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Abstract For any positive integer q, the sequence of the Euler up/down numbers
reduced modulo q was proved to be ultimately periodic by Knuth and Buckholtz.
Based on computer simulations, we state for each value of q precise conjectures for
the minimal period and for the position at which the sequence starts being periodic.
When q is a power of 2, a sequence defined by Arnold appears, and we formulate a
conjecture for a simple computation of this sequence.
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1 Introduction

The sequence of Euler up/down numbers (En)n≥0 is the sequence with exponential
generating series

∞∑

n=0

En

n! x
n = sec x + tan x . (1)

It is referenced as sequence A000111 in the On-Line Encyclopedia of Integer
Sequences (Sloane 2017) and its first terms are

1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, 2702765, . . .
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The numbers En were shown by André (1879) to count up/down permutations on n
elements (see Sect. 3).

Knuth and Buckholtz (1967) proved that for any integer q ≥ 1, the sequence (En

mod q)n≥0 is ultimately periodic. For any q ≥ 1 we define:

• s(q) to be the minimum number of terms one needs to delete from the sequence
(En mod q)n≥0 to make it periodic;

• d(q) to be the smallest period of the sequence (En mod q)n≥s(q).

For example, the sequence (En mod 3) starts with

1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, . . .

so one might expect to have s(3) = 1 and d(3) = 4. Clearly s(1) = 0 and d(1) = 1.
In the remainder of this paper, we formulate precise conjectures for the values of s(q)

and d(q) for any q ≥ 2.

Organisation of the paper In Sect. 2 we reduce the problem to the case when q is a
prime power and we conjecture the values of s(q) and d(q) when q is an odd prime
power. In Sect. 3 we conjecture the values of s(q) and d(q) when q is a power of
2, after having introduced the Entringer numbers and a sequence defined by Arnold
describing the 2-adic valuation of the Entringer numbers. In Sect. 4, we provide a
simple construction which conjecturally yields the Arnold sequence.

2 Case When q is Not a Power of 2

The following lemma implies that it suffices to know the values of s(q) and d(q)when
q is a prime power in order to know the values of s(q) and d(q) for any q ≥ 2.

Lemma 1 Fix q ≥ 2 and write its prime number decomposition as

q =
k∏

i=1

pαi
i , (2)

where k ≥ 1, p1, . . . , pk are distinct prime numbers and α1, . . . , αk are positive
integers. Then

s(q) = max
1≤i≤k

s(pαi
i ) (3)

d(q) = lcm(d(pα1
1 ), . . . , d(pαk

k )). (4)

The proof is elementary and uses the Chinese remainder theorem.
When q is an odd prime power, Knuth and Buckholtz (1967) found the following:

Theorem 2 (Knuth and Buckholtz 1967) Let p be an odd prime number.

(1) If p ≡ 1 mod 4, then

d(p) = p − 1.
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(2) If p ≡ 3 mod 4, then

d(p) = 2p − 2.

(3) For any k ≥ 1,

s(pk) ≤ k.

(4) For any k ≥ 2,

d(pk)|pk−1d(p).

We conjecture the following for the exact values of s(q) and d(q) when q is an odd
prime power:

Conjecture 1 Let p be an odd prime number.

(1) For any k ≥ 1,

s(pk) = k.

(2) For any k ≥ 2,

d(pk) = pk−1d(p).

Conjecture 1 is supported by Mathematica simulations done for all odd prime
powers q < 1000.

3 Entringer Numbers and Case When q is a Power of 2

Formulating a conjecture analogous to Conjecture 1 for powers of 2 requires to define,
following Arnold (1991), a sequence describing the behavior of the 2-adic valuation
of the Entringer numbers.

3.1 The Seidel–Entringer–Arnold Triangle

The Entringer numbers are a refined version of the Euler numbers, enumerating some
subsets of up/down permutations. For any n ≥ 0, a permutation σ ∈ Sn is called
up/down if for any 2 ≤ i ≤ n, we have σ(i − 1) < σ(i) (resp. σ(i − 1) > σ(i)) if i is
even (resp. i is odd). André (1879) showed that the number of up/down permutations
on n elements is En . For any 1 ≤ i ≤ n, the Entringer number en,i is defined to be the
number of up/down permutations σ ∈ Sn such that σ(n) = i . The Entringer numbers
are usually displayed in a triangular array called the Seidel–Entringer–Arnold triangle,
where the numbers (en,i )1≤i≤n appear from left to right on the n-th line (see Fig. 1).
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Fig. 1 First five lines of the
Seidel–Entringer–Arnold
triangle
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Fig. 2 First five lines of the
triangle T of 2-adic valuations
of the Entringer numbers
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The Entringer numbers can be computed using the following recurrence formula
(see for example Stanley 2012). For any n ≥ 2 and for any 1 ≤ i ≤ n, we have

en,i =
{∑

j<i en−1, j if n is even∑
j≥i en−1, j if n is odd.

