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Abstract
We study the problem of formal decomposition (non-commutative factorization) of
linear ordinary differential operators over the field C((t)) of formal Laurent series at
an irregular singular point corresponding to t = 0. The solution (given in terms of the
Newton diagram and the respective characteristic numbers) is known for quite some
time, though the proofs are rather involved. We suggest a process of reduction of the
non-commutative problem to its commutative analog, the problem of factorization of
pseudopolynomials, which is known since Newton invented his method of rotating
ruler. It turns out that there is an “automatic translation” which allows to obtain the
results for formal factorization in the Weyl algebra from well known results in local
analytic geometry. In addition,we draw some (apparently unnoticed) parallels between
the formal factorization of linear operators and formal diagonalization of systems of
linear first order differential equations.

Keywords Weyl algebra · Non-commutative factorization · Linear ordinary
differential equations · Singularity · Poincaré rank · Resonance

1 Introduction

The local theory of linear ordinary differential equations (over the field of germsmero-
morphic at the origin) exists in two closely related but different flavors. First, one can
consider systems of first order linear equations near the singular point. Such systems
form an infinite-dimensional space on which several groups of gauge transformations
act naturally. Then the classification problem arises: what is the simplest normal form
towhich a given system can be reduced by a gauge transformations. This theory is well
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developed, in particular, delicate results explaining the difference between formal and
convergent classification (the Stokes phenomenon) were obtained half a century ago.

Another flavor of the theory deals with (scalar) higher order linear differential
equations involving only one unknown function. Formally such equations can be
reduced to systems of first order equations and vice versa, but the natural group action
is lost by such reduction. Instead a notion of Weyl equivalence can be introduced,
which makes the classification problem meaningful once again.

The two theories are closely parallel (but clearly different) for the mildest type
of singularities, the Fuchsian (regular) ones, as was shown in Tanny and Yakovenko
(2015). In this paper we discuss the theorem by Malgrange (1979) which is an ana-
logue of the Fabry–Poincaré–Dulac theoremof formal diagonalization of non-resonant
irregular singularities (Ilyashenko and Yakovenko 2008, Theorem 20.7).

We start with a brief summary of the theory of systems of first order equations.
For simplicity from the very beginning we concentrate on the formal case, leaving the
issue of convergence for remarks.

1.1 Systems of First Order Linear Ordinary Differential Equations

Denote by C[[ t ]] the differential ring of formal Taylor series and k = C[t−1][[t]] =
C((t)) its quotient differential field of formal Laurent series with the usual derivation
∂ = d

dt . A system of first order linear ordinary differential equations over k is defined
by an n × n matrix M = {Mi j } ∈ Mat(n, k) and has the form

d
dt xi =

n∑

j=1

Mi j (t)x j , i = 1 . . . , k.

It is more convenient to write this equation in the matrix form with respect to the
unknown n × n-matrix function X = X(t), specifically singling out the order of the
pole of the coefficients matrix and its leading term A0 �= 0 as follows,

t1+r d
dt X = A(t)X , r ∈ Z+, A = A0 + A1t + A2t

2 + · · · ∈ Mat(n, C[[ t ]]). (1)

The integer r � 0 is called the Poincaré rank of the system (1); if r = 0, the system
is called Fuchsian, the leading matrix A0 of the matrix formal Taylor series A(t) is
assumed nonzero.

The group of formal gauge transformations GL(n, C[[ t ]]) acts naturally on linear
systems of the form (1) by “change of variables”: if H(t) = H0 + H1t + H2t2 + · · · ,
det H0 �= 0 is a matrix formal Taylor series, then the transformed system for the new
“unknown” matrix Y = H(t)X takes the form t1+r d

dt Y = B(t)Y with the newmatrix
coefficient B(t) = tr+1( d

dt H)H−1 + H A(t)H−1.
The natural problem is to describe the orbits of this action, in particular, determine

what is the “simplest” (e.g., explicitly solvable) form to which a given system can be
reduced by a suitable formal gauge transformation. This question is almost completely
settled for Fuchsian systems, including the issue of convergence for holomorphic sys-
tems and holomorphic gauge transformations. The question for non-Fuchsian systems

123



Formal Factorization of Higher Order... 281

is muchmore subtle, especially the issue of convergence, yet the first step of the formal
classification is rather simple.

Definition 1 A non-Fuchsian system (1) is resonant, if some of the eigenvalues
λ1, . . . , λn of the leading matrix A0 are equal to each other. Otherwise (when all
eigenvalues are pairwise different) the system is non-resonant, see Ilyashenko and
Yakovenko (2008, §20C).

Remark 1 For Fuchsian systems the resonance by definition means that some of the
eigenvalues differ by a natural number, i.e., λi − λ j ∈ N for some i �= j .

Theorem 1 (Fabry–Poincaré–Dulac)A non-resonant non-Fuchsian system can be for-
mally diagonalized, i.e., there exists a formal gauge transformation such that the
corresponding transform B(t) becomes a diagonal matrix.

In other words, in the non-resonant case the system can be decomposed (by a
suitable gauge transformation) into a Cartesian product of one-dimensional equations.
Appearance of resonances (multiple eigenvalues of A0) leads to amore involved formal
normal form. The analytic reasons for the divergence (in general) of the diagonalizing
gauge transform (the Stokes phenomenon) with meromorphic coefficients are also
well understood, see Ilyashenko and Yakovenko (2008, §16 and §20).

1.2 Higher Order Linear Operators

The other flavor of the theory deals with linear equations involving only one unknown
(scalar) function u, but with higher derivatives. For simplicity we will consider only
the homogeneous equations of this type, which can always be written under the form

a0(t)u
(n) + a1(t)u

(n−1) + · · · + an−2(t)u
′′ + an−1(t)u

′ + an(t)u = 0, (2)

where a0, . . . , an ∈ k are the coefficients, defined modulo a multiplication by a
nonzeroLaurent series fromk. In particular, one can assume that the leading coefficient
a0 is identically one, or on the contrary, assume that all a0, . . . , an are formal Taylor
series (not involving negative powers of t). However, it turns out that the smart deci-
sion, simplifying many formulations, is to use a different derivation when expanding
a linear dependence between derivatives of the unknown function.

