds of endomorphisms B of maximal rank n − 1. One deduces
that B0 is a regular point of the boundary of the set of inertia matrices of balanced
configurations, the local equation of this boundary being the equality to zero of the
last eigenvalue bn−1 = σn−1 of B. In terms of the eigenvalues of A, if the property (H)
is satisfied, this equation reads λn−1 = f (λ1, . . . , λn−2). The (too simple) example
of colinear configurations of three bodies is illustrated in the figure 2 of Albouy and
Chenciner (1998); More significant examples are four bodies in R

2 (see Sect. 5.2) or
five bodies in R3.

2 Bifurcations of a Periodic Relative Equilibrium into a Family of
Quasi-periodic Ones

We consider continuous families of quasi-periodic relative equilibria

xs(t) = e�s t xs(0), s ≥ 0 small,

of a family s �→ xs(0) of balanced configurations in some Euclidean space E , origi-
nating from a periodic relative equilibrium of a central configuration x0 (in particular,
�0 = ωJ , where J is a complex structure on the ambient space E). We suppose that
all the xs, s ≥ 0 have the same dimension d. We make the following assumptions (the
second one can be satisfied by composing with a well chosen family of rotations):

(1) the spectral type of �s is constant for s > 0 small,
(2) the eigenspaces E1, . . . , Er of �s have a limit when s → 0.

We shall study the two extreme cases: the “generic” case where the dimension 2p
of E is twice the dimension d of the configuration x0 and the case where 2p = d if d
is even, 2p = d + 1 if d is odd.

2.1 The Generic Case

If for s > 0 small the first d eigenvalues of the Wintner–Conley matrices As of
the balanced configuration xs(0) are all distinct, that is if the quasi-periodic relative
equilibria xs(t) which bifurcate from the periodic relative equilibrium x0(t) have d
frequencies, the eigenspaces of �s are necessarily generated by an eigenvector of �2

s
(and hence of Ss) contained in Im xs and a vector orthogonal to Im xs . Going to the
limit when s tends to 0, we get that dim E = 2 dim Im x0 and that the complex structure
J sends each eigenvector ρk of S0 onto a vector k orthogonal to Im x0 = Im S0.

Given a central configuration of dimension d in an euclidean space of dimension
2d, a basic hermitian structure is one for which there exists a partition of an eigenbasis
of S0 into d pairs such that the planes generated by the two members of each pair are
complex lines (see Chenciner 2013a).
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Definition 2 In the case when dim E = 2 dim I m x0, a basic hermitian structure will
be called “of extrinsic type” if the partition is, as above, of the type {ρ1, v1} ∪ · · · ∪
{ρd , vd}, where {ρ1, . . . , ρd} is a basis of I m x0 formed of eigenvectors of S0 and
{v1, . . . , vd} is a basis of I m x⊥

0 .

From the above discussion, we get

Proposition 7 Let x(t) = eωJ t x0 be a relative equilibrium motion of a central config-
uration x0 of dimension d in a space E of dimension 2d. One supposes that, from this
periodic relative equilibrium, stems a one parameter family of quasi-periodic relative
equilibria with d frequencies xs(t) = e�s t x0, �0 = ωJ . Then the hermitian structure
defined by J on the Euclidean space E is basic and of extrinsic type.

2.2 Bifurcations Without Increase of Dimension

Let x0 ∈ D⊗ E be a central configuration of dimension d of n bodies in the Euclidean
space E of dimension 2p = d if d is even, 2p = d+1 if d is odd. Let x(t) = eωJ t x0 be
a relative equilibrium of x0 in E directed by the complex structure J . From Sect. 1.3,
we know that a family of quasi-periodic relative equilibria of balanced configurations
can bifurcate in the same space E from this periodic relative equilibrium if and only
in two conditions are satisfied:

(1) E admits a direct sum decomposition E = E1 ⊕ · · · ⊕ Er into at least two
J -complex subspaces generated (over R) by eigenvectors of the inertia S0;

(2) The non-zero eigenvalues of the Wintner–Conley matrix of x0 corresponding to
eigenvectors generating any of these subspaces are equal.

Thanks to Proposition 6, one deduces the codimension of the corresponding bifur-
cations; in particular :

Proposition 8 Let x0 be a central configuration of general type and satisfying (H),
of dimension d = 2p − 1 or d = 2p in the Euclidean space E of dimension 2p. In
the manifold6 of balanced configurations close enough to x0 and of the same dimen-
sion, those which admit a relative equilibrium motion in E form a stratified subset of
dimension p. The main stratum, of dimension p, corresponds to quasi-periodic rela-
tive equilibria in E with p frequencies, the smallest stratum (if p ≥ 2), of dimension
2, to quasi-periodic relative equilibria in E with 2 frequencies.

One should not forget that because of the projective invariance, the pertinent dimen-
sions are respectively p − 1 and 1.

Proof It is enough to notice that the main stratum corresponds to identities of the fol-
lowing type between the eigenvalues λi of the endomorphism AB (see Proposition 4):

λi1 = λ j1, . . . λi p−1 = λ jp−1 for (2p − 1)-dimensional configurations,

λi1 = λ j1, . . . λi p = λ jp for 2p-dimensional configurations.

In both cases, the dimension of the stratum is

6 With boundary if d = 2p − 1 and n ≥ 2p + 1.
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(2p − 1) − (p − 1) = 2p − p = p.

In the same way, the smallest stratum corresponds to the equations

λi1 = · · · = λi2p−2 for (2p − 1)-dimensional configurations,

λi1 = · · · = λi2p−2 and λ j1 = λ j2 for 2p-dimensional configurations.

In both cases, the dimension of the stratum is

(2p − 1) − (2p − 3) = 2p − (2p − 3) − 1 = 2.

��
I leave to the reader the pleasure of describing the intermediate strata.

Examples (1) Central or balanced configurations of three bodies which are not of
general type can be observed in figure 2 of Albouy and Chenciner (1998). On the
other hand, one notices also on these figures examples of balanced configurations
for which B0 is proportional to the Identity but is nevertheless a regular point of the
set of balanced configurations [this case is realized when the center of mass of the
configuration coincides with the orthocentre of the triangle (see also ex. 3)].

(2) Three-dimensional four-body central configurations of general type are charac-
terized in Corollary 10.

(3) The three-dimensional balanced configurations of four bodies farthest from
being of general type—the ones with B proportional to Identity—are the orthocentric
tetrahedra (i.e. the tetrahedra which possess an orthocenter, which is the intersection
of the four heights) such that the orthocenter coincides with the center of mass; this is
equivalent to the mutual distances being given by r2i j = constant( 1

mi
+ 1

m j
).

Remark More generally, the proof of Proposition 9 implies that higher degeneracies
with ν2 pairs, ν3 triples, etc., of equal eigenvalues, instead of having the generic
codimension

∑ 1
2 (i − 1)(i + 2)νi = 2ν2 + 5ν3 + 9ν4 + · · · have codimension∑

(i − 1)νi = ν2 + 2ν3 + 3ν4 + · · ·

3 The Case of Four Bodies

The unique non planar central configuration of four arbitrary masses is the regular
tetrahedron. We show that, whatever be the masses, it belongs to at least three (and
exactly three in the generic case) 1-parameter (up to rotation and scaling) families of
balanced configurations which admit a relative equilibrium motion in R

4. Two cases
have to be treated separately, depending of whether or not three of the masses are
equal (see Corollary 11 and Sect. 3.6).

