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Abstract We briefly survey the theory of thermodynamic formalism for uniformly
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extending this theory to non-uniform hyperbolicity. The first of these approaches
involves Markov models such as Young towers, countable-state Markov shifts, and
inducing schemes. The other two are less fully developed but have seen significant
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and specification) and geometric arguments involving push-forward of densities on
admissible manifolds.
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38 V. Climenhaga, Y. Pesin

1 Introduction

1.1 The General Setting

Thermodynamic formalism, i.e., the formalism of equilibrium statistical physics, was
adapted to the study of dynamical systems in the classical works of Ruelle (1972,
1978), Sinaı̆ (1968, 1972), and Bowen (1970, 1974, 2008). It provides an ample
collection of methods for constructing invariant measures with strong statistical prop-
erties. In particular, this includes constructing a certain “physical”measure known as
the SRB measure (for Sinai–Ruelle–Bowen).

The general ideas can be given as follows. Let (X, d) be a compact metric space and
f : X → X a continuous map of finite topological entropy. Fix a continuous function
ϕ : X → R, which we will refer to as a potential. Denote by M( f ) the space of all
f -invariant Borel probability measures on X. Given μ ∈ M( f ), the free energy of
the system with respect to μ is

Eμ(ϕ) := −
(

hμ( f ) +
∫

X
ϕ dμ

)
,

where hμ( f ) is theKolmogorov–Sinai (measure-theoretic) entropy of (X, f, μ). Opti-
mizing over all invariant measures gives the topological pressure

P(ϕ) := − inf
μ∈M( f )

Eμ(ϕ) = sup
μ∈M( f )

(
hμ( f ) +

∫
X

ϕ dμ

)
,

and a measure achieving this extremum is called an equilibrium measure (or equi-
librium state). Note that it suffices to take the infimum (supremum) over the space
Me( f ) ⊂ M( f ) of ergodic measures.

The variational principle relates the definition of pressure as an extremum over
invariant measures to an alternate definition in terms of growth rates. Given ε > 0 and
n ∈ N, a set E ⊂ X is (n, ε)-separated if points in E can be distinguished at a scale ε

within n iterates; more precisely, if for every x, y ∈ E with x �= y, there is 0 ≤ k ≤ n
such that d( f k x, f k y) ≥ ε. Then one has

P(ϕ) = lim
ε→0

lim sup
n→∞

1

n
log sup

E⊂X
(n,ε)-sep.

∑
x∈E

eSnϕ(x), (1.1)

where

Snϕ(x) :=
n−1∑
k=0

ϕ( f k x). (1.2)

The sum in (1.1) is a partition sum that quantifies “weighted orbit complexity at
spatial scale ε and time scale n”; P(ϕ) represents the growth rate of this complexity as
time increases. In the particular case ϕ = 0, the value P(0) is the topological entropy
htop( f ) of the map f .
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Building Thermodynamics for Non-uniformly Hyperbolic Maps 39

Thermodynamic formalism is most useful when the system possesses some degree
of hyperbolic behavior, so that orbit complexity increases exponentially. The most
complete results are availablewhen f is uniformlyhyperbolic;wediscuss these inSect.
1.2. In this article we focus on non-uniformly hyperbolic systems, and we discuss the
general picture in Sect. 1.3. Our emphasis will be on general techniques rather than on
specific examples. In particular, we discuss Markov models (including Young towers)
in Sects. 2–4, coarse-graining techniques (based on expansivity and specification) in
Sect. 5, andpush-forward (geometric) approaches (based onnewly introduced standard
pairs approach) in Sect. 6.

1.2 Uniformly Hyperbolic Maps (Sinai, Ruelle, Bowen)

1.2.1 General Thermodynamic Results

We refer the reader to (Katok and Hasselblatt 1995; Brin and Stuck 2002) for funda-
mentals of uniformhyperbolicity theory and to (Bowen 2008; Parry andPollicott 1990)
for a complete description of thermodynamic formalism for uniformly hyperbolic sys-
tems. Consider a compact smooth Riemannian manifold M and a C1 diffeomorphism
f : M → M . A compact invariant set � ⊂ M is called hyperbolic if for every x ∈ �

the tangent space Tx M admits an invariant splitting Tx M = Es(x) ⊕ Eu(x) into sta-
ble and unstable subspaces with uniform contraction and expansion: this means that
there are numbers c > 0 and 0 < λ < 1 such that for every x ∈ �:

(1) ‖d f nv‖ ≤ cλn‖v‖ for v ∈ Es(x) and n ≥ 0;
(2) ‖d f −nv‖ ≤ cλn‖v‖ for v ∈ Eu(x) and n ≥ 0.

One can show that the subspaces Es and Eu depend Hölder continuously on x ; in
particular, there is k > 0 such that � (Es(x), Eu(x)) ≥ k for every x ∈ �.

Moving from the tangent bundle to themanifold itself, for every x ∈ � one can con-
struct local stable V s(x) and unstable V u(x) manifolds (also called leaves) through
x which are tangent to Es(x) and Eu(x) respectively and depend Hölder continuously
on x (Katok and Hasselblatt 1995, Sect. 6.2). In particular, there is ε > 0 such that
for any x, y ∈ � for which d(x, y) ≤ ε one has that the intersection V s(x) ∩ V u(y)

consists of a single point (here d(x, y) denotes the distance between points x and y
induced by the Riemannian metric on M). We denote this point by [x, y].

A hyperbolic set � is called locally maximal if there is a neighborhood U of
� such that for any invariant set �′ ⊂ U we have that �′ ⊂ �. In other words,
� = ⋂

n∈Z f n(U ). One can show that a hyperbolic set � is locally maximal if and
only if for any x, y ∈ � which are sufficiently close to each other, the point [x, y] lies
in � (Katok and Hasselblatt 1995, Sect. 6.4).

Given a locally maximal hyperbolic set and a Hölder continuous potential function,
thermodynamic formalism produces unique equilibriummeasures with strong ergodic
properties: before stating the theorem we recall some notions from ergodic theory for
the reader’s convenience. Let (X, μ) be a Lebesgue space with a probability measure
μ and T : X → X an invertible measurable transformation that preserves μ.
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40 V. Climenhaga, Y. Pesin

(1) The Bernoulli property. Let Y be a finite set and ν a probability measure on Y
(that is, a probability vector). One can associate to (Y, ν) the two-sided Bernoulli
shift σ : YZ → YZ defined by (σ y)n = yn+1, n ∈ Z; this preserves the measure
κ given as the direct product of Z copies of ν. We say that (T, μ) is a Bernoulli
automorphism (or “has the Bernoulli property”) if (T, μ) is metrically isomorphic
to the Bernoulli shift (σ, κ) associated to some Lebesgue space (Y, ν) and we also
say that μ is a Bernoulli measure.1

(2) Decay of correlations. LetH be a class of square-integrable test functions X →
R and define

Corn(h1, h2) :=
∣∣∣∣
∫

h1(T
n(x))h2(x) dμ −

∫
h1(x) dμ

∫
h2(x) dμ

∣∣∣∣ .

We say that (T, μ) has
• exponential decay of correlations (EDC)with respect toH if there is 0 < θ < 1
satisfying: for every h1, h2 ∈ H there is K = K (h1, h2) > 0 such that for
every n > 0

Corn(h1, h2) ≤ K θn;

• polynomial decay of correlations (PDC) with respect to H if there is α > 0
satisfying: for every h1, h2 ∈ H there is K = K (h1, h2) > 0 such that for
every n > 0

Corn(h1, h2) ≤ K nα.

(3) The Central Limit Theorem. Say that a measurable function h is cohomologous
to a constant if there is a measurable function g and a constant c such that h =
g ◦ T − g + c almost everywhere. We say that the transformation T satisfies the
Central Limit Theorem (CLT) for functions in a class H if for any h ∈ H that is
not cohomologous to a constant, there exists γ > 0 such that

μ

{
x : 1√

n

n−1∑
i=0

(
h(T i (x)) −

∫
h dμ

)
< t

}
→ 1

γ
√
2π

∫ t

−∞
e−τ 2/2γ 2

dτ.

Before stating the formal result, we point out that uniformly hyperbolic systems
(and many non-uniformly hyperbolic ones) satisfy various other statistical properties,
which we do not discuss in detail in this survey. These include large deviations prin-
ciples (Orey and Pelikan 1988; Young 1990; Kifer 1990; Pfister and Sullivan 2005;
Melbourne and Nicol 2008; Rey-Bellet and Young 2008; Climenhaga et al. 2013),
Borel–Cantelli lemmas (Chernov and Kleinbock 2001; Dolgopyat 2004; Kim 2007;

1 More generally, one can take (Y, ν) to be a Lebesgue space, so ν is metrically isomorphic to Lebesgue
measure on an interval together with at most countably many atoms. For all the cases we discuss, it suffices
to take Y finite.
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Building Thermodynamics for Non-uniformly Hyperbolic Maps 41

Gouëzel 2007; Gupta et al. 2010; Haydn et al. 2013), the almost sure invariant prin-
ciple (Denker and Philipp 1984; Melbourne and Nicol 2005, 2009), and many more
besides.

Theorem 1.1 Let � be a locally maximal hyperbolic set for f , and assume that f |�
is topologically transitive.2 Then for any Hölder continuous potential ϕ, the following
are true:

(1) Existence: there is an equilibrium measure μϕ .
(2) Uniqueness: μϕ is the only equilibrium measure for ϕ.
(3) Ergodic and statistical properties:

(a) the Bernoulli property: there is A ⊂ � and n > 0 such that the sets f k(A),
0 ≤ k < n are (essentially) disjoint and cover �, f n(A) = A, and ( f n|A, μϕ)

has the Bernoulli property;
(b) exponential decay of correlations: there are A, n as above such that

( f n|A, μϕ) has EDC with respect to the class of Hölder continuous functions.
(c) the Central Limit Theorem: μϕ satisfies the CLT with respect to the class of

Hölder continuous functions.

The proof of Theorem 1.1 uses the fact that f |� can be represented by a subshift of
finite type via aMarkovpartition. Recall that a p× p transitionmatrix3 A determines
a subshift of finite type (SFT) (�A, σ ) as the (left) shift σ(ω)i = ωi+1 on the space
�A of two-sided infinite sequences ω = (ωi ) ∈ {1, . . . , p}Z which are admissible
with respect to A; that is, for which aωi ωi+1 = 1 for all i ∈ Z.

Recall also that a finite partition R = {R1, . . . , Rp} of � is a Markov partition if
the following are true.

(1) The diameter diamR = max1≤i≤p diam Ri is sufficiently small; this guarantees
that R is generating so the coding map π : �A → X introduced below is well-
defined.

(2) Ri = int Ri
4 and for any 1 ≤ i, j ≤ p, i �= j we have that int Ri ∩ int R j = ∅;

this guarantees that the coding map is injective away from the boundaries.
(3) Each set Ri is a rectangle, i.e., for any x, y ∈ Ri we have that z = [x, y] ∈ Ri ;

this is the local product structure (or hyperbolic product structure) of the
partition elements.

(4) The Markov property: for each x ∈ �, if x ∈ Ri and f (x) ∈ R j for some
1 ≤ i, j ≤ p, then

f (V s(x) ∩ Ri ) ⊂ V s( f (x)) ∩ R j ,

f −1(V u( f (x)) ∩ R j ) ⊂ V u(x) ∩ Ri .

The first construction of Markov partitions was obtained by Adler and Weiss (1967,
1970), and independently byBerg (1967), in the particular case of hyperbolic automor-

2 This means that there is a point x ∈ � whose trajectory is everywhere dense, i.e., � = { f n x : n ∈ Z}.
An equivalent definition is that for any two non-empty open sets U and V there is n ∈ Z such that
f n(U ) ∩ V �= ∅.
3 That is, a matrix whose entries ai j are each equal to 0 or 1.
4 Here int Ri means the interior of the set Ri in the relative topology.
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42 V. Climenhaga, Y. Pesin

phisms of the 2-torus. They observed that the map allowed a symbolic representation
by a subshift of finite type and that this can be used to study its ergodic properties. Sinai
realized that existence of Markov partitions is a rather general phenomenon and he
constructed Markov partitions for general Anosov diffeomorphisms, see Sinaı̆ (1968).
Furthermore, in Sinaı̆ (1972) he observed the analogy between the symbolic mod-
els of Anosov diffeomorphisms and lattice gas models in physics—the starting point
in developing the thermodynamic formalism. Finally, in the more general setting of
locallymaximal hyperbolic setsMarkov partitionswere constructed byBowen (1970).

Markov partitions allow one to obtain a symbolic representation of the map f |�
by subshifts of finite type. More precisely, let R = {R1, . . . , Rp} be a finite Markov
partition of �. Consider the subshift of finite type (�A, σ ) with the transition matrix
A whose entries are given by ai j = 1 if f (int Ri )∩ int R j �= ∅ and ai j = 0 otherwise.
One can show that for every ω = (ωi ) ∈ �A the intersection

⋂
i∈Z f −i (Rωi ) is not

empty and consists of a single point π(ω). This defines the coding map π : �A → �,
which is characterized by the fact that f i (π(ω)) ∈ Rωi for all i ∈ Z (thus ω “codes”
the orbit of π(ω)).