TheEq. (2) can be rewritten in the operator form.Denote by ∂ : k → k, ∂ : u �→ d
dt u

the standard derivation, and identify each element a ∈ k with a “zero order operator”
u �→ au. Then the left hand side of (2) can be interpreted as the result of application
of the differential operator

L =
n∑

j=0

a j (t) ∂n− j , a0, . . . , an ∈ k. (3)

to the unknown function u (which may well be in any differential field extension of
the differential field k). The Leibniz rule implies the commutation law

∂tk = ktk−1∂ + tk, k ∈ Z. (4)
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Denote by ε the Euler derivation,

ε = t ∂ = t d
dt . (5)

Then any linear operator of the form (3) can be re-expanded as the sum

L =
n∑

j=0

b j (t) εn− j , b j ∈ k, (6)

where the coefficients b j ∈ k as before are defined modulo a nonzero element in k.
The C-linear space of such operators will be denoted k[ε]. It is a non-commutative
algebra with respect to the operation of composition. The commutation law in k[ε] is
given by the formula

ε j t k = tk(ε + k) j , t ∈ Z, j ∈ Z+, (7)

which looks especially simple compared with the law (4) extended on arbitrary mono-
mials.

Definition 2 A canonical representation of an nth order linear differential operator
from C((t))[ε] is the representation (6) in which:

• all coefficients b0, . . . , bn ∈ C[[ t ]] are formal Taylor series, not involving negative
powers of t , and at least one of them has a nonzero free term, b j (0) �= 0;

• all coefficients b0, . . . , bn appear to the left from the symbols of the iterated Euler
derivations ε j .

Alternatively, any operator in the canonical representation can be expanded as an
infinite series of the form

L =
∑

j�0

t j p j (ε), p j ∈ C[ε], max
j

degε p j = n = ord L. (8)

Definition 3 An operator is Fuchsian, or regular, if in any canonical representation
the leading coefficient is nonvanishing, b0(0) �= 0. Otherwise it is called irregular.

The expansion (8) corresponds to a Fuchsian operator, if and only if degε p0 =
n = ord L .

Remark 2 A Fuchsian equation Lu = 0 with L as in (6) can be reduced to a Fuchsian
system (1) in the standard way by introducing the formal variables x j = ε j−1u,
j = 1, . . . , n − 1. Respectively, a Fuchsian system (1) can be written in the (matrix)
differential operator form as (ε − A)X = 0. This system can be reduced to a scalar
operator which is Fuchsian in the sense of the above Definition 3 by the cyclic vector
lemma (van der Put and Singer 2003, Proposition 2.9).

The condition of regularity is usually defined for equations with meromorphic
coefficients in terms of the growth rate of their solutions. For scalar equations regularity
is equivalent to Fuchsianity as in Definition 3, for Fuchsian systems it is not the case
any more.
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1.3 Weyl Equivalence

The (infinite-dimensional C-linear) space of differential operators admits no natural
action of a gauge transformations group that would be large enough for a meaningful
classification. Changes of variable of the form v = h(t)u with a formal series h ∈
C[[ t ]] are obviously insufficient, as the group they form is very small related to the
space of equations and orbits would have infinite codimension. Instead one can use
the fact that differential operators form a noncommutative algebra. The following
definition was suggested in Tanny and Yakovenko (2015) based on the fundamental
work by Ore (1933).

Definition 4 Two linear ordinary differential operators L, M ∈ k[ε] areWeyl equiva-
lent if there exist two Fuchsian operators H , K ∈ k[ε] such that:

1. MH = K L , and
2. gcd(H , L) = 1, i.e., there is no nontrivial operator P ∈ k[ε] such that both H and

L are divisible (from the right) by P .

Informally, two operators are Weyl equivalent, if there exists a Fuchsian operator
H : u �→ v = Hu which maps in a bijective way solutions of the equation Lu = 0 to
solutions of the equation Mv = 0. It is not obvious why this is indeed an equivalence
relation (in particular, why it is symmetric), yet this can be verified (Ore 1933; Tanny
and Yakovenko 2015).

It turns out that theWeyl classification ofFuchsian operators is verymuch similar to
that of the gauge equivalence of the Fuchsian systems of linear equations. In particular,
see Tanny and Yakovenko (2015):

• in the generic (non-resonant) case a Fuchsian operator is Weyl equivalent to an
Euler operator from C[ε] (i.e., with constant coefficients);

• in the resonant case the normal form is a composition of polynomial first order
operators ε − � j (t), � j ∈ C[t], with the degrees of the polynomials � j depending
on the combinatorial structure of resonances between the roots λ1, . . . , λn of p0,
in particular, � j (0) = λ j for all j = 1, . . . , n;

• the normal form is Liouville integrable;
• for a Fuchsian operator L with holomorphic (convergent) coefficients, the normal
form and the conjugating operators H , K also have holomorphic coefficients.

1.4 Non-commutative Factorization

The mere possibility of non-commutative factorization of Fuchsian operators into
terms of first order is a simple fact. It suffices to note that any Fuchsian equation
always has a solution of the form u(t) = tλv(t) with λ ∈ C and an invertible series
v ∈ C[[ t ]] (in the analytic category this solution is generated by an eigenvector of the
monodromy operator). Such a solution immediately produces a right Fuchsian factor
of order 1 for the corresponding operator. The difficult part of Tanny and Yakovenko
(2015) is to reduce simultaneously all factors to polynomial forms by a suitable Weyl
equivalence.
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In this paper we discuss a much simpler question on the possibility of the noncom-
mutative factorization of irregular differential operators. To the best of our knowledge,
this problem was first addressed by Malgrange (1979), who sketched a solution in a
preprint published only in 2008. Soon a different proof based on the valuations the-
ory was published by Robba (1981). In both cases the answer was given in terms of
the Newton diagram of the differential operator, yet the proof was using essentially
noncommutative tools.

