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of the Arbeitsgemeinschaft on Mathematical Quasicrystals, which was held at the
Mathematisches Forschungsinstitut Oberwolfach in October 2015. The purpose of
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common goal of understanding different viewpoints and approaches surrounding the
theory of mathematical quasicrystals. The problems below reflect this goal and this
diversity and we hope that they will motivate further cross-disciplinary research and
lead to new advances in our overall vision of this rapidly developing field.
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1 Introduction

This list of problems arose as a collaborative effort among the participants of the
Arbeitsgemeinschaft onMathematical Quasicrystals, which was held at the Mathema-
tisches Forschungsinstitut Oberwolfach in October 2015. The purpose of our meeting
was to bring together researchers from a variety of disciplines, with a common goal of
understanding different viewpoints and approaches surrounding the theory of math-
ematical quasicrystals. The problems below reflect this goal and this diversity and
we hope that they will motivate further cross-disciplinary research and lead to new
advances in our overall vision of this rapidly developing field.

Most of the technical terms used herein are fairly common in the literature sur-
rounding this subject. When in doubt concerning definitions, the reader may wish to

3 Faculty of Mathematics, Bielefeld University, 33615 Bielefeld, Germany

4 Department of Mathematics and Statistics, Faculty of Mathematics, Computing and Technology,
The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

5 Institut for Matematiske fag, NTNU, 7491 Trondheim, Norway

6 Departamento de Matemática y Ciencia de la Computación, Facultad de Ciencia, Universidad de
Santiago de Chile, Santiago, Chile

7 Department of Mathematics, University of Texas, Austin, TX 78712, USA

8 School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

123



Open Problems and Conjectures Related to the Theory…

consult Baake and Grimm (2013) or Sadun (2008), as well as the references provided
with the relevant problem. Here we list some less common terms and abbreviations
used below:

(i) Two point sets in R
d are bounded displacement equivalent (abbreviated BD) if

there is a bijection between themwhich moves every point by at most some finite
amount.

(ii) Two point sets in R
d are bi-Lipschitz equivalent (abbreviated BL) if there is a

bi-Lipschitz bijection between them.
(iii) A pattern Y ⊆ R

d is linearly repetitive (abbreviated LR) if there exists a constant
C > 0 such that, for every r ≥ 1, every patch of size r which occurs anywhere
in Y , occurs in every ball or radius Cr in Rd .

(iv) The abbreviationMLD stands formutually locally derivable, as defined in Baake
and Grimm (2013, Section 5.2).

2 Problems

2.1 D. Damanik: Quantum Mechanics and Quasicrystals

A Schrödinger equation associated with a Schrödinger operator H can be used to
model how well quantum wave packets travel in a quasicrystal—see Damanik and
Tcheremchantsev (2010) for details. A key step in the determination of the large time
behaviour of solutions to this equation is the understanding of the properties of the
spectrum of H and of the corresponding spectrum measures. Theorem 2.1.1 below
illustrates the kind of properties that are of interest. Before stating it, we introduce
some notation and some definitions.

Given a finite alphabet A, let x ∈ AN (resp. x ∈ AZ) be a single sided (resp. a
double sided) recurrent sequence over A. The complexity of x is defined for each
integer n ≥ 1 as

p(n) := # {xm . . . xm+n−1 : m ∈ Z}

if the sequence is double sided. If it is single sided, the complexity is defined in the
same way upon restricting m to the set of positive integers. When x is aperiodic (i.e.
not ultimately periodic), it is easily seen that p(n) ≥ n +1 for all n ≥ 1. The sequence
x is Sturmian if it is aperiodic and if it has minimal complexity; that is, if p(n) = n+1
for all n ≥ 1. This definition implies that the alphabet defining a Sturmian sequence
contains exactly two letters which may be denoted without loss of generality by 0 and
1. One can then show (Lothaire 2002) that a double sided (resp. single sided) Sturmian
sequence is exactly of one of the following forms: for all m ∈ Z (resp. for all m ∈ N),

xm := χ[1−α; 1) ({mα + θ}) or xm := χ(1−α; 1] ({mα + θ}) .

Here, {x} denotes the fractional part of x ∈ R, χE the characteristic function of a set
E ⊂ R and α and θ are two real numbers such that α ∈ R\Q and θ /∈ αZ + Z.
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The following result is established in Bellissard et al. (1989) and Damanik et al.
(2000).