Proposition 1.2 The map π has the following properties:

(1) π is Hölder continuous;
(2) π is a conjugacy between the shift σ and the map f |�, i.e., ( f |�) ◦ π = π ◦ σ ;
(3) π is one-to-one on the set �′ ⊂ � which consists of points ω for which the

trajectory of the point π(ω) never hits the boundary of the Markov partition.

Consider a Hölder continuous potential ϕ on �. By Proposition 1.2, the function ϕ̃ on
�A given by ϕ̃(ω) = ϕ(π(ω)) is Hölder continuous. Thus in order to prove Theorem
1.1 it suffices to study thermodynamic formalism for Hölder continuous potentials
for SFTs. The starting point for this theory is the following result of Parry (1964),
which uses Perron–Frobenius theory to deal with the case ϕ = 0. The corresponding
equilibrium measure is the measure of maximal entropy (MME) for which hμ( f ) =
htop( f ).

Theorem 1.3 Let A be a transition matrix such that An > 0 for some n ∈ N, and let
�A be the corresponding SFT.

(1) The topological entropy of �A is log λ, where λ > 1 is the maximal eigenvalue
of A guaranteed by the Perron–Frobenius theorem.

(2) Let v be a positive right eigenvector for (A, λ) (so Av = λv); then the matrix P
given by Pi j = Ai j

v j
λvi

is stochastic (its rows are probability vectors), so it defines
transition probabilities for a Markov chain.

(3) Let h be a positive left eigenvector for (A, λ), normalized so that πi = hivi defines
a probability vector π . Then π is the unique probability vector with π P = π ,
and the unique MME for �A is the Markov measure defined by

μ[ω1 · · · ωn] = πω1 Pω1ω2 · · · Pωn−1ωn .

Theorem 1.3 was adapted to non-zero potentials by Ruelle (1968, 1976), replacing the
transition matrix with a transfer operator. Ruelle’s version of the Perron–Frobenius
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P (t)

t
1

htop(f)

t0

(a)

P (t)

t

(b)

1

htop(f)

P (t)

t

(c)

1

htop(f)

Fig. 1 The pressure function for a typical hyperbolic sets; b a hyperbolic attractor; c a non-uniformly
hyperbolic map with a phase transition

theorem for this transfer operator is at the heart of the classical results in thermody-
namic formalism for SFTs, and hence, for uniformly hyperbolic systems. Roughly
speaking the idea is the following.

(1) Replace the two-sided SFT �A with its one-sided version �+
A , and define the

transfer operator associated to ϕ on C(�+
A ) by5

(Lϕ f )(x) =
∑
σ y=x

eϕ(y) f (y).

(2) Show that Lϕ has a largest eigenvalue λ and that the rest of the spectrum lies
inside a disc with radius <λ (the spectral gap property).

(3) Instead of the left and right eigenvalues h and v, find a positive eigenfunction
h ∈ C(�+

A ) for Lϕ , and an eigenmeasure ν ∈ M(�+
A ) for the dual L∗

ϕ .
(4) Obtain the unique equilibrium state as dμ = h dν.

We stress that this result (and hence Theorem 1.1) may not hold if the the potential
function fails to be Hölder continuous, see Hofbauer (1977), Sarig (2001a), Pesin and
Zhang (2006).

1.2.2 Thermodynamic Formalism for the Geometric t-Potential

Returning from SFTs to the setting of uniformly hyperbolic smooth systems, the
most significant potential function is the geometric t-potential: a family of potential
functions ϕt (x) := −t log |Jac(d f |Eu(x))| for t ∈ R. Since the subspaces Eu(x)

depend Hölder continuously on x , the potential ϕt is Hölder continuous for each
t whenever f is C1+α; in particular, it admits a unique equilibrium measure μt .
Furthermore, the pressure function P(t) := P(ϕt ) is well defined for all t , is convex,
decreasing, and real analytic in t , as in Fig. 1a.

There are certain values of t that are particularly important.

• When t = 0, we obtain the topological entropy htop( f ) as P(0), and the unique
MME as μ0.

5 It is instructive to consider the case ϕ = 0 and write down the action of L0 on the (finite-dimensional)
space of functions constant on 1-cylinders, where the action is given by the (transpose of the) transition
matrix A.
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44 V. Climenhaga, Y. Pesin

• Since P is strictly decreasing and has P(0) > 0 and P(t) → −∞ as t → ∞,
there is a unique number t0 > 0 for which P(t0) = 0. The equation P(t) = 0 is
called Bowen’s equation. In the two-dimensional case its root is the Hausdorff
dimension of�∩V u(x)6 and the equilibriummeasureμt0 achieves this Hausdorff
dimension (i.e., is the measure of maximal dimension) (Bowen 1979; Ruelle 1982;
McCluskey and Manning 1983).

To further study the properties of the pressure function (and t0 in particular) we
recall the notion of the Lyapunov exponent. Given x ∈ � and v ∈ Tx M , define the
Lyapunov exponent

χ(x, v) = lim sup
n→∞

1

n
log ‖d f nv‖.

For every x ∈ � the function χ(x, ·) takes on finitely many values χ1(x) ≤ · · · ≤
χd(x) where d = dim M . The functions χi (x) are Borel and are invariant under
f ; in particular, if μ is an ergodic measure, then χi (x) = χi (μ) is constant almost
everywhere for each i = 1, . . . , d, and the numbers χi (μ) are called the Lyapunov
exponent of the measure μ. If none of these numbers is equal to zero, μ is called
a hyperbolic measure;7 note that when � is a hyperbolic set for f , every invariant
measure supported on � is hyperbolic. The Margulis–Ruelle inequality (see Ruelle
1979; Barreira and Pesin 2013) says that

hμ( f ) ≤
∑

i :χi (μ)≥0

χi (μ) (1.3)

and in particular implies that t0 ≤ 1, since the sum in (1.3) is equal to − ∫
ϕ1 dμ, and

hence hμ( f ) + ∫
ϕ1 dμ ≤ 0 for every ergodic μ.

1.2.3 Hyperbolic Attractors

We consider the particular case when � is a topological attractor for f . This means
that there is a neighborhood U ⊃ � such that f (U ) ⊂ U and � = ⋂

n≥0 f n(U ).
It is not difficult to see that for every x ∈ �, the local unstable manifold V u(x) is
contained in�;8 the same is true for the global unstablemanifold through x . Therefore,
the attractor contains all the global unstable manifolds of its points. On the other hand
the intersection of � with stable manifolds of its points is usually a Cantor set.

In the case when � is a hyperbolic attractor we have that t0 = 1 (see Bowen 2008),
so P(t) is as in Fig. 1b. The equilibrium state μ1 is a hyperbolic ergodic measure
for which the Margulis–Ruelle inequality (1.3) becomes equality. By Ledrappier and
Young (1985), this implies that μ1 has absolutely continuous conditional measures
along unstable manifolds; that is, there is a collection R of local unstable manifolds
V u and a measure η onR such that μ1 can be written as

6 The value of the Hausdorff dimension does not depend on x .
7 It is assumed that some of these numbers are positive while others are negative.
8 Indeed, for any y ∈ V u(x) the trajectory of y, { f n(y)}n∈Z lies in U and hence, must belong to � since
it is locally maximal.
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Building Thermodynamics for Non-uniformly Hyperbolic Maps 45

μ1(E) =
∫
R

μV u (E) dη(V u) (1.4)

where the measures μV u are absolutely continuous with respect to the leaf volumes
mV u . A hyperbolic measure μ satisfying (1.4) is said to be a Sinai–Ruelle–Bowen
(SRB)measure, and it can be shown that suchmeasures are physical: the set of generic
points

Gμ :=
{

x ∈ M | 1
n

n−1∑
k=0

ϕ( f k(x)) →
∫

ϕ dμ for all continuous ϕ : M → R

}

has positive volume, and soμ is the appropriate invariant measure for studying “phys-
ically relevant” trajectories. The discussion above shows that when � is a hyperbolic
attractor, SRBmeasures are precisely the equilibrium states for the geometric potential
ϕ1.

1.3 Non-uniformly Hyperbolic Maps

1.3.1 Definition of Non-uniform Hyperbolicity

A C1+α diffeomorphism f of a compact smooth Riemannian manifold M is non-
uniformly hyperbolic on an invariant Borel subset S ⊂ M if there are a measurable
d f -invariant decomposition of the tangent space Tx M = Es(x) ⊕ Eu(x) for every
x ∈ S and measurable f -invariant functions ε(x) > 0 and 0 < λ(x) < 1 such that
for every 0 < ε ≤ ε(x) one can find measurable functions c(x) > 0 and k(x) > 0
satisfying for every x ∈ S:

(1) ‖d f nv‖ ≤ c(x)λ(x)n‖v‖ for v ∈ Es(x), n ≥ 0;
(2) ‖d f −nv‖ ≤ c(x)λ(x)n‖v‖ for v ∈ Eu(x), n ≥ 0;
(3) � (Es(x), Eu(x)) ≥ k(x);
(4) c( f m(x)) ≤ eε|m|c(x), k( f m(x)) ≥ e−ε|m|k(x), m ∈ Z.

The last property means that the estimates in (1) and (2) can deteriorate but with
sub-exponential rate.

Ifμ is an invariant measure for f withμ(S) = 1, then by theMultiplicative Ergodic
theorem, if for almost every x ∈ S the Lyapunov exponents at x are all nonzero, i.e.,
μ is a hyperbolic measure, then f is non-uniformly hyperbolic on S.

1.3.2 Possibility of Phase Transitions and Non-hyperbolic Behavior

A general theory of thermodynamic formalism for non-uniformly hyperbolic maps
is far from being complete, although certain examples here are well-understood.
They include one-dimensional maps, where the pressure function P(t) = P(ϕt )

associated with the family of geometric potentials may behave as in the uniformly
hyperbolic case, or may exhibit new phenomena such as phase transitions (points of
non-differentiability where there is more than one equilibrium measure). The latter
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46 V. Climenhaga, Y. Pesin

is illustrated in Fig. 1c and is most thoroughly studied for the Manneville–Pomeau
map x �→ x + x1+α (mod 1), where α ∈ (0, 1) controls the degree of intermittency
at the neutral fixed point. In this example one has the following behavior (Pianigiani
1980; Thaler 1980, 1983; Lopes 1993; Pollicott and Weiss 1999; Liverani et al. 1999;
Young 1999; Sarig 2002; Hu 2004).

• Hyperbolic behavior for t < 1: the pressure function P(t) is real analytic and
decreasing on (−∞, 1), and for every t in this range, the geometric t-potential ϕt

has a unique equilibrium measure μt , which is Bernoulli, has EDC, and satisfies
the CLT with respect to the class of Hölder continuous potentials. In a nutshell, for
t ∈ (−∞, 1), the thermodynamics of this system is just as in the case of uniform
hyperbolicity.

• Phase transition at t = 1: the pressure function P(t) is non-differentiable at
t = 1, and ϕ1 has two ergodic equilibriummeasures. One of these is the absolutely
continuous invariant probability measure μ1 (which plays the role of SRB
measure), and the other is the point mass δ0 on the neutral fixed point.9 The
measure μ1 is Bernoulli and decay of correlations is polynomial (in particular,
subexponential).

• Non-hyperbolic behavior for t > 1: for every t ∈ (1,∞), the unique equilibrium
state for ϕt is the point mass δ0, which has zero entropy and zero Lyapunov
exponent.

Similar results for the geometric t-potential are available for other classes of
one-dimensional maps (e.g., unimodal and multimodal maps) and rather specific
higher-dimensional examples (e.g., polynomial and rational maps and (piecewise)
non-uniformly expanding maps); in some of these examples phase transitions occur
while others are without phase transitions. As a small sample of the recent literature
on the topic, we mention only (Bruin and Keller 1998; Makarov and Smirnov 2000;
Oliveira 2003; Alves et al. 2005; Przytycki and Rivera-Letelier 2007; Pesin and Senti
2008; Bruin and Todd 2008, 2009; Dobbs 2009; Iommi and Todd 2010; Przytycki and
Rivera-Letelier 2011; Li and Rivera-Letelier 2014a, b), as well as the comprehensive
and far-reaching discussion of thermodynamics for interval maps with critical points
in Dobbs and Todd (2015).

Our goal in the rest of this paper is not to discuss these results, which rely on the
specific structure of the examples being studied (or on the absence of a contracting
direction); rather, we want to discuss the recently developed techniques for studying
multi-dimensional non-uniformly hyperbolic systems, with particular emphasis on
recent results that have the potential to be applied very generally, although they do not
yet give as complete a picture as the one outlined above. These general results have
been obtained in the last few years and represent an actively evolving area of research.