An analogous question in the commutative algebra of pseudopolynomials C[[ t ]][ξ ]
was first studied by I. Newton in 1676 in a letter to H. Oldenburg that was published
only in 1960 according to Arnold (1990) and Brieskorn and Knörrer (1986). Newton
invented his method of a rotating ruler which today is formalized using the Newton
polygon (resp., Newton diagram) to solve this problem.

Even in the commutative case Newton’s solution was considerably involved, see
Vainberg and Trenogin (1974) for a modern exposition; an appropriate modification of
this proof allows one to treat also the noncommutative case of differential operators, see
the excellent textbook (van der Put and Singer 2003). However, the modern techniques
of the singularity theory (blow-up) allow one to obtain the same results in a much
simpler way, cf. Wall (2004).

In our paper we develop a formal technique which allows to transfer all results for
commutative pseudopolynomials to the noncommutative case of differential operators
and outline the similarity between the respective results. In particular, we prove a result
that is a direct analogue of Theorem 1 (the necessary definitions are introduced below).

Theorem 2 Let L be a single-slope differential operator L with the rational slope
r = p/q, gcd(p, q) = 1, such that the roots λ1, . . . , λm ∈ C of the corresponding
characteristic polynomial are nonresonant, i.e., pairwise different.

Then the operator L can be formally decomposed as a noncommutative product of
m irreducible operators, L = L1 · · · Lm, with the same slope r and having the form
L j = t pεq − � j (t) with � j ∈ C[[ t ]], � j (0) = λ j .

Note that if the slope is an integer, then q = 1 and the irreducible factors are of
order 1.

The general factorization statement is given in Theorem 11 below: its structure
is completely analogous to the structure of the classical factorization theorem for
pseudopolynomials. We start with a brief recap of the commutative theory in the form
most suitable for our purposes.

2 Pseudopolynomials and Their Factorization

2.1 Pseudopolynomials

A pseudopolynomial is a family of polynomials of degree � n = deg P which for-
mally depends on a local parameter t ∈ (C, 0). The space of pseudopolynomials can
be naturally identified with the commutative algebra that is in a sense a crossbreed
between the algebra of polynomials and the algebra of formal Taylor series,
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Fig. 1 Newton diagram of a
pseudopolynomial

Ĉ = C[ξ ] ⊗C C[[ t ]]. (9)

Each element of this algebra can be expanded into the formal series

P(t, ξ) =
∞∑

j=0

t j p j (ξ), p j ∈ C[ξ ], deg P = sup
j
deg p j < +∞ (10)

(note the boundedness of deg p j ) or as a formal double sum

P(t, ξ) =
∑

(i, j)∈S
ci j t

jξ i , ci j �= 0, S ⊂ Z
2+ (11)

The set S ⊂ Z
2+ which belongs to the vertical strip 0 � i � n = deg P is called the

support of the pseudopolynomial P and denoted by supp P (Fig. 1).

Definition 5 The Newton polygon ΔP ⊆ R
2+ of a pseudopolynomial P ∈ Ĉ is the

minimal closed convex set containing {(0, 0)} ∪ supp P , which is invariant by the
vertical translation (i, j) �→ (i, j + 1).

One can immediately see that the boundary of any Newton polygon consists of two
vertical rays over the points i = 0 and i = n and the graph of a convex function
χP : [0, n] → R+, called the gap function. This function is non-decreasing, which
implies the following obvious conclusion.

Proposition 1 If (i, j) ∈ ΔP and 0 � i ′ < i , then (i ′, j) ∈ ΔP . �
Remark 3 Definition 5 is an obviousmodification of the standard notion of the Newton
polygonΔ f for Taylor series f fromC[[x, y]], defined as theminimal closed convex set
which contains the support supp f and is invariant by the shifts (i, j) �→ (i, j+1) and
(i, j) �→ (i + 1, j), see Wall (2004). It suffices to notice that for a pseudopolynomial
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P(t, ξ) of degree n the Laurent series f (x, y) = yn P(x, 1
y ) does not involve negative

powers of y. The (usual) Newton polygon for f is obtained by reflection of ΔP in the
horizontal axis and shift upwards by n.

The following properties of the gap function immediately follow from its construc-
tion:

1. χ is defined on [0, n] and χ(0) = 0;
2. χ is convex, monotone non-decreasing and piecewise-linear (more accurately,

piecewise-affine);
3. χ may be non-differentiable at a point i ∈ [0, n] if and only if i and χ(i) are both

integer numbers (in which case we call (i, j) ∈ ΔP a corner point or a vertex of
ΔP ).

Remark 4 The inverse to the gap function is the smallest concave majorant of the
degree function j �→ deg p j derived from the expansion (10).

Definition 6 The union of all finite edges of the Newton polygon ΔP is called the
Newton diagram of the pseudopolynomial P and denoted by ΓP . Thus the Newton
polygon is the epigraph of the gap function.

Definition 7 A closed convex polygon Δ ⊂ R
2+ which is the epigraph of a convex

piecewise-linear functionχ = χΔ as above, is called admissible. The functionχ = χΔ

will be called the gap function for Δ.
Collection of different slopes (derivatives) of the affine pieces of the function χ , all

of them nonnegative rational numbers, will be called the Poincaré spectrumS (Δ) ⊂
Q+ of the polygon Δ.

Definition 8 We call a pseudopolynomial P (resp., its Newton polygon Δ) a single-
slope pseudopolynomial (resp., polygon), if its Poincaré spectrum consists of a single
value,S (P) = {ρ}. The corresponding gap function is linear on some segment [0, d],
χP (i) = ρi , ρ ∈ Q+. The value ρ = 0 is not excluded.

Example 1 By this definition S (P) = {0} if and only if deg P = max j deg p j =
deg p0.We call such (single-slope) pseudopolynomialsFuchsian, cf. withDefinition 3.

Remark 5 The reason why the collection of slopes is referred to as the Poincaré spec-
trum, is as follows. A linear system (1) of Poincaré rank r ∈ Z+ can be written as
trεX = A(t)X , After reduction to a scalar equation using a cyclic vector theorem,
such system will generically yield a single-slope operator with the same integer slope
r .

