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Abstract We study spherical quadrilaterals whose angles are odd multiples of π/2,
and the equivalent accessory parameter problem for the Heun equation. We obtain a
classification of these quadrilaterals up to isometry. For given angles, there are finitely
many one-dimensional continuous families which we enumerate. In each family the
conformal modulus is either bounded from above or bounded from below, but not
both, and the numbers of families of these two types are equal. The results can be
translated to classification of Heun’s equations with real parameters, whose exponent
differences are odd multiples of 1/2, with unitary monodromy.
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1 Introduction

A (marked) circular polygon is a closed disk Q with marked boundary points
a0, . . . , an−1, which are called corners, enumerated cyclically according to the pos-
itive orientation of ∂ Q, equipped with a Riemannian metric of constant curvature 1
with conic singularities at the corners, and such that each side (a j , a j+1) has con-
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stant geodesic curvature. Two such polygons Q and Q′ are congruent if there is an
orientation-preserving isometry between them which sends each corner a j of Q to the
corner a′

j of Q′.
Polygons with n = 2, 3 and 4 are called digons, triangles and quadrilaterals,

respectively.
If each side has zero geodesic curvature then Q is called a spherical polygon. At

every corner a j , an interior angle α j ≥ 0 is defined, and in what follows we measure
all angles in half-turns. So angle α means an angle ofπα radians, in particular, “integer
angle” is an integer multiple of π radians. A circular quadrilateral Q whose angles are
oddmultiples of 1/2 is called a circular rectangle. If such a quadrilateral is spherical, it
is called a spherical rectangle. In this paper we describe the set of spherical rectangles
with prescribed angles.

As every surface of positive curvature 1 is locally isometric to a piece of the unit
sphere, every circular polygon can be described in terms of the developing map f :
Q → Cwhich is an analytic function on Q \{a0, . . . , an−1}mapping every side into a
circle on the Riemann sphere. For spherical polygons these circles are geodesic (great
circles). This function f is a local homeomorphism at each point except the corners,
and at a corner a satisfies

f (z) − f (a) ∼ c(z − a)α,

where α > 0 is the angle at this corner. (If α = 0, the right-hand side has to be replaced
by c/ log(z − a).)

Each such function defines a circular polygon by the pull-back of the spherical
metric fromC to Q. If none of the α j equals 1, then the pair ( f, a0) defines the polygon
uniquely. Two pairs ( f1, a0) and ( f2, a′

0) define congruent polygons if f2 = ψ ◦ f1◦φ,
where ψ is a rotation of the Riemann sphere, and φ a conformal automorphism of the
disk with the property φ(a j ) = a′

j for all j .
This paper is a part of the project whose goal is to understand metrics of constant

positive curvature with conic singularities on compact surfaces, see Troyanov (1991),
Luo and Tian (1992), Eremenko (2004), Eremenko et al. (2014, 2016a, b), Mondello
and Panov (2016), Lin andWang (2010), Chai et al. (2015). An important class of such
metrics can be obtained by gluing a spherical polygon to its mirror image isometrically
along the boundary. Metrics of positive curvature on the sphere obtained in this way
are characterized by the symmetry property: all conic singularities belong to a circle
on the sphere, and the metric is symmetric with respect to this circle.

In this paper, we classify spherical rectangles. The cases when at least one of the
angles of a spherical quadrilateral is integer were considered in Eremenko et al. (2006,
2014, 2016a, b).

If we use the upper half-plane as Q, then the developing map of every circular
quadrilateral is a ratio of two linearly independent solutions of the Heun equation

y′′ +
⎛
⎝

2∑
j=0

1 − α j

z − a j

⎞
⎠ y′ + α′α′′z − λ∏2

j=0(z − a j )
y = 0, (1.1)
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where

α′ = (2 + α3 − α2 − α1 − α0)/2, (1.2)

α′′ = (2 − α3 − α2 − α1 − α0)/2, (1.3)

with the standard normalization (a0, a1, a2, a3) = (0, 1, a,∞), a ∈ (1,+∞). Here
α j are the angles at the corners, and λ is a real accessory parameter. Each pair of
linearly independent solutions of such an equation defines a circular quadrilateral.
Different pairs of linearly independent solutions of the same equation define equivalent
quadrilaterals: their developing maps are related by post-composition with linear-
fractional transformations. We will later see that an equivalence class may contain at
most one spherical quadrilateral, up to congruence.

The condition that an equivalence class contains a spherical quadrilateral translates
to the following condition on the Heun equation: the projective monodromy group
must be conjugate to a subgroup of SU (2). So the problem of classification of spher-
ical quadrilaterals with prescribed corners and angles is equivalent to the problem
of classification of Heun’s equation with prescribed a j and α j whose monodromy is
unitarizable, that is conjugate to a subgroup of SU (2). The correspondence between
the metrics on the sphere and Heun’s equations with unitarizable monodromy is bijec-
tive. Each symmetric metric on the sphere corresponds to two spherical quadrilaterals
which are related by an anti-conformal involution, and to a unique normalized Heun
equation with real a, λ and unitarizable monodromy.

In the case that all angles are oddmultiples of 1/2, Heun’s equation can be explicitly
solved in terms of elliptic integrals. This fact was discovered by Darboux (1882) who
generalized Hermite’s work Hermite (1912) for the Lamé equation. For the study of
general circular rectangles in connection with Heun’s equation with α j multiples of
1/2 we refer to the paper of Van Vleck (1902).

We recall how this explicit solution is obtained.

Theorem A Suppose that all α j in (1.1)–(1.3) are odd multiples of 1/2. Then there
are two linearly independent solutions of (1.1) whose ratio is of the form

f (z) = exp(I (z)), (1.4)

where

I (z) =
∫ z

z0

2∏
j=0

(ζ − a j )
α j −1 dζ

P(ζ )
(1.5)

and P(z) = P(z; a, λ) is a real polynomial in all three variables. This polynomial
satisfies the third order linear differential equation

P ′′′ + 3pP ′′ + (p′ + 2p2 + 4q)P ′ + (4pq + 2q ′)P = 0, (1.6)

where p and q are the coefficients in front of y′ and y in (1.1).
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Equation (1.6) has one-dimensional space of polynomial solutions of degree

deg P =
3∑

j=0

α j − 2. (1.7)

This permits to find P by rational operations. That P satisfies (1.6) guarantees that all
residues of the integrand in (1.5) are of the form ±c with some real c. The condition
c = 1 defines P up to a sign.

Periods of the integral (1.5), other than those coming from the residues, form a
lattice generated by two canonical periods (integrals over adjacent real segments). Of
these two canonical periods one is real and another is pure imaginary. The condition
that themonodromy of (1.1) is unitarizablemeans that both periodsmust be imaginary,
therefore the real period must vanish. For a fixed real a, and given angles, this imposes
a transcendental equation on λ. It is not clear how to determine or estimate the number
of real solutions of this equation, but for small angles αk it can be solved numerically.
The results of computation are described in Sect. 4.

Instead we use a geometric method which allows us to classify spherical rectan-
gles, and describe their geometry. The following elementary statement was proved in
Eremenko and Gabrielov (2015).

Proposition 1.1 Let f be the developing map of a spherical rectangle Q. Then there
are two opposite sides of Q whose f -images are contained in the same circle, and the
other pair of opposite sides is mapped to distinct circles.

