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Abstract
We present an improved construction of the fundamental matrix factorization in the
FJRW-theory given inPolishchuk andVaintrob (JReineAngewMath714:1–22, 2016).
The revised constructionmakes the independence on choicesmore apparent andworks
for a possibly nonabelian finite group of symmetries. One of the new ingredients is
the category of dg-matrix factorizations over a dg-scheme.

Keywords FJRW-theory · Matrix factorizations · Cohomological field theory ·
dg-schemes

Introduction

This short note is supposed to clarify the construction of the cohomological field
theory associated with a quasihomogeneous polynomial W and its finite group of
symmetries G. Such a cohomological field theory, called the FJRW-theory was first
proposed in Fan et al. (2013). Then, in Polishchuk and Vaintrob (2016) a different
construction, based on categories of matrix factorizations, was given (conjecturally,
the two constructions give the same cohomological field theory).

The approach of Polishchuk and Vaintrob (2016) is based on constructing certain
fundamental matrix factorizations which live over the product of certain finite cover-
ings ofMg,n (the moduli of�-spin structures) with affine spaces. It is this construction
that we aim to clarify.More precisely, wewould like to present the construction in such
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24 A. Polishchuk

a way that it would be analogous to the construction of Ciocan–Fontanine and Kapra-
nov of the virtual fundamental class in Gromov–Witten theory via dg-manifolds (see
Ciocan-Fontanine and Kapranov 2009). The second goal that we achieve is to present
the construction without using coordinates on the vector space V on which W lives.
This has an additional bonus that we can handle the case when the group G is not
necessarily commutative (but still finite).

The construction of Polishchuk and Vaintrob (2016) of the fundamental matrix
factorization over S × ∏

i V
γi , where S is the moduli space of (rigidified) �-spin

structures with some markings (see Sect. 3.1 for details) roughly has the following
two steps. In Step 1 one considers the object Rπ∗(V) in the derived category D(S),
where π : C → S is the universal curve, V is the underlying vector bundle of the
universal �-spin structure, and then equips it with some additional structure. In Step 2
one realizes Rπ∗(V) by a 2-term complex [A → B], where A and B a vector bundles
over S, such that there is a morphism

Z : X = tot(A) →
∏

i

V γi

and a Koszul matrix factorization of Z∗(
∑

Wi ), whereWi = W |V γi . Then the funda-
mental matrix factorization is obtained by taking its push-forward with respect to the
morphism (p, Z) : X → S × ∏

i V
γi , where p : X → S is the projection. Note that

here the space X is non-canonical, so one has to check independence on the choices
made.

The main idea of the present paper is to change the conceptual framework slightly
by observing that in fact one gets a dg-matrix factorization on a dg-scheme over
S × ∏

i V
γi (the terminology is explained in Sect. 1). Namely, for a non-negatively

graded complex of vector bundles C• over S, one can define the corresponding dg-
scheme over S,

[C•] := Spec(S•(C•)∨).

In our case we consider the dg-scheme

X := [Rπ∗(V)].

More concretely, if we realize V by a 2-term complex V = [A → B] then our
dg-scheme is realized by the sheaf of dg-algebras

OX ,[A→B] := S•[B∨ → A∨],

where the complex [B∨ → A∨] is concentrated in degrees−1 and 0. Thenwe interpret
the additional structure on Rπ∗(V) coming from the universal �-spin structure as a
structure of a dg-matrix factorization on the structure sheaf of X . More precisely, we
get a morphism
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ZX : X →
∏

i

V γi

and a function of degree −1, f−1 ∈ O−1
X ,[A→B], such that

d( f−1) = −Z∗
X

(∑
Wi

)
.

Now the fundamental matrix factorization is obtained as the push-forward of
(OX , d + f−1 · id) with respect to the morphism X → S × ∏

i V
γi .

The connection with the original approach is the following: for each presentation
V = [A → B], for which the first construction works, there is a morphism q :
X → X = tot(A), such that Z ◦ q = ZX , and an isomorphism of the push-forward
q∗(OX , d + f−1 · id) with the Koszul matrix factorization of Z∗(

∑
Wi ) constructed

through the first approach.
The second technical improvement we present is in the construction of f−1. The

idea is towork systematically with the categories of sheaves over pairs (scheme, closed
subscheme) to deal with non-functoriality of the cone construction (such categories fit
into the framework of Lunts’s poset schemes in Lunts (2012)) . Namely, we work with
the enhancement of the usual push-forward with respect to the projection π : C → S
to a morphism of pairs (C, �) → (S,S), where � ⊂ C is the union of the images of
the universal marked points (see Sect. 2).

