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Abstract
We study Thurston equivalence classes of quadratic post-critically finite branched
coverings. For these maps, we introduce and study invariant spanning trees. We give
a computational procedure for searching for invariant spanning trees. This procedure
uses bisets over the fundamental group of a punctured sphere. We also introduce a
new combinatorial invariant of Thurston classes—the ivy graph.

Keywords Complex dynamics · Invariant tree · Iterated monodromy group

Mathematics Subject Classification Primary 37F20; Secondary 37F10

1 Introduction

Rational maps acting on the Riemann sphere are among central objects in complex
dynamics. Thurston’s characterization theorem allows to study these algebraic objects
by topological tools. It views rational maps within a much wider class of topologi-
cal branched coverings. (Branched self-coverings of the sphere whose critical points
have finite orbits are called Thurston maps.) There is a natural equivalence relation
on Thurston maps such that different rational functions are almost never equivalent.
(All exceptions are known and well-understood.) Thurston’s theorem provides a topo-
logical criterion for a Thurston map being equivalent to a rational function. Thus,
classification of Thurstonmaps up to equivalence is an important problem. This funda-
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mental problem has applications beyond complex dynamics, e.g., in group theory; it is
a focus of recent developments, see e.g. (Bartholdi and Nekrashevych 2006; Bartholdi
and Dudko 2017; Cordwell et al. 2015; Kelsey and Lodge 2018; Hlushchanka 2017).
We approach the problem via analogs of Hubbard trees for quadratic rational maps:
invariant spanning trees.

We will write S
2 for the oriented topological 2-sphere. By a graph in the sphere, we

here mean a 1-dimensional cell complex embedded into S
2. By vertices and edges, we

mean 0-cells and 1-cells, respectively. For a graph G, we will write V (G) for the set of
vertices of G and E(G) for the set of edges of G. A tree is a simply connected graph.
A vertex x of a tree T is called a branch point if T −{a} has more than 2 components.
Suppose that P ⊂ S

2 is some finite subset. A tree T in S
2 such that P ⊂ V (T ) is

called a spanning tree for P if V (T ) − P consists of branch points.
Let f : S

2 → S
2 be an orientation preserving branched covering of degree 2.

The map f has two critical points c1( f ) and c2( f ). Let v1( f ) and v2( f ) be the
corresponding critical values. The post-critical set of f is defined as the smallest closed
f -stable set including {v1( f ), v2( f )}. The post-critical set of f will be denoted by
P( f ). If P( f ) is finite, then f is said to be post-critically finite. Recall that a Thurston
map is a post-critically finite orientation preserving branched covering. In this paper,
we will only consider degree two Thurston maps.

Definition 1.1 (Invariant spanning tree) Let f : S
2 → S

2 be a Thurston map. A
spanning tree T for P( f ) is called an invariant spanning tree for f if:

1. we have f (T ) ⊂ T ;
2. vertices of T map to vertices of T .

This notion is close towhat is called “invariant trees” inHlushchanka (2017). Note that
the restriction of f to an edge of T is injective unless the edge contains a critical point
of f . Consideration of invariant spanning trees is justified by the following examples
(we describe those of them, which are quadratic maps, in more detail later, see Sect. 2):

1. Hubbard trees (Douady and Hubbard 1984, 1985; Bielefeld et al. 1992; Poirier
1993) can be connected to infinity to form invariant spanning trees.

2. Invariant spanning trees can be constructed for formal matings by joining the two
Hubbard trees. (However, the tree structure sometimes does not survive in the
corresponding topological matings).

3. Classical captures in the sense of Wittner (1988), Rees (1992) often come with
invariant spanning trees. In fact, the original approach of Wittner used invariant
trees.

4. Sufficiently high iterates of expanding Thurston maps possess invariant spanning
trees by Hlushchanka (2017). This result has also been extended in Hlushchanka
(2017) to rational maps with Sierpinski carpet Julia set.

5. Extended Newton graphs constructed in c for post-critically finite Newton maps
are often invariant trees. Invariant spanning trees can be obtained from them by
erasing some of the vertices.

6. With each critically fixed rational map f , a certain bipartite graph is associated in
Cordwell et al. (2015). Every edge if this graph is invariant, thus every spanning
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Invariant Spanning Trees 437

tree of this graph is an invariant tree for f . Again, an invariant spanning tree can
be obtained by erasing some of the vertices.

7. Some invariant spiders in the sense of Hubbard and Schleicher (1994) are invari-
ant spanning trees (possibly after removal of the critical leg in case of a strictly
preperiodic critical point). Note that invariant spiders may fail to be trees.

Section 2 deals with examples of invariant spanning trees. However, we restrict our
attention to the case of degree 2 Thurston maps.

Let x be a vertex of a tree T ⊂ S
2, and e be an edge of T . If x is in the closure

of e, then we say that x is incident to e. We also say that e is incident to x . The
following result shows how to recover the Thurston equivalence class of f from
an invariant spanning tree of f . Recall that a ribbon graph (also known as a fat
graph, or a cyclic graph) is an abstract graph in which the edges incident to each
particular vertex are cyclically ordered. ByMacLane (1941), ribbon trees are the same
as isomorphism classes of embedded trees in S

2. Here an isomorphism of embedded
trees is an orientation preserving self-homeomorphism of S

2 that takes one tree to
another. Recall that the orientation of S

2 is assumed to be fixed. For a spanning tree
T for P( f ), we write C(T ) for the set of critical points of f in T .

Theorem A Suppose that f , g : S
2 → S

2 are two Thurston maps of degree 2. Let T f

and Tg be invariant spanning trees for f and g, respectively. Suppose that there is a
cellular homeomorphism τ : T f → Tg with the following properties:

1. The map τ is an isomorphism of ribbon graphs.
2. We have τ ◦ f = g ◦ τ on V (T f ) ∪ C(T f ).
3. The critical values of f are mapped to critical values of g by τ .

Then f and g are Thurston equivalent.

In other words, to know the Thurston equivalence class of f , it suffices to know
the following data:

1. the ribbon graph structure of T f ;
2. the restriction of the map f to the set V (T f ) ∪ C(T f ).

These data are discrete and can be encoded symbolically.
Note that higher degree analogs of Theorem A will require an additional structure

on an invariant spanning tree (something like a structure of an angled tree), as is shown
by the following example.

Example 1.2 This is a slightlymodified example ofMilnor (2009, Figure 21). Consider
the following invariant tree T of a cubic polynomial f .

x0◦ B

A

x1• C x2•

x3◦
D

∞•
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438 A. Shepelevtseva, V. Timorin

Here we have x0 �→ x1 �→ x2 �→ x3 ý. The points x0 and x1 are simple critical
points. The corresponding critical values (marked as solid) are x1 and x2. The edges,
oriented as shown in the picture, are mapped as follows:

A �→ A ∪ B, B �→ C �→ C−1 ∪ B−1 ∪ A−1, D �→ D.

The inverses here indicate the change of orientation. The part of the tree T that is
obtained by removing the edge D and the vertex ∞ is the Hubbard tree for f . This
Hubbard tree is shown as an angled tree. For example, the angle between B and A−1

(computed counterclockwise) is 3
4 .Wemeasure angles so that the full turn corresponds

to angle 1. In order to recover the Thurston class of f by its Hubbard tree, we need to
know the angles. For example, if we change the angle between B and A−1 to 1

4 , then
we obtain a different polynomial and a different Thurston class. However, there is still
a correspondence τ between the two trees that satisfies the assumptions of TheoremA.

An important algebraic invariant of a Thurstonmap is its biset over the fundamental
group of S

2 − P( f ). A biset is a convenient algebraic structure that carries a complete
information about the Thurston class of f . The (perhaps better known) iterated mon-
odromy group of f can be immediately recovered from the biset. A formal definition
of a biset will be given in Sect. 5. For now, we just emphasize that bisets admit compact
symbolic descriptions somewhat similar to presentations of groups by generators and
relations or presentation of linear maps by matrices.

Theorem B Suppose that f is a Thurston map of degree 2, and T is an invariant
spanning tree for f . There is an explicit presentation of the biset of f based only on
the following data

1. the ribbon graph structure on T ,
2. the restriction of f to V (T ) ∪ C(T ).

In Sect. 5.5, we make the statement of Theorem B more precise. We provide an
automaton representing the biset of f in Theorem 5.6. The construction is algorith-
mic. Theorem B solves, in a particular case, the problem of combinatorial encoding
of Thurston maps by means of invariant graphs. Different contexts of this problem are
addressed in Cannon et al. (2001), Bonk andMeyer (2017), Lodge et al. (2015) for spe-
cific families of rational maps. A relationship between the properties of invariant trees
and the properties of the iterated monodromy group has been studied in Hlushchanka
(2017).

1.1 Dynamical Tree Pairs

It is not always easy to find an invariant spanning tree for a Thurston map f . However,
for any spanning tree T for P( f ), it is easy to find another spanning tree T ∗ that maps
onto T . The tree T ∗ is not uniquely defined; there are several ways of choosing suitable
subtrees in the graph f −1(T ). Suppose that we want to find an invariant spanning tree
for f . It is natural to look at an iterative process, a single step of which is the transition
from T to T ∗. Such an iterative process will be described below under the name of ivy
iteration.
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Wenowproceedwith amore formal exposition. Let f : S
2 → S

2 be aThurstonmap
of degree two. Consider two spanning trees T ∗ and T for P( f ) such that f (T ∗) ⊂ T .
Moreover, we assume that

1. the vertices of T ∗ are mapped to vertices of T under f ;
2. all critical values of f are vertices of T ;

If these assumptions are fulfilled, then (T ∗, T ) is called a dynamical tree pair for f .
Clearly, an invariant spanning tree T for f gives rise to a dynamical tree pair (T , T ).
Thus, dynamical tree pairs generalize invariant spanning trees. Observe also that the
restriction of f to every edge of T ∗ is injective unless the edge contains a critical point
of f .

A spanning tree T for P( f ) gives rise to a distinguished generating set ET of the
fundamental group π1(S

2 − P( f ), y) with y ∈ S
2 − T . Namely, ET consists of the

identity element and the homotopy classes of smooth loops based at y intersecting T
only once and transversely (we will make this more precise later).

In Sect. 5, we state a theorem (Theorem 5.6) generalizing Theorem B. It follows
from Theorem 5.6 that the biset of f is determined by a dynamical tree pair (T ∗, T ).
More precisely, the biset can be explicitly presented knowing the following discrete
data:

1. the ribbon graph structures on T ∗, T ;
2. the map f : V (T ∗) ∪ C(T ∗) → V (T );
3. how elements of ET ∗ are expressed through elements of ET (or how both ET ∗ , ET

are expressed through some other generating set of π1(S
2 − P( f ), y)).

Vice versa, given T and a presentation of the biset of f in the basis associated with
T , these data can be recovered.

1.2 The Ivy Iteration

The principal objective of this paper is to introduce a computational procedure for
finding invariant (or, more generally, periodic) spanning trees of degree 2 Thurston
maps.

Let f : S
2 → S

2 be a degree 2 Thurston map. Ivy iteration operates on isotopy
classes (rel. P( f )) of spanning trees for P( f ), which we call ivy objects. Let Ivy( f )

denote the set of all ivy objects for f . Let T be a spanning tree, and [T ] be the
corresponding ivy object. A symbolic presentation of the biset of f plus a symbolic
encoding of the ribbon tree structure on T give rise to several choices of a spanning
tree T ∗ such that (T ∗, T ) is a dynamical tree pair for f . Roughly speaking, several
choices for T ∗ are related with different ways of choosing a spanning subtree in
f −1(T ). Consider the pullback relation [T ] � [T ∗] on Ivy( f ).1 It equips Ivy( f )

with a structure of an abstract directed graph. A subset C ⊂ Ivy( f ) is said to be
pullback invariant if [T ] ∈ C and [T ] � [T ∗] imply [T ∗] ∈ C .

With the help of a computer, we found finite pullback invariant subsets in Ivy( f ) for
several simplest quadratic Thurston maps f . Within these pullback invariant subsets,

1 On a somewhat similar note, the pullback relation on isotopy classes of simple closed curves in S
2− P( f )

is discussed in Pilgrim (2003), and Koch et al. (2016).
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we found all invariant ivy objects. Invariant ivy objects, obviously, correspond to
invariant (up to homotopy) spanning trees for f . Having a picture for a pullback
invariant subset, we can also see many periodic ivy objects of various periods. Some
of these examples will be described in Sect. 2. Note that, if we found a spanning tree for
P( f ) that is f -invariant up to homotopy, then this tree is a genuine invariant spanning
tree for some map homotopic to f . This is good enough since we are interested in
classification of Thurston maps up to Thurston equivalence (in particular, homotopic
maps are in the same class).

How the Ivy Iteration Compares with Known Combinatorial Algorithms

The ivy iteration can be considered in the following general context. The biset
associated with f is a way of compactly representing the “combinatorics” of f . Unfor-
tunately, the same biset may have very different presentations in different bases. (A
linear algebra analog is that the same linear map has different matrices in different
bases.) Usually, a combinatorial description of f yields a presentation of its biset.
However, given different combinatorial descriptions of a Thurston map, the problem
is whether they describe the same thing. This problem translates into comparison of
bisets: do different presentations correspond to the same biset?

Up to date, there are several algorithmic approaches to the comparison of bisets.
We restrict our attention to bisets associated with rational, i.e., unobstructed, Thurston
maps. A natural idea is to look for the “best” presentation of a biset. (This idea is
somewhat similar to finding a Jordan normal form—or some other normal form—of
a linear map.) This general idea works well for polynomials. In fact, the combinato-
rial spider algorithm of Nekrashevych (2009) aims at solving the problem. Given a
presentation of a biset by a twisted kneading automaton, the algorithm searches for
the best presentation, which is associated with a kneading automaton. The algorithm
of Nekrashevych (2009) is a combinatorial implementation of the spider algorithm
originally developed by Hubbard and Schleicher (1994) for quadratic polynomials.
A version of the combinatorial spider algorithm was used in Bartholdi and Nekra-
shevych (2006) to identify twisted rabbits with the rabbit, co-rabbit, or the airplane
polynomials, as well as to classify the twists of z2 + i . In fact, the authors consider
not only bisets over the fundamental group but also bisets over the pure mapping class
group, which turns out to be useful for distinguishing twisted rabbits. In Bartholdi and
Nekrashevych (2006), Bartholdi and Nekrashevich develop another approach to the
same problem based on inspecting the correspondence on the moduli space associ-
ated with the Thurston pullback map. This second approach relies on the fact that, in
examples under consideration, there are few (namely, four) points in P( f ) (if P( f )

consists of only four points, then the moduli space has complex dimension one).
The second approach of Bartholdi andNekrashevych (2006) has been further devel-

oped in Kelsey and Lodge (2018), where all non-Euclidean Thurston maps with 4 or
fewer post-critical points are classified. The authors also provide an algorithm for
identifying the twists of all such maps. An extension of these results to Thurston maps
with bigger post-critical sets is currently unavailable, not only because there are too
many objects to classify but also because the technique is not easy to adapt. Thus, to
the best of our knowledge, purely combinatorial tools available up to date for com-
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paring bisets are restricted either to specific types of Thurston maps (say, topological
polynomials, expanding maps, etc.) or to maps with few post-critical points.

