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In addition to this, NET maps are quite diverse, exhibiting many different behaviors.
We discuss data, findings, and new phenomena.
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1 Introduction

Complex dynamics studies iteration of rational functions f : Ĉ → Ĉ. An important
subclass consists of the postcritically finite rational maps: those for which the postcrit-
ical set P( f ) := ∪n>0 f ◦n(C( f )) is finite; hereC( f ) is the finite set of points at which
f is not locally injective. For example, if cR ∈ C is the unique root of c3+2c2+c+1
with �(cR) > 0, then the quadratic polynomial f (z) = z2 + cR , known as Douady’s
rabbit, is postcritically finite: it has one fixed critical point at infinity, and the unique
finite critical point at the origin is periodic of period 3. Another example is provided
by f (z) = z2 + i . The Julia sets of these maps are shown in Fig. 1. Their three finite
postcritical points are marked with tiny circles.

Fig. 1 Julia sets of the rabbit z �→ z2 + cR and z �→ z2 + i
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Thurston Maps. A Thurston map is a continuous, orientation-preserving branched
covering f : S2 → S2 of degree at least two for which the set P( f ) is finite. For
example, if h is a Dehn twist about the blue ellipse in Fig. 1, one may twist Douady’s
rabbit by post-composing f with h to yield a Thurstonmap g = h◦ f . More generally,
if h0, h1 : S2 → S2 are orientation-preserving homeomorphisms such that h0 agrees
with h−11 on P( f ) , then we call h0◦ f ◦h1 a twist of f . We call the resulting collection
of maps the pure Hurwitz class of f . See Sect. 4 for related definitions and discussion.

Combinatorial Equivalence.TwoThurstonmaps f, g are combinatorially equivalent
or Thurston equivalent if there are orientation-preserving homeomorphisms h0, h1 :
(S2, P( f )) → (S2, P(g)) for which h0 ◦ f = g ◦ h1 and h0, h1 are isotopic through
homeomorphisms agreeing on P( f ).More succinctly: they are conjugate up to isotopy
relative to their postcritical sets. This is related to a more familiar notion. For a finite
set P ⊂ S2, denote by PMod(S2, P) the pure mapping class group of the pair (S2, P).
Suppose P( f ) = P(g) = P . The notion of combinatorial equivalence between f and
g is analogous to the notion of conjugacy in PMod(S2, P), but now the representing
maps are branched coverings instead of homeomorphisms.

W.Thurston’s Characterization of RationalMaps.W. Thurston (Douady and Hub-
bard 1993) gave necessary and sufficient combinatorial conditions for a Thurston map
f to be equivalent to a rational map g. The statement has two cases, depending on
the Euler characteristic χ(O( f )) of a certain orbifold structure O( f ) on the sphere
associated to the dynamics of f on the set P( f ) ∪ C( f ); see Douady and Hub-
bard (1993). Typical Thurston maps have hyperbolic orbifold (χ < 0) and checking
rationality involves ruling out certain families of curves, called obstructions. Atypi-
cal Thurston maps have Euclidean orbifold (χ = 0)—we call these Euclidean—and
checking rationality involves examining the eigenvalues of a two by twomatrix. Apart
from a well-understood subset of Euclidean maps known as flexible rational Lattès
maps, the rational map g equivalent to a Thurston map f , if it exists, is unique up to
holomorphic conjugacy.

Checking that there are no obstructions is often very difficult. To give a sense of the
complexity that can occur, consider the following result, Theorem 1. All of the maps
involved are typical NET maps—the special class of Thurston maps that is the focus
of this paper.

Theorem 1 Each twist of the rabbit f (z) = z2+cR is combinatorially equivalent to a
complex polynomial z2+c where c3+2c2+c+1 = 0; all three cases arise. In contrast,
for twists of f (z) = z2 + i , the problem of determining rationality of a twist h ◦ f
reduces to checking the image of h under a homomorphism to a finite group of order
100. Among these combinatorial classes there are precisely two classes of rational
maps, namely z �→ z2 ± i , and a countably infinite family of pairwise inequivalent
twists of the form hn ◦ g, n ∈ Z, where g is a particular obstructed twist and h is a
Dehn twist about the obstruction of g.

The first statement follows from a general result now known as the Berstein-Levy
theorem (Levy 1985), while the second is more recent and is one of the main results
of Bartholdi and Nekrashevych’s article (Bartholdi and Nekrashevych 2006, §6).
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When all twists of f are equivalent to rational maps, we say its pure Hurwitz class
is completely unobstructed. Some pure Hurwitz classes are completely obstructed
(defined analogously) and some are neither, i.e. contain both obstructed and unob-
structed maps.

Induced Dynamics on Curves. A simple closed curve in S2 − P( f ) is essential if
it is not freely homotopic to a constant curve at a point in S2 − P( f ). An essential
curve is peripheral if it is homotopic into arbitrarily small neighborhoods of a point
of P( f ). A Thurston map f and all its iterates are unramified outside the set P( f ),
so curves in S2− P( f ) can be iteratively lifted under f . For example, it is easy to see
that under iterated pullback the blue ellipse γ in Fig. 1 is periodic of period 3 up to
homotopy, and that deg( f 3 : γ̃ → γ ) = 4, where γ̃ is the unique preimage of γ under
f 3 that is essential and nonperipheral in S2 − P( f ). There are countably infinitely
many simple closed curves up to homotopy in S2 − P( f ), though, and it is harder to
see the following:

Theorem 2 (Pilgrim2012,Theorem1.6)Under iteratedpullbackof the rabbit polyno-
mial f (z) = z2+cR, any simple closed curve becomes either inessential or peripheral
in S2 − P( f ) or, up to homotopy, falls into the above 3-cycle.

See the end of Sect. 7 for an outline of another way to prove this result.
Focusing on the behavior of curves under pullback is important. The statement of

W. Thurston’s characterization theorem for rational maps among Thurston maps says
that obstructions to f being rational are multicurves � ⊂ S2 − P( f ) with a certain
invariance property. Specifically: after deleting inessential and peripheral preimages,
we have f −1(�) ⊂ � up to homotopy in S2 − P( f ), and the spectral radius of a
certain associated linear map f� : R� → R

� is greater than or equal to 1.

Teichmüller Theory. The proof of W. Thurston’s characterization theorem reduces
the question “Is f equivalent to a rational map?” to the problem of finding a fixed
point for a certain holomorphic self-map σ f : Teich(S2, P( f )) → Teich(S2, P( f ))
of a Teichmüller space, given by pulling back complex structures under f ; see Douady
and Hubbard (1993). For the precise definition of σ f , we refer the reader to Buff et al.
(2009). Although σ f is complicated and transcendental, it covers a finite algebraic
correspondence on moduli space:

Teich(S2, P( f ))

π

��

σ f ��

ω

����
���

���
���

� Teich(S2, P( f ))

π

��

W
Y

�����
���

���
��

X

����
���

���
���

Moduli(S2, P( f )) Moduli(S2, P( f ))

See Koch (2013) and Koch et al. (2016). In the above diagram, Y is a finite covering, X
is holomorphic, and only σ f depends on f ; up to isomorphism induced by conjugation
by impure mapping class elements, the remainder depends only on the pure Hurwitz
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class of f , cf. Koch (2013) and Koch et al. (2016, §3). In the case of the rabbit,
the moduli space is isomorphic to P

1 − {0, 1,∞}, the map X is injective, so that
we may regard W ⊂ P

1 − {0, 1,∞}, the map Y is given by x �→ 1 − 1
x2
, and

W = P
1 − {±1, 0,∞}; see Bartholdi and Nekrashevych (2006). For quadratics with

four postcritical points and hyperbolic orbifold, X is always injective, and the formulas
forY ◦X−1 are quite simple. For othermaps, the equations defining the correspondence
W may be complicated. This happens even for maps with four postcritical points,
including Euclidean quadratics, many cubics, and most NET maps.

Of special interest is the group G f < PMod(S2, P( f )) represented by liftable
homeomorphisms h, i.e. those for which there is a lift h̃ representing an element in
PMod(S2, P( f )) with h ◦ f = f ◦ h̃; the assignment h �→ h̃ gives a homomor-
phism φ f : G f → PMod(S2, P( f )) which we call the virtual endomorphism on
PMod(S2, P( f )). If there is a fixed point τ of σ f , and if w := ω(τ),m := Y (w) =
X (w), then φ f = X∗ ◦ Y−1∗ is the induced map on fundamental groups based at these
points. The domain of φ f is the subgroup Y∗(π1(W), w).

Nearly Euclidean Thurston Maps. The family of nearly Euclidean Thurston (NET)
maps, introduced in Cannon et al. (2012), provides an extremely rich family of simple
examples of Thurston maps for which explicit algorithmic computations are possible.
By definition, a Thurston map f is NET if (1) each critical point has local degree 2,
and (2) #P( f ) = 4. So, both z �→ z2 + cR and z �→ z2 + i are NET maps. A NET
map is Euclidean if and only if P( f )∩C( f ) = ∅. One thing that makes NETmaps so
interesting is that each NETmap f admits what we call a NET map presentation. This
means that f is combinatorially equivalent to a map in a very special normal form.
See Sect. 3. Conversely, a NET map presentation defines a combinatorial equivalence
class of NET maps.

NET Map Presentation for the Rabbit. Figure 2 shows a NET map presentation
diagram for the rabbit f (z) = z2 + cR . With some conventions understood, it is
remarkably simple. Here are the details.

Let 
2 = Z
2, and let 
1 < 
2 be the lattice generated by (0,−1) and (2, 1). For

i = 1, 2 let �i be the groups generated by 180◦ rotations about the elements of 
i ,
and let S2i = R

2/�i be the quotient. A fundamental domain for �1 is shown in Fig. 2.
Since �1 < �2 there is an “origami” quotient map id : S21 → S22 . Let A =

[
0 2−1 1

]
,

Fig. 2 A NET map presentation
diagram for the rabbit
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b = [
2
1

]
and � : R2 → R

2 be the affine map �(x) = Ax + b. The columns of A are
our lattice generators, and b is the circled lattice point in Fig. 2. The map � induces
an affine homeomorphism � : S22 → S21 . We set g = � ◦ id; it is an affine branched
cover of S21 to itself. Finally, we put f = h ◦ g where h : S21 → S21 is a point-pushing
homeomorphism along the indicated green (dashed horizontal) segments in Fig. 2.
Figure 2 completely describes this Thurston map up to combinatorial equivalence.

Computations for NET Maps. If f is a NET map, then #P( f ) = 4. This makes
things much easier than for general Thurston maps. After some natural identifications,
we have the following.