2.2 Newton Polygon of a Product

The key property of the Newton polygon is its “logarithmic behavior” with respect
to multiplication in Ĉ , which generalizes the geometry of superscripts in the identity
ξnξm = ξn+m .
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Proposition 2 For any P, Q ∈ Ĉ ,

ΔPQ = ΔP + ΔQ, (12)

where the right hand side is the Minkowski sum {u + v : u ∈ ΔP , v ∈ ΔQ}. �
For monomials this follows from the identity for their (one-point) supports,

supp(t i+i ′ξ j+ j ′) = supp(t iξ j ) + supp(t i
′
ξ j ′).

This immediately implies the inclusions

supp(PQ) ⊆ supp(P) + supp(Q), hence ΔPQ ⊆ ΔP + ΔQ . (13)

The inclusion for supports can be strict, since a lattice point from supp(P)+ supp(Q)

can be represented in several possible ways as the sum of points from supp(P) and
supp(Q). A cancellation of different contributions is possible so that the correspond-
ing coefficient of PQ could be zero. The not-so-obvious claim is that the coefficients
corresponding to the corner points of ΔP + ΔQ cannot vanish because of such can-
cellation.

Corollary 1

S (PQ) = S (P) ∪ S (Q).

As follows from Proposition 2, the problem of factorization of a pseudopolynomial
R ∈ Ĉ reduces (although is not equivalent) to the problem of representing the Newton
polynomialΔ = ΔR as theMinkowski sumof two admissible polygons,Δ = Δ′+Δ′′.
The admissibility constraints (nonnegativity, vertices only at the integer points of the
lattice, two vertical bounding rays etc.) imply the following two geometrically rather
obvious statements.

Lemma 1 An admissible (in the sense of Definition 7) polygon is indecomposable, i.e.,
cannot be represented as Minkowski sum of two nontrivial admissible polygons, if and
only if it has a single slope and the single non-vertical edge carries no lattice points
of Z

2+.
Any admissible polygon can be decomposed into the Minkowski sum of indecom-

posable polygons.

Proof It can be immediately verified that any admissible polygon can be decomposed
into theMinkowski sumof the single-slopepolygons.The claimof (in)decomposability
for the single-slope polygons is essentially a one-dimensional statement about lattice
segments in Z

1. �

123



288 L. Mezuman, S. Yakovenko

2.3 Quasihomogeneous Pseudopolynomials

Let w ∈ Q+ be a nonnegative rational number and wgt = wgtw : Z
2 → Q the weight

function which associates to a monomial t jξ i the weight wgt(t jξ i ) = wgt(i, j) =
j − wi .

Definition 9 Apseudopolynomial is calledw-quasihomogeneous, if all its monomials
have the same w-weight α ∈ Q,

Pα =
∑

(i, j) : wgtw(i, j)=α

ci j t
jξ i .

One can immediately see that the support of a quasihomogeneous polynomial belongs
to a line with the slope w and is finite (i.e., Pα ∈ C[t, ξ ] is a genuine polynomial).

A quasihomogeneous polynomial of weight zero is essentially a polynomial of a
single variable. If w = p/q is an irreducible fraction, then all monomials of weight
zero are necessarily powers of the generating monomial tqξ p of weight zero, thus
P0(t, ξ) = σ(tqξ p) for some σ = σP ∈ C[λ]. It is always reducible: if λ1, . . . , λk
are the complex roots of σ , then

P0(t, ξ) = c
k∏

s=1

(λs − tqξ p), c ∈ C, c �= 0, σP (λs) = 0.

An arbitrary quasihomogeneous (pseudo)polynomial Pα of weight α can be repre-
sented as a nontrivial monomial of weight α times a quasihomogeneous polynomial
of weight zero. To make this representation unique, we will require that this quasiho-
mogeneous polynomial is without zero roots,

Pα(t, ξ) = ct jξ i ·
k∏

s=1

(λs − tqξ p), c
∏

s

λs �= 0, σP (λs) = 0, wgt(i, j) = α.

Definition 10 The univariate polynomial σ = σP introduced by the above construc-
tion, is called the characteristic polynomial of the quasihomogeneous pseudopolyno-
mial P . Its (nonzero) roots are called characteristic numbers.

2.4 Graded Algebra of Pseudopolynomials

Let as before w ∈ Q+ be a rational weight and wgt(·) the corresponding weight
function. The algebra Ĉ is naturally graded by this weight, i.e., represented as a
countable direct sum corresponding to quasihomogeneous pseudopolynomials of dif-
ferent weights,

Ĉ =
⊕

α∈Q
Cα, Cα = {P ∈ Ĉ : P quasihomogeneous, wgt P = α}. (14)
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The index α effectively ranges over the set Z+ − wZ+ ∈ Q which is completely
ordered (i.e., it is discrete, bounded from below and unbounded from above). All
other terms Cα are trivial. This grading agrees with the structure of algebra:

Cα · Cβ ⊆ Cα+β, ∀α, β ∈ Q. (15)

Consequently, any pseudopolynomial P ∈ Ĉ can be expanded as a series P =∑
α∈Q Pα , Pα ∈ Cα , which is in general infinite but always has a well-defined w-

leading term P∗ of the minimal weight α∗ = minwgt
∣∣
ΔP

. It is tempting to use the
imperfect notation P = P∗ + · · · to state the corresponding fact.

2.5 Commutative Factorization Problem

We will focus on the following special form of the factorization problem for pseu-
dopolynomials: given P ∈ Ĉ with a Newton polygon Δ = ΔP and an admissible
decomposition Δ = Δ′ + Δ′′ into the Minkowski sum, construct a factorization
P = QR with ΔQ = Δ′, ΔR = Δ′′. Some additional assumptions will be required.

Example 2 Assume that P is a Fuchsian pseudopolynomial with pairwise distinct
characteristic numbers λ1, . . . , λd . Then its Newton polygon decomposes as the
Minkowski sum of d identical copies of [0, 1] × R+, so one can expect that it factors
as a product of d linear pseudopolynomials, P(t, ξ) = c(t)

∏d
s=1(ξ − �s(t)). This is

indeed the case, as follows from the (formal) Implicit Function Theorem: if all roots
of p0 are simple, p′

0(λs) �= 0, then each root can be expressed as ξs = �s(t) ∈ C[[ t ]],
�s(0) = λs .