Thus the boundary of a spherical rectangle Q is mapped by f to the union of three
great circles, one of them, say C , being orthogonal to the other two, C ′ and C ′′. Let
θ ∈ (0, 1) be the angle between the circles C ′ and C ′′. There are two choices for this
angle (the other one being 1 − θ ). See Definition 3.4 below for the unique choice of
the angle θ associated with a spherical rectangle Q.

The f -preimage in Q of the three circles is called the net of Q. The net is a
combinatorial invariant of Q, defined up to an orientation-preserving homeomorphism
of Q respecting its initial corner a0.

Proposition 1.2 A marked spherical rectangle Q is defined uniquely up to isometry
by its net and the angle θ ∈ (0, 1).

This will be proved in Sect. 3. In Sect. 3, we will explicitly describe all possible nets
of spherical rectangles (Theorems 3.1 and 3.5). As a consequence we will obtain the
following necessary and sufficient conditions on the angles of a spherical rectangle:

Theorem 1.3 Let A0, . . . , A3 be non-negative integers, and

δ = (A1 + A3 − A0 − A2)/2. (1.8)

Then for the existence of a spherical rectangle with angles α j = A j + 1/2 it is
necessary and sufficient that one of the following conditions be satisfied: either

δ ≥ 1, A1 ≥ 1, A3 ≥ 1, (1.9)
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or

δ ≤ −1, A0 ≥ 1, A2 ≥ 1. (1.10)

To state our next result we need some definitions. We recall that we consider marked
spherical rectangles. Two of them are congruent if there is an orientation-preserving
isometry of Q respecting the initial corner a0.

Every quadrilateral can be mapped conformally onto a flat rectangle with vertices
(0, 1, 1+ i K , i K ) and all angles 1/2, such that a0 maps to 0. The number K is called
the modulus of the quadrilateral.

Each pair (�, θ), where � is a net and θ ∈ (0, 1), defines a marked spherical
rectangle Q(�, θ) (see Theorem 3.5). Thus the set of all spherical rectangles with
given angles consists of curves θ 
→ Q(�, θ) parameterized by θ and labeled by the
nets. The modulus K of Q(�, θ) is a continuous function of θ . There are two kinds of
these curves:

On the curves of the first kind, K → 0 as θ → 0, while K tends to a non-zero limit
Kcrit(�) as θ → 1.

On the curves of the second kind, K → +∞ as θ → 0, while K tends to a non-zero
limit Kcrit(�) as θ → 1.

This is proved in Theorem 4.2, and we give few examples of computation of the
limits Kcrit in Sect. 4. In all our examples K is a monotone function of θ . This is proved
in Eremenko and Gabrielov (2015) for the simplest family of spherical quadrilaterals
with angles (3/2, 1/2, 3/2, 1/2) but it is unlikely that this property holds in general.
However, it is true for sufficiently small and large values of K .

Proposition 1.4 Each curve Q(�, θ) has finitely many intervals on which K is
monotone. In particular, for sufficiently small (resp., large) K > 0, there is a unique
spherical rectangle with the modulus K in a curve Q(�, θ) of the first (resp., second)
kind.

This follows from the general theory of o-minimal structures (see, e.g., van den
Dries 1998), since the integral in (1.5) is a Pfaffian function in the sense of Khovanskii
(1980). It was shown in Speissegger (1999) (see also Wilkie 1999) that the structure
generated by Pfaffian functions is o-minimal.

Our final results count the nets for spherical rectangles with given angles.
The quadruple (A0, . . . , A3) is special if δ in (1.8) is an odd integer and one of

the following holds: either A1 ≥ δ > 0 and A3 ≥ δ > 0 or A0 ≥ −δ > 0 and
A2 ≥ −δ > 0.

Define

M1 =
[
min

{
A1 + 1

2
,

A3 + 1

2
,
1 + δ

2

}]
, (1.11)

M2 =
[
min

{
A0 + 1

2
,

A2 + 1

2
,
1 − δ

2

}]
, (1.12)

N = min

{
A0 + 1 + δ

2
, A1 + 1 − δ

2
, A2 + 1 + δ

2
, A3 + 1 − δ

2

}
. (1.13)
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Note that conditions (1.9) and (1.10) are satisfied when M1 > 0 and M2 > 0, respec-
tively.

Theorem 1.5 For a special quadruple (A0, . . . , A3) satisfying either (1.9) or (1.10)
there exist 2N one-parametric families of congruence classes of marked spherical
rectangles with angles A j + 1/2. If (A0, . . . , A3) is not special but satisfies (1.9)
(resp., (1.10)) then there exist 2M1 (resp., 2M2) one-parametric families of congruence
classes of marked spherical rectangles with angles A j + 1/2.

Each family is parameterized by θ ∈ (0, 1) (see Definition 3.4). Each family con-
tains either rectangles of arbitrarily small moduli or arbitrarily large moduli but not
both. The numbers of families of both types are equal, so for each type this number is
either N or M1 or M2, depending on (A0, . . . , A3).

Remark 1.6 Theorem 1.5 and Proposition 1.4 imply that the number of spherical
rectangles with given angles A j + 1/2 is exactly N or M1 or M2, depending on
(A0, . . . , A3), for sufficiently small and large values of K .

For fixed angles α j ∈ N+ + 1/2, consider the two-parametric family of Heun’s
equations (1.1) with parameters (a, λ) ∈ (1,+∞)×R.Equivalence classes of circular
rectangles are in correspondence to such Heun’s equations. One-parametric families
of spherical rectangles of Theorem 1.5 correspond to smooth disjoint curves in the
half-plane (a, λ), each having one end in this half-plane. On the other end, either
a → 1 or a → ∞.

When θ = p/q is rational, the monodromy group of the developing map is finite,
so f is an algebraic function. In this case, f = g−1 ◦ h, where

g = −1

4

(
zq + 1

zq
− 2

)
,

and h is a rational Belyi function, which means that the only critical values of h
are 0, 1,∞, Schneps (1994). Function g is also a Belyi function, it is called the
fundamental rational function of the dihedral group Klein (1993). The set g−1(R)

consists of the unit circle and q lines {z = t exp(π ik/q) : t ∈ R, k = 0, . . . , q−1}. In
the simplest case θ = 1/2, the image f (∂ Q) is contained in the union of the unit circle
C , real lineC ′, and imaginary lineC ′′. Themonodromy is theKleinViergroupZ2×Z2,
represented as {z,−z, 1/z,−1/z} and g has the property that g−1(R) = C ∪C ′ ∪C ′′.
Then it is easy to see that our net, together with its reflection in the real line, coincides
with h−1(R). The set h−1(R) for a Belyi function h is a triangulation of the sphere
with all vertices of even degree. Therefore our classification of the nets can be restated
as classification of triangulations T of the sphere with the following properties:

(a) T is symmetric with respect to R, and R is contained in the 1-skeleton of T,
(b) There are four vertices a j of T on the real line of prescribed orders 4A j + 2.
(c) All other vertices of T have order 4.

For q ∈ {2, 3} and (A0, . . . , A3) = (1, 0, 1, 0), algebraic developing maps are explic-
itly written in Eremenko and Gabrielov (2015).
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2 Spherical Polygons with the Sides on Three Circles and Corners at
Their Intersections

In this sectionweprove a preliminary result for classification of nets. Roughly speaking
it says that every spherical rectangle is a union of two spherical triangles.

As we prove this result by induction, it is convenient to consider a more general
class of spherical polygons, characterized by the property that the developing map
sends their sides to three transversally intersecting great circles and corners to the
intersection points of these circles. The net � defines a triangulation of such a polygon
Q, each face of it beingmappedby f one-to-one onto one of the triangles intowhich the
three circles partition the sphere. This triangulation satisfies the following properties:

(P1) Each vertex inside Q has degree 4;
(P2) All boundary vertices, other than corners of Q, have degree 3.