Theorem 2.1.1 Let λ ∈ C and let x ∈ {0, 1}Z be a Sturmian sequence. Denote by H
the Schrödinger operator defined in the space l2(Z) as follows: given ψ ∈ l2(Z) and
m ∈ Z, let

[Hψ] (m) := ψ(m + 1) + ψ(m − 1) + λ · xm · ψ(m).

Then, the spectrum σ(H) of the operator H is a zero Lebesgue measure Cantor
set. Furthermore, all spectral measures are singular continuous.

Another measure of the complexity of a sequence has been introduced by Kamae
and Zamboni (2002a, b). It is defined as follows (with the natural modification if the
sequence is single sided): for n ≥ 1,

p∗(n) := sup
0=τ(0)<···<τ(n−1)

#
{

xm+τ(0) · · · xm+τ(n−1) : m ∈ Z
}
,

where τ(0), . . . , τ (n − 1) are integers. It is not difficult to see that if x is an aperiodic
sequence, then p∗(n) ≥ 2n for all n ≥ 1. The sequence x is pattern Sturmian if
p∗(n) = 2n for all n ≥ 1. Note that a Sturmian sequence is necessarily pattern
Sturmian. The converse inclusion, however, does not hold.

Problem 2.1.1 Determine all single sided (resp. double sided) sequences that are
pattern Sturmian.

With respect to the properties of the Schrödinger operator introduced in Theo-
rem 2.1.1 above, one can expect the following:

Conjecture 2.1.1 Theorem 2.1.1 holds if x is a pattern Sturmian sequence.

The spectrum of Schrödinger operators associated with quasicrystal models in
higher dimensions is not well understood. Consider for example the Penrose tiling
and the corresponding graph (V, E), where V is the vertex set and E the set of edges.
Define the operator H in the space l2(V ) as follows: for any ψ ∈ l2(V ) and any
v ∈ V , let

[Hψ](v) :=
∑

w : (v,w)∈E

(ψ(w) − ψ(v)) .

Problem 2.1.2 Determine the spectrum σ(H) of the operator defined above.

Another example of a two dimensional problem arises when considering a two
dimensional potential V that can be written as a sum of two one dimensional potentials
sλ1
1 and sλ2

2 . Here, λ1, λ2 ∈ C and, for j ∈ {1, 2} and k ∈ Z,

s
λ j
j (k) := λ j · χ[1−γ,1)({kγ })
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with γ =
√
5−1
2 . Thus, for any m, n ∈ Z,

V (m, n) := sλ1
1 (m) + sλ2

2 (n).

The corresponding Schrödinger operator H in the space l2(Z2) is defined as follows:
for ψ ∈ l2(Z) and (m, n) ∈ Z

2,

[Hψ](m, n) := ψ(m + 1, n) + ψ(m − 1, n) + ψ(m, n + 1)

+ψ(m, n − 1) + V (m, n) · ψ(m, n).

The spectrum of this operator is expected to exhibit a very particular structure for
some values of the parameters λ1 and λ2:

Conjecture 2.1.2 There exist values of λ1 and λ2 such that the spectrum σ(H) of H
is a Cantorval; that is, the spectrum is the closure of its interior and no connected
component is isolated.

Formore details on the concept of Cantorval, seeMendes and Oliveira (1994).With
obvious modifications, Conjecture 2.1.2 is expected to be true in higher dimensions
as well.

2.2 F. Gähler: The Pisot Substitution Conjecture

One of the long-standing open problems in the field of mathematical quasicrystals
is to determine which tiling dynamical systems (or Delone dynamical systems) have
a pure point dynamical spectrum and thus a pure point diffraction pattern. For cut-
and-project sets and tilings, this is the case by construction, but for inflation tilings
the situation is not as clear. It is known (Solomyak 1997) that a self-similar inflation
tiling has a non-trivial pure point component in its spectrum if, and only if, the scaling
factor of the inflation is a Pisot number λ; that is, a real algebraic integer λ > 1 all
of whose conjugates are strictly smaller than one in modulus. This does not mean,
however, that the spectrum is pure point. There is an algorithm (Sirvent and Solomyak
2002; Solomyak 1997) that enables one to check whether a given tiling has pure point
spectrum. Nevertheless, simple criteria that are easy to check or known to be true for
whole classes of tilings are missing.

The Pisot Substitution Conjecture (see also the recent review Akiyama et al. 2015)
states the following:

Conjecture 2.2.1 (Pisot substitution conjecture)A one-dimensional self-similar infla-
tion tiling with Pisot scaling factor λ has pure point spectrum if its abelianisation
matrix (i.e. its substitution matrix) M has an irreducible characteristic polynomial;
that is, if the algebraic degree of λ equals the dimension of M (or the number of tile
types).