Recall that in Polishchuk and Vaintrob (2016), we used the fundamental matrix
factorizations to construct cohomological field theories associated with (W ,G) by
viewing them as kernels for Fourier-Mukai functors and passing to Hochschild homol-
ogy. It seems that the approach via dg-matrix factorizations presented here could also
be useful in the development of a more general construction in Gauged Linear Sigma
Model, see Fan et al. (2018); Ciocan-Fontanine et al. (2018).

Throughout this work the ground field is C.

1 Matrix Factorizations Over dg-Schemes

1.1 Definition

We consider dg-schemes in the spirit of Ciocan-Fontanine and Kapranov (2009). We
fix a space S (a scheme or a stack), and consider the structure sheaf of a dg-scheme
over S to be a sheaf (O•

X , d) of Z−-graded commutative dg-algebras over OS (one
can make a restriction O0

X = OS , but it is not really necessary).
Given a function f0 ∈ O0

X we can consider the category of (quasicoherent) dg-
matrix factorizations of f0. By definition, these are Z/2-graded complexes of sheaves
P = P0 ⊕ P1 together with a (quasicoherent) O�

X -module structure, such that

Oi
X · Pa ⊂ Pi+a . In addition P is equipped with an odd differential δ satisfying

the Leibnitz identity

δ(φ · p) = d(φ) · p + (−1)kφδ(p),

for φ ∈ Ok
X , p ∈ P , and the equation δ2 = f0 · idP .
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26 A. Polishchuk

Example 1.1.1 Given an element f−1 ∈ O−1
X , such thatd( f−1) = f0,we get a structure

of a dg-matrix factorization on O•
X by setting

δ(φ) = d(φ) + f−1 · φ.

(In checking that δ2 = 0 one has to use the fact that f 2−1 = 0.)

The above example can be obtained from the following more general operation.
Suppose we are given a function f0 ∈ O0

X and a dg-matrix factorization (P, δ) of
f0. Then for any f−1 ∈ O0

X we can change the differential δ to δ + f−1 · idP . Then
(P, δ + f−1 · idP ) will be a dg-matrix factorization of f0 + d( f−1).

1.2 Positselski’s Framework of Quasicoherent CDG-Algebras

More generally, we can assume that f0 a section in O0
X ⊗ L , where L is a locally

free O0
X -module of rank 1. The theory of the corresponding categories of dg-matrix

factorizations fits into the framework of quasicoherent CDG-algebras developed by
Positselski (see [Efimov and Positselski 2015, Sect. 1]].

With the data (O•
X , L, f0) as above we can associate a quasicoherent CDG-algebra

B :=
⊕

n∈Z
O•

X ⊗O0
X
L⊗n[−2n],

with the natural structure of a complex of sheaves (i.e., theZ-grading and the differen-
tial d), the natural product and the global curvature element given by f0 ∈ O0 ⊗ L ⊂
B2.

Now a quasicoherent dg-matrix factorization is a quasicoherent DG-module over
B, i.e., a graded B-module M = ⊕

n Mn , equipped with a differential δ = δM such
that δ2 = f0 · idM and δ satisfies the Leibnitz identity with respect to the B-action.
Note that such a DG-module necessarily has

Mn+2 
 Mn ⊗ L,

so it is determined by the components M0 and M1, and we get the structure of a
dg-matrix factorization on M0 ⊕ M1.

There are several exotic derived categories associated to a quasicoherent CDG-
algebra. The one that is most relevant for the theory of dg-matrix factorizations is the
category

qcoh−MF f f d( f0):=Dco(B − qcoh f f d) 
 Dco(B − qcoh f l) 
 Dabs(B − qcoh f l),

where the superscripts “abs” and “co” refer to “absolute” and “coderived”, while the
subscripts “fl” and “ffd” mean “flat” and “finite flat dimension” (see [Efimov and
Positselski 2015, Sect. 1]).

Assume that f : (X ,O•
X ) → (Y ,O•

Y ) is a morphism of finite flat dimension, L is
a locally free O0

Y -module of rank 1, W0 is a section of L . Then we have the induced
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section f ∗W0 of f ∗L . In this situation we have the push-forward functor (see [Efimov
and Positselski 2015, Prop. 1.9])

R f∗ : qcoh−MF f f d( f
∗W0) → qcoh−MF f f d(W0).