Combining this triangulation with its mirror copy, we obtain a triangulation T of the
sphere satisfying the following properties:

(S1) T is symmetric with respect to a circle S contained in the 1-skeleton of T;
(S2) Each vertex of T has even degree, and all its vertices not contained in S have

degree 4.

It is easy to show that the nets of spherical polygons with all sides mapped to three
transversal circles and all corners to intersection points of those circles are in one-to-
one correspondence with triangulations of the sphere satisfying (S1) and (S2).

Two nets are combinatorially equivalent if they can be obtained from each other by
an orientation-preserving homeomorphism (mapping corners to corners and sides to
sides) preserving the initial corner.

IfC is any of the three circles, its preimage in Q is calledC-net, denoted�C . An arc
of the net�C (or an arc of� ifC is not specified) is a connected component of�C \∂ Q.
Since f is a local homeomorphism on the interior of Q, an arc may be homeomorphic
to either an open interval with both ends on the boundary of Q (possibly, at the same
corner of Q) or a circle in the interior of Q. We’ll show below (see Corollary 2.3)
that an arc of a spherical rectangle Q must have at least one end at a corner of Q. In
particular, an arc of a spherical rectangle cannot be a circle. An arc is called short if
it does not intersect other arcs of �. Any two arcs of the same net �C are disjoint.

Definition 2.1 We say that a spherical polygon Q is reducible if its net has an arc with
endpoints at two distinct corners of Q. Such an arc partitions Q into two proper sub-
polygons. Otherwise, Q is irreducible. We say that Q is primitive if it is irreducible
and its net does not contain an arc with both ends at the same corner of Q.

Theorem 2.2 Let Q be a spherical n-gon such that all its sides are mapped to three
transversal great circles by the developing map, and all its corners are mapped to
intersection points of those circles. Then either n ≤ 3 or there is a triangulation of
Q by n − 3 disjoint arcs of its net, each of them connecting two non-adjacent corners
of Q.

Proof It is enough to show that, unless Q is a digon or a triangle, there exists an arc
of its net � connecting two of its non-adjacent corners. We prove this by induction on
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the number N of faces of �. If � has one face then, since any face of � is a triangle,
Q is a triangle.

If N > 1 then there exists an arc γ of � adjacent to a point p on the boundary of
Q. Otherwise the face of � adjacent to its boundary would not be simply connected.

If γ connects two distinct corners p and q of Q then either p and q are non-adjacent
and we are done, or p and q are adjacent corners of Q, and γ partitions Q into a digon
and a polygon Q′ with the same number of corners as Q and a smaller than N number
of faces of its net. By inductive hypothesis, unless Q′ (and thus Q) is a digon or a
triangle, there is an arc γ ′ of Q′ connecting two of its non-adjacent corners. In the
latter case, γ ′ is also an arc of � connecting two non-adjacent corners of Q, and we
are done.

Suppose now that � does not have any arcs connecting two corners of Q. If γ has
both ends at the same point p then Q can be replaced by a (n + 1)-gon Q′ having all
sides of Q plus γ as its sides, with the number of faces of the net �′ of Q′ smaller
than N . There is a mapping ι : Q′ → Q such that any two distinct points of Q′ map
to distinct points of Q, except the two ends of the side γ of Q′ that both map to p. By
the inductive hypothesis, there is an arc γ ′ of �′ connecting two non-adjacent corners
p′ and q ′ of Q′. Then ι(γ ′) is an arc of � connecting two (possibly, adjacent) corners
of Q, a contradiction.

Thus we may suppose that γ has two distinct ends p and q on the boundary of Q,
at least one of them not a corner of Q. Then γ partitions Q into two polygons Q′ and
Q′′, with the number of corners n′ and n′′ respectively, where n′ + n′′ ≥ n + 3. If
n > 3 then at least one of n′ and n′′ is greater than 3. Since both Q′ and Q′′ have the
number of faces of their nets smaller than N , by the inductive hypothesis at least one
of them has an arc γ ′ of its net connecting two non-adjacent corners. Then γ ′ is also
an arc of � connecting two non-adjacent corners of Q. This completes the proof.

Corollary 2.3 If Q is a spherical n-gon with n ≥ 3 satisfying the condition of
Theorem 2.2 then an arc γ of the net of Q is an open interval with at least one
end at a corner of Q.

Proof It follows from classification of spherical triangles (see sections 10 and 12 of
Eremenko et al. 2016a, section 6 of Eremenko et al. 2016b and Figs. 1, 2 and 3a)
that an arc of the net of a spherical triangle with all sides mapped to three circles
C, C ′, C ′′ and all corners to intersection points of those circles must have at least one
end at its corner. Indeed, such a triangle T contains a primitive triangle T ′ (either one
of triangles Tμ or one of triangles Eμ, see Fig. 1) with its apex at the intersection of
two circles, say C and C ′, and its base on the third circle C ′′. Any arc of the net of
T ′ connects its apex with its base. The triangle T is obtained by attaching digons to
the sides of T ′ (see Fig. 3a). An arc of the net of a digon D either has an end at one
of its corners or the ends on both its sides, but cannot have both ends on one side of
D. Thus an arc of T must have at least one end at its corner. Since the intersection of
γ with any triangle T of a triangulation of Q by disjoint arcs of its net connecting its
non-adjacent corners is either a side of T or an arc of the net of T , it must have at least
one end at a corner of T . But all corners of T are also corners of Q.
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Fig. 1 Primitive spherical triangles Tμ and Eμ

Fig. 2 Spherical digons

Fig. 3 a Spherical triangle T0
with three digons D1 attached to
its sides. b Nets of spherical
rectangles

(a) (b)
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Fig. 4 Three circles (left) and a spherical rectangle (right)

3 Nets of Spherical Rectangles

As was shown in Eremenko and Gabrielov (2015) (see Proposition 1.1) any spherical
rectangle Q has two opposite sides mapped to the same circle by its developing map
f , and two other opposite sides mapped to distinct circles. Thus there are two types
of marked spherical rectangles: in the first type the images of L2 and L4 belong to
the same circle, and in the second type the images of L1 and L3 belong to the same
circle. It is enough to classify spherical rectangles of the first type, as all rectangles of
the second type can be obtained from those of the first type by orientation-reversing
isometry preserving the marked corner.

Assumption 1 Unless stated otherwise, all spherical rectangles below are assumed
to be of the first type.

Let C be the circle to which two sides L2 and L4 of a spherical rectangle Q are
mapped, and letC ′ andC ′′ be the circles to which the sides L1 and L3 of Q aremapped
(see Fig. 4).

Theorem 2.2 implies that there is an arc of the net � of Q connecting two opposite
corners of Q. Such an arc must be mapped to the circle C , since two opposite corners
of Q are mapped to intersection points ofC with two distinct circles other thanC . This
implies that Q cannot have two arcs of � connecting two pairs of its opposite corners:
such arcs would have an intersection point inside Q, while any two arcs mapped to
the same circle C are disjoint.

Assumption 2 Unless stated otherwise, we choose the initial corner a0 of a marked
spherical rectangle Q so that there is an arc γ of � connecting the corners a1 and a3
of Q.