The process of finding invariant trees described in Hlushchanka (2017) is in prin-
ciple algorithmic. However, it applies under additional assumptions on the dynamics
of the map (sphere or Sierpinski carpet Julia set) and produces an invariant tree only
for a sufficiently high iterate of the map.

On the other hand, there are also “floating-point” algorithms, see e.g. (Bartholdi
and Dudko 2017, Section V.2). Most of these algorithms aim at turning the Thurston
iteration into an efficient computation. For example, given two bisets without obstruc-
tions, one can compare them as follows (see Corollary V.9 of Bartholdi and Dudko
2017). For each of the two bisets, compute the coefficients of the corresponding ratio-
nal map using a version of Thurston’s algorithm. Then the two rational maps can be
compared by comparing the corresponding coefficients. This approach works as an
efficient computation but fails to provide good combinatorial tags to rational maps.

The ivy iteration may be regarded as an attempt to generalize the spider algorithm.
In fact, for quadratic polynomials, the spider algorithm (applied to a not necessarily
invariant spider of an actual polynomial) is the same as the ivy iteration, except that,
the issue of arbitrary choices is resolved by specifying a kneading sequence. A spider
is a tree of a very specific shape; it is a star. The ivy iteration may be in principle
applied to arbitrary spanning trees, and to non-polynomial Thurston maps. In this
sense it is more general. However, it is not as good as the spider algorithm because it
is not an algorithm at all. An important ingredient (an analog of a kneading sequence
that would allow to make specific choices) is missing so far. On the positive side, the
ivy iteration can be implemented as a purely combinatorial procedure. At any step of
the iteration, we obtain a presentation of the biset associated with a Thurston map. If
the iteration converges, then we obtain a good presentation, and the hope is that there
are only few good ones. Moreover, the result is a nice visual tag associated with a
rational map. To the best of our knowledge, the ivy iteration does not coincide with
other known computational procedures, although it is conceptually unsophisticated
and is based on the same general idea: that of taking pullbacks.

Terminological Conventions

In this paper, we talk about graphs in the sphere as well as abstract graphs. The
former notion belongs to topology, and the latter—to combinatorics. We try to clearly
distinguish these notions. A graph (without a specification) usually means a graph
in the sphere. When referring to an abstract graph, we always say “abstract”. We
sometimes consider oriented edges of graphs in the sphere. These are edges, for which
some orientation (= direction) is specified. On the other hand, we talk of directed
edges in abstract directed graphs. In this sense, a directed edge is a fundamental
notion, which can be defined as an ordered pair of vertices. It is not “an edge equipped
with a direction”. Thus our terminological discrepancy between “oriented edges” and
“directed edges” is intentional.
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2 Examples of Invariant Spanning Trees

In this section, we describe some examples of invariant spanning trees. We confine
ourselves with degree two rational maps.

2.1 Quadratic Polynomials

Let p(z) = z2 + c be a post-critically finite quadratic polynomial. We will write J (p)

for the Julia set of p and K (p) for the filled Julia set of p. Set X to be the forward
p-orbit of c, i.e., the set {p◦n(c) | n � 0}. The landing point of the dynamical external
ray Rp(0) of p with argument 0 is denoted by xβ . This point is usually called the
β-fixed point. We will use the terminology of Milnor (2009), Poirier (1993, 2010), in
particular, the notion of a regulated hull. Define T as the union of {∞} ∪ Rp(0) and
the regulated hull of X ∪ {xβ}. Then T is an invariant spanning tree for p.

Recall that the regulated hull of X is called the Hubbard tree of p. Thus T is strictly
bigger than the Hubbard tree of p. It is important that the tree T contains both critical
values of p. In our terminology, the Hubbard tree itself is not a spanning tree for p. To
specify a graph structure on T , we need to define vertices. By definition, the vertices
of T are post-critical points and branch points of T . On the other hand, xβ is never a
vertex of T .

As an example, an invariant spanning tree T for the basilica polynomial p(z) =
z2 − 1 looks as follows:

−1• 0◦ ∞•

Critical values are shown as solid, and other vertices of T as circles. For the rabbit
polynomial z2 + c, where c ≈ −0.122561+ 0.744862i , the tree T looks as follows:

v•

w◦ xα◦

0◦ ∞•

Here xα is the α-fixed point, i.e., the landing point of external rays with arguments 1
7 ,

2
7

and 4
7 . The edge 0∞ contains the β-fixed point xβ and the points −xα , −w. The latter

three points are not in V (T ) since they are neither post-critical nor branch points.
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2.2 Matings

Let p and q be two post-critically finite quadratic polynomials. Consider a compact-
ification C of C obtained by adding a circle of infinity. More precisely, the circle at
infinity is parameterized by the arguments of external rays. For an angle θ ∈ R/Z, we
let Rp(θ) be the corresponding external ray in the dynamical plane of p. We will write
E p(θ) for the corresponding point in the circle at infinity. Let p and q act on different
copies of C , say, p acts on C p and q on C q . Then E p(θ) and Eq(θ) will refer to
points in C p and C q , respectively. Consider the disjoint union Y = C p � C q . Let∼ be an equivalence relation on Y defined as follows. We have x ∼ y and x 
= y if
and only if one of the two points, say, x , has the form E p(θ), and the other point y has
the form Eq(−θ). The quotient space S

2
p�q = Y/ ∼ is called the formal mating space

of p and q. It is easy to see that S
2
p�q is homeomorphic to S

2. The map F : Y → Y
defined as p on C p and q on C q descends to the quotient space. Thus we have a

naturally defined map f : S
2
p�q → S

2
p�q . We write f = p � q and call f the formal

mating of p and q. To construct an invariant spanning tree for f , it suffices to construct
invariant spanning trees for p and q as above, and then take the union of the two trees.
Below, the thus constructed invariant spanning tree is shown for p � q, where p is the
rabbit polynomial, and q is the basilica polynomial.

v•

w◦ xα◦

0◦ 0◦ −1•

Here, 0 and−1 refer to the points 0 and−1 in the dynamical plane C q (more precisely,

in the image of this plane in the space S
2
p�q ). The point ∞ = ∞ (more precisely, the

image of E p(0) and Eq(0) in S
2
p�q ) is not a critical value anymore. Moreover, this

point is not a vertex of the invariant spanning tree shown above. It belongs to the edge
connecting 0 with 0.

2.3 Captures

The following definition of a capture is equivalent to the one from Rees (1992). How-
ever, we phrase the definition somewhat differently. Introduce a smooth structure on
S
2. We also fix a smooth spherical metric on S

2. Given a vector vx at some point
x ∈ S

2 and ε > 0, there is a vector field D(vx , ε) such that

1. outside of the ε-neighborhood of x with respect to the spherical metric, D(vx , ε) =
0;

2. at point x , the vector D(vx , ε)x coincides with vx .
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We may consistently choose vector fields D(vx , ε) for all x , vx and ε so that they
depend continuously (or even smoothly) on all parameters. Consider a smooth path
β : [0, 1] → S

2 and choose a small ε > 0. Define the map σβ : S
2 → S

2 as the time
[0, 1] flow of the non-autonomous vector field D(β̇(t), ε). Here β̇(t) is the velocity
vector of β at the point β(t). The map σβ is a self-homeomorphism of S

2 with the
following properties:

1. we have σβ(β(0)) = β(1);
2. the map σβ is the identity outside of the ε-neighborhood Uε(β) of β[0, 1];
3. the map σβ is homotopic to the identity modulo S

2 − Uε(β).

The homeomorphism σβ depends on β, ε and on a particular choice of D(vx , ε).
However, if the path β is fixed, then any two such homeomorphisms σβ and σ̃β are
homotopic relative to S

2 − Uε(β).
We can consider a composition σβ ◦ p, where p is a post-critically finite quadratic

polynomial, and the choice of β depends on p. Set β(0) = ∞, and place β(1) at
some strictly preperiodic point that is not postcritical. If Uε(β) does not contain finite
post-critical points of the map p and iterated images of β(1), then all such maps
σβ ◦ p with fixed β are equivalent. In other words, the Thurston equivalence class of
f = σβ ◦ p depends only on β and p. The post-critical set of f is the union of P(p)

and the forward orbit of β(1), including β(1). Note that β(1) is a critical value of f ,
the image of the critical point ∞. In fact, the homotopy class of f does not change if
we deform β within the same homotopy class relative to P( f ). When talking about
σβ ◦ p, we will always assume that the set β[0, 1) is disjoint from P(p) and from the
forward orbit of β(1). The path β is called a capture path for p.

Definition 2.1 The map σβ ◦ p defined as above is called the (generalized) capture
of p associated with β. The capture σβ ◦ p is said to be simple if there is only one
t0 ∈ [0, 1] with β(t0) ∈ J (p). In the latter case, the corresponding capture path is
called a simple capture path.

Suppose that β(1) is eventually mapped to a periodic critical point of p, i.e., to 0
if p(z) = z2 + c. Then a simple capture path β : [0, 1] → S

2 looks as follows. There
is a parameter t0 ∈ (0, 1) such that β[0, t0) is in the basin of infinity, β(t0, 1] is in the
Fatou component eventually mapped to a super-attracting periodic basin, and β(t0) is
a point of the Julia set. We may arrange β|[0,t0) to go along an external ray, and β|(t0,1]
to go along an internal ray. If β(1) ∈ J (p), then β[0, 1] can be chosen as the union
of an external ray and its landing point. Different simple capture paths lead to at most
two different Thurston equivalence classes of captures provided that p and β(1) are
fixed, cf. (Rees 2010, Section 2.8).

Generalized captures were first defined by Rees (1992). Simple captures go back
to Wittner (1988). Both Wittner and Rees used the word “capture” to mean simple
capture. We, on the contrary, use the word “capture” to mean a generalized capture.
It is worth noting that the original approach of Wittner also used invariant trees. The
study of captures is motivated by the following theorem of Rees:

Theorem 2.2 (Polynomial-and-Path Theorem, Section 1.8 of Rees 1992) Suppose that
R is a rational function of degree two with a periodic critical point c1. Suppose also
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that the other critical point c2 of R is not periodic but is eventually mapped to c1.
Then R is equivalent to some capture σβ ◦ p. Moreover, the quadratic polynomial p
has a periodic critical point of the same period as c1.

Suppose that β is a simple capture path for p, and f = σβ ◦ p is the corresponding
capture. Let T be the minimal subtree of the extended Hubbard tree of p that includes
P( f ). Then T satisfies the property p(T ) ⊂ T . Note that it may happen that f (T ) 
⊂
T , so that T is not an invariant spanning tree for f . For example, let p be the airplane
polynomial. Choose β(1) to be an iterated p-preimage of 0 on an edge of the Hubbard
tree of p. Then T coincides with the Hubbard tree set-theoretically but has more
vertices. Some edge e of T maps under p so that the β(1) ∈ p(e) but β(1) is not an
endpoint of p(e). The latter is a consequence of the fact that there are no vertices of T
mapping to β(1). The homeomorphism σβ displaces p(e) so that σβ(p(e)) no longer
contains β(1). Thus T is not forward invariant under f = σβ ◦ p.

It may seem plausible that T can be deformed slightly into a genuine invariant
spanning tree. Unfortunately, this is not always true. It is known that different simple
captures (even those for which β(1) is the same) may yield different Thurston equiva-
lence classes, see e.g. (Rees 2010, Section 2.8). If T were deformable into an invariant
spanning tree, then, by Theorem A, all simple captures with given β(1) would be
Thurston equivalent, a contradiction.

In the following lemma, by a support of a homeomorphism σ : S
2 → S

2 we mean
the closure of the set of points x ∈ S

2 with σ(x) 
= x .

Lemma 2.3 Let p, β and T be as above. Assume that the support of σβ is a sufficiently
narrow neighborhood of β[0, 1], i.e., a subset of the ε-neighborhood of β[0, 1] for
sufficiently small ε > 0. Then T is an invariant spanning tree for f = σβ ◦ p whenever
β[0, 1] ∩ p(T ) = ∅.

Recall our assumption that the capture path β is simple.

Proof Suppose that β[0, 1] ∩ p(T ) = ∅. Then the support of σβ can be made disjoint
from p(T ). It follows that σβ = id on p(T ), therefore, f (T ) = σβ(p(T )) = p(T ) ⊂
T . ��

3 Proof of Theorem A

Let f : S
2 → S

2 be a Thurston map of degree two. It will be convenient to mark the
critical points of f , i.e., to distinguish between c1( f ) and c2( f ).

Definition 3.1 (Marked Thurston maps) A (critically) marked Thurston map of degree
two is an ordered triple ( f , c1, c2), where f is a Thurston map of degree two, and
{c1, c2} is the set of all critical points of f . Thus, if c1 
= c2, then ( f , c1, c2) and
( f , c2, c1) are different marked Thurston maps. To lighten the notation, we will some-
times write f for a Thurston map ( f , c1, c2). In this case, we will write c1( f ), c2( f )

to emphasize the dependence on f .

We now recall the definition of Thurston equivalence.
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Definition 3.2 (Thurston equivalence) Let f and g be two Thurston maps. They are
said to beThurston equivalent if there are twoorientation preserving homeomorphisms
φ, ψ : S

2 → S
2 with the following properties:

1. We have φ = ψ on P( f ), and φ(P( f )) = P(g).
2. The maps φ and ψ are isotopic modulo P( f ).
3. We have ψ ◦ f = g ◦ φ.

If f and g are marked Thurston maps of degree two, then we additionally require that
φ(vi ( f )) = vi (g) for i = 1, 2.

For example, two topologically conjugate Thurston maps are Thurston equivalent.
The following is another particular case of Thurston equivalence.

Lemma 3.3 Let ft , t ∈ [0, 1] be a continuous family of Thurston maps with P( ft ) =
P( f0). Then all ft are Thurston equivalent.

Thurston maps f0 and f1 from Lemma 3.3 are said to be homotopic. This lemma
is known but we will sketch a proof for completeness.

Sketch of a proof By the covering homotopy theorem, there is a homotopy φt with
φ0 = id and ft ◦ φt = f0. It is easy to see that φt are orientation preserving homeo-
morphisms. Setting g = ft , f = f0, φ = φt , ψ = id, we see that the requirements
of Definition 3.2 are fulfilled. ��

3.1 Cyclic Sets and Pseudoaccesses

Recall Theorem A. We are given two quadratic Thurston maps f , g with invariant
spanning trees T f , Tg . There is an isomorphism τ : T f → Tg of ribbon graphs that
conjugates f with g on V (T f )∪ C(T f ) and maps critical values to critical values. We
want to prove that τ extends to a Thurston equivalence between f and g.

Modify the trees T f , Tg by adding to their vertices the critical points of f belonging
to T f , Tg , respectively. We will write T f , T g for the modified trees. These are also
ribbon graphs. Note that τ takes the vertices of T f to the vertices of T g . Moreover, τ
induces an isomorphism of ribbon graphs.

