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Abstract
We present a simplified exposition of some classical and modern results on graph
drawings in the plane. These results are chosen so that they illustrate some spectacular
recent higher-dimensional results on the border of geometry, combinatorics and topol-
ogy. We define a Z2 valued self-intersection invariant (i.e. the van Kampen number)
and its generalizations. We present elementary formulations and arguments accessible
to mathematicians not specialized in any of the areas discussed. So most part of this
survey could be studied before textbooks on algebraic topology, as an introduction
to starting ideas of algebraic topology motivated by algorithmic, combinatorial and
geometric problems.
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Introduction

Why this survey could be interesting. In this survey we present a simplified expo-
sition of some classical and modern results on graph drawings in the plane (Sects. 1,
2). These results are chosen so that they illustrate some spectacular recent higher-
dimensional results on the border of geometry, combinatorics and topology (Sect. 3).

Weexhibit a connectionbetweennon-planarity of the complete graph K5 onfivever-
tices and results on intersections in the plane of algebraic interiors of curves (namely,
the Topological Radon–Tverberg Theorems in the plane 2.2.2, 2.3.2). Recent resolu-
tion of the Topological Tverberg Conjecture 3.1.7 on multiple intersections for maps
from simplex to Euclidean space used a higher-dimensional r -fold generalization of
this connection (i.e. a connection between the r -fold van Kampen–Flores Conjecture
3.1.8 and Conjecture 3.1.7).

Recall that invariants of knots were initially defined using presentations of the fun-
damental group at the beginning of the twentieth century and, even in a less elementary
way, at the end of the twentieth century. An elementary description of knot invariants
via plane diagrams (initiated in J. Conway’s work of the second half of the twentieth
century) increased interest in knot theory and made that part of topology a part of
graph theory as well.

Analogously,we present elementary formulations and arguments that do not involve
configuration spaces and cohomological obstructions. Nevertheless, the main contents
of this survey is an introduction to starting ideas of algebraic topology (more precisely,
to configuration spaces and cohomological obstructions) motivated by algorithmic,
combinatorial and geometric problems.Webelieve that describing simple applications
of topological methods in elementary language makes these methods more accessible
(although this is called ‘detopologization’ in [Matoušek et al. 2012, Sect. 1]). Such an
introduction is independent of textbooks on algebraic topology (if a reader is ready to
accept without proof some results from Sect. 2.3.4). For textbooks written in the spirit
of this article see e.g. [Skopenkov 2019, Skopenkov 2020].

More precisely, it is fruitful to invent or to interpret homotopy-theoretical arguments
in termsof invariants definedvia intersections or preimages.1 In this surveywedescribe

1 Examples are definition of the mapping degree [Matoušek 2008, Sect. 2.4], [Skopenkov 2020, Sect. 8]
and definition of the Hopf invariant via linking, i.e., via intersection [Skopenkov 2020, Sect. 8]. Importantly,
‘secondary’ not only ‘primary’ invariants allow interpretations in terms of framed intersections; for a recent
application see [Skopenkov 2017a].
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in terms of double and multiple intersection numbers those arguments that are often
exposed in a less elementary language of homotopy theory.

Noknowledge of algebraic topology is required here. Important ideas are introduced
in non-technical particular cases and then generalized.2 So this survey is accessible to
mathematicians not specialized in the area.

Contents of this survey. Both Sects. 1 and 2 bring the reader to the frontline of
research.

In Sect. 1 we present a polynomial algorithm for recognizing graph planarity
(Sect. 1.5), together with all the necessary definitions, some motivations and pre-
liminary results (Sects.1.1–1.4). This algorithm, the corresponding planarity criterion
(Proposition 1.5.1) and an elementary proof of the non-planarity of K5 (Sect. 1.4) are
interesting because they can be generalized to higher dimensions and higher multi-
plicity of intersections (Theorems 3.1.2, 3.1.6, 3.2.1, 3.2.3, 3.3.3 and 3.3.4, see also
Conjectures 3.1.4 and 3.1.8).

In Sect. 2 we introduce in an elementary way results on multiple intersections in
the plane of algebraic interiors of curves (namely, the topological Radon–Tverberg
theorems 2.2.2, 2.3.2, and the topological Tverberg conjecture in the plane 2.3.3). An
elementary generalization of the ideas from Sects. 1.4, 2.2, [Skopenkov and Tancer
2017, Lemmas 6 and 7] could give an elementary proof of the topological Tverberg
theorem, and of its ‘quantitative’ version, at least for primes (Sect. 2.3.3). This is inter-
esting in particular because the topological Tverberg conjecture in the plane 2.3.3 is
still open.We also give an elementary formulation of theÖzaydin Theorem in the plane
2.4.10 on cohomological obstructions for multiple intersections of algebraic interiors
of curves. This formulation can perhaps be applied to obtain an elementary proof.

In Sect. 3 we indicate how elementary results of Sects. 1 and 2 illustrate some
spectacular recent higher-dimensional results. Detailed description of those recent
results is outside purposes of this survey. In Sect. 3.1 we state classical and mod-
ern results and conjectures on complete hypergraphs (since the results only concern
complete hypergraphs, we present elementary statements not involving hypergraphs).
These results generalize non-planarity of K5 (Proposition 1.1.1.a and Theorem 1.4.1)
and the results on intersections of algebraic interiors of curves (linear and topological
Radon and Tverberg theorems in the plane 2.1.1, 2.1.5, 2.2.2, 2.3.2). In Sect. 3.2 we
state modern algorithmic results on realizability of arbitrary hypergraphs; they gen-
eralize Proposition 1.2.2.b. In Sect. 3.3 we do the same for almost realizability. This
notion is defined there but implicitly appeared in Sects. 1.4, 2. We introduce Öza-
ydin Theorem 3.3.6, which is a higher-dimensional version of the above-mentioned
Özaydin Theorem in the plane 2.4.10, and which is an important ingredient in recent
resolution of the topological Tverberg conjecture 3.1.7.

The main notion of this survey linking together Sects. 1 and 2 is a Z2 valued
‘self-intersection’ invariant (i.e. the van Kampen and the Radon numbers defined
in Sects. 1.4, 2.2). Its generalizations to Zr valued invariants and to cohomological
obstructions are defined and used to obtain elementary formulations and proofs of

2 The ‘minimal generality’ principle (to introduce important ideas in non-technical particular cases) was
put forward by classical figures in mathematics and mathematical exposition, in particular by V. Arnold.
Cf. ‘detopologization’ tradition described in [Matoušek et al. 2012, Historical notes in Sect. 1].
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Sects. 1, 2 mentioned above. For applications of other generalizations see [Skopenkov
2018a, Sect. 4], [Skopenkov 2018b, Skopenkov and Tancer 2017]. For invariants of
plane curves and caustics see [Arnold 1995] and the references therein.

Remark 0.0.1 (generalizations in five different directions) The main results exposed
in this survey can be obtained from the easiest of them (Linear van Kampen–Flores
and Radon Theorems for the plane 1.1.1.a, 2.1.1) by generalizations in five different
directions. Thus the results can naturally be numbered by a vector of length five.

First, a result can give intersection of simplices of some dimensions, or of the same
dimension. This relates Sects. 1 to 2.

Second, a ‘qualitative’ result on the existence of intersection can be generalized to a
‘quantitative’ result on the algebraic number of intersections. (This relates Propositions
1.1.1.a to 1.1.1.b, Theorem 2.3.2 to Problem 2.3.7, etc.)

Third, a linear result can be generalized to a topological result, which is here equiv-
alent to a piecewise linear result. (This relates Proposition 1.1.1.ab to Theorem 1.4.1
and Lemma 1.4.3, etc.)

Fourth, a result on double intersection can be generalized to multiple intersections.
(This relates Proposition 1.1.1.a and Theorem 1.4.1 to Theorems 2.1.5 and 2.3.2, etc;
note that the r -tuple intersection version might not hold for r not a power of a prime.)

Fifth, a result in the plane can be generalized to higher dimensions. This relates
Sects. 1 and 2 to 3.

Structure of this survey. Subsections of this survey can be read independently of each
other, and so in any order. In one subsection we indicate relations to other subsections,
but these indications can be ignored. If in one subsection we use a definition or a result
from the other, then we only use a specific shortly stated definition or result. However,
we recommend to read subsections in any order consistent with the following diagram.

1.1 �� 1.2 �� 1.4 ��

���
��

��
��

�
��

1.5

����
���

���
���

���
� 3.1 �� 3.2 �� 3.3

1.3
��

����������
2.1 �� 2.2 �� 2.3 ��

��

2.4

��

Main statements are called theorems, important statements are lemmas or propositions,
less important statements which are not referred to outside a subsection are assertions.

Historical notes. All the results of this survey are well-known.
For history, more motivation, more proofs, related problems and generalizations

see surveys [Bárány et al. 2016, Ziegler 2011, Skopenkov 2018a, Blagojevič and
Ziegler 2016, Shlosman 2018] (to Sects. 2 and 3.1) and [Skopenkov 2008, Skopenkov
2014], [Matoušek et al. 2011, Sect. 1], [Skopenkov 2019, Sect. 5 ‘Realizability of
hypergraphs’] (to Sects. 1 and 3.2). Discussion of those related problems and gener-
alizations is outside purposes of this survey.