Often, the additional assumption that M is unimodular is made so that λ is a unit
in the ring Z[λ]. So far, this has not really helped to prove the conjecture.

123



F. Adiceam

Extensive computer search (Akiyama et al. 2014) has failed to produce a counter-
example but a general proof is also missing. There are some partial results. The
conjecture is known to be true in the two tile case (λ a quadratic irrational) (Hol-
lander and Solomyak 2003). Also, it has been recently been proved for the class of
inflation rules which are injective on the first tile and constant on the last tile (Barge
2016) and also for β-substitutions (Barge 2015b) (which do not generally satisfy the
conditions of the Pisot Substitution Conjecture).

One problem with the Pisot Substitution Conjecture is that the irreducibility of the
characteristic polynomial of M is not invariant under topological conjugacies, whereas
the spectral type of the dynamical system is. This has led to the statement of Pisot type
conjectures with additional assumptions of a topological nature. The Homological
Pisot Conjecture (Barge et al. 2012) is in this vein:

Conjecture 2.2.2 (Homological Pisot Conjecture) A one-dimensional, unimodular
Pisot inflation tiling has pure point spectrum if its first rational Čech cohomology
group has rank equal to the algebraic degree of λ.

This was later extended to the non-unimodular case in the form of the Coincidence
Rank Conjecture (Barge 2015a):

Conjecture 2.2.3 (Coincidence Rank Conjecture) The coincidence rank of a one-
dimensional Pisot inflation tiling must divide the algebraic norm of λ.

The coincidence rank is the multiplicity (almost everywhere) of the factor map to
the maximal equicontinuous factor of the tiling dynamical system. It must be one for
pure point spectrum.

2.3 U. Grimm: Diffraction of a Pinwheel Tiling

We first briefly describe the construction of a Pinwheel Tiling following Conway
and Radin—see Conway and Radin (1998) and Radin (1994) for further details and
Moustafa (2010) for some of its properties.

Let T be a right triangle with side lengths 1, 2 and
√
5. As noticed by Conway, T

can be divided into five isometric copies of its image by a dilation of factor 1/
√
5—

see Fig. 1.1 A Pinwheel Tiling is then defined as a tiling of the plane whose tiles are
isometric copies of T , in which a tile may intersect another tile only either on a whole
side or on half the length 2 side, and such that the following property holds: the tiles of
any Pinwheel Tiling can be grouped in sets of five into homothetic tiles, so that these
homothetic tiles form (up to rescaling) a new Pinwheel Tiling.

There are uncountably many Pinwheel Tilings. See Fig. 2 below for an example.
All Pinwheel Tilings are locally indistinguishable (i.e. any cluster which occurs in

one Pinwheel Tiling, occurs in all such tilings) and share the property that tiles appear
in infinitely many orientations. Choose a reference point (a natural choice is the point
at coordinates (1/2, 1/2) with respect to the vertex point at the right-angled corner
of the triangular tile) and consider a uniform Dirac comb obtained by placing a point

1 Figures 1 and 2 are taken from Wikipedia.
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Fig. 1 Conway triangle
decomposition into homothetic
smaller triangles

Fig. 2 A Pinwheel tiling

measure at each reference point. The diffractionmeasure is the Fourier transformof the
autocorrelation and is awell-defined positivemeasure. It is known that thismeasure has
circular symmetry (Moody et al. 2006) and, as a consequence, the only pure point part
of it is the trivial point measure at the origin, which is related to the density (equal to
one in this case). Apart from this point measure, the diffraction measure is continuous.
However, note that ameasure concentrated on ‘sharp rings’ (so that themeasure is ‘pure
point in the radial direction’) is a singular continuous measure in the plane as well.

There are arguments that support the existence of such ‘sharp rings’ in the diffrac-
tion measure of the pinwheel tiling (Baake et al. 2007) similarly to what one would
observe for a rotation-averaged square lattice arrangement of point masses. Numeri-
cal investigations also indicate the presence of additional components which might be
absolutely continuous (Baake et al. 2007; Grimm and Deng 2011). However, none of
these properties has yet been proved.

Problem 2.3.1 Determine the position of sharp rings in the diffraction measure of a
Pinwheel Tiling and their intensity.

Problem 2.3.2 Does the diffraction measure of the Pinwheel Tiling contain an
absolutely continuous component?

