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Abstract
Genus one Laughlin wavefunctions, describing the gas of interacting electrons on a
two dimensional torus in the presence of a strongmagnetic field, analytically continued
in the filling fraction, are related to the partition functions of half-BPS surface defects
in four dimensional N = 2 supersymmetric gauge theory.

Keywords Many-body systems · Instantons · Electrons · Fractional Hall effect ·
Laughlin states

1 Introduction

The relation between the low-energy physics of gauge theories andmany-body systems
has been explored for quite some time. For example, inGorsky andNekrasov (1994a, b,
1995a), Nekrasov (1996) and Fock and Rosly (1999) certain many-body quantum
mechanical systems were identified as subsectors of gauge theories in two, three, and
four dimensions. In Nekrasov and Shatashvili (2009a, b, 2010) the Bethe/gauge cor-
respondence has been proposed, building on the prior work above and Moore et al.
(2000), Gerasimov and Shatashvili (2008, 2007). This correspondence identifies the
supersymmetric vacua of gauge theories with N = (2, 2) d = 2 Poincare supersym-
metry (see Witten 1993 for the introduction into the subject) with the stationary states
of some quantum integrable system.

We point out a curious relation between Laughlin wavefunctions describing the
many-electron states in fractional quantum Hall effect on a torus, and the partition
functions of certain surface defects in supersymmetric gauge theories in four dimen-
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124 N. Nekrasov

sions. To use this relation in the analysis of the physics of strongly correlated electron
systems is a challenge left for future work.

2 Laughlin states

2.1 Electrons in magnetic field

Consider N non-relativistic electrons, moving on a two-dimensional Riemann surface
� with the metric g, subject to a magnetic field B = d A, A being a connection on
some principal U (1)-bundle P over �. Let x1, . . . , xN ∈ � denote the positions of
electrons. The Hamiltonian governing their dynamics is given by a formula, somewhat
similar to the Eq. (3.1):

Ĥ = − �
2

2m∗
n∑

i=1

∇2 +
∑

i �= j

U (xi , x j
)
, (2.1)

where ∇ = d + A, ∇2 = ∇�∇. The Hamiltonian Ĥ acts on the N -electron states, the
wavefunctions � ∈ H = �N H . The space H of the single particle states is the space
of L2-sections ψ of a complex line bundle L → �, associated to P .

2.1.1 Kaluza–Klein picture

The bundle P is easy to describe in cases where � is a sphere or a torus. For � = S
2

one can take P = S
3 ≈ SU (2). For � = T

2, P is the quotient of a three dimensional
Euclidean space R

3 by the action of the Heisenberg group � which is the central
extension of the lattice Z

2 by Z, corresponding to the 2-cocycle c : Z
2 → Z given by

c(n1,m1; n2,m2) = n1m2. (2.2)

Explicitly, as a set � = Z
3 with the non-abelian multiplication

(n1,m1, l1) · (n2,m2, l2) = (n1 + n2, m1 + m2, l1 + l2 + c(n1,m1; n2,m2)) .

(2.3)

The homomorphismsZ → � and � → Z
2 are given by l �→ (0, 0, l) and (m, n, l) �→

(m, n), respectively. So, � is a non-abelian group built out of two abelian ones. The
group � acts on R

3 as follows:

(n,m, l) · (x, y, w) = (x + n, y + m, w + ny + l). (2.4)

We can now define a charge q particle on �. We first study the quantization of a
particle on P . The Hilbert space HP is the space of L2-functions on P . Since P has
the U (1)-symmetry, the Hilbert space decomposes into the representations of U (1):
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Laughlin states and gauge theory 125

HP =
⊕

q∈Z

Hq
P (2.5)

where Hq
P consists of functions ψ on P , such that g = e2π it ∈ U (1) acts via:

g∗ψ = e2π iqtψ . By definition,H - the space of states of the charge q particle on � is
the subspace Hq

P . Explicitly: ψ ∈ Hq
P iff

ψ(x + n, y + m, w + l + ny) = ψ(x, y, w) , ψ(x, y, w) = e2π iqwχ(x, y)

(2.6)

We should stress that the charge q here is really the first Chern class of the line bundle L
over � whose sections are the wavefunctions of the particle on � subject to magnetic
field. In physical terms q is the total flux of the magnetic field through �.