1.3 Koszul Matrix Factorizations as Push-Forwards

Let V be a vector bundle over a scheme X , and suppose we have sections α ∈
H0(X , V∨), β ∈ H0(X , V ). With these data one associates a Koszul matrix fac-
torization {α, β} ofW = 〈α, β〉, whose underlying super-vector bundle is ∧•

(V ). On
the other hand, we have the derived zero locus of β, Z(β) → X , which corresponds
to the dg-algebra given by the Koszul complex of β:

OZ(β) =
(∧•

(V ), d = ιβ

)
.

Nowwe can view α as a function of degree−1 onZ(β) such that d(α) is the pull-back
of W . Thus, by definition, {α, β} is the push-forward of the dg-matrix factorization
(OZ(β), d + α · id) by the morphism Z(β) → X .

This explains why in the case when β is a regular section of V , the Koszul matrix
factorization {α, β} is equivalent to the push-forward of the structure sheaf on the
usual zero locus of β.

2 Trace Maps Via Morphisms of Pairs

2.1 Sheaves on Pairs

Let ι : Y → X be a closed embedding.
We consider a very simple poset scheme in the sense of Lunts (2012) for the poset

consisting of two elements α > β, so that Xα = Y and Xβ = X . Then a quasicoherent
sheaf on this poset scheme is a triple (Fα,Fβ, φ), withFα ∈ Qcoh(Y ),Fβ ∈ Qcoh(X)

and φ : Fβ → ι∗Fα is a morphism. We denote by Qcoh(X ,Y ) this abelian category,
and by Coh(X ,Y ) its subcategory corresponding to Fα ∈ Coh(Y ), Fβ ∈ Coh(X).
Furthermore, we have a subcategory of locally free coherent sheaves (those with Fα

and Fβ locally free).
The perfect derived category Perf(X ,Y ) of bounded complexes of locally free

sheaves on (X ,Y ) has a natural monoidal structure given by the tensor product, so we
can also define symmetric powers of objects in Perf(X ,Y ).

Given a morphism of pairs f : (X ,Y ) → (X ′,Y ′) we have a natural derived
push-forward morphism

R f∗ : D+ Qcoh(X ,Y ) → D+ Qcoh(X ′,Y ′),

where D+ denotes the derived category of bounded below complexes.
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28 A. Polishchuk

The push-forward is compatible with the tensor products in the usual way: we have
natural morphisms

R f∗(F) ⊗ R f∗(G) → R f∗(F ⊗ G), S•R f∗(F) → R f∗S•(F). (2.1.1)

We have a fully faithful exact embedding j! : DQcoh(X) → DQcoh(X ,Y )

sending G to Fα = 0, Fβ = G. There is a right adjoint functor to it (see Lunts 2012),

R j ! : D+ Qcoh(X ,Y ) → D+ Qcoh(X),

which is defined as the right derived functor of the functor

j ! : Qcoh(X ,Y ) → Qcoh(X) : F• �→ ker(Fβ → ι∗Fα).

Note that objects F• ∈ Qcoh(X ,Y ), such that Fβ → ι∗Fα is surjective, are acyclic
with respect to j !. Furthermore, every object ofQcoh(X ,Y ) has a canonical resolutions
by such acyclic objects:

0 → (Fα,Fβ) → (Fα,Fβ ⊕ ι∗Fα) → (0, ι∗Fα) → 0

Computing R j ! using these resolutions has a very simple interpretation: given a com-
plex (F•

α,F•
β) over Qcoh(X), the functor R j ! sends it to the complex

Cone(F•
β → ι∗F•

α)[−1].

In particular, there is a natural exact triangle

R j !(F•
α,F•

β) → F•
β → ι∗F•

α → · · ·

We also have the following compatibility between R j ! and the push-forward.

Lemma 2.1.1 Let f : (X ,Y ) → (X ′,Y ′) be a morphism of pairs. Assume that there
exists a finite open covering of X, affine over X ′. Then for F ∈ D+ Qcoh(X ,Y ) we
have a natural isomorphism

R j !R f∗(F) 
 R f∗R j !(F) (2.1.2)

in D+ Qcoh(X ′).