We use the following notations for the squared mutual distances (Fig. 1):

r213 = a, r214 = b′, r212 = b′′, r234 = d ′, r232 = d ′′, r224 = f.
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Fig. 1 Four-body configurations

They were chosen because they specialize nicely to the case when the masses m2 and
m4 are symmetric with respect to the plane containing m1 and m3 (see Sect. 3.5 and
Chenciner 2014) .

A convenient μ−1-orthonormal basis of D∗ is {u1, u2, u3} with

⎧
⎪⎪⎨

⎪⎪⎩

u1 = κ1 (m1(m2 + m4),−m2(m1 + m3), m3(m2 + m4),−m4(m1 + m3)) ,

u2 = κ2(1, 0,−1, 0),

u3 = κ3(0, 1, 0,−1),

where

κ2
1 = 1

M(m1 + m3)(m2 + m4)
, κ2

2 = m1m3

m1 + m3
, κ2

3 = m2m4

m2 + m4
.

3.1 The Intrinsic Inertia Matrix

Expressed in the basis {u1, u2, u3}, B =
⎛

⎝
u z y
z v x
y x w

⎞

⎠ , where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = 1
M

[
m2(m1b′′ + m3d ′′) + m4(m1b′ + m3d ′)

]− 1
M

[
m1m3

Y
Z a + m2m4

Z
Y f
]
,

v = m1m3
m1+m3

a, w = m2m4
m2+m4

f,

x = 1
2V (d ′′ − d ′ + b′ − b′′),

y = U
2M Z

[
m1(b′ − b′′) + m3(d ′ − d ′′)

]+ U (m4−m2)
2MY f,

z = T
2MY

[
m2(b′′ − d ′′) + m4(b′ − d ′)

]+ T (m1−m3)
2M Z a,
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with the following notations (X = MY Z = T U/V is for future use in Sect. 3.3):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X = M
(m1+m3)(m2+m4)

, Y = 1
m1+m3

,

Z = 1
m2+m4

, T = 1
m1+m3

√
Mm1m3
m2+m4

,

U = 1
m2+m4

√
Mm2m4
m1+m3

, V =
√

m1m2m3m4
(m1+m3)(m2+m4)

·

For the regular tetrahedron (a = b′ = b′′ = d ′ = d ′′ = f = 1), B becomes the
matrix

⎛

⎜⎜⎜⎜⎜⎝

(m2+m4)(m
2
1+m2

3)

2M(m1+m3)
+ (m1+m3)(m

2
2+m2

4)

2M(m2+m4)
− 1

2

√
m1m3(m2+m4)

M
m3−m1
m1+m3

− 1
2

√
m2m4(m1+m3)

M
m2−m4
m2+m4

− 1
2

√
m1m3(m2+m4)

M
m3−m1
m1+m3

m1m3
m1+m3

0

− 1
2

√
m2m4(m1+m3)

M
m2−m4
m2+m4

0 m2m4
m2+m4

⎞

⎟⎟⎟⎟⎟⎠

which reduces to B = 1
2 I d when all the masses are equal to 1.

3.2 Degeneracies of the Inertia of the Regular Tetrahedron

As explained in Sect. 1.4, we shall use the criterion given by Lemma 2, which leads
to much more transparent equations than the resultant: B is degenerate if and only if
there exists a non trivial antisymmetric matrix

R =
⎛

⎝
0 ζ −η

−ζ 0 ξ

η −ξ 0

⎞

⎠ ,

which commutes with B, that is such that [B, R] = B R − RB = 0. Writing the six
coefficients of this symmetric matrix in the order (u, v, w, x, y, z), this is equivalent
to the following linear equation:

⎛

⎜⎜⎜⎜⎜⎜⎝

0 2y −2z
−2x 0 2z
2x −2y 0

v − w −z y
z w − u −x

−y x u − v

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎝
ξ

η

ζ

⎞

⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

This equation has a non trivial solution if and only if the above 6 × 3 matrix is not of
maximal rank, that is if its rows generate a subspace of dimension 2 or less. We shall
distinguish two cases:

(1) two of the off-diagonal coefficients x, y, z of B are equal to zero. Up to a
reordering of the basis, wemay suppose that x = y = 0. Then the condition is reduced
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to the vanishing of twominors: (u−v)[z2+(v−w)(w−u)] and z[z2+(v−w)(w−u)],
that is

(C1)

{
either z = 0 and (u − v)(v − w)(w − u) = 0,
or z �= 0 and z2 + (v − w)(w − u) = 0.

(2) at most one of the off-diagonal coefficients is equal to zero. Then the first two
lines are linearly independent while the sum of the first three is equal to zero (because
the trace of a commutator vanishes). Writing that the last three lines belong to the
plane generated by the first two leads to the following equations

(C2)

⎧
⎪⎪⎨

⎪⎪⎩

x(y2 − z2) + (v − w)yz = 0, (C ′
2)

y(z2 − x2) + (w − u)zx = 0, (C ′′
2 )

z(x2 − y2) + (u − v)xy = 0. (C ′′′
2 )

As expected, these equations are not independent:multiplying the first by x , the second
by y, the third by z and adding, one gets 0. Recall that they are not valid if two off-
diagonal coefficients vanish.

Proposition 9 The intrinsic inertia matrix of the regular tetrahedron configuration of
four masses m1, m2, m3, m4 is degenerate if and only if at least three of the masses
are equal.

Proof The if part followswithout calculation from the fact that an ellipsoidwithZ/3Z-
symmetry is necessary of revolution. For the converse, as the off-diagonal coefficient x
is equal to 0, equations (C2) imply that another off-diagonal coefficient must be equal
to zero, that is m1 = m3 or m2 = m4. Hence equations (C2) are no more pertinent to
decide of the degeneracy. If we suppose m2 = m4, they must be replaced by equations
(C1):

(1) if all off-diagonal coefficients are zero, that is if m2 = m4 and m1 = m3, we
have

B = diag

(
m1m2

m1 + m2
,

m1

2
,

m2

2

)
,

hence degeneracy occurs only if the four masses are equal;
(2) if m1 �= m3, a direct computation shows that (C1) reads

− m2

2M
(m1 − m2)(m3 − m2) = 0,

which implies that m1 = m2 = m4 or m2 = m3 = m4. Starting with m1 = m3
but m2 �= m4 we would have found the remaining possibilities m1 = m2 = m3 and
m1 = m3 = m4. ��
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If, for example, m2 = m3 = m4, we have

B =

⎛

⎜⎜⎜⎝

m2(3m2
1+3m2

2+2m1m2)

2(m1+3m2)(m1+m2)
−m2

2

√
2m1

m1+3m2

m2−m1
m1+m2

0

−m2
2

√
2m1

m1+3m2

m2−m1
m1+m2

m1m2
m1+m2

0

0 0 m2
2

⎞

⎟⎟⎟⎠ .

whose eigenvalues are

λ1 = 2m1m2

m1 + 3m2
, λ2 = λ3 = m2

2
.

Corollary 10 The unique three-dimensional central configuration of four bodies—
the regular tetrahedron—is of general type if and only if no three of the masses are
equal.

Proof The regular tetrahedron is the unique critical point of the restriction of the
potential to the 4-body configurations with fixed moment of inertia with respect to
the centre of mass (i.e. fixed trace of B). Using the squared mutual distances r2i j as
independent variables, it is easy to prove that it is a non-degenerate minimum. Hence
its restriction to the isospectral manifold is also a non degenerate minimum. ��

From Proposition 4 on then deduces

Corollary 11 If no three masses are equal, the balanced 4-body configurations (up
to rotation and scaling) close to the regular tetrahedron form a two-dimensional
manifold; the balanced configurations which admit a relative equilibrium motion in
R
4 form three regular curves intersecting at the regular tetrahedron.