(5)

3.2 Arnold’s Sequence

Replacing each entry of the Seidel–Entringer–Arnold triangle by its 2-adic valuation,
we obtain an infinite triangle denoted by T (see Fig. 2).

We read this triangle T diagonal by diagonal, with diagonals parallel to the left
boundary. For any i ≥ 1, denote by Di the i-th diagonal of the triangle T parallel to
the left boundary. For example D1 starts with 0,∞, 0,∞, 0, . . . For any i ≥ 1, denote
by mi the minimum entry of diagonal Di . Arnold (1991) observed that the further
away onemoves from the left boundary, the higher the 2-adic valuation of the Entringer
numbers becomes. In particular, he observed (without proof) that the sequence (mi )i≥1
was weakly increasing to infinity. He defined the following sequence: for any k ≥ 1,

uk := max {i ≥ 1|mi < k} .

In other words, uk is the number of diagonals containing at least one entry that is not
zero modulo 2k . The sequence (uk)k≥1 is referenced as the sequence A108039 in the
On-Line Encyclopedia of Integer Sequences (Sloane 2017) and its first few terms are
given in Table 1.

Note that the first few terms given by Arnold were incorrect, because the entry
4 appeared four times, whereas it should be appearing only three times. We also
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Table 1 The first few values of uk

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

uk 2 4 4 4 8 8 8 8 10 12 12 16 16 16 16 16 18 20

remark that we cannot define any sequence analogous to (uk) when studying the p-
adic valuations of theEntringer numbers for odd primes p. Indeed, the p-adic valuation
0 seems to appear in diagonals of arbitrarily high index.

3.3 Case When q is a Power of 2

Using the sequence (uk)k≥1, we formulate the following conjecture for s(q) and d(q)

when q is a power of 2:

Conjecture 2 For any k ≥ 1, we have

s(2k) = uk . (6)

Furthermore, if k ≥ 1 and k �= 2, we have

d(2k) = 2k . (7)

Finally, we have d(4) = 2.

Numerical simulations performed onMathematica for k ≤ 12 support Conjecture 2.

4 Construction of Arnold’s Sequence

In this section we provide a construction which conjecturally yields Arnold’s sequence
(uk)k≥1.

We denote by Z+ the set of nonnegative integers and we denote by

S :=
⊔

d≥1

Z
d+

the set of all finite sequences of nonnegative integers. We define a map f : S → S,
which maps each Z

d+ to Z
2d+ , as follows. Fix x = (x1, . . . , xd) ∈ S. If all the xi ’s are

equal to xd , we set

f (x) = (xd , . . . , xd , 2xd , . . . , 2xd),

where xd and 2xd both appear d times on the right-hand side. Otherwise, define

s := max {1 ≤ i ≤ d − 1|xi �= xd}
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and set

f (x) = (x1, . . . , xd , x1 + xd , . . . , xs−1 + xd , 2xd , . . . , 2xd),

where 2xd appears d − s + 1 times on the right-hand side. For example, we have

f ((2, 4, 4, 4)) = (2, 4, 4, 4, 8, 8, 8, 8) (8)

and

f ((2, 4, 4, 4, 8, 8, 8, 8)) = (2, 4, 4, 4, 8, 8, 8, 8, 10, 12, 12, 16, 16, 16, 16, 16). (9)

By iterating this function f indefinitely, one produces an infinite sequence:

Lemma 3 Fix d ≥ 1 and x ∈ Z
d+. There exists a unique (infinite) sequence (Xk)k≥1

such that for any k ≥ 1 and for any n ≥ log2(k/d), Xk is the k-th term of the finite
sequence f n(x).

This infinite sequence is called the f -transform of x . The lemma follows from the
observation that for any � ≥ 1 and for any y ∈ Z

�+, y and f (y) have the same first �

terms.
We can now formulate a conjecture about the construction of the sequence (uk)k≥1:

Conjecture 3 Arnold’s sequence (uk)k≥1 is the f -transform of the quadruple
(2, 4, 4, 4).

Conjecture 3 is supported by the estimation onMathematica ofuk for every k ≤ 512.
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