Proof Let us choose a quasi-isomorphism F → F̃ , such that all F̃ i
α and F̃ i

β are f∗-
acyclic (this can be done using Cech resolutions). Then the left-hand side of (2.1.2)
is represented by the complex

Cone( f∗F̃β → ι∗ f∗F̃α)[−1].
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On the other hand, the terms of Cone(F̃β → ι∗F̃α)[−1] are also f∗-acyclic, so the
right-hand side of (2.1.2) is represented by the complex

f∗ Cone(F̃β → ι∗F̃α)[−1],

which is isomorphic to the one above. ��

2.2 Differentials on Curves

Let π : C → S be a family of stable curves, pi : S → C, i = 1, . . . , r , be sections of
π , such that π is smooth along their images, and let � = �i pi (S). We view (C, �) as
a poset scheme and consider the corresponding category Coh(C, �)whose objects are
collections (F, (Fi ), ( fi )), where F is a coherent sheaf on C, Fi is a coherent sheaf on
S and fi : F → pi∗Fi is a morphism. Sometimes we will omit the morphisms ( fi )
from the notation and just write (F, (Fi )).

Set ωlog
C/S = ωC/S(�). Recall that we have natural residue maps

Res� : ω
log
C/S |� ∼� O�,

so that ker(Res�) is identified with ωC/S . Thus, we can view the triple

[
ω
log
C/S , �

]
:=

(
ω
log
C/S ,O�,Res�

)

as an object of the category Coh(C, �). Furthermore, we have

R j !
[
ω
log
C/S , �

]

 ωC/S .

Note that we have a morphism of pairs

π : (C, �) → (S,S). (2.2.1)

By Lemma 2.1.1, the object Rπ∗[ωlog
C/S , �] satisfies

R j !Rπ∗
[
ω
log
C/S , �

]

 Rπ∗ωC/S . (2.2.2)

Note also that we have a morphism of exact triangles (which will be used later)

⊕r
i=1OS [−1] � Rπ∗(ωC/S) � Rπ∗(ωlog

C/S) � ⊕r
i=1OS

OS[−1]
� id� OS[−1]

�
� 0

�
� OS

t
�

(2.2.3)

where t is given by the summation.
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30 A. Polishchuk

The above constructions also work in the case of a family of orbicurves with stable
coarse moduli spaces.

3 Fundamental Matrix Factorization

3.1 Setup and theModuli Spaces of 0-Spin Structures

Let us recall the setup of the FJRW theory (see Fan et al. 2013; Polishchuk and
Vaintrob 2016), or rather its slight generalization to noncommutative finite groups of
symmetries [as in Fan et al. (2018)].

We start with a finite-dimensional vector space V equipped with an effective Gm-
action called the R-charge, such that all the weights of this action on V are positive.
We denote the corresponding subgroup in GL(V ) byGm,R . and letW be a function of
weight d on V . Also, we fix a finite subgroup G ⊂ GL(V ) such thatW is G-invariant,
G commutes with Gm,R and G contains a fixed element J ∈ Gm,R of order d.

We define � ⊂ GL(V ) to be the algebraic subgroup generated by G and by Gm,R .
There is a canonical exact sequence

1 → G → �
χ� Gm → 1,

where χ restricts to the subgroup Gm,R as λ �→ λd .
As in Polishchuk and Vaintrob (2016), we consider the moduli space of �-spin

structures: it classifies stable orbicurves (C, p1, . . . , pn) equipped with �-principal
bundle P (our convention is that we have a right action of � on P), together with an
isomorphism χ∗P ∼� ω

log
C \0.We can think of the latter isomorphism as amorphism

χP : P → ω
log
C \ 0 satisfying

χP (xγ ) = χ(γ ) · χP (x)

for γ ∈ �.
In addition to requiring the coarse moduli of C to be Deligne-Mumford stable, we

require that for each marked point pi the morphism B Aut(pi ) → B� induced by P
is representable. By looking at the corresponding embedding Aut(pi ) 
 Z/mi → �

defined up to a conjugacy, we get a conjugacy class γi in �. Thus, we get a decom-
position of our moduli stack into a disjoint union of open and closed substacks
Sg(γ1, . . . , γn). As in [Fan et al. 2013, Sect. 2.2], one shows that these are smooth and
proper DM stacks with projective coarse moduli.

Let π : C → Sg(γ1, . . . , γn) be the universal curve over Sg(γ1, . . . , γn), and let
V = P×� V be the vector bundle over C associated with the universal�-spin structure
P via the embedding� ⊂ GL(V ).Note thatV is equippedwith aGm,R-action (through
its action on V ).