In what follows we give a direct proof of Corollary 11, computing in particular
the curves of degenerate balanced configurations, first in case 2 masses are equal
(Sect. 3.5), then, at first order, in the general case (Sect. 3.7).

3.3 The Wintner–Conley Matrix

A tedious but straightforward computation gives the following expression of the
Wintner–Conley endomorphism in this basis:

A =
⎛

⎝
α φ ε

φ β δ

ε δ γ

⎞

⎠ , where (with the notations of 3.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = X
[
m2
(
m1ϕ(b′′) + m3ϕ(d ′′)

)+ m4
(
m1ϕ(b′) + m3ϕ(d ′)

)]
,

β = (m1 + m3)ϕ(a) + Y
[
m2
(
m3ϕ(b′′) + m1ϕ(d ′′)

)+ m4
(
m3ϕ(b′) + m1ϕ(d ′)

)]
,

γ = (m2 + m4)ϕ( f ) + Z
[
m1
(
m2ϕ(b′) + m4ϕ(b′′)

)+ m3
(
m2ϕ(d ′) + m4ϕ(d ′′)

)]
,

δ = V
[
ϕ(d ′′) − ϕ(d ′) + ϕ(b′) − ϕ(b′′)

]
,

ε = U
[
m1
(
ϕ(b′) − ϕ(b′′)

)+ m3
(
ϕ(d ′) − ϕ(d ′′)

)]
,

φ = T
[
m2
(
ϕ(b′′) − ϕ(d ′′)

)+ m4
(
ϕ(b′) − ϕ(d ′)

)]
.
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For the regular tetrahedron with unit sides, we find A = Mϕ(1)I d = − M
2 I d.

3.4 The Equations of Balanced Configurations

With the above notations, the four equations of balanced configurations take the fol-
lowing form, where one checks that, in accordance with Sect. 1.2, they satisfy the
relation P123 − P124 + P134 − P234 ≡ 0.

(P123)

⎧
⎪⎪⎨

⎪⎪⎩

m1(d ′′ − a − b′′)[ϕ(a) − ϕ(b′′)] − m4(d ′′ + b′)[ϕ( f ) − ϕ(d ′)]
+m2(a − b′′ − d ′′)[ϕ(b′′) − ϕ(d ′′)] − m4(a + f )[ϕ(d ′) − ϕ(b′)]
+m3(b′′ − d ′′ − a)[ϕ(d ′′) − ϕ(a)] − m4(b′′ + d ′)[ϕ(b′) − ϕ( f )] = 0,

(P124)

⎧
⎪⎪⎨

⎪⎪⎩

m1( f − b′ − b′′)[ϕ(b′) − ϕ(b′′)] − m3( f + a)[ϕ(d ′′) − ϕ(d ′)]
+m2(b′ − b′′ − f )[ϕ(b′′) − ϕ( f )] − m3(b′ + d ′′)[ϕ(d ′) − ϕ(a)]
+m4(b′′ − f − b′)[ϕ( f ) − ϕ(b′)] − m3(b′′ + d ′)[ϕ(a) − ϕ(d ′′)] = 0,

(P134)

⎧
⎪⎪⎨

⎪⎪⎩

m1(d ′ − b′ − a)[ϕ(b′) − ϕ(a)] − m2(d ′ + b′′)[ϕ(d ′′) − ϕ( f )]
+m3(b′ − a − d ′)[ϕ(a) − ϕ(d ′)] − m2(b′ + d ′′)[ϕ( f ) − ϕ(b′′)]
+m4(a − d ′ − b′)[ϕ(d ′) − ϕ(b′)] − m2(a + f )[ϕ(b′′) − ϕ(d ′′)] = 0,

(P234)

⎧
⎪⎪⎨

⎪⎪⎩

m2(d ′ − f − d ′′)[ϕ( f ) − ϕ(d ′′)] − m1(d ′ + b′′)[ϕ(a) − ϕ(b′)]
+m3( f − d ′′ − d ′)[ϕ(d ′′) − ϕ(d ′)] − m1( f + a)[ϕ(b′) − ϕ(b′′)]
+m4(d ′′ − d ′ − f )[ϕ(d ′) − ϕ( f )] − m1(d ′′ + b′)[ϕ(b′′) − ϕ(a)] = 0.

Let us use these equations to give a direct proof of the first part of Corollary
11: linearized at the regular tetrahedron whose sides have length 1, the equations of
balanced configurations take a particularly simple form, independent of the precise
form of ϕ:

ϕ′(1)K

⎛

⎜⎜⎜⎜⎜⎜⎝

δa
δb′
δb′′
δd ′
δd ′′
δ f

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ , where

K =

⎛

⎜⎜⎝

m3 − m1 0 m1 − m2 0 m2 − m3 0
0 m4 − m1 m1 − m2 0 0 m2 − m4

m1 − m3 m4 − m1 0 m3 − m4 0 0
0 0 0 m3 − m4 m2 − m3 m4 − m2

⎞

⎟⎟⎠ .
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The rank of the matrix K is 0 if the four masses are equal, 2 if three of the masses are
equal and 3 otherwise. In this last case, its kernel is generated by the three vectors

⎧
⎨

⎩

E1 = (1, 1, 1, 1, 1, 1),
E2 = (m2m4, m2m3, m3m4, m1m2, m1m4, m1m3),

E3 = (m2 + m4, m2 + m3, m3 + m4, m1 + m2, m1 + m4, m1 + m3).

As the rank at neighboring points cannot be higher than three because the equations
we have used of the set of balanced configurations are not independent, the rank of
the matrix is locally constant if no three of the masses are equal.

3.5 The Z/2Z-Symmetric Case

In this section, we suppose that at least two masses are equal, say m2 = m4, which
makes pertinent the use of the basis {u1, u2, u3} introduced at the beginning of Sect. 3.
We check directly that in this case the degeneracy of the Wintner–Conley matrix
becomes a codimension 1 condition (Corollary 11) among balanced configurations
close to the regular tetrahedron. We start with a nice corollary of the fact that the
intrinsic inertia matrices of these balanced configurations form a three-dimensional
manifold:

Corollary 12 If two masses and not three are equal, any balanced configuration close
enough to the regular tetrahedron is symmetric with respect to a plane separating these
two masses and containing the other two.

To distinguish from a purely geometric symmetry, we shall call dynamically sym-
metric such a symmetric configuration for which symmetric masses are equal.

Proof Supposing m2 = m4, let us consider the naturally associated symmetric con-
figurations, which satisfy (Fig. 2)

b′ = b′′ = b, d ′ = d ′′ = d.

Fig. 2 Symmetric 4-body configurations
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The four equations Pi jk reduce to a single one in the four variables (a, b, d, f ).
Indeed, P234 and P124 are identically satisfied, while P123 = −P134 = 0 becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m1(d − b − a)[ϕ(b) − ϕ(a)] − m2(d + b)[ϕ(d) − ϕ( f )]
+m3(b − a − d)[ϕ(a) − ϕ(d)] − m2(b + d)[ϕ( f ) − ϕ(b)]
+m2(a − d − b)[ϕ(d) − ϕ(b)] − m2(a + f )[ϕ(b) − ϕ(d)] = 0.

Linearized at the regular tetrahedron, the equation becomes

(m1 − m3)δa + (m2 − m1)δb + (m3 − m2)δd = 0.