2.4 A. Haynes: Gaps Problems

Let α, β ∈ R be such that 1, α and β are Q-linearly independent. Let Y (α, β) be a
canonical cut-and-project set (this concept is defined in Haynes et al. 2016a) formed
using the subspace
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E(α, β) := {(x, y, αx + βy) : x, y ∈ R} ⊂ R
3.

Given a shape � ⊂ E(α, β), let ξ(α,β)(�) denote the set of different frequencies of
patches of shape � in Y (α, β) which occur in E(α, β). Precise definitions of these
terms are given in Haynes et al. (2016c) and here we are considering “type 2 patches”.

Let M, N ∈ N and

S(α,β)(M, N ) := {{mα + nβ} : 0 ≤ m < M, 0 ≤ n < N } ,

where {x} denotes the fractional part of x ∈ R. Depending on the choice of the
shape �, the cardinality of ξ(α,β)(�) is closely related to the number G(α,β)(M, N )

of distinct lengths of the component intervals of T\S(α,β)(M, N ) for specific choices
of M and N (here, T = R/Z denotes the one-dimensional torus). For instance, the
number of different frequencies for a two-to-one cut-and-project set when the window
is an interval is at most 3. This is just another formulation of the Three Distance (or
Steinhaus) Theorem and amounts to saying that G(α,β)(1, N ) ≤ 3 for any N ≥ 1.

Problem 2.4.1 Is there a choice of α and β as above such that

sup
�∈S

#ξ(α,β)(�) = +∞, (1)

where S denotes the collection of all aligned squares?

The precise definition of an aligned square (resp. of an aligned rectangle) can be
found in Haynes et al. (2016b).

It can be shown (Haynes et al. 2016c) that (1) implies that supN∈N G(α,β)(N , N ) =
+∞. It was conjectured by Erdös (Geelen and Simpson 1993) that the latter equation
should hold whenever 1, α and β are Q-linearly independent. This conjecture was
disproved in Bleher et al. (2012), where it was established that the set of (α, β) for
which supN∈N G(α,β)(N , N ) < +∞, although of zero Lebesgue measure, has full
Hausdorff dimension. It is an open problem to determine whether there exists a pair
(α, β) such that supN∈N G(α,β)(N , N ) = +∞.

The following is a seemingly easier version of the previous problem.

Problem 2.4.2 Is there a choice of α and β as above such that

sup
�∈R

#ξ(α,β)(�) = +∞, (2)

where R denotes the collection of aligned rectangles?

There is currently no known example of a pair (α, β) for which (2) holds. Using
the arguments in Haynes et al. (2016b, c), it can be shown that any such pair satisfies
the equation

lim inf
n→∞ n ‖nα‖ ‖nβ‖ = 0; (3)

that is, any such pair satisfies the LittlewoodConjecture (here, ‖x‖ denotes the distance
from x ∈ R to a nearest integer). Whether the converse holds is an open problem:
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Problem 2.4.3 Given (α, β) ∈ R
2 such that 1, α and β are Q-linearly independent,

does (3) imply (2)?

2.5 A. Julien: Relationship Between Complexity and Cohomology

Consider a tiling and the corresponding tiling space� in dimension d ≥ 1. In the case
of a word w over a finite alphabet (the tiling is then one-dimensional), the complexity
function n �→ p(n) corresponding tow counts the number of subwords ofw of length
n. In higher dimensions, the complexity function of a tiling counts in an analogous
way the number of patches of radius n (up to translation)—see Lagarias and Pleasants
(2003) for details.

In the case of a canonical (in particular, irrational and aperiodic) cut-and-project
tiling, it is known (Julien 2010, Theorem 5.1) that the complexity function grows like
O(nd) if, and only if, the groups of cohomology overQ of the tiling space are finitely
generated. In other words, with usual notation,

p(n) = O(nd) ⇐⇒ rk(H∗(�,Q)) < ∞.

The situation is not as well understood in the non-cut-and-project setup. For
instance, there exist tilings in any dimension d ≥ 1 such that the corresponding
tiling spaces have finitely generated groups of cohomology over the rationals whereas
their complexity function grows faster than any polynomial—see, e.g., Julien (2010,
Proposition 6.20). In dimension d = 1 however, the converse can be settled in the
affirmative (Julien 2010, Proposition 6.7): if p(n) = O(n), then rk(H1(�,Q)) < ∞.
The following problem is concerned with a generalization of this result in higher
dimensions:

Problem 2.5.1 With the same notation, is it the case that for an aperiodic, repetitive
tiling of dimension d, if p(n) = O(nd), then rk(H∗(�,Q)) < ∞?