9 For α ∈ (0, 1) the measureμ1 is finite but for α ≥ 1, a new phenomenon occurs: the intermittent behavior
becomes strong enough that while there is still an absolutely continuous invariant measure, it is infinite.
At the same time, the pressure function for α ≥ 1 becomes differentiable at t = 1, and the measure δ0
becomes the unique equilibrium measure.
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1.3.3 Different Types of Equilibrium Measures

Before describing the generalmethods,we recall somebasic notions fromnon-uniform
hyperbolicity; see Barreira and Pesin (2007) for more complete definitions and proper-
ties. Let M be a compact smooth manifold and f : M → M a C1+α diffeomorphism.
Recall that a point x ∈ M is called Lyapunov–Perron regular if for any basis
{v1, . . . , vp} of Tx M ,

lim inf
n→±∞

1

n
log V (n) = lim sup

n→±∞
1

n
log V (n) =

p∑
i=1

χi (x, vi ),

where V (n) is the volume of the parallelepiped built on the vectors {d f nv1, . . . ,

d f nvp}.
LetR be the set of all Lyapunov–Perron regular points. The Multiplicative Ergodic

theorem claims that this set has full measure with respect to any invariant measure.
Consider now the set � ⊂ R of points for which all Lyapunov exponents are nonzero,
and letMe( f, �) ⊂ Me( f ) be the set of all ergodic measures that give full weight to
the set�; these are hyperbolic measures and they form the class of measures where it is
reasonable to attempt to recover some of the theory of uniformly hyperbolic systems.

Let ϕ be a measurable potential function; note that we cannot a priori assume more
than measurability if we wish to include the family of geometric potentials, since
in general the unstable subspace varies discontinuously and so ϕt is not a continu-
ous function.10 Consider the hyperbolic pressure defined by using only hyperbolic
measures:

P�(ϕ) := − inf
μ∈Me( f,�)

Eμ(ϕ). (1.5)

Say that μϕ is a hyperbolic equilibrium measure if −Eμϕ (ϕ) = P�(ϕ). For the
Manneville–Pomeau example above, we have P�(ϕt ) = P(ϕt ) for every t ∈ R, and
the equilibrium measure μt is the unique hyperbolic equilibrium measure for every
t ≤ 1,11 while for t > 1 there is no hyperbolic equilibrium measure, since δ0 has zero
Lyapunov exponent.

One could also fix a threshold h > 0 and consider the set Me( f, �, h) of all
measures inMe( f, �) whose entropies are greater than h; restricting our attention to
measures from this class gives the restricted pressure12

10 On the other hand, for surface diffeomorphisms Sarig (2013) constructed Markov partitions with count-
ably many partition elements (see Sect. 3 below), and showed Sarig (2011) that the function ϕt can be lifted
to a function on the symbolic space that is globally well-defined and is Hölder continuous. This can be used
to study equilibrium measures for this function.
11 Note that for t = 1 it is no longer the unique equilibrium measure, but it is the only hyperbolic one.
12 Because Me( f, �, h) is not compact, the existence of an optimizing measure in (1.6) becomes a more
subtle issue. Although it may happen that the value of Ph

� (ϕ) is achieved by a measure μ whose entropy
may not be greater than h, the restriction to measures in the class Me( f, �, h) is often made to ensure a
certain “liftability” condition, which may still be satisfied by μ; see Theorem 2.3 and the discussion in that
section.

123



48 V. Climenhaga, Y. Pesin

Ph
� (ϕ) := − inf

μ∈Me( f,�,h)
Eμ(ϕ). (1.6)

For the Manneville–Pomeau example, we have for every t ∈ R,13

lim
h→0

Ph
� (ϕt ) = P�(ϕt ) = P(ϕt ).

In addition to the use of μh
t to approximate non-hyperbolic measures by hyperbolic

ones, the above approach is also useful when one can identify a (not necessarily
invariant) subset A ⊂ X of “bad” points away from which the dynamics exhibits
good hyperbolic behavior; then putting h > htop( f,A) guarantees that we consider
only measures to whichA is invisible.14 This concept originated in the work of Buzzi
on piecewise invertible continuous maps of compact metric spaces Buzzi (1999),15

but it is reasonable to consider it in other situations.16

One could also impose a threshold in other ways. For example, one could fix a
reference potential ψ and a threshold p < P(ψ), then restrict attention to the set
Me( f, �,ψ, p) of all measures in Me( f, �) for which −Eμ(ψ) > p. Optimizing
Eμ(ϕ) over this restricted set of measures gives another notion of thresholded equi-
librium states that may be useful; again, it is often natural to take p = PS(ϕ) as the
topological pressure of f on a (not necessarily invariant) subset S ⊂ M of bad points.
Another approach would be to consider only measures whose Lyapunov exponents
are sufficiently large; it may be that this is a more natural approach in certain settings.
We stress that while restricting the class of invariant measures using thresholds for the
topological pressure or Lyapunov exponents seem to be natural it is yet to be shown
to be a working tool in effecting thermodynamic formalism.

1.3.4 Outline of the Paper

Adirect application of the uniformly hyperbolic approach in the non-uniformly hyper-
bolic setting is hopeless in general;we cannot expect to havefiniteMarkov partitions.17

13 This is reminiscent of the use of Katok horseshoes to approximate (with respect to entropy) an arbitrary
system with a uniformly hyperbolic one Katok (1980), which was recently generalized to pressure by
Sánchez-Salas (2015).
14 Note that sinceA is not assumed to be invariant, one should use the definition of the topological entropy
based on the Carathéodory construction of dimension-like characteristics for dynamical systems (Bowen
1973; Pesin 1997).
15 An important goal there was to study the notion of h-isomorphism, which asks for two systems to have
(measure-theoretically) conjugate subsystems that carry all ergodic measures with large enough entropy,
even if the whole systems are not conjugate.
16 For example, if the set A is an elliptic island and the potential function is sufficiently large on A, then
the equilibrium measure may be a zero entropy measure sitting outside the set with non-zero Lyapunov
exponents. Putting any positive threshold removes this measure from consideration.
17 Indeed, if amap possesses aMarkov partition, then its topological entropy is the logarithm of an algebraic
number, which should certainly not be expected in general. On the other hand, in the presence of a hyperbolic
invariant measure μ of positive entropy, there are horseshoes with finite Markov partitions whose entropy
approximates the entropy of μ Katok (1980), but these have zero μ-measure.
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However, in many cases it is possible to use the symbolic approach by finding a count-
able Markov partition, or the related tools of a Young tower or a more general
inducing scheme; these are discussed in Sects. 2–4. This approach is challenging
to apply completely, but can help establish existence and uniqueness of equilibrium
measures and study their statistical properties including decay of correlations and the
CLT.

A second approach is to avoid the issue of building a Markov partition by adapt-
ing Bowen’s specification property to the non-uniformly hyperbolic setting; this is
discussed in Sect. 5. This is similar to the symbolic approach in that one uses a “coarse-
graining” of the system tomake counting arguments borrowed from statistical physics,
but sidesteps the issue of producing a Markov structure. The price paid for this added
flexibility is that while existence and uniqueness can be obtained with specification-
based techniques, there does not seem to be a direct way to obtain strong statistical
properties without first establishing some sort of Markov structure.

A third approach, which we discuss in Sect. 6, is geometric and is based on pushing
forward the leaf volume on unstable manifolds by the dynamics. More generally, one
can work with approximations to unstable manifolds by admissiblemanifolds and use
measures which have positive densities with respect to the leaf volume as reference
measures. Such pairs of admissible manifolds and densities are called standard and
working with them has proven to be quite a useful technique in various problems
in dynamics.18 So far the geometric approach can be used to establish existence of
SRBmeasures for uniformly hyperbolic and some non-uniformly hyperbolic attractors
and one can also use a version of this method to construct equilibrium measures for
uniformly hyperbolic sets, see Sect. 6; the questions of uniqueness and statistical
properties using this approach as well as construction of equilibrium measures for
non-uniformly hyperbolic systems are still open.

In the remainder of this paper we describe the three approaches just listed in more
detail, and discuss their application to open problems in the thermodynamics of non-
uniformly hyperbolic systems.

2 Markov Models for Non-uniformly Hyperbolic Maps I: Young
Diffeomorphisms

2.1 Earlier Results: One-dimensional and Rational Maps

In one form or another, the use of Markov models with countably many states to
study non-uniformly hyperbolic systems dates back to the late 1970s and early 1980s,
when Hofbauer (1979, 1981a, b) used a countable-state Markov model to study
equilibrium states for piecewise monotonic interval maps. Indeed, such models for
β-transformations were studied already in 1973 by Takahashi (1973).

In Jakobson (1981) Jakobson initiated the study of thermodynamics of unimodal
interval maps by constructing absolutely continuous invariant measures (acim) for
the family of quadratic maps fa(x) = 1 − ax2 whenever a ∈ �, where � is a set of

18 This notion was introduced by Chernov and Dolgopyat (2009).
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parameterswith positiveLebesguemeasure. Firstwe discuss in Sect. 2.2 the extensions
of Jakobson’s result to study SRB measures by what have become known as Young
towers. Then in Sect. 3 we discuss the study of general equilibrium states in the setting
of topological Markov chains with countably many states, which generalizes the SFT
theory from Sect. 1.2. Finally, in Sect. 4 we discuss the use of inducing schemes to
apply this theory to the thermodynamics of smooth examples.

2.2 Young Towers and Gibbs–Markov–Young Structures

2.2.1 Tower Constructions in Dynamical Systems

Roughly speaking, a tower construction begins with a base set �, a map G : � → �,
and a height function R : � → N. Then the tower is constructed as �̃ := {(z, n) ∈
�×{0, 1, 2, . . . } : n < R(z)}, and amap g : �̃ → �̃ is defined by g(z, n) = (z, n+1)
whenever n + 1 < R(z), and g(z, R(z) − 1) = (F(z), 0). Typically one requires that
the dynamics of the return map G can be coded by a full shift, or a Markov shift on a
countable set of states. To study a dynamical system f : X → X using a tower, one
defines a coding map π : �̃ → X such that f ◦ π = π ◦ g; this coding map is usually
not surjective (the tower does not cover the entire space), and so we will ultimately
need to give some “largeness” condition on the tower. It is important to distinguish
between the case when π(�) is disjoint from π(�̃\�), so that the height R is the first
return time to the base π(�), and the case when R is not the first return time.

Tower constructions for which the height of the tower is the first return time to
the base of the tower are classical objects in ergodic theory and were considered in
works of Kakutani, Rokhlin, and others. Towers for which the height of the tower is
not the first return time appeared in the paper by Neveu (1969) under the name of
temps d’arret and in the context of dynamical systems in the paper by Schweiger
(1975, 1979) under the name jump transformation (which are associated with some
fibered systems; see also the paper by Aaronson et al. 1993 for some general results
on ergodic properties of Markov fibered systems and jump transformations).

A tower construction is implicitly present in Jakobson’s proof of existence of physi-
cal measures for quadraticmaps. The first significant use of the tower approach beyond
the one-dimensional setting came in the study of the Hénon map

fa,b(x, y) = (1 − ax2 + y, bx), (2.1)

which for b ≈ 0 can be viewed as a two-dimensional extension of a unimodalmapwith
parameter a. Building on their alternate proof of Jakobson’s theorem in Benedicks and
Carleson (1985), Benedicks and Carleson showed in (1991) that when b is sufficiently
close to 0, there is a set �b ⊂ R of positive Lebesgue measure such that fa,b has a
topologically transitive attractor for every a ∈ �b. Soon afterwards, Benedicks and
Young established existence of an SRB measure for these examples (Benedicks and
Young 1993); their approach also gives exponential decay of correlations and the CLT
(Benedicks and Young 1995).
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The general structure behind these results was developed in Young (1998) and has
come to be known as a Young tower,19 or a Gibbs–Markov–Young structure. The
principal feature of a Young tower is that the induced map on the base of the tower is
conjugate to the full shift on the space of two-sided sequences over countable alphabet.
This allows one to use some recent results on thermodynamics of this symbolic map
to establish existence and uniqueness of equilibrium measures for the original map
and study their ergodic properties.

2.2.2 Young Diffeomorphisms

A C1+α diffeomorphism f of a compact smooth manifold M is called Young diffeo-
morphism if it admits a Young tower. This tower has a particular structure which is
characterized as follows:

• The base � of the tower has hyperbolic product structure which is generated
by continuous families Vu = {V u} and Vs = {V s} of local unstable and stable
manifolds.

• The inducedmaphas theMarkovproperty, is uniformlyhyperbolic andhas uniform
bounded distortion.

• The intersection of at least one unstable manifold with the base of the tower has
positive leaf volume20 and the integral of the height of the tower against leaf
volume is finite.

In particular, the tower codes a positive volume part of the system (but not necessarily
all trajectories) by a countable state Markov shift.

A formal description of the Young tower is as follows. There are two continuous
families Vu = {V u} and Vs = {V s} of local unstable and stable manifolds, respec-
tively, with the property that each V s meets each V u transversely in a single point and
� = (

⋃
V u)∩ (

⋃
V s); a union of some of the manifolds V u is called a u-set, a union

of some of the manifolds V s is called an s-set. One asks for � to have the following
properties; here C, η > 0 and β ∈ (0, 1) are constants.