Hence the equation is a submersion at the regular tetrahedron, except in case all
masses are equal. It follows that, under our hypotheses, the set of symmetric balanced
configurations in the neighborhood of the regular tetrahedron is a submanifold whose
dimension is the same as the one of all balanced configurations. Hence the two coincide
locally. ��

With the same proof, based on a dimension count, we get

Corollary 13 If the masses form two equal pairs, any balanced configuration close
enough to the regular tetrahedron is a rhombus configuration, i.e. it is symmetric
with respect to two orthogonal planes respectively separating two equal masses and
containing the other two. Supposing m2 = m4 �= m1 = m3, this means that b′ =
b′′ = d ′ = d ′′.

Corollary 12 makes it easy to get a good understanding of the degenerate balanced
configurations near the regular tetrahedron when two masses and not three are equal.
Indeed, suppose as above that m2 = m4, b′ = b′′ = b, d ′ = d ′′ = d. In the
μ−1-orthonormal basis {u1, u2, u3} of D∗ defined at the beginning of Sect. 3, the
Wintner–Conley matrix decomposes into two blocks:

A =

⎛

⎜⎜⎝

α φ 0

φ β 0

0 0 γ

⎞

⎟⎟⎠ , with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α = M
m1+m3

(m1ϕ(b) + m3ϕ(d)) ,

β = 2m2
m1+m3

(m3ϕ(b) + m1ϕ(d)) + (m1 + m3)ϕ(a),

γ = m1ϕ(b) + m3ϕ(d) + 2m2ϕ( f ),

φ =
√
2m1m2m3M

m1+m3
(ϕ(b) − ϕ(d)) .

Degeneracy occurs if (compare to Sect. 3.2, condition (C1)) either the upper block
degenerates, i.e.

φ = 0, α = β,

or the lower right coefficient is equal to an eigenvalue of the upper block, i.e.

φ2 +
(

α − β

2

)2

−
(

γ − α + β

2

)2

= 0.
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(i) The first case is equivalent to a = b = d and the equation of balanced configu-
rations is automatically satisfied.

(ii) In order to study the second case, we introduce the following coordinates:

α, θ = γ − α + β

2
, ψ = α − β

2
, φ,

that is
β = α − 2ψ, γ = α + θ − ψ.

In these coordinates, the degeneratematrices other than the ones defined byψ = φ = 0
are defined by the equation

φ2 + ψ2 − θ2 = 0.

On the other hand, theWintner–Conleymatrices of balanced configurations are defined
by the equation P124 = P234, where a, b, c, d are expressed in terms of the new
coordinates α, θ, ψ, φ via the inverse equations (where for saving space we have noted
s13 = m1 + m3; thanks to Jacques Féjoz for the computation of the inverse matrix),

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕ(a) =
(

1
M − 1

s13

)
α + 1

s13
β − m3−m1

s213T
φ = 1

M α − 2
s13

ψ − m3−m1
s213T

φ ,

ϕ(b) = 1
M α + m3

2m2s13T φ,= 1
M α + m3

2m2s13T φ ,

ϕ(d) = 1
M α − m1

2m2s13T φ = 1
M α − m1

2m2s13T φ ,

ϕ( f ) =
(

1
M − 1

2m2

)
α + 1

2m2
γ = 1

M α + 1
2m2

θ − 1
2m2

ψ.

We have seen that, if no three masses are equal, the balanced configurations near
the regular tetrahedron (a = b = d = f = l) form a three-dimensional manifold
whose tangent space at this point is defined by the equation

(m1 − m3)δa + (m2 − m1)δb + (m3 − m2)δd = 0.

On the side of the Wintner–Conley matrices, that is setting

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕ′(l)δa = 1
M δα − 2

s13
δψ − m3−m1

s213T
δφ ,

ϕ′(l)δb = 1
M δα + m3

2m2s13T δφ ,

ϕ′(l)δd = 1
M δα − m1

2m2s13T δφ ,

ϕ′(l)δ f = 1
M δα + 1

2m2
δθ − 1

2m2
δψ,

this equation becomes

−2(m1 − m3)

m1 + m3
δψ + 3m2(m2

1 + m2
3) − 2m1m3(m1 + m2 + m3)

2m2(m1 + m3)2T
δφ = 0.
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Fig. 3 Degenerate balanced configurations in the symmetric case

It defines a linear susbspace “transversal” to the cone defined by the degenerate
matrices. Indeed, It is enough to look in the space of coordinates (θ, ψ, φ) obtained by
going to the quotient by the α axis : in the coordinates (α, β, γ, φ), this corresponds
to going to the quotient by the line generated by (1, 1, 1, 0), that is by the addition
to the Wintner–Conley matrix of a multiple of the identity, which does not change
its degeneracy type and leaves invariant the linearized equations of balanced config-
urations (see Sect. 3.7). Hence we have identified the three (projective) directions of
bifurcation to relative equilibria in R

4 guaranteed by Corollary 11 (Fig. 3).

Remark The degenerate rhombus configurations are explicitly given by one of the
following three equations:

a = b, or f = b, or (m1 − m2)ϕ(b) = m1ϕ(a) − m2ϕ( f ).

3.6 The Case of Three Equal Masses

Suppose for example that m2 = m3 = m4; we have the following explicit (projective)
curves of degenerate symmetric balanced configurations:

(1) The (Z/2Z-symmetric) configurations:we have seen in Sect. 3.5 that, supposing
only m2 = m4, the configurations such that a = b′ = b′′ = d ′ = d ′′ are balanced and
degenerate. In the basis {u1, u2, u3}, their Wintner–Conley matrix is

diag (Mϕ(a), Mϕ(a), (m1 + m3)ϕ(a) + 2m2ϕ( f )) .

From the two other equalities m2 = m3 (resp. m3 = m4), one gets two other families
of Z/2Z-symmetric degenerate balanced configurations, namely the configurations
such that a = b′ = b′′ = d ′ = f (resp. a = b′ = b′′ = d ′′ = f ).
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(2) The (Z/3Z-symmetric) configurations: if a = b′ = b′′, d ′ = d ′′ = f and
assuming only m2 = m4, the unique equation of balanced configurations reduces to
a(m2 −m3)(ϕ(a)−ϕ( f )) = 0. Supposing moreover m2 = m3, it is natural to choose
the following μ−1-orthonormal basis of D∗:

v1 =
√

m1m2
3(m1+3m2)

(−3, 1, 1, 1), v2 =
√

m2
6 (0,−1, 2,−1),

v3 = m2
2 (0, 1, 0,−1).

In this base, the Wintner–Conley matrix is

diag ((m1 + 3m2)ϕ(a), m1ϕ(a) + 3m2ϕ( f ), m1ϕ(a) + 3m2ϕ( f )) .

Remarks.

(1) When three and not four masses are equal, non symmetric planar balanced config-
urations do exist: the idea, communicated to me by Alain Albouy is to start with
the central configuration consisting in an isosceles triangle with the fourth mass a
little above the center of mass and break the symmetry by slightly changing one
mass in the basis of the isosceles triangle. It is not known whether non-symmetric
balanced configurations exist in the neighborhood of the regular tetrahedron with
three equal masses.