(1) The Teichmüller space Teich(S2, P( f )) is the upper half-plane H ⊂ C.
(2) Thepure andordinarymapping class groupsPMod(S2, P( f )) andMod(S2, P( f ))

are the congruence subgroupP�(2) andPSL(2, Z)�(Z/2Z×Z/2Z) respectively.
(3) The domain of the correspondence W is a classical modular curve (see Sect. 4).
(4) The map Y :W → Moduli(S2, P( f )) extends to a Belyi map Y :W → P

1.
(5) The homotopy classes of curves in S2 − P( f ) are classified by their slopes, that

is, elements of Q = Q ∪ {±1/0 = ∞}; with conventional identifications, each
slope p/q corresponds to the ideal boundary point −q/p ∈ ∂H.

(6) By taking preimages of curves, we obtain a slope function μ f : Q → Q ∪ {}
where  denotes the union of inessential and peripheral homotopy classes; this
encodes the Weil–Petersson boundary values of σ f , shown to exist in general by
Selinger (2012). More precisely, if p

q ∈ Q and σ f (− q
p ) ∈ Q, then μ f (

p
q ) =

−σ f (− q
p )−1. If σ f (− q

p ) /∈ Q, then μ f (
p
q ) = .

(7) Varying the choice of translation term b does not affect the fundamental invariants,
such as σ f above, or the ones given below in Theorem 3 (so long as such choices
result in maps with four postcritical points, which is almost always the case).
Thus virtual NET map presentation diagrams, in which the translation term is
omitted, suffice to compute such invariants.

SinceNETmaps are very close to affinemaps, it turns out that explicit computations
of what happens to slopes under pullback are possible.

Theorem 3 (Cannon et al. 2012, Theorems 4.1, 5.1, 5.3) Given a NET map presen-
tation for a Thurston map f and the slope p/q of a curve γ , there is an algorithm
which computes

(1) c f (p/q) = the number of essential and nonperipheral preimages γ̃1, . . . , γ̃c ⊂
f −1(γ ),

(2) d f (p/q) = the common degree by which these preimages map onto γ , and
(3) μ f (p/q) = the slope of the common homotopy class of the preimages γ̃i .

The behavior of the slope function μ f is rather intricate. For the rabbit, Fig. 3 is a
plot of the values μ f (

p
q ) with |p| ≤ 50 and 0 ≤ q ≤ 50. In fact, the closure of this

graph is all of R
2.

Themultiplierof p/q under f is δ f (p/q) = c f (p/q)/d f (p/q).When#P( f ) = 4,
W. Thurston’s characterization theorem reduces to the following. A Thurston map f
with hyperbolic orbifold is obstructed if and only if there exists a slope p/q for which
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-4 -2 0 2 4

-4

-2

0

2

4

Fig. 3 A portion of the graph of the rabbit’s slope function

μ f (p/q) = p/q and δ f (p/q) ≥ 1. It turns out that knowledge of data points of the
form (p/q, p′/q ′, δ f (p/q)), where p′/q ′ = μ f (p/q), restricts the possible slopes of
such obstructions:

Theorem 4 (Half-Space Theorem (Cannon et al. 2012, Theorem 6.7)) Suppose
p′/q ′ = μ f (p/q) �= p/q or . There is an algorithm that takes as input the
triple (p/q, p′/q ′, δ f (p/q)) and computes as output an excluded open interval
J = J (p/q, p′/q ′, δ f (p/q)) ⊂ Q containing −q/p such that no point of J is the
negative reciprocal of the slope of an obstruction.

The intervals in Theorem 4 are obtained from half-spaces in H. The boundary of
a half-space in H has a finite part, consisting of points in H, and an infinite part,
consisting of points in ∂H. The intervals in Theorem 4 are the infinite boundary points
of half-spaces in H minus endpoints. Figure 4 shows the deployment of some of the
half-spaces (in grey, with black boundaries, |p| ≤ 25, |q| ≤ 25) for these excluded
intervals in the case of the presentation of the rabbit in Fig. 2.
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-1 -.5 0 .5-2 -1.5

Fig. 4 Half-spaces for the rabbit

It may happen that for some finite set {p1/q1, . . . , pm/qm} the associated excluded
intervals cover all ofQ. This implies that there are no obstructions and therefore, byW.
Thurston’s characterization theorem, f is equivalent to a rational map. As indicated
by Fig. 4, finitely many excluded intervals cover Q for the rabbit. In fact, careful
inspection shows that three half-spaces suffice. An extension of this theorem to the
case when μ f (p/q) = p/q or is described in Sect. 8. See the discussion of Sect. 8
in the introduction below.

Parry with assistance from Floyd has written and continues to improve a computer
program NETmap which computes information like the above for a given NET map.
Figures 3 and 4 are part of this program’s output for the rabbit with the presentation in
Fig. 2. That it can do what it does illustrates the tractability of NET maps. Executable
files, documentation and more can be found at the NET maps (2016) website.

Summary. Here is a summary of this article.
Findings (Sect. 2). We briefly report on the phenomena observed among the NET
maps we have investigated.

NET map presentations (Sect. 3). This section explains presentations of general NET
maps of the type given above for the rabbit.

Hurwitz classes (Sect. 4). We first briefly recall some terminology and facts related to
Hurwitz classes.We present invariants of Hurwitz classes of NETmaps, in particular, a
complete set of invariants for impure Hurwitz classes of NETmaps. For NETmaps, an
impure Hurwitz class consists either entirely of Euclidean maps, or of non-Euclidean
maps.

Parry has written a computer program which enumerates these impure Hurwitz
class invariants and outputs one representative virtual NETmap presentation for every
impure Hurwitz class of NET maps. For the definition of NET map presentation, see
Sect. 3. It organizes these virtual NET map presentations by elementary divisors. (See
the discussion of Hurwitz invariants in Sect. 4 for the definition of their elementary
divisors.) The NET map web site (2016) contains a catalog of these representative
NET map presentations through degree 30. It also contains NETmap’s output for
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every such example. We use the notation mnHClassk to denote the kth virtual NET
map presentation with elementary divisors m and n in this catalog.

We prove the following theorem.

Theorem 5 Suppose f is a non-Euclidean NET map andH its impure Hurwitz class.
There is an algorithm which computes the image of δ f . This image δ(H) depends only
onH and not on the choice of representative f . Furthermore:

(1) δ(H) = {0} ⇐⇒ σ f is constant;
(2) δ(H) ⊂ [0, 1) ⇐⇒ H is completely unobstructed;
(3) δ(H) � 1 ⇐⇒ H contains infinitely many distinct combinatorial classes.

There are analogous statements for general Thurston maps and pure Hurwitz
classes.

We discuss instances of statement 1 in Finding 7 of Sect. 2. We discuss instances
of statement 2 in Findings 9 and 10. We discuss instances of when H contains only
finitely many distinct combinatorial classes in Finding 4.

In Sect. 4, we also relate the correspondence W to classical modular curves.

Invariants of degree 2NETmaps (Sect. 5).Wediscuss invariants of degree 2NETmaps.
The complete classification for quadratics has recently been completed by Kelsey and
Lodge (2017). In Floyd et al. (2017b), a classification of dynamical portraits for NET
maps is given; these classify the corresponding pure Hurwitz classes in degrees 2
and 3.

A conformal description of σ f for a degree 2 example (Sect. 6). This section demon-
strates the tractability of NET maps. It illustrates how numerous invariants of NET
maps can be computed by doing so for a specific example. We show for this exam-
ple that the pullback map is the analytic continuation, via repeated reflection, of a
conformal map between ideal hyperbolic polygons.

For this, recall that the slope function μ f encodes the boundary values of σ f , and
that lifting under f determines a virtual endomorphism φ f : PMod(S2, P( f )) ���
PMod(S2, P( f )) with domain G f . By enlarging G f to include reflections and so
extending φ f , and noting that reflections must lift to reflections, we can sometimes
obtain detailed information about both φ f and σ f . In this way exact calculations of
certain values of σ f are sometimes possible. Along similar lines, a perhaps remarkable
feature is that if μ f (p/q) = , in some circumstances, exploiting the structure of
functional equations involving reflections yields exact calculations of the limiting
behavior of σ f (τ ) as τ → −q/p from within a fundamental domain of G f . This
analysis is done for a particular example in Sect. 6. It is done for the rabbit near the
end of Sect. 7.

More generally, the pullbackmapof every quadraticNETmap is the analytic contin-
uation, via repeated reflection, of a conformalmap between ideal hyperbolic polygons.
This is also surely true of all pullback maps of cubic NET maps. In all of these cases
NETmap reports that the subgroup of liftables in the extended modular group (which
allows reversal of orientation) acts onH as a reflection group. However, there are NET
maps with degree 4 (41HClass3) for which the extended modular group liftables do
not act onH as a reflection group. This seems to be the predominant behavior in higher
degrees. In such cases we do not understand the behavior of σ f as well.
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Fig. 5 A presentation diagram
for a NET map whose rationality
cannot be detected by the
half-space theorem but whose
rationality is detected by the
extended half-space theorem

Dynamics on curves in degree 2 (Sect. 7). Relying heavily on the results of Sect. 6,
we investigate the dynamics on the set of homotopy classes of curves under iterated
pullback of quadratic NET maps with one critical postcritical point. For a map μ :
X → X from a set X to itself, we say a subset A of X is a finite global attractor if
A consists of finitely many cycles into which each element x ∈ X eventually iterates.
We show that for maps in this class that are rational, there is a finite global attractor
containing at most four slopes, while for obstructed maps, there may be either (a) a
finite global attractor; (b) an infinite set of fixed slopes with no wandering slopes; or
(c) a finite set of fixed slopes coexisting with wandering slopes.

We remark that using techniques from self-similar groups, Kelsey andLodge (2017)
have accomplished this for all quadratic rational maps f with #P( f ) = 4 and hyper-
bolic orbifold.

The extended half-space theorem (Sect. 8). The half-space theorem,Theorem4, applies
to all extended rational numbers r which are mapped to different extended rational
numbers by the Thurston pullback map σ f of a NET map f . The half-space theorem
provides an explicit interval about r , called an excluded interval, which contains no
negative reciprocals of slopes of obstructions for f . If finitely many such excluded
intervals cover a cofinite subset of ∂H, then we have only finitely many remaining
slopes to check to determine whether f is combinatorially equivalent to a rational
map.

Computations using NETmap suggest that there exist many NET maps for which
every finite union of excluded intervals omits an interval of real numbers. Under
suitable hypotheses, this can be proved rigorously. For example, consider the NET
map f with the presentation diagram in Fig. 5. It is rational since the algorithms show
δ f (p/q) ∈ [0, 1) for all p, q. However, one can prove that every excluded interval
arising from the half-space theorem, Theorem 4, is bounded. This implies that every
finite union of such intervals fails to cover all of the boundary.

Saenz Maldonado (2012) establishes rationality of his main example by finding
infinitely many excluded intervals. This provides motivation to extend the half-space
theorem to extended rational numbers r such that either σ f (r) = r or σ f (r) ∈ H.
This is what the extended half-space theorem does. It does not actually provide any
new excluded intervals. Instead it provides a way to construct an explicit union of
infinitely many excluded intervals such that this union is a deleted neighborhood of a
given extended rational number r such that either σ f (r) ∈ H or σ f (r) = r and −1/r
is not an obstruction with multiplier 1.