(P1) Positive measure: each V u ∩ � has positive leaf volume mV u .
(P2)Markov structure: there are (countably many) pairwise disjoint s-sets�s

i ⊂
� and numbers Ri ∈ N such that
• �\⋃

i �s
i is mV u -null for all V u ;

• �u
i = f Ri (�s

i ) is a u-set in �;
• for every x ∈ �s

i ,

f Ri (V s(x)) ⊂ V s( f Ri (x)),

f Ri (V u(x)) ⊃ V u( f Ri (x)),

f −Ri (V s( f Ri (x)) ∩ �u
i ) = V s(x) ∩ �,

19 It is worth mentioning that a major achievement of Young (1998) was to establish exponential decay
of correlations for billiards with convex scatterers, which is an example of a uniformly hyperbolic system
with discontinuities; we will not discuss such examples further in this paper.
20 It follows that every local unstable manifold intersects the base in a set of positive leaf volume.
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f Ri (V u(x) ∩ �s
i ) = V u( f Ri (x)) ∩ �;

(P3) Defining the recurrence (induced) time R : ⋃
i �s

i → � by R|�s
i = Ri

and the induced map F(x) = f R(x)(x), we have that for all n ≥ 1
• Forward contraction on V s : if x, y are in the same leaf V s , then

d(Fn x, Fn y) ≤ Cβnd(x, y).
• Backward contraction on V u : if x, y are in the same leaf V u and the same

s-set �s
i , then d(F−n x, F−n y) ≤ Cβnd(Fx, Fy).

• Bounded distortion: if x, y are in the same leaf V u and the same s-set �s
i

then

log
| det d Fu(x)|
| det d Fu(y)| ≤ Cd(Fx, Fy)η.

Our description of Young tower follows Pesin et al. (2016b) and differs from the
original description in Young (1998). Most importantly, we do not require that the
map f contracts distances along local stable manifolds uniformly with an exponential
rate and neither does the inverse map f −1 along local unstable manifolds but that
this requirement holds with respect to the induced map F (see (P3)). We stress that
in constructing SRB and equilibrium measures on Young towers and studying their
ergodic properties these extra requirements on the maps f and f −1 are not needed
and that there are examples in which the map f contracts distances along local stable
manifolds uniformly with a polynomial rate, see Sect. 2.3.2.

2.2.3 SRB Measures for Young Diffeomorphisms

Once a tower structure has been found, the strength of the conclusions one can draw
depends on the rate of decay of the tail of the tower; that is, the speed with which
mV u {x ∈ V u | R(x) > T } → 0 as T → ∞ for V u ∈ Vu . We say that with respect to
the measure mV u the tower has

• integrable tails if

∫
R dmV u < ∞;

• exponential tails if for some C, a > 0 and T ≥ 1,

mV u {x | R(x) > T } < Ce−aT ; (2.2)

• polynomial tails if for some C, a > 0 and T ≥ 1,

mV u {x | R(x) > T } < CT −an .

Theorem 2.1 (Young 1998) Let f be a C1+α diffeomorphism of a compact manifold
M admitting a Young tower. Assume that
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(1) there is local unstable manifold V u such that

mV u

⎛
⎝⋃

i≥1

�̄i\�i

⎞
⎠ = 0; (2.3)

(2) the tower has integrable tails.

Then f has an SRB measure μ.

To describe ergodic properties of the SRB measure one needs an extra condition. We
say that the tower satisfies the arithmetic condition if the greatest common denomi-
nator of of the set of integers {Ri } is one.21
Theorem 2.2 (Young 1998) Let f be a C1+α diffeomorphism of a compact manifold
M admitting a Young tower. Assume that the tower satisfies (2.3), the arithmetic con-
dition and has exponential (respectively, polynomial) tails. Then ( f, μ) is Bernoulli,
has exponential (respectively, polynomial) decay of correlations and satisfies the CLT
with respect to the class of functions which are Hölder continuous on �.

Note that even without the arithmetic condition one still obtains the “exponential
decay up to a period” result stated earlier in Theorem 1.1 (1.1).

In Young (1999), Young gave an extension of the results from Young (1998)
that applies in a more abstract setting, giving existence of an invariant measure that
is absolutely continuous with respect to some reference measure (not necessarily
Lebesgue). She also provided a condition on the height of the tower that guarantees a
polynomial upper bound for the decay of correlations. The corresponding polynomial
lower bound (showing that Young’s bound is optimal) was obtained by Sarig (2002)
and Gouëzel (2004).

The flexibility in the reference measure makes Young’s result suitable for studying
existence, uniqueness and ergodic properties of equilibrium measures other than SRB
measures (although this was not done in Young 1999). In particular, this is used in the
proof of Statement 2 of Theorem 2.3 below; we discuss such questions more in Sects.
3, 4.

Just as the Hénon maps can be studied as a “small” two-dimensional extension of
the unimodal maps, Theorems 2.1 and 2.2 can be applied to more general ‘strongly
dissipative’ maps that are obtained as ‘small’ two-dimensional extensions of one-
dimensional maps; this is carried out in Wang and Young (2001, 2008).

Aside from such strongly dissipativemaps, Young towers have been constructed for
some partially hyperbolic maps where the center direction is non-uniformly contract-
ing (Castro 2004) or expanding (Alves and Pinheiro 2010; Alves and Li 2015); the
latter papers are built on earlier results for non-uniformly expanding maps where one
does not need to worry about the stable direction (Alves et al. 2005; Gouëzel 2006). In
both cases existence (and uniqueness) of an SRBmeasurewas proved first (Bonatti and
Viana 2000; Alves et al. 2000) via other methods closer to the push-forward geometric

21 The tower �̃ admits a natural countable Markov partition (see Young 1998) and the arithmetic condition
is equivalent to the requirement that the corresponding Markov shift is topologically mixing.
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approach that we discuss in Sect. 6, so the achievement of the tower construction was
to establish exponential decay of correlations and the CLT. These results only cover
the SRB measure and do not consider more general equilibrium states.

2.2.4 Thermodynamics of Young Diffeomorphisms for the Geometric t-Potential

Let f be a C1+α Young diffeomorphism of a compact smooth manifold M . Consider
the set � with hyperbolic product structure. Let �s

i be the collections of s-sets and Ri

the corresponding inducing times. Set

Y =
⋃
k≥0

f k(�).

This is a forward invariant set for f . For every y ∈ Y the tangent space at y admits an
invariant splitting Ty M = Es(y) ⊕ Eu(y) into stable and unstable subspaces. Thus
we can consider the geometric t-potential ϕt (y) which is well defined for y ∈ Y and
is a Borel (but not necessarily continuous) function for every t ∈ R. We consider the
class M( f, Y ) of all invariant measures μ supported on Y , i.e., for which μ(Y ) = 1.
It follows that μ(�) > 0, so that μ ‘charges’ the base of the Young tower. Further,
given a number h > 0, we denote by M( f, Y, h) the class of invariant measures
μ ∈ M( f, Y ) for which hμ( f ) > h.

The following result describes existence, uniqueness, and ergodic properties of
equilibrium measures. Given n > 0, denote by

Sn := Card{�s
i : Ri = n}.

Theorem 2.3 (see Pesin et al. 2016b; Melbourne and Terhesiu 2014) Assume that the
Young tower satisfies:

(1) for all large n

Sn ≤ ehn, (2.4)

where 0 < h < hμ1( f ) is a constant and μ1 is the SRB measure for f ;
(2) the set

⋃
i≥1(�̄i\�i ) supports no invariant measure that gives positive weight to

any open set.22

Then there is t0 < 0 such that for t0 ≤ t < 1 there exists a measure μt which is a
unique equilibrium measure for ϕt among all liftablemeasures (see the remark below).
If in addition, the tower satisfies the arithmetic condition,23 then ( f, μt ) is Bernoulli,
has exponential decay of correlations and satisfies the CLT with respect to a class of
potential functions which contains all Hölder continuous functions on Y .

22 This condition is stronger than the corresponding condition (2.3).
23 This requirement should be added to Theorem 4.5, Statement 2 of Theorem 4.7 and Statement 3 of
Theorem 7.1 in Pesin et al. (2016b).
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Remark 1. The requirement (2.4) means that the number of s-sets in the base of the
tower can grow exponentially but with rate slower than the metric entropy of the
SRB measure. This is a strong requirement on the Young tower, but it is known to
hold in some examples, see Sect. 2.3 below.

2. For t = 1, the SRB measure μ1 may not have exponential decay of correlations;
this is the case for the Manneville–Pomeau map where the decay is polynomial.
See Sect. 1.3.2 and also Sect. 2.3 for more details.

3. We stress that the measures μt are equilibrium measures within the class of mea-
sures that can be lifted to the tower: recall that an invariant measure μ supported
on Y is called liftable if there is a measure ν supported on � and invariant under
the induced map F such that the number

Qν =
∫

�

R dν (2.5)

is finite, and for any measurable set E ⊂ Y ,

μ(E) = L(ν)(E) := 1

Qν

∑
i≥0

Ri −1∑
k=0

ν( f −k(E) ∩ �s
i ). (2.6)

In particular,μt = L(νt ) for somemeasure νt which is an equilibrium (and indeed,
Gibbs) measure for the induced map F .
Under the condition 2.4 every measure with entropy >h is liftable. In general, it is
shown in Zweimüller (2005) that if R ∈ L1(Y, μ) then μ is liftable. In particular,
if the return time R is the first return time to the base of the tower, then every
measure that charges the base of the tower is liftable.

4. The proof of exponential decay of correlations and the CLT is based on showing
the exponential tails property of the measure νt

24 (see Pesin et al. 2016b, Theorem
4.5) and then applying results from Melbourne and Terhesiu (2014).25

5. For a C1+α diffeomorphism f there may exist several Young towers with bases
�k , k = 1, . . . , m, such that the corresponding sets Yk are disjoint. For each k,
Theorem 2.3 gives a number t0k < 0 and for every t0k < t < 1 the equilibrium
measureμtk for the geometric potential ϕt . This measure is unique within the class
of measures μ for which μ(Yk) = 1 and hμ( f ) > h where 0 < h < hμ1( f ).26

Setting t0 = max1≤k≤m t0k , for every t0 < t < 1 we obtain the measure μt such
thatμt |Yk = μtk . If for every measureμwith hμ( f ) > h, we have thatμ(Yk) > 0
for some 1 ≤ k ≤ m, then the measure μt is the unique equilibrium measure for
ϕt within the class of invariant measures with large entropy. This is the case in the
two examples described in Sect. 2.3.

24 See (2.2) where one should replace the leaf volume with the measure νt .
25 In Melbourne and Terhesiu (2014) the authors considered only expanding maps and Young towers with
polynomial tails, however, their results can easily be extended to invertible maps and Young towers with
exponential tails.
26 Note that both h and hμ1 ( f ) do not depend on k.
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6. It is known that t = 1 can be a phase transition, that is the pressure function P(t)
is not differentiable and there are more than one equilibrium measures for ϕ1.
However, it is not known whether phase transitions can occur for t < t0.

7. Theorem 2.3 is a corollary of a more general result establishing thermodynamics
for maps admitting inducing schemes of hyperbolic type, see Theorem 4.1.

2.3 Examples of Young Diffeomorphisms

We describe two examples of Young diffeomorphisms for which Theorem 2.3 applies.

2.3.1 A Hénon-like Diffeomorphism at the First Bifurcation

The first example is Hénon-like diffeomorphisms of the plane at the first bifurcation
parameter. For parameters a, b consider the Hénonmap fa,b given by (2.1). It is shown
in Bedford and Smillie (2004), Bedford et al. (2006), Cao et al. (2008) that for each
0 < b � 1 there exists a uniquely defined parameter a∗ = a∗(b) such that the
non-wandering set for fa,b is a uniformly hyperbolic horseshoe for a > a∗ and the
parameter a∗ is the first parameter value for which a homoclinic tangency between
certain stable and unstable manifolds appears.

Theorem 2.4 (Senti and Takahasi 2013, 2016, Theorem A) For any bounded open
interval I ⊂ (−1,+∞) there exists 0 < b0 � 1 such that if 0 ≤ b < b0 then

(1) the map fa∗(b),b is a Young diffeomorphism;
(2) there exists a unique equilibrium measure for the geometric t-potential and for

all t ∈ I .

2.3.2 The Katok Map

We describe the Katok map (1979) (see also Barreira and Pesin 2013), which can be
thought of as an invertible and two-dimensional analogue of the Manneville–Pomeau

map. Consider the automorphism of the 2-torus given by the matrix T = (
2 1
1 1 ) and

then choose 0 < α < 1 and a function ψ : [0, 1] �→ [0, 1] satisfying:
• ψ is of class C∞ except at zero;
• ψ(u) = 1 for u ≥ r0 and some 0 < r0 < 1;
• ψ ′(u) > 0 for every 0 < u < r0;
• ψ(u) = (ur0)α for 0 ≤ u ≤ r0

2 .

Let Dr = {(s1, s2) : s12 + s22 ≤ r2} where (s1, s2) is the coordinate system obtained
from the eigendirections of T . Consider the system of differential equations in Dr0

ṡ1 = s1 log λ, ṡ2 = −s2 log λ, (2.7)

where λ > 1 is the eigenvalue of T . Observe that T is the time-1 map of the flow
generated by the system of equations (2.7).
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We slow down trajectories of (2.7) by perturbing it in Dr0 as follows:

ṡ1 = s1ψ(s1
2 + s2

2) log λ, ṡ2 = −s2ψ(s1
2 + s2

2) log λ.