(2) The case of four equalmasses is studied inChenciner (2014). The set of symmetric
balanced configurations is singular at the regular tetrahedron: fixing one of the six
symmetry planes of the regular tetrahedron, the subset of balanced configurations
with this symmetry plane is the union of two (projective) surfaces with transversal
intersection: one of these consists in the rhombus configurations and contains
three (projective) curves of degenerate configurations; the other one contains the
curve of Z/3Z-symmetric degenerate configurations; also, fixing one of the three
symmetry lines of the regular tetrahedron, the subset of balanced configurations
with this symmetry line (for example b′ = d ′′, d ′ = b′′) which are close enough to
the regular tetrahedron is the (projective) surface formed of “twisted rectangles”
(b′ = d ′′, d ′ = b′′, a = f ) which possess in fact the three line symmetries. It is
not known whether non-symmetric 4-body balanced configurations exist in the
case of equal masses.

3.7 The General Case: TRIP Comes into Play

We have seen in Sect. 3.4 that, as soon as ϕ′(1) �= 0, the linearization at the regular
tetrahedron of the equations of balanced configurations takes the form

K

⎛

⎜⎜⎜⎜⎝

δa
δb′
δb′′
δd ′
δd ′′
δ f

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ , where K is defined in 3.4.
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We suppose that the masses are all different, hence the rank of K equals 3 and its
kernel is generated by the three vectors E1, E2, E3 defined in Sect. 3.4.

Computing a Taylor expansion of A in the neighborhood of the regular tetrahedron
with unit sides, one gets

A = − M

2

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠+
(

δα δφ δε
δφ δβ δδ
δε δδ δγ

)
, with

⎛

⎜⎜⎜⎜⎜⎜⎝

δα

δβ

δγ

δδ

δε

δφ

⎞

⎟⎟⎟⎟⎟⎟⎠
= ϕ′(1)L

⎛

⎜⎜⎜⎜⎜⎜⎝

δa,

δb′
δb′′
δd ′
δd ′′
δ f

⎞

⎟⎟⎟⎟⎟⎟⎠
,

and L =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 Xm1m4 Xm1m2 Xm3m4 Xm2m3 0
m1 + m3 Y m3m4 Y m2m3 Y m1m4 Y m1m2 0

0 Zm1m2 Zm1m4 Zm2m3 Zm3m4 m2 + m4
0 V −V −V V 0
0 Um1 −Um1 Um3 −Um3 0
0 T m4 T m2 −T m4 −T m2 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where we have used the notations of Sect. 3.3. Hence, the tangent space at the regular
tetrahedron of the manifold of Wintner–Conley matrices of balanced configurations
is generated by the three vectors in R

6 (coordinates (α, β, γ, δ, ε, φ))

L(E1) = M

⎛

⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
, L(E2) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

4X M

m2m4
[
m1 + m3 + 2Y (m2

1 + m2
3)
]

m1m3
[
m2 + m4 + 2Z(m2

2 + m2
4)
]

V (m2 − m4)(m3 − m1)

2Um1m3(m2 − m4)

2T m2m4(m3 − m1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L(E3) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2X
∑

i< j<k mi m j mk

(m1 + m3)(m2 + m4) + m2+m4
m1+m3

(m2
1 + m2

3) + 2m2m4

(m2 + m4)(m1 + m3) + m1+m3
m2+m4

(m2
2 + m2

4) + 2m1m3

0

U (m1 + m3)(m2 − m4)

T (m2 + m4)(m3 − m1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Remark The fact that E1 belongs to the kernel of the linearized equations K of bal-
anced configurations can be seen directly from the equation [A, B] = 0. Indeed, the
linearized equation at a central configuration, [A,�B] + [�A, B] = 0, is satisfied
because A is a multiple of Identity as is �A = L(E1).

As the equations of degenerate quadratic forms are also invariant by the addition of a
multiple of the identitymatrix, that is amultiple of L(E1) in the (α, β, γ, δ, ε, φ) space,
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in order to understand the tangent spaces at the regular tetrahedron to the degenerate
balanced configurations, it is enough to substitute L(E2)+x L(E3) to (α, β, γ, δ, ε, φ)

in the three equations (C2) of Sect. 3.2 (after replacing u, v, w, x, y, z respectively by
α, β, γ, δ, ε, φ). and this is what I had asked Jacques Laskar to do.

Using the computer algebra software TRIP developed by Gastineau and Laskar
(2011), he discovered that the three equations became proportional, namely he
obtained

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(m1−m3)(m2−m4)
(m1+m3)(m2+m4)

√
m1m2m3m4

(m1+m3)(m2+m4)
× · · ·

· · · 2M(−m3m2m4 − m1m2m4 + m1m2m3 + m1m3m4)E = 0,

− (m1−m3)
2(m2−m4)

m1+m3
m1m3

√
Mm2m4
m1+m3

E = 0,

− (m1−m3)(m2−m4)
2

m2+m4
m2m4

√
Mm1m3
m2+m4

E = 0,

where

E(x) :=
(
∑

i

mi

)
x3 + 2

⎛

⎝
∑

i< j

mi m j

⎞

⎠ x2+3

⎛

⎝
∑

i< j<k

mi m j mk

⎞

⎠ x + 4
∏

i

mi = 0.

The equation E has three real roots, all negative. Indeed, if we set

F(y) = (1 + m1y)(1 + m2y)(1 + m3y)(1 + m4y)

= (∏i mi
)

y4 +
(∑

i< j<k mi m j mk

)
y3 +

(∑
i< j mi m j

)
y2 + (∑i mi

)
y+1,

we have

F ′(y) = 4

(
∏

i

mi

)
y3 + 3

⎛

⎝
∑

i< j<k

mi m j mk

⎞

⎠ y2 + 2

⎛

⎝
∑

i< j

mi m j

⎞

⎠ y +
(
∑

i

mi

)
,

and hence

E(x) = x3F ′(1/x).

One concludes because F has the four real roots −1/m1,−1/m2,−1/m3,−1/m4,
all negative. This computation gives the tangents to the three (projective) curves of
degenerate balanced configurations which intersect at the regular tetrahedron. As I
already said in the abstract, this came as a surprise as I had asked Jacques to show that,
formasseswithout any symmetry, no other solution than the regular tetrahedron existed
locally, in accordance with the generic crossing of eigenvalues of symmetric matrices
being of codimension two. This surprise was the incentive to prove Proposition 4 and
Corollary 11.

Remark The equation E(x) = 0 remains pertinent in the symmetric case studied in
Sect. 3.5, where m2 = m4, b′ = b′′, d ′ = d ′′, (hence δ = ε = 0), and no three
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masses are equal : the polynome F has a double root −1/m2 = −1/m4, hence one
of the roots of E is −m2 = −m4. The corresponding sides

E2 − m2E3 = (−m2
2,−m2

2,−m2
2,−m2

2,−m2
2, m1m3 − m1m2 − m2m3),

are such that a = b = d, hence their Wintner–Conley matrix is diagonal with α = β.
Thiswas the first case in the study of Sect. 3.5, and the corresponding direction satisfies
the equations of balanced configurations (and not only at the first order).

In the even more special case of rhombus relative equilibria, that is when

m2 = m4 �= m1 = m3, b′ = b′′ = d ′ = d ′′,

the three roots

−m1, −m2, − 2m1m2

m1 + m2
,

of the equation E(x) = 0 give back the three directions of degeneracy of theWintner–
Conley matrix; indeed:

⎧
⎪⎨

⎪⎩

if x = −m1, a = m2
2 − 2m1m2, b = f = −m2

1,

if x = −m2, a = b = −m2
2, f = m2

1 − 2m1m2,

if x = − 2m1m2
m1+m2

, a = m3
2−3m1m2

2
m1+m2

, b = −m1m2, f = m3
1−3m2

1m2
m1+m2

.