The proof will consist of two steps. The first step is to define a ribbon graph
isomorphism between f −1(T f ) and g−1(Tg). In other words, if just T f is given (in
which the critical values are marked), then f −1(T f ) can be recovered as a ribbon
graph, even without knowing f . In order to recover f −1(T f ), a classical construction
of the Riemann surface for f −1 helps. (This construction is essentially the same as for
the Riemann surface of z �→ √

z.) We make a cut between two critical values of f ,
and then glue two copies of the slitted sphere along the slits. If the cut is disjoint from
T f (except the endpoints), then it suffices to see how copies of T f in the two slitted
spheres are glued together. To translate this process to combinatorics, we need some
terminology related to cyclic sets and pseudoaccesses. The next definition follows the
terminology of Poirier (1993).

Definition 3.4 (Pseudoaccess) Let A be a cyclic set, i.e., a set with a distinguished
cyclic order of elements. A pseudoaccess of A is an (ordered) pair (a, b) of elements
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of A such that b is the immediate successor of a in the cyclic order. The terminology
is motivated by the following picture. Suppose that A consists of Jordan arcs in the
plane that share an endpoint and are otherwise disjoint (the cyclic order on A follows
the counterclockwise direction around the endpoint). A Jordan arc disjoint from all
elements of A except for the same endpoint defines a pseudoaccess of A. This is
illustrated by the figure below, in which the pseudoaccess (a, b) is represented by the
dashed segment.

c

b

d •

a

The cyclic set A here is represented by the four arcs a, b, c, d in this cyclic order.

3.2 A Homeomorphism Between f−1(Tf) and g−1(Tg)

Consider a Thurston map f of degree 2 with an invariant spanning tree T f , and a
Thurston map g of degree 2 with an invariant spanning tree Tg . We will work under the
assumptions of TheoremA. In particular, we consider a homeomorphism τ : T f → Tg

with the properties listed there. The first step in the proof of Theorem A is to extend
τ to G f = f −1(T f ).

Note that we view G f not only as a subset of S
2 but also as a graph. Vertices of G f

are defined as preimages of vertices of T f . Edges of G f are defined as components of
f −1(T f − V (T f )).

Definition 3.5 (Pseudoaccesses of graphs) Let G be a graph in the sphere. A pseu-
doaccess of G at a vertex a is defined as a pseudoaccess of E(G, a). Here E(G, a)

is the cyclic set of all edges of G incident to a. Recall that the cyclic order of edges
incident to a is induced by the orientation of S

2.

Consider a Jordan arc C f that connects v1( f ) with v2( f ) and is otherwise disjoint
from T f , see Fig. 1, top left. Then C f defines two pseudoaccesses of T f , one at each
of the critical values. Since τ preserves the cyclic order of edges at every vertex, it
defines a correspondence between pseudoaccesses of T f and pseudoaccesses of Tg .
The two pseudoaccesses of T f defined by C f give rise to two distinguished pseu-
doaccesses of Tg . Since τ maps the critical values of f to the critical values of g, the
two distinguished pseudoaccesses of Tg are at v1(g) and v2(g). Clearly, there exists a
Jordan arc Cg connecting v1(g) with v2(g), otherwise disjoint from Tg and defining
the two distinguished pseudoaccesses of Tg .

The set U f = S
2 − C f is a disk. The restriction of f to f −1(U f ) is an unbranched

covering since both critical values of f are in C f . Therefore, f −1(U f ) is a disjoint
union of two open disks U 0

f and U 1
f . These disks are shown as hemispheres in Fig. 1,
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Fig. 1 Recovering G f = f −1(T f ) from T f . Top left: we start with T f and make a cut along a simple
curve C f connecting the critical values outside of T f . As T f , we took an invariant spanning tree for the
rabbit polynomial p; we set v = p(0) and w = p(v). Top right: widening the cut, we obtain a hemisphere
U0

f with a copy T 0
f of T f . Vertices of T 0

f are labeled as the corresponding vertices of T f . Bottom left:

attach the opposite hemisphere U1
f with another copy T 1

f of T f . Then G f is the union of T 0
f and T 1

f . This
construction shows that G f is uniquely defined as a ribbon graph once T f is given and the critical values
are distinguished among the vertices of T f . Vertices of G f are now labeled as they appear in G f (new
labels are preimages of the former labels). Bottom right: we now removed the edges of G f that do not
appear in T f . What remains is a tree that identifies with T f (one should rotate the sphere and deform the
trees to attain the coincidence)

bottom left. There is an ambiguity in labeling U 0
f and U 1

f . One of the two disks has

to be labeled U 0
f , and the other U 1

f . However, which disk gets which label is up to us.

Similarly, g−1(Ug) is a disjoint union of two disks U 0
g and U 1

g . Again, the labeling of
these disks should be specified somehow.

The common boundary of the disksU 0
f ,U

1
f is the Jordan curve f −1(C f ). Consider

the closure T i
f (in S

2) of the f -pullback of T f − C f in Ui
f , where i = 0, 1. Clearly,

T i
f is a tree isomorphic to T f . Moreover, T i

f and T f have isomorphic ribbon graph

structures.Wemay view T 0
f and T 1

f as two copies of T f . Observe that these two copies

are glued at the critical points of f to form the graph G f = f −1(T f ). Observe also
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that the critical points of f are the vertices of T i
f that correspond, under the natural

isomorphism between T i
f and T f , to the critical values v1( f ) and v2( f ). Thus there

is an abstract description of the ribbon graph G f . It involves making two copies of
T f and gluing them at the vertices corresponding to v1( f ), v2( f ). See again Fig. 1.
Note that the representation of G f as a union T 0

f ∪ T 1
f depends on the choice of C f .

More precisely, it depends on the choice of the two pseudoaccesses of T f . A similar
representation can be obtained for Gg = g−1(Gg).

Lemma 3.6 Either τ(T f ∩T i
f ) ⊂ Tg ∩T i

g for every i = 0, 1 or τ(T f ∩T i
f ) ⊂ Tg ∩T 1−i

g
for every i = 0, 1.

Lemma 3.6 is a manifestation of the fact that the construction shown in Fig. 1 is
essentially unique. Define the label �(e) of an edge e ∈ E(T f ) so that e ⊂ T �(e)

f .

Thus the label of an edge can take values 0 or 1. Labels are defined on edges of T f

and on edges of f −1(T f ) but may not be well-defined on edges of T f . (Recall that T f

was defined above as a subdivision of T f , in which critical points of f in T f become
vertices.) Lemma 3.6 asserts that τ either preserves all labels or reverses all labels. We
will choose the labeling of U 0

g , U 1
g so that all labels are preserved by τ .

Proof of Lemma 3.6 We have to show that, if τ(er ) ⊂ T �(er )
g for some er ∈ E(T f ),

then the same holds for every edge e of T f . In other words, τ preserves all labels.
To this end, we compare every edge e with er . The latter will be called the reference
edge. Consider critical points of f in T f . Note, however, that T f does not have to
contain all critical points of f . Suppose that some critical point c (which is necessarily
c1( f ) or c2( f )) lies in T f . Let v = f (c) be the corresponding critical value. The
curve f −1(C f ) defines two pseudoaccesses of T f at c, not necessarily different. We
will call these distinguished pseudoaccesses critical pseudoaccesses. Clearly, critical
pseudoaccesses depend only on the ribbon graph structure of T f and on the choice
of C f , more precisely, on the two pseudoaccesses defined by C f . The latter two
pseudoaccesses will be referred to as post-critical pseudoaccesses. The two critical
pseudoaccesses of T f at c may separate some pairs of edges incident to c.

The values of the function � can be computed step by step, starting at er and
passing from edges to adjacent edges. Suppose that �(e) is known, and e′ shares a
vertex a with e. If a is not critical, then �(e′) = �(e). If a is critical, then �(e′) 
= �(e)
if and only if e and e′ are separated by the critical pseudoaccesses at a. The just
described computational description of � follows from the observation that edges e,
e′ ∈ E(T f , a) are separated by the critical pseudoaccesses at a if and only if they are
separated by f −1(C f ), i.e., lie in different components of f −1(U f ).

We now need to prove that �(τ(e)) = �(e). To this end, it is enough to observe
that τ maps C(T f ) to C(Tg) and that τ maps critical pseudoaccesses of T f to critical
pseudoaccesses of T g . Indeed, suppose that c is a critical point in T f . Then v = f (c)
is a critical value, and τ(v) is also a critical value by property (3) of τ listed in the
statement of Theorem A. On the other hand, by property (2) of τ , we have τ(v) =
τ ◦ f (c) = g(τ (c)). Since g(τ (c)) is a critical value, and g has degree two, τ(c) is a
critical point. It is also clear that critical pseudoaccesses at c map under τ to critical
pseudoaccesses at τ(c). We conclude that τ preserves the labels, as desired. ��
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Recall that G f = f −1(T f ) and Gg = g−1(Tg). Recall also that V (G f ) ⊃
V (T f ) ⊃ V (T f ), and similarly for g.

Proposition 3.7 There is a ribbon graph isomorphism τ∗ : G f → Gg with the fol-
lowing properties:

1. We have τ∗ = τ on V (T f ).
2. We have τ∗ ◦ f = g ◦ τ∗ on all vertices of G f .

Proof Recall that, by Lemma 3.6, the map τ : T f → Tg preserves labels. This map
lifts to T i

f , where i = 0, 1, by the homeomorphisms f : T i
f → T f and g : T i

g → Tg .

In other words, we can define a map τ i : T i
f → T i

g by the formula τ i = g−1
i ◦ τ ◦ f ,

where g−1
i is the inverse of g : T i

g → Tg . We set τ∗ to be the map from G f to Gg ,

whose restriction to T i
f is τ i . Then we need to prove that properties (1)–(2) hold for

τ∗.
Let us first prove that τ∗ = τ on V (T f ). On V (T f ) ∩ T i

f , the map τ satisfies the
property τ ◦ f = g ◦ τ by the assumptions of Theorem A. By Lemma 3.6, under τ the
set T f ∩T i

f maps to Tg ∩T i
g (note that T f = T f as sets, and hence T f ∩T i

f = T f ∩T i
f

set-theoretically). Therefore, we have τ = g−1
i ◦ τ ◦ f on V (T f ) ∩ T i

f . It remains to

note that the right hand side coincides with the definition of τ i .
We now prove that the cyclic order of edges incident to a vertex a∗ ∈ V (G f ) is

preserved by τ∗. Let f −1
i be the inverse of f : T i

f → T f . If a∗ = f −1
i (a), where

a is not a critical value, then the statement is obvious since both f : Ui
f → S

2 and

g : Ui
g → S

2 preserve the orientation. Now, if a is a critical value, then the restriction
of τ∗ to the union of edges incident to a∗ is glued from the two maps τ 0 and τ 1. The
cyclic order of edges of G f at a∗ is as follows. First come all edges of T 0

f incident to

a∗ that are mapped by τ 0 in an order preserving fashion. Then come all edges of T 1
f

incident to a∗ that are mapped by τ 1 in an order preserving fashion. It follows that τ∗
preserves the cyclic order on edges of G f incident to a∗.

It remains to prove that τ∗ ◦ f = g ◦ τ∗ on all vertices of G f . Indeed, let a∗ be a
vertex of G f . Then a∗ = f −1

i (a) for i = 0 or 1. We have

τ∗ ◦ f (a∗) = τ(a) = g ◦ τ i ◦ f −1
i (a) = g ◦ τ∗(a∗).

In the first equality, we used that τ ∗ = τ on V (T f ). In the second equality, we used
the definition of τ i .

3.3 An Extension of � to the Sphere

We keep the notation of Theorem A. Consider the homeomorphism τ∗ : G f → Gg

constructed in Proposition 3.7. The restriction of τ∗ to T f is in general different from τ .
However, these twomaps match on V (T f ) = V (T f )∪C(T f ). Moreover, τ∗ restricted
to T f also satisfies assumptions (1)–(3) of Theorem A. Thus we may consider τ∗ in
place of τ .
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We will now extend τ∗ to the entire sphere. Such an extension is possible due to
the following result.

Theorem 3.8 (Corollary 6.6 of Bielefeld et al. 1992) Let G and G ′ be two connected
graphs embedded into S

2. Consider a homeomorphism h : G → G ′ that induces an
isomorphism of ribbon graphs. Then there is an orientation preserving homeomor-
phism h∗ : S

2 → S
2 whose restriction to G is h.

Applying Theorem 3.8 to our specific situation, we obtain the following corollary.

Corollary 3.9 Suppose that τ∗ : G f → Gg satisfies the properties listed in Proposi-
tion 3.7. Then τ∗ extends to an orientation preserving homeomorphism τ∗ : S

2 → S
2.

The homeomorphism τ∗ maps complementary components of G f to complemen-
tary components of Gg . The following notion helps to say which components are
mapped to which components in combinatorial terms:

Definition 3.10 (Boundary Circuits) Let G be a graph in S
2. If an orientation of an

edge e ∈ E(G) is fixed, then e is called an oriented edge of G. The endpoints of e form
an ordered pair (a, b), where a is the initial endpoint and b is the terminal endpoint of
e. We also say that e originates at a and terminates at b. The same edge equipped with
different orientations gives rise to two different oriented edges. A boundary circuit of
G (also known as a left-turn path in G) is a cyclically ordered sequence [e0, . . . , en−1]
of oriented edges of G with the following property: if ei terminates at a vertex a, then
ei+1 (mod n) originates at a, and ei+1 (mod n) is the immediate predecessor of ei in the
cyclic order on E(G, a). Clearly, any oriented edge belongs to some boundary circuit.

As above, let W be some complementary component of G. There is a boundary
circuit �W = [e0, . . . , en−1] associated with W . Informally, it is obtained by tracing
the boundary of W counterclockwise. The correspondence W �→ �W between com-
ponents of S

2 − G and boundary circuits of G is one-to-one. Observe that the same
edge may enter �W twice with different orientations. Observe also that the rotation
from ek to ek+1 around the terminal point of ek is clockwise.

3.4 Homotopy

TheoremAwill be deduced fromTheorem3.11 stated below. Theorem3.11 is not new:
Proposition 3.4.3 of Hlushchanka (2017) contains a more general fact; it is based in
turn on a similar statement from Bonk andMeyer (2017). However, since notation and
terminology in Bonk and Meyer (2017), Hlushchanka (2017) are somewhat different,
we sketch a proof here. The proof will be based on a technical lemma from Bielefeld
et al. (1992).

Theorem 3.11 Suppose that two Thurston maps f and g of degree two share an invari-
ant spanning tree T . Moreover, suppose that f −1(T ) = g−1(T ) = G, that f = g on
V (G), and that the critical values of f coincide with the critical values of g. Then
there is an orientation preserving homeomorphism ψ isotopic to the identity relative
to V (T ) and such that f = g ◦ ψ .
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Note that the equality f −1(T ) = g−1(T ) means the equality of graphs rather than
just sets. In particular, we assume that the two graphs have the same vertices. Note also
that all critical points of f are among vertices of these graphs. Theorem 3.11 implies
that f and g are Thurston equivalent. In fact, they are even homotopic.

Proof of TheoremA using Theorem 3.11 Let f , g and τ : T f → Tg be as in Theorem
A. As before, set G f = f −1(T f ) and Gg = g−1(Tg). By Proposition 3.7, there is a
homeomorphism τ∗ : G f → Gg that induces an isomorphism of ribbon trees and is
such that

1. we have τ∗ = τ on V (T f );
2. we have g ◦ τ∗ = τ∗ ◦ f on all vertices of G f .