This generates a local flow, whose time-1 map we denote by g. The choices of ψ and
r0 guarantee that the domain of g contains Dr0 . Furthermore, g is of class C∞ in Dr0
except at the origin and it coincides with T in some neighborhood of the boundary
∂ Dr0 . Therefore, the map

G(x) =
{

T (x) if x ∈ T
2\Dr0 ,

g(x) if x ∈ Dr0

defines a homeomorphism of the torus, which is a C∞ diffeomorphism everywhere
except at the origin.

The map G preserves the probability measure dν = κ−1
0 κ dm where m is the area

and the density κ is defined by

κ(s1, s2) :=
{

(ψ(s12 + s22))−1 if (s1, s2) ∈ Dr0 ,

1 otherwise

and

κ0 :=
∫
T2

κ dm.

We further perturb the map G by a coordinate change φ in T
2 to obtain an area-

preservingC∞ diffeomorphism. To achieve this, define amap φ in Dr0 by the formula

φ(s1, s2) := 1√
κ0(s12 + s22)

(∫ s12+s22

0

du

ψ(u)

)1/2

(s1, s2) (2.8)

and setφ = Id inT2\Dr0 . Clearly,φ is a homeomorphism and is aC∞ diffeomorphism
outside the origin. One can show that φ transfers the measure ν into the area and that
the map f = φ ◦ G ◦ φ−1 is a C∞ diffeomorphism. This is the Katok map (Katok
1979; Barreira and Pesin 2013). One can show that the map f has nonzero Lyapunov
exponents almost everywhere.27

Theorem 2.5 (see Pesin et al. 2016a) The following statements hold:

(1) the Katok map f is a Young diffeomorphism; moreover,
• there are finitely many disjoint sets �k that are bases of Young towers for which

the corresponding sets Yk cover the whole torus except for the origin;

27 However, there are trajectories with zero Lyapunov exponents, for example the origin is a neutral fixed
point.
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• every invariant measure μ except for the Dirac measure at the origin δ0 can
be lifted to one of the towers.

(2) For any t0 < 0 one can find a small r0 = r0(t0) such that if the construction is
carried out with this value of r0, then for every t0 < t < 1
• there exists a unique equilibrium ergodic measure μt associated to the geo-

metric potential ϕt ;
• ( f, μt ) has exponential decay of correlations and satisfies the CLT with respect

to a class of functions which includes all Hölder continuous functions on the
torus;

• the pressure function Pt is real analytic on (t0, 1).
(3) For t = 1 there exist two equilibrium measures associated to ϕ1, namely the Dirac

measure at the origin δ0 and the Lebesgue measure.
(4) For t > 1, δ0 is the unique equilibrium measure associated to ϕt .

3 Markov Models for Non-uniformly Hyperbolic Maps II: Countable
State Markov Shifts

The thermodynamic formalism for SFTs rested on the Ruelle’s version of the Perron–
Frobenius theorem for finite-state topologicalMarkov chains. For the class of two-step
potential functions ϕ(x) = ϕ(x0, x1), which includes the zero potential ϕ = 0, the
extension of this theory to countable-state Markov shifts dates back to work of Vere-
Jones (1962, 1967),Gurevič (1969, 1970, 1984), andGurevich andSavchenko (1998);
wediscuss this in Sect. 3.1. Formore general potential functions a sufficiently complete
picture is primarily due to Sarig, and we discuss these in Sect. 3.2.

3.1 Recurrence Properties for Random Walks

Recall the form of Theorem 1.3 on existence of a unique MME for SFTs:

(1) the largest eigenvalue λ of the transition matrix A determines the topological
entropy;

(2) the right eigenvector v = (vi ) for λ determines a Markov chain whose transition
probabilities are given by a stochastic matrix Pi j = Ai j

v j
λvi

;
(3) P has a unique stationary vector π (which can be written in terms of left and

right eigenvectors for (A, λ)), which determines a Markov measure that is the
unique MME.

In the countable-state setting, existence of eigenvectors and stationary vectors is a
more subtle question (although once these are found, the proof of uniqueness goes
through just as in the finite-state case). The general story is well-illustrated by just
considering the last step above: suppose we are given a stochastic matrix Pi j with
countably many entries. This corresponds to a directed graph G with countably many
vertices, whose edges are given weights as follows: the weight of the edge from i to
j is Pi j . Then one can consider the Markov chain described by P as a random walk
on G.
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Existence of a stationary vector π = (πi ) with π P = π is determined by the
recurrence properties of the shift Vere-Jones (1962, 1967). Suppose we start our
random walk at a vertex a; one can show that the probability that we return to a
infinitely many times is either 0 or 1. If the probability of returning infinitely many
times is 1, then the walk is recurrent. Recurrence is necessary in order to have a
stationary probability vector π , but it is not sufficient; one must distinguish between
the case when our expected return time is finite (positive recurrence) and when it is
infinite (null recurrence). If the walk is positive recurrent then there is a stationary
probability vector π ; if it is null recurrent then one can still find a vector π such that
π P = π , but one has

∑
i πi = ∞, so π cannot be normalized to a probability vector.

In fact, the trichotomy between transience, null recurrence, and positive recurrence
is the key to generalizing all of Theorem 1.3 to the countable-state case Pesin (2014).
The recurrence conditions can be formulated in terms of the number of loops in the
graph G. Fixing a vertex a, let Z∗

n be the number of simple loops of length n based at a
(first returns to a) and Zn be the number of all loops of length n based at a (including
loops which return more than once).28

(1) The supremum of the metric entropies is equal to the Gurevich entropy hG :=
lim 1

n log Zn (the limit exists if the graph is aperiodic; otherwise one should take
the upper limit).

(2) The shift �A is recurrent if
∑

n e−nhG Zn = ∞, and transient if the sum is
finite.29 The eigenvectors h and v for (A, λ) exist if and only if �A is recurrent.

(3) Among recurrent shifts, onemust distinguish between positive recurrence, when∑
n ne−nhG Z∗

n < ∞, and null recurrence, when the sum diverges. Writing
πi = hivi , one has

∑
πi < ∞ if �A is positive recurrent (hence, π can be

normalized), and
∑

πi = ∞ if it is null recurrent. One can also characterize
positive recurrent shifts as those for which enhG Zn is bounded away from 0 and
∞, which immediately implies divergence of the sum

∑
n e−nhG Zn , while null

recurrent shifts are those for which limn e−nhG Zn = 0 but the sum still diverges.

It is instructive to note that once a distinguished vertex a is fixed as the starting
point of the loops, one can view the first return map to [a] as a Young tower, and then
the summability condition in positive recurrence is equivalent to the condition that the
tails of the tower are integrable, which was the existence criterion in Theorem 2.1.

3.2 Non-zero Potentials

In discussing the extension to non-zero potentials on countable-state topological
Markov chains, we will follow the notation, terminology, and results of Sarig (1999,
2001b, a), although the contributions of Gurevič (1984), Gurevich and Savchenko

28 In the next section when we consider non-zero potentials, we will have to count the loops with weights
coming from the potential.
29 For some intuition behind this definition, it may be helpful to consider again a countable-state random
walk: writing P(n) for the probability of returning to the original vertex at time n, we recall that by the
Borel–Cantelli lemma, the walk is recurrent (infinitely many returns a.s.) if

∑
n P(n) = ∞, and transient

(finitely many returns a.s.) if the sum is finite.
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(1998), Mauldin and Urbański (1996, 2001), Aaronson and Denker (2001), and of
Fiebig et al. (2002) should also be mentioned. Sarig adapted transience, null recurrent,
and positive recurrence for non-zero potential functions. The summability criterion for
positive recurrence is exactly as above, except that now Zn represents the total weight
of all loops of length n and Z∗

n represents the total weight of simple loops of length n
where weight is computed with respect to the potential function; more precisely

Zn = Zn(ϕ, a) =
∑

σ n(x)=x

exp(�n(x))1[a](x)

and

Z∗
n = Z∗

n(ϕ, a) =
∑

σ n(x)=x

exp(�n(x))1[ϕa=n](x),

where �n(x) = ∑n−1
k=0 ϕ( f k x). Furthermore, the Gurevich entropy hG(σ ) is replaced

with the Gurevich-Sarig pressure PGS(σ, ϕ), which is the exponential growth rate
of Zn , i.e.,

PGS(σ, ϕ) = lim
n→∞

1

n
log Zn .

For Markov shifts with finite topological entropy, Buzzi and Sarig (2003) proved that
an equilibrium measure exists if and only if the shift is positive recurrent. A good
summary of the theory can be found in Sarig (2015). For our purposes the main result
is the following.

Theorem 3.1 Let � be a topologically mixing countable-state Markov shift with finite
topological entropy, and let ϕ : X → R be a Hölder continuous30 function such that
PGS(ϕ) < ∞. Then ϕ is positive recurrent if and only if there are λ > 0, a positive
continuous function h, and a conservative measure ν (i.e., a measure that allows
no nontrivial wandering sets) which is finite and positive on cylinders, such that
Lϕh = λh, L∗

ϕν = λν, and
∫

h dν = 1. In this case the following are true.

(1) PGS(ϕ) = log λ, and dμ = h dν defines a σ -invariant measure.
(2) If h(μ) < ∞, then μ is the unique equilibrium state for ϕ.
(3) For every cylinder [w] ⊂ �, we have λ−nν[w]−1Ln

ϕ1[w] → h uniformly on
compact subsets.

The statistical properties of μ depend on the rate of convergence in the last item of
Theorem 3.1, which in turn depends on how quickly Z∗

ne−n PGS goes to 0. If it goes
to zero with polynomial rate then the corresponding tower (obtained by inducing on
a single state) has polynomial tails, and the equilibrium state has polynomial decay
of correlations. If it goes to zero with exponential speed—that is, if Z∗

n has smaller
exponential growth rate than Zn—then the tower has exponential tails and correlations

30 In fact Theorem 3.1 holds for themore general class of potentials with summable variations, but Hölder
continuity is needed for the statistical properties mentioned below.
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decay exponentially. In this case the shift is called strong positive recurrent; see Cyr
and Sarig (2009) for a summary of the results in this case.

3.3 Countable-State Markov Partitions for Smooth Systems

Using Pesin theory, Sarig recently carried out a version of the construction of Markov
partitions for non-uniformly hyperbolic diffeomorphisms in two dimensions. Recall
that for a uniformly hyperbolic diffeomorphism f : M → M , one obtains an SFT �

and a coding map π : � → M such that

• π is Hölder continuous and has f ◦ π = π ◦ σ ;
• π is onto and is 1–1 on a residual set �′ ⊂ � that has full measure for every
equilibrium state of a Hölder potential on �.

In non-uniform hyperbolicity onemust replace the SFTwith a countable-stateMarkov
shift, and also weaken some of the conclusions.

Theorem 3.2 Sarig (2013) Let M be a compact smooth surface and f : M → M
a C1+α diffeomorphism of positive topological entropy. Fix a threshold 0 < χ <

htop( f ). Then there is a countable-state topological Markov shift �χ and a coding
map πχ : �χ → M such that

• πχ is Hölder continuous and has f ◦ πχ = πχ ◦ σ ;
• if μ is an ergodic f -invariant measure on M with hμ( f ) > χ , then μ(π(�χ)) =
1, and moreover there is an ergodic σ -invariant measure μ̂ on �χ such that
(πχ)∗μ̂ = μ and hμ̂(σ ) = hμ( f ).

Observe that Theorem 3.2 echoes our recurring theme that in non-uniform hyperbolic-
ity, to obtain ‘good’ hyperbolic-type results one often needs to ignore a ‘small-entropy’
part of the system. In fact the key property of the threshold χ is that by the Margulis–
Ruelle inequality, any ergodic measure with hμ( f ) > χ must have positive Lyapunov
exponent at least χ . Thus for a higher-dimensional generalization of Theorem 3.2, one
should expect that the natural condition would be on the Lyapunov exponents, rather
than the entropy.

The analogous result to Theorem 3.2 for three-dimensional flows was proved by
Lima and Sarig (2014). In both cases this can be used to deduce Bernoullicity up to
finite rotations of ergodic positive entropy equilibrium states (Sarig 2011; Ledrappier
et al. 2016). However, these general results do not give any information on the recur-
rence properties of the countable state shift, or the tail of the resulting tower, and in
particular they do not provide a mechanism for verifying decay of correlations and the
CLT. This is of no surprise, since at this level of generality, one should not expect to
get exponential decay (or any other particular rate).

4 Markov Models for Non-uniformly Hyperbolic Maps III: Inducing
Schemes of Hyperbolic Type

The study of SRB measures via Young towers generalizes to the study of equilibrium
states via inducing schemes, which use the tower approach to model (a large part
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of) the system by a countable-state Markov shift, and then apply the thermodynamic
results from Sect. 3. The concept of an inducing scheme in dynamics is quite broad
and applies to systems which may be invertible or not, smooth or not differentiable.
Every inducing scheme generates a symbolic representation by a tower which is well
adapted to constructing equilibrium measures for an appropriate class of potential
functions using the formalism of countable state Markov shifts. The projection of
these measures from the tower are natural candidates for the equilibrium measures for
the original system.

In order to use this symbolic approach to establish existence and to study equilibrium
states, some care must be taken to deal with the liftability problem as only measures
that can be lifted to the tower can be ‘seen’ by the tower.