Such an arc γ partitions Q into two spherical triangles T ′ and T ′′, where T ′ has an
integer corner at a3 and the base L1 mapped to C ′, while T ′′ has an integer corner at
a1 and the base L3 mapped to C ′′ (see Fig. 4). We’ll show below (see Remark 3.2)
that the angles of such rectangle Q satisfy the inequality A0 + A2 + 2 ≤ A1 + A3.

Any rectangle of the first (resp., second) type with an arc of its net connecting its
corners a0 and a2 can be obtained from a rectangle of the second (resp, first) type
with an arc of its net connecting its corners a1 and a3 by choosing a1 instead of a0 as
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an initial corner, and relabeling the corners accordingly. The angles of such rectangle
satisfy the inequality A1 + A3 + 2 ≤ A0 + A2. Thus it is enough to classify spherical
rectangles satisfying Assumptions 1 and 2.

Theorem 3.1 Let Q be a marked spherical rectangle satisfying Assumptions 1 and 2.
Then Q is a union of two primitive triangles Tμ and Tν having integer angles μ + 1
and ν + 1, respectively, digon D2κ with the sides mapped to C having common sides
with both Tμ and Tν , digon Di with the sides mapped to C ′ attached to the base of Tμ,
digon Dl with the sides mapped to C ′′ attached to the base of Tν , digon Dm attached
to the remaining side of Tμ, and digon Dk attached to the remaining side of Tν . The
sides of Dk and Dm are mapped to C.

Here μ, ν, κ, i, k, l, m are non-negative integers satisfying iμ = lν = 0, that is,
i > 0 only if μ = 0, l > 0 only if ν = 0. The value 0 for i, k, l, m, κ means there is
no digon attached.

Proof Assumptions 1 and 2 imply that an arc γ of the net� of Q connecting its corners
a1 and a3 partitions Q into two spherical triangles T ′ and T ′′, where T ′ has an integer
corner with an angle μ + 1 at a3, and T ′′ has an integer corner with an angle ν + 1 at
a1, for some non-negative integers μ and ν.

Classification of spherical triangles with one integer corner (see sections 10 and 12
of Eremenko et al. 2016a) implies that the triangle T ′ (resp., T ′′) is combinatorially
equivalent to a primitive triangle Tμ (resp., Tν) having an angle μ+ 1 (resp., ν + 1) at
its integer corner, with digons attached to its sides (see Figs. 1, 2, 3a). No digons may
be attached to the base L1 of T ′ (resp., the base L3 of T ′′) if μ > 0 (resp., ν > 0).
Each digon Dn has equal integer angles n at its two corners.

The sides of Tμ and Tν aremapped toC and cannot contain preimages of intersection
points of C with either C ′ or C ′′, other than the corners of Q. This implies that the
union of digons attached to the sides of Tμ and Tν and having γ as their common side
is a digon D2κ with even integer angles 2κ at its two corners.

Thus a net of a spherical rectangle satisfying Assumptions 1 and 2 must have the
structure shown schematically in Fig. 3b. This proves Theorem 3.1.

Remark 3.2 The angles at the corners a0, a1, a2, a3 of a marked spherical rectangle
Q in Theorem 3.1 have the integer parts

A0 = i + m, A1 = i + k + ν + 1 + 2κ, A2 = k + l,

A3 = l + m + μ + 1 + 2κ, (3.1)

respectively. In particular, A0 + A2 + 2 ≤ A1 + A3. For a marked spherical rectangle
(of either first or second type) with an arc of its net connecting its corners a0 and a2,
the integer parts of its angles satisfy A1 + A3 + 2 ≤ A0 + A2.

Remark 3.3 Theorem 3.1 implies that a spherical rectangle Q satisfying Assumptions
1 and 2 has at least one short arc γ connecting its corners a1 and a3, and that all such
short arcs are mapped to the same arc β of the circle C with the ends at the intersection
points of C with C ′ and C ′′.
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Definition 3.4 The angle θ ∈ (0, 1) between the circles C ′ and C ′′ is defined as 1−α

where α is the length of any short arc γ of the net of a spherical rectangle Q connecting
its opposite corners, divided by π . Alternatively, α is the length of the arc β of C to
which γ is mapped, divided by π .

Proof of Proposition 1.2 Wewant to show that twomarked spherical rectangles Q and
Q′ with equivalent nets � and �′, and the same angle θ , are congruent, i.e., there is
an orientation-preserving isometry Q → Q′ mapping the initial corner a0 of Q to the
initial corner a′

0 of Q′. According to Definition 3.4, the developing map f : Q → C
maps the sides of Q to three great circles C , C ′, C ′′, such that both C ′ and C ′′ are
orthogonal to C , so that the sides L2 and L4 of Q are mapped to C , the sides L1 and
L3 of Q are mapped to C ′ and C ′′, respectively, and any short arc of � connecting the
corners a1 and a3 of Q is mapped to an arc β of C of length πα where α = 1− θ , the
ends P and R of β being the images of a1 and a3, respectively. In particular, P and
R are intersection points of C with C ′ and C ′′, respectively. Similarly, the developing
map g : Q′ → Cmaps the sides of Q′ to three great circles S, S′, S′′, such that both S′
and S′′ are orthogonal to S, and any short arc γ ′ of �′ connecting the corners a′

1 and
a′
3 of Q′ is mapped to an arc β ′ of S of length πα, the ends P ′ and R′ of β ′ being the
images of a′

1 and a′
3, respectively. Applying if necessary rotation ofC, we may assume

that S = C , S′ = C ′, S′′ = C ′′, β ′ = β, P ′ = P , and R′ = R. Then the equivalence
of the nets � and �′ implies that the developing maps f and g send the corresponding
faces, edges and vertices of partitions of Q and Q′ to the same triangles, segments and
intersection points of the partition ofC by the three circles C , C ′ and C ′′. In particular,
a0 and a′

0 are mapped by f and g to the same point of C.

Theorem 3.5 For any non-negative integers μ, ν, κ, i, k, l, m satisfying iμ = lν = 0
there is a unique, up to combinatorial equivalence, net � of the type described in
Theorem 3.1. For any such net � and any θ ∈ (0, 1) there exists a unique spherical
rectangle Q = Q(�, θ) having � as its net, sides mapped to three circles C, C ′, C ′′,
and a short arc of length π(1 − θ) connecting its corners a1 and a3.

Proof To define the net �, we start with a digon D2κ obtained by combining κ copies
of digon D2 shown in themiddle of the first row of Fig. 2. If κ = 0 then there is no such
digon, and we proceed with gluing together triangles Tμ and Tν (see Fig. 1) so that
the side of each of these triangles that follows its base in the counterclockwise cyclic
order becomes their common side. If κ > 0 then triangles Tμ and Tν are attached to
opposite sides of D2κ so that the side of each of these triangles that follows its base
in the counterclockwise cyclic order becomes its common side with D2κ . The integer
corner of Tμ (resp., Tν) coincides with a non-integer corner of Tν (resp., Tμ).

Next, we attach digons Dk and Dm , obtained by combining k and m copies, respec-
tively, of the digon D1 shown in the left side of the first row of Fig. 2, so that any two
adjacent digons have either a common short side or a common long side, and so that
each of the two resulting digons has at least one short side, as is shown in examples of
D2 and D3 in the first row of Fig. 2. Then digons Dk and Dm are attached to the free
sides of Tν and Tμ, respectively. The free sides of these triangles are preceding their
respective bases in the counterclockwise cyclic order. If k = 0 (resp., m = 0) then no
digon Dk (resp., Dm) is attached.
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(a) (b)

(d)(c)

Fig. 5 Deformation of the three-circle configuration

Finally, if μ = 0 and i > 0 (resp., ν = 0 and l > 0) then a digon Di (resp.,
Dl ), obtained by combining i and l copies, respectively, of the digon D1 shown in
the second row of Fig. 2, is attached to the base of Tμ (resp., Tν). Examples of such
digons are shown in the second row of Fig. 2.