One feature of the computer program NETmap is to implement a straightforward
algorithm based on the extended half-space theorem. In practice, it almost always
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determines whether or not a NET map is, or is not, equivalent to a rational map. This
leads us to

Conjecture 1 Suppose f is a NET map. Then the extended half-space algorithm
decides, in finite time, whether or not f is equivalent to a rational function.

For general Thurston maps, that such an algorithm exists in theory is announced
in Bonnot et al. (2012). That such an algorithm exists in practice is announced in
Bartholdi and Dudko (2017, Algorithm V.8) and indeed this is what Bartholdi’s pro-
gram (Bartholdi 2014) attempts to do.

We outline a proof of the extended half-space theorem in Sect. 8.

2 Findings

We report here on many findings of interest for NET maps.

(1) It is conjectured (see e.g. Lodge 2015, §9) that for non-Lattès rational maps,
the pullback relation on curves has a finite global attractor. For NET maps, our
evidence suggests that, more generally, this holds if there do not exist obstructions
withmultiplier equal to 1. The converse, however, is false.More precisely, in Sect.
7 we prove Theorem 8, which shows that a NET map f0 introduced in Sect. 6
with virtual presentation 21HClass1 is obstructed and its pullback map on curves
has a finite global attractor which consists of just the obstruction. Theorem 8 also
shows that there exist many obstructed maps without finite global attractors.

(2) By perturbing flexible Lattès maps slightly within the family of NET maps, we
can build examples of NET maps whose slope functions have many fixed points.
By perturbing other Lattès maps, we can build examples of NET maps whose
slope functions have cycles of lengths 2, 3, 4 or 6; other examples yield 5–11 and
13–15, inclusive. We do not know whether all cycle lengths occur.

(3) There are many examples of NET maps with hyperbolic orbifolds for which
no curve has all of its preimages trivial: Example 3.1 of Cannon et al. (2012);
the main example of Lodge (2015); all NET maps in impure Hurwitz classes
represented by the following virtual presentations: 22HClass6; 31HClass 5, 6,
9; 51HClass 14–16, 23, 25. This property is equivalent to surjectivity of X
(Koch et al. 2016, Theorem 4.1). Indeed, among such examples there occur those
whose pure (even impure)Hurwitz class is completely unobstructed (22HClass6),
completely obstructed (31HClass9 with translation term λ1), and mixed-case
obstructed (Example 3.1 of Cannon et al. 2012 and the main example of Lodge
2015).

(4) There exist NET maps f whose impure Hurwitz class H contains only finitely
many Thurston equivalence classes, some of which are obstructed and some of
which are not. Statement 3 of Theorem 5 shows that this is equivalent to the
existence in δ(H) of some multipliers which are less than 1, some multipliers
which are greater than 1 but none equal to 1. This occurs for 41HClass6, 8, 11,
19, 24.

(5) The operation of formal mating takes the dynamics of two polynomials and glues
them together to form a Thurston map; see e.g. Milnor (2004). Given a Thurston
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Fig. 6 A presentation diagram
for an NET map that arises as a
mating in at least φ(2m + 1)
ways, where φ is Euler’s totient
function

Fig. 7 A presentation diagram for a NET map with degree 2m + 1 and dynamic portrait 29 which arises
as a mating in at least m + 1 ways

map, it might be expressible as a mating in multiple ways. The NETmap of Fig. 6
arises as a mating in at least φ(2m+1) ways, where φ is Euler’s totient function;
that of Fig. 7 in at leastm+1 ways. This is established by showing that μ f has at
least the corresponding number of equators—fixed-points of maximal multiplier,
with the additional condition of preserving orientation—and appealing to Meyer
(2014, Theorem 4.2).

(6) There are at least two simple ways to create pairs of combinatorially inequivalent
Thurston maps f , g for which σ f = σg:
(a) Let g be any NET map, let h be a flexible Lattès map with P(h) = P(g) and

let f = g ◦ h. Since σh is the identity map, σ f = σg .
(b) The translation term in the affine map� in the definition of NETmap presen-

tation does not affectσ f . For example, it turns out that changing the translation
term in aNETmap presentation for f (z) = z2+i obtains aNETmap gwhose
dynamic portrait is different from that of f , but σ f = σg . Thus typically, a
given NET map f has three cousins sharing the same induced map σ f .

However, there exist other examples: the NET maps with virtual presentation
41HClass19 have the same pullback maps as those with virtual presentation
41HClass24. These phenomena suggest that non-dynamical, Hurwitz-type invari-
ants might be viewed as more fundamental than dynamic portraits.

(7) It is possible for a NET map f to have a constant pullback map σ f . Examples are
given in Cannon et al. (2012, §10) and Saenz Maldonado (2012, Chap. 5). The
property that σ f is constant depends only on the impure Hurwitz class of f and
hence only on its Hurwitz structure set (Sect. 4, Hurwitz invariants).

Proposition 5.1 of Buff et al. (2009) provides a way to construct Thurston maps f
with constant pullback maps. Very briefly, the idea here is that if f = g ◦ s and the
pullback map of s maps to a trivial Teichmüller space, then the pullback map of f is
constant. We refer to the hypotheses of this Proposition 5.1 as McMullen’s condition.

To describe theNETmapswhich satisfyMcMullen’s condition,we define two types
of Hurwitz structure sets. Let G be a finite Abelian group generated by two elements
such that G/2G ∼= (Z/2Z) ⊕ (Z/2Z). Let HS be a Hurwitz structure set in G. We
say thatHS is an MC2 Hurwitz structure set ifHS = {±a} � {±b} � {±c} � {±d},
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where both a and b have order 4 and 2a = 2b = c − d. We say that HS is an MC4
Hurwitz structure set ifHS = {±a}� {±b}� {±c}� {±d}, where both a and b have
order 4, 2a �= 2b, c = a + b and d = a − b.

The following theorem essentially answers the question of what NET maps satisfy
McMullen’s condition. Its proof will appear elsewhere.

Theorem 6 A NET map is impurely Hurwitz equivalent to a NET map which satisfies
McMullen’s condition if and only if its Hurwitz structure set is either an MC2 or MC4
Hurwitz structure set.

Now that we essentially knowwhat NETmaps satisfyMcMullen’s conditions, what
NET maps have constant pullback maps? We do not know the answer, but we have
the following. We say that a NET map f is imprimitive if there exist NET maps f1
and f2 such that f1 is Euclidean, f = f1 ◦ f2 and the postcritical sets of f , f1 and
f2 are equal. In this case the pullback map of f is constant if and only if the pullback
map of f2 is constant. We say that f is primitive if it is not imprimitive. These notions
extend to Hurwitz structure sets. We have found five equivalence classes of primitive
Hurwitz structure sets whose NET maps have constant pullback maps but which do
not satisfy McMullen’s condition. Here are representatives for them.

{±(1, 0),±(1, 1),±(7, 1),±(3, 2)} ⊆ (Z/8Z)⊕ (Z/4Z) deg( f ) = 8

{±(2, 0),±(0, 2),±(2, 2),±(4, 2)} ⊆ (Z/6Z)⊕ (Z/6Z) deg( f ) = 9

{±(1, 0),±(0, 1),±(5, 1),±(2, 2)} ⊆ (Z/6Z)⊕ (Z/6Z) deg( f ) = 9

{±(1, 0),±(0, 1),±(1, 2),±(4, 1)} ⊆ (Z/6Z)⊕ (Z/6Z) deg( f ) = 9

{±(1, 0),±(1, 2),±(11, 2),±(3, 3)} ⊆ (Z/12Z)⊕ (Z/6Z) deg( f ) = 18

The second of these is the degree 9 example in Cannon et al. (2012, §10) and Saenz
Maldonado (2012, Chap. 5). This leads us to make the following conjecture.

Conjecture 2 The Hurwitz structure set of every primitive NET map with constant
pullback map is either an MC2 or MC4 Hurwitz structure set or it is equivalent to one
of the above five exceptional Hurwitz structure sets.

This conjecture has been verified by computer for all NET maps with first elemen-
tary divisor m ≤ 300. In particular, it has been verifed for all NET maps with degree
at most 300.

(8) Table 1 gives the possibilities for the genus and number of cusps of W for all
NET maps with degree at most 8. See Sect. 4 for a discussion of the relation-
ship between W , classical modular curves, and Teichmüller curves. Using the
Riemann–Hurwitz formula, one can show that

deg(Y ) = 2(g − 1)+ n.

Note the entries (0, 3) for whichY :W → Moduli(S2, P( f )) is an isomorphism.
The one in degree 4 arises from flexible Lattès maps. The one in degree 8 arises
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Table 1 A table of all possible ordered pairs (g, n), where g is the genus and n is the number of cusps of
W with degree d ≤ 8

d 2 3 4 5 6 7 8

(g, n) (0,4) (0,6) (0,3) (1,6) (0,6) (2,6) (0,3)

(0,4) (1,12) (0,10) (4,18) (0,4)

(0,6) (1,8) (0,6)

(0,10) (1,16) (0,10)

(1,8)

(1,16)

(2,14)

(5,24)

from compositions g2 ◦ g1, where g1 is a quadratic Thurston map with three
postcritical points and g2 is a flexible Lattès map; note that every mapping class
element lifts under g2.

(9) There are many examples of NET maps f for which σ f is nonconstant and for
which the impure Hurwitz class is completely unobstructed: 22HClass1, 4–6;
31HClass7. Indeed, the impure Hurwitz class of almost every NET map which
is a push of a flexible Lattès map is completely unobstructed, and the associ-
ated pullback maps are nonconstant. The NET map with presentation diagram in
Fig. 5 is an example of this. However, all NET maps whose pullback maps are
nonconstant and for which the impure Hurwitz class is completely unobstructed
seem to have degrees of the form n2, 2n2, 3n2 or 6n2. We have verified this by
computer through degree 100.

(10) Among quadratic pure Hurwitz classes, we observe that being completely
unobstructed is equivalent to the condition that the inverse Y ◦ X−1 of the corre-
spondence extends to a postcritically finite hyperbolic rationalmap g f : P1 → P

1

whose postcritical set consists of the three points at infinity in Moduli(S2, P( f ).