The kinetic energy of the charged particle moving in� is simply the kinetic energy
of an ordinary particle moving in P , i.e. the Laplacian corresponding to the U (1)-
invariant metric on P:

ds2P = V−1(dw − xdy)2 + A

τ2

(
(dy + τ1dx)

2 + τ 22 dx
2
)

, (2.7)

where τ = τ1+ iτ2 with τ2 > 0 defines the complex structure on�, and V = V (x, y)
is some positive function on �:1

ĥ = − 1

Aτ2

((
τ2∂y + 2π iqτ2x

)2 + (
∂x − τ1∂y − 2π iqτ1x

)2)+ 4π2q2V (x, y).

(2.8)

Now, let us choose q > 0 for definiteness, and assume, for now, that V (x, y) is a
constant. Then up to a positive shift the operator ĥ is equal to:

ĥ ∼ 1

Aτ2
D̄† D̄ = 1

Aτ2

(−∂x + τ̄ ∂y + 2π iq τ̄ x
) (

∂x − τ∂y − 2π iqτ x
)
, (2.9)

where

D̄ = ∂x − τ∂y − 2π iqτ x . (2.10)

The ground states ψ ∈ Hgnd are annihilated by D̄:

D̄ψ = 0 ⇔ χ(x, y) = γ (z)eπ iqτ x2 , (2.11)

where z = y + τ x , and (2.6) implies:

γ (z + m + nτ)e2π iqnz+π iqn2τ = γ (z). (2.12)

1 One may think of q2V as representing the impurities.
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126 N. Nekrasov

For q = 1 the only solution to (2.12), up to a constant multiple, is the theta function
(Mumford 1984) (a section of a line bundle L over Eτ , with c1(L) = 1):

γ (z) = a θ(z|τ) := a
∑

n∈Z

e2π inz+π in2τ . (2.13)

For q > 1, the space of solutions to (2.12) has complex dimension q. One way to
parametrize the solutions is the product ansatz:

γ (z) = a
q∏

i=1

θ(z − wi |τ), (2.14)

with w1, . . . , wq constrained by:

w1 + · · · + wq = 0. (2.15)

Another option, related to the so-called real polarization in geometric quantization, is
to use the periodicity in m shifts in (2.12) to write χ as:

γ (z) =
∑

r∈Z

γ̂r |r〉, (2.16)

where γ̂r obey:

γ̂r+nq = γ̂r , (2.17)

and the orthonormal basis on the space of ground states (the lowest Landau level) is
given by

|r〉 ∼ √
2qτ2

∑

n≡r(q)

eπ iτq(x+n/q)2e2π iny, (2.18)

with r = 0, 1, . . . , q − 1.

2.1.2 Excitations

The Hamiltonian (2.9) is easy to diagonalize exactly: ĥχ = εkχ , where

χ(x, y) =
∑

r∈Z

χr (x + r/q) e2π ir yeπ iτ1q(x+r/q)2 , (2.19)

where (2.6) translates to the periodicity:

χr+q(x) = χr (x), (2.20)
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Laughlin states and gauge theory 127

with the eigenproblem for ĥ becoming that of the usual harmonic oscillator on R

ĥχr = 1

Aτ2

(
−∂2x + �2x2 − �

)
χr , � = 2πτ2q, (2.21)

so that the spectrum is equidistant with the gap 4πq/A,

εk = 2�

Aτ2
k = 4πq

A
k , k = 0, 1, 2, . . . , (2.22)

and each energy level degenerate with the degeneracy q.

2.1.3 Topology and quantization

The spectrum of the single-particle Hamiltonian in constant magnetic field is not
universal. For example, on a round two-sphere � = S

2 of area A the spectrum would
be:

εk = 2π

A
k(k + 2q + 2) , k = 0, 1, 2, . . . (2.23)

with the degeneracy q + k + 1. The general statement is that the space Hgnd of
ground states is the space of holomorphic sections H0(�, L) of a line bundle L over
� with the first Chern class c1(L) = q. The Riemann–Roch formula plus Kodaira
theorem imply that for q > g − 1 the degeneracy is equal to q + 1 − g. The space
Hgnd is the Hilbert space of the geometric quantization of � with the Planck constant
∼ 1/q. In this sense the symmetry of the first Landau level is the quantized algebra
of functions on �. For � = S