Exposition of the polynomial algorithm for recognizing graph planarity (Sect. 1.5)
is new. First, we give an elementary statement of the corresponding planarity criterion
(Proposition 1.5.1). Second, we do not require knowledge of cohomology theory but
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Invariants of Graph Drawings in the Plane 25

show how some notions of that theory naturally appear in studies planarity of graphs.
Cf. [Fokkink 2004], [Matoušek et al. 2011, Appendix D].

Elementary formulation of the topological Radon theorem (Sect. 2.2) in the spirit of
[Schöneborn 2004, Schöneborn and Ziegler 2005] is presumably folklore. The proof
follows the idea of L. Lovasz and A. Schrijver [Lovasz and Schrijver 1998]. Ele-
mentary formulation of the topological Tverberg theorem and conjecture in the plane
(Sect. 2.3.1) is due to T. Schöneborn and G. Ziegler [Schöneborn 2004, Schöneborn
and Ziegler 2005]. An idea of an elementary proof of that result (Sect. 2.3.3) and
elementary formulation of M. Özaydin’s results (Sect. 2.4) are apparently new.

The paper [Enne et al. 2019] was used in preparation of the first version of this
paper; most part of the first version of Sect. 2 is written jointly with A. Ryabichev.
I am grateful to P. Blagojević, I. Bogdanov, G. Chelnokov, A. Enne, R. Fulek, R.
Karasev, Yu. Makarychev, A. Ryabichev, M. Tancer, T. Zaitsev, R. Živaljević and
anonymous referees for useful discussions.

Conventions. Unless the opposite is indicated, by k points in the plane we mean a
k-element subset of the plane; so these k points are assumed to be pairwise distinct.
We often denote points by numbers not by letters with subscript numbers. Denote
[n] := {1, 2, . . . , n}.

1 Planarity of Graphs

A (finite) graph (V , E) is a finite set V together with a collection E ⊂ (V
2

)
of

two-element subsets of V (i.e. of non-ordered pairs of elements).3 The elements of
this finite set V are called vertices. Unless otherwise indicated, we assume that V =
{1, 2, . . . , |V |}. The pairs of vertices from E are called edges. The edge joining vertices
i and j is denoted by i j (not by (i, j) to avoid confusion with ordered pairs).

A complete graph Kn on n vertices is a graph in which every pair of vertices is
connected by an edge, i.e., E = (V

2

)
. A complete bipartite graph Km,n is a graph

whose vertices can be partitioned into two subsets of m elements and of n elements,
so that

• every two vertices from different subsets are joined by an edge, and
• every edge connects vertices from different subsets.

In Sects. 1.1 and 1.2 we present two formalizations of realizability of graphs in
the plane: the linear realizability and the planarity (i.e. piecewise linear realizability).
The formalizations turn out to be equivalent by Fáry Theorem 1.2.1; their higher-
dimensional generalizations are not equivalent, see [van Kampen 1941], [Matoušek
et al. 2011, Sect. 2]. Both formalizations are important. These formalizations are
presented independently of each other, so Sect. 1.1 is essentially not used below
(except for Proposition 1.1.1.b making the proof of Lemma 1.4.3 easier, and footnote
7, which are trivial and not important). However, before more complicated study of
planarity it could be helpful to study linear realizability. The tradition of studying both
linear and piecewise linear problems is also important for Sect. 2, see Remark 0.0.1.

3 The common term for this notion is a graph without loops and multiple edges or a simple graph.
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Fig. 1 (Left) Nonplanar graphs K5 and K3,3. (Right) A planar drawing of K5 without one of the edges

1.1 Linear Realizations of Graphs

Proposition 1.1.1 4

(a) (cf. Theorems 1.4.1 and 2.1.1) From any 5 points in the plane one can choose two
disjoint pairs such that the segment with the ends at the first pair intersects the
segment with the ends at the second pair.

(b) (cf. Proposition 2.1.2 and Lemma 1.4.3) If no 3 of 5 points in the plane belong to
a line, then the number of intersection points of interiors of segments joining the
5 points is odd.

Proposition 1.1.1 is easily proved by analyzing the convex hull of the points. See
another proof in [Skopenkov 2018c, Sect. 1.6].

Proposition 1.1.2 Suppose5 that no 3 of 5 points 1, 2, 3, 4, 5 in the plane belong to a
line. If the segments

(a) jk, 1 ≤ j < k ≤ 5, ( j, k) �= (1, 2), have disjoint interiors then the points 1 and
2 lie on different sides of the triangle 345, cf. Fig. 1, right;

(b) jk, 1 ≤ j < k ≤ 5, ( j, k) /∈ {(1, 2), (1, 3)}, have disjoint interiors then
EITHER the points 1 and 2 lie on different sides of the triangle 345,
OR the points 1 and 3 lie on different sides of the triangle 245.

(c) jk, 1 ≤ j < k ≤ 5, ( j, k) /∈ {(1, 2), (1, 3), (1, 4)}, have disjoint interiors then
EITHER the points 1 and 2 lie on different sides of the triangle 345,
OR the points 1 and 3 lie on different sides of the triangle 245,
OR the points 1 and 4 lie on different sides of the triangle 235.

Informally speaking, a graph is linearly realizable in the plane if the graph has a
planar drawing without self-intersection and such that every edge is drawn as a line
segment. Formally, a graph (V , E) is called linearly realizable in the plane if there
exists |V | points in the plane corresponding to the vertices so that no segment joining
a pair (of points) from E intersects the interior of any other such segment.6

The following results are classical:

4 These are ‘linear’ versions of the nonplanarity of the graphs K5 and K3,3. But they can be proved easier
(because the Parity Lemma 1.3.2.b and [Skopenkov 2020, Intersection Lemma 1.4.4] are not required for
the proof).
5 See proof in [Skopenkov 2018c, Sect. 1.6]. Proposition 1.1.2 and [Skopenkov 2018c, 1.6.1] are not
formally used in this paper. However, they illustrate by two-dimensional examples how boolean functions
appear in the study of embeddings. This is one of the ideas behind recent higher-dimensional N P-hardness
Theorem 3.2.3.b.
6 We do not require that ‘no isolated vertex lies on any of the segments’ because this property can always
be achieved.
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Invariants of Graph Drawings in the Plane 27

• K4 and K5 without one of the edges are linearly realizable in the plane (Fig. 1,
right).

• neither K5 nor K3,3 is linearly realizable in the plane (Proposition 1.1.1.ac);
• every graph is linearly realizable in 3-space (linear realizability in 3-space is
defined analogously to the plane).

A criterion for linear realizability of graphs in the plane follows from the Fáry
Theorem 1.2.1 below and any planarity criterion (e.g. Kuratowski Theorem 1.2.3
below).

Proposition 1.1.3 ([Tamassia 2019, Chapters 1 and 6]; cf. Sect. 3.2; see comments
in [Skopenkov 2018c, Sect. 1.6]) There is an algorithm for recognizing the linear
realizability of graphs in the plane.7

By the Fáry Theorem 1.2.1 and Proposition 1.2.2.bc polynomial and even linear
algorithms exist.

1.2 Algorithmic Results on Graph Planarity

Informally speaking, a graph is planar if it can be drawn ‘without self-intersections’ in
the plane. Formally, a graph (V , E) is called planar (or piecewise-linearly realizable
in the plane) if in the plane there exist

• a set of |V | points corresponding to the vertices, and
• a set of non-self-intersecting polygonal lines joining pairs (of points) from E

such that no of the polygonal lines intersects the interior of any other polygonal
line.8

For example, the graphs K5 and K3,3 (Fig. 1) are not planar by Theorem 1.4.1 and
its analogue for K3,3 [Skopenkov 2018c, Remark 1.4.4].

The following theorem shows that any planar graph can be drawn without self-
intersections in the plane so that every edge is drawn as a segment.

Theorem 1.2.1 (Fáry) If a graph is planar (i.e. piecewise-linearly realizable in the
plane), then it is linearly realizable in the plane.

Proposition 1.2.2 (a) There is an algorithm for recognizing graph planarity.
(b) (cf. Theorems 2.4.1 and 3.2.1.b) There is an algorithm for recognizing graph

planarity, which is polynomial in the number of vertices n in the graph (i.e. there
are numbers C and k such that for each graph the number of steps in the algorithm
does not exceed Cnk).9

7 Rigorous definition of the notion of algorithm is complicated, so we do not give it here. Intuitive
understanding of algorithms is sufficient to read this text. To be more precise, the above statement means
that there is an algorithm for calculating the function from the set of all graphs to {0, 1}, which maps graph
to 1 if the graph is linearly realizable in the plane, and to 0 otherwise. All other statements on algorithms
in this paper can be formalized analogously.
8 Then any two of the polygonal lines either are disjoint or intersect by a common end vertex. We do not
require that ‘no isolated vertex lies on any of the polygonal lines’ because this property can always be
achieved. See an equivalent definition of planarity in the beginning of Sect. 1.4.
9 Since for a planar graph with n vertices and e edges we have e ≤ 3n−6 and since there are planar graphs
with n vertices and e edges such that e = 3n − 6, the ‘complexity’ in the number of edges is ‘the same’ as
the ‘complexity’ in the number of vertices.
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Fig. 2 Subdivision of edge

(c) There is an algorithm for recognizing graph planarity, which is linear in the
number of vertices n in the graph (linearity is defined as polynomiality with
k = 1).