Note that the result fails already in dimension one if one considers cohomologies
over Z rather than overQ. Indeed, the substitution defining the Thue–Morse sequence
is primitive and therefore (Queffélec 2010) the corresponding complexity function is
bounded above by a linear function. Besides, one can show (Anderson and Putnam
1998) that

H1(�T M ,Z) � Z

[
1

2

]
⊕ Z.

In particular, H1(�T M ,Z) is not finitely generated over Z.

2.6 A. Navas: A Conjecture on Delone Sets BL to Lattices (After P. Alestalo,
D. A. Trotsenko and J. Väisälä)

Burago and Kleiner (2002) on the one hand andMcMullen (1998) on the other proved
independently that there exist Delone sets in any dimension which are not BL to any
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lattice. The following problem, raised in Alestalo et al. (1993), is concerned with the
case when a Delone set is BL to a lattice in the plane. As any two lattices are BL, it is
enough to consider the case of Z2.

Problem 2.6.1 LetD ⊂ R
2 be a Delone set BL to Z2. Does there exist a bi-Lipschitz

map L : R2 �→ R
2 such that L(D) = Z

2?

In this direction, it has been shown (Navas 2016) that the conclusion of Prob-
lem 2.6.1 is valid under the assumption of linear repetitivity (LR) or under the
assumption of Burago–Kleiner (BK). Both of the these conditions imply that a Delone
set is BL to a lattice. The reader is referred to Burago and Kleiner (1998) for an actual
definition of the BK condition, which is technical. It is concerned with the speed of
convergence of the number of points of a Delone set inside larger and larger balls.

2.7 L. Sadun

2.7.1 Properties of Patterns and Properties of Tiling Spaces

There are two very different approaches to tiling theory. A first approach focuses on
questions about specific patterns such as: are they BD or BL to a lattice? Are they LR?
Do they have a pure point diffraction spectrum? Do they have the Meyer property?

A second approach focuses on properties of tiling spaces such as: what is the coho-
mology?What is themaximal equicontinuous torus?What is the dynamical spectrum?
From a dynamical perspective, tilings that are MLD or that give topologically con-
jugate tiling spaces are essentially the same. In some settings, even homeomorphic
tilings are considered “the same”.

Unfortunately, the answers to the first set of questions are not generally preserved
inside classes of equivalence of tiling spaces. A natural question is thus to ask whether
one can reconcile the two approaches. One strategy to answer this question is to
consider a strong version of the BD or BL or LR or . . . properties.

Problem 2.7.1 Classify tilings with such a property that any other tiling MLD (or
topologically conjugate, or homeomorphic) to it also has that property.

A more ambitious (and open-ended) challenge is the following:

Problem 2.7.2 Develop and study new geometric properties, analogous but not iden-
tical to BD, BL, etc., that are invariant under MLD, topological conjugacy, or
homeomorphism.

2.7.2 Modelling Physical Phenomena with Quasicrystals (After J. Miękisz)

Many physical phenomena are characterized by short range properties. Examples
include thermal stability (temperature is stable under local perturbation), the interac-
tions between two atoms close to each other or else the short range interaction when
studying chemical potential. Any quasicrystal model used to describe such phenomena
should take into account these local properties.
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With this in view, Miękisz (1998) labelled two properties that should be satisfied
by a local matching rule used to define a tiling:

(A) Given a tile t and a region R of the tiling space made of a finite union of tiles,
define the discrepancy Dt(R) of the tile t inR as

Dt(R) := |Nt(R) − d(t) · vol(R)| .

Here, Nt(R) stands for the cardinality of the number of tiles t in the regionR and
d(t) for the density of the tile t. The first condition imposed on the tiling is that of
“low fluctuation”; that is, that there exists a constant ct depending only on the tile
t such that

Dt(R) ≤ ct · |∂R| , (4)

where |∂R| is the measure of the boundary ∂R of R. It should be noted that, up
to the constant ct, one cannot expect a bound better than the right-hand side of (4)
for the discrepancy Dt(R)—see Miękisz (1999) for details.

(B) The second condition is that property (A) should also hold for any pattern or patch
satisfying the given matching rule.

Problem 2.7.3 Find a set of matching rules in dimension 2 and/or 3 that meet both
condition (A) and condition (B).