One may consider inducing schemes of expanding type, or of hyperbolic type. The
former were introduced in Pesin and Senti (2008) and apply to study thermodynamics
of non-invertible maps (e.g., non-uniformly expanding maps) while the latter were
introduced in Pesin et al. (2016b) and are used to model invertible maps (e.g„ non-
uniformly hyperbolic maps). In this paper we only consider inducing schemes of
hyperbolic types and we follow Pesin et al. (2016b).

Let f : X → X be a homeomorphism of a compact metric space (X, d). We
assume that f has finite topological entropy htop( f ) < ∞. An inducing scheme
of hyperbolic type for f consists of a countable collection of disjoint Borel sets
S = {J } and a positive integer-valued function τ : S → N; the inducing domain
of the inducing scheme {S, τ } is W = ⋃

J∈S J , and the inducing time τ : X → N

is defined by τ(x) = τ(J ) for x ∈ J and τ(x) = 0 otherwise. We require several
conditions.

(I1) For any J ∈ S we have f τ(J )(J ) ⊂ W and
⋃

J∈S f τ(J )(J ) = W . Moreover,
f τ(J )|J can be extended to a homeomorphism of a neighborhood of J .

This condition allows one to define the induced map F : W → W by setting F |J :=
f τ(J )|J for each J ∈ S. If τ is the first return time to W , then all images f τ(J )(J ) are
disjoint. However, in general the sets f τ(J )(J ) corresponding to different J ∈ S may
overlap. In this case the map F may not be invertible.

(I2) For every bi-infinite sequence a = (an)n∈Z ∈ SZ there exists a unique sequence
x = x(a) = (xn = xn(a))n∈Z such that

(a) xn ∈ Jan and f τ(Jan )(xn) = xn+1;
(b) if xn(a) = xn(b) for all n ≤ 0 then a = b.

This condition allows one to define the codingmap π : SZ → ⋃
J by π(a) := x0(a).

Within the full shift σ : SZ → SZ we consider the set

Š := {a ∈ SZ | xn(a) ∈ Jan for all n ∈ Z}.

For any a ∈ SZ\Š there exists n ∈ Z such that π ◦ σ n(a) ∈ Jan \Jan . In particular,
if all J ∈ S are closed then SZ\Š = ∅; however, this need not always be the case. It
follows from (I1) and (I2) that the map π has the following properties:

(1) π is well defined, continuous and for all a ∈ SZ one has π ◦σ(a) = f τ(J ) ◦π(a)

where J ∈ S is such that π(a) ∈ J̄ ;
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(2) π is one-to-one on Š and π(Š) = W ;
(3) if π(a) = π(b) for some a, b ∈ Š then an = bn for all n ≥ 0.

Proving the existence and uniqueness of equilibrium measures requires some addi-
tional condition on the inducing scheme {S, τ }:
(I3) The set SZ\Š supports no (ergodic) σ -invariant measure which gives positive

weight to any open subset.

This condition is designed to ensure that every equilibrium measure for the shift is
supported on Š and its projection by π is thus supported on W and is F-invariant. This
projection is a natural candidate for the equilibrium measure for F .

Set Y = { f k(x) | x ∈ W, 0 ≤ k ≤ τ(x) − 1}. Note that Y is forward invariant
under f . This can be thought of as the region of X that is ‘swept out’ as W is carried
forward under the dynamics of f ; in particular, it contains all trajectories that intersect
the base W .

Let ϕ be a potential function. Existence of an equilibriummeasure for ϕ is obtained
by first studying the problem for the induced system (F, W ) and the induced potential
ϕ : W → R defined by (1.2). The study of existence and uniqueness of equilibrium
measures for the induced system (F, W ) is carried out by conjugating the induced
system to the two-sided full shift over the countable alphabet S. This requires that the
potential function � := ϕ̄ ◦ π be well defined on SZ. To this end we require that

(P1) the induced potential ϕ can be extended by continuity to a function on J̄ for
every J ∈ S.

Denote the potential induced by the normalized potential ϕ − PL(ϕ) by

ϕ+ := ϕ − PL(ϕ) = ϕ − PL(ϕ)τ

and let �+ := ϕ+ ◦ π .

Theorem 4.1 (see Pesin et al. 2016b) Let {S, τ } be an inducing scheme of hyper-
bolic type satisfying Conditions (I1)–(I3) and ϕ a potential satisfying Condition (P1).
Assume that

• � has strongly summable variations;
• PGS(�) < ∞ and PGS(�+) < ∞;
• supa∈SZ �+(a) < ∞.

Then

(1) There exists a σ -invariant ergodic measure ν�+ for �+;
(2) If hν�+ (σ ) < ∞, then ν�+ is the unique equilibrium measure for �+;
(3) If hν�+ (σ ) < ∞, then the measure νϕ+ := π∗ν�+ is a unique F-invariant ergodic

equilibrium measure for ϕ+;
(4) If PGS(�+) = 0 and Qνϕ+ < ∞, then μϕ = L(νϕ+) is the unique equilibrium

ergodic measure in the class ML( f, Y ) of liftable measures (see (2.5) and (2.6)).

The following result describes ergodic properties of equilibrium measures. assume
that νϕ+ has exponential tails (see (2.2)): there exist C > 0 and 0 < θ < 1 such that
for all n > 0,

νϕ+({x ∈ W : τ(x) ≥ n}) ≤ Cθn .
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Theorem 4.2 (see Pesin et al. 2016b) Under the conditions of Theorem 4.1 assume
that

• the induced function ϕ on W is locally Hölder continuous;
• the tower has exponential tails with respect to the measure νϕ+ that is there exist

C > 0 and 0 < θ < 1 such that for all n > 0,

νϕ+({x ∈ W : τ(x) ≥ n}) ≤ Cθn;

(compare to (2.2));
• the tower satisfies the arithmetic condition.31

Then ( f, μϕ) has exponential decay of correlations and satisfies the CLT with respect
to the class of functions whose induced functions on W are bounded locally Hölder
continuous.

We describe some verifiable conditions on the potential function ϕ under which the
assumptions of Theorem 4.1 hold:

(P2) there exist C > 0 and 0 < r < 1 such that for any n ≥ 1

Vn(φ) := Vn(�) ≤ Crn,

where

Vn(�) := sup
[b−n+1,··· ,bn−1]

sup
a,a′∈[b−n+1,··· ,bn−1]

{|�(a) − �(a′)|}

is the n variation of �;
(P3)

∑
J∈S supx∈J exp ϕ̄(x) < ∞;

(P4) there exists ε > 0 such that

∑
J∈S

τ(J ) sup
x∈J

exp(ϕ+(x) + ετ(x)) < ∞.

The following result is a corollary of Theorems 4.1 and 4.2.

Theorem 4.3 (see Pesin et al. (2016b))Let {S, τ } be an inducing scheme of hyperbolic
type satisfying Conditions (I1)–(I3). Assume that the potential function ϕ satisfies
Conditions (P1)–(P4). Then

(1) there exists a unique equilibrium measure μϕ for ϕ among all measures in
ML( f, Y ); the measure μϕ is ergodic;

(2) if νϕ+ = L−1(μϕ) has exponential tail and the tower satisfies the arithmetic
condition, then ( f, μϕ) has exponential decay of correlations and satisfies the
CLT with respect to a class of functions whose corresponding induced functions
on W (see (1.2)) are bounded locally Hölder continuous functions.

31 This requirement should be added to Theorem 4.6 in Pesin et al. (2016b).

123



Building Thermodynamics for Non-uniformly Hyperbolic Maps 65

5 Coarse-Graining, Expansivity, and Specification

5.1 Uniform Expansivity and Specification

Let X be a compact metric space and f : X → X a homeomorphism; given ε > 0
and x ∈ X , the set

�ε(x) := {
y ∈ X | d( f n x, f n y) < ε for all n ∈ Z

}
(5.1)

contains all points whose trajectory stays within ε of the trajectory of x for all time.
The map f is expansive if there is ε > 0 such that �ε(x) = {x} for every x ∈
X ; that is, if any two distinct trajectories eventually separate at scale ε. Uniformly
hyperbolic systems can easily be shown to be expansive, and expansivity is a sufficient
condition for existence of an equilibrium measure for any continuous potential ϕ;
indeed, the standard proof of the variational principle (Walters 1982, Theorem 8.6)
gives a construction of such a measure. The idea is that one “coarse-grains” the system
at scale ε and builds a measure that is appropriately distributed over all trajectories that
separate by ε within n iterates; sending n → ∞ and using expansivity one guarantees
that this measure is an equilibrium state.

To show that this equilibrium state is unique, Bowen used the following specifica-
tion property of uniformly hyperbolic systems: for every ε > 0 there is τ ∈ N such
that any collection of finite-length orbit segments can be ε-shadowed by a single orbit
that takes τ iterates to transition from one segment to the next. More precisely, if we
associate (x, n) ∈ X × N to the orbit segment x, f (x), . . . , f n−1(x) and write

Bn(x, ε) = {y ∈ X | d( f k x, f k y) ≤ ε for all 0 ≤ k < n}

for the Bowen ball of points that shadow (x, n) to within ε for those n iterates, then
specification requires that for every (x1, n1), . . . , (xk, nk) there is y ∈ X such that
y ∈ Bn1(x1, ε), then f n1+τ (y) ∈ Bn2(x2, ε), and in general

f
∑ j−1

i=0 (ni +τ)(y) ∈ Bn j (x, ε) for all 1 ≤ j ≤ k. (5.2)

Mixing Axiom A systems satisfy specification; this is a consequence of the mixing
property together with the shadowing lemma.

A continuous potential ϕ : X → R satisfies the Bowen property if there is K ∈
R such that |Snϕ(x) − Snϕ(y)| < K whenever y ∈ Bn(x, ε), where Snϕ(x) =∑n−1

j=0 ϕ( f j x). The following theorem summarizes the classical results due to Bowen

on systems with specification Bowen (1974).32

Theorem 5.1 If (X, f ) is an expansive system with specification and ϕ is a potential
with the Bowen property, then there is a unique equilibrium measure μ. This includes

32 In fact, Bowen required the slightly stronger property that the shadowing point y in (5.2) be periodic,
but this is only necessary for the part of his results dealing with periodic orbits, which we omit here.
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the case when f |� is topologically mixing and uniformly hyperbolic, and ϕ is Hölder
continuous.

5.2 Non-uniform Expansivity and Specification

Various weaker versions of the specification property have been introduced in the lit-
erature. The one which is most relevant for our purposes first appeared in Climenhaga
and Thompson (2012) for MMEs in the symbolic setting, and was developed in Cli-
menhaga and Thompson (2013, 2014, 2016) to a version that applies to smooth maps
and flows.

Given ε > 0, consider the ‘non-expansive set’ NE(ε) = {x ∈ X | �ε(x) �= {x}},
where �ε(x) is as in (5.1). Note that (X, f ) is expansive if and only if NE(ε) = ∅.
The pressure of obstructions to expansivity is33

P⊥
exp(ϕ) = lim

ε→0
sup

μ∈Me( f )

{
hμ( f ) +

∫
ϕ dμ | μ(NE(ε)) = 1

}
. (5.3)

In particular, expansive systems have P⊥
exp(ϕ) = −∞. It follows from the results in

Climenhaga and Thompson (2016) that the condition P⊥
exp(ϕ) < P(ϕ) is enough for

existence of an equilibrium measure. For uniqueness, we need to weaken the notion
of specification. The idea behind this is to only require the specification property (5.2)
to hold for a certain ‘good’ collection of orbit segments G ⊂ X × N (and similarly
for the Bowen property). One must also require G to be large enough, which in this
case means that there are collections of orbit segments P,S ⊂ X ×N that have small
pressure compared to the whole system, but are sufficient to generate X × N from G
by adding prefixes from P and suffixes from S.34

Let us make this more precise. A decomposition of the space of orbit segments
consists of P,G,S ⊂ X × N and functions p, g, s : X × N → N ∪ {0} such that
(p + g + s)(x, n) = n and

(x, p(x, n)) ∈ P,

( f p(x,n)(x), g(x, n)) ∈ G,

( f (p+g)(x,n)(x), s(x, n)) ∈ S.

The following is (Climenhaga and Thompson 2016, Theorem 5.5).

Theorem 5.2 Let X be a compact metric space, f : X → X a homeomorphism, and
ϕ : X → R a continuous function. Suppose that P⊥

exp(ϕ) < P(ϕ) and X × N admits
a decomposition (P,G,S) with the following properties:

33 The idea of ignoring measures sitting on NE(ε) was introduced earlier by Buzzi and Fisher (2013).
34 One can sum up the situation by saying that “the pressure of obstructions to specification is small”.
A related idea of studying shift spaces for which “the entropy of constraints is small” appeared in Buzzi
(2005), where Buzzi studied shifts of quasi-finite type. For more details on the relationship between the
two notions, see Climenhaga (2015), especially Theorem 1.4.
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(I) G has specification at every scale;
(II) ϕ has the Bowen property on G;
(III) P(P ∪ S, ϕ) < P(ϕ).

Then f has a unique equilibrium measure μϕ .