Part (a) follows from Proposition 1.1.3 and the Fáry Theorem 1.2.1. Part (a) can
also be proved usingKuratowski Theorem 1.2.3 below (see for details [Tamassia 2019,
Chapters 1 and 6]) or considering thickenings [Skopenkov 2020, Sect. 1]. However,
the corresponding algorithms are slow, i.e. have more than 2n steps, if the graph
has n vertices (‘exponential complexity’). So other ways of recognizing planarity are
interesting.

Part (b) is deduced from equivalence of planarity and solvability of certain system
of linear equations with coefficients inZ2 (see (i) ⇔ (i i i) of Proposition 1.5.1 below).
The deduction follows because there is a polynomial in N algorithm for recognizing
the solvability of a system of ≤ N linear equations with coefficients in Z2 and with
≤ N variables (this algorithm is constructed using Gauss elimination of variables
algorithm).

Part (c) is proved in [Hopcroft and Tarjan 1974], see a short proof in [Boyer and
Myrvold 2004]. The algorithm does not generalize to higher dimensions (as opposed
to the algorithm of (b)).

The subdivision of edge operation for a graph is shown in Fig. 2. Two graphs are
called homeomorphic if one can be obtained from the other by subdivisions of edges
and inverse operations. This is equivalent to the existence of a graph that can be
obtained from each of these graphs by subdivisions of edges. Some motivations for
this definition are given in [Skopenkov 2020, Sect. 5.3].

Theorem 1.2.3 (Kuratowski) A graph is planar if and only if it has no subgraphs
homeomorphic to K5 or K3,3 (Fig. 1).

A simple proof of this theorem can be found e.g. in [Chernov et al. 2016, Sect. 2.9].

1.3 Intersection Number for Polygonal Lines in the Plane

Before reading this section a readermightwant to look at [Skopenkov 2018c,Assertion
1.3.4] and applications from [Skopenkov 2020, Sect. 1.4]. Comments and proofs are
also presented in [Skopenkov 2018c, Sect. 1.3].

Some points in the plane are in general position, if no three of them lie in a line
and no three segments joining them have a common interior point.

Proposition 1.3.1 Any two polygonal lines in the plane whose vertices are in general
position intersect at a finite number of points.

123
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Fig. 3 The sign of intersection
point

Fig. 4 Two curves intersecting at an even number of points the sum of whose signs is zero (left) or non-zero
(right)

Lemma 1.3.2 (Parity)

(a) If 6 vertices of two triangles in the plane are in general position, then the bound-
aries of the triangles intersect at an even number of points.

(b) Any two closed polygonal lines in the plane whose vertices are in general position
intersect at an even number of points.

Let A, B,C, D be points in the plane, of which no three belong to a line. Define
the sign of intersection point of oriented segments

−→
AB and

−→
CD as the number +1 if

ABC is oriented clockwise and the number −1 otherwise (Figs. 3 and 4).
The following lemma is proved analogously to the Parity Lemma 1.3.2.

Lemma 1.3.3 (Triviality) For any two closed polygonal lines in the plane whose ver-
tices are in general position the sum of signs of their intersection points is zero.

1.4 Self-Intersection Invariant for Graph Drawings

We shall consider plane drawings of a graph such that the edges are drawn as polygonal
lines and intersections are allowed. Let us formalize this for graph Kn (formalization
for arbitrary graphs is presented at the beginning of Sect. 1.5.2).

A piecewise-linear (PL) map f : Kn → R
2 of the graph Kn to the plane is a

collection of
(n
2

)
(non-closed) polygonal lines pairwise joining some n points in the

plane. The image f (σ ) of edge σ is the corresponding polygonal line. The image
of a collection of edges is the union of images of all the edges from the collection.

Theorem 1.4.1 (Cf. Proposition 1.1.1.a and Theorems 2.2.2, 3.1.6) For any PL (or
continuous) map K5 → R

2 there are two non-adjacent edges whose images intersect.

Theorem1.4.1 is deduced from its ‘quantitative version’: for ‘almost every’ drawing
of K5 in the plane the number of intersection points of non-adjacent edges is odd. The
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Fig. 5 The residue v( f ) is
independent of f

words ‘almost every’ are formalized below in Lemma 1.4.3. Formally, Theorem 1.4.1
follows by Lemma 1.4.3 using a version of [Skopenkov 2020, Approximation Lemma
1.4.6], cf. Remark 3.3.1.c.

Let f : Kn → R
2 be a PL map. It is called a general position PL map if all the

vertices of the polygonal lines are in general position. Then by Proposition 1.3.1 the
images of any two non-adjacent edges intersect by a finite number of points. Let the
van Kampen number (or the self-intersection invariant) v( f ) ∈ Z2 be the parity of
the number of all such intersection points, for all pairs of non-adjacent edges.

Example 1.4.2 (a) A convex pentagon with the diagonals forms a general position PL
map f : K5 → R

2 such that v( f ) = 1.
(b) A convex quadrilateral with the diagonals forms a general position PL map f :

K4 → R
2 such that v( f ) = 1. A triangle and a point inside forms a general

position PL map f : K4 → R
2 such that v( f ) = 0. Cf. Sects. 2.1 and 2.2.

Lemma 1.4.3 (Cf. Proposition 1.1.1.b and Lemma 2.2.3) For any general position PL
map f : K5 → R

2 the van Kampen number v( f ) is odd.

Proof By Proposition 1.1.1.b it suffices to prove that v( f ) = v( f ′) for each two
general position PL maps f , f ′ : K5 → R

2 coinciding on every edge except an edge
σ , and such that f |σ is linear (Fig. 5). The edges of K5 non-adjacent to σ form a cycle
(this very property of K5 is necessary for the proof). Denote this cycle by �. Then

v( f ) − v( f ′) = |( f σ ∪ f ′σ) ∩ f �| mod 2 = 0.

Here the second equality follows by the Parity Lemma 1.3.2.b. ��

1.5 A Polynomial Algorithm for Recognizing Graph Planarity

1.5.1 Van Kampen–Hanani–Tutte Planarity Criterion

A polynomial algorithm for recognizing graph planarity is obtained using the van
Kampen–Hanani–Tutte planarity criterion (Proposition 1.5.1 below). In the following

123



Invariants of Graph Drawings in the Plane 31

subsections we show how to invent and prove that criterion. We consider a natural
object (intersection cocycle) for any general position PL map from a graph to the
plane (Sect. 1.5.2). Then we investigate how this object depends on the map (Proposi-
tion 1.5.6.b below). So we derive from this object an obstruction to planarity which is
independent of the map. Combinatorial and linear algebraic (=cohomological) inter-
pretation of this obstruction gives the required planarity criterion.

Proposition 1.5.1 Take any ordering of the vertices of a graph. Then the following
conditions are equivalent.

(i) The graph is planar.
(ii) There are vertices V1, . . . , Vs and edges e1, . . . , es such that Vi /∈ ei for any

i = 1, . . . , s, and for any non-adjacent edges σ, τ the following numbers have
the same parity:

• the number of endpoints of σ that lie between endpoints of τ (for the above order-
ing; the parity of this number is one if the endpoints of edges are ‘intertwined’ and
is zero otherwise).

• the number of those i = 1, . . . , s for which either Vi ∈ σ and ei = τ , or Vi ∈ τ

and ei = σ .

(iii) The following system of linear equations over Z2 is solvable. To every pair A, e
of a vertex and an edge such that A /∈ e assign a variable xA,e. For every non-
ordered pair of non-adjacent edges σ, τ denote by bσ,τ ∈ Z2 the number of
endpoints of σ that lie between endpoints of τ . For every such pairs (A, e) and
{σ, τ } let10

aA,e,σ,τ =
{
1 either (A ∈ σ and e = τ) or (A ∈ τ and e = σ)

0 otherwise
.

For every such pair {σ, τ } take the equation ∑
A/∈e aA,e,σ,τ xA,e = bσ,τ .

The implication (i i) ⇔ (i i i) is clear. The implication (i i) ⇒ (i) follows by the
Kuratowski Theorem 1.2.3 and Assertion 1.5.2 below. The implication (i) ⇒ (i i i)
follows by the Hanani–Tutte Theorem 1.5.3, Example 1.5.4 and Proposition 1.5.9
below.

Assertion 1.5.2 (see proof in [Skopenkov 2018c, Sect. 1.5.1]) The property (ii) above
is not fulfilled for K5 and for K3,3.