Regarding condition (A), if the system is not uniquely ergodic, then the fluctuations
grow like volume (rather than perimeter) and there is no hope to solving the prob-
lem. In particular, whenever the problem is relevant, density is well-defined. Another
approach, which does not involve defining density at all, is to look at the difference
in population between two different patches of approximately the same volume and
to ask whether that difference is bounded by the perimeter(s) and the difference in the
volumes. Regarding condition (B), if a patch violates the matching rules at a small set
of tiles, one can get another patch that does not violate the rules by simply deleting
that small set. This is the main difficulty underlying Problem 2.7.3.

The following statement can be seen as a first step to the solution of Problem 2.7.3.

Problem 2.7.4 Find a set of matching rules in dimension 2 satisfying condition (A)
only.

The contributor is able to produce an example based on the ideas developed in
Miękisz (1999) solving the analogue of Problem 2.7.4 in dimension 3. In dimension
2 however, all known examples of matching rules (e.g., that corresponding to the
Penrose tiling) have a discrepancy growing like O (|∂R| · log |∂R|).

2.8 B. Weiss

2.8.1 On a Problem of J. Marklof

Let d ≥ 1 be an integer. Denote by Cl(Rd) the set of all closed subsets of Rd with
respect to the Chabauty–Fell topology (de la Harpe 2016). Thus, Cl(Rd) is a compact
metric space and any group acting on R

d acts on it by transporting closed sets.

123



F. Adiceam

Let SLd(R) denote the group of matrices in dimension d with determinant one, viz.
the group of all volume and orientation preserving linear transformations in R

d . Let
ASLd(R) denote the affine group in R

d , viz. the group of all orientation and volume
preserving affine maps in Rd .

Problem 2.8.1 (J. Marklof) Determine all SLd(R)-invariant Borel probability mea-
sures on Cl(Rd) and similarly for the ASLd(R) action.

Examples of such measures include the Dirac masses at ∅ and at Rd , the measures
derived from a Poisson process, those naturally equipping the space of grids and
translated lattices and also those equipping the space of cut-and-project sets.

This problem is motivated by questions in mathematical physics—see Marklof
and Strömbergsson (2014) for some recent work and Marklof (2015) for a survey. A
topological analogue of this problemwas resolved in Solan et al. (2015): it was proved
that the only ASLd(R)-minimal sets are the fixed points ∅,Rd (recall that a minimal
set is a closed invariant set with no proper closed invariant subsets).

2.8.2 A “Folklore” Problem Concerning the Properties of Cut-and-Project Sets

In relation with Problem 2.6.1 above, there is a well-known open problem in the theory
of aperiodic tilings which essentially asks whether there exists a cut-and-project set
which is not BL to a lattice. The problem can be formulated more rigorously in the
following way:

Problem 2.8.2 Let E ⊂ R
k be a totally irrational subspace of dimension d ≥ 1, and

let Y be a cut-and-project set obtained from E using a bounded windowW with non–
empty interior and with the property that the (k − d)-dimensional Lebesgue measure
of ∂W is zero. Is such a set Y always BL to a lattice in E?

In Burago and Kleiner (2002), it was shown that when k = 3, d = 2 and when
W is an interval, then the set Y is BL to a lattice provided that E satisfies a mild
Diophantine condition. In Haynes et al. (2014), a more general result is proved, which
applies for all choices of k and d with a Diophantine hypothesis on E , and for all
windows W with the property that the upper Minkowski dimension of ∂W is less
than k − d. Further results related to this problem can be found in Haynes (2016) and
Haynes and Koivusalo (2016).

It should be noted that if the window in the above problem is only required to
be bounded, then it is not difficult (regardless of what E is) to choose W so that the
resulting setY is not BL to a lattice. To see how to do this, suppose that k = 3 and d = 2
and assume without loss of generality that E + e3 = R

3, where e3 denotes a standard
basis vector in R

3. Let F = Re3 and let ρE and ρF be the projections from R
3 onto

E and F with respect to the decomposition R3 = E + F . Let S ′ ⊆ R
3 be defined by

S ′ = ρ−1
F ({te3 : 0 ≤ t < 1}).

Start with a Delone set Y ′ in 〈e1, e2〉R which is a subset of 〈e1, e2〉Z, but which is not
BL to a lattice in 〈e1, e2〉R (such sets can be produced, for example, by the construction
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given in Cortez and Navas 2016). Then, taking the window to be the bounded set given
by

W = ρF ({n ∈ Z
3 ∩ S ′ : ρE (n) ∈ ρE (Y ′)}),

it is clear that the corresponding cut-and-project set Y is not BL to a lattice.
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