2.5.1 Factorization inC[[x, y]]

The factorization problem for pseudopolynomials can be instantly reduced to that for
formal series in twovariables, asmentioned inRemark 3. The factorization problem for
such objects is well known, see Greuel et al. (2007) andWall (2004). If the series were
convergent, then this would be the problem of finding all irreducible branches of the
germ of a planar analytic curve { f (x, y) = 0} ⊂ (C2, 0). The answer is determined by
the (classical) Newton diagram of the germ f which is the graph of a piecewise affine
convex function χ f : R

+ → R
+ which decreases to zero at some point � d, cf. with

Remark 3. Slopes of this function are negative; as before, f is called single-slope, if
its Newton diagram consists of a single edge.

Theorem 3 (Wall 2004, Lemma 2.4.4) A formal series f ∈ C[[x, y]] admits factor-
ization into single-slope series f = f1 · · · fm. �

With a single-slope series f one can associate its leading part (a quasihomoge-
neous polynomial), the corresponding characteristic polynomial σ = σ f (λ) and its
(nonzero) roots λ1, . . . , λd , the characteristic numbers, exactly as in Sect. 2.3. The
only difference is that the weights assigned to x, y are both natural numbers. Obvi-
ously, σ f1 f2 = σ f1σ f2 ∈ C[λ].
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Theorem 4 (Wall 2004, Lemma 3.6.1) Assume that the characteristic numbers of a
single-slope series f ∈ C[[x, y]] form twodisjoint groups so thatσ f (λ) = σ1(λ)σ2(λ)

and gcd(σ1, σ2) = 1.
Then f admits factorization f = f1 f2 so that σ fi = σi , i = 1, 2. �

Corollary 2 Any single-slope series can be factored out as a product of terms each
having a single characteristic number, possibly with nontrivial multiplicity. �

These theorems immediately imply the following two factorization results for pseu-
dopolynomials.

Theorem 5 Any pseudopolynomial P ∈ Ĉ admits factorization into single-slope fac-
tors P = P1 . . . Pm.

Theorem 6 Assume that the characteristic numbers of a single-slope pseudopolyno-
mial P ∈ Ĉ form two disjoint groups so that σP factors as σP (λ) = σ1(λ)σ2(λ) with
gcd(σ1, σ2) = 1.

Then P admits factorization P = P1P2 so that σPi = σi , i = 1, 2.

Corollary 3 Any single-slope series can be factored out as a product of terms each
having a single characteristic number, possibly with nontrivial multiplicity. �
Proof (of both Theorems 5 and 6) For a pseudopolynomial P(t, ξ) ∈ Ĉ of degree n
denote f (x, y) = yn P(x, 1/y). Then f is a formal series in x and a polynomial in y,
that is, an element from C[[x, y]]. Let f = f1 f2 be the factorization of f asserted in
Theorem 3 (Theorem 4 respectively). By the Weierstrass theorem (formal), one can
assume that modulo an invertible multiple each series fi is polynomial in y of degrees
n1, n2 respectively, with n1 + n2 = n. The invertible series must also be polynomial
in y of degree 0, that is, a formal series from C[[x]]. Setting Pi (t, ξ) = ξni fi (t, 1/ξ)

gives the required factorization of P . �

2.5.2 About the Proofs in the Local Case

The modern proof of Theorems 5 and 6 relies on the desingularization, a sequence
of rational monomial transformations which simplify the curve (or the formal series).
These transformations (blow-ups) have the form

(x, y) �−→ (x, y/x) or (x, y) �−→ (x/y, y) (16)

and act on the support of a series by an affine transformation which allows to extract
factors of the form x p or yq . For instance, if Δ f has a single “homogeneous edge”
connecting the vertices (0, p) and (p, 0) and the corresponding characteristic num-
bers λ1, . . . , λp are pairwise different, then after a single blow-up one can refer to
the implicit function theorem for the proof that f admits factorization into terms
corresponding to nonsingular branches,

f (x, y) =
p∏

i=1

(x − �i (x)y), �i ∈ C[[ t ]], �i (0) = λi .
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In case of multiple characteristic values one has to refer to the Hensel lemma and
Weierstrass Preparation theorem instead of the implicit function theorem.

A single-slope series with the single edge connecting (0, p) and (q, 0) requires
several blow-ups whose number and types are determined by the Euclid algorithm for
computation of gcd(p, q). Slightly more delicate considerations are required when f
has more than one slope, but the idea remains the same.

3 Homological Equation and Its Solvability

In this section we return to the algebra of pseudopolynomials Ĉ = C[[ t ]][ξ ] and
attempt to construct factorization in this algebra directly.

3.1 Formal Factorization

Consider an admissible polygonΔ ∈ R
2+ and theweight functionwgt = wgtw : Z

2 →
Q associated with a rational weight w ∈ Q+. Denote

Cα(Δ) = Cα ∩ {supp P ⊆ Δ}. (17)

Then the property (15) can be refined as follows: for any two admissible polygons
Δ′,Δ′′ ⊆ R

2+ and any α, β ∈ Q+,

Cα(Δ′) · Cβ(Δ′′) ⊆ Cα+β (Δ′ + Δ′′). (18)

Let P ∈ Ĉ be a pseudopolynomial expanded into w-quasihomogeneous terms as
P = ∑

γ Pγ , and assume that Δ = ΔP = Δ′ + Δ′′ is an admissible decomposition
of its Newton polygon. The factorization under the form P = QR can be achieved by
two formal expansions Q = ∑

α Qα , R = ∑
β Rβ , if and only if

Pγ =
∑

α+β=γ

QαRβ, Qα ∈ Cα(Δ′), Rβ ∈ Cβ(Δ′′). (19)

Denote the leading terms of the three pseudopolynomials by P∗, Q∗, R∗ respectively
(of weights γ∗ = minwgt

∣∣
Δ
, α∗ = minwgt

∣∣
Δ′ , β∗ = minwgt

∣∣
Δ′′ ) and assume that

P∗ = Q∗R∗ ∈ Cγ∗(Δ). (20)

Then (19) becomes an infinite triangular system of linear algebraic equations
with respect to the unknown terms Qα, Rβ from the corresponding finite-dimensional
linear spaces Cα(Δ′), Rβ ∈ Cβ(Δ′′).