Let us present a direct reformulation for K5 (for K3,3 the reformulation and the
proof are analogous).

Let A1, . . . , A5 be five collections of 2-element subsets of {1, 2, 3, 4, 5} such that
no j ∈ {1, 2, 3, 4, 5} is contained in any subset from A j . Then for some four different
elements i, j, k, l ∈ {1, 2, 3, 4, 5} the sum of the following three numbers is odd

• the number of elements s ∈ {i, j} lying between k and l;
• the number of elements s ∈ {i, j} such that As � {k, l};
• the number of elements s ∈ {k, l} such that As � {i, j}.

10 Example 1.5.4 and Proposition 1.5.6.b explain how bσ,τ and aA,e,σ,τ naturally appear in the proof.
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1.5.2 Intersection Cocycle

A linear map f : K → R
2 of a graph K = (V , E) to the plane is a map f : V → R

2.
The image f (AB) of edge AB is the segment f (A) f (B). A piecewise-linear (PL)
map f : K → R

2 of a graph K = (V , E) to the plane is a collection of (non-closed)
polygonal lines corresponding to the edges of K , whose endpoints correspond to the
vertices of K . (A PL map of a graph K to the plane is ‘the same’ as a linear map of
some graph homeomorphic to K .) The image of an edge, or of a collection of edges,
is defined analogously to the case of Kn (Sect. 1.4). So a graph is planar if there exists
its PL map to the plane such that the images of vertices are distinct, the images of the
edges do not have self-intersections, and no image of an edge intersects the interior of
any other image of an edge.

A linear map of a graph to the plane is called a general position linear map if the
images of all the vertices are in general position. A PL map f : K → R

2 of a graph
K is called a general position PL map if there exist a graph H homeomorphic to K
and a general position linear map of H to the plane such that this map ‘corresponds’
to the map f .

A graph is calledZ2-planar if there exists a general position PLmap of this graph to
the plane such that images of any two non-adjacent edges intersect at an even number
of points.

By Lemma 1.4.3 K5 is not Z2-planar. Analogously, K3,3 is not Z2-planar. Hence,
if a graph K is homeomorphic to K5 or to K3,3, then K is not Z2-planar (because any
PLmap K → R

2 corresponds to some PLmap K5 → R
2 or K3,3 → R

2). Then using
Kuratowski Theorem 1.2.3 one can obtain the following result.

Theorem 1.5.3 (Hanani–Tutte; cf. Theorems 2.4.2 and 3.3.5) A graph is planar if and
only if it is Z2-planar.

Example 1.5.4 Suppose a graph and an arbitrary ordering of its vertices are given. Put
the vertices on a circle, preserving the ordering. Take a chord for each edge. We obtain
a general position linear map of the graph to the plane. For any pair of non-adjacent
edges σ, τ the number of intersection points of their images has the same parity as the
number of endpoints of σ that lie between the endpoints of τ .

Let f : K → R
2 be a general position PL map of a graph K . Take any pair of

non-adjacent edges σ, τ . By Proposition 1.3.1 the intersection f σ ∩ f τ consists of a
finite number of points. Assign to the pair {σ, τ } the residue

| f σ ∩ f τ | mod 2.

Denote by K ∗ the set of all unordered pairs of non-adjacent edges of the graph K . The
obtained map K ∗ → Z2 is called the intersection cocycle (modulo 2) of f (we call it
‘cocycle’ instead of ‘map’ to avoid confusion with maps to the plane). In other words,
we have obtained a subset of K ∗, or a ‘partial matrix’, i.e., a symmetric arrangement
of zeroes and ones in some cells of the e × e-matrix corresponding to the pairs of
non-adjacent edges, where e is the number of edges of K .
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I II III IV V

fσ

fA

Fig. 6 The Reidemeister moves for graphs in the plane

Remark 1.5.5 If a graph is Z2-planar, then the intersection cocycle is zero for some
general position PL map of this graph to the plane.

1.5.3 Intersection Cocycles of Different Maps

Addition of maps K ∗ → Z2 is componentwise, i.e. is defined by adding modulo 2
numbers corresponding to the same pair (i.e. numbers in the same cell of a ‘partial
matrix’).

Proposition 1.5.6 (cf. Proposition 1.5.11)

(a) The intersection cocycle does not change under the first four Reidemeister moves
in Fig. 6I–IV. (The graph drawing changes in the disk as in Fig. 6, while out of
this disk the graph drawing remains unchanged. No other images of edges besides
the pictured ones intersect the disk.)

(b) Let K be a graph and A its vertexwhich is not the end of an edgeσ .Anelementary
coboundary of the pair (A, σ ) is the map δK (A, σ ) : K ∗ → Z2 that assigns 1 to
any pair {σ, τ } with τ � A, and 0 to any other pair. Under the Reidemeister move
in Fig. 6.V the intersection cocycle changes by adding δK (A, σ ).

Example 1.5.7 The subset of δK (A, σ )−1(1) ⊂ K ∗ corresponding to themap δK (A, σ )

is also called elementary coboundary.

(a) We have
{{13, 24}} = δK4(1, 24) = δK4(2, 13) = δK4(3, 24) = δK4(4, 13).

(b) We have δK5(3, 12) = {{12, 34}, {12, 35}}.
Two maps ν1, ν2 : K ∗ → Z2 are called cohomologous if

ν1 − ν2 = δK (A1, σ1) + · · · + δK (Ak, σk)

for some vertices A1, . . . , Ak and edges σ1, . . . , σk (not necessarily distinct).
Proposition 1.5.6.b and the following Lemma 1.5.8 show that cohomology is the

equivalence relation generated by changes of a graph drawing.

Lemma 1.5.8 (cf. Lemmas 1.5.12 and 2.4.4) The intersection cocycles of different
general position PL maps of the same graph to the plane are cohomologous.
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The proof of Lemma 1.5.8 presented in [Skopenkov 2018c, Sect. 1.5] is a non-trivial
generalization of the proof of Lemma 1.4.3. Lemma 1.5.8 and Proposition 1.5.6.b
imply the following result.

Proposition 1.5.9 (cf. Propositions 1.5.13 and 2.4.5) A graph is Z2-planar if and only
if the intersection cocycle of some (or, equivalently, of any) general position PL map
of this graph to the plane is cohomologous to the zero map.

1.5.4 Intersections with Signs

Here we generalize previous constructions from residues modulo 2 to integers. These
generalizations are not formally used later. However, it is useful to make these simple
generalizations (and possibly to make remark [Skopenkov 2018c, Remark 1.6.5])
before more complicated generalizations in Sects. 2.3.3, 2.4. Also, integer analogues
are required for higher dimensions (namely, for proofs of Theorems 3.2.1.b, 3.3.4, cf.
[Skopenkov 2018c, Remark 1.6.3]).

Suppose that P and Q are oriented polygonal lines in the plane whose vertices are
in general position. Define the algebraic intersection number P · Q of P and Q as
the sum of the signs of the intersection points of P and Q. See Fig. 4.

Assertion 1.5.10 (a) We have P · Q = −Q · P .
(b) If we change the orientation of P , then the sign of P · Q will change.
(c) If we change the orientation of the plane, i.e. if we make axial symmetry, then the

sign of P · Q will change.

Let K be a graph and f : K → R
2 a general position PL map. Orient the edges of

K . Assign to every ordered pair (σ, τ ) of non-adjacent edges the algebraic intersection
number f σ · f τ . Denote by K̃ the set of all ordered pairs of non-adjacent edges of
K . The obtained map · : K̃ → Z is called the integral intersection cocycle of f (for
given orientations).

Proposition 1.5.11 Analogue of Proposition 1.5.6 is true for the integral intersection
cocycle, with the following definition. Let K be an oriented graph and A a vertex
which is not the end of an edge σ . An elementary skew-symmetric coboundary of
the pair (A, σ ) is the map δK ,Z(A, σ ) : K̃ → Z that assigns

• +1 to any pair (σ, τ ) with τ issuing out of A and any pair (τ, σ ) with τ going to
A,

• −1 to any pair (σ, τ )with τ going to A and any pair (τ, σ )with τ issuing out of A,
• 0 to any other pair.

Two maps N1, N2 : K̃ → Z are called skew-symmetrically cohomologous, if

N1 − N2 = m1δK ,Z(A1, σ1) + · · · + mkδK ,Z(Ak, σk)

for some vertices A1, . . . , Ak , edges σ1, . . . , σk and integers m1, . . . ,mk (not neces-
sarily distinct).

The following integral analogue of Lemma 1.5.8 is proved analogously using the
Triviality Lemma 1.3.3.
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Lemma 1.5.12 The integer intersection cocycles of different maps of the same graph
to the plane are skew-symmetrically cohomologous.

Proposition 1.5.13 (cf. Proposition 2.4.7) Twice the integral intersection cocycle of
any general position PL map of a graph in the plane is skew-symmetrically cohomol-
ogous to the zero map.

This follows by Assertion 1.5.10.c and Lemma 1.5.12.