Replacing τ with τ∗ if necessary, we may assume that τ satisfies these properties. In
particular, τ maps G f to Gg .

By Corollary 3.9, the map τ extends to an orientation preserving homeomorphism
τ : S

2 → S
2. Set g∗ = τ−1 ◦ g ◦ τ . Clearly, this is a Thurston map of degree two.

Then T f is an invariant spanning tree for g∗. Since τ maps the critical values of f to
the critical values of g, the maps f and g∗ share the critical values. Finally,

g−1∗ (T f ) = τ−1 ◦ g−1 ◦ τ(T f ) = τ−1(Gg) = G f = f −1(T f ).

Thus all assumptions of Theorem 3.11 hold for f and g∗. By Theorem 3.11, the map
g∗ is homotopic to f . Since g is topologically conjugate to g∗, we conclude that g is
Thurston equivalent to f . ��

Consider two graphs G and T in the sphere. Let h : G → T be a continuous map
that is injective on the edges of G and is such that the forward and inverse images of
the vertices are vertices. Such a map is called a graph map in Bielefeld et al. (1992).
Suppose that a graph map h has an extension h : S

2 → S
2. If h is an orientation

preserving branched covering injective on every complementary component of G,
then h is called a regular extension of h. This terminology also follows Bielefeld et al.
(1992).

Theorem 3.12 (Corollary 6.3 of Bielefeld et al. 1992) Consider two graph maps h,
h′ : G → T admitting regular extensions h, h

′
. Suppose that h = h′ on V (G) and

h(e) = h′(e) for every e ∈ E(G). Then there is a homeomorphism ψ : S
2 → S

2 such
that h = h

′ ◦ ψ , and ψ is isotopic to the identity relative to V (G).

We are now ready to deduce Theorem 3.11 from Theorem 3.12.

Proof of Theorem 3.11 Apply Theorem 3.12 to h = f : G → T and h′ = g : G →
T . These are clearly graph maps admitting regular extensions. All assumptions of
Theorem 3.12 are satisfied. It follows that there exists a homeomorphismψ : S

2 → S
2

such that f = g ◦ ψ on S
2, and ψ is isotopic to the identity relative to V (G). ��

Thus we proved Theorem 3.11, and the latter implies Theorem A.
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4 No Dynamics: Spanning Trees

In this section, we associate certain combinatorial objects with a spanning tree. Recall
that, given a finite set P of (marked) points in S

2, a spanning tree for P is a tree T ⊂ S
2

with the property that V (T ) = P ∪ B(T ), where B(T ) is the set of branch points of
T . Thus the notion of a spanning tree is an non-dynamical notion. Suppose that the
sphere S

2 is glued of a polygon 
 by identifying some edges of it. Then the boundary
of 
 becomes a spanning tree for the set P of all vertices of 
. Alternatively, some
vertices of 
 can be dropped from P if these give rise to branch points of the tree.

4.1 The Generating Set ET of�1(S
2 − P)

Let T be a spanning tree for a finite marked set P . Assume that the base point y ∈
S
2 − T is fixed once and for all. We now define a certain generating set E = ET of

π1(S
2 − P) = π1(S

2 − P, y). (This is the same generating set as in Hlushchanka
(2017); Hlushchanka refers to its elements as edge generators).

Endow S
2 with some smooth structure. (It will be clear however that our construc-

tion is independent of this structure). Consider an oriented smooth Jordan arc A. Let γ
be a smooth path that crosses A only once and transversely. By a transverse intersection
we mean that the tangent lines to A and γ at the intersection point are different, and
that the intersection point is not an endpoint of A. We say that γ approaches A from
the left if, at the intersection point, the velocity vectors to γ and to A (in this order)
form a positively oriented basis in the tangent plane to the sphere. With every oriented
edge e of T , we associate an element ge ∈ π as follows. The homotopy class ge is
represented by a smooth loop γe that crosses e just once and transversely, approaches
it from the left, and has no other intersection points with T . (We assume of course
that the loop γe is based at y). A smooth loop γe with the indicated properties is said
to be adapted to T at e. Consider the subset E = ET ⊂ π1(S

2 − P) consisting of
id, the neutral element, and elements ge, where e ranges through all oriented edges
of T . Note that the same edge equipped with different orientations gives rise to two
different elements of E . These elements are inverse to each other.

Thus E is a generating set of π1(S
2 − P) that is symmetric (E−1 = E) and such

that id ∈ E .
Lemma 4.1 Different oriented edges of T give rise to different elements of E .

Proof Consider two different oriented edges e1, e2 of T with ge1 = ge2 . Let γei :
[0, 1] → S

2 be smooth simple loops as above so that gei = [γei ]. We can also arrange
that γe1(0, 1) is disjoint from γe2(0, 1). Let D be the croissant shaped region bounded
by γe1 [0, 1] and γe2 [0, 1].

Since ge1 = ge2 , the loops γei are homotopic rel. P . Therefore, there are no points
of P in D. We claim that there are also no branch points of T in D. Indeed, if x is
such point, then there is a component of T − {x} disjoint from both e1 and e2. This
component must end somewhere in D. On the other hand, by definition of a spanning
tree, all endpoints of T are in P . A contradiction with the fact that P ∩ D = ∅.

Since e1 
= e2, there is at least one vertex x of T in D. However, this is impossible
since all vertices of T are in P ∪ B(T ).
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Consider a set E of smooth loops based at y with the following properties. Firstly,
we assume that every γ ∈ E is adapted to T at some oriented edge e of T . Secondly,
there is exactly one loop γe ∈ E adapted to T at e, and, as we change the orientation
of e, the corresponding loop also changes orientation but otherwise remains the same.
Thirdly, we assume that the constant loop belongs to E , and that different loops from
E are either disjoint (except the common basepoint y) or the same (up to the change
of direction). If these assumptions are satisfied, then we say that E is an adapted set
of loops for T . Clearly, any spanning tree admits an adapted set of loops. The set ET

equals [E], the set of classes in π1(S
2 − P) of all elements from E .

The following lemma will help us translate the pullback operations on spanning
trees into a combinatorial language. We will assume that the basepoint y is chosen
outside of all spanning trees under consideration.

Lemma 4.2 Let H be an inner automorphism ofπ1(S
2−P). Suppose that two spanning

trees T and T ′ are such that ET = H(ET ′) in π1(S
2 − P). Then T and T ′ are isotopic

rel. P.

Proof Let h be an element of π1(S
2 − P) such that H is the conjugation by h. We will

write PMod(S2, P) for the pure mapping class group of S
2 with marked point set P .

Consider the homomorphism Push : π1(S
2 − P, y) → PMod(S2, P ∪ {y}) from the

Birman exact sequence (cf. Section 4.2.1 of Farb and Margalit 2012). It is easy to see
that ψ = Push(h) acts on π1(S

2 − P, y) as H . Moreover, the Birman exact sequence
implies that ψ is isotopic to the identity rel. P but not rel. P ∪ {y}. Replacing T ′ with
ψ−1(T ′), we can arrange that ET and ET ′ coincide. Thus we will assume from now
on that ET = ET ′ .

We may assume that both T and T ′ are composed of smooth arcs. Suppose that
sets E , E ′ of smooth loops based at y are adapted to T , T ′, respectively. The sets E ,
E ′ form embedded graphs �, �′, respectively, in S

2 with the single vertex y. Every
complementary component (“face”) of � contains a single vertex of T , and similarly
for �′. There is a homeomorphism φ : � → �′ that is simultaneously a graph map.
Moreover, for every edge of�, there is an isotopy transforming this edge to itsφ-image.
(Indeed, two loops are homotopic rel. P if and only if they are isotopic rel. P .) Then
φ can be extended as an orientation preserving homeomorphism φ : S

2 → S
2 fixing

P pointwise. This follows from Lemma 2.9 of Farb and Margalit (2012). Moreover,
it follows from the same lemma that φ is isotopic to the identity rel. P . Applying
φ−1 to T ′ and E ′, we may now assume that E = E ′. The corresponding edges of T
and T ′ connect the same complementary components of � and cross the same edge
of �. It follows that the corresponding edges of T and T ′ are homotopic rel. P , as
desired. ��

The converse of Lemma 4.2 is also true.We say that two subsets E and E ′ of a group
π are conjugate if there is u ∈ π such that E ′ coincides with the set of all elements of
the form uvu−1, where v runs through E .
Proposition 4.3 Let T and T ′ be spanning trees for P. The trees T and T ′ are homo-
topic rel. P if and only if the corresponding generating sets ET and ET ′ are conjugate.
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Proof of Proposition 4.3 To lighten the notation, we will write E and E ′ instead of
ET and ET ′ . We silently assumed that both E and E ′ are subsets of the same group
π = π1(S

2− P, y) corresponding to a certain basepoint y. Thus the basepoint is fixed.
Suppose first that E and E ′ are conjugate. Then T and T ′ are homotopic rel. P , by

Lemma 4.2. Suppose now that T and T ′ are homotopic. We may assume that both T ,
T ′ are formed by smooth arcs. Let E be a set of smooth loops adapted to T .

Now consider a homotopy Tt of T (so that T0 = T , T1 = T ′, and t runs through
[0, 1]). We may assume that this homotopy is smooth. Then there is a homotopy
φt : S

2 → S
2 consisting of orientation preserving diffeomorphisms such that φ0 = id

and φt (T ) = Tt . Clearly, Et = φt (E) is adapted to Tt . In particular, Et represents the
symmetric generating set Et = ETt in π1(S

2 − P, φt (y)).
Recall that any homotopy class c of paths connecting twogiven points y, y′ ∈ S

2−P
gives rise to an isomorphism Hc : π1(S

2 − P, y) → π1(S
2 − P, y′). Two different

isomorphisms of this type differ by an inner automorphism of the target group. All
groups π1(S

2 − P, φt (y)) can be identified along the path t �→ φt (y). In particular,
π1(S

2 − P, φ1(y)) identifies with π .
Modifying the homotopy if necessary, we may arrange that φ1(y) = y. Thus, E1

and E ′ lie in the same group, and, by definition of E ′, we must have E ′ = E1. On
the other hand, E1 identifies with E0 = E under the automorphism Hc, where c is the
homotopy class of the loop t �→ φt (y). Since Hc is an inner automorphism, E and E ′
are conjugate. Thus the proposition is proved. ��

4.2 Vertex Structures

Below, we will introduce some formal algebraic/combinatorial notions. The purpose
of these is to translate topological objects, namely, spanning trees, into a symbolic
language.

For any finite set E , we write FS(E) for the free semi-group generated by E . The
semi-group FS(E) can also be thought of as the set of all finite words in the alphabet
E . The empty word is allowed as an element of FS(E); it is the neutral element of the
semi-group. For g, h ∈ E , the product of g and h in FS(E) will be written as g · h.

Suppose now that π is a group and that E ⊂ π . We also suppose that id ∈ E . Here
id means the identity element of π . It is not to be confused with the neutral element
of FS(E), which is not an element of E or of π . We set E� to be the quotient of FS(E)

modulo the relations id · g = g · id = g for all g ∈ E . Now assume that E � id is
symmetric, i.e., that g ∈ E implies g−1 ∈ E . Here g−1 is the inverse of g in the group
π . Then there is a natural map � : E� → π that takes every word in the alphabet E to
the product of its symbols. (The latter product is with respect to the group operation
in π .) We will refer to � as the evaluation map. For example, an element g1 · g2 ∈ E�

is mapped to g1g2 ∈ π . Intuitively, an element u ∈ E� is a way of writing the element
�(u) of the subgroup of π generated by E as a product of generators. Different ways
of writing the same element may differ by a sequence of cancellations. However, we
disregard all appearances of id. For example, g · h · g · g−1 is different from g · h as an
element of E�. However, it is the same as g · id · h · g · id · g−1 · id · id, for example.
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A vertex structure on E is a subset V ⊂ E� with the following property: for every
g ∈ E , there is a unique element of V of the form u1 · g ·u2 for some u1, u2 ∈ E�. Any
vertex structure gives rise to an abstract directed graph G(V) as follows. The vertices
of G(V) are identified with elements of V . The oriented edges of G(V) are labeled by
elements of E . Two vertices v, w ∈ V are connected with an oriented edge g (from v

to w) if

v = v1 · g · v2, w = w1 · g−1 · w2

for some elements v1, v2, w1, w2 of E�. Since E is symmetric, the edges of G(V)

always come in pairs so that paired edges connect the same vertices but go in different
directions. These pairs of edges correspond to pairs of the form {g, g−1} in E . Thus
G(V) can also be regarded as an undirected graph, by identifying each pair of oppo-
sitely directed edges with an undirected edge. A vertex structure V on E is called a
tree structure if G(V) is a tree.

Observe that the graph G(V) also carries a natural ribbon graph structure. Indeed,
directed edges of G(V) originating at a given vertex v ∈ E� are linearly ordered. We
refer to the linear order of symbols in words from E�. For example, consider a vertex
represented by a · b · c ∈ E� with a, b, c ∈ E . Then we should think of a, b, c as
appearing in this clockwise order around the given vertex. That is, the cyclic order of
a, b, c at the given vertex is [c, b, a].

4.3 VertexWords

In this section, we explain how a spanning tree T for a finite marked set P defines a
tree structure on E = ET . To this end, we need to equip T with a bit of extra structure.
Namely, we assume that some pseudoaccess is fixed at every vertex of T .

Recall that any oriented edge e of T gives rise to a group element (edge generator)
ge ∈ E . Moreover, by Lemma 4.1, different edges correspond to different edge gener-
ators. Thus we may think of E as a combinatorial analog for the set of oriented edges
of T . We now define a combinatorial analog of a vertex.

Definition 4.4 (Vertex word) Let x be a vertex of T . Consider all edges e0, . . . , ek−1
incident to x and oriented outwards. The linear order of these edges is well defined if
we impose that

1. it follows the natural clockwise order around x ;
2. the chosen pseudoaccess at x coincides with (ek−1, e0).

Then we define the vertex word of x as the product ge0 · · · · · gek−1 ∈ E�. For example,
if k = 3, then x = ge0 · ge1 · ge2 (the product is in E�, not in π1(S

2 − P)!). Let V be
the set of all vertex words associated with the vertices of T . Then V is clearly a tree
structure on E such that G(V) is isomorphic to T as a ribbon graph.
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The construction presented above may seem artificial. In order to shed some light
on it, let us consider an example. The following is a spanning tree T for a set of three
marked points:

◦
B

◦ A · C ◦

(Themarked points, shown as circles, are precisely the endpoints of the tree.)Wewrite
A, B,C for the oriented edges of T originating at the branch point. Set a = gA, b = gB ,
c = gC . Then the generating set ET consists of 7 elements id, a, a−1, b, b−1, c, c−1.
The vertex word corresponding to the branch point of the tree is a · b · c. Note that this
word is different from the neutral element of E� even through�(a ·b·c) = abc = id in
π . This example explains why we need to consider E�. The vertex structure associated
with T is

V = {a · b · c, a−1, b−1, c−1}.

Clearly, the combinatorial structure of G(V) represents that of T .

5 Dynamics: Computation of the Biset

In this section, we consider a Thurstonmap f of degree twowith an invariant spanning
tree T . We will find a presentation for the biset of f using only the combinatorics of
the map f : T → T . We start with recalling the terminology.