If we label the sides of Tμ and Tν by C , the base of Tμ by C ′ and the base of Tν by
C ′′ then all edges of � can be uniquely labeled so that the sides of each of its triangles
are labeled by three distinct labels. Consider the standard sphere C with three great
circles C , C ′ and C ′′ such that C is orthogonal to both C ′ and C ′′, and one of the two
complementary angles between C ′ and C ′′ is θ , the other one being α = 1 − θ . Then
there is a mapping of Q to C, locally one-to-one everywhere except at the corners,
which is unique up to a homeomorphism of Q preserving all vertices and edges of
� and a rotation of the sphere preserving the three circles, such that any arc of the
boundary of D2κ (or a common side of Tμ and Tν if κ = 0) maps to an arc of C of
length πα, and each edge of � maps to an arc of the circle corresponding to its label.
This defines on Q a metric of the spherical rectangle Q(�, θ).

4 Limits at θ = 0 and θ = 1 of Spherical Rectangles with the Given Net

Each admissible set of integers μ, ν, κ, i, k, l, m in Theorem 3.1 defines a net � and
the corresponding one-parametric family of marked spherical rectangles Q(�, θ) sat-
isfying Assumptions 1 and 2, parameterized by the angle θ between the circles C ′ and
C ′′ (see Definition 3.4). These two circles intersect the circle C at the right angle. In
Fig. 5a, b, two projections of the three circles are shown, and two of the triangles of
the partition of the sphere defined by these circles are shaded.

Let P and R be the images of the corners a1 and a3, respectively, of a marked
spherical rectangle Q, so that the arc β = P R of C is the image of a short arc γ of the
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Fig. 6 Deformation of spherical rectangles with the angles 1
2 , 3

2 , 1
2 , 3

2

net � of Q connecting a1 and a3. Then the shaded areas in Fig. 5a, b contract to arcs
when θ → 0 and expand to half-disks when θ → 1. If all circles remain geodesic,
then C ′ and C ′′ converge to the same circle when θ → 0 and when θ → 1. However,
applying a linear-fractional transformation depending on θ , so that the arc M N of C
in Fig. 5a, b contracts to a point while the arc P R does not, we can obtain in the limit
θ → 1 a non-geodesic configuration shown in two different projections in Fig. 5c, d,
where the shaded areas are the limits of the shaded areas in Fig. 5a, b.

Example 4.1 A net of a spherical rectangle Q with the angles (1/2, 3/2, 1/2, 3/2)
considered in Eremenko and Gabrielov (2015) is shown in Fig. 6 (left). The shaded
area corresponds to preimage of the shaded areas in Fig. 5a, b. The arc connecting a1
and a3 is mapped to the arc P R of C , the corners a0 and a2 are mapped to M and
N , respectively. When θ → 0, the sides L2 and L4 of Q are contracted to points,
while the distance between them has a positive limit. Thus the modulus of Q has limit
0 as θ → 0 (see Eremenko et al. 2016a, Section 15, and Eremenko and Gabrielov
2015). When θ → 1, applying a linear-fractional deformation depending on θ to the
three-circle configuration, and the corresponding transformation to Q (this does not
change the modulus of Q which is a conformal invariant) we can get in the limit a
non-geodesic circular rectangle shown in Fig. 6 (right). Thus the modulus of Q tends
to a finite positive valuewhen θ → 1. Computation in Eremenko andGabrielov (2015)
shows that this value is K ≈ 0.630963.

Theorem 4.2 Let � be one of the nets described in Theorem 3.1, and θ ∈ (0, 1). Then
the modulus of Q(�, θ) tends to 0 when θ → 0, and to a finite positive value when
θ → 1.

Proof When θ → 0, none of the arcs connecting a1 and a3 contract, while the triangle
Tμ (resp., Tν) contains either a short arc of � or a side L4 (resp., L2) of Q that maps to
either the arc M R or the arc N P of C , connecting its apex a3 (resp., a1) with a point
p = a1 (resp., p = a3) on its base. These two arcs contract to points when θ → 0.
Hence the distance between the sides L1 and L3 of Q tends to 0 when θ → 0. At
the same time, there are no short arcs of � having one end on L2 and another end on
L4, other than those connecting a1 and a3 which do not contract as θ → 0. Thus the
distance between the sides L2 and L4 does not tend to 0 as θ → 0. This implies that
the modulus of Q tends to 0 as θ → 0 (see Eremenko et al. 2016a, Section 15).
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(a)

(b)

Fig. 7 Deformation of spherical rectangles with the angles 3
2 , 5

2 , 3
2 , 5

2

Fig. 8 Deformation of spherical rectangles with the angles 3
2 , 7

2 , 3
2 , 7

2

When θ → 1, the short arcs connecting a1 and a3 contract, thus both the distance
between L1 and L3 and the distance between L2 and L4 tend to 0. To understand the
limit of the modulus of Q, we apply a linear-fractional transformation depending on
θ as in Example 4.1 to the three-circle configuration, so that the short arc M N of C
contracts, while the short arc P R does not. In the non-geodesic limit (see Fig. 5c)
the circles C ′ and C ′′ become tangent (when their tangency point is mapped to ∞
as in Fig. 5d, they become parallel lines). All short arcs of � connecting a1 and a3
map to P R, and all arcs of C connecting the apex of a triangle Tμ (resp., Tν) with
a point on its base, map to either M R or N P . Since neither M R nor N P contracts
when θ → 1, and P R does not contract after the linear-fractional transformation, the
distances between opposite sides of Q do not tend to 0 in the limit. Thus Q converges
to a non-geodesic circular rectangle (see Figs. 6, 7, 8, 9) and the modulus of Q tends
to a finite positive value.
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(p) (q) (r)

Fig. 9 Three combinatorially distinct nets of spherical rectangles with the angles 5
2 , 7

2 , 5
2 , 7

2 , and their
deformations

Remarks on computation of limit moduli K The boundary of the limit rectangle
described in the proof of Theorem 4.2 is mapped by developing map into three straight
lines (see Fig. 5d). This allows to represent the developing map by the Schwarz–
Christoffel formula. Condition that the points P and Q are on the same vertical line
imposes one real equation which permits to determine the modulus of the rectangle K .
See Eremenko and Gabrielov (2015) where the simplest example is described in all
detail. The number of solutions to this equation is the number of nets with given angles.
To determine which solution corresponds to which net, we use the evident inequalities
between the moduli of degenerate rectangles (shown in the right of Figs. 7, 8, and in
the bottom of Fig. 9).

Example 4.3 Two combinatorially distinct nets of spherical rectangles with the angles
(3/2, 5/2, 3/2, 5/2), and the nets of their non-geodesic limits when θ → 1, are shown
in Fig. 7a, b. Themoduli Ka and Kb of the limiting rectangles are Ka ≈ 0.5433144 and
Kb ≈ 1.193606, respectively. Figure 10 shows schematically the areas of existence
of these spherical rectangles (Nets a and b) and their involution-symmetric rectangles
(Nets a′ and b′) for different values of the modulus K .