2 this algebra is a quotient of U (sl2) by the Casimir
relation X2 + Y 2 + Z2 = q(q + 2), also known as the “fuzzy sphere”. For � = T

2

this is the so-called “fuzzy torus” algebra, generated by U0,1 and U1,0 subject to the
relation

U0,1U1,0 = e
2π i
q U1,0U0,1. (2.24)

The operators

Ua,b = �gnde
2π i(ax+by)�gnd, (2.25)

with �gnd the orthogonal projection onto Hgnd, act on Hgnd as:

Ua,b |r 〉 = e
− π ia(b+2r)

q − π |a−bτ |2
2qτ2 |r + bmod q 〉. (2.26)

Note that Ua,b differs from Ua
1,0U

b
0,1 by an (a, b)-dependent scalar multiplier, while

Za,b = Uq
a,b = (−1)abe

− π |a−bτ |2
2τ2 are in the center of the algebra.
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128 N. Nekrasov

2.1.4 Fermi statistics

The wavefunction �(x1, . . . , xN ) is antisymmetric in the electron positions

�(xσ(1), . . . , xσ(N )) = (−1)σ �(x1, . . . , xN ), (2.27)

for any permutation σ ∈ S(N ).

2.2 Interactions

With the inclusion of the electron-electron interactions the Hamiltonian has the form:

− �
2

2m∗
N∑

i=1

ĥi +
∑

i �= j

U (zi − z j , z̄i − z̄ j
)
, (2.28)

where m∗ is the effective mass of the electrons, and U is the two-body electron poten-
tial, which we shall assume isotropic at short distances and double-periodic globally:

U (z, z̄) =
∫ ∞

0
da ua

∑

m,n∈Z

e
− π A

aτ2
|z+m+nτ |2

, (2.29)

with some formfactor function ua. In the limit � = 2π�
2q

m∗A � U the dynamics of
dominated by the kinetic term forcing the wavefunction to obey, in the first approxi-
mation:

Di� = 0 , i = 1, . . . , N , (2.30)

2.2.1 Degeneracy lift, QHE states

To solve the Schrödinger equation in the next order approximation, we need to project
the perturbation

∑
i �= j Ui j onto �N Hgnd. We shall call the elements of �N Hgnd the

QHE states. As we explained above, these can be identified with the completely anti-
symmetric functions χ of (z1, . . . , zN ) ∈ C

N , obeying

χ(z1 + m1 + n1τ, . . . , zN + mN + nN τ) = χ(z1, . . . , zN ) e−π iq
∑N

α=1(2nαzα+n2i τ),

(2.31)

for any �m, �n ∈ Z
N .

We have: Ugnd ≡ ∑
i �= j �N

gndUi j�
N
gnd so that, when acting on a two-particle space

of states Hi
gnd ⊗ H j

gnd it has the form:

Ugnd|ri , r j 〉 =
q−1∑

s,r=0

ûr ,s e
2π is(r j−ri−r)

q |ri + r , r j − r〉, (2.32)
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Laughlin states and gauge theory 129

where

ûr ,s =
∑

m,n∈Z

∫
da ua e

−
(

a
A+ 1

q

)
π
τ2

|rτ−s+q(mτ−n)|2
. (2.33)

Thus, Ugnd is a long-range spin chain Hamiltonian, with q-valued spins located at the
sites i = 1, . . . , N . Herewe shall present a very naive argument leading to the ansatz of
Laughlin (1983). Neglecting the periodicity of x and y, the Eq. (2.25) suggest to think
of the projected coordinates x̂ = �gndx�gnd, ŷ = �gndy�gnd, as of the operators
obeying

[x̂, ŷ] = i

2πq
. (2.34)

Then |x̂τ+ŷ|2
τ2

becomes, in the holomorphic polarization, the dilatation operator 1
πq z

∂
∂z .

Thus, the eigenfunctions of Ugnd are of the form
∏

i �= j (zi − z j )ν with some ν (which
should be an odd integer in order for the wavefunction to be antisymmetric). Globally,
one completes this to:

χ(z1, . . . , zN ) =
⎛

⎝
∏

i< j

ϑ11(zi − z j ; τ)

⎞

⎠
ν

× χν

(
N∑
i=1

zi ; τ

)
, (2.35)

where

ϑ11(z; τ) = q
1
8 eπ i(z+ 1

2 )θ
(
z + 1

2+ τ
2 | τ) , (2.36)

and χν(z; τ) is the section of Lν over Eτ , e.g.