3 NET Map Presentations

We next describe NET map presentations. This section expands on the discussion of
a NET map presentation for the rabbit in the introduction. Details can be found in
Floyd et al. (2017a). We begin with the lattice
2 = Z

2, a proper sublattice
1 and an
orientation-preserving affine isomorphism � : R

2 → R
2 such that �(
2) = 
1. Let

�1 be the group of isometries of R
2 of the form x �→ 2λ± x for some λ ∈ 
1. This

information determines a Euclidean Thurston map g : R
2/�1 → R

2/�1 as in the
introduction’s discussion of a NET map presentation for the rabbit. The postcritical
set P1 of g is the image of 
1 in R

2/�1. The image of 
2 −
1 in R
2/�1 is the set

of critical points of g. To describe g, all we need is to express � as �(x) = Ax + b,
where A is a 2 × 2 matrix of integers and b is an integral linear combination of the
columns, λ1 and λ2, of A. We may even assume that b is either 0, λ1, λ2 or λ1 + λ2.
Then λ1, λ2 and b determine g up to Thurston equivalence.
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The parallelogram F1 with corners 0, 2λ1, λ2 and 2λ1+λ2 is a fundamental domain
for the action of �1 on R

2. The points of 
1 in F1 are 0, λ1, 2λ1, λ2, λ1 + λ2 and
2λ1+λ2. These six points map onto P1. We choose six line segments (possibly trivial,
just a point) whose union is the full inverse image in F1 of four disjoint arcs β1, β2,
β3, β4 in R

2/�1. Each of the six line segments joins one of 0, λ1, 2λ1, λ2, λ1 + λ2,
2λ1+λ2 and an element ofZ

2. We call them the point-push line segments, and we call
β1, β2, β3, β4 the point-push arcs; we color them green (dashed) whenever possible.

Recall that if β is an oriented arc in a surface, then a point-pushing homeomorphism
along β is a homeomorphism which is the terminal homeomorphism of an isotopy of
the surface supported in a regular neighborhood of β that pushes the starting point of
β to its ending point along β. We have four point-push arcs β1, β2, β3, β4. Pushing
along each βi determines, up to homotopy rel P1, a “push map” homeomorphism
h : R

2/�1 → R
2/�1 which pushes along β1, β2, β3, β4 in R

2/�1 from P1 to a set
P2 of four points in the image of 
2.

Now that we have g and h, we set f = h ◦ g. This is a Thurston map. It is a
NET map if it has four postcritical points, in which case its postcritical set is P2. This
fails only in special situations when the degree of f is either 2 or 4. (See the second
paragraph of Section 2 of Cannon et al. 2012 for more on this.) Every NET map can
be expressed as a composition of a Euclidean map and a push map in this way. We
call this a NET map presentation of f . The result of omitting the translation term b
from a NET map presentation is by definition a virtual NET map presentation. The
program NETmap takes as input a virtual NET map presentation.

So every NET map can be described up to Thurston equivalence by a simple dia-
gram. This diagram consists of first the parallelogram F1. This determines λ1 and λ2
and therefore the matrix A. Second, one of the elements 0, λ1, λ2, λ1 + λ2 in F1 is
circled to indicate the translation term b. Third, the (nontrivial) point-push line seg-
ments are drawn in F1. We call this a NET map presentation diagram. Figure 2 is such
a diagram for the rabbit.

Note that the group SL(2, Z) acts naturally on NET map presentation diagrams:
given P ∈ SL(2, Z), transform the entire diagram by application of P . In Floyd et al.
(2017a) it is shown that this corresponds to postcomposition by the element of the
modular group determined by P .

4 Hurwitz Classes

Hurwitz Equivalence. Let f, f ′ : S2 → S2 be Thurston maps with postcritical
sets P = P( f ) and P ′ = P( f ′). We say that f and f ′ belong to the same
modular group Hurwitz class if there exist orientation-preserving homeomorphisms
h0, h1 : (S2, P) → (S2, P ′) such that h0 ◦ f = f ′ ◦ h1. If in addition h0 and h1 agree
on P , then we say that f and f ′ belong to the same pure modular group Hurwitz class.
For brevity, we usually speak of pure and impure Hurwitz classes.

Proof of Theorem 5. Statements 1 and 2 of Theorem 3 imply that there is an algorithm
which computes c f (p/q) and d f (p/q) for every slope p/q. Theorem 4.1 of Cannon
et al. (2012) implies that these values depend only on the image of the ordered pair
(q, p) in Z2m ⊕ Z2n once 
2/2
1 is appropriately identified with Z2m ⊕ Z2n . This
proves that there is an algorithm which computes the image of δ f .
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Let h : (S2, P( f )) → (S2, P( f )) be an orientation-preserving homeomorphism.
Then h induces by pullback a bijectionμh on slopes. Let s be a slope. Then ch◦ f (s) =
c f (μh(s)) and dh◦ f (s) = d f (μh(s)). Also, c f ◦h(s) = c f (s) and d f ◦h(s) = d f (s).
This proves the second assertion of Theorem 5.

We now establish the three final assertions. Statement 1 follows from Koch et al.
(2016, Theorem 5.1). Statement 2 follows from W. Thurston’s characterization theo-
rem and the observation that the impure modular group acts transitively on slopes.

We now turn to the necessity in statement 3. Let � denote the equivalence relation
on H determined by isotopy rel P = P( f ). So H/� is the set of isotopy classes of
maps in the impure Hurwitz class of f ; in what follows, we write equality for equality
in this set.

The fullmodular groupMod(S2, P) acts onH/�both by pre-composition and post-
composition. The set of combinatorial classes inH is in bijective correspondence with
the orbits of the induced conjugation action of Mod(S2, P) on H/�. Since the pure
mapping class group PMod(S2, P) has finite index in Mod(S2, P), it suffices to show
that there are infinitely many orbits under the conjugation action of PMod(S2, P).

The assumption 1 ∈ δ f (H) implies that there exist h0, h1 representing elements
of Mod(S2, P) for which f∗ := h0 f h1 has an obstruction given by a curve γ with
multiplier equal to 1. Let T be a (full, not half) Dehn twist about γ . By Koch et al.
(2016, Theorem 9.1) there is a smallest positive integer k such that T k commutes
with f∗ up to isotopy relative to T k f∗ = f∗T k in H/�. Let k′ be the smallest
positive integer for which T k′ lifts under f∗ to an element of Mod(S2, P). Since Dehn
twists must lift to Dehn twists, and f∗ leaves γ invariant, we have T k′ f∗ = f∗T k′′

for some k′′ ∈ Z. Since k′ is minimal, k = nk′ for some positive integer n. Thus
f∗T nk′ = f∗T k = T k f∗ = T nk′ f∗ = f∗T nk′′ . The right action of PMod(S2, P) on
H/� is free (Pilgrim 2012, §3 or Kameyama 2001, Prop. 4.1) and so k = k′.

For n ∈ Z let fn := f∗T n . We claim that for n �= m ∈ Z, the maps fn and fm
are not conjugate via an element of PMod(S2, P). We argue somewhat similarly as
in Koch et al. (2016, §9). Suppose as elements ofH/� we have h fn = fmh for some
h ∈ PMod(S2, P). The (class of) curve γ is the unique obstruction for both fn and
fm , so h must fix the class of γ . Since h ∈ PMod(S2, P), h is a power of T , say
T l . Then h fn = fmh �⇒ T l f∗T n = f∗TmT l . This equation implies that T l lifts
under f∗ to a pure mapping class element and so by the previous paragraph l = qk
for some q. Continuing, we have f∗TmT l = T l f∗T n = T qk f∗T n = f∗T nT qk �⇒
f∗T qkT n = f∗TmT qk �⇒ f∗T n+l = f∗Tm+l �⇒ n = m, again by freeness of
the right action.

To prove sufficiency, suppose 1 /∈ δ(H). It suffices to show there are only finitely
many combinatorial classes of obstructed maps. We use the combination and decom-
position theory developed in Pilgrim (2003) and outline the main ideas.

Suppose f ∈ H has an obstruction, γ . Let A0 be an annulus which is a regular
neighborhood of γ and put A0 := {A0}. By altering f within its homotopy class we
may assume that the collection A1 of preimages of A0 containing essential nonpe-
ripheral preimages of γ is a collection of essential subannuli of A0 with ∂A1 ⊃ ∂A0;
the restriction f : A1 → A0 is the set of annulus maps obtained by decomposing f
along {γ }. Similarly, if we set U0 to be the collection of two components of S2 −A0,
we obtain a collection of sphere maps f : U1 → U0. Capping the holes of the sphere
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maps to disks yields a collection of Thurston maps with three or fewer postcritical
points, and these are rational, by Thurston’s characterization.

As f varies within H, the collection of sphere maps varies over a finite set of
combinatorial equivalence classes, since they are rational. The hypothesis that the
multiplier of the obstructions are not equal to one implies that the set of combinatorial
equivalence classes of annulus maps vary over a finite set as well. The additional
set-theoretic gluing data needed to reconstruct f from the sphere and annulus maps
also varies over a finite set. By Pilgrim (2003, Theorem 4.5), given two maps f1, f2
presented as a gluing of sphere and annulusmaps, a combinatorial equivalence between
gluing data, a collection of annulus maps, and a collection of sphere maps yields a
combinatorial equivalence between f1 and f2. We conclude that the set of possible
equivalence classes of maps f inH is finite. ��
Modular Groups. From the discussion of the NET map presentation of the rabbit
(Sect. 1) and of NET map presentations (Sect. 3), recall the definition of the quotient
sphere S22 := R

2/�2. Equipped with its Euclidean half-translation structure, it is a
“square pillowcase” with four corners given by the images of the lattice 
2 = Z

2. Let
P be this set of corners. In this case the modular group Mod(S2, P) and pure modular
group PMod(S2, P) have the forms

Mod(S2, P) ∼= PSL(2, Z) � (Z/2Z× Z/2Z)

and

PMod(S2, P) ∼= P�(2) = {A ≡ I mod 2} ⊆ PSL(2, Z).

The group Mod(S2, P) is then the group of orientation-preserving affine diffeomor-
phisms, and P�(2) the subgroup fixing the corners pointwise. The group PSL(2, Z)

fixes the corner corresponding to the image of the origin, but permutes the other three
corners so as to induce the natural action of the symmetric group S3.

Hurwitz Invariants. Useful invariants of a NET map are its elementary divisors,
which we now define. Suppose f is a NET map given by a NET map presentation
with affine map x �→ Ax+b, where A is an integral matrix whose determinant equals
the degree of f . There are P, Q ∈ SL(2, Z) and positive integers m and n such that
n|m and PAQ = [

m 0
0 n

]
. The integersm, n are unique and are the elementary divisors

of A; the matrix on the right is the Smith normal form. They form an impure Hurwitz
invariant. In fact, according to Floyd et al. (2017b, Theorem 5.5), NET maps f and g
have equal elementary divisors if and only if g is Thurston equivalent to a NETmap of
the form ϕ ◦ f for some homeomorphism ϕ : S2 → S2. (Note that ϕ need not stabilize
P( f ).)

For NET maps, a complete invariant of impure Hurwitz classes can be given in
terms of the Hurwitz structure set, HS. To define this, we use the usual data and
Euclidean groups associated to a NET map f . The torus R

2/2
1 is a double cover
of the sphere R

2/�1. The pullback of P( f ) in R
2/2
1 is a subset of the finite group

Z
2/2
1, and it is a disjoint union of the formHS = {±h1}�{±h2}�{±h3}�{±h4}.