Indeed, each equation can be rewritten as

Q∗Rγ−α∗ + Qγ−β∗ R
∗ = −Pγ +

∑

α>α∗, β>β∗
QαRβ. (21)
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The condition on the weights on the right hand side means that it involves only the
terms of the weights strictly less than Qγ−β∗ (resp., Rγ−α∗). If these terms were
already determined recursively from the Eq. (21) solved for all smaller values of γ ,
then the right hand side is known and we can study the solvability of the equation in
the weight γ as well. The Eq. (20) serves as the initial point for this inductive process.

Solvability of the Eq. (21) depends on the following data: the weight w, the two
admissible polygons Δ′,Δ′′ and the initial quasihomogeneous polynomials Q∗, R∗
of the appropriate weights. Denote by H the linear operator (more precisely, a family
(sequence) of linear operators Hγ , γ ∈ Q+)
Hγ : Cγ−α∗(Δ

′′)×Cγ−β∗(Δ
′) → Cγ (Δ′ +Δ′′), (U , V ) �→ Q∗U + R∗V . (22)

Definition 11 The equation(s) H(U , V ) = W is called the homological equation
associated with the data H = (w,Δ′,Δ′′, Q∗, R∗). The homological equation is
called solvable, if each operator Hγ is surjective for all γ � γ∗ = α∗ + β∗.

This equation can be considered as the linearization of the nonlinear equation
P = QR at the “point” (Q∗, R∗) in the same way as it appears in the theory of
local normal forms of vector fields etc., see Ilyashenko and Yakovenko (2008, §4). Its
solvability very strongly depends on the corresponding data H , in particular, on the
choice of the “point”, the seed polynomials Q∗, R∗.

3.2 Example: Extracting a Fuchsian Factor

We start with the extreme case where w = 0. It implies that the “Fuchsian” part of a
pseudopolynomial can be always factored out.

Example 3 Let w = 0. Then wgt = degt , and the the quasihomogeneous components
are of the form Pj = t j p j (ξ), j = 0, 1, 2, . . . . Let d = deg p0 < n = deg P .
Since the Newton diagram of P contains a nontrivial horizontal segment of length
d < n = deg P , then ΔP = Δ′ + Δ′′, where Δ′ is a vertical semistrip [0, d] × R+.
In other words, the gap function χΔ′ vanishes identically on [0, d], and χΔ′′ is strictly
positive on (0, n−d], i.e., the correspondingNewton diagram has only nonzero slopes.
Let Q∗ = P∗ = p0(ξ), R∗ = 1. Substituting the expansions

Q = p0(ξ) +
∞∑

j=1

t j q j (ξ), deg q j � d, R = 1 +
∞∑

j=1

t j r j (ξ), deg r j � n − d

into (21), we obtain an infinite series of identities in C[ξ ],
p0 = p0,

p1 = q1 + r1 p0,

p2 = q2 + r1q1 + r2 p0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p j = q j + r1q j−1 + · · · + r j p0,

(23)
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The initial identity is trivially satisfied. The requirements that the support of Qβ

belongs to Δ′ means that deg q j � d (then the second requirement will be automati-
cally satisfied).

The homological equation (23) can be inductively solved with respect to q j , r j
by the division with remainder of the polynomial p j − ∑ j−1

k=1 rkq j−k by p0. The
remainder term q j can be guaranteed to be of degree � d − 1 (and then it will be
uniquely determined), while r j will be the respective incomplete ratio. This gives a
direct proof of a particular case of Theorem 5.

3.3 Sylvester Map

As was explained in Sect. 2.3, quasihomogeneous polynomials can be expressed as
univariate polynomials in the basic monomial of weight zero. An analog of the homo-
logical equation (21) for univariate polynomials looks as follows.

Denote by Cn[λ] the linear space of polynomials of degree � n − 1, so that
dimC Cn[λ] = n, and assume q∗ ∈ Cn[λ], r∗ ∈ Cm[λ]. Then there is a linear map,
called the Sylvester map,

S : Cm[λ] × Cn[λ] → Cm+n[λ], (u, v) �−→ q∗u + r∗v (24)

(the matrix of this map in the natural basis is the Sylvester matrix of the two poly-
nomials q∗, r∗). It is well known that the Sylvester map is bijective if and only if
gcd(q∗, r∗) = 1.

However, it is very difficult to apply this result to study the homological equation
(21): the dimensions dimCα(Δ) depend on the weight α in a rather irregular way. In
general, the homological operator Hγ acts between spaces of different dimensions.
Thus proving directly its surjectivity is problematic. However, it follows indirectly
from the results established in Sect. 2.5 factorization of pseudopolynomials.

3.4 Solvability of the Homological Equation

Let H = (w,Δ′,Δ′′, Q∗, R∗) be the data defining the homological operator H .
Consider first the case where one of the polygons, say,Δ′ is single-slope,S (Δ′) =

{ρ}, and choose the weight w = ρ. Then α∗ = 0, and Q∗ is a quasihomogeneous
polynomial of weight zero with nonzero characteristic roots. If ρ /∈ S (Δ′′), then
β∗ < 0, the weight achieves its minimum at a corner point and the leading term R∗ is
a (nontrivial) monomial.

Theorem 7 Ifw = ρ /∈ S (Δ′′), i.e., the polygonsΔ′,Δ′′ have no common slope, then
all homological operators are surjective and the homological equation is solvable in
any weight γ .

The second case deals with the factorization of quasihomgeneous polynomials into
terms of lower weight. Assume that S (Δ′) = S (Δ′′) = {ρ} and the weight is
chosen accordingly, w = ρ. Then α∗ = β∗ = 0, and the corresponding characteristic
σ ′ = σQ∗ and σ ′′ = σR∗ are defined as in Definition 10.
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Theorem 8 If gcd(σ ′, σ ′′) = 1, i.e., the two characteristic polynomials have no com-
mon roots, then all homological operators are surjective and the homological equation
is solvable in any weight γ .