χν(ξ ; τ) = a
ν∏

I=1

ϑ11(ξ − wI ; τ), (2.37)

and wI , obeying
∑

I wI = 0 are the remaining parameters of the state, i.e. the space
of Laughlin states onT

2 is ν-dimensional. The (2.35) is a section of p∗
1L

q ⊗ . . . p∗
N L

q

bundle over E×N
τ where

q = νN . (2.38)

The parameter 1/ν = N/q is the filling fraction. In the physical system ν needs not
be an odd integer, this is why the wavefunctions (2.35) are not the end of the story.

3 Frommany-body systems to gauge theories

In the trigonometric limit q → 0 the function (2.35) approaches the ground state
wavefunction of the Calogero-Moser-Sutherland model, which is the system of N
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130 N. Nekrasov

identical particles x1, x2, . . . , xN in one dimension (a line R
1 or a circle S

1) which
interact via pair-wise potential:

Ĥ = −1

2

N∑

i=1

∂2

∂x2i
+ ν(ν − 1)

∑

i< j

U (xi − x j ), (3.1)

where the potential can be rational or trigonometric:

U (x) = 1

x2
+ ω2

2
x2 , or U (x) = 1

4R2 sin2
( x
2R

) . (3.2)

The naive expectation is to identify (2.35) with the groundstate wavefunction of the
elliptic Calogero-Moser system Olshanetsky and Perelomov (1983, 1981),2

U (x) = 1

4π2R2 ℘
( x

2πR
; τ
)

. (3.3)

Unfortunately, they are not known explicitly, although the Bethe/gauge correspon-
dence gives an ansatz (Nekrasov and Shatashvili 2009a, b, 2010) for general ν, and
Felder and Varchenko (1997) for integer ν. In what follows we recall the precise rela-
tion between supersymmetric gauge theories and the elliptic Calogero-Moser system.
We then modify the gauge theoretic setup so as to produce precisely the Laughlin type
function (2.35).

4 Supersymmetric instanton count

Consider the N = 2∗ supersymmetric gauge theory in four dimensions, i.e. softly
broken maximally supersymmetric Yang–Mills theory, subject to the �-deformation
(Nekrasov 2003), with parameters ε1, ε2, and the noncommutative deformation, as in
Nekrasov and Schwarz (1998) and Seiberg and Witten (1999). The theory depends on
the microscopic gauge coupling and the theta angle, which are conveniently packaged
into the elliptic curve modulus τ and the nome q:

τ = ϑ

2π
+ 4π i

g2
, q = e2π iτ (4.1)

and the mass m of the adjoint hypermultiplet.

4.1 Partition functions

It turns out (Nekrasov 2004) that the partition function of supersymmetric gauge theory
with eight supercharges with supersymmetric boundary conditions at infinity can be

2 ℘ (x; τ) = 1
x2

+∑
(m,n)∈Z2\(0,0) 1

(x+m+nτ)2
− 1

(m+nτ)2
.
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Laughlin states and gauge theory 131

computed exactly. For the theorywith gauge groupU (N ) it can be represented as a sum
(a big advantage over the original path integral!) over N -tuples � = (λ(1), . . . , λ(N ))

of partitions (Young diagrams):

Z(a,m, ε1, ε2, q)

= Z tree(a,m, ε1, ε2, q) × Z1−loop(a,m, ε1, ε2, q) × Z inst(a,m, ε1, ε2, q),

(4.2)

where a = (a1, . . . , aN ) ∈ C
N are the so-called Coulomb parameters, ε1, ε2 ∈ C are

the so-called �-deformation parameters, q is as in (4.1)

Z tree(a,m, ε1, ε2, q) = exp
2π iτ

2ε1ε2

N∑

α=1

a2α, (4.3)

Z1−loop is given by an explicit formula involving the product of ratios

�2(aα − aβ; ε1, ε2)

�2(aα − aβ + m; ε1, ε2)
, (4.4)

of Barnes double Gamma-functions over the roots of SU (N ), and:

Z inst =
∑

�

q|�| E
[
(1 − em)