The first two cases correspond to actual lines of degeneracy of the Wintner–Conley
matrix, while in the third case, (m1 − m2)b = m1a − m2 f gives only the tangent to
the actual degeneracy curve (m1 − m2)ϕ(b) = m1ϕ(a) − m2ϕ( f ).

In case 3 masses are equal, say m2 = m3 = m4 := m, one has E3 = m E1 + 1
m E2

and, indeed, E2 is the line of degenerate Z/3Z-symmetric balanced configurations
described in Sect. 3.6.

Finally, when the four masses are equal, the three vectors E1, E2, E3 are propor-
tional and hence they yield only trivial information.

4 The Angular Momentum

To a point (x, y) in the phase space (more accurately the tangent space to the con-
figuration space) of the n-body problem, is attached its angular momentum bivector
(Albouy and Chenciner 1998; Chenciner 2013b)

c = −x ◦ μ ◦ ytr + y ◦ μ ◦ xtr ∈ ∧2E .

Transformed to the endomorphism C = c ◦ ε of E , it is represented in an orthonormal
basis by the antisymmetric matrix

C = −XY tr + Y Xtr .

123



Non-avoided Crossings for n-Body Balanced Configurations in… 239

If Y = �X as this is the case for a relative equilibrium motion X (t) = et� X (0), we
get

C = −S�tr + �S = S� + �S,

where the inertia matrix S of the configuration is defined in Sect. 1.2.

4.1 The Frequency Polytope and Its Subpolytopes

We now fix a central configuration x0. In this case, the relative equilibria are all
periodic, of the form x(t) = eω̃J t x0, where J is a complex structure on E ≡ R

2p (see
Sect. 1.3). By scaling the configuration, one may even assume that the frequency ω̃ is
equal to 1.As soon as the dimension of the ambient space is 4 ormore, the same central
configuration admits a whole family of relative equilibrium motions parametrized by
the J ’s. In case the intrinsic inertia B of the configuration is generic, these motions
can be characterized by their angular momentum.

To the central configuration x0 = {�r1, . . . , �rn} is naturally attached (see Chenciner
2013a; Chenciner and Jiménez-Pérez 2013; Heckman and Zhao 2015) a convex poly-
tope P contained in the (p − 1) simplex

⎧
⎨

⎩(ν1, . . . , νp) ∈ (R+)p, ν1 ≥ · · · ≥ νp,

p∑

i=1

νi = 1
∑p

i=1 mi

∑

1≤i< j≤p

mi m jr
2
i j

⎫
⎬

⎭ ,

where we recall that the ri j = ||�ri − �r j || are the mutual distances between the bodies.
This polytope is the set of ordered p-tuples (ν1 ≥ · · · ≥ νp) of positive real numbers
such that {±iν1, . . . ,±iνp} is the spectrum of the J -skew-hermitian matrix S J + J S
representing the angular momentum of the relative equilibrium motion of x0 defined
by some J . Once chosen an orthonormal basis of E ≡ R

2p, P can be described as the
image of the frequency map

F : U (p)/SO(2p) → W +
p {(ν1, . . . , νp), ν1 ≥ · · · ≥ νp}

which, to a complex structure J ∈ U (p)/SO(2p), that is to an identification of
E with C

p such that the multiplication by i is an isometry, associates the ordered
spectrum of the J -hermitian matrix J−1S0 J + S0, where S0 is the inertia matrix of the
chosen configuration. Up to some zeroes coming from the difference in dimensions,
the inertia S0 = X0Xtr

0 and the intrinsic inertia B0 = Xtr
0 X0 have the same spectrum.

In particular, recall that their common trace is the moment of inertia with respect to
the center of mass; by a formula of Leibniz, it is equal to

I0 = trace S0 = 1
∑p

i=1 mi

∑

1≤i< j≤p

mi m jr
2
i j .
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As it depends only on the inertia matrix S0 of the configuration, the polytope P is
defined as well for any solid body,

It was proved in Chenciner (2013a) and Chenciner and Jiménez-Pérez (2013) that
P is a Horn polytope, more precisely that if {σ1 ≥ · · · ≥ σ2p} is the ordered spectrum
of S0, P is the set of ordered spectra of real symmetric p × p matrices of the form
c = a + b, where

spectrum (a) = {σ1, σ3, . . . , σ2p−1}, spectrum (b) = {σ2, σ4, . . . , σ2p}.

Choosing other partitions�of the spectrumof S0 into two subsetswith p elements, one
defines in the samewayHornpolytopesP� which turn out to be subpolytopes ofP (this
is a non trivial fact7 which is proved in Fomin et al. 2005). It was noticed in Chenciner
(2013a) that, given some (periodic) relative equilibrium of a central configuration, a
bifurcation to a family of (quasi-periodic) relative equilibria of balanced configurations
can occur only if the corresponding point in the frequency polytope P lies in some
face of one of these subpolytopesP�. We are interested in identifying the faces which
actually correspond to such bifurcations.

4.2 The Generic Bifurcation Vertex

From Proposition 7 we deduce

Corollary 14 In the situation of Proposition 7, the ordered frequencies of the angular
momentum of x(t) are (ν1 = σ1 ≥ ν2 = σ2 ≥ · · · ≥ νd = σd). They correspond to
a vertex on the boundary of the frequency polytope (Chenciner 2013a; Chenciner and
Jiménez-Pérez 2013).

The identification of the frequencies νi = σi + 0 of the angular momentum
is an immediate consequence of the nature of J in the proposition. It remains to
prove that the corresponding vertex is a boundary vertex and not an interior one. It
is enough to prove that it is a vertex of the polytope P associated to the partition
σ− ∪σ+ of the spectrum of the inertia matrix S0 with σ− = {σ1, σ3, . . . , 0 . . . , 0} and
σ+ = {σ2, σ4, . . . , 0, . . . , 0}, where σ1 ≥ · · · σd (see Chenciner 2013a; Chenciner
and Jiménez-Pérez 2013). This comes from the fact that whatever be d, odd or even,
the number of non zero terms in σ− (resp. σ+) is the same as the number of zeroes
in σ+ (resp. σ−); hence there is a vertex of P which corresponds to a permutation
coupling each σi with a 0.
Example: Three bodies.

In the equal mass three-body problem, the bifurcation from an equilateral periodic
relative equilibrium of a family of isosceles quasi-periodic relative equilibria in R

4

with two frequencies cannot originate from the planar Lagrange solution but only
from an equilateral relative equilibrium whose angular momentum is equivalent to the
complex structure J0 (Fig. 4).

7 Intuitively, each piece of the partition definingP is as “separated” as possible; in contrast, in Corollary 14
the polytope associated to the partition {ν1, ν2, . . . , νd } � {0, 0, . . . , 0} is reduced to a point.
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Fig. 4 Bifurcation from periodic equilateral to quasi-periodic isosceles

Fig. 5 Bifurcation loci in the generic cases

4.3 Bifurcation Locus in the Frequency Polytope

Figure 5 depicts the frequency polytope of the regular tetrahedron configuration in
R
6. Generically, only two possibilities exist for the inertia eigenvalues σ1, σ2, σ3:

(1) σ1 > σ2 + σ3 > σ2 > σ3 > 0 or (2) σ2 + σ3 > σ1 > σ2 > σ3 > 0.

The first case is what becomes the example depicted in Chenciner (2013a) under the
assumption that σ4 = σ5 = σ6 = 0. An example is the regular tetrahedron with one of
the masses much smaller than the three others. Another one is the regular tetrahedron
with masses m1 = m3 >> m2 = m4. An example of the second one is the regular
tetrahedron with almost equal masses.