2 Multiple Intersections in Combinatorial Geometry

2.1 Radon and Tverberg Theorems in the Plane

The reader can find more complete exposition and illustrative examples e.g. in
[Skopenkov 2018c, Sect. 2.1].

Theorem 2.1.1 (Radon theorem in the plane) For any 4 points in the plane either one
of them belongs to the triangle with vertices at the others, or they can be decomposed
into two pairs such that the segment joining the points of the first pair intersects the
segment joining the points of the second pair.

Cf. Proposition 1.1.1.a and Theorems 2.2.2, 3.1.1.
Radon theorem in the plane can be reformulated as follows: any 4 points in the

plane can be decomposed into two disjoint sets whose convex hulls intersect. This
reformulation has the following stronger ‘quantitative’ form.

Proposition 2.1.2 (see proof in [Skopenkov 2018c, Sect. 2.5]; cf. Proposition 1.1.1.b
and Lemma 2.2.3) If no 3 of 4 points in the plane belong to a line, then there exists a
unique partition of these 4 points into two sets whose convex hulls intersect.

Now consider partitions of subsets of the plane into more than two disjoint sets.

Example 2.1.3 In the plane take r − 1 points at each vertex of a triangle (or a ‘similar’
set of distinct points). For any decomposition of these 3r −3 points into r disjoint sets
the convex hulls of these sets do not have a common point.

Assertion 2.1.4 (see proof in [Skopenkov 2018c, Sect. 2.5]) For any r there exist N
such that any N points in the plane can be decomposed into r disjoint sets whose
convex hulls have a common point.

The following theorem shows that the minimal N is just one above the number of
Example 2.1.3.

Theorem 2.1.5 (Tverberg theorem in the plane, see proof in [Matoušek 2008], cf.
Theorem 3.1.3) For any r every 3r − 2 points in the plane can be decomposed into r
disjoint sets whose convex hulls have a common point.
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Fig. 7 A common point of convex hulls as in Theorem 2.1.5

Example 2.1.6 (cf. Propositions 1.1.1 and 2.1.2) The sum

∑

{R1,R2,R3} : Mi=R1�R2�R3

| 〈R1〉 ∩ 〈R2〉 ∩ 〈R3〉 |

has different parity for the two sets M1, M2 of Fig. 7.

2.2 Topological Radon Theorem in the Plane

Proposition 2.2.1 (see proof in [Skopenkov 2018c, Sect. 2.5])Take a closed polygonal
line L in the plane whose vertices are in general position.

(a) The complement to L has a chess-board coloring (so that the adjacent domains
have different colors, see Fig. 8).

(b) (cf. Proposition 2.3.1.c) The ends of a polygonal line P whose vertices together
with the vertices of L are in general position have the same color if and only if
|P ∩ L| is even.

Themodulo two interior of a closed polygonal line in the plane whose vertices are
in general position is the union of black domains for a chess-board coloring (provided
the infinite domain is white).

Piecewise-linear (PL) and general position PL maps Kn → R
2 are defined in

Sect. 1.4.

Theorem 2.2.2 (Topological Radon theorem in the plane [Bajmóczy and Bárány
1979], cf. Theorems 1.4.1, 2.1.1, 3.1.5)

Fig. 8 The modulo two interiors of some closed polygonal lines
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(a) For any general position PL map f : K4 → R
2 either

• the images of some non-adjacent edges intersect, or
• the image of some vertex belongs to the interior modulo 2 of the image of the cycle
formed by those three edges that do not contain this vertex.

(b) For any PL (or continuous) map of a tetrahedron to the plane either

• the images of some opposite edges intersect, or
• the image of some vertex belongs to the image of the opposite face.

Part (a) follows from its ‘quantitative version’ Lemma 2.2.3 below using a version
of [Skopenkov 2020, Approximation Lemma 1.4.6], cf. Remark 3.3.1.c.

Part (b) for PL general position maps follows from part (a) because the image f �
of a face� contains the interior modulo 2 of the image of the boundary ∂� of this face.
(This fact follows because for a general positionmap f : � → R

2 a general position
point from the interior modulo 2 of f (∂�) has an odd number of f -preimages.) Part
(b) follows from part (b) for general position PL maps using a version of [Skopenkov
2020, Approximation Lemma 1.4.6], cf. Remark 3.3.1.c.

Also, the standard formulation (b) is equivalent to (a) by [Schöneborn 2004,
Schöneborn and Ziegler 2005].

For any general position PL map f : K4 → R
2 let the Radon number ρ( f ) ∈ Z2

be the sum of the parities of

• the number of intersections points of the images of non-adjacent edges, and
• the number of vertices whose images belong to the interior modulo 2 of the image
of the cycle formed by the three edges not containing the vertex.

Lemma 2.2.3 (cf. Lemma 1.4.3, Proposition 2.1.2 and [Schöneborn 2004, Schöneborn
andZiegler 2005])For every general positionPLmap f : K4 → R

2 theRadonnumber
ρ( f ) is odd.

Proof By Proposition 2.1.2 it suffices to prove that ρ( f ) = ρ( f ′) for each two general
position PL maps f , f ′ : K4 → R

2 coinciding on every edge except an edge σ , and
such that f |σ is linear. Denote by τ the edge of K4 non-adjacent to σ , by S the modulo
2 interior of ∂S := f σ ∪ f ′σ . Then

ρ( f ) − ρ( f ′) = (|∂S ∩ f τ | + |S ∩ f (∂τ )|) mod 2 = 0.

Here the second equality follows by Proposition 2.2.1.b. ��

2.3 Topological Tverberg Theorem in the Plane

2.3.1 Statement

The topological Tverberg theorem in the plane 2.3.2 generalizes both the Tverberg
Theorem in the plane 2.1.5 and the Topological Radon Theorem in the plane 2.2.2. For
statement we need a definition. The winding number of a closed oriented polygonal
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line A1 . . . An in the plane around a point O that does not belong to the polygonal line
is the following sum of the oriented angles divided by 2π

A1 . . . An · O := (∠A1OA2 + ∠A2OA3 + · · · + ∠An−1OAn + ∠AnOA1)/2π

Proposition 2.3.1 (a) The winding number of any polygon (without self-intersections
and oriented counterclockwise) around any point in its exterior (interior) is 0
(respectively 1).

(b) The interior modulo 2 (Fig. 8) of any closed polygonal line is the set of points for
which the winding number is odd.

(c) (cf. Proposition 2.2.1.b) Take a closed and a non-closed oriented polygonal lines
L and P in the plane, all whose vertices are in general position. Let P0 and P1 be
the starting point and the endpoint of P. Then L · P = L ·∂P := L · P1−L · P0.11

Theorem 2.3.2 (Topological Tverberg theorem in the plane, [Bárány et al. 1981, Öza-
ydin 2019, Volovikov 1996a], see Fig. 9) If r is a power of a prime, then for any
general position PL map f : K3r−2 → R

2 either r − 1 triangles wind around one
vertex or r − 2 triangles wind around the intersection of two edges, where the trian-
gles, edges and vertices are disjoint. More precisely, the vertices can be numbered by
1, . . . , 3r − 2 so that either

• the winding number of each of the images f (3t−1, 3t, 3t+1), t = 2, 3, . . . , r−1,
around some point of f (12) ∩ f (34) is nonzero, or

• the winding number of each of the images f (3t−1, 3t, 3t+1), t = 1, 2, 3, . . . , r−
1, around f (1) is nonzero.

(The condition ‘winding number is nonzero’ does not depend on orientation of
f (i jk).)

Cf. Theorems 2.1.5, 2.2.2 and Conjecture 3.1.7.
By [Schöneborn 2004, Schöneborn and Ziegler 2005] Theorem 2.3.2 is equivalent

to the following standard formulation: If r is a power of a prime, then for every PL (or
continuous) map of the (3r − 3)-simplex to the plane there exist r pairwise disjoint
faces whose images have a common point. Proofs of Theorem 2.3.2 can be found e.g.
in Sects. 2.3.3, 2.3.4 for a prime r , and in the surveys cited in ‘historical notes’ of the
Introduction for a prime power r .

Conjecture 2.3.3 (Topological Tverberg conjecture in the plane) The analogue of the
previous theorem remains correct if r is not a power of a prime.

Let us state a refinement of Theorems 2.1.5 and 2.3.2.

11 The number L · P is defined in Sect. 1.5.4.
This version of the Stokes theorem shows that the complement to L has a Möbius–Alexander numbering,
i.e. a ‘chess-board coloring by integers’ (so that the colors of the adjacent domains are different by ±1
depending on the orientations; the ends of a polygonal line P have the same color if and only if L · P = 0).
See more in [https://en.wikipedia.org/wiki/Winding_number].
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Fig. 9 Topological Tverberg
theorem in the plane, r = 3

An ordered partition (R1, R2, R3) of M = R1 � R2 � R3 ⊂ [7] into three sets
(possibly empty) is called spherical if no set R1, R2, R3 contains any of the subsets
{1, 2}, {3, 4}, {5, 6}. Generally, an ordered partition (R1, . . . , Rr ) of M = R1 � . . . �
Rr ⊂ [3r − 2] into r sets (possibly empty) is called spherical if for every j =
1, . . . , 3(r−1)/2 if 2 j−1 ∈ Rs , then 2 j ∈ Rs−1∪Rs+1, where the r sets are numbered
modulo r . Or, less formally, if consecutive odd and even integers are contained in
consecutive sets. Spherical partitions appeared implicitly in [Vučić and Živaljević
1993] and in [Matoušek 2008, Sect. 6.5, pp. 166–167]. Cf. [Skopenkov 2018c, Remark
2.5.2].