5.1 Bisets and Automata

A biset is a convenient algebraic invariant of a Thurston map, which fully encodes the
Thurston equivalence class.

Fix some basepoint y ∈ S
2− P( f ). Define the setX f (y) as the set of all homotopy

classes of paths from y to f −1(y) in S
2 − P( f ). To lighten the notation, we will

write π f for the fundamental group π1(S
2 − P( f ), y). There are natural left and right

actions of π f on X f (y). For this reason, the set X f (y) is referred to as a π f -biset.
The left action of π f on X f (y) is the usual composition of paths. Let γ be a

representative of an element [γ ] ∈ π f , and let α be a representative of an element
[α] ∈ X f (y). Then [γ ][α], the left action of the element [γ ] ∈ π f on an element
[α] ∈ X f (y), is defined as the element [γα] ofX f (y) represented by the composition
γα of γ and α: we first traverse γ , and then α. According to our convention, paths are
composed from left to right. The right action of π f onX f (y) is defined as follows. For
[γ ] ∈ π f and [α] ∈ X f (y) as above, let β be the composition of α and the pullback of
γ originating at the terminal point of α. Then the element [α].[γ ] ∈ X f (y), the right
action of [γ ] on [α], is defined as [β]. We will refer to X f (y) as the biset of f . Now

123



458 A. Shepelevtseva, V. Timorin

that we have a particular example at hand, we give a general algebraic definition of a
biset.

Definition 5.1 (Biset) Let π be a group. A set X is called a biset over π , or a π -biset,
if commuting left and right actions of π on X are given. The biset X is said to be left
free if there exists a subset B ⊂ X such that every element a ∈ X can be uniquely
represented as gb, where g ∈ π and b ∈ B. The subset B is then called a basis of X .
Let π ′ be another group, and X ′ be a π ′-biset. A group isomorphism ρ : π → π ′
is said to conjugate X with X ′ if there is a bijection σ : X → X ′ with the property
that σ(g1a.g2) = ρ(g1)σ (a)ρ(g2) for all g1, g2 ∈ π and a ∈ X . If ρ and σ with
these properties exist, then X and X ′ are said to be conjugate. If moreover π = π ′
and ρ = id, we say that X and X ′ are isomorphic. For more details on these formal
notions, we refer the reader to Nekrashevych (2005), Bartholdi and Dudko (2017)
(note that bisets are called bimodules in Nekrashevych 2005, see Chapter 2).

Clearly, the biset of a Thurston map is well defined up to conjugation. Recall the
following theorem of Nekrashevich (Theorem 6.5.2 of Nekrashevych 2005, see also
Kameyama 2001; Pilgrim 2003), which says that, reversely, the conjugacy class of the
biset determines the Thurston equivalence class of the map:

Theorem 5.2 Let f1 and f2 be Thurston maps, and X fi be the corresponding π fi -
bisets, i = 1, 2. Here π fi is the fundamental group of S

2 − P( fi ).

1. The maps f1 and f2 are Thurston equivalent if and only if there exists an orientation
preserving homeomorphism h : S

2 → S
2 such that h(P( f1)) = P( f2) and the

induced isomorphism h∗ : π f1 → π f2 conjugates X f1 with X f2 .
2. Suppose that P( f1) = P( f2) = P and the base points chosen for X f1 , X f2

coincide. The maps f1 and f2 are homotopic rel. P if and only if X f1 and X f2 are
isomorphic.

Let us go back to a degree 2 Thurston map f . A basis of X f (y) consists of two
elements. These are homotopy classes of two paths connecting y with its preimages
y0, y1. Thus, to choose a basis of X f (y) is the same as to choose two paths α0, α1, up
to homotopy rel. P( f ), so that αε connects y with yε, for ε = 0, 1. Once some basis
of X f (y) is chosen, we can associate an automaton with X f (y).

Definition 5.3 (Automaton) Let A and S be some sets. In practically important cases
both A and S are finite. The set A is called an alphabet, and its elements are called
symbols. The set S is called the set of states, and its elements are called states. An
automaton can be defined as a map� : A× S → S× A, or rather as a triple (A, S, �).
Let FS(A) be the set of finite words in the alphabet A, including the empty word. This
is a f ree semi-group generated by A, thus the notation. If we fix some initial state
s0 ∈ S, then we obtain a self-map of FS(A) as follows. Imagine that a machine reads
a word w ∈ FS(A) symbol by symbol, right to left. Suppose, at some point, it reads
a symbol a ∈ A and its state is s. Set (t, b) = �(a, s). Then the machine writes b in
place of a, changes the state to t , andmoves one step left. In other words, an automaton
(A, S, �) gives rise to a right action of S on FS(A). If � is fixed, then it is common
to write �(a, s) simply as as.
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Consider an abstract left free π -biset X . Assume that some basis B of X is chosen.
Then, for every a ∈ B and every g ∈ π , there are elements a∗ ∈ B and g∗ ∈ π with
ag = g∗a∗. Thus, we have a well-defined map �B : B× π → π ×B taking (a, g) to
(g∗, a∗). By definition, this is an automatonwithπ being the set of states.Wewill refer
to this automaton as the full automaton ofX in the basisB. Clearly, the full automaton
defines X up to isomorphism. On the other hand, the full automaton carries excessive
information. It is enough to know the values �B(a, g) for all g in some generating set
ofπ . IfB is finite andπ is generated by a finite set S, then the image ofB×S under�B
is finite. In particular, this image lies in S∗ × B, where S∗ is also a finite subset of π .
Thus, in order to describe the biset, it suffices to indicate themap�B : B×S → S∗×B
between finite sets. This map is called a (finite) presentation ofX . We see that finitely
presented bisets can be efficiently described, and computations with them are easy to
implement. However, the isomorphism problem for bisets is not easy, cf. Bartholdi
and Dudko (2017).

We now go back to the biset X f (y) of a quadratic Thurston map f . In a number
of important situations, there is a finite generating set E ⊂ π f and a basis [α0],
[α1] with the following property. For ε ∈ {0, 1} and any element a ∈ E , we have
[αε].a = a∗[αε∗ ] for some ε∗ ∈ {0, 1} and a∗ ∈ E depending on a and ε. Define an
automaton � : {0, 1} × E → E × {0, 1} taking (ε, a) to (a∗, ε∗). This automaton has
then a finite set of states. Such automata are practically important and are called finite
state automata. Observe that � defines a finite presentation of X f (y). We will see
that a simple presentation of X f (y) by a finite state automaton can be associated with
every invariant spanning tree of f . This observation was also made in Hlushchanka
(2017) in a more general context but with a less explicit description of the automaton.

5.2 A Base Edge and Labels

We now assume that (T ∗, T ) is a dynamical tree pair for f . Let Z be the smallest
subarc of T containing both v1 and v2. (In Fig. 1, top left, this is the union of the arcs
∞0, 0xα , and xαv.) Then f −1(Z) is a Jordan curve containing the critical points c1
and c2. (In Fig. 1, bottom left, this is the only simple cycle in the graph.) We will
regard both Z and f −1(Z) as graphs in the sphere whose vertices are the vertices of
T and f −1(T ), respectively, contained in Z and f −1(Z), respectively. Since the tree
T ∗ cannot contain the Jordan curve f −1(Z), there is at least one edge e′

b of f −1(Z)

not contained in T ∗. (In Fig. 1, we removed an edge of f −1(Z) when passing from
the bottom left to the bottom right picture. We may set e′

b to be this removed edge.)
Choose one such edge, and call eb = f (e′

b) the base edge of T . There may be several
ways of choosing a base edge.

The two arcs with endpoints c1, c2 mapping onto Z will be denoted by Z0 and Z1.
Here Z1 is chosen to include e′

b. Then Z0 includes the other pullback of eb.
Set G = f −1(T ). Suppose now that some post-critical pseudoaccesses (i.e., pseu-

doaccesses at critical values) are chosen for T . Intermediate steps in the computation
of an automaton for X f (y), but not the final result, will depend on this choice. The
choice of the post-critical pseudoaccesses gives rise to a representation G = T 0 ∪ T 1.
Here T 0, T 1 are two trees mapping homeomorphically onto T under f . In Sect. 3.2,
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we defined T 0 and T 1 using a Jordan arc C connecting v1 with v2 outside of T . How-
ever, it is easy to see that T i depend only on the pseudoaccesses defined by C . To fix
the labeling, we assume that Zi ⊂ T i for i = 0, 1. In fact, Zi is an “invariant” part of
T i , independent of the choice of the pseudoaccesses.

Modify T ∗ so that the critical points of f lying in T ∗ become vertices. To distin-
guished the new (modified) tree from T ∗, we denote it by T

∗
. Let e be an edge of T

∗
.

Then e lies in T �(e), where �(e) = 0 or 1. The number �(e) is called the label of e, cf.
the proof of Lemma 3.6. We now reproduce the combinatorial definition of labels.

Definition 5.4 (The label of an edge) Define the critical pseudoaccesses of G =
f −1(T ) as the preimages of the post-critical pseudoaccesses of T . There is a unique
function � : E(G) → {0, 1} with the following properties:

1. we have �(e′
b) = 1;

2. suppose that edges e1, e2 share a vertex; then �(e1) = �(e2) if and only if e1, e2
are not separated by the critical pseudoaccesses.

The function � with these properties is called the labeling. For e ∈ E(G), the value
�(e) is called the label of the edge e. An edge of T

∗
may consist of several edges of

G. These edges have the same label since the critical points of f in T ∗ are vertices of
T

∗
. The label of an edge of T

∗
is defined as the label of any edge of G contained in

it. Thus the labeling is also defined on E(T
∗
).

Note that the labeling may not be well defined on E(T ∗) if there are edges of T ∗
subdivided by critical points of f . This was the reason for passing from T ∗ to T

∗
.

5.3 Signatures

As before, T is a spanning tree for P( f ) with specified pseudoaccesses at the critical
values. We also need a function on the edges of T .

Definition 5.5 (Signatures of edges) Let C(T ) be the only boundary circuit of T .
Informally: if a particle x loops around T in a small neighbourhood of T so that T

Fig. 2 The sequences S0(T ) and S1(T ). In this example, the sequence S0(T ) consists of the oriented edges
v1x2, x2v1, v1y1, y1x1, x1y1, y1v2, taken in this order. The sequence S1(T ) consists of the edges v2y1,
y1v1, v1x3, x3v1, taken in this order. The signature of v1x2 and y1x1 is (0, 0). The signature of v1y1 and
y1v2 is (0, 1). The opposite edges y1v1 and v2y1 have signature (1, 0). The signature of v1x3 is (1, 1). The
dashed line is the curve C corresponding to the chosen pseudoaccesses at the critical values
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is kept on the right, then the cyclically ordered sequence of oriented edges, along
which x moves, coincides with C(T ). Even more informally: C(T ) corresponds to
walking around T clockwise. The choice of the direction is explained as follows: as we
walk around T clockwise, we walk around S − T counterclockwise. The postcritical
pseudoaccesses divide all oriented edges fromC(T ) into two groups (segments) S0(T )

and S1(T ). The labeling of S0(T ) and S1(T ) is chosen as follows. By definition, S0(T )

originates at v1 and terminates at v2. Then S1(T ) originates at v2 and terminates at
v1. See Fig. 2 for an illustration. We can now assign signatures to all edges of T . We
say that an oriented edge e of T is of signature (i, j) if e appears in Si (T ), and e−1

appears in S j (T ). Here, for an oriented edge e, we let e−1 denote the same edge with
the opposite orientation. Thus there are four possible signatures: (0, 0), (0, 1), (1, 0),
and (1, 1).

For i, j = 0, 1,wewrite Si (T j ) for the pullback of Si (T ) in T j . The complement of
G in S

2 consists of two disks�0 and�1. These disks are bounded by S0(T 0)∪S1(T 1)

and S0(T 1)∪ S1(T 0). We assume that�0 to be the disk bounded by S0(T 0)∪ S1(T 1).
See Fig. 3 for an illustration. More precisely, the oriented boundary of �0, regarded
as a chain of oriented edges of G, is the concatenation of S0(T 0) and S1(T 1). Then
�1 is bounded by S0(T 1) ∪ S1(T 0) in a similar sense. We will assume that �0 � y.
The problem, however, is that the two assumptions

1. that y ∈ �0, and
2. that �0 is bounded by the concatenation of S0(T 0) and S1(T 1)

may not be compatible. There are two ways of making them both hold. On the one
hand, we can choose y differently. Although this is easy in theory, we will not do this

Fig. 3 The graph G and the disks �0 and �1. Here G = f −1(T ), where T is the tree from Fig. 2. The
preimages of v1, v2 are the critical points c1, c2, respectively. The preimages of other vertices of T are
denoted as their images followed by a label 0 or 1 in the parentheses. All preimages in U0 (the upper
half-plane) are labeled 0 and all preimages in U1 (the lower half-plane) are labeled 1. Then T 0 and T 1

are the copies of T in U0 and U1, respectively. These copies are deformed but topologically the same as
T . The sequence S0(T 0) goes through the vertices c1, x2(0), c1, y1(0), x1(0), y1(0), c2. The sequence
S1(T 1) goes through the vertices c2, y1(1), c1, x3(1), c1. The disk �0 bounded by S0(T 0) ∪ S1(T 1) is
the exterior of the quadrilateral c1y1(0)c2y1(1) with the arcs c1x3(1), c1x2(0) and y1(0)x1(0) removed
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in practice. A basepoint will be fixed once and for all (see Assumption 6.3 for the
principle of choosing the basepoint). On the other hand, we may relabel T 0 and T 1

by choosing e′
b differently. The edge e′

b of G is one of the two pullbacks of eb; the one
not in T ∗. If we change T ∗, then we can also replace e′

b with the other pullback of eb.
In this way, we can satisfy both assumptions. This is how we will act in practice. At
each step of our iterative process, we will define T ∗ (and e′

b) so that both assumptions
hold. The exact procedure will be described later. For now, we just assume that both
assumptions are satisfied.

5.4 The Choice of Paths˛0,˛1

We assume that (T ∗, T ) is a dynamical tree pair for f . As before, T comes with a
specific choice of pseudoaccesses at the critical values. Recall that f −1(y) = {y0, y1}.
We label the preimages y0, y1 of y so that yi ∈ �i for i = 0, 1. Choose a path α0
connecting y with y0 outside of T ∗. Similarly, choose a path α1 connecting y with y1
outside of T ∗. Then B = {[α0], [α1]} is a basis of X f (y). The basis B is well defined
and depends only on T ∗ and y. This description of B is sufficient for now. However,
for later use, we will need a more accurate description of α0 and α1. We describe them
up to a homotopy rel f −1(V (T )) rather than rel V (T ). Choose a path α0 connecting y
to y0 so that it is disjoint from G. This is possible. Indeed, according to assumption (1)
made in Sect. 5.3, we have y ∈ �0. Recall also that �0 is a topological disk, and that
y0 ∈ �0 by definition of y0. Therefore, y can be connected with y0 ∈ �0 by a path in
�0. This path is automatically disjoint from G; and we take this path as α0. The path
α1 should be chosen so that it crosses G only once in a point of e′

b. We may arrange
that α1 is smooth and that the intersection is transverse. Since e′

b is not included into
T ∗, this description of α1 is consistent with the earlier description.