Example 4.4 Three combinatorially distinct nets of spherical rectangles with the
angles (5/2, 7/2, 5/2, 7/2), and the nets of their non-geodesic limits when θ → 1,
are shown in Fig. 9p, q, r. The moduli K p, Kq , Kr of the limiting rectangles are
K p ≈ 0.476966, Kq ≈ 0.887943, Kr ≈ 1.458956, respectively. Figure 11 shows
schematically the areas of existence of these spherical rectangles (Nets p, q, r) and
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Fig. 10 Existence of spherical rectangles with the angles 3
2 , 5

2 , 3
2 , 5

2

Fig. 11 Existence of spherical rectangles with the angles 5
2 , 7

2 , 5
2 , 7

2

their involution-symmetric rectangles (Nets p′, q′, r′) for different values of the mod-
ulus K .

Example 4.5 A net of a spherical rectangle with the angles (3/2, 7/2, 3/2, 7/2), and
the net of its non-geodesic limit when θ → 1, is shown in Fig. 8. The modulus K of
the limiting rectangle is K ≈ 0.4173.

Remarks and conjectures Each of the three nets p, q, r in Fig. 11 produces a contin-
uous family where the modulus K can be arbitrarily small. So for sufficiently small
K there are at least three different marked spherical quadrilaterals with the angles
(5/2, 7/2, 5/2, 7/2). Similarly, one can conclude from Fig. 11 that there are at least
two quadrilaterals with modulus K ∈ (Kp, 1/Kr at least three for K ∈ (1/Kr, Kq),
at least two for K ∈ (Kq, 1/Kq), at least three for K ∈ (1/Kq, Kr), at least two for
K ∈ (K )r, 1/Kp), and at least three for K > 1/Kp.

Similar conclusions apply to Fig. 10. Our computations show that in fact these lower
estimates are equalities, in all cases which we computed. Actually K is a monotone
function of θ in all these cases, but we do not expect this monotonicity to hold for all
angles.

So Theorem 1.5 gives only lower estimates for the number of quadrilaterals with
given angles and modulus, when this modulus is small or large. This lower estimate
is N or M j (see (1.11), (1.12), (1.13). We conjecture that these lower estimates are
exact, and that we have equality for large and small moduli. All computed examples
confirm this.
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5 Counting nets of spherical rectangles with given angles

We want to answer the following question: Given four non-negative integers
A0, . . . , A3, how many nets of marked spherical rectangles with the integer parts
A0, . . . , A3 of the angles at their corners a0, . . . , a3 do exist?

It is enough to answer this question for the spherical rectangles of the first type
(satisfying Assumption 1), since all rectangles of the second type can be obtained then
by an involution preserving themarked corner.Also,wemay assume that A0+A2+2 ≤
A1 + A3, which is true for the marked spherical rectangles satisfying Assumption 2
(see Remark 3.2). The answer for the rectangles with A1 + A3 +2 ≤ A0 + A2, having
an arc connecting corners a0 and a2, can be obtained then by a different choice of the
initial corner.

We start with listing operations on the nets which do not change the angles of a
spherical rectangle Q. Assuming notation of Theorem 3.1 and Remark 3.2, we have
expressions (3.1) for the angles of Q.

Operation I If κ > 0, i ≥ 2, l = 0, μ = 0 then

κ 
→ κ − 1, ν 
→ ν + 4, i 
→ i − 2, m 
→ m + 2.

The inverse operation is possible when l = 0, m ≥ 2, μ = 0, ν ≥ 4.

Operation II If κ > 0, i = 0, l ≥ 2, ν = 0 then

κ 
→ κ − 1, μ 
→ μ + 4, k 
→ k + 2, l 
→ l − 2.

The inverse operation is possible when i = 0, k ≥ 2, μ ≥ 4, ν = 0.

Operation III If κ > 0, i = 1, l = 0, μ = 0 then

κ 
→ κ − 1, μ 
→ 1, ν 
→ ν + 3, i 
→ 0, m 
→ m + 1.

The inverse operation is possible when i = l = 0, m ≥ 1, μ = 1, ν ≥ 3.

Operation IV If κ > 0, i = 0, l = 1, ν = 0 then

κ 
→ κ − 1, μ 
→ μ + 3, ν 
→ 1, k 
→ k + 1, l 
→ 0.

The inverse operation is possible when i = l = 0, k ≥ 1, μ ≥ 3, ν = 1.

Operation V If κ > 0, i = l = 0 then

κ 
→ κ − 1, μ 
→ μ + 2, ν 
→ ν + 2.

The inverse operation is possible when i = l = 0, μ ≥ 2, ν ≥ 2.

Operation VI If i > 0, l > 0, μ = ν = 0 then

i 
→ i − 1, k 
→ k + 1, l 
→ l − 1, m 
→ m + 1.
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The inverse operation is possible when k > 0, m > 0, μ = ν = 0.

Lemma 5.1 Let Q be a marked spherical rectangle satisfying Assumptions 1 and 2.

(a) If κ > 0 and min(i, l) = 0 then there is a unique operation among Operations
I-V that is applicable to Q and results in a rectangle with the same angles as Q,
with κ reduced by 1.

(b) If min(i, l) = 0 then at most one operation among inverses to Operations I-V is
applicable to Q. If min(i, l) > 0 then neither Operations I-V nor their inverses
are applicable to Q.

(c) If min(i, l) > 0, then iteration of Operation VI applied to Q results in a rectangle
with the same angles as Q, same κ, μ, ν, and min(i, l) = 0.

Proof We start with a proof of (a), assuming κ > 0. If i = l = 0 then Operation V is
applicable. If i = 1, l = 0 thenμ = 0 and Operation III is applicable. If i ≥ 2, l = 0
then μ = 0 and Operation I is applicable. If i = 0, l = 1 then ν = 0 and Operation
IV is applicable. If i = 0, l ≥ 2 then ν = 0 and Operation II is applicable. It is easy
to check that only one of the operations I–V is applicable in each of these cases.

To prove (b) note first that inverses to Operations I-V are only possible when
min(i, l) = 0. Next, for given μ and ν, conditions on μ and ν for applicability of the
operations inverse to Operations I-V may hold for at most one of these operations.

If min(i, l) > 0 then Operation VI reduces i, l and min(i, l) by 1, and does not
change κ, μ, ν, which proves (c).

Corollary 5.2 For given A0, . . . , A3, the set of values of κ that may appear in the nets
of marked spherical rectangles of the first type with δ ≥ 1 is either empty (in which
case spherical rectangles with such angles do not exist) or an interval [0, κmax], for
some integer κmax ≥ 0 depending on A0, . . . , A3. In the latter case, there are exactly
κmax + 1 combinatorially distinct nets of marked spherical rectangles of the first type
with given A0, . . . , A3 and min(i, l) = 0.

For a marked spherical rectangle Q satisfying Assumption 2, define

δ = (A1 + A3 − A0 − A2)/2 = 2κ + 1 + (μ + ν)/2. (5.1)

Then δ ≥ 1 is either integer or half-integer.

Lemma 5.3 Let Q be a marked spherical rectangle with min(i, l) = 0 satisfying
Assumptions 1 and 2. The net of Q cannot be obtained from a net of some other
spherical rectangle by one of the operations inverse to Operations I-V if and only if
one of the following twelve conditions is satisfied:

(a) μ = ν = 0;
(b) μ = 0, ν = 1;
(c) μ = 1, ν = 0;
(d) μ = ν = 1;
(e) μ = 0, ν = 2;
(f) μ = 2, ν = 0;
(g) μ = 0, ν = 3;
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(h) μ = 3, ν = 0;
(i) μ = 1, ν ≥ 3, m = 0;
(j) μ ≥ 3, ν = 1, k = 0;
(k) μ = 0, ν ≥ 4, m ≤ 1;
(l) μ ≥ 4, ν = 0, k ≤ 1.