Example 2.3.4 (a) There are 63 = 216 spherical partitions of [6] into three sets.
Indeed, each of the pairs {1, 2}, {3, 4}, {5, 6} can be distributed in 6 ways.

(b) A spherical partition ({1}, {2, 4, 5}, {3}) of [5] extends to two spherical par-
titions ({1, 6}, {2, 4, 5}, {3}) and ({1}, {2, 4, 5}, {3, 6}) of [6]. The extension
({1}, {2, 4, 5, 6}, {3}) is not spherical because {2, 4, 5, 6} ⊃ {5, 6}.

Theorem 2.3.5 (a) For any prime r any 3r − 2 points 1, . . . , 3r − 2 in the plane can
be spherically partitioned into r sets whose convex hulls have a common point.

(b) For any prime r and general position PL map f : K3r−2 → R
2 either the images

of r − 1 triangles wind around the images of the remaining vertex, or r − 2
triangles wind around the intersection of two edges. Moreover, the triangles and
the vertex, or the triangles and the edges, respectively, form a spherical partition
of [3r − 2] = V (K3r−2).

Part (a) follows from (b). Part (b) is essentially proved in [Vučić and Živaljević
1993], [Matoušek 2008, Sect. 6.5]. This formulation is from [Schöneborn 2004, The-
orem 3.3.1], [Schöneborn and Ziegler 2005, Theorem 5.8].

2.3.2 Ideas of Proofs

In the following subsubsections we present a standard proof, and an idea of an ele-
mentary proof, of the topological Tverberg Theorem for the plane 2.3.2 (in fact of
Theorem 2.3.5).
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The idea of an elementary proof presented in Sect. 2.3.3 generalizes the proofs
of Lemmas 1.4.3, 1.5.8, 2.2.3 and [Skopenkov and Tancer 2017, Lemmas 6 and 7].
Instead of counting double intersection points we count r -tuple intersection points.
Instead of counting points modulo 2 we have to count points with signs, see Exam-
ple 2.1.6. It is also more convenient (because of Lemma 2.3.12) instead of summing
over all partitions to sum over spherical partitions. This is formalized by Problem
2.3.7 below which is a ‘quantitative version’ of Theorems 2.3.2 and 2.3.5. Formally,
Theorems 2.3.2 and 2.3.5 for r = 3 follow by resolution of Problem 2.3.7. Proofs
of Theorems 2.3.2, 2.3.5 and of Conjecture 3.1.7 for (arbitrary d and) prime r would
perhaps be analogous.

Similar proofs of Theorems 2.3.2, 2.3.5, and of Conjecture 3.1.7 for prime r , are
given in [Blagojević et al. 2015,Matoušek et al. 2012], see [Skopenkov 2018c, Remark
2.5.2]. Those papers use more complicated language not necessary for these results
(Sarkaria–Onn transform in [Matoušek et al. 2012], homology and equivariant maps
between configuration spaces in [Blagojević et al. 2015]).

The standard proof of Theorem 2.3.2 is presented in Sect. 2.3.4 following [Vučić
and Živaljević 1993], [Matoušek 2008, Sect. 6], cf. [Bárány et al. 1981], [Skopenkov
2018a, Sect. 2]. This proof also yields Theorem 2.3.5 and generalizes to Conjecture
3.1.7 for prime r . Theorem 2.3.2 is deduced from the r -fold Borsuk–Ulam Theorem
2.3.13 using Lemma 2.3.12, both below. Proof of the Borsuk–Ulam Theorem 2.3.8
via its ‘quantitative version’ Lemma 2.3.9 generalizes to a proof of the r -fold Borsuk–
Ulam Theorem 2.3.13. So this deduction of Theorem 2.3.2 is not a proof essentially
different from the idea of Sect. 2.3.3 but rather the same proof in a different language.
(Therefore it is not quite correct that the main idea of the proof of the topological
Tverberg Theorem is to apply the r -fold Borsuk–Ulam Theorem for configuration
spaces.)

The case r = 3 gives a non-trivial generalization of the case r = 2; the generaliza-
tion to arbitrary r (prime for some results below) is trivial.

2.3.3 Triple Self-Intersection Invariant for Graph Drawings

Suppose that every object of P1, . . . , Pr is either a point, or an oriented non-closed
polygonal line, or an oriented closed polygonal line, in the plane, all of whose vertices
are in general position. Define the r -tuple algebraic intersection number P1 . . . Pr
to be

(A)
∑

X∈Pi∩Pj
sgn X

(∏
s �=i, j (Ps · X)

)
, if Pi , Pj are non-closed polygonal lines for

some i < j , and the other Ps are closed polygonal lines;
(B)

∏
s �=i (Ps · Pi ), if Pi is a point and the other Ps are closed polygonal lines.

Here sgn X and · are defined in Sects. 1.3, 1.5.4 and 2.3.1; the number P1 · . . . · Pr
is only defined in cases (A) and (B).12

12 This is an elementary interpretation in the spirit of [Schöneborn 2004, Schöneborn and Ziegler 2005] of
the r -tuple algebraic intersection number f Dn1 . . . f Dnr of a general position map f : Dn1 �· · ·�Dnr →
R
2, where n1, . . . , nr ⊂ {0, 1, 2} and n1 + · · · + nr = 2r − 2 [Mabillard and Wagner 2015, Sect. 2.2].

This agrees with [Mabillard and Wagner 2015, Sect. 2.2] by [Mabillard and Wagner 2015, Lemma 27.b].
For a degree interpretation see [Skopenkov 2018c, Assertion 2.5.4].
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Example 2.3.6 Assume that R1, R2, R3 are either
(A) two vectors and an oriented triangle, or (B) two oriented triangles and a point,
in the plane. Assume that the vertices of R1, R2, R3 are pairwise disjoint subsets of

the plane and their union is in general position. Then |R1 ·R2 ·R3| = 〈R1〉∩〈R2〉∩〈R3〉.
When the intersection is non-empty, R1 · R2 · R3 = +1 if and only if up to a

permutation of (R1, R2, R3) not switching the order of vectors, the triangle R1 has the
same orientation as the triangle

(A) A2B2B3, where Ri = −−→
Ai Bi for each i = 2, 3, (B) R2.

Problem 2.3.7 Let S be the set of all spherical partitions (T1, T2, T3) of [7] such that
7 ∈ T3. Define a map sgn : S → {+1,−1} so that for any general position PL map
f : K7 → R

2 the following (‘triple van Kampen’) number is not divisible by 3:

V ( f ) :=
∑

T=(T1,T2,T3)∈S
sgn T ( f T1 · f T2 · f T3).

Here f Ts is the f -image of either a vertex Ts , or an oriented edge Ts = ab, a < b, or
an oriented cycle Ts = abc, a < b < c.

Analogously to Lemmas 1.4.3, 1.5.8, 2.2.3 and to [Skopenkov and Tancer 2017,
Lemmas 6 and 7], the non-divisibility in Problem 2.3.7 could possibly be proved by
calculating V ( f ) for a specific f and showing that V ( f ) modulo 3 is independent of
f . This might be not so easy, cf. [Matoušek et al. 2012, second half of Sect. 8].

2.3.4 An Approach Via Borsuk–Ulam Theorem

A map f : Sn → R
m is called odd, or equivariant, or antipodal if f (−x) = − f (x)

for any x ∈ Sn . We consider only continuous maps and omit ‘continuous’.

Theorem 2.3.8 (Borsuk–Ulam)

(a) For any map f : Sd → R
d there exists x ∈ Sd such that f (x) = f (−x).

(a’) For any equivariant maps f : Sd → R
d there exists x ∈ Sd such that f (x) = 0.

(b) There are no equivariant maps Sd → Sd−1.
(b’) No equivariant map Sd−1 → Sd−1 extends to Dd.
(c) If Sd is the union of d + 1 closed sets (or d + 1 open sets), then one of the sets

contains opposite points.

The equivalence of these assertions is simple. Part (a’) is deduced from its following
‘quantitative version’.

Lemma 2.3.9 If 0 ∈ R
d is a regular point of a (PL or smooth) equivariant map

f : Sd → R
d , then | f −1(0)| ≡ 2 mod 4.

See the definition of a regular point e.g. in [Skopenkov 2020, Sect. 8.3]. Proof of
Lemma 2.3.9 is analogous to Lemmas 1.4.3 and 1.5.8 (cf. Problem 2.3.7): calculate
| f −1(0)| for a specific f and prove that | f −1(0)| modulo 4 is independent of f .
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Realization of this simple idea is technical, see [Matoušek 2008, Sect. 2.2]. For other
proofs of Theorem 2.3.8 see [Matoušek 2008] and the references therein.