We describe two examples for which Theorem 5.2 applies. One of them is theMañé
example Mañé (1978), which was introduced as an example of a robustly transitive
diffeomorphism that is not Anosov. This “derived from Anosov” example is obtained
by taking a 3-dimensional hyperbolic toral automorphism with one unstable direc-
tion and performing a pitchfork bifurcation in Ecs near the fixed point so that Ec

becomes weakly expanding in that neighborhood. One obtains a partially hyperbolic
diffeomorphism with a splitting Es ⊕ Ec ⊕ Eu such that Ec “contracts on average”
with respect to the Lebesgue measure; this falls under the results in Castro (2004)
mentioned above, and its inverse map (for which Ec “expands on average”) is covered
by Alves and Pinheiro (2010), Alves and Li (2015).

Now given any Hölder continuous potential ϕ : T3 → R, it is shown in Climen-
haga et al. (2015) that there is a C1-open class of Mañé examples for which this
potential has a unique equilibrium state. In particular, when f is C2, there is an inter-
val (t0, t1) ⊃ [0, 1] such that the geometric t-potential −t log | det(d f |Ecu)| has a
unique equilibrium state for every t ∈ (t0, t1), and ϕ1 is the unique SRB measure.

A related second example is the Bonatti–Viana example introduced in Bonatti and
Viana (2000). Here one takes a 4-dimensional hyperbolic toral automorphism with
dim Es = dim Eu = 2, and makes two perturbations, one in the Es-direction and
another one in the Eu-direction. The first perturbation creates a pitchfork bifurcation
as above in Es and then “mixes up” the two directions in Es so that there is no invariant
subbundle of Es ; the second perturbation does a similar thing to Eu . One obtains amap
with a dominated splitting Ecs ⊕ Ecu that has no uniformly hyperbolic subbundles.

The same approach as above works for the Bonatti–Viana examples, which have
a dominated splitting but are not partially hyperbolic; see Climenhaga et al. (2015).
In this case the presence of non-uniformity in both the stable and unstable directions
makes tower constructions more difficult, and no Gibbs-Markov-Young structure has
been built for these examples. Earlier results on thermodynamics of these examples
(and the Mañé examples) were given in Buzzi et al. (2012), Buzzi and Fisher (2013),
which proved existence of a unique MME. These results make strong use of the
semi-conjugacy between the examples and the original toral automorphisms, and in
particular do not generalize to equilibrium states corresponding to non-zero potentials.

Finally, the flow version of Theorem 5.2 can be applied to geodesic flow in nonpos-
itive curvature. Geodesic flow in negative curvature is one of the classical examples
of an Anosov flow Anosov (1969), and in particular it has unique equilibrium states
with strong statistical properties.35 If M is a smooth rank 1 manifold with nonpos-
itive curvature, then its geodesic flow is non-uniformly hyperbolic. Bernoullicity of
the regular component of the Liouville measure was shown by Pesin (1977). It was
shown by Knieper (1998) that there is a unique measure of maximal entropy; his proof

35 Although the issue of decay of correlations is more subtle because it is a flow, not a map; see Dolgopyat
(1998), among others.
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uses powerful geometric tools and does not seem to generalize to non-zero potentials.
Using non-uniform specification, Knieper’s result can be extended to the geometric
t-potential for t ≈ 0, and when dim M = 2, it works for any t ∈ (−∞, 1), showing
that the pressure function is differentiable on this interval and we recover the same
picture as for Manneville–Pomeau Burns et al. (2016).

In each of the above examples, the basic idea is as follows: one identifies a “bad
set” B ⊂ X with the properties that

(1) the system has uniformly hyperbolic properties outside of B;
(2) trajectories spending all (or almost all) of their time in B carry small pressure

relative to the whole system.

For the Mañé and Bonatti–Viana examples, B is the neighborhood where the pertur-
bation is carried out; for the geodesic flow, B is a small neighborhood of the singular
set.

Given an orbit segment (x, n), let G(x, n) = 1
n #{0 ≤ k < n | f k x /∈ B} be the

proportion of time that the orbit segment spends in the “good” part of the system.36 A
decomposition of the space of orbit segments X ×N is obtained by fixing a threshold
γ > 0 and taking

P = S = {(x, n) | G(x, n) < γ },
G = {(x, n) | G(x, k) ≥ γ, G( f k x, n − k) ≥ γ for all 0 ≤ k ≤ n}.

Indeed, given any (x, n) ∈ X × N, one can take p and s to be maximal such that
(x, p) ∈ P and ( f n−s x, s) ∈ S, and use additivity of G along orbit segments to argue
that ( f px, n − p − s) ∈ G, which yields a decomposition X × N = PGS. Then one
makes the following arguments to apply Theorem 5.2.

• Assumption (1) above leads to hyperbolic estimates along trajectories in G, which
can be used to prove specification for G (condition (I) in Theorem 5.2) and the
Bowen property on G for Hölder continuous potentials (condition (II)).

• Assumption (2) gives the pressure estimate P(P ∪ S, ϕ) < P(ϕ) from (III).
• The expansion estimates along G and the pressure estimates on P and S also yield

P⊥
exp(ϕ) < P(ϕ).

This approach establishes existence and uniqueness, and yields some statistical proper-
ties such as large deviations estimates. However, it does not yet give stronger statistical
results such as a rate of decay of correlations, or the CLT. In the setting when X is a
shift space with non-uniform specification, results along these lines have recently been
established Climenhaga (2015) by using conditions (I)–(III) (or closely related ones)
to build a tower with exponential tails, but it is not yet clear how this result extends to
the smooth setting.

36 For flows one should make the obvious modifications, replacing N by [0, ∞) and cardinality with
Lebesgue measure.
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6 The Geometric Approach

6.1 Geometric Construction of SRB Measures

6.1.1 Idea of Construction

Having discussed constructions of SRB and equilibriummeasures viaMarkov dynam-
ics (SFTs and Young towers) and via coarse-graining (expansivity and specification),
we turn our attention now to a third approach, which is in some sense more natural and
more simple-minded. The first two approaches addressed not just existence but also
questions of uniqueness and statistical properties; the price to be paid for these stronger
results is that the construction of a tower (or even the verification of non-uniform spec-
ification) may be difficult in many examples. The approach that we now describe is
best suited to prove existence, rather than uniqueness or statistical properties, but has
the advantage that it seems easier to verify.

We start by discussing SRB measure, which for dissipative systems plays the role
of Lebesguemeasure in conservative systems and is the most natural measure from the
physical point of view. So in trying to find an SRB measure, it is natural to start with
Lebesgue measure itself; while it may not be invariant, we will follow the standard
Bogolubov–Krylov procedure of taking a non-invariant measure m, average it under
the dynamics to produce the sequence

μn = 1

n

n−1∑
k=0

f k∗ m, (6.1)

and pass to a weak*-convergent subsequenceμn j → μ; thenμ is f -invariant. If we do
this starting with Lebesgue measure as our reference measure m, then it is reasonable
to expect that the limiting measure will have something to do with Lebesgue, and may
even be an SRB measure.37

At an intuitive level, this approach is consistent with Viana’s conjecture (1998) that
nonzero Lyapunov exponents imply existence of an SRB, since this should be exactly
the setting in which the iterates of Lebesgue spread out along the unstable manifolds
and converge in average to a measure that is absolutely continuous in the unstable
direction. Now we describe how it can be made precise.

6.1.2 Uniform Geometry: Uniform and Partial Hyperbolicity

In the uniformly hyperbolic setting, this approach can be carried out as follows. LetR
be the set of all standard pairs (W, ρ), where W is a small piece of unstable manifold
and ρ : W → (0,∞) is integrable with respect tomW , the leaf volume on W . LetMac

be the set of all (not necessarily invariant) probability measures μ on the manifold M
that can be expressed as

37 In general, though, the measure μ may be quite trivial—just consider the point mass at an attracting
fixed point.
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μ(E) =
∫
R

∫
W∩E

ρ(x) dmW (x) dζ(W, ρ) (6.2)

for some measure ζ on R; in other words, μ admits a decomposition (in the sense
of Fubini’s theorem) along unstable local manifolds, in which conditional measures
are leaf-volumes. Then one can show that Mac ∩ M( f ) is precisely the set of SRB
measures for f . Moreover, Lebesgue measure m is in Mac and thus since images of
unstable manifolds can be decomposed into small pieces of unstable manifolds, we
have f k∗ m ∈ Mac for all k ∈ N, so the averaged measures given by (6.1) are in Mac

as well.
In order to pass to the limit and obtain μ ∈ Mac one needs a little more control.

Fixing K > 0, let RK be the set of all standard pairs (W, ρ) such that W has size
at least 1/K , and ρ : W → [1/K , K ] is Hölder continuous with constant K . Then
defining Mac

K using (6.2) with RK in place of R, one can show that Mac
K is weak*

compact and is f∗-invariant for large enough K . This is basically a consequence of the
Arzelà–Ascoli theorem and the fact that f uniformly expands unstable manifolds; in
particular it relies strongly on the uniform hyperbolicity assumption. Then μn ∈ Mac

K
for all n by invariance, and by compactness, μ = limμn j ∈ Mac

K ∩M( f ) is an SRB
measure. Thus we have the following statement.

Theorem 6.1 Let � be a hyperbolic attractor for f and assume that f |� is topolog-
ically transitive. If the reference measure m is the restriction of the Lebesgue measure
to a neighborhood of �, then the sequence of measures (6.1) converges and the limit
measure is the unique SRB measure for f .

Now consider the setting where f is partially hyperbolic, i.e., for every point x the
tangent space splits Tx M = Es(x) ⊕ Ec(x) ⊕ Eu(x) into stable, central, and unsta-
ble subspaces respectively with uniform contraction along Es(x), uniform expansion
along Eu(x), and possible contractions and/or expansions along Ec(x) with rates
which are weaker than the corresponding rates along Es(x) and Eu(x).

In the situation where the centre-unstable direction Ecu is only non-uniformly
expanding more care must be taken with the above approach because Mac

K may no
longer be f∗-invariant: even if W is a “sufficiently large” local unstable manifold,
its image f (W ) may be smaller than 1/K , and similarly the Hölder constant of the
density ρ can get worse under the action of f∗ if W is contracted by f .

The solution is to use hyperbolic times, which were introduced by Alves (2000).
Roughly speaking, a time n is hyperbolic for a point x if d f k |Eu( f n−k x) is uniformly
expanding for every 0 ≤ k ≤ n. If W is a local unstable manifold around x and n
is a hyperbolic time for x , then f n(W ) contains a large neighborhood of f n(x), and
the density ρ behaves well under f n∗ . Thus from the point of view of the construction
above, the key property of hyperbolic times is that if Hn is the set of all points x for
which n is a hyperbolic time, then the measures

νn := 1

n

n−1∑
k=0

f k∗ (m|Hk) (6.3)
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are all contained in Mac
K (after rescaling to obtain a probability measure). As long as

νn �→ 0, one concludes that μ = lim νnk ∈ M( f ) has some ergodic component in
Mac

K , which must be an SRB measure. To get the lower bound on the total weight of
νn , one needs a lower bound on 1

n

∑n−1
k=0 m(Hk), which can be obtained using Pliss’

lemma as long as a positive Lebesgue measure set of points have positive Lyapunov
exponents along Ecu .

One can also construct the SRBmeasure by beginning “within the attractor”: instead
of using Lebesgue measure on M as the starting point for the sequence (6.1), one can
let mu be leaf volume along a local unstable manifold and then consider the sequence

νn(x) = 1

n

n−1∑
k=0

f k∗ mu(x). (6.4)

If the attractor� is uniformly hyperbolic, the sequence of measures 6.4 converges and
the limit measure is a unique SRB measure for f . In the partially hyperbolic setting,
it was shown by Pesin and Sinaı̆ (1983) that every limit measure ν of the sequence of
measures 6.4 is a u-measure on �: that is, the conditional measures it generates on
local unstable manifolds are absolutely continuous with respect to the leaf-volume on
these manifolds. What prevents ν from being an SRB measure in general is that the
Lyapunov exponents in the central direction can be positive or zero.

Several results are available that establish existence (and in some cases uniqueness)
of SRB measures under some additional requirements on the action of the system
along the central direction Ec or central-unstable direction Ecu . For example the case
of systems with mostly contracting central directions was carried out in Bonatti and
Viana (2000), Burns et al. (2008) and with mostly expanding central directions in
Alves et al. (2000). A more general case of systems whose central direction is weakly
expanding was studied in Alves et al. (2014).

In these settings one at least has a dominated splitting, which gives the system
various uniform geometric properties, even if the dynamics is non-uniform. To extend
this approach to settings where the geometry is non-uniform (no dominated splitting,
stable and unstable directions vary discontinuously) some new tools are needed. An
important observation (which holds in the uniform case as well) is that for many
purposes we can replace V u(x) itself with a local manifold passing through x that is
C1-close to V u(x). Such a manifold is called admissible, and in the next section will
develop themachinery of standard pairs, the class ofmeasuresMac, and the sequences
of measures (6.4) using admissible manifolds in place of unstable manifolds.