For given A0, . . . , A3 with A1 + A3 ≥ A0 + A2 + 2, a net of a marked spherical
rectangle with min(i, l) = 0 satisfying Assumptions 1 and 2 may satisfy at most one
of these conditions.

At most one (up to combinatorial equivalence) net of a marked spherical rectangle
Q satisfying Assumptions 1 and 2, with given A0, . . . , A3 and min(i, l) = 0, may
satisfy any of these conditions. The value of κ for such rectangle Q is

[
min

(
A1 − 1

2
,

A3 − 1

2
,
δ − 1

2

)]
. (5.2)

Proof One can easily check case by case that none of the operations inverse to Oper-
ations I–V can be applied if and only if one of the conditions (a)–(l) is satisfied. Note
that it is enough to assume μ ≤ ν, and to check that with this assumption none of
the operations inverse to Operations I,III,V can be applied if and only if one of the
conditions (a), (b), (d), (e), (g), (i), (k) is satisfied. The case μ ≥ ν follows by rotation
of the net exchanging a0 with a2, a1 with a3, μ with ν, i with l, and k with m.

Let now Q be a marked spherical rectangle satisfying Assumptions 1 and 2, with
given A0, . . . , A3, A1 + A3 ≥ A0 + A2 + 2, min(i, l) = 0, and μ ≤ ν.

If Q satisfies (a) then δ = 2κ + 1 is an odd integer, A1 ≥ δ, A3 ≥ δ. If, in
addition, l = 0 then A2 = k and A3 = δ + m, thus i = A0 − m = A0 − A3 + δ =
(A0 + A1 − A2 − A3)/2, and the net of Q is completely determined by its angles.
Such a net exists when i ≥ 0 thus A0 + A1 ≥ A2+ A3. The case when i = 0 is treated
similarly, and a net with i = 0 satisfying (a) exists when A0 + A1 ≤ A2 + A3. The
net with i = l = 0 satisfying (a) exists when A0 + A1 = A2 + A3.

If Q satisfies (b) then δ = 2κ + 3
2 thus 2δ ≡ 3 mod 4, A1 ≥ δ + 1

2 , A3 ≥ δ − 1
2 ,

l = 0, A2 = k, A3 = m + δ − 1
2 thus m = A3 − δ + 1

2 , A0 = i + m = i + A3 − δ + 1
2

thus i = A0 − A3 + δ − 1
2 = (A0 + A1 − A2 − A3 − 1)/2. A net satisfying (b) is

completely determined by its angles. It exists when i ≥ 0, thus A0+ A1 ≥ A2+ A3+1.
Similarly, if Q satisfies (c) then δ = 2κ + 3

2 , and its net is completely determined by
its angles. It exists when A1 ≥ δ − 1

2 , A3 ≥ δ + 1
2 , A2 + A3 ≥ A0 + A1 + 1.

If Q satisfies (d) then δ = A3 − A0 = A1 − A2 = 2κ +2 is a positive even integer,
i = l = 0. Then A0 = m, A2 = k, and the net is completely determined by its angles.
It exists when A0 + A1 = A2 + A3.

If Q satisfies (e) then δ = 2κ +2 is a positive even integer, A1 ≥ δ+1, A3 ≥ δ−1,
l = 0, A0 = i + m, A2 = k, A1 = i + k + δ + 1 thus i = A1 − A2 − δ − 1 =
(A0+ A1− A2− A3−2)/2, m = A3−δ+1, and the net is completely determined by
its angles. It exists when i ≥ 0 thus A0 + A1 ≥ A2 + A3 + 2. Similarly, if Q satisfies
(f) then δ = 2κ + 2, and its net is completely determined by its angles. It exists when
A1 ≥ δ − 1, A3 ≥ δ + 1, A2 + A3 ≥ A0 + A1 + 2.
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If Q satisfies (g) then δ = 2κ + 5
2 thus 2δ ≡ 1 mod 4, A1 ≥ δ + 3

2 , A3 ≥ δ − 3
2 ,

l = 0, A2 = k, A3 = m + δ − 3
2 thus m = A3 − δ + 3

2 , A0 = i + m = i + A3 − δ + 3
2

thus i = A0 − A3 + δ − 3
2 = (A0 + A1 − A2 − A3 − 3)/2. A net satisfying (g) is

completely determined by its angles. It exists when i ≥ 0, thus A0+ A1 ≥ A2+ A3+3.
Similarly, if Q satisfies (h) then δ = 2κ + 5

2 , and its net is completely determined by
its angles. It exists when A1 ≥ δ + 3

2 , A3 ≥ δ − 3
2 , A2 + A3 ≥ A0 + A1 + 3.

If Q satisfies either (i), (j), (k) or (l) then δ = 2κ + 3 is an odd integer, δ ≥ 3. If
Q satisfies (i) then A3 = δ − 1, i = l = 0, A0 = 0, A2 = k. If Q satisfies (j) then
A1 = δ − 1, i = l = 0, A0 = m, A2 = 0. If Q satisfies (k) then A3 = δ − 2 + m,
l = 0, A0 = i + m, A2 = k. A net satisfying (k) exists when i = A0 − m =
A0 − A3 + δ − 2 = (A0 + A1 − A2 − A3 − 4)/2 ≥ 0, thus A0 + A1 ≥ A2 + A3 + 4.
If Q satisfies (l) then A1 = δ − 2 + k, i = 0, A0 = m, A2 = k + l. A net satisfying
(l) exists when l = A2 − k = A2 − A1 + δ − 2 = (A2 + A3 − A0 − A1 − 4)/2 ≥ 0,
thus A2 + A3 ≥ A0 + A1 + 4. A net satisfying either (i), (j), (k) or (l) is completely
determined by its angles.

Lemma 5.4 A marked spherical rectangle Q satisfying Assumptions 1 and 2, with
given A0, . . . , A3 and min(i, l) = 0 exists if and only if

min (A1, A3, δ) ≥ 1, (5.3)

and there are exactly

[
min

(
A1 + 1

2
,

A3 + 1

2
,
δ + 1

2

)]
(5.4)

combinatorially distinct nets of such spherical rectangles.

Proof It follows from Corollary 5.2 and Lemma 5.3 that existence of a rectangle Q
satisfying conditions of Lemma 5.4 implies that the number in (5.2) is non-negative,
which is equivalent to (5.3), and that the number of combinatorially distinct nets of
such rectangles in that case is the number in (5.2) plus 1, which is the number in (5.4).
Thus we have only to prove that for any A0, . . . , A3 satisfying (5.3) there exists a
rectangle Q satisfying conditions of Lemma 5.4.

It follows from Corollary 5.2 that, if a rectangle with given A0, . . . , A3 satisfying
conditions of Lemma 5.4 exists, there exists also a rectangle with κ = 0 with the
same angles satisfying the same conditions. We are going to construct a net of such a
rectangle for any A0, . . . , A3 satisfying (5.3).

There are three possible cases: (i) A1 > A2 and A3 > A0; (ii) A1 > A2 and
A3 ≤ A0; (iii) A1 ≤ A2 and A3 > A0. Note that A1 ≤ A2 and A3 ≤ A0 is not
possible because δ = (A1 + A3 − A0 − A2)/2 ≥ 1.