For example, in Fig. 3, the path α1 goes from the outside of the quadrilateral
c1y1(0)c2y1(1) to the inside. It may cross either c2y1(1) or y1(1)c1; thus there are two
possible choices for e′

b.

5.5 AMore Precise Statement of Theorem B

In this section, we restate TheoremBmore precisely and in a greater generality. Recall
that f : S

2 → S
2 is a Thurston map of degree two. We assume that f has a dynamical

tree pair (T ∗, T ). Let ET and ET ∗ be the generating sets of π f defined as in Sect. 4.1.
We will describe a map � : {0, 1} × ET → ET ∗ × {0, 1}. By definition, �(ε, [γ ]) is
([αεγ

∗α−1
ε∗ ], ε∗), where γ ∗ is an f -pullback of γ originating at yε and terminating at

yε∗ . Note that ε∗ and γ ∗ are determined by ε and γ . The map � defines a presentation
of X f (y).

Recall our assumption on the basepoint y: the complementary component �0 of
f −1(T ) containing y is bounded by S0(T 0) and S1(T 1).

Theorem 5.6 We use the terminology and notation introduced above. Suppose that
ε ∈ {0, 1} and g ∈ ET . Then we have

�(ε, g) = (g∗, ε∗),
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where ε∗ and g∗ are defined as follows. If g = id, then ε∗ = ε and g∗ = id. Suppose
now that g = ge, where e is an oriented edge of T of signature (ε + δ, ε∗ + δ). Here
the addition is mod 2; observe that δ and ε∗ are determined by ε and the signature
of e. If there is an oriented edge e∗ of T

∗
labeled δ that maps over e preserving the

orientation, then g∗ = ge∗ . If there is no such edge, then g∗ = id.

An edge e∗ mapping over e preserving the orientation means that f (e∗) is an
oriented Jordan arc containing e, and that the orientation of f (e∗) is consistent with
that of e. Note that an element ge∗ for e∗ ∈ E(T

∗
) is also an element of ET ∗ . If, say,

a critical point divides an edge of T ∗ into two edges of T
∗
, then these two edges give

rise to the same pair of mutually inverse elements of ET ∗ . Suppose that T ∗ = T , then
T is an invariant spanning tree for f . In this case, we obtain a finite state automaton
({0, 1}, ET , �). Theorem 5.6 gives an explicit description of this automaton. Thus it
provides a specification of Theorem B.

Corollary 5.7 A dynamical tree pair (T ∗, T ) for f determines the map � : {0, 1} ×
ET → ET ∗ × {0, 1} that provides a presentation for the biset of f . In particular,
the isomorphism class of the biset X f (y) and hence the homotopy class of f are
determined by (T ∗, T ).

Note that the description provided in Theorem 5.6 depends on the choice of pseu-
doaccesses. However, the end result, i.e., the map � : {0, 1} × ET → ET ∗ × {0, 1}, is
obviously independent of these choices.

Example 5.8 (An automaton for the basilica polynomial) Recall that the basilica poly-
nomial is p(z) = z2 − 1. It is easy to find a presentation for the biset of p directly
(cf. Nekrashevych 2005, Section 5.2.2). However, we will use Theorem 5.6 in order to
illustrate its statement. Let T be the invariant spanning tree for p defined in Example
2.1:

−1• A 0◦ B ∞•

Since T is invariant, we may take T ∗ = T . The tree T has three vertices−1, 0,∞ and
two edges: A = [−1, 0] and B = [0,∞]. Note that A is the Hubbard tree for p. Orient
these two edges from left to right (in the picture, the orientations are represented by
arrows). Observe that A maps onto A reversing the orientation, and B maps onto A∪ B
preserving the orientation. We may represent this symbolically as

A → A−1, B → A, B.

Observe also that B contains the β-fixed point xβ of p, i.e., the landing point of the
invariant external ray (the latter ray is also a part of B). Set a = gA and b = gB . Thus
we have E = ET = {id, a, b, a−1, b−1}.

Theoretically, we have to make some choices. Observe that the location of the
basepoint is irrelevant since the complement of T in the sphere is simply connected.
The only possible choice for a base edge is B since f −1(A) ⊂ T . Also, we need to
choose two pseudoaccesses at the critical values v1 = −1 and v2 = ∞. However,
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since both critical values are endpoints of T , these pseudoaccesses are unique. In order
to implement the algorithm described in Theorem 5.6, we need to find labels and
signatures. Since B is the base edge, and B maps over B, we have �(B) = 0. Indeed,
the edge e′

b of f −1(G) not in T but mapping also over B has label 1 by definition.
The two critical pseudoaccesses at 0 separate A from B, hence we have �(A) = 1.
The boundary circuit C(T ) is [A, B, B−1, A−1] (square brackets denote a cyclically
ordered set). Here A−1, B−1 stand for the edges A, B equipped with the opposite
orientation. The two post-critical pseudoaccesses divide C(T ) into S0(T ) = (A, B)

and S1(T ) = (B−1, A−1). By Definition 5.5, both A and B have signature (0, 1). The
oriented edges A−1, B−1 have signature (1, 0). We can now compute (g∗, ε∗) for each
pair (ε, g) ∈ {0, 1} × E according to Theorem 5.6.

The computations can be organized as follows. Draw the following table:

a(0, 1) b(0, 1) a−1(1, 0) b−1(1, 0)

0
1

a−1(1) b(0) a(1) b−1(0)
b(0) b−1(0)

In the top row, we list all elements of E − {id}. After each element, we indicate
its signature. Thus, columns of the table (except for the leftmost one) are marked by
oriented edges of T . These are the A-column, then the B-column, etc. The last row
is temporarily filled as follows. In the A-column, we write all elements of the form
ge, where e is mapped over A preserving the orientation. In our case, these elements
are a−1 = gA−1 and b = gB . We proceed similarly with other columns. After each
element of E − {id} in the last row, we indicate in the parentheses the label of the
corresponding edge.

Now we can fill the second and the third rows of the table. For example, look at the
A-column. Take one of the entries in the last row, say, a−1(1). Here a−1 is an element
of E and 1 is the label. Add the label to both components of the signature written in
the same column. In our case, we obtain (0 + 1, 1 + 1) = (1, 0). This means that
1.a = a−10 by Theorem 5.6. We write a−10 at the intersection of the A-column with
the rowmarked 1. Now take the remaining entry in the last row, b(0). Adding the label
to the signature, we obtain (0 + 0, 1 + 0) = (0, 1). This means that 0.a = b 1. We
write b 1 at the intersection of the A-column with the row marked 0.

More generally, consider the column marked by an oriented edge e of T . In the first
row,we indicated the signature (ε+δ, ε∗+δ) of this edge, right after the corresponding
element ge. In the last row, we indicated an edge e∗ mapping over e in an orientation
preserving fashion, and the label δ of e∗.We add δ to both components of (ε+δ, ε∗+δ)

to obtain (ε, ε∗). Then we have ε.ge = ge∗ε∗ by Theorem 5.6. We write ge∗ε∗ at the
intersection of the e-column with the row marked ε. If there is no edge e∗ of label δ

mapping over e preserving orientation, then we write ε∗.
Acting in this way, we obtain the following table (from which we removed the last

row as it was not needed anymore).
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a b a−1 b−1

0 b 1 b 1 a 1 1
1 a−10 0 b−10 b−10

Here, in order to evaluate �(ε, ge), one has to look at the intersection of the row
marked ε ∈ {0, 1} with the column marked ge ∈ E . The cell of the table at the given
position contains ge′ε′ or ε′. In the former case, we have �(ε, ge) = (ge′, ε′). In the
latter case, we have �(ε, ge) = (id, ε′).

The following is the Moore diagram for the obtained automaton.

a
(0,1)

(1,0)

b

(1,0)

(0,1)

id

a−1

(0,1)

(1,0) b−1

(0,1)

(1,0)

5.6 Proof of Theorem 5.6

Set G = f −1(T ). Since f (T ∗) ⊂ T , we have T ∗ ⊂ G set-theoretically. Moreover,
all vertices of T ∗ are also vertices of G but, in general, not the other way around.
Recall that complementary components of G correspond to boundary circuits of G.
We will write Ci (G) for the boundary circuit corresponding to �i . Recall that the
labeling of �i was defined so that C0(G) is the concatenation of S0(T 0) and S1(T 1).
The boundary circuit C1(G) is then the concatenation of S0(T 1) and S1(T 0).

Let e be an edge of T . Then f −1(e) can be represented as a union e0 ∪ e1, where
e0 ∈ E(T 0) and e1 ∈ E(T 1). The following proposition is an alternative description
of the boundary circuits Ci (G), where i = 0, 1.

Proposition 5.9 Let e be an oriented edge of T of signature (i, j). Then e0 belongs
the boundary circuit Ci (G) and e1 belongs to the boundary circuit C1−i (G). In other
words, eδ belongs to Ci+δ(G), where δ = 0, 1 and the addition is mod 2.

Proof Suppose that the signature of e is (i, j). It follows by definition of a signature
that e ∈ Si (T ). The edge e0 of G is a part of T 0 hence also of Si (T 0). By definition,
this means that e0 ∈ Ci (G). The proof of the claim that e1 ∈ C1−i (G) is similar. ��

We are now ready to prove Theorem 5.6.
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Proof of Theorem 5.6 Suppose that we are given ε ∈ {0, 1} and g ∈ ET . If g = id, then
the conclusion is obvious. Thus we may assume that g = ge for some e ∈ E(T ). Let
g∗ and ε∗ be as in the statement of Theorem 5.6. Namely, let (i, j) be the signature
of e. Set δ = ε + i mod 2. Then we also have i = ε + δ mod 2. Define ε∗ as j + δ

mod 2. Then we also have j = ε∗ + δ. Thus the signature of e can be written as
(ε + δ, ε∗ + δ). If there is an edge e∗ of T

∗
labeled δ that maps over e preserving the

orientation, then we set g∗ = ge∗ . Note that, if an edge e∗ exists, then it is unique.
Indeed, there is only one edge eδ of T δ mapping to e. This edge eδ may or may not
be a subset of T ∗. If it is, then it is contained in a unique edge e∗ of T

∗
. We equip e∗

with the orientation induced from the orientation of e by the map f : eδ → e. Thus
e∗ is uniquely determined as an oriented edge of T

∗
. If eδ is not a subset of T ∗, then

we set g∗ = id.
We now need to prove that �(ε, g) = (g∗, ε∗), i.e., that [αε].g = g∗ [αε∗ ]. Let

γe be a smooth loop based at y, crossing T just once transversely and approaching
it from the left. Thus [γe] = g. By definition [αε].g is (the homotopy class of) the
concatenation of αε and a pullback γ ∗

e of γe. The pullback γ ∗
e should start at yε, where

αε ends. The path γ ∗
e approaches some boundary edge e′ of �ε. Thus e′ is an edge of

G. Equip e′ with an orientation such that γ ∗
e approaches e′ from the left. Then e′ is an

element of the boundary circuit Cε(G) corresponding to the boundary of�ε. Observe
that e′ must be a pullback of e, hence it must coincide with e0 or with e1. We need
to find which one. By Proposition 5.9, the edge eδ belongs to Ci+δ(G) = Cε(G).
Therefore, we have e′ = eδ . Since e is of signature (ε+ δ, ε∗ + δ), the two sides of the
arc e′ belong to �ε and �ε∗

. Indeed, the left side of e′ is �ε, as we already know. On
the other hand, by Proposition 5.9, the opposite edge (e′)−1 belongs to the boundary
circuit C j+δ(G) = Cε∗

(G). It follows that the right side of e′ is �ε∗
. When crossing

e′, the path γ ∗
e leaves �ε and enters �ε∗

(it may be that ε = ε∗).
It follows that the path αε.γe terminates in �ε∗ . We must have then

[αε].[γ ] = [αεγ
∗
e α−1

ε∗ ] [αε∗ ],

and it remains to show that [αεγ
∗α−1

ε∗ ] = g∗.
Suppose first that e′ is not a subset of T ∗ (then g∗ = id). Then γ ∗

e is disjoint from
T ∗. Since, by our assumption, α0, α1 are also disjoint from T ∗, the loop αεγ

∗
e α−1

ε∗
lies entirely in S

2 − T ∗. The set S
2 − T ∗ is simply connected, therefore, this loop is

contractible in S
2 − T ∗ and in S

2 − P( f ) ⊃ S
2 − T ∗. Thus both sides of the equality

[αεγ
∗
e α−1

ε∗ ] = g∗ equal id, and the equality holds.
Finally, suppose that e′ is a subset of T ∗. Then, since the edge e∗ of T

∗
has label

δ, we have e∗ ⊃ e′. The path γ ∗
e intersects G once, and approaches e∗ from the left.

Therefore, [αεγ
∗
e α−1

ε′ ] = ge∗ , which proves the desired. ��

6 The Ivy Iteration

We start with a geometric explanation of the process, after which we provide a formal
combinatorial implementation.
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6.1 A Geometric Description of the Iterative Process

Consider a marked Thurston map f : S
2 → S

2 of degree 2 with critical values v1 and
v2.

We now describe a procedure that, given a spanning tree T for f , allows to recover
a dynamical tree pair (T ∗, T ). Take the full preimage G = f −1(T ). The basic idea
is to select a spanning tree T ∗ in G. More precisely, we select some subtree of G
containing P( f ) and then erase some of its vertices. Thus the choice of T ∗ is in
general not unique. Below, we will give more precise comments on what it involves
to make this choice, in terms of combinatorics.

Recall that the basepoint y is assumed to be outside of T ∪ G. We also assume
that y and y0 are in the same component of S

2 − G. Choose a base edge eb of T . As
above, we assume that eb separates v1 from v2. Having chosen a base edge eb, we can
recover T ∗. There are two pullbacks of eb in G = f −1(T ). We choose one of the two
pullbacks e′

b so that the following properties hold:

• The edge e′
b of G is oriented so that f : e′

b → eb preserves the orientation.
• Consider a path inS

2−G originating at y and approaching e′
b. This path approaches

e′
b from the left.

Recall that Z is the smallest arc in T connecting v1 with v2. Then the Jordan curve
f −1(Z) consists of two pullbacks of Z . Both pullbacks of eb are in f −1(Z). They are
oriented both from c1 to c2 or both from c2 to c1. Thus, one of them, e′

b, is oriented
as the boundary of the component of S

2 − f −1(Z) containing y. This shows that e′
b

is well defined.
We can now define a spanning tree T ∗. Clearly, f −1(Z) is the only simple loop in

G. Thus, removing e′
b from G leads to a tree. We set ̂T to be the smallest subtree of

this tree containing P( f ). (In particular, all endpoints of ̂T must be in P( f )). Finally,
define T ∗ as the tree obtained from ̂T by erasing all vertices of ̂T that are not in P( f )

and are not branch points of ̂T . The erased vertices become points in the edges of T ∗.
Then (T ∗, T ) is a dynamical tree pair for f . By definition of labels given in Sect. 5.2,
we have �(e′

b) = 1, equivalently, e′
b ∈ T 1. By the properties of e′

b listed above, the
orientation of e′

b corresponds to the orientation of S1(T 1). Hence the boundary circuit
C0(G) corresponding to �0 is the concatenation of S0(T 0) and S1(T 1). Thus our
assumption made in Sect. 5.3 is fulfilled, and Theorem 5.6 applies to (T ∗, T ).