This is a Hurwitz structure set. More generally, let G be a finite Abelian group such
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that G/2G ∼= (Z/2Z) ⊕ (Z/2Z). A Hurwitz structure set in G is a disjoint union of
four sets of the form {±h}, where h ∈ G. Returning toHS, if 
′1 is a sublattice of Z

2,
then we say that HS is equivalent to a Hurwitz structure set HS ′ in Z

2/2
′1 if and
only if there exists an orientation-preserving affine isomorphism � : Z

2 → Z
2 such

that �(
1) = 
′1 and the map which � induces from Z
2/2
1 to Z

2/2
′1 takes HS
to HS ′. Theorem 5.1 of Floyd et al. (2017b) states that the equivalence class of HS
under this equivalence relation is a complete invariant of the impure Hurwitz class of
f .

RelatingW to Classical Modular Curves. Let f be a NET map with postcritical set
P( f ). Recall the correspondence X,Y :W → Moduli(S2, P( f )) from Sect. 1. This
correspondence is essentially an impure Hurwitz invariant; see Koch (2013, §2). In
this section we explicitly relate the space W to classical modular curves.

Corollary 5.3 of Floyd et al. (2017b) states that every impure Hurwitz class of
NET maps is represented by a NET map whose presentation matrix is diagonal. So
to understand W , we may assume that the presentation matrix of f has the form
A = [

m 0
0 n

]
, where m and n are positive integers with n|m and mn = deg( f ). By

definition, m and n are the elementary divisors of f . So the presentation of f has
lattices 
2 = Z

2 and 
1 = 〈(m, 0), (0, n)〉. It also has a Hurwitz structure set
HS ⊆ 
2/2
1. The discussion at the end of §2 of Floyd et al. (2017b) shows that the
group G f of pure liftables is isomorphic to the image in PSL(2, Z) of the group Ĝ f of
all elementsM inSL(2, Z) such thatM
1 = 
1,M ≡ 1 mod 2 and the automorphism
of Z

2/2
1 induced by M fixes HS pointwise up to multiplication by ±1.
We interrupt this discussion to define some subgroups of SL(2, Z). Let N be a

positive integer. The principle congruence subgroup of SL(2, Z) with level N is

�(N ) = {[
a b
c d

] ∈ SL(2, Z) : [ a b
c d

] ≡ [
1 0
0 1

]
mod N

}
.

A congruence subgroup of SL(2, Z) is a subgroup which contains �(N ) for some N .
Two such subgroups are

�0(N ) = {[
a b
c d

] ∈ SL(2, Z) : c ≡ 0 mod N
}

and
�0(N ) = {[

a b
c d

] ∈ SL(2, Z) : b ≡ 0 mod N
}
.

Two others are

�1(N ) = {[
a b
c d

] ∈ �0(N ) : a ≡ d ≡ 1 mod N
}

and
�1(N ) =

{[
a b
c d

] ∈ �0(N ) : a ≡ d ≡ 1 mod N
}

.

Wenext relate Ĝ f to these congruence subgroups. The condition thatM ≡ 1 mod 2
simply says that Ĝ f ⊆ �(2). We next interpret the condition that M
1 = 
1.
Let M = [

a b
c d

]
. Since (0, n) ∈ 
1, we need that M · (0, 1) ∈ 
1. Equivalently,

(bn, dn) ∈ 
1. This amounts to requiring that bn ≡ 0 mod m, that is, b ≡ 0 mod m
n .

Since n|m, the condition that M · (m, 0) ∈ 
1 is satisfied by every M ∈ SL(2, Z).
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Hence the condition that M
1 = 
1 is equivalent to the condition that M ∈ �0(mn ).
Therefore Ĝ f ⊆ �0(mn ) ∩ �(2). On the other hand, the group �1(2m) ∩ �1(2n)

stabilizes 
1 and acts trivially on 
2/2
1, and so it fixes HS pointwise. Thus

�(2m) ⊆ �1(2m) ∩ �1(2n) ⊆ Ĝ f ⊆ �0(mn ) ∩ �(2).

In conclusion, let H∗ be the Weil-Petersson completion of H. ThenW is a modular
curve such thatH∗/(�1(2m)∩�1(2n))maps ontoW andW maps ontoH

∗/(�0(mn )∩
�(2)).

5 Invariants of Degree 2 NET Maps

We begin with a discussion of invariants of general Thurston maps and then specialize
to NET maps with degree 2.

Thedynamic portrait is the directed graphwith vertex setC( f )∪P( f ) andweighted
edges

x
degx ( f )−−−−→ f (x).

The static portrait is the bipartite directed graph whose vertex set is the disjoint union
of A := C( f ) ∪ P( f ) and B := P( f ), directed edges

x
degx ( f )−−−−→ f (x)

with x ∈ A, and the elements of A that lie in P( f ) aremarked so as to distinguish them
from those elements of A that do not lie in P( f ). The augmented branch data records,
for each y ∈ P( f ), the partition of d = deg( f ) given by the collection of local degrees

{degx ( f ) : f (x) = y}. For example, the dynamic portrait of the rabbit is (a
2→ b→

c → a, d
2→ d), the static portrait is (p1

2→ q1, p2
2→ q2, p3 → q3, p4 → q4), and

the branch data is ([2], [2], [1, 1], [1, 1]). The static portrait, and hence branch data,
are impure Hurwitz invariants. The dynamic portrait is a pure Hurwitz invariant but
not, in general, an impure Hurwitz invariant.

For NET maps, dynamic and static portraits are completely classified Floyd et al.
(2017b). Table 2 gives the number of dynamic portraits as a function of the degree.

Degree 2 NETMaps.Recall that a quadratic Thurston map is NET if and only if it has
four postcritical points. In degree 2 there are 3 impure Hurwitz classes, completely

Table 2 The number n of dynamic portraits among NET maps of degree d

d 2 3 4 5 6 7 8
n 16 94 272 144 338 152 476

d mod 4, d ≥ 9 0 1 2 3
n 483 153 353 153
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classified by static portrait or, equivalently, by the number of critical points in the
postcritical set; see Theorem 7. Here are the three static portraits. We label marked
points in the domain by pi , we label marked points in the codomain by qi , and we
label unmarked critical points in the domain by ci .

p1 → q1, p2 → q1, p3 → q2, p4 → q2, c1
2→ q3, c2

2→ q4

p1 → q1, p2 → q1, p3
2→ q2, p4 → q3, c1

2→ q4

p1
2→ q1, p2

2→ q2, p3 → q3, p4 → q4

PureHurwitz classes are completely classified by the corresponding dynamic portraits.
There are 16 of them. All but one is represented by rational functions; the exception

is a
2→ b→ a, c

2→ d → c.
Kelsey and Lodge (2017) have completed the classification of quadratic NET com-

binatorial classes. They generalize the methods of Bartholdi–Nekrashevych on the
twisted rabbit problem (Bartholdi and Nekrashevych 2006), analyzing wreath recur-
sions on the pure mapping class group. These wreath recursions are derived from the
16 correspondences on moduli space.

Impure Hurwitz classes in degree 2. In this section we prove Theorem 7. It shows that
two NET maps with degree 2 belong to the same impure Hurwitz class if and only
if they have the same number of critical postcritical points. These maps all have two
critical points and four postcritical points. So there might be either 0, 1 or 2 critical
postcritical points. Hence there are three impure Hurwitz classes of NET maps with
degree 2. The case inwhich there are no critical postcritical points is exactly the case of
the Euclidean NETmaps with degree 2. They form one impure Hurwitz class. Another
is represented by f (z) = z2 + i and the other is represented by the rabbit, corabbit
and airplane. Here is the theorem.

Theorem 7 Two degree 2 NET maps belong to the same impure Hurwitz class if and
only if they have the same number of critical postcritical points.

Proof Let f be a degree 2 NET map. The elementary divisors of f are m = 2 and
n = 1 because their product is deg( f ) = 2 and the second divides the first. The group

2/2
1 in the definition of Hurwitz structure set is then isomorphic to Z4⊕Z2. The
Hurwitz structure set HS of f can thus be identified with a subset of

Z4 ⊕ Z2 = {(0, 0),±(1, 0), (2, 0), (0, 1),±(1, 1), (2, 1)}.

Elements of order 1 or 2 in HS correspond to postcritical points of f which are not
critical. The other elements of HS are paired by multiplication by −1, and these
pairs correspond to critical postcritical points. It is shown in Floyd et al. (2017b) that
two NET maps with equal Hurwitz structure sets belong to the same impure Hurwitz
class. Moreover, transformingHS either by an automorphism of Z4 ⊕Z2 which lifts
to SL(2, Z) or by a translation by an element of order 2 preserves the impure Hurwitz
class of f .
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It is easy to see that if two NET maps belong to the same impure Hurwitz class,
then they have the same number of critical postcritical points. The converse statement
is what must be proved.

Suppose that f is a NET map with degree 2 and no critical postcritical points.
Then the first paragraph of this proof shows that there is only one possibility for the
Hurwitz structure set of f after identifying it with a subset of Z4 ⊕ Z2; it must be
{(0, 0), (2, 0), (0, 1), (2, 1)}. So there is just one impure Hurwitz class of such maps.

Next suppose that f is a NETmapwith degree 2 and exactly one critical postcritical
point. Then the Hurwitz structure set of f contains three of the four elements of order
1 or 2 in Z4 ⊕ Z2. Since translation by an element of order 2 preserves the impure
Hurwitz class of f , we may assume that H contains (0, 0), (2, 0), (0, 1) and either
±(1, 0) or ±(1, 1). Now we verify that

[
1 0
1 1

] ∈ SL(2, Z) induces an automorphism
of Z4 ⊕ Z2 which fixes (0, 0), (2, 0), (0, 1) and interchanges ±(1, 0) and ±(1, 1).
Thus there is only one equivalence class of these Hurwitz structure sets and only one
impure Hurwitz class of such maps.

Finally, suppose that f is a NET map with degree 2 and two critical postcritical
points. In this caseHS must contain±(1, 0) and±(1, 1) in addition to two of the four
elements of order 1 or 2. Since translatingHS by an element of order 2 preserves the
impure Hurwitz class of f , we may assume that HS contains ±(1, 0), ±(1, 1) and
(0, 0).

Suppose in addition that (2, 0) ∈ HS. ThenHS = {(0, 0),±(1, 0), (2, 0),±1, 1)}.
Example 10.3 ofCannonet al. (2012) shows thatHS is never separating (nonseparating
in the language there). Between Lemma 10.1 and Theorem 10.2 of Cannon et al.
(2012) it is shown that this implies that the Thurston pullback map of f is constant.
But Theorem 10.10 of Cannon et al. (2012) shows that there does not exist a NETmap
with degree 2 whose Thurston pullback map is constant. (The Thurston maps for this
choice of HS have fewer than four postcritical points.) Thus (2, 0) /∈ HS.