(
NK ∗ + N∗Kq1q2 − (1 − q1)(1 − q2)KK ∗)] ,

(4.5)

where

N =
N∑

α=1

Nα, K =
N∑

α=1

Kα

Nαe
aα , Kα = eaα

∞∑

i=1

qi−1
1

λ
(α)
i∑

j=1

q j−1
2 ,

|�| =
N∑

α=1

|λ(α)| ≡
N∑

α=1

∑

i

λ
(α)
i ,

(4.6)

λi is the length of the i’th row of Young diagram of λ, the operation E is the plethystic
exponent, so that

E

[
∑

i

eξi −
∑

J

eηJ

]
=
∏

J ηJ∏
i ξi

, (4.7)

and the conjugation ∗ acts on the virtual characters as

χ∗ (eaα , q1, q2
) = χ

(
e−aα , q−1

1 , q−1
2

)
. (4.8)
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132 N. Nekrasov

The partition function (4.2) has been studied frommany points of view. Its asymptotics,
as ε1,2 → 0, capture an important piece of physics: namely, the limit

F(a,m, q) = Limε1,ε2→0 ε1ε2logZ(a,m, ε1, ε2, q), (4.9)

is the prepotential of the low-energy effective action (Seiberg and Witten 1994a, b):

Seff = 1

2

∫

R4

∂2F
∂ai ∂a j

F−
i ∧ F−

j − ∂2F̄
∂ āi ∂ ā j

F+
i ∧ F+

j +
∫

R4
Im

∂2F
∂ai ∂a j

dai ∧ �dā j + . . .

(4.10)

where . . . stand for fermionic terms and the terms with higher derivatives, ai = ai (x)
are the complex valued scalar fields of the low-energy theory, and Fi = d Ai are the
field strengths of theU (1) gauge fields Ai , i = 1, . . . , N . It was argued in Donagi and
Witten (1996) [and proven inNekrasov andOkounkov (2006)] thatF can be recovered
from the classical symplectic geometry of an algebraic integrable system (the earlier
indications for the connections between the special geometry of N = 2 theories
and integrable systems see Gorsky et al. 1995; Martinec andWarner 1996), which was
previously (Gorsky andNekrasov 1994a, b, 1995a; Nekrasov 1996) identified with the
classical elliptic Calogero-Moser system: namely, the action variables of that system

ai =
∮

Ci

pdz aiD =
∮

C∨
i

pdz, (4.11)

(there are twice as many action variables compared to the real Liouville theory) are
related to each other via:

aiD = ∂F
∂ai

(4.12)

whereCi andC∨
i form the symplectic basis of 1-cycles in the homology of the level set

of the integrals ofmotion, ofwhich the first two are themomentumand theHamiltonian
(we choose the units in which R = 1/2π ):

P =
N∑

i=1

pi , H = 1

2

N∑

i=1

p2i + m2
∑

i< j

℘(zi − z j ; τ), (4.13)

The limit ε2 → 0, with ε1 = � fixed (Nekrasov and Shatashvili 2009a, b, 2010)
contains the information about the spectra of the quantized integrals of motion. In
order to see the wavefunctions, one introduces the surface defects.

4.1.1 Surface defects

The surface operatorOt [�] associated with a codimension two surface� ⊂ R
4 is the

prescription to do the path integral over the gauge fields A with a singularity near �,
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Laughlin states and gauge theory 133

such that for each x ∈ � the holonomy gx = Pexp
∮
Cx

A around the small loop Cx

around � has a fixed conjugacy class [gx ] = t ∈ G/Ad(G). The operators defined
in this way were discussed in Kronheimer and Mrowka (1993, 1995), Losev et al.
(1996), Nekrasov (2003), Gukov and Witten (2006, 2010), Gaiotto (2012a, b), Alday
et al. (2010), Gaiotto and Kim (2016) and Gukov (2016). A very useful approach was
proposed in Finkelberg and Rybnikov (2010), and studied in Kanno and Tachikawa
(2011), Alday and Tachikawa (2010), Nekrasov (2016a, b, 2017, 2018, 2019). The
defects depend on the complex couplings q0, . . . , qN−1, which we view as an N -
periodic function Z → C

×: qω+N = qω. These parameters are the Kähler moduli
of the sigma model on defect’s worldsheet. The relation of these parameters to the
coordinates ofCalogero particles z1, . . . , zN (whichwe also extend toZ → C function
with N -quasiperiodicity zω+N = zω + τ ) and τ are the following:

qω = e2π i(zω+1−zω), ω = 1, . . . , N − 1, q0 = e2π i(z1−zN+τ), (4.14)