Proof (Proof of both theorems) Consider a pseudopolynomial P with the leading part
P∗ = Q∗R∗ with Q∗, R∗ as in, say, Theorem 7. By Theorem 5, P admits factorization
of the form P = (Q∗ + · · · )(R∗ + . . . ) regardless of the higher terms of P .

Substituting this factorization, we see that for each weight γ > γ∗ the homological
equation (21) admits a solution for some right hand side. Yet since the term Pγ can
also be changed arbitrarilywithout affecting reducibility for any γ > γ∗, we conclude
that the equation Hγ (U , V ) = W , see (22), is solvable for any W ∈ Cγ (Δ).

In exactly the same way Theorem 8 follows from Theorem 5. �

Remark 6 Theorems 5 and 6 describe the factorization of pseudopolynomials both in
the formal context (as stated) and in the analytic context. Consider the commutative
algebraC = C[ξ ]⊗CO(t), cf. with (9), whereO(t) is the algebra of germs of analytic
functions at (C, 0)which can be identifiedwith the algebra of convergent Taylor series,
the corresponding objects are called analytic pseudopolynomials. Then each analytic
pseudopolynomial P ∈ C can be factored as a product of two analytic pseudopolyno-
mials Q, R ∈ C . Moreover, among the (many) formal solutions (Q, R) constructed
using the homological equations, one can always find a convergent solution.

4 Weyl Algebra and Factorization of Differential Operators

4.1 FormalWeyl Algebra Ŵ

Motivated by the arguments fromSect. 1.2 on various representations of linear ordinary
differential operators, we introduce the (formal) Weyl algebra Ŵ as the algebra of
formal series1 in the two non-commutative variables t, ε related by the commutation
identity (7), which are polynomials in ε = t d

dt .

Using the commutation rule, any element L ∈ Ŵ can be reduced to the infinite
formal sum

L = L(t, ε) =
∑

(i, j)∈S
ci j t

jεi , S = supp L ⊂ [0, . . . , n] × Z+, ci j ∈ C � {0},
(25)

where all powers of t always occur to the left from powers of ε (the canonical represen-
tation). The integer n = ord L is the order of the operator L , and S is called its support,
S = supp(L). The Newton diagram ΔL is obtained from the support in exactly the
same way as in the commutative case (convex hull and invariance by translations).

1 The classical Weyl algebra is generated by two symbols with the same commutation relation, so consists
of noncommutative polynomials in these variables.
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Because of the non-commutativity of Ŵ , in general supp(LM) � supp(L) +
supp(M). However, the identity (7) implies that

t jεi · t j ′εi ′ = t j+ j ′εi+i ′ +
∑

k<i+i ′
ckl t

lεk . (26)

This together with Proposition 1 proves that

∀L, M ∈ Ŵ ΔLM = ΔL + ΔM (27)

(cf. with Proposition 2).

Definition 12 For any L ∈ Ŵ with the canonical representation (25) the pseudopoly-
nomial P = P(t, ξ) = ∑

supp L ci j t
jξ i with the same coefficients ci j will be called2

the pseudosymbol of L and denoted by PL .
Conversely, for a pseudopolynomial P = P(t, ξ) = ∑

ci j t jξ i ∈ Ĉ wewill denote
P(t, ε) ∈ Ŵ the result of substitution of ε instead of ξ , and LP = ∑

i, j ci j t
jεi ∈ Ŵ .

Needless to warn that the pseudosymbol is by no means functorial: in general
PLM �= PLPM and P(t, ε)Q(t, ε) �= PQ(t, ε).

The correspondence Ŵ → Ĉ , L �→ PL allows to associatewith operators from Ŵ
all notions that were introduced for the pseudopolynomials. Thus we define Fuchsian
operators, single-slope operators, the Poincaré spectrum e.a. Obviously, the pseu-
dosymbols of Fuchsian operators become what they should be.

4.2 Filtration of theWeyl Algebra

Let w ∈ Q+ be a rational weight and wgtw(·) the corresponding weight function.
However (unfortunately) since PLM �= PLPM , we do not have the grading of Ŵ
by different weights, only filtration.

Recall that each grading of an algebra, in particular, the grading C (Δ) =⊕
α Cα(Δ), canonically defines a filtration by subspaces

Uγ (Δ) =
⋃

γ�α

Cα(Δ), α, γ ∈ Q.

This filtration is monotone decreasing, Uα(Δ) ⊆ Uβ(Δ) if α � β, satisfies the
conditionUα(Δ) ·Uβ(Δ) ⊆ Uα+β(Δ). Conversely, the grading can be restored from
the filtration as follows,

Cα(Δ) = Uα(Δ)/U +
α (Δ), where U +

α (Δ) =
⋃

γ>α

Uα(Δ). (28)

2 The classical notion of the symbol of a differential operator collects only the terms involving the highest
order derivatives.
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Definition 13 Let α ∈ Q+ be a rational number and Δ an admissible polygon. We
define Ŵα(Δ) as the subspace

Ŵα(Δ) = {L ∈ Ŵ : PL ∈ Uα(Δ)}. (29)

In otherwords, Ŵα(Δ) denotes theC-space of operators from Ŵ whose pseudosymbol
contains only terms of weight α and higher.

By definition, Ŵα(Δ) ⊇ Ŵβ(Δ) if α � β, so the spaces Ŵα(Δ) form a decreasing
filtration of Ŵ (Δ). This filtration agrees with the composition in Ŵ in the sense that

Ŵα(Δ) · Ŵβ(Δ) ⊆ Ŵα+β(Δ) ∀α, β ∈ Q, (30)

cf. with (15).
Indeed, after reducing the composition of operators L, M of weights α, β respec-

tively to the canonical representation where all powers of t occur to the left from all
powers of ε, we affect only terms of order strictly greater than α + β, as follows from
(26) (recall that the weight −w of ε is negative).