The topological ivy iteration is aimed at finding an invariant spanning tree for f , up
to homotopy, or, more generally, at finding periodic (also up to homotopy, to be made
precise later) spanning trees. Note that an invariant (or periodic), up to homotopy,
spanning tree for f yields a genuine invariant (or periodic) spanning tree for some
map homotopic to f . Consider a dynamical tree pair (T ∗, T ) as above. Since there
are finitely many choices for eb, there are also finitely many choices for T ∗.

Definition 6.1 (Topological ivy object) A (topological) ivy object is defined as a homo-
topy class of spanning trees for P( f ).Wewill write Ivy( f ) for the set of all ivy objects
for f . For a fixed f with |P( f )| � 4, there are countably many ivy objects. There is
a free action of the pure mapping class group of (S2, P( f )) on the set of ivy objects
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of f . In general, this action is not transitive as, for example, spanning trees may have
different combinatorics.

Note that, as a set, Ivy( f ) depends only on P( f ), not on f . However, we will
introduce a relation on Ivy( f ) that will depend on the dynamics of f . If T is a
spanning tree for f , then [T ] will denote the corresponding ivy object. Suppose that
(T ∗, T ) is a dynamical tree pair as above. Then we will write [T ] � [T ∗], and call the
thus defined relation on Ivy( f ) the pullback relation. The pullback relation on Ivy( f )

can be represented by a structure of an abstract directed graph. There are finitely many
arrows originating at each element of Ivy( f ). The set Ivy( f ) equipped with the graph
structure just described is called the ivy graph of f .

Recall that, a subset C ⊂ Ivy( f ) is pullback invariant if the following property
holds: whenever [T ] ∈ C and [T ] � [T ∗], we also have [T ∗] ∈ C . In other words,
in the associated directed graph, there are no edges originating in C and terminating
outside of C . Finding pullback invariant subsets of Ivy( f ) is obviously related to
finding periodic spanning trees. By the way, we can now rigorously define a periodic
object τ ∈ Ivy( f ) as an element of some directed cycle in Ivy( f ). The length of any
simple cycle containing τ is called a period of τ . (Note that τ may have several periods
according to this definition. Moreover, as a rule, periodic ivy objects do have several
different periods.) If T is a spanning tree such that [T ] is periodic of period p, then
we say that the spanning tree T is periodic of period p, up to homotopy.

There is no way of defining the forward image of an ivy object [T ] under f simply
because homotopies rel. P( f ) are not preserved by f . This is also confirmed by the
existence of a periodic ivy object with several different periods.

6.2 A Formal Description of the Ivy Iteration

The purpose of this section is to give a compact and precise description of the com-
putational scheme. The scheme has been implemented (as a Wolfram Mathematica
code) according to this description. Motivations and geometric explanations are given
above. However, we will still need some work to relate the geometric story to the
combinatorial story.

Push Forward of a Generating Set

Let X be an abstract left free biset over a group π . Consider a basis B of X and a
symmetric generating set E of π . (Recall that symmetric means that g−1 ∈ E for every
g ∈ E). We will assume that 1 ∈ E . Consider the full automaton � : B× π → π ×B
of X . Set � = (σ, ι), so that �(a, g) = (σ (a, g), ι(a, g)) for all a ∈ B, g ∈ π .
Define the push forward PE of E as the set σ(B, E). In other words, PE consists
of all elements of the form σ(a, g), where a ∈ B and g ∈ E . Note also that the set
PE coincides with the set of all restrictions (sections) of generators from E under
the associated wreath recursion, in Nekrashevych’s (2005) terminology. It is easy to
see that PE is also a symmetric set containing 1. Note that a push forward of E will
correspond to a pullback of a tree and, in our case, it will also be a generating set.
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For our purposes, we need to combine the push forward operation with a change of a
basis.

Push Forwards with Simultaneous Basis Changes

As before, X is an abstract left free biset over a group π . Let B be a basis of X . Any
function λ : B → π defines a basis change: the new basis consists of λ(a)a, where
a ∈ B. Denote this basis change by Cλ. We will also write aλ for λ(a)a. The new basis
obtained from B through Cλ will be denoted by CλB. Let Cλ� be the full automaton
of X in the new basis CλB. We will now see how the maps � and Cλ� are related
to each other. The following simple computation solves the problem. Take any a ∈ B
and any g ∈ π , and set (g∗, a∗) = �(a, g). Then the following equalities hold in X :

aλ.g = λ(a)a.g = λ(a)g∗a∗ = λ(a)g∗λ(a∗)−1a∗
λ.

This computation shows that Cλ� = (Cλσ, Cλι) is given by

Cλσ (aλ, g) = λ(a)g∗λ(a∗)−1, Cλι(aλ, g) = a∗
λ.

Given a symmetric generating set E of π containing 1, set PλE to be the generating
set obtained as the push forward of E under Cλ�.

Push Forwards of Tree Structures

In contrast to the above, we now explicitly assume that B consists of two elements.
As always, we assume that E is symmetric and contains 1. We say that E is tree-like if
there exists a tree structureV on E , cf. Sect. 4.2. Fix a tree-like generating set E . Below,
we will describe a certain set of basis changes λ for which PλE are also tree-like. For
each such λ, the corresponding tree structure PλV on PλE is defined below. The map
� : B × E → PE × B can be extended to a map

�� = (σ �, ι�) : B × E� → (PE)� × B.

The map�� is defined inductively as follows. If∅ denotes the empty word in E�, then
we set ��(a, ∅) = (∅, a). Suppose now that an element of E� has the form g · w,
where g ∈ E and w ∈ E�. Set (g∗, a∗) = �(a, g). Then we set

σ�(a, g · w) = g∗σ�(a∗, w), ι�(a, g · w) = ι�(a∗, w).

Replacing B with CλB, we may assume that λ ≡ 1. Suppose that B = {a, b}. In order
to define the new vertex set PV ⊂ (PE)�, we first consider the following three sets:

V(a) = {

σ�(a, v) | v ∈ V, ι�(a, v) = a
}

,

V(b) = {

σ�(b, v) | v ∈ V, ι�(b, v) = b
}

,

V(a, b) = {

σ�(a, v) · σ�(b, v) | v ∈ V, ι�(a, v) = b
}

.
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Now take the union of these three sets, remove the trivial element 1 ∈ E� form it as
well as all elements of the form g · g−1, where g ∈ E . The remaining set is PV .

The Combinatorial Ivy Iteration

Thus, for every tree-like generating set E of π , there are several tree-like generating
sets of the form PλE . Set B = {a, b}. We will only consider basis changes associated
with functions λ : B → π such that λ(a) = 1. This is equivalent to saying that the
first basis element a will be fixed once and for all. In our implementation, this will be
the class of a constant loop.

Suppose that g ∈ E is an element with the property that ι(0, g) = 1. Any such
element g is called a base element. With any base element g, we associate the function
λg : B → π such that λg(b) = σ(0, g). (Recall that λ(a) = 1.) The combinatorial
ivy iteration is the process of passing from E to PλgE .

Define a combinatorial ivy object as a tree-like generating set, up to conjugacy.
More precisely, a combinatorial ivy object is a conjugacy class of tree-like generating
sets. If E is such a generating set, then its conjugacy class will be denoted by [E].
Let Ivyc( f ) be the set of all combinatorial ivy objects with π = π f . For a pair of
generating sets E and E ′ = PλgE as above, connect [E] with [E ′] by a directed edge.
Each pair ([E], [E ′]) yields only one directed edge, no matter in how many ways
[E ′] can be represented in the form [PλgE]. In this way, Ivyc( f ) becomes a directed
graph. We will show that the combinatorial ivy iteration represents the topological ivy
iteration. In particular, the graph Ivy( f ) is isomorphic to a subgraph of Ivyc( f ). A
more precise statement is given in the following theorem:

Theorem 6.2 There is an isomorphic embedding of Ivy( f ) into Ivyc( f ). This embed-
ding takes a class [T ] of a spanning tree T to the conjugacy class of the corresponding
generating set ET . Let T and a base edge eb of T define a dynamical tree pair (T ∗, T )

as in Sect. 6.1. If g is the element of ET corresponding to eb, then T ∗ corresponds to
PλgET . There is a canonical tree structure V on ET such that G(V) is isomorphic to
T . The tree structure V∗ on ET ∗ corresponding to T ∗ is obtained as PλgV .

6.3 Translation from Geometry to Combinatorics

Proposition 4.3 implies that there is at least a set-theoretic embedding of Ivy( f ) into
Ivyc( f ). Our symbolic implementation of the ivy iteration will rely on the following
assumption.

Assumption 6.3 Whenever we consider a spanning tree T for P( f ), we assume that
there is a fixed point y0 of f outside of T . Moreover, as long as we deal with spanning
trees that eventually map to T , the point y0 is kept the same. The point y0 will be used
as the basepoint for π f .

Assumption 6.3 can always be fulfilled if we replace f with a homotopic Thurston
map. Indeed, choose a point y0 /∈ T with f (y0) /∈ T and a path β connecting f (y0)
to y0 outside of T . Then the assumption is satisfied if we replace f with σβ ◦ f . Here
σβ is a path homeomorphism introduced in Sect. 2.3. Now, if y0 is fixed under f , then
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y0 is disjoint from f −n(T ) for all n � 0. In particular, if (T ∗, T ) is a dynamical tree
pair for f , then y0 ∈ S

2 − T ∗. Thus we can keep the same f -fixed base point during
the ivy iteration.

The Basis Change Associated with a Dynamical Tree Pair

Consider a spanning tree T for f , and choose a base edge eb of T . The choice of
eb defines a dynamical tree pair (T ∗, T ) as in Sect. 6.1. Consider the basis B =
{[α0], [α1]} of X f (y0) associated with T . According to the convention introduced in
Sect. 5.4, the element [α0] is the class of the constant path. The path α1 connects
y0 with another preimage y1 of y0 outside of T . This property defines B uniquely.
Let now B∗ = {[α0], [α∗

1 ]} be the basis associated with T ∗. We need to show that
[α∗

1 ] = σ(0, g)[α1], where g is the element of ET corresponding to eb. Then we will
have B∗ = CλgB. This is a part of the correspondence between the geometric and the
combinatorial ivy iterations.

Set h = σ(0, g). Let e′
b be the edge of f −1(T ) of label 1 that is not in T ∗. Recall that

α∗
1 is defined as a path from y0 to y1 crossing e′

b and disjoint from f −1(T ) otherwise.
In Sect. 6.1, we have chosen e′

b so that α∗
1 approaches it from the left. It follows that

[α0].g = [α∗
1 ] in X f (y0). Thus we can define α∗

1 as α0.γeb . On the other hand, we
have �(0, g) = (h, 1), therefore, [α∗

1 ] = [α0].g = h[α1], as desired.

6.4 Pullback andVertexWords

In this section, we study the effect of the pullback relation on vertex words.

Proposition 6.4 Let x be a vertex of T , and v ∈ E� be the corresponding vertex word.
The vertex x is a critical value of f if and only if ι�(0, v) = 1. In this case, we also
have ι�(1, v) = 0.

Proof Let � : E� → π f be the evaluation map. Note that ι�(ε, v) = ι(ε,�(v)) for
each ε ∈ {0, 1}. The element�(v) ∈ π f is represented by a loop around x that crosses
T only in a small neighborhood of x . We may assume that this loop γ is smooth and
simple. Then it bounds a disk D such that D ∩ V (T ) = {x}. The two f -pullbacks of
γ are loops or not loops depending on whether x is a critical value or not. On the other
hand, these pullbacks are loops if and only if ι(ε,�(v)) = ε for all ε = 0, 1. ��

Suppose now that v = a0 · · · ak−1. Consider elements σ�(0, v) = b0 · · · bk−1
and σ�(1, v) = c0 · · · ck−1 of (PE)�. Here bi and ci are elements of π f , for i =
0, . . . , k − 1. Set ε0 = 0 and εi = ι�(0, a0 · · · ai−1) for i = 1, . . . , k. Similarly, we
set δ0 = 0 and δi = ι�(1, a0 · · · ai−1) for i = 1, . . . , k. Suppose first that εk = 1 (then
also δk = 0). Then we define the word w(0, v) = w(1, v) ∈ (PE)� as

σ�(0, v)σ �(1, v) = b0 · · · bk−1 · c0 · · · ck−1.

Suppose now that εk = 0 (then also δk = 1). Then we define

w(0, v) = σ�(0, v) = b0 · · · bk−1, w(1, v) = σ�(1, v) = c0 · · · ck−1.
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Proposition 6.5 Suppose that the basis B of X f (y0) corresponds to T ∗. Then the tree
structure V∗ on PE corresponding to T ∗ coincides with the set of w(ε, v) ∈ (PE)�,
where ε runs through {0, 1}, and v runs through V , except that we omit w(ε, v) if it is
empty or it has the form a · a−1 for some a ∈ E . In other words, we have V∗ = PV .

Proof Let x be avertexofT , andv be the correspondingvertexword.Let A0, . . . , Ak−1
be the oriented edges of T such that ai = gAi for i = 0, . . . , k − 1. Define βi as a
smooth path disjoint from T , starting at y, and ending in a small neighborhood of x .
Choose βi so that it approaches x between Ai−1 and Ai . Here i − 1 is understood
modulo k so that for i = 0wehave Ai−1 = Ak−1. Choose the pathsγAi withai = [γAi ]
as βiγiβ

−1
i+1, where γi is a short path in a small neighborhood of x crossing Ai just

once and transversely. We may assume that γi is disjoint from all other edges of T .
For ε ∈ {0, 1}, consider the pullback βε

i of βi originating at yε.
Suppose first that x is not a critical value of f . Then there are two preimages x0

and x1 of x . We will prove that the vertex words of x0, x1 are w(0, v), w(1, v) (not
necessarily in this order), provided that x0 and x1 are vertices of T ∗. Without loss of
generality, we may assume that β0

0 ends near x0. (Otherwise, simply swap x0 and x1.)
Set γ ε

i to be the pullback of γi near xε. An important observation is that a pullback
of a short path is short. Therefore, γ ε

i must indeed stay near one preimage of x rather
than wander between the two preimages. Then the induction on i shows that bi is
represented by αεi β

εi
i γ 0

i (β
εi+1
i+1 )−1α−1

εi+1
and that all β

εi
i end near x0. Note also that

bi = id if and only if γ 0
i does not cross any edge of T ∗. Otherwise it crosses exactly

one edge. The composition of all γ 0
i is a small loop around x0. Moreover, this loop is

a pullback of the small loop γ around x , which is the composition of all γi . It follows
that the oriented edges of T ∗ coming out of x0 correspond precisely to non-identity
elements bi . This means that w(0, v) is the vertex word for x0; the proof of w(1, v)

being the vertex word for x1 is similar.
Suppose now that x is a critical value of f . Then there is just one preimage x0 = x1

of x . We will prove that w(0, v) = w(1, v) is the vertex word for x0 = x1 provided
that x0 is a vertex of T ∗. Set γ 0

i be the pullback of γi originating where β
εi
i ends,

and γ 1
i be the pullback of γi originating where β

δi
i ends. Since δi 
= εi , the paths γ 0

i
and γ 1

i are always different pullbacks of γi . Similarly to the above, bi is represented

by αεi β
εi
i γ 0

i (β
εi+1
i+1 )−1α−1

εi+1
and c j is represented by αδ j β

δ j
j γ 1

j (β
δ j+1
j+1 )−1α−1

δ j+1
. The

composition of all γ 0
i is a pullback of γ but it is not a loop; it is only a “half” of a

loop. The other half is the composition of all γ 1
i , which is also the other pullback of

γ . It follows that oriented edges of T ∗ coming out of x0 correspond precisely to non-
identity elements bi or non-identity elements c j . This means that w(0, v) = w(1, v)

is the vertex word for x0.
To conclude the proof, we observe that any vertex of T ∗ is mapped to a vertex of T .