Figure 6 indicates the angular momentum frequencies corresponding to the sizes
and vertices when the frequency of the corresponding relative equilibrium equals 1 (if
not, all the frequencies should be multiplied by this frequency ω).

There are four distinct partitions � of the spectrum {σ1, σ2, σ3, 0, 0, 0}:

(1) �0 = {σ1, σ2, σ3} ∪ {0, 0, 0}; the corresponding Horn polytope is reduced to one
point, the “generic bifurcation vertex” A, which is the only place where a peri-
odic relative equilibrium in R

6 of the given central configuration could bifurcate
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Fig. 6 Angular momentum frequencies (when rotation frequency = 1)

into a family of quasi-periodic relative equilibria in R
6 with three frequencies of

balanced configurations with λ1, λ2, λ3 all distinct8.
(2) �i = {σi , 0, 0}∪{σ j , σk, 0}, i = 1, 2, 3, the frequency polytope, which contains

all the others, corresponding to i = 2.

The vertex B corresponds to a periodic relative equilibrium motion in R
4 which

could bifurcate into a family of quasi-periodic relative equilibria with two frequen-
cies in R

4 of balanced configurations with λ1 = λ2 �= λ3. The eigenplanes of the
instantaneous rotation � would tend respectively to {ρ1, ρ2} and {ρ3, v1}, where in
agreement with the notations in Sect. 1.3, v1 is any non-zero vector orthogonal to the
image of the balanced configuration in question. It follows that the bifurcation happens
at the vertex B, which corresponds to a relative equilibrium directed by the complex
structure having the planes {ρ1, ρ2} and {ρ3, v1} as complex lines.

Analogous descriptions hold for the vertex C (λ1 �= λ2 = λ3) and the vertex D
(λ1 = λ3 �= λ2).

The broken edge AB (ν3 = σ3 reflected in ν2 = σ3) corresponds to periodic relative
equilibria inR6 which could bifurcate into a family of quasi-periodic relative equilibria
with two frequencies in R6 of balanced configurations with λ1 = λ2 �= λ3 and whose
instantaneous rotation � would have a four-dimensional eigenspace {ρ1, ρ2, v1, v2}
and a two-dimensional eigenplane {ρ3, v3}. The edge is parametrized by the choice of
a complex structure in the four-dimensional eigenspace.

In the same way, the (possibly broken) edge AC (ν1 = σ1) corresponds to periodic
relative equilibria in R6 which could bifurcate into a family of quasi-periodic relative
equilibria with two frequencies in R

6 of balanced configurations with λ1 �= λ2 =
λ3 and whose instantaneous rotation � would have a four-dimensional eigenspace
{ρ2, ρ3, v2, v3} and a two-dimensional eigenplane {ρ1, v1}. The edge is, as above,
parametrized by the choice of a complex structure in the four-dimensional eigenspace.
Finally, the same description holds for the interior side AD.

On the contrary, apart from the vertices B, D, C , the edge BC (ν3 = 0) does not
correspond to possible bifurcations. This is because it is the interior of the frequency
polytope when the dimension of E goes down to 4. This remark indicates in more gen-

8 The notations A, B, C, D for the vertices have, of course, no relation with the matrices A, B, C .
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eral situations what faces of the frequency polytope (and subpolytopes) are bifurcation
values.

5 Rhombus 4-Body Relative Equilibria

5.1 The 3D Case

According to Corollary 13, any balanced configuration close enough to the regular
tetrahedron with only two different masses, say m1 = m3 �= m2 = m4, is a rhombus
configuration:

r12 = r14 = r32 = r34 = √
b, r13 = √

a , r24 = √ f .

In such a simple case, it is possible to give explicit formulæ for the bifurcating
families. Given real numbers (α, β, γ1, γ2), which we may suppose all positive, such
that m1γ1 = m2γ2, we define a configuration x0 of four bodies in R

3 with center of
mass at the origin by

x0 =
⎛

⎝
α 0 −α 0
0 β 0 −β

γ1 −γ2 γ1 −γ2

⎞

⎠ .

The mutual distances are
{√

a = r13 = 2α,
√

f = r24 = 2β,
√

b = √
d = r12 = r14 = r32 = r34 = (α2 + β2 + (γ1 + γ2)

2)1/2,

In the μ−1-orthonormal basis {u1, u2, u3} of D∗ formed by the vectors

u1 =
√

m1m2

2(m1 + m2)
(1,−1, 1 − 1), u2 =

√
m1

2
(1, 0,−1, 0),

u3 =
√

m2

2
(0, 1, 0,−1),

x0 is represented by the 3 × 3 matrix whose columns are Jacobi vectors

X0 =
⎛

⎜⎝
0

√
2m1α 0

0 0
√
2m2β√

2m1m2
m1+m2

(γ1 + γ2) 0 0

⎞

⎟⎠ .

The corresponding inertia matrices are

B0 = Xtr
0 X0 =

⎛

⎝
σ3 0 0
0 σ1 0
0 0 σ2

⎞

⎠ , S0 = X0Xtr
0 =

⎛

⎝
σ1 0 0
0 σ2 0
0 0 σ3

⎞

⎠ ,
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with

{
σ1 = 2m1α

2 = m1
2 a, σ2 = 2m2β

2 = m2
2 f,

σ3 = 2m1m2
m1+m2

(γ1 + γ2)
2 = 2(m1γ

2
1 + m2γ

2
2 ) = m1m2

2(m1+m2)
(4b − a − f ),

while the Wintner–Conley endomorphism A : D∗ → D∗ is

A =
⎛

⎝
(m1 + m2)ϕ(b) 0 0

0 (m1ϕ(a) + m2ϕ(b)) 0
0 0 (m1ϕ(b) + m2ϕ( f ))

⎞

⎠ .

5.1.1 Bifurcations in R
6

(1) Bifurcations from the generic vertex. We embed the configuration x in R
6 by

equaling to 0 the last three coordinates of each body and identify (q1, . . . , q6) ∈ R
6

with (z1 = q1 + iq4, z2 = q2 + iq5, z3 = q3 + iq6) ∈ C
3. A relative equilibrium is

defined by making each column of X move according to

(Z1, Z2, Z3) �→ (eiω1t Z1, eiω2t Z2, eiω3t Z3),

with

ω2
1 = −2(m1 + m2)ϕ(b), ω2

2 = −2 (m1ϕ(a) + m2ϕ(b)) ,

ω2
3 = −2 (m1ϕ(b) + m2ϕ( f )) ,

where (Z1, Z2, Z3) ∈ C3 are the columns of X , considered as belonging to D ⊗ R
6

(that is with three zeros added). Its angular momentum C is (compare to Chenciner
2013a)

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 −σ1ω1 0 0
0 0 0 0 −σ2ω2 0
0 0 0 0 0 −σ3ω3

σ1ω1 0 0 0 0 0
0 σ2ω2 0 0 0 0
0 0 σ3ω3 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

This gives a 2-parameter9 family bifurcating at the “generic vertex”

A =
(

m1

2
,

m1m2

m1 + m2
,

m2

2

)

from the regular tetrahedron with unit sides and masses m1, m2, m1, m2 such that
m1 + m2 = 1 (and hence ω2 = 1) and m1 > m2.