Thus, q = q0q1 . . . qN−1. The surface defects are defined with the help of the orbifold
projection, associated with the action of a cyclic group ZN (one may consider other
cyclic groups, e.g. Zp but in our story we shall only use p = N ) on C

2 via (z1, z2) �→
(z1, e

2π i
N z2), accompanied by the action on the gauge bundle. On the fixed set z2 =

0 the gauge bundle N splits as a sum N = ⊕N−1
ω=0 Nω ⊗ Rω over the irreducible

representations Rω of ZN . The irreps of ZN obey

Rω′ ⊗ Rω′′ = Rω′+ω′′ mod N , (4.15)

In our case allNω are one-dimensional. The color decomposition assigns to each ω a
color c(ω) = 1, . . . , N , so that the corresponding characters decompose as (note the

change q2 → q
1
N
2 ):

N =
N−1∑

ω=0

Nc(ω) ⊗ Rω,

K =
N−1∑

ω=0

eac(ω)

∞∑

i=1

qi−1
1

λ
(c(ω))
i∑

j=1

q
j−1
N

2 Rω+ j−1mod N =
N−1∑

ω=0

Kω ⊗ Rω. (4.16)

The fractional instanton charges kω are defined by:

kω =
N−1∑

ω′=0

N∑

j=1

δω,ω′+ j−1mod N

(
λ
(c(ω′))
j

)t
, (4.17)

where λt is the partition whose Young diagram is transposed Young diagram of λ

(rows and columns are exchanged). The surface defect partition function ZU (N )
c is

given by the formula analogous to (4.2) with ãα = ac(α−1) + ε2
α−1
N ,
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134 N. Nekrasov

Z tree
c =

N∏

α=1

q
ã2α

2ε1ε2 e
2π izα ãα

ε1 , (4.18)

Z1−loop
c = Z1−loop(ã1, . . . , ãN ,m, ε1, ε2) ×

N∏

α=1

N+1−α∏

β=1

�
(
ãβ−ãα

ε1

)

�
(
ãβ−ãα+m

ε1

) , (4.19)

Z inst
c =

∑

�

N−1∏

ω=0

qkω(�)
ω E

[
eãωK ∗

ω + e−ãωKω−1q1 − (1 − q1)(Kω − Kω−1)K
∗
ω

]
,

(4.20)

with the understanding K−1 = q2KN−1. This is an explicit albeit complicated power
series in qω’s with coefficients which are rational functions of ã’s, ε’s and m, with
rational poles. There are N ! such functions, which differ by the choices of the one-
to-one coloring functions c : {0, . . . , N − 1} → {1, . . . , N } (more general defects
correspond to the coloring functions which are not one-to-one).

One of the consequences of Nekrasov (2016a, b, 2017, 2018, 2019) is the
Knizhnik–Zamolodchikov–Bernard equation obeyed by all ZU (N )

c :
⎡

⎣Nε1ε2q
∂

∂q
+ ε21

2

N∑

α=1

∂2

∂z2α
+ m(m + ε1)

∑

α<β

℘(zα − zβ ; τ)

⎤

⎦ ZU (N )
c = 0, (4.21)

which in the limit ε2 → 0 becomes the eigenvalue problem for the elliptic Calogero-
Moser Hamiltonian (3.3), (4.13):

ZU (N )
c (ã, ε1, ε2,m; z, q)/Z(ã, ε1, ε2,m; q) −→ε2→0 �ã(z). (4.22)

Finally, we can define in an analogous fashion the surface defect in the U (1)N theory
(recall Nekrasov and Schwarz 1998 that even the U (1) theory on a noncommutative
space has instantons)

ZU (1)N =
N∏

ω=1

ZU (1)
ω , (4.23)

where ZU (1)
ω is given by the N = 1 version of (4.20) with the coloring function

c(ω) = 1, i.e. it is a sum over the set of partitions (recall the periodicity qω+N = qω):

ZU (1)
ω =

∑

λ

∏

(i, j)∈λ

qω+ j−1

×
(
m + ε1(ai, j + 1) − ε2li, j

ε1(ai, j + 1) − ε2li, j

)δli, jmodN

×
(
m − ε1ai, j + ε2(li, j + 1)

−ε1ai, j + ε2(li, j + 1)