Assume that U1, . . . ,Ur ⊂ R
d are finite union of simplices. Identify them with

subsets U ′
1, . . . ,U

′
r ⊂ R

N isometric to U1, . . . ,Ur and lying in pairwise skew affine
subspaces. Define the (r -tuple) join U1 ∗ · · · ∗Ur to be

{
t1x1 + · · · + tr xr ∈ R

N : x j ∈ U ′
j , t j ∈ [0, 1], t1 + · · · + tr = 1

}
.

Geometric, topological, and combinatorial join are introduced and discussed in
[Matoušek 2008, Sect. 4.2].

Assertion 2.3.10 (a) If U and V are unions of faces of some simplex �n and are
disjoint, thenU ∗ V is a union of all faces of �n that correspond to subsets σ � τ ,
where σ, τ ⊂ [n + 1] correspond to faces of U , V , respectively.

(b) The join S1 ∗ S1 of two cycles is PL homeomorphic to S3.
(c) The r -tuple join (S1)∗r := S1 ∗· · ·∗ S1 of r cycles is PL homeomorphic to S2r−1.

The proof is simple [Matoušek 2008, Sect. 4.2]. Part (a) implies that to every
ordered partition of [3r − 3] into r sets there corresponds a (3r − 4)-simplex of
�∗r

3r−4 := �3r−4 ∗ · · · ∗ �3r−4 (r ‘factors’). Denote by |Sr | the union of (3r − 4)-
simplices of �∗r

3r−4 corresponding to spherical partitions of [3r − 3] into r sets.
Assertion 2.3.11 The union |Sr | is PL homeomorphic to S3r−4.

This assertion and the following lemma are easily deduced fromAssertion 2.3.10.c,
see details in [Matoušek 2008, pp. 166–167].

Denote by 
r the permutation group of r elements. The group 
r acts on the set of
real 3× r -matrices by permuting the columns. Denote by S3r−4


r
the set formed by all

those of such matrices, for which the sum in every row is zero, and the sum of squares
of the matrix elements is 1. This set is homeomorphic to the sphere of dimension
3r − 4. Take a triangulation of this set given by some such homeomorphism. This set
is invariant under the action of 
r . The cyclic permutation ω : S3r−4


r
→ S3r−4


r
of the

r columns has no fixed points and ωr = id S3r−4

r

.

Lemma 2.3.12 There is a PL homeomorphism h : |Sr | → S3r−4

r

such that
h(R2, . . . , Rr , R1) is obtained from h(R1, R2, . . . , Rr ) by cyclic permutation of the r
columns.

Theorem 2.3.13 (r -fold Borsuk–Ulam Theorem) Let r be a prime and ω : Sk → Sk

a PL map without fixed points such that ωr = id Sk. Then no map g : Sk → Sk

commuting with ω (i.e. such that g ◦ ω = ω ◦ g) extends to Dk+1.

Comments on the proof Clearly, the theorem is equivalent to the following result.

Extend ω to Sk ∗ Z3 by ω(ts ⊕ (1 − t)m) := tω(s) ⊕ (1 − t)(m + 1). Let ω0 :
R
k+1 → R

k+1 be a map whose only fixed point is 0 and such that ωr
0 = idRk+1. Then

for any map g : Sk ∗Z3 → R
k+1 commuting with ω,ω0 (i.e. such that g◦ω = ω0 ◦g)

there is x ∈ Sk ∗ Z3 such that g(x) = 0.
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This result is deduced from its ‘quantitative version’ analogous to Lemma 2.3.9.
For a standard proof see [Bárány et al. 1981], [Matoušek 2008, Sect. 6]. ��

Proof of Theorem 2.3.2 Consider the case r = 3, the general case is analogous. We use
the standard formulation of Theorem 2.3.2 given after the statement. Suppose to the
contrary that f : �6 → R

2 is a continuous map and there are no 3 pairwise disjoint
faces whose images have a common point.

For x ∈ R
2 let x∗ := (1, x) ∈ R

3. For x1, x2, x3 ∈ R
2 and t1, t2, t3 ∈ [0, 1] such

that t1 + t2 + t3 = 1 and pairs (x1, t1), (x2, t2), (x3, t3) are not all equal define

S∗ := t1x
∗
1 + t2x

∗
2 + t3x

∗
3 ,

π∗′ :=
(
t1x

∗
1 − S∗

3
, t2x

∗
2 − S∗

3
, t3x

∗
3 − S∗

3

)
and π∗ := π∗′

|π∗′ | .

This defines a map

π∗ : R2 ∗ R
2 ∗ R

2 − diag ∗ → S5
3
, where diag ∗ :=

{(
1

3
x ⊕ 1

3
x ⊕ 1

3
x

)}
.

So we obtain the map π∗ ◦ ( f ∗ f ∗ f ) : |S3| → S5
3
. This map extends to the union

of 6-simplices of �∗3
6 corresponding to spherical partitions (T1, T2, T3) of [7] into 3

sets such that 7 ∈ T3. The union is PL homeomorphic to con|S3| ∼= D6. The map
π∗ ◦ ( f ∗ f ∗ f ) commutes with the cyclic permutations of the three sets in |S3| and
of the three columns in S5
3

. Take any PL homeomorphism h of Lemma 2.3.12. The

composition g := π∗ ◦ ( f ∗ f ∗ f ) ◦ h−1 : S5
3
→ S5
3

commutes with the cyclic

permutation of the three columns and extends to D6. A contradiction to Theorem
2.3.13. ��

2.4 Mapping Hypergraphs in the Plane and the Özaydin Theorem

Formulation of the Özaydin Theorem 2.4.10 uses the definition of a multiple (r -fold)
intersection cocycle. We preface the definition by simplified analogues. In Sect. 1.5 we
have defined double (2-fold) intersection cocycle for graphs. In Sect. 2.4.1 we define
double intersection cocyclemodulo 2 for hypergraphs. In Sect. 2.4.2we generalize that
definition from residues modulo 2 to integers. In Sect. 2.4.3 we generalize definition
of Sect. 2.4.2 from r = 2 to arbitrary r .

2.4.1 A Polynomial Algorithm for Recognizing Hypergraph Planarity

A k-hypergraph (more precisely, k-dimensional, or (k + 1)-uniform, hypergraph)
(V , F) is a finite set V together with a collection F ⊂ ( V

k+1

)
of (k+1)-element subsets

of V . Elements of V and of F are called vertices and faces. An edge is a 2-element
subsets of V contained in some face. The results of this paper for hypergraphs have
straightforward generalization to simplicial complexes (see definition in [Matoušek
2008, Definition 1.5.1] or in [Skopenkov 2018a, Sect. 1]).
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E.g.�2
n := ([n+1], ([n+1]

3

)
) is called the complete 2-hypergraph on n+1 vertices.

Let K = (V , F) be 2-hypergraph. The graph (V , E) formed by vertices and edges
of K is denoted by K (1). E.g. (�2

n)
(1) = Kn+1. For a PL map f : K (1) → R

2 and a
face R = {A, B,C} the closed polygonal line f (AB) ∪ f (BC) ∪ f (CA) is denoted
by f (∂R).

A 2-hypergraph K is called planar (or PL embeddable into the plane) if there exists
a PL embedding f : K (1) → R

2 such that for any vertex A and face R �� A the image
f A does not lie inside the polygon f (∂R). Cf. [Schöneborn 2004, Definition 3.0.6
for q = 2].

For illustration observe that the complete 2-hypergraph �2
3 on 4 vertices (i.e. the

boundary of a tetrahedron) is not planar (and not even Z2-planar, see below) by the
Topological Radon Theorem in the plane 2.2.2.

Theorem 2.4.1 ([Gross and Rosen 1979]; cf. Proposition 1.2.2 and Theorem 3.2.1)
There is a polynomial algorithm for recognition planarity of 2-hypergraphs.

In [Matoušek et al. 2011, Appendix A] it is explained that this result (even with
linear algorithm) follows from the Kuratowski-type Halin–Jung planarity criterion
for 2-hypergraphs (stated there). We present a different proof similar to proof of
Proposition 1.2.2.b (Sect. 1.5). This proof illustrates the idea required for elementary
formulation of the Özaydin Theorem 2.4.10.

A 2-hypergraph K is called Z2-planar if there exists a general position PL map
f : K (1) → R

2 such that the images of any two non-adjacent edges intersect at an
even number of points and for any vertex A and face R �� A the image f A does not
lie in the interior modulo 2 of f (∂R).

Theorem 2.4.2 (cf. Theorems 1.5.3 and 3.3.5) A 2-hypergraph is planar if and only if
it is Z2-planar.

This is proved using the Halin–Jung criterion [Matoušek et al. 2011, Appendix A].
Let K = (V , F) be a 2-hypergraph and f : K (1) → R

2 a general position PL map.
Assign to any pair {σ, τ } of non-adjacent edges the residue

| f σ ∩ f τ | mod 2.