As in Polishchuk and Vaintrob (2016), we also consider a Galois covering
Srig
g (γ1, . . . , γn) → Sg(γ1, . . . , γn) corresponding to choices of a rigidification at

every marked point. A rigidification is an isomorphism of the restriction of P to
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pi/Aut(pi ) 
 B〈γi 〉 with �/〈γi 〉 (viewed as a bundle over B〈γi 〉. There is a nat-
ural simply transitive action of the group

∏
i CG(γi ) on the set of rigidifications at

p1, . . . , pn , where CG(γ ) ⊂ G is the centralizer of γ ∈ G.

3.2 Construction

Let us set for now S = Srig
g (γ1, . . . , γn) and consider the pull-back of all the objects

to S (denoting them by the same symbols).
Note that we have a natural projection V /〈γi 〉 → V γi . Thus, from rigidification

structures we get morphisms

Zi : p∗
i V → V γi ⊗ OS . (3.2.1)

Hence, by adjunction we can extend V to an object

[V, �] := (V, (V γi ⊗ OS), (Zi ))

of Coh(C, �).
On the other hand, we can combine χP with W into a polynomial morphism

WV : V = P ×� V → ω
log
C/S : (x, v) �→ W (v) · χP (x).

We can view it as a linear morphism of vector bundles on C,

WV : S•(V)d → ω
log
C/S ,

where we grade the symmetric algebra of V using theGm,R-action on V . Furthermore,
this morphism is compatible with themorphisms (3.2.1), so that the following diagram
is commutative

p∗
i S

•(V)d
p∗
i WV� p∗

i ω
log
C/S

S•(V γi )d ⊗ OS

S•(Zi )

�
Wi � OS

�

where Wi = W |V γi . This means that we have a morphism

(WV , (Wi )) : S•[V, �]d →
[
ω
log
C/S , �

]
(3.2.2)

in the category Qcoh(C, �) (where again we take the part of weight d with respect to
Gm,R). Next, we can take the derived push-forward with respect to the morphism of
pairs (2.2.1). Together with (2.1.1) this gives us a morphism
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32 A. Polishchuk

S•(Rπ∗[V, �])d → Rπ∗S•[V, �]d → Rπ∗
[
ω
log
C/S , �

]
(3.2.3)

in DQcoh(S,S).
Now let us set

E := R j !S•(Rπ∗[V, �])d .

Applying R j ! to morphism (3.2.3), we obtain a morphism

E = R j !S•(Rπ∗[V, �])d → R j !Rπ∗[ωlog
C/S , �] 
 Rπ∗ωC/S ,

where the last isomorphism is (2.2.2). It is easy to see that it fits into a morphism of
exact triangles

E � S•(Rπ∗(V))d � ⊕r
i=1S

•(V γi )d ⊗ OS � E[1]

Rπ∗(ωC/S)
�

� Rπ∗(ωlog
C/S)

�
� ⊕r

i=1OS

(Wi )

�
� Rπ∗(ωC/S)[1]

�
(3.2.4)

Combining it with the morphism of triangles (2.2.3), we get a commutative diagram
with the exact triangle in the first row

S•(Rπ∗(V))d � ⊕r
i=1S

•(V γi )d ⊗ OS � E[1]

OS

∑
Wi

� id� OS

τ

�

Dualizing we get a commutative diagram

E∨[−1] � ⊕r
i=1S

•(V γi )∨d ⊗ OS � S•(Rπ∗(V))∨d

OS

τ∨ �

id � OS

∑
Wi

�

This implies that the pull-back Z∗(
⊕

i Wi ) with respect to the morphism

Z : [Rπ∗(V)] →
∏

i

V γi (3.2.5)

induced by (3.2.1), gives the zero morphism from the structure sheaf to itself in the
derived category of quasicoherent sheaves on [Rπ∗(V)].
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In fact, we can realize this functon by an explicit coboundary. For this we need
a realization of the above diagram in the homotopy category of complexes. As in
[Polishchuk andVaintrob 2016, Sect. 4.2], the starting point is that Rπ∗(V) can realized
(Gm,R-equivariantly) by a complex of the form [A → B] in such a way that the
morphism (3.2.5) is realized by a surjective morphism A → ⊕r

i=1 V
γi ⊗ OS . Then

the first line of the diagram (3.2.4) can be realized by a short exact sequence of
complexes

0 → ker(S•(Z)d) → S•(A → B)d
S•(Z)d�

r⊕

i=1

S•(V γi )d ⊗ OS → 0

where the complex S•(A → B)d , concentrated in degrees [0, rk(B)], has form

S•(A)d → (S•(A) ⊗ B)d → (S•(A) ⊗ ∧2B)d → . . .