)δli, j+1modN

, (4.24)
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where ai, j = λi − j and li, j = λtj − i are the arm-length and the leg-length of the
box (i, j) in the Young diagram of λ, cf. (Nakajima 1999). The results of Nekrasov
(2016a, b, 2017, 2018, 2019) imply the following identity

ZU (1)N =
(
q− N2−1

24 φ(q)
m+ε2

ε2

N∏

α=1

e2π i(α− N+1
2 )zα �AN−1(z; τ)

)− m+ε1
ε1

, (4.25)

where φ(q) = ∏
n(1 − qn), and the rank N − 1 theta function is given by

�AN−1 (z; τ) = η(τ)N−1
∏

α>β

ϑ11
(
zα − zβ; τ

)

η(τ)
, (4.26)

It obeys the heat equation cf. (Kac and Peterson 1984)

4π iN
∂

∂τ
�AN−1 (z; τ) =

N∑

α=1

∂2

∂z2α
�AN−1 (z; τ) . (4.27)

Thus, the essential building block of Laughlin wavefunction (2.35) is the partition
function of the surface defect in the U (1)N gauge theory, with the filling fraction
1/ν being essentially the ratio ε1/m. In string/M-theory realizations, using (Douglas
1997, 1998; Douglas andMoore 1996; Witten 1997) theU (N ) surface defects appear
naturally, as opposed to the ones forU (1)N .We therefore suggest to look for themany-
body wavefunctions describing the fractional Hall effect states among the surface
defects of the U (N ) gauge theory. Let us conclude with a few remarks aiming to
clarify some of the confusions.3

The surface defect partition functions are defined for by the choice of the coloring
function c. In addition, the expansion (4.20) is valid in the chamber |qω| � 1 where
the two dimensional theory on the surface of the defect is weakly coupled. When
two electrons approach each other, e.g. zω → zω+1, one of the couplings qω → 1
approaches a strong coupling point, beyond which the two dimensional theory can be
continued (this is an analogue of the flop transition in Gromov-Witten theory), using
the Eq. (4.21). Indeed, the leading singularity ν(ν − 1)/(zω − zω+1)

2 implies the
solutions behave as

a+
c (zω − zω+1)

ν (1 + · · · ) + a−
c (zω − zω+1)

1−ν (1 + · · · ) . (4.28)

From this the analytic continuation to a different chamber follows.
To ensure the antisymmetry of the wavefunction we must, therefore, take a linear

combination of surface defects corresponding to all N ! one-to-one coloring functions.
The matching conditions will impose constraints on the quasi-momenta a1, . . . , aN ,
similar to the quantization conditions in those in the last reference in Nekrasov and
Shatashvili (2009a, b, 2010). We expect that for the rational value of ν the filling

3 We thank the anonymous referee for pointing them out.
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fraction to be again given by 1/ν. Roughly speaking, the additional multi-valuedness
of the analytically continued wavefunction for non-integer ν can be compensated by
going to a finite cover of the torus, where the effective flux is an integer multiple of
N .

We note the symmetry ν ↔ 1 − ν is part of the flavor symmetry of the four
dimensional gauge theory (it exchanges the two chiralmultiplets comprising the hyper-
multiplet). In the fractional quantum Hall effect it is the symmetry 1/ν ↔ 1 − 1/ν
which is sought for (it is the electron-hole duality) Son (2018). In the trigonomet-
ric case this duality follows from the arm-leg duality of Jack polynomials. We have
some preliminary results on the elliptic analogue of this duality, which uses the qq-
character (Nekrasov 2016a, b, 2017, 2018, 2019) representation of the ε2 → 0 limit
of the surface defect partition function, which we hope to present in a subsequent
publication.

We should point out that an alternative approach tomaintain the particle-hole duality
is to use the elliptic super-Calogero-Moser system, describing two species of par-
ticles (in the trigonometric limit this model has been studied in, e.g. Sergeev and
Veselov 2004; Atai and Langmann 2017). The wavefunctions of that system can also
be found using surface defects in supersymmetric field theories (Nekrasov 2016a, b,
2017, 2018, 2019).

Acknowledgements I thank A. Abanov, D. Haldane and P. Wiegmann for discussions and S. Cecotti and
C. Vafa for the encouragement. This note is based on the lecture at the Simons Summer workshop on
07/25/201 (http://scgp.stonybrook.edu/video/video.php?id=2734).
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