In case (i) let i = l = 0, m = A0, k = A2, μ = A3 − m − 1 = A3 − A0 − 1,
ν = A1 − k − 1 = A1 − A2 − 1.
In case (ii) let μ = l = 0, m = A3 − 1, k = A2, i = A0 − m = A0 − A3 + 1,
ν = A1 − i − k − 1 = A1 + A3 − A0 − A2 − 2 = 2(δ − 1).
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In case (iii) let ν = i = 0, k = A1 − 1, m = A0, l = A2 − k = A2 − A1 + 1,
μ = A3 − l − m − 1 = A1 + A3 − A0 − A2 − 2 = 2(δ − 1).

This completes the proof of Lemma 5.4.

Definition 5.5 Amarked spherical rectangle is special if δ is an odd integer and either
A1 ≥ δ > 0 and A3 ≥ δ > 0 or A0 ≥ −δ > 0 and A2 ≥ −δ > 0.

Lemma 5.6 A marked spherical rectangle Q satisfying Assumptions 1 and 2 with
given A0, . . . , A3 is special if an only if there exists a rectangle with the same angles
whose net has μ = ν = 0. For given A0, . . . , A3 satisfying conditions of Definition
5.5 with δ > 0, there are

min(A0, A1 − δ, A2, A3 − δ) (5.5)

special rectangles satisfying Assumptions 1 and 2, with μ = ν = 0 and min(i, l) > 0.

Proof If min(i, l) > 0 for the net of Q thenμ = ν = 0. FromLemma 5.1 (c), iteration
of Operation VI applied to Q results in a unique rectangle Q0 with the same angles as
Q, μ = ν = 0 and min(i, l) = 0. Thus Q0 satisfies Lemma 5.3 (a). If min(i, l) = 0
for the net of Q then, from Corollary 5.2, there is a unique rectangle with the same
angles as Q satisfying one of the conditions (a)-(l) of Lemma 5.3. One can easily
check that δ is an odd integer, A1 ≥ δ and A3 ≥ δ only in case (a) of Lemma 5.3.
Conversely, a rectangle satisfying condition (a) of Lemma 5.3 is clearly special, thus
any rectangle Q with the same angles is also special. Finally, the number in (5.5) is
obtained by counting distinct rectangles that can be obtained from a rectangle with
μ = ν = 0 by iterating Operation VI and its inverse (compare with Lemma 11.2 in
Eremenko et al. 2016a).

Theorem 5.7 Let Q be a marked spherical rectangle satisfying Assumptions 1 and
2, with given A0, . . . , A3. If Q is not special then there are (5.4) combinatorially
distinct nets of marked spherical rectangles satisfying Assumptions 1 and 2 with the
same angles as Q. If Q is special then the number in (5.4) is (1+ δ)/2, and there are
additionally (5.5) nets of marked spherical rectangles satisfying Assumptions 1 and 2
with the same angles as Q, thus the total number of combinatorially distinct nets is

min

(
A0 + 1 + δ

2
, A1 + 1 − δ

2
, A2 + 1 + δ

2
, A3 + 1 − δ

2

)
. (5.6)

Proof This follows from Lemmas 5.4 and 5.6.

Proof of Theorems 1.3 and 1.5. Lemmas 5.4 and 5.6 imply that a marked spherical
rectangle satisfying Assumptions 1 and 2 exists if and only if (5.3) holds. Since this
condition is symmetric with respect to A1 and A3, it remains true for spherical rectan-
gles of the second type satisfying A0 + A2 < A1 + A3, as any such rectangle can be
obtained from a rectangle satisfying Assumptions 1 and 2 by a reflection preserving
a0 and a2, exchanging a1 and a3.
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If Q is a marked spherical rectangle of either first of second type satisfying A0 +
A2 > A1 + A3, replacing a0 by a1 as an initial corner, and relabeling the corners
accordingly, results in a marked spherical rectangle Q′ of either second or first type,
with the integer parts of the angles (A′

0, A′
1, A′

2, A′
3) = (A1, A2, A3, A0) and δ′ =

(A′
1 + A′

3 − A′
0 − A′

2)/2 = −δ. Applying the above arguments to Q′ we see that a
marked spherical rectangle Q with A0 + A2 > A1 + A3 exists if and only if

min (A0, A2,−δ) ≥ 1, (5.7)

Combining (5.3) and (5.7) we get the statement of Theorem 1.3. The statement of
Theorem 1.5 follows from (5.4) and (5.6) applied to either Q or Q′ in a similar way.

Lemma 5.8 Let Q be a marked spherical rectangle with the angles satisfying A0 =
A2, A1 = A3. Then there is an orientation-preserving isometry ρ : Q → Q such
that ρ(a0) = a2 and ρ(a1) = a3.

Proof Due to Proposition 1.2, it is enough to prove that the net � of Q is symmetric
with respect to a transformation exchanging a0 with a2 and a1 with a3, and that
this symmetry of � maps any short arc of � connecting a1 with a3 is mapped to a
(possibly, different) short arc connecting a1 with a3. To show this, we have only to
check (assuming that Q satisfies Assumptions 1 and 2) that μ = ν, i = l, and k = m
in the notations of Theorem 3.1.

Suppose first that μ = ν = 0. Then A0 = A2 implies i + m = k + l, and A1 = A3
implies i +k = m + l (see (3.1) in Remark 3.2). Adding up these two equalities yields
i = l, and subtracting them yields k = m.

If μ > 0 and ν > 0 then i = l = 0, thus A0 = m, A2 = k, A1 = k + 1 + 2κ + ν,
and A3 = m + 1 + 2κ + μ. Since A0 = A2, we have k = m, then A1 = A3 yields
μ = ν.

If μ > 0 but ν = 0 then i = 0, thus A0 = m, A1 = k + 1 + 2κ , A2 = k + l,
and A3 = l + m + 1 + 2κ + μ. Since A0 = A2, we have m = k + l, thus A3 =
k +2l +1+2κ +μ > A1, a contradiction. Similarly,μ = 0 and ν > 0 is not possible.
This completes the proof.

Theorem 5.9 A spherical rectangle Q with the angles at two of its opposite corners
equal α, and the angles at two other opposite corners equal β, exists if and only if
|β −α| ≥ 1. If β −α is even then there are |β −α| non-isometric spherical rectangles
with these angles, |β − α|/2 of them satisfying Assumption 1. If β − α is odd then
there are α + β non-isometric spherical rectangles with these angles, (α + β)/2 of
them satisfying Assumption 1.

This follows from Lemma 5.8 and Theorems 1.3 and 1.5.

Example 5.10 The net in Fig. 6 is special, with A0 = A2 = 0, A1 = A3 = 1, δ = 1.
According to (5.6) and Theorem 5.9, there is a unique net of a marked spherical
rectangle of the first type with these angles.

The two nets in Fig. 7 are special with A0 = A2 = 1, A1 = A3 = 2, δ = 1.
According to (5.6) and Theorem 5.9, there are two nets of marked spherical rectangles
of the first type with these angles.
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The net in Fig. 8 is not special, with A0 = A2 = 1, A1 = A3 = 3, δ = 2. According
to (5.4) and Theorem 5.9, there is a unique net of a marked spherical rectangle of the
first type with these angles.

The three nets in Fig. 9 are special with A0 = A2 = 2, A1 = A3 = 3, δ = 1.
According to (5.6) andTheorem5.9, there are three nets ofmarked spherical rectangles
of the first type with these angles.
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