Thus any vertex of T ∗ can be obtained as described above. If w(ε, v) is empty, then
obviously, the corresponding point xε of f −1(T ) does not belong to T ∗. If w(ε, v)

has the form a · a−1, then xε belongs to an edge of T ∗ corresponding to a (thus,
in particular, xε is not a vertex of T ∗). Conversely, if xε is not a vertex of T ∗, then
this may be due to one of the following reasons. Firstly, we may have xε /∈ T ∗, then

123



Invariant Spanning Trees 473

w(ε, v) is empty. Secondly, xε may belong to some edge of T ∗. In this case, w(ε, v)

must have the form a · a−1, where a ∈ PE corresponds to this edge. ��

Proposition 6.5 concludes the proof of Theorem 6.2.

7 Examples of the Ivy Iteration

In this section, we describe some particular computations of the ivy graphs made
according to the ivy iteration. We consider only the simplest examples, for which
other, sometimes more efficient, computational approaches to distinguishing Thurston
equivalence classes are available. In particular, in most examples, particular invariant
spanning trees are known. We find (conjecturally) all periodic spanning trees in these
examples. Also, we find some pullback invariant sets of ivy objects and show their
combinatorial structure.

In Kelsey and Lodge (2018), all non-Euclidean Thurston maps with at most 4 post-
critical points are classified, and an algorithm is suggested for solving the twisting
problem for such maps. However, invariant spanning trees for rational maps from
Kelsey and Lodge (2018) are not immediate from the provided description.

More complicated examples will be worked out in a separate publication.

7.1 The Basilica Polynomial

Let us go back to Example 5.8. This example deals with the basilica polynomial
f (z) = z2 − 1. We started with an invariant spanning tree

−1• A 0◦ B ∞•

and deduced the corresponding presentation of the biset X f (y), see Fig. 4. This is
enough to start the combinatorial ivy iteration. This process leads to a pullback invari-

Fig. 4 A pullback invariant subset of 3 elements in Ivy( f ), where f (z) = z2−1 is the basilica polynomial.
Arrows represent the pullback relation. Vertex 1 corresponds to the tree T . Vertex 2 corresponds to an
invariant spider for f . Vertex 3 corresponds to a spanning tree that is not invariant up to homotopy; it is
periodic of period 2. Note that vertex 1 has periods 1 and 2
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ant subset of Ivyc( f ) consisting of 3 combinatorial ivy objects. Two of these objects
correspond to invariant spanning trees.

The two (up to homotopy) invariant spanning trees of f are easy to describe. The
first one is the Hubbard tree connected to infinity as described in Sect. 2.1. The second
one is a spider in the sense of Hubbard and Schleicher (1994). There is only one
remaining ivy object in the given pullback invariant subset of Ivy( f ). It does not
correspond to an invariant spanning tree for f .

Note that Ivy( f ) consists of 5 objects. These objects are the same for all f with a
given post-critical set P( f ) of 3 elements. However, the pullback relations (in partic-
ular, pullback invariant subsets) defined by f are different. Three of the elements of
Ivy( f ) correspond to the unions of two sides of the triangle with vertices in P( f ). The
remaining two elements are stars with endpoints in P( f ). The two stars differ by the
cyclic order of edges at the only branch point. Recall that Teichmüller theory provides
powerful invariants of Thurston equivalence classes in form of certain spaces, groups,
correspondences between spaces, and virtual homomorphisms between groups. How-
ever, all these invariants are trivial in the case |P( f )| = 3.

7.2 The Rabbit Polynomial

The rabbit polynomial p(z) = z2 + c is such that 0 is periodic of period 3, and
Im(c) > 0. These conditions determine c uniquely. Indeed, the period 3 assumption
leads to a cubic equation on c, which has one real and two complex conjugate roots.
An invariant spanning tree T for f constructed as in Sect. 2.1 looks as follows.

v•
B

w◦ C xα◦
A

0◦ D ∞•

The choice of the basepoint y for the fundamental group π f = π1(S
2 − P( f ), y)

is irrelevant. Indeed, the complement of T is simply connected. The elements of π f

associated with the edges of T will be denoted by a, b, c, d, so that a small letter
denotes ge, where e is the edge denoted by the corresponding capital letter. Thus ET

consists of id, a, b, c, and their inverses. The edges of T map forward as follows:

A → B, B → C, C → A, D → B−1AD.

Let us compute the map � : {0, 1} × ET → ET × {0, 1} from Theorem 5.6. We
choose D as the base edge. Then we have the following labels:

�(A) = �(B) = �(C) = 1, �(D) = 0.
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The two pseudoaccesses of T at the critical values v1 = v and v2 = ∞ are unique.
We have

S0(T ) = (B−1, A, D), S1(T ) = (D−1, A−1, C, C−1, B).

By Definition 5.5, the edges A and D have signature (0, 1), the edge B has signature
(1, 0), the edge C has signature (1, 1).

By Theorem 5.6, a presentation for X f (y0) looks as follows

a b c d a−1 b−1 c−1 d−1

0 d 1 a 1 b 0 d 1 c−11 d 1 b−10 1
1 c 0 d−10 1 0 d−10 a−10 1 d−10

Note that a = b−1c−1, so that it is enough to use only b, c and d as generators
of π f . We will identify π f with the free group generated by b, c, and d. Then the
tree structure on ET consists of b−1c−1 · c · b, cb · d, b−1, c−1, and d−1. Using the
combinatorial ivy iteration, we found a pullback invariant subset of Ivy(p) consisting
of 10 ivy objects, see Fig. 5. This is the pullback invariant subset containing the class
of the tree T .

We see that, similarly to the basilica, there are two invariant spanning trees for f ,
up to homotopy, among the trees representing objects in the found pullback invariant
subset. One tree corresponds to the Hubbard tree connected to ∞. The other tree is an
invariant spider.

7.3 Simple Capture of the Basilica at
√
2

Let p(z) = z2 − 1 be the basilica polynomial. The point
√
2 is preperiodic under p

of preperiod 2: it maps to 1, and 1 maps to −1. It follows that the simple capture f of
p at

√
2 has the following invariant spanning tree T :

−1• A 0◦ B 1◦ C
√
2•

We oriented the edges of T from left to right, and labeled them A, B, C . The corre-
sponding symmetric generating set of π f is ET = {1, a±1, b±1, c±1}, where a = gA,
b = gB , c = gC .

Since −1 and
√
2 are incident each to a unique edge of T , there are unique pseu-

doaccesses at −1 and
√
2. As the base edge of T , we take C . Note that 0 is the only

critical point in T , thus it separates edges of different labels. We may assume that

�(A) = 0, �(C) = �(B) = 1

although the opposite assignment of labels is also possible. In fact, there are two edges
of G = f −1(T ) mapping onto C . They are separated by a critical point mapping to
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√
2. One or the other assignment of labels depends onwhich of the two edges is chosen

as e′
b. The latter, in turn, depends on which complementary component of G contains

the point y. The oriented edges A, B, C have signature (0, 1). The opposite oriented
edges A−1, B−1, C−1 have signature (1, 0).

By Theorem 5.6, the biset of f is represented as follows:

a b c a−1 b−1 c−1

0 a−11 1 1 b−11 c−11 1
1 b 0 c 0 0 a 0 0 0

With the help of the ivy iteration, we found the pullback invariant subset of Ivy( f )

of order 40 containing [T ]. Within this subset, there are three invariant spanning trees
for f , up to homotopy, see Fig. 6. Vertex 3 corresponds to the invariant spanning tree

−1• 0◦ 1◦
√
2•

Fig. 5 The pullback invariant subset of Ivy( f ) containing [T ], where f is the rabbit polynomial, and T is
the invariant spanning tree for f obtained by connecting the Hubbard tree to ∞. This subset consists of 10
elements. Vertex 5 represents an invariant spider, and vertex 3 represents T
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Fig. 6 The pullback invariant subset of 40 elements in Ivy( f ) containing [T ]. Here f is a simple capture
of the basilica at

√
2, and T is the invariant spanning tree for f introduced in Sect. 7.3. Vertices 3, 35 and

38 represent invariant spanning trees for f

Vertex 35 corresponds to the invariant spanning tree

−1• 0◦ 1◦
√
2•

◦

Finally, vertex 38 corresponds to the invariant spanning tree

◦

−1• 0◦ 1◦
√
2•

7.4 A Capture of the Chebyshev Polynomial

Finally,we consider an example,where an invariant spanning tree is not known a priori.
Namely, we take a simple capture of the Chebyshev polynomial p(z) = z2 − 2 whose
post-critical set has cardinality 4. There are two preimages of 0 under p, namely,±√

2.
We restrict our attention to a simple capture of p at

√
2. There are two simple captures

of p at
√
2 corresponding to capture paths βu and βd (“u” and “d” are from “up” and

“down”). We may define βu as a path along the external ray of argument 1
8 , and βd

as a path along the external ray of argument 7
8 . Clearly, any other simple capture path
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for p ending at
√
2 is homotopic to βu or βd relative to the set {√2, 0,−2, 2} (which

is the post-critical set of the captures). The extended Hubbard tree T with vertices in
{√2, 0,−2, 2} is the following:

−2• 0◦
√
2• 2◦

(We have marked post-critical points of the capture rather than of p.)
Consider fu = σβu ◦ p. To lighten the notation, we will write σu instead of σβu . The

full preimage Gu = f −1
u (T ) can be obtained as the full preimage under p of σ−1

u (T ).
The tree σ−1

u (T ) can be represented (up to homotopy) as follows. Comparing σ−1
u (T )

to T : the edge [−2, 0] is preserved in σ−1
u (T ). The edges [0,√2] and [√2, 2] are

replaced with the external rays of arguments 1
4 and 0, respectively. See Fig. 7, top

right, for an illustration of σ−1
u (T ).

Next, Gu is obtained as the full p-preimage of σ−1
u (T ), see Fig. 7, bottom left.

The graph Gu consists of the line segments [−√
2, 0], [0,√2], and the external rays

Rp(0), Rp(
1
2 ), Rp(

1
8 ), Rp(

5
8 ). Here Rp(θ) stands for the external ray of argument θ

in the dynamical plane of p. We want to find a spanning tree T ∗ ⊂ Gu so that to make
(T ∗, T ) into a dynamical tree pair.

Denote the edges of T as A, B, C and orient them as in Fig. 7, top left. Then
Z = A ∪ B is a simple arc in T connecting the two critical values (this is consistent
with the meaning of the symbol Z in Sects. 5.2 and 6.1). The full preimage f −1

u (Z)

is the simple closed curve consisting of the segments [−√
2, 0], [0,√2], the rays

Rp(
1
8 ), Rp(

5
8 ), and the point ∞. We need to chose an edge e′

b in f −1
u (Z) that will not

be included into T ∗. Take e′
b to be the edge that goes along the ray Rp(

5
8 ). Then the

segment [−√
2, 0] should also be removed from T ∗ since −√

2 is not in P( fu). Thus
T ∗ is as shown in Fig. 7, bottom right. Denote the edges of T ∗ by A∗, B∗, C∗, D∗
and orient them as in Fig. 7, bottom right. The edges of T ∗ map over the edges of T
as follows:

A∗ → A, B∗ → B, C∗ → C−1, D∗ → C .

Thus, in this example, every edge of T ∗ maps over just one edge of T , which is not
the case in general.

We will write a, b, c for the elements of π fu corresponding to the edges A, B, C ,
respectively. Thus the generating set E = ET consists of id, a±1, b±1, c±1. Similar
convention will apply to T ∗, so that E∗ = ET ∗ consists of id, a∗, b∗, c∗, d∗, and their
inverses. Elements of ET ∗ are shown through their representatives in Fig. 7, bottom
right (dashed loops). Inspecting how the dashed loops cross the edges of T , we can
express elements of E∗ through those of E :

a∗ = ba−1, b∗ = ca−1, c∗ = ac−1a−1, d∗ = a−1.

We now compute the presentation of the biset of fu associated with (T ∗, T ) as
in Theorem 5.6. To this end, we first need to choose post-critical pseudoaccesses for
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Fig. 7 The simple capture fu = σu ◦ p of p(z) = z2 − 2. Copies of the sphere are represented as disks,
in which the boundary circles are assumed to be collapsed. Thus, in each of the four pictures, one should
think of the entire boundary circle as one point

T . The critical values of fu are v1 = −2 and v2 = √
2. Since v1 is an endpoint

of T , there is only one pseudoaccess at v1. However, v2 admits to pseudoaccesses:
one is from above, and the other is from below. We choose the one from above.
According to this choice of pseudoaccesses, we have S0(T ) = (A, B) and S1(T ) =
(C, C−1, B−1, A−1). Therefore, the edges A and B have signature (0, 1), and C has
signature (1, 1). Next, we need to compute the labels for all edges of T ∗. Since e′

b by
definition has label 1, we have �(A∗) = �(B∗) = 0 (indeed, we change the label as we
pass through the critical point 0). It is slightly harder to figure out the labels of C∗ and
D∗ since we need to look at the critical pseudoaccesses at ∞. The pseudoaccesses at
∞ separate B∗ and C∗ from D∗. Therefore, we have �(C∗) = 0 and �(D∗) = 1.

Wecannowwrite down thepresentationof the bisetX fu (y) associatedwith (T ∗, T ):

With the help of a computer, we found a pullback invariant subset of size 81 in
Ivy( f ) containing [T ], see Fig. 8. This subset contains an invariant ivy object. Thus,
we found an invariant (up to homotopy) spanning tree for f . This invariant tree is a star.
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Fig. 8 The pullback invariant subset of Ivy( fu) containing [T ]. There are 81 objects in this subset. Vertex
44 represents an invariant ivy object

a b c a−1 b−1 c−1

0 a∗1 b∗1 d∗0 1 1 d∗−10
1 0 0 c∗−11 a∗−10 b∗−10 c∗1

7.5 Some Open Questions

The following are open questions about the pullback relation on spanning trees that
seem important:

• For a quadratic rational Thurston map f , can there be an infinite sequence of
pairwise different ivy objects [Tn] such that [Tn] � [Tn+1]?

• Is there a uniform upper bound on the number of invariant spanning trees, up to
isotopy, for a quadratic rational Thurston map?

• Can there be two disjoint pullback invariant subsets of Ivy( f ), for a quadratic
rational Thurston map f ?
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