So HS contains either (0, 1) or (2, 1). One verifies that
[
1 2
0 1

] ∈ SL(2, Z) induces
an automorphism on Z4 ⊕ Z2 which fixes (0, 0), ±(1, 0), ±(1, 1) and interchanges
(0, 1) and (2, 1). Hence there is only one equivalence class of these Hurwitz structure
sets and only one impure Hurwitz class of such maps.

This proves Theorem 7. ��

6 A Conformal Description of σ f for a Degree 2 Example

In this section we discuss how in many, but not all, cases it is possible in a sense to
determine the pullback map σ f : H → H of a NET map f . This description is like
that of the classical triangle functions, as discussed in Chapter 1 of Lehner (1964). For
the triangle functions, we begin with a conformal equivalence between a hyperbolic
triangle and the upper half plane. Herewe beginwith a conformal equivalence between
two hyperbolic triangles or, more generally, two hyperbolic polygons. The map is then
extended to the entire hyperbolic plane using the reflection principle.

We will focus on a particular example map f0. Our discussion involves several
features of f0. For each feature, we provide first a brief general discussion for arbitary
NET maps f , and then illustrate it using our example map f0.
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Fig. 8 A presentation diagram
for a NET map f0; a vertical
curve is an obstruction to
rationality

Example The NET map f0. Our example map f0 is determined up to Thurston
equivalence by the presentation diagram in Fig. 8. We have lattices 
2 = Z

2, 
1 =
〈(2, 0), (0, 1)〉 and Hurwitz structure set

HS = {(0, 0),±(1, 0), (2, 0), (0, 1)} ⊆ Z4 ⊕ Z2 ∼= 
2/2
1.

We also have a Euclidean NET map g and a push map h such that f0 = h ◦ g.
The subgroup G f of liftables in the extended modular group G. Suppose
f now is an arbitrary NET map. We work with the extended modular group
G = EMod(S2, P( f )), which is defined in the same way as the modular group
Mod(S2, P( f )) except that it allows reversal of orientation. §2 of Floyd et al.
(2017b) shows that G is isomorphic to the group Aff(2, Z) of all affine isomorphisms
� : R

2 → R
2 such that �(Z2) = Z

2 modulo the subgroup �2 of all maps of the form
x �→ 2λ± x for some λ ∈ 
2 = Z

2.
Amap ϕ : (S2, P( f ))→ (S2, P( f )) representing a homotopy class inG is liftable

if there exists another such map ϕ̃ such that ϕ ◦ f is homotopic to f ◦ ϕ̃ rel P( f ). The
subgroup of liftables for f is the subgroup G f of G represented by all such liftable
maps ϕ. §2 of Floyd et al. (2017b) shows that G f is isomorphic to the subgroup of G
whose elements lift to elements � ∈ Aff(2, Z) such that �(
1) = 
1 and the map
induced by � on 
2/2
1 stabilizesHS setwise. Turning to our example map f0, we
let

�1(x) =
[
1 0
0 −1

]
x, �2(x) =

[−1 0
2 1

]
x, �3(x) =

[
1 2
0 −1

]
x .

These are elements of Aff(2, Z) which stabilize 
1 and HS. So �1, �2 and �3
determine elements ρ1, ρ2 and ρ3 of G f0 .

In this paragraph we show that ρ1, ρ2 and ρ3 generate G f0 . Let G
+
f0
denote the

subgroup of orientation-preserving elements of G f0 . The discussion in Sect. 4 which
relates W to classical modular curves shows that if �(x) = Ax + b ∈ Aff(2, Z)

is the lift of an element of G+f0 , then A ∈ �0(2). Moreover, one easily verifies that

there is no such � with A = [
1 0
1 1

]
, an element of �0(2). So the set of these matrices

arising as lifts of elements of G+f0 is a proper subgroup of �0(2). On the other hand,
we will soon see from Fig. 10 that the images of ρ1, ρ2 and ρ3 in PGL(2, Z) generate
a subgroup with index 6. (Its intersection with PSL(2, Z) equals the image of �(2).)
It easily follows that G f0 is generated by ρ1, ρ2, ρ3 together with the elements of
G f0 which lift to translations in Aff(2, Z). One finally verifies that only the identity
element of G f0 lifts to a translation. Therefore ρ1, ρ2 and ρ3 generate G f0 .

Evaluation of μ f . Letμ f0 denote the usual slope function which f0 induces on slopes
of simple closed curves in S2− P( f0). We want to evaluate μ f0 at−1,− 1

2 , 1 and∞.
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Fig. 9 The pullback of a simple closed curve with slope − 1
2

This can be done using Theorem 5.1 of Cannon et al. (2012), which provides a method
suitable for computer implementation. In the next paragraph we evaluate μ f0(− 1

2 ) in
a more topological way. The other three evaluations can be made similarly.

The left side of Fig. 9 shows the pullback to the diagram in Fig. 8 of a simple closed
curve γ in S2 − P( f0) with slope − 1

2 ; it is straightforward to check this by taking
the image of the curves under f0. The right side of Fig. 9, while actually meaningless,
might be helpful. We see that f −10 (γ ) has two connected components, one drawn with
dots and the other drawn with dashes. The dotted connected component is peripheral.
On the other hand, the image in S2 of the line segment joining (0, 0) and (1, 0) is a core
arc for the other connected component. Recall that f = h ◦ g where g is Euclidean
and h is a push map. The slope of this core arc relative to P( f0) equals the slope of its
image under h−1 relative to P(g). This image under h−1 is homotopic rel P(g) to the
line segment joining (0, 0) and (2, 1) = 1·(2, 0)+1·(0, 1). Henceμ f0(− 1

2 ) = 1
1 = 1.

In the same way, we find that μ f0(−1) = 0, μ f (1) = 2 and μ f0(∞) = ∞.

Evaluation of μϕ .We continuewith some generalities on affinemaps. For an extended
modular group element ϕ ∈ G let μϕ denote the induced map on slopes. Suppose that
ϕ lifts to � ∈ Aff(2, Z) with linear part given by the matrix A = [

a b
c d

]
. Then A−1

maps the line through (0, 0) and (q, p) to the line through (0, 0) and

[
d −b−c a

] · (q, p) = (−bp + dq, ap − cq).

So μϕ(s) = as−c
−bs+d , where s = p

q .

Evaluation of σϕ . Still focusing on generalities, letσϕ denote themap onH induced by
an extended modular group element ϕ ∈ G. To determine σϕ , it suffices to determine
the action of σϕ on ∂H. We use the expression for μϕ in the previous paragraph.
Because the slope s corresponds to x = − 1

s ∈ ∂H, the map which ϕ induces on ∂H is

σϕ(x) = −
(

a(−1/x)− c

−b(−1/x)+ d

)−1
= dx + b

cx + a
.

So if z ∈ H, then

σϕ(z) = dz + b

cz + a
if ϕ ∈ G+ and σϕ(z) = dz + b

cz + a
if ϕ /∈ G+.

The map f0 induces a virtual endomorphism φ f0 : G ��� G. For a general NET
map f , given an extended modular group element g ∈ G, a lift of g under f might
not be unique. Thus lifting under f maps liftable elements to cosets of DeckMod( f ),
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the subgroup of G represented by deck transformations of f . Proposition 2.4 of Floyd
et al. (2017b) implies that DeckMod( f ) is isomorphic to the group of translations in
2
2 which stabilize the Hurwitz structure set HS modulo the group of translations
in 2
1. For our example f0, this quotient group is trivial; we obtain a well-defined
virtual endomorphism φ f0 : G ��� G induced by f0.

The extended modular group virtual endomorphism maps reflections to reflec-
tions. A NET map f preserves orientation. Therefore, if g ∈ G reverses orientation
and g̃ is any lift of g under f , then g̃ must reverse orientation.

For our example map f0, since φ f0 is a homomorphism, if g ∈ G is a reflection,
then g has order two, therefore φ f0(g) both has order 2 and reverses orientation, and is
therefore again a reflection. Thus in terms of the action of liftable extended mapping
class elements G f0 on H, reflections map to reflections under φ f0 .

Evaluation of the extendedmodular group virtual endomorphism.We continue to
focus on our example map f0. If ϕ ∈ G f0 , then we let ϕ̃ = φ f0(ϕ). In this paragraph
we evaluate μρi , σρi , μρ̃i and σρ̃i for i ∈ {1, 2, 3}. Using the formulas for μρ1 and
σρ1 above, we obtain the leftmost two equations in line 1. We next apply the identity
μ f ◦μϕ = μϕ̃ ◦μ f0 for ϕ ∈ G f0 . Combining this withμρ1 and our values forμ f0 , we
obtain the commutative diagram in line 1. Using the bottom map of the commutative
diagram and the fact that the extended modular group virtual endomorphism maps
reflections to reflections, we easily obtain the rightmost two equations in line 1. We
verify the information in lines 2 and 3 similarly.

μρ1(s) = −s
σρ1(z) = −z

∞,−1 μρ1−−−−→ ∞, 1

μ f0

⏐⏐
⏐⏐μ f0

∞, 0
μρ̃1−−−−→ ∞, 2

μρ̃1(s) = −s + 2

σρ̃1(z) =
−z

2z + 1

(1)

μρ2(s) = −s − 2

σρ2(z) =
z

2z − 1

∞,−1 μρ2−−−−→ ∞,−1
μ f0

⏐⏐


⏐⏐
μ f0

∞, 0
μρ̃2−−−−→ ∞, 0

μρ̃2(s) = −s
σρ̃2(z) = −z

(2)

μρ3(s) =
−s

2s + 1
σρ3(z) = −z + 2

∞,−1 μρ3−−−−→ − 1
2 ,−1

μ f0

⏐⏐


⏐⏐
μ f0

∞, 0
μρ̃3−−−−→ 1, 0

μρ̃3(s) =
s

s − 1
σρ̃3(z) = −z − 1

(3)

Fundamental domains for G f0 , G
+
f0
, G̃ f0 and G̃+f0 . Still focusing on our example

map f0, we now have explicit expressions for σρi and σρ̃i for i ∈ {1, 2, 3}. These maps
are all reflections. Let αi and α̃i denote the reflection axes of σρi and σρ̃i (their fixed
point sets) for i ∈ {1, 2, 3}. One verifies that the unshaded triangle in the left side
of Fig. 10 is a fundamental domain for the action of G f0 on H. The two triangles in
the left side of Fig. 10 form a fundamental domain for the action of G+f0 on H. This
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Fig. 10 The pullback map σ f0

shows that the image of G f0 in PGL(2, Z) and the image of G+f0 in PSL(2, Z) both

have index 6. The right side of Fig. 10 shows fundamental domains for G̃ f0 and G̃+f0 ,
the images of G f0 and G

+
f0
under the extended modular group virtual endomorphism.