6.1.3 Non-uniform Geometry: Effective Hyperbolicity

The difficulties encountered in the geometrically non-uniform setting can be overcome
by the machinery of ‘effective hyperbolicity’ from Climenhaga and Pesin (2016),
Climenhaga et al. (2016). This approach has the advantage that the requirements on
the system appear weaker, and much closer to the Viana conjecture. The drawback of
this approach is that it is currently out of reach to use it to establish exponential (or
even polynomial) decay of correlations and the CLT.
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LetU be a neighborhood of the attractor� for aC1+ε diffeomorphism, and consider
a forward invariant set S ⊂ U on which there are two measurable cone families
K s(x) = K s(x, Es(x), θ) and K u(x) = K u(x, Es(x), θ) that are

• invariant: D f (K u(x)) ⊂ K u( f x) and D f −1(K s( f x)) ⊂ K s(x);
• transverse: Tx M = Es(x) ⊕ Eu(x).

Given x ∈ S, consider the expansion and contraction coefficients

λu(x) := inf{log ‖D f (v)‖ | v ∈ K u(x), ‖v‖ = 1},
λs(x) := sup{log ‖D f (v)‖ | v ∈ K s(x), ‖v‖ = 1},

and the defect from domination

�(x) := max(0, 1
ε
(λs(x) − λu(x));

note that�(x) = 0 whenever λu(x) > λs(x), so the defect only comes into play when
the stable cone expands more than the unstable cone. The coefficient of effective
hyperbolicity is

λ(x) := min(λu(x) − �(x),−λs(x)); (6.5)

thus λ(x) > 0 whenever the system “behaves hyperbolically” at x , while λ(x) ≤ 0
when one of the following happens:

• some stable vectors expand (so −λs(x) < 0); or
• some unstable vectors contract (so λu(x) < 0); or
• the defect from domination is greater than the expansion in the unstable cone (so

λu(x) − �(x) < 0).

Let α(x) be the angle between the cones K s(x) and K u(x), and given a threshold
ᾱ > 0, let

ρᾱ(x) := lim
n→∞

1

n
#{0 ≤ k < n | α( f k x) < ᾱ}

be the asymptotic upper bound on how often the angle drops below that threshold.
Notice that in the case of a dominated splitting, α(x) is uniformly bounded away
from 0, so there is ᾱ > 0 with ρᾱ(x) = 0 for every x ; however, for a system with
non-uniform geometry it may be the case that every ᾱ > 0 has points with ρᾱ(x) > 0.

With the above notions in mind, we consider the following set of points:

S′ =
{

x ∈ S | lim
n→∞

1

n

n−1∑
k=0

λ( f k x) > 0 and lim
ᾱ→0

ρᾱ(x) = 0

}
.

Thus S′ contains points forwhich the average asymptotic rate of effective hyperbolicity
is positive, and for which the asymptotic frequency with which the angle between the
cones degenerates can be made arbitrarily small. Then we have the following result,
which is a step towards Viana’s conjecture.
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Theorem 6.2 (Climenhaga et al. 2016) If S′ has positive volume then f has an SRB
measure.

6.1.4 Idea of Proof

The construction of an SRB measure in the setting of Theorem 6.2 follows the same
averaging idea as in Sects. 6.1.1, 6.1.2: ifμn is the sequence ofmeasures given by (6.1),
then one wish to show that a uniformly large part of μn lies in the set of “uniformly
absolutely continuous” measures Mac

K .
In this more general setting the definition of Mac

K is significantly more involved.
Broadly speaking, in the definition ofR we must replace unstable manifolds W with
admissible manifolds; an admissible manifold W through a point x ∈ S is a smooth
submanifold such that Tx W ⊂ K u(x) and W is the graph of a function ψ : Bu(r) ⊂
Eu(x) → Es(x), such that Dψ is uniformly bounded and is uniformly Hölder con-
tinuous. The Hölder constant for Dψ can be thought of as the “curvature” of W .

When the geometry is uniform as in the previous setting, the image of an admissible
manifold W is itself admissible; this is essentially the classical Hadamard–Perron
theorem. In the more general case this is no longer true; although f n(W ) contains
an admissible manifold, its size and curvature may vary with time n, with the size
becoming arbitrarily small and the curvature arbitrarily large. In this setting a version
of the Hadamard–Perron theorem was proved in Climenhaga and Pesin (2016) that
gives good bounds on f n(W ) when n is an effective hyperbolic time for x ∈ W ; that
is, when

n−1∑
j=k

λ( f j x) ≥ χ(n − k)

for every 0 ≤ k < n, where χ > 0 is a fixed rate of effective hyperbolicity.
The set of effective hyperbolic times is a subset of the set of hyperbolic times; the

extra conditions in the definition of effective hyperbolic time guarantee that we can
control the dynamics of f on the manifold itself, not just the dynamics of d f on the
tangent bundle. In the uniform geometry setting from earlier, this extension came for
free for hyperbolic times.

With the notion of effective hyperbolic times, the approach outlined in Sects. 6.1.1,
6.1.2 can be carried out. One must add some more conditions to the collection R;
most notably, one must fix n ∈ N and then consider only admissible manifolds W for
which

d( f −k(x), f −k(y)) ≤ Ce−χkd(x, y) for all 0 ≤ k ≤ n and x, y ∈ W,

and then defineMac
K ,n using only this class of admissible manifolds. In addition to size

of W and regularity of ρ, the constant K must also be chosen to govern the curvature
of W , but we omit details here. The point is that the set Mac

K ,n is compact, but not
f∗-invariant, and so the proof of Theorem 6.2 can be completed via the following
steps.
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(1) Writing Hn for the set of points with n as an effective hyperbolic time, use Pliss’
lemma and the assumption that S′ has positive volume to show that Hn has positive
Lebesgue measure on average.

(2) Use the effective Hadamard–Perron theorem from Climenhaga and Pesin (2016)
to show that νn := 1

n

∑n−1
k=0 f k∗ ∈ Mac

K ,n , and use the bound from the previous
step to get a lower bound on the total weight of νn .

(3) Writeμn = νn +ζn and argue from general principles that ifμnk → μ, thenμ has
an ergodic component in Mac; moreover, this ergodic component is hyperbolic
and f -invariant, so it is an SRB measure.

6.2 Constructing Equilibrium Measures

Anatural next step is to extend the above procedure to study general equilibrium states,
and not just SRB measures. The direct analogue of the previous section has not yet
been fully developed, and we describe instead a related approach that is also based on
studying how densities transform under the dynamics.

First consider the case of a piecewise expanding interval map, and the question of
finding an SRBmeasure. In this case there is no stable direction, and so we do not have
to keep track of the “shape” of unstable manifolds, or admissible manifolds; indeed, a
local unstable manifold is just a small piece of the interval, and an SRBmeasure is just
an invariant measure that is absolutely continuous with respect to Lebesgue. Thus the
entire problem is reduced to the following question: given a (not necessarily invariant)
absolutely continuous measure μ � m, how is the density function of its image f∗μ
related to the density function of μ? One ends up defining a transfer operator L
with the property that if dμ = h dx , then d( f∗μ) = (Lh) dx . Questions about the
existence of an absolutely continuous invariant measure, and its statistical properties,
can be reduced to questions about the transfer operator L.

The central issue in studying L is the problem of finding a Banach space B (of
functions) on which L acts “with good spectral properties”. Generally speaking this
means that 1 is a simple eigenvalue of L (so there is a unique fixed point h = Lh,
which corresponds to the unique absolutely continuous invariant measure) and the rest
of the spectrum of L lies inside a disc of radius r < 1, which guarantees exponential
decay of correlations and other statistical properties.

For piecewise expanding interval maps, this was accomplished by Lasota andYorke
(1974), and the approach can be adapted to equilibrium states for other potential func-
tions by considering a transfer operator that depends on the potential in an appropriate
way. A thorough account of this approach is given in Baladi (2000).

The mechanism that drives this approach is that the expansion of the dynamics acts
to “smooth out” the density function; irregularities in the function h are made milder
by passing to Lh. (The precise meaning of this statement depends on the particular
choice of Banach spaceB, and is encoded by the Lasota–Yorke inequality, whichwe do
not pursue further here.) But this means that one runs into problems when going from
expanding interval maps to hyperbolic diffeomorphisms, where there is a non-trivial
stable direction; the contracting dynamics in the stable direction make irregularities
in the function worse!
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In the classical approach to uniformly hyperbolic systems, this was dealt with by
passing to a symbolic coding by an SFT (as described after Theorem 1.1) and then
replacing the two-sided SFT� ⊂ AZ by its one-sided version�+ ⊂ AN. As described
after Theorem 1.3, the transfer operator L has an eigenfunction h ∈ C(�+), and its
dual L∗ has an eigenmeasure ν ∈ C(�+)∗; combining them gives the equilibrium
state dμ = h dν. Note that positive indices of an element of � code the future of
a trajectory, while negative indices code the past, and so dynamically, passing from
� to �+ can be interpreted as “forgetting the past”. Geometrically, this means that
we conflate points lying on the same local stable manifold; taking a quotient in the
stable direction eliminates the problem described in the previous paragraph, where
contraction in the stable direction exacerbates irregularities in the density function.

More recent work has shown that this problem can be addressed without the use of
symbolic dynamics. The key is to consider a Banach space B whose elements are not
functions, but are rather objects that behave like functions in the unstable direction, and
like distributions in the stable direction. For SRB measures, this was carried out in
Blank et al. (2002), Gouëzel and Liverani (2006), Baladi and Tsujii (2007). A further
generalization to equilibrium states for other potential functions was given in Gui
and Li (2008); as with expanding interval maps, this requires working with a transfer
operator L that depends on the potential. Moreover, instead of distributions along the
stable direction, one must consider a certain class of “generalized differential forms”.
We refer the reader to (Gui and Li 2008, Sect. 7) for a comparison of this approach to
equilibrium states and other related approaches, including the technique of “standard
pairs”.

It remains an open problem to extend this approach to the non-uniformly hyperbolic
setting.

6.3 Ergodic Properties

An important open question is to study uniqueness and statistical properties of the SRB
measure produced in Theorem 6.2, or of any equilibrium states that may be produced
by an analogous result for other potentials. One potential approach is to study the
standard pairs (W, ρ) and derive statistical properties via coupling techniques, as was
done by Chernov and Dolgopyat in another setting (Chernov and Dolgopyat 2009).38

One might also hope to adapt the functional analytic approach from Sect. 6.2 into the
non-uniformly hyperbolic setting and obtain statistical properties this way. For now,
though, we only mention results on Bernoullicity and hyperbolic product structure.

6.3.1 SRB Measures

By a result of Ledrappier (1984), a hyperbolic SRB measure has at most countably
many ergodic components and every hyperbolic SRB measure is Bernoulli up to a
finite period. It follows that there may exist at most countably many ergodic SRB

38 Coupling techniques are also at the heart ofYoung’s tower results for subexponentialmixing rates (Young
1999).

123



76 V. Climenhaga, Y. Pesin

measures on �. One way to ensure uniqueness of SRB measures is to show that
its every ergodic component is open (mod 0) in the topology of � and that f |� is
topologically transitive.

6.3.2 Equilibrium Measures

Let μ be a hyperbolic ergodic measure for a C1+α diffeomorphism f . Given � > 0,
consider the regular set ��, which consists of points x ∈ � whose local stable V s(x)

and unstable V u(x)manifolds have size at least 1/�. For x ∈ �� and some sufficiently
small r > 0 let R�(x, r) = ⋃

y∈Au(x) V s(y) be a rectangle at x , where Au(x) is
the set of points of intersection of V u(x) with local stable manifolds V s(z) for z ∈
�� ∩ B(x, r). We denote by

• π : V u(z1) → V u(z2) with z1, z2 ∈ R�(x, r) ∩ �� the holonomy map generated
by local stable manifolds;

• μu(z) the conditional measure generated by μ on local unstable manifolds V u(z).

Say that μ has a direct product structure if the holonomy map is absolutely contin-
uous with the Jacobian uniformly bounded away from 0 and ∞ on R�(x, r).

Conjecture 6.3 If μ is a hyperbolic ergodic equilibrium measure for the geometric
t-potential for a C1+α diffeomorphism f , then μ has a direct product structure.

If true, this would imply that μ has some “nice” ergodic properties; for example, it
has at most countably many ergodic components. Similar results have recently been
established (using the symbolic approach) for two-dimensional diffeomorphisms and
three-dimensional flows (Sarig 2011; Ledrappier et al. 2016).

We conclude with a conjecture on the relationship between effective hyperbolicity
(from Sect. 6.1) and decay of correlations. Suppose that� is an attractor with trapping
region U , and that we have invariant measurable transverse cone families defined
Lebesgue-a.e. in U , with the property that there is χ > 0 for which

S′ =
{

x ∈ U | lim
n→∞

1

n

n−1∑
k=0

λ( f k x) > χ and lim
ᾱ→0

ρᾱ(x) = 0

}

has full Lebesgue measure in U . Consider for each N ∈ N the set

X N =
{

x ∈ U |
n−1∑
k=0

λ( f k x) > χn for all n > N

}
,

and note that the assumption on S′ guarantees that m(U\X N ) → 0 as N → ∞.

Conjecture 6.4 If m(U\X N ) decays exponentially in N , then the SRB measure μ

produced by Theorem 6.2 has exponential decay of correlations.

Some support for this conjecture is provided by the fact that the analogous result
for partially hyperbolic attractors with mostly expanding central direction was proved
in Alves and Li (2015).
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