9 a, b, f modulo scaling.
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(2) Bifurcations from the sides of the frequency polytope. The relative equilibria
bifurcating as above from the generic vertex have three frequencies except when
one of the equalities a = b or b = f of (m1 − m2)ϕ(b) = m1ϕ(a) − m2ϕ( f )

holds, in which case, only two distinct frequencies survive. The missing frequency
is in some sense replaced by the parameter along one side of the frequency polytope
(or subpolytope), which corresponds to the latitude of choice (in fact a 2-sphere) of
the complex structure which directs the relative equilibrium from which the family
bifurcates. Namely, supposing a = b = 1 and m1 + m2 = 1, and embedding the
configuration x in R

6 via the embedding (q1, q2, q3) �→ (q1, 0, q2, 0, q3, 0) of R3 in
R
6, we define a relative equilibrium by setting

x(t) =

⎛

⎜⎜⎜⎜⎜⎜⎝

cosωt 0 − cos θ sinωt − sin θ sinωt 0 0
0 cosωt sin θ sinωt − cos θ sinωt 0 0

cos θ sinωt − sin θ sinωt cosωt 0 0 0
sin θ sinωt cos θ sinωt 0 cosωt 0 0

0 0 0 0 cosω3t − sinω3t
0 0 0 0 sinω3t cosω3t

⎞

⎟⎟⎟⎟⎟⎟⎠
x0,

where ω2 = −2(m1 +m2)ϕ(b) = 1, ω2
3 = −2(m1ϕ(b)+m2ϕ( f )) = m1 +m2 f − 3

2 .
Then

S0 =

⎛

⎜⎜⎜⎜⎜⎜⎝

σ1 0 0 0 0 0
0 0 0 0 0 0
0 0 σ2 0 0 0
0 0 0 0 0 0
0 0 0 0 σ3 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

and

C =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 −(σ1 + σ2)ω cos θ −σ1ω sin θ 0 0
0 0 σ2ω sin θ 0 0 0

(σ1 + σ2)ω cos θ −σ2ω sin θ 0 0 0 0
σ1ω sin θ 0 0 0 0 0

0 0 0 0 0 −σ3ω3
0 0 0 0 σ3ω3 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

whose frequencies are σ3ω3 and the square roots of the solutions of

ν2 + [σ 2
1 + σ 2

2 + 2σ1σ2 cos
2 θ ]ω2ν + σ 2

1 σ 2
2 ω4 sin4 θ = 0.

At the bifurcation, when θ varies from π/2 to 0, they vary from (σ1, σ2, σ3) to (σ1 +
σ2, 0, σ3), which makes (ν1, ν2, ν3) travel the broken side AB in Fig. 6.

Remark In agreement with the results of Chenciner (2013a) and Chenciner and
Jiménez-Pérez (2013), it is an “adapted” family of complex structures which has been
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chosen to direct the relative equilibria of the regular tetrahedron at the bifurcation:
they send the plane {ρ1, v1} onto the plane {ρ2, v2} and ρ3 onto v3.

5.1.2 Bifurcations in R
4

(i) The case a = b. This is the limit θ = 0 of the above family: the complex structure
sends ρ1 to ρ2, ρ3 to v3 (and v1 to v2, which implies that the motion does not visit the
corresponding dimensions). After embedding the configuration in R

4 by equaling to
0 the last coordinate of each body and identifying (q1, q2, q3, q4) ∈ R

4 with (z1 =
q1 + iq2, z2 = q3 + iq4) ∈ C

2, such a relative equilibrium motion is defined by
each column of X moving according to (Z1, Z2) �→ (eiω1t Z1, eiω3t Z2), with ω2

1 =
−2(m1 + m2)ϕ(b), ω2

3 = −2(m1ϕ(b) + m2ϕ( f )). Its angular momentum C is

⎛

⎜⎜⎝

0 −(σ1 + σ2)ω1 0 0
(σ1 + σ2)ω1 0 0 0

0 0 0 −σ3ω3
0 0 σ3ω3 0

⎞

⎟⎟⎠ .

(ii)The case (m1−m2)ϕ(b) = m1ϕ(a)−m2ϕ( f ) and the case b = f . The situation
is analogous, the only difference being the identification of R4 with C

2 which is
respectively z1 = q2+iq3, z2 = q1+iq4 and z1 = q1+iq3, z2 = q2+iq4. The angular
momentum spectra are respectively {(σ2 + σ3)ω1, σ1ω2} and {(σ1 + σ3)ω1, σ2ω2}.

5.2 The 2D Case

This is the case when γ1 = γ2 = 0, that is 4b − a − f = 0. We check property (H)
(see Sect. 1.5.2) for the symmetric (m1 = m3, b′ = b′′ = b, d ′ = d ′′ = d, see
Sect. 3.5) balanced configurations in the neighborhood of the planar rhombus central
configuration x0. As I m B0 is the plane x = 0, x0 is characterized by the equality of
the last two eigenvalues of A0, that is

m1ϕ(a) − m2ϕ( f ) = (m1 − m2)ϕ(b) = (m1 − m2)ϕ

(
a + f

4

)
.

Lemma 15 Supposing m1 = m3 and m2 = m4, let x0 be a planar rhombus (hence
balanced) configuration and let K be defined by

K = 2m1 (ϕ(a0) − ϕ(b0)) − (m1 + m2)a0ϕ
′(b0).

If K �= 0, the set of planar Z/2Z-symmetric 4-body balanced configurations close to
x0 coincide with the set of planar rhombus configurations and the condition (H) of
Sect. 1.5.2 is satisfied at x0 for these planarZ/2Z-symmetric balanced configurations.

Proof One linearizes at (a, b, d, f ) = (a0, b0, b0, f0) the couple formedby theunique
equation of Z/2Z-symmetric balanced configurations (see Sect. 3.5) and the Cayley–
Menger determinant, proportional to the squared volume of the configuration; the first
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assertion of the lemma follows because the 2 × 4 matrix one gets is of the form

det

(
0 K −K 0
... ... ... −2a0 f0

)
.

Hence, if K �= 0, the set inertia matrices B of balanced configurations close to x0 is a
two dimensional submanifold parametrized by a and f (or by the non-zero eigenvalues
1
2m1a and 1

2m2 f of B). The mapping sending the non zero eigenvalues of the inertia
matrix of a planar balanced configuration B to the spectrum of A|I m B then reduces to

(a, f ) �→
(
2m1ϕ(a) + 2m2ϕ

(
a + f

4

)
, 2m2ϕ( f ) + 2m1ϕ

(
a + f

4

))
,

whose derivative at B0 is always invertible because its determinant

(
m2

1ϕ
′(a0) + m2

2ϕ
′( f )

)
ϕ′
(

a0 + f0
4

)
+ 2m1m2ϕ

′(a0)ϕ′( f0)

is strictly positive. Hence condition (H) is satisfied (note that at this point we have not
to suppose that x0 is central). ��

Finally, the ellipsoid of inertia B0 of a rhombus planar configuration is degenerate

(i.e. round) if and only if m1a = m2 f . Taking the Newtonian value ϕ(s) = − 1
2 s− 3

2

and supposing that x0 is central, the condition of degeneracy becomes

m1 − m
− 3

2
1 m

5
2
2 + 8m

3
2
2 (m2 − m1)(m1 + m2)

− 3
2 = 0,

or, normalizing the masses by setting m2 = 1,

m1 − m
− 3

2
1 + 8(1 − m1)(1 + m1)

− 3
2 = 0,

which defines three values γ, 1, 1/γ , with γ � 0.575. Hence,

Lemma 16 Except when m1/m2 equals γ, 1/γ or 1, the inertia ellipsoid of the planar
rhombus central configuration is not round.
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