Images of cusps under σ f0 . For our examplemap f0, we have that σ f0 ◦σρi = σρ̃i ◦σ f0
for i ∈ {1, 2, 3}. It follows that σ f0(αi ) ⊆ α̃i for i ∈ {1, 2, 3}. Using the continuity of
σ f0 on the Weil–Petersson completion H

∗ of H, it follows that σ f0 maps the common
endpoint 0 ofα1 andα2 to the common endpoint 0 of α̃1 and α̃2. (We already essentially
knew this through evaluation of μ f0 .) Similarly, σ f (1) = ∞ and σ f0(∞) = − 1

2 + 1
2 i .

This last equation shows that in special cases such as this, it is possible to determine
the image in H of a cusp under the pullback map of a NET map.

The degree of the induced map σ̂ f : H
∗/G+f → H

∗/G̃+f . Suppose f is a general
NET map. We make the further assumption that σ f is nonconstant. In this case, the
map σ f : H

∗ → H
∗ induces a nonconstant map σ̂ f : H

∗/G+f → H
∗/G̃+f of compact

Riemann surfaces. The degree of σ̂ f can be calculated as follows. Let y be a cusp in
H
∗/G̃+f . Then

deg(σ̂ f ) =
∑

σ̂ f (x)=y

degx (σ̂ f ).

Returning to our example map f0, we take y to be the image in H
∗/G̃+f0 of 0. Then

there is only one value for x , the image of 0 in H
∗/G+f0 . Because the multiplier for

slope∞ (= − 1
0 ) is 1, we see that a generator of the stabilizer of 0 in G+f0 maps to a

generator of the stabilizer of 0 in G̃+f0 . Thus deg(σ̂ f0) = 1.

Construction of σ f0 . Finally, we determine σ f0 . We first construct a candidate
σ : H → H, which we will eventually see is σ f0 . By the Riemann mapping theo-
rem there exists a unique analytic bijection σ which maps the hyperbolic triangle with
vertices 0, 1 and∞ to the hyperbolic triangle with vertices 0,∞ and− 1

2 + 1
2 i so that

σ(0) = 0, σ(1) = ∞ and σ(∞) = − 1
2 + 1

2 i . We then extend the definition of σ to
all of H using the reflection principle. This defines σ : H → H.

Just as σ f0 induces the map σ̂ f0 : H
∗/G+f0 → H

∗/G̃+f0 , the map σ induces a map

σ̂ : H
∗/G+f0 → H

∗/G̃+f0 . These Riemann surfaces both have genus 0. Both σ̂ f0 and
σ̂ have degree 1 and they agree at the three cusps. Thus they are equal. Therefore the
restriction of σ f0 to α1, for example, agrees with the restriction of σ to α1. It follows
that σ f0 = σ .
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7 Dynamics on Curves in Degree 2

In this section we investigate the dynamics on curves for the set of NET maps with
degree 2 and exactly one critical postcritical point.Wewill then indicate how to extend
this result to all NET maps with degree 2 and hyperbolic orbifolds.

Theorem 8 Let g be a NET map with degree 2 and exactly one critical postcritical
point. Let μg be the slope function of g. Then we have the following.

(1) If g is combinatorially equivalent to a rationalmap, thenμg has a global attractor
containing at most four slopes.

(2) Suppose that g is not combinatorially equivalent to a rational map. Let s ∈ Q =
Q ∪ {∞} be the slope of the obstruction of g. Let η be a generator of the cyclic
group of g-liftable elements in the modular group of g which stabilize s. Then
under iteration, a slope either becomes undefined (that is, the corresponding
curve is trivial or peripheral), or lands in either
(a) {s}, or
(b) {s} ∪ {ηm(r) : m ∈ Z} for some r ∈ Q such that μg(η

m(r)) = ηm+n(r) for
every integer m and some integer n.

All three cases occur as well as all possible values of n in case 2b.

Proof Let f be the NET map f0 of Sect. 6. As in Sect. 6, let G f denote the subgroup
of liftables for f in the extended modular group EMod(S2, P( f )).

Figure 10 in effect describes the pullback map σ f . On the left are two triangles in
a tesselation T f of the Weil–Petersson completion H

∗ of H by fundamental domains
for the action of G f . The pullback map σ f maps the unshaded, respectively shaded,
triangle on the left to the unshaded, respectively shaded, triangle on the right. Extending
by the reflection principle, we see that σ f maps every triangle of T f into a triangle of
T f .

Theorem7 implies that g lies in the same impureHurwitz class as f . If g is conjugate
to f , then clearly there is a tesselation Tg ofH

∗ by fundamental domains for the action
of Gg on H

∗ such that σg maps every triangle of Tg into a triangle of Tg . Suppose
that g = f ◦ ϕ for some map ϕ representing an element of Mod(S2, P( f )). Then
σg = σϕ ◦ σ f . One easily verifies that Gg = G f and that σϕ acts as an automorphism
of T f . Thus σg maps every triangle of Tg into a triangle of Tg in this case also. We
conclude that the map g of Theorem 8 maps every triangle of Tg into a triangle of Tg .
It follows that every iterate of σg maps every triangle of Tg into a triangle of Tg .

Now suppose that g is combinatorially equivalent to a rational map. Then σg has a
fixed point τ ∈ H. Let r ∈ Q. Let t be a triangle of Tg which has r as a vertex. Let
z be a point in the interior of t . Then the points z, σg(z), σ 2

g (z), . . . converge to τ . So
they eventually enter the star of τ in Tg (the union of triangles containing τ ). Because
iterates of σg map t into triangles of Tg , it follows that t eventually enters the star of
τ in Tg . Because σg is continuous on H

∗, it follows that r eventually enters the star of
τ in Tg . This star has at most two triangles and at most four vertices. Since σg and μg

are conjugate on Q via p/q �→ −q/p, this proves statement 1.
Now suppose that g is not combinatorially equivalent to a rational map. So g has

an obstruction. The pullback map σg fixes the negative reciprocal of the slope of this
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Fig. 11 The pullback map σg

obstruction. We find it convenient for this fixed point to be∞. So we replace the map
f two paragraphs above by a conjugate so that the new pullback map is σ f conjugated
by z �→ −1/z. Arguing as two paragraphs above, we find that Fig. 11 describes σg in
the same way that Fig. 10 describes σ f . The n in Fig. 11 is an integer. Any integer is
possible. The case n = 0 is the case in which g is conjugate to f .

Arguing as in the case in which g is unobstructed, we find that every element of Q

eventually enters the star in Tg of∞ under the iterates of σg . Hence it only remains
to determine the action of σg on integers.

We have that σg(−1) = n. Using the reflection principle, we see that σg(m) =
m + n + 1 for every odd integer m. Similarly, σg(m) = m + n + 1+ i for every even
integerm. Furthermore, the stabilizer of∞ in the subgroup of modular group liftables
for g has a generator which acts on H as z �→ z + 2.

Now suppose that n is even. Then σg maps odd integers to even integers, and it maps
even integers into H. So every integer eventually leaves Q. We are in the situation of
case 2a.

Finally suppose that n is odd. Then σg maps odd integers to odd integers, and it
maps even integers into H. It follows that we are in case 2b with n + 1 here being 2
times n there.

The only thing left to prove is that case 1 actually occurs, namely, that there exists a
rational NETmapwith degree 2 and exactly one critical postcritical point. An example
of such a map is f (z) = z2 + i .

This proves Theorem 8. ��

It was noted in the above proof that the map f0 of Sect. 6 corresponds to the case
n = 0. Since 0 is even, the map f0 falls into case 2a. Thus f0 provides an example of
an obstructed Thurston map with hyperbolic orbifold whose pullback map on curves
has a finite global attractor consisting of just the obstruction.

We next indicate how Theorem 8 can be extended to all NET maps with degree 2
and hyperbolic orbifold. Theorem 7 and the paragraph preceding it imply that there
are two impure Hurwitz classes of NET maps with hyperbolic orbifolds. The impure
Hurwitz class of maps with one critical postcritical point is represented by the map
f0 of Sect. 6, and the proof of Theorem 8 uses f0. The impure Hurwitz class of maps
with two critical postcritical points is represented by the rabbit, and in the same way
it is possible to use the rabbit to prove the corresponding result for these maps.
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Fig. 12 The rabbit’s pullback map σ f

We discuss this extension in this paragraph. Let f (z) = z2 + cR denote the rabbit
polynomial of the introduction. Figure 2 gives a NET map presentation diagram for
f . Arguing as in Sect. 6, we find that Fig. 12 provides an analog to Fig. 10 for the
pullback map σ f of f . More precisely, σ f maps the unshaded, respectively shaded,
triangle in the left side of Fig. 12 bijectively to the unshaded, respectively shaded,
triangle in the right side of Fig. 12 with σ f (0) = ∞, σ f (∞) = −1, σ f (−1) = 0
and σ f (−2) = − 1

2 + 1
2 i . The last equation provides another example of an exact

evaluation of a pullback map at an element of Q when that value lies in H. Whereas
before we worked with a tesselation by triangles, now we work with a tesselation by
quadrilaterals, those determined by the union of the two triangles in the left side of
Fig. 12. From here the argument proceeds as before. The result is essentially the same,
although the statement must be modified a bit. The main difference is that case 2a
does not occur here.

We say a fewmorewords about the pullbackmap σ f for the rabbit in this paragraph.
The blue curve in the left side of Fig. 1 has slope 0 relative to Fig. 2. This curve lies
in a 3-cycle of curves for the pullback map on curves. In terms of slopes, μ f (0) = 1,
μ f (1) = ∞ andμ f (∞) = 0.Because points of ∂H correspond to negative reciprocals
of slopes, these equations correspond to the equations σ f (∞) = −1, σ f (−1) = 0 and
σ f (0) = ∞, just as in the previous paragraph. Because σ f maps the quadrilateral with
vertices −2, −1, 0 and∞ into itself, its fixed point is in this quadrilateral. Figure 4
further shows that this fixed point has small imaginary part (within the Euclidean circle
centered at (−1, 0) with radius√2).

Since the fixed point τ of σ f is in the interior of the quadrilateral which is the union
of the two triangles on the left side of Fig. 12, the star of τ in this tesselation consists
of just this quadrilateral. So for any t ∈ Q, either there exists a positive integer n with
μ◦nf (t) = , or for n sufficiently large σ ◦nf (t) ∈ {0,−1,∞}. Thus there is a finite
global attractor consisting of points whose slopes correspond to 0, 1 and∞. This gives
another proof of Theorem 2.

8 The Extended Half-Space Theorem

The goal of this section is to sketch a proof of the extended half-space theorem.
After filling in the details, the intervals mentioned in the theorem can be explicitly
determined. See the discussion at the end of Sect. 1. Here is a qualitative statement of
the theorem.
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Theorem 9 (Extended Half-Space Theorem) Let f be a NETmap with slope function
μ f . Let

p
q ∈ Q, and suppose that either μ f (

p
q ) = p

q and δ f (
p
q ) �= 1 or that μ f (

p
q ) =

. Then there exists an interval inR∪{∞} containing− q
p which contains no negative

reciprocals of obstructions for f other than possibly − q
p .