Recall that for any choice of the weight we used all rational numbers for labeling
in the graded algebra Ĉ = ⊕

α∈Q Cα: the homogeneous spaces Cα could be nonzero
only for countably many values forming an arithmetic progression (depending on w).
In the sameway the decreasing filtration of Ŵ by Ŵα has “jumps” only at these values.

Proposition 3 For any rational α ∈ Q,

Ŵα(Δ)/Ŵ +
α (Δ) = Cα(Δ), where Ŵ +

α (Δ) =
⋃

γ>α

Ŵγ (Δ). (31)

Proof This follows from (28) and the definition of the subspaces Ŵ +
α (Δ). �

4.3 Factorization in theWeyl Algebra

Assume that L ∈ Ŵ , ord L = n and ΔL = Δ′ + Δ′′. We look for conditions
guaranteeing that L can be decomposed as L = MN with M, N ∈ Ŵ and ΔM = Δ′,
ΔN = Δ′′.

Choose a weight w ∈ Q and expand L as the series L = ∑
γ Pγ (t, ε), where

Pγ are the corresponding quasihomogeneous components of the pseudopolynomial

P = PL ∈ Ĉ (Δ).
We will look for a factorization of the form P = QR defined by indeterminate

pseudopolynomials Q = PM ∈ C (Δ′), R = PN ∈ C (Δ′′). by inductively con-
structing them and try to mimic the formal arguments from Sect. 3.1. All notations
will be kept as similar as possible to the commutative case. We assume that both Q, R
are expanded as sums of quasihomogeneous components Q = ∑

Qα , R = ∑
Rβ .

The leading quasihomogeneous terms Q∗, R∗ of theminimalweightsα∗, β∗ respec-
tively, must yield factorization of the leading term P∗. Fix them and consider the
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equationPL = PMN . Since Ŵ is non-commutative, the right hand side is not equal
toPMPN , but for any α, β from (26) it follows that

Qα(t, ε)Rβ(t, ε) = (QαRβ)(t, ε) mod Ŵγ , γ = α + β, (32)

that is, after reducing the composition of operators to the canonical form, the result will
have the same leading terms of order γ = α + β as if the algebra were commutative.

This means that the pseudopolynomials Qα , Rβ can be inductively defined from
the infinite “triangular” system of equations of the form

Pγ =
∑

α+β=γ

QαRβ + Sγ , Qα ∈ Cα(Δ′), Rβ ∈ Cβ(Δ′′), (33)

cf. with (19), where Sγ ∈ Cγ (Δ) is the collection of terms accumulated from re-
expansion of terms Pα′ , Qβ ′ with α′ + β ′ < γ , which were already found by the
induction hypothesis.

The Eq. (33) are identical to the Eq. (19), and their solvability depends only on the
properties of Q∗, R∗ and the Newton diagrams Δ,Δ′′ as described in Sect. 3.4. In
particular, Theorems 7 and 8 imply the following results.

Theorem 9 If ΔL = Δ′ + Δ′′ and the admissible polygons Δ′,Δ′′ have no common
slope, then any operator L ∈ Ŵ (Δ) admits a formal decomposition L = MN with
M ∈ Ŵ (Δ′), N ∈ Ŵ (Δ′′).
Theorem 10 If Δ is a single-slope admissible polygon and L ∈ Ŵ (Δ) has a char-
acteristic polynomial σ = σL ∈ C[λ], then for any factorization σ = σ ′σ ′′ with
mutually prime polynomials σ ′, σ ′′ one can find a formal factorization L = MN by
two single-slope operators such that σM = σ ′, σN = σ ′′.
Proof (of both Theorems) Each equation in the infinite series (33) is of the form (21)
with the only difference being an extra term Sγ coming from the preceding equation.
Its solvability follows from the surjectivity of the corresponding homological operator
associated with the dataH = (w,Δ′,Δ′′, Q∗, R∗). �

As an immediate corollary to these two theorems, we have the following result on
reducibility.

Definition 14 A differential operator L ∈ Ŵ is called super-monic, if it has a single
slope, and the corresponding characteristic polynomial σL has a single root.

Theorem 11 Any differential operator L ∈ Ŵ admits a decomposition into the non-
commutative product of super-monic operators.

5 Discussion

5.1 Back to the Systems of First Order Equations

Theorem 1 on diagonalization of non-resonant irregular systems is a straightforward,
almost literal equivalent of Theorem 2 on factorization of non-resonant single-slope
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operators, which is in turn a particular case of Theorem 10. Indeed, if all roots of
σL are simple, it can be factored into terms linear in λ which yields the required
decomposition.

However, Theorem 9 is potentially richer: it allows non-integer values of the
“Poincaré rank” r and applies also in the cases where an operator has Poincaré spec-
trum with several slopes.

Consider the system (1) of some Poincaré rank. It is tempted to assume that
generically the leading matrix is non-resonant and hence the system is formally diag-
onalizable. On the other hand, existence of a pole of order r + 1 > 1 is itself a
degeneracy of higher codimension, therefore A0 should have a small rank and, as a
corollary, many resonances between zero eigenvalues. One could think of the typical
case, where the first several matrix coefficients A0, A1, A2, . . . have small ranks (say,
all of them are rank one matrices in a generic position to each other). To the best of
our knowledge, there are no results dealing with the problem in such settings.

5.2 Remark on the Convergence

It is absolutely imperative to stress that all results on factorization of the differential
operators, unlike their counterparts on pseudopolynomials, are only formal (cf. with
Remark 6). Technically, the difference between the two theories can be attributed to
the fact that the passage from grading to filtration results in the growth of the number
of terms in the right hand side of the homological equation (33) compared with (19).

However, the issue of the divergence of formal transformations, diagonalizing (say,
in the non-resonant case) irregular singularities was studied in detail, and geometric
obstructions were identified as Stokes matrices, see Ilyashenko and Yakovenko (2008,
§20G).

The ambitious goal beyond this paper and its precursor (Tanny and Yakovenko
2015) is to identify analytic obstructions to the formal Weyl classification and formal
factorization in a similar form as a suitable cocycle over a punctured neighborhood
(C, 0). However, this project is still in its rudimentary stage.
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