Using this we get a canonical quasi-isomorphism of E with the bounded complex of
vector bundles

K • := Cone(S•(Rπ∗(V))d → ⊕r
i=1S

•(V γi )d ⊗ OS)[−1].

Now we want to realize the morphism τ : E → OS[−1] in the derived category
by a morphism K • → OS[−1] in the homotopy category of complexes.

By changing [A → B] to a quasi-isomorphic complex [A → B] one can achieve
that for i ≥ 1 the terms Ki satisfy Ext>0(Ki ,OS) = 0 (see [Polishchuk and Vaintrob
2016, Lem. 4.2.5]). This implies that morphisms K → OS[−1] in the homotopy
category of complexes and in the derived category are the same.

The dual of this morphism can be interpreted as a canonical homotopy (up to
a homotopy between homotopies) f−1 between the function Z∗(

⊕
i Wi ) on [Rπ∗V]

and 0.Aswe have seen in Example 1.1.1, this corresponds to a structure δ = d− f−1 ·id
of a dg-matrix factorization of −Z∗(

⊕
i Wi ) on the structure sheaf of [Rπ∗V].

Furthermore, it carries an equivariant structure with respect to the action of the
center Z(�) of� (acting trivially on the base) andwith respect to

∏
i CG(γi ) (changing

the rigidifications).

3.3 Properties

The first important property is that our dg-matrix factorization over [Rπ∗V] is
supported on the zero section in [Rπ∗V]. Indeed, first, we recall that any matrix
factorization is supported on the critical locus of the potential. Since each Wi is non-
degenerate, we get that the support belongs to the zero locus of Z∗(

⊕
i Wi ). Note

also that the support can be calculated pointwise (see [Polishchuk and Vaintrob 2016,
Sect. 1.4]), so it is enough to deal with the case of a single curve with a �-spin
structure. Thus, we are reduced to considering the following situation. Let C be a
curve, and let V be a vector bundle over C . Assume also we have a polynomial mor-
phism WV : V → ωC , such that over an open dense subset of C there exists a
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34 A. Polishchuk

trivialization V 
 V ⊗ OC such that WV is induced by our polynomial W on V .
Then we have the induced polynomial function of degree −1 on the dg-affine space
[H0(C,V) ⊕ H1(C,V)[−1]] (recall that the base is now a point), induced by WV
and by the identification H1(C, ωC ) 
 C. We claim that it is supported at the ori-
gin. Indeed, we start by observing that the preimage of the origin under the gradient
morphism �W : V → V∨ is still the origin (since W is non-degenerate). From this
we get the similar assertion about the preimage of the zero section under the relative
gradient morphism �WV : V → V∨ ⊗ ωC . Finally, we note that the support of our
function on [H0(C,V) ⊕ H1(C,V)[−1]] coincides with the vanishing locus of the
polynomial morphism

H0(C,V) → H0(V∨ ⊗ ωC ) 
 H1(C,V)∨

induced by the relative gradient map. This implies our claim.
Next, the key gluing property satisfied by the fundamental matrix factorizations

(cf. [Polishchuk and Vaintrob 2016, Sect. 5.2, 5.3]) holds in the situation when we
consider two natural families of orbicurves C̃ π̃� S, C π� S, over

S := Srigg1 (γ1, . . . , γn1 , γ ) × Srigg2 (γ ′
1, . . . , γ

′
n2 , γ

−1),

where C is obtained by gluing two smooth points on C̃ into a node. We denote by
f : C̃ → C the gluing morphism.
In this setting there are natural �-spin structures P̃ (resp., P) over C̃ (resp., C),

where P is obtained by gluing fibers of P̃ over the two points that are glued into a node,
using the rigidifications and the square root of J , J 1/2 ∈ Gm,R such thatχ(J 1/2) = −1
(see [Polishchuk and Vaintrob 2016, Sect. 5.2]). The main compatibility between the
push-forwards of the corresponding vector bundles Ṽ and V is given by the cartesian
diagram

[Rπ∗V] � V γ

[Rπ̃∗Ṽ]
�

� V γ × V γ −1

�J 1/2

�

where �J 1/2 : V γ → V γ × V γ −1
is the twisted diagonal map: x �→ (x, J 1/2x).

Furthermore, the analysis of [Polishchuk and Vaintrob 2016, Sect. 5.2] shows that the
natural dg-matrix factorization on [Rπ∗V] is identified with the pull-back of the one
on [Rπ̃∗Ṽ].
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