To begin a sketch of the proof of this, we recall the setting of the half-space theorem.
Let s1 be the slope of a simple closed curve in S2 − P( f ) whose preimage under f
contains a connected component which is essential and nonperipheral (if no such s1
exists, f is unobstructed, by Thurston’s characterization theorem). Let s′1 = μ f (s1),
and suppose that s′1 �= s1. In this situation the half-space theorem supplies an open
half-space H1 in the upper half-plane which contains no fixed point of σ f and whose
boundary’s interior contains −1/s1 but no negative reciprocal of a obstruction for f .
The half-space H1 depends only on s1, s′1 and the multiplier δ f (s1). We call such a
half-space an excluded half-space.

Let t be an extended rational number which is not mapped to a different extended
rational number by σ f . We will use functional equations satisfied by σ f to produce
excluded half-spaces near t so that the collection of all extended real numbers excluded
by these half-spaces together with t forms an open interval about t in R ∪ {∞}.

We consider the simplest case, the case in which t = ∞. The general case can be
gotten from this by applying an element of PSL(2, Z) to t . Keep in mind that points
of Q in the boundary of H are to be viewed as negative reciprocals of slopes. So either
μ f (0) = 0 or μ f (0) = . Let γ be a simple closed curve in S2− P( f ) with slope 0.
Let d be the degree with which f maps every connected component of f −1(γ ) to γ .
Let c be the number of these connected components which are neither inessential nor
peripheral. Theorem 7.1 of Cannon et al. (2012), for example, yields the functional
equation σ f ◦ ϕd = ϕc ◦ σ f , where ϕ(z) = z + 2. We have that δ f (0) = c

d . By
hypothesis, c

d �= 1. For convenience we consider the case that c
d < 1, so c < d.

Let t1 = − 1
s1

and t ′1 = − 1
s′1
, where s1 and s′1 are as above. Since t = ∞, it is

natural to assume that t1 �= ∞. For simplicity, we also assume that t ′1 �= ∞. Let B1
and B ′1 be closed horoballs at t1 and t ′1 as in the statement of the half-space theorem
in Cannon et al. (2012, Theorem 5.6). Let r be the Euclidean radius of B1, and let r ′
be the Euclidean radius of B ′1.

If r > r ′, then our excluded half-space H1 is unbounded in the Euclidean metric,
and so we already have an open neighborhood of∞ in R ∪ {∞} which contains no
negative reciprocals of obstructions. So we assume that r ≤ r ′. The case in which
r = r ′ can be handled as follows. In this case H1 is bounded by a vertical Euclidean
ray with endpoint the average value of t1 and t ′1. This gives us an unbounded interval
of real numbers which contains no negative reciprocals of obstructions. Using the fact
that c < d, we replace t1 and t ′1 by their images under an appropriate power of ϕd

and ϕc (possibly negative) so that the order of these images is opposite to the order
of t1 and t ′1. The resulting excluded half-space and H1 combine to produce an open
neighborhood of ∞ in R ∪ {∞} containing no negative reciprocals of obstructions.
This establishes the existence of such an interval. Hence we assume that r < r ′. In
this case H1 lies within a Euclidean semicircle. LetC1 and R1 be the center and radius
of this semicircle. See Fig. 13, which assumes that t1 > t ′1.
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Fig. 13 The basic diagram for the extended half-space theorem

Now we apply the functional equation σ f ◦ϕd = ϕc ◦σ f . Set t2 = ϕd(t1) and t ′2 =
ϕc(t ′1). Then the equation μ f (s1) = s′1 implies that σ f (t1) = t ′1, and so σ f (t2) = t ′2.
Because t1 > t ′1, and d > c, we have that t2 > t ′2.

In this paragraph we show that the half-space theorem applies to t2 and t ′2 using the
horoballs B2 = ϕd(B1) and B ′2 = ϕc(B ′1). We have the equation σ f ◦ ϕd = ϕc ◦ σ f .
This is induced by a homotopy equivalence of the form φd ◦ f ∼ f ◦ φc, where φ

is a Dehn twist about a curve with slope 0. The equation t2 = ϕd(t1) implies that if
γ1 is a simple closed curve in S2 − P( f ) with slope s1 = −1/t1, then γ2 = φ−d(γ1)
is a simple closed curve in S2 − P( f ) with slope s2 = −1/t2. A corresponding
statement holds for φ−c. Now the homotopy equivalence φd ◦ f ∼ f ◦ φc shows that
if c2 is the number of connected components of f −1(γ2) which are neither inessential
nor peripheral and if d2 is the degree with which f maps these components to γ2,
then c2 = c1 and d2 = d1. So δ f (s2) = δ f (s1). Combining this with Corollary 6.2
of Cannon et al. (2012), which shows how elements of PGL(2, Z) map horoballs to
horoballs, it follows that the half-space theorem applies to t2 and t ′2 using the horoballs
B2 = ϕd(B1) and B ′2 = ϕc(B ′1). Hence we obtain another excluded half-space H2
corresponding to the horoballs B2 and B ′2 at t2 and t ′2 with Euclidean radii r and r ′.

We want H1 ∩ H2 �= ∅ because then the open intervals in R determined by H1 and
H2 can be combined to form a larger interval. Since t2 > t1 as in Fig. 13, H1∩H2 �= ∅
if and only if C1 + R1 > C2 − R2. We make an explicit computation based on this
and find that

H1 ∩ H2 �= ∅ ⇐⇒ t1 − t ′1 > d
(√

r ′/r − 1
)+ c

(
1−√

r/r ′
)
.

Suppose that the last inequality is satisfied. Then because

t2 − t ′2 = t1 + 2d − t ′1 − 2c = t1 − t ′1 + 2(d − c) > t1 − t ′1,

the inequality in the next-to-last display is satisfied with t1 − t ′1 replaced by t2 − t ′2.
Inductively, we conclude that if H1 ∩ H2 �= ∅, then f has no obstruction s with
− 1

s > C1−R1. Furthermore, the last display shows that the differences t1−t ′1 increase
without bound under iteration, and so it is possible to find t1 such that H1 ∩ H2 �= ∅.
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This obtains an unbounded interval of positive real numbers which contains no
negative reciprocals of obstructions. Symmetry yields a corresponding interval of
negative real numbers. This is the gist of the extended half-space theorem. It remains
tomake the estimates explicit for computation.This is a bit tedious, but straightforward.

Theorem 9 is false if δ f (p/q) = 1; counterexamples are found among maps in
21HClass3 and 31Hclass5, 6, 9.

Acknowledgements The authors gratefully acknowledge support from the American Institute for Math-
ematics, which funded the “SQuaRE” workshops in the summers of 2013–15 during which much of this
joint work was conducted. Russell Lodge was also supported by the Deutsche Forschungsgemeinschaft.
Kevin Pilgrim was also supported by Simons Grant #245269. Sarah Koch was also supported by the NSF
and the Sloan Foundation.

References

Bartholdi, L.: IMG, software package for GAP. https://github.com/laurentbartholdi/img (2014)
Bonnot, S., Braverman, M., Yampolsky, M.: Thurston equivalence to a rational map is decidable. Mosc.

Math. J. 12(4), 747–763 (2012)
Bartholdi, L., Dudko, D.: Algorithmic aspects of branched coverings. arXiv:1512.05948 (2017)
Bartholdi, L., Nekrashevych, V.: Thurston equivalence of topological polynomials. Acta Math. 197, 1–51

(2006)
Buff, X., Epstein, A., Koch, S., Pilgrim, K.: On Thurston’s pullback map. In: Schleicher, D. (ed.) Complex

Dynamics—Families and Friends, pp. 561–583. A. K. Peters, Wellesley (2009)
Cannon, J.W., Floyd, W.J., Parry, W.R., Pilgrim, K.M.: Nearly Euclidean Thurston maps. Conform. Geom.

Dyn. 16, 209–255 (2012) (electronic)
Douady, A., Hubbard, J.H.: A proof of Thurston’s topological characterization of rational functions. Acta

Math. 171, 263–297 (1993)
Floyd, W.J., Parry, W.R., Pilgrim, K.M.: Presentations of NET maps. arXiv:1701.00443 (2017a)
Floyd, W.J., Parry, W.R., Pilgrim, K.M.: Modular groups, Hurwitz classes and dynamic portraits of NET

maps. arXiv:1703.03983 (2017b)
Kameyama, A.: The Thurston equivalence for postcritically finite branched coverings. Osaka J. Math. 38,

565–610 (2001)
Kelsey, G., Lodge, R.: Quadratic Thurston maps with few postcritical points. arXiv:1704.03929 (2017)
Koch, S.: Teichmüller theory and critically finite endomorphisms. Adv. Math. 248, 573–617 (2013)
Koch, S., Pilgrim, K.M., Selinger, N.: Pullback invariants of Thurston maps. Trans. Amer. Math. Soc. 368,

4621–4655 (2016)
Lehner, J.: Discontinuous Groups and Automorphic Functions. Mathematical Surveys, vol. 8. American

Mathematical Society, Providence (1964)
Levy, S.: Critically finite rational maps. PhD thesis, Princeton University (1985)
Lodge, R.: Boundary values of the Thurston pullback map. Conform. Geom. Dyn. 17, 77–118 (2013)

(electronic)
Meyer, D.: Unmating of rational maps, sufficient criteria and examples. In: Bonifant, A., Lyubich, M.,

Sutherland, S. (eds.) Frontiers in Complex Dynamics: In Celebration of John Milnor’s 80th Birthday,
pp. 197–233. Princeton University Press, Princeton (2014)

Milnor, J.: Pasting together Julia sets: a worked-out example of mating. Exp. Math. 13(1), 55–92 (2004)
Pilgrim, K.M.: Combinations of Complex Dynamical Systems. Springer Lecture Notes in Mathematics,

vol. 1827. Springer, Berlin (2003)
Pilgrim, K.M.: An algebraic formulation of Thurston’s characterization of rational functions. Ann. Fac. Sci.

Toulouse Math. 21(5), 1033–1068 (2012)
Saenz Maldonado, E.A.: On nearly Euclidean Thurston maps. Ph.D. Thesis, Virginia Tech (2012)
Selinger, N.: Thurston’s pullback map on the augmented Teichmüller space and applications. Invent. Math.

189, 111–142 (2012)
NET maps web site: http://www.math.vt.edu/netmaps/ (2016)

123

https://github.com/laurentbartholdi/img
http://arxiv.org/abs/1512.05948
http://arxiv.org/abs/1701.00443
http://arxiv.org/abs/1703.03983
http://arxiv.org/abs/1704.03929
http://www.math.vt.edu/netmaps/

	Origami, Affine Maps, and Complex Dynamics
	Abstract
	1 Introduction
	2 Findings
	3 NET Map Presentations
	4 Hurwitz Classes
	5 Invariants of Degree 2 NET Maps
	6 A Conformal Description of σf for a Degree 2 Example
	7 Dynamics on Curves in Degree 2
	8 The Extended Half-Space Theorem
	Acknowledgements
	References