Assign to any pair of a vertex A and a face R �� A the residue

| f A ∩ int2 f (∂R)| mod 2,

where int2 f (∂R) is the interior modulo 2 of f (∂R).
Denote by K ∗ the set of unordered pairs {R1, R2} of disjoint subsets R1, R2 ∈

V � E � F such that |R1| + |R2| = 4, where E is the set of edges. Then either both
R1 and R2 are edges, or one of R1, R2 is a face and the other one is a vertex. The
obtained map K ∗ → Z2 is called the (double) intersection cocycle (modulo 2) of
f for K . Note that K ∗ ⊃ (K (1))∗ and the intersection cocycle of f for K (1) is the
restriction of the intersection cocycle of f for K . The intersection cocycle for K of
the map f : K (1) → R

2 from Example 1.5.4 is the extension to K ∗ by zeroes of the
intersection cocycle for K (1) described there.
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Comparing the definitions of the Radon number and the intersection cocycle we see
that for every general position PL map f : K4 = (�2

3)
(1) → R

2 the Radon number
ρ( f ) equals to the sum of the values of the intersection cocycle for �2

3.
By Proposition 2.3.1.c for any disjoint edge σ and face R we have

∑

A∈σ

| f A ∩ int2 f (∂R)| =
∑

τ⊂R

| f τ ∩ f σ |.

Analogue of Proposition 1.5.6 is true for the intersection cocycle for 2-hypergraph,
with the following definition. Let K be a 2-hypergraph and A its vertex which is not
the end of an edge σ . An elementary coboundary of the pair (A, σ ) is the map
δK (A, σ ) : K ∗ → Z2 that assigns 1 to the pair {R1, R2} if Ri ⊃ A and R j ⊃ σ for
some i �= j , and 0 to any other pair.

The subset of δK (A, σ )−1(1) ⊂ K ∗ corresponding to the map δK (A, σ ) is also
called elementary coboundary. So δ�2

3
(1, 23) = {{14, 23}, {1, 234}}, cf. Example

1.5.7.a.

Proposition 2.4.3 Under the Reidemeister move in Fig. 6.V the intersection cocycle
changes by adding δK (A, σ ).

Two maps ν1, ν2 : K ∗ → Z2 are called cohomologous if

ν1 − ν2 = δK (A1, σ1) + · · · + δK (Ak, σk)

for some vertices A1, . . . , Ak and edges σ1, . . . , σk (not necessarily distinct).

Lemma 2.4.4 (cf. Lemmas 1.5.8 and 2.2.3) For any 2-hypergraph K the intersection
cocycles of different general position PL maps K (1) → R

2 are cohomologous.

Proposition 2.4.5 (cf. Proposition 1.5.9) A 2-hypergraph K is Z2-planar if and only
if the intersection cocycle modulo 2 of some (or, equivalently, of any) general position
PL map K (1) → R

2 is cohomologous to the zero map.

This proposition follows by Lemma 2.4.4 and Proposition 2.4.3.

Proof of Theorem 2.4.1 Take a 2-hypergraph K . To every pair A, σ of a vertex and
an edge such that A /∈ σ assign a variable xA,σ . For every {R, R′} ∈ K ∗ denote by
bR,R′ ∈ Z2 the value of the extension to K ∗ by zeroes of the intersection cocycle for
K (1) described in Example 1.5.4. For every such pairs (A, σ ) and {R, R′} let

aA,σ,R,R′ =
{
1 either (R � A and R′ ⊃ σ ) or (R′ � A and R ⊃ σ )

0 otherwise
.

For every pair {R, R′} ∈ K ∗ consider the linear equation
∑

A/∈σ aA,σ,R,R′xA,σ = bR,R′
over Z2. By Theorem 2.4.2 and Proposition 2.4.5 planarity of K is equivalent to
solvability of this system of equations. This can be checked in polynomial time. ��
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2.4.2 Intersections with Signs for 2-Hypergraphs

Let K be a 2-hypergraph and f : K (1) → R
2 a general position PL map. Orient the

edges and faces of K , i.e. choose some cyclic orderings on the subsets that are edges
and faces. Assign to every ordered pair

• (σ, τ ) of non-adjacent edges the algebraic intersection number f σ · f τ (defined
in Sect. 1.5.4).

• (A, R) or (R, A) of a vertex A and a face R �� A minus the winding number
− f A · f (∂R) of f (∂R) around A (defined in Sect. 2.3.1).

Denote by K̃ the set of ordered pairs (R1, R2) of disjoint subsets R1, R2 ∈ V �E�F
such that |R1| + |R2| = 4. The obtained map · : K̃ → Z is called the integral
intersection cocycle of f for K (and for given orientations).

For oriented 2-element set AB denote [AB : B] = 1 and [AB : A] = −1. For
oriented 3-element set ABC denote [ABC : BA] = [ABC : CB] = [ABC : AC] =
1 and [ABC : AB] = [ABC : BC] = [ABC : CA] = −1. For other oriented sets
R, R′ ∈ V � E � F define [R : R′] = 0.

By Proposition 2.2.1.b for any disjoint edge σ and face R we have

∑

A∈σ

[σ : A]( f (∂R) · f A) =
∑

τ⊂R

[R : τ ]( f σ · f τ).

Analogue of Proposition 1.5.6 is true for the integral intersection cocycle for 2-
hypergraph, with the following definition. Let K be a 2-hypergraph whose edges
and faces are oriented, and A a vertex which is not the end of an edge σ . An elemen-
tary super-symmetric coboundary of the pair (A, σ ) is the map δK (A, σ ) : K̃ → Z

that assigns

−[τ : A] to (σ, τ ), [τ : A] to (τ, σ ) and [R : σ ] both to (A, R) and (R, A).

In other words,

δK (A, σ )(R1, R2) := [R1 : A][R2 : σ ] + (−1)(|R1|−1)(|R2|−1)[R2 : A][R1 : σ ].

Proposition 2.4.6 Under the Reidemeister move in Fig. 6.V the integer intersection
cocycle changes by adding δK (A, σ ).

Maps ν1, ν2 : K̃ → Z are called super-symmetrically cohomologous if

ν1 − ν2 = m1δK (A1, σ1) + · · · + mkδK (Ak, σk)

for some vertices A1, . . . , Ak , edges σ1, . . . , σk and integer numbersm1, . . . ,mk (not
necessarily distinct).

The integral analogues of Lemma2.4.4 andProposition 2.4.5 are correct, cf. Lemma
1.5.12.
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Proposition 2.4.7 (cf. Propositions 1.5.13, 2.4.11) For any 2-hypergraph K twice the
integral intersection cocycle of any general position PL map K (1) → R

2 is super-
symmetrically cohomologous to the zero map.

This follows by the integral analogue of Lemma 2.4.4 and the analogue of Assertion
1.5.10.c for 2-hypergraphs.

2.4.3 Elementary Formulation of the Özaydin Theorem

Let K = (V , F) be a 2-hypergraph and f : K (1) → R
2 a general position PL map.

Denote by E the set of edges. Orient the edges and faces of K , i.e. choose some cyclic
orderings on the subsets that are edges and faces. Denote by Kr the set of ordered
r -tuples (R1, . . . , Rr ) of pairwise disjoint sets from V � E � F such that either

(A) two of the sets R1, . . . , Rr are edges and the other are faces, or
(B) one of the sets R1, . . . , Rr is a vertex and the other are faces.13

Clearly,

• if |V | < 3r − 2, then Kr = ∅.
• (�2

3r−3)
r is the set of ordered partitions of [3r − 2] into r non-empty subsets,

every subset having at most 3 elements.

The r -fold intersection cocycle of f for K (and for given orientations) is amap Kr →
Z that assigns to r -tuple (R1, . . . , Rr ) the number f R1 · . . . · f Rr or − f R1 · . . . · f Rr

in cases (A) or (B) above, respectively.14

Super-symmetric r -fold elementary coboundary and cohomology are defined analo-
gously to the case r = 2 considered in Sect. 2.4.2. The r -fold analogue of Lemma
2.4.4 is correct with a similar proof.

Remark 2.4.8 It would be interesting to know if the r -fold analogue of Proposition
2.4.5 is correct.

A map Kr → Z is called (super-symmetrically cohomologically) trivial if it is
super-symmetrically cohomologous to the zero map.

Proofs of the Topological Tverberg Theorem in the plane 2.3.2 (mentioned after the
statement) show that if r is a prime power, then for the complete 2-hypergraph K =
�2

3r−3 the r -fold intersection cocycle of every general position PL map K (1) → R
2 is

non-trivial.

Remark 2.4.9 The number from Problem 2.3.7 is the sum of some values of the three-
fold intersection cocycle (with certain coefficients).

13 This is the d(r − 1)-skeleton of the simplicial r -fold deleted product of K . Cf. [Skopenkov 2018a,
Sect. 1.4].
14 This agrees up to sign with the definition of [Mabillard and Wagner 2015, Lemma 41.b] because by
[Mabillard and Wagner 2015, (13) in p. 17] ε2,2,...,2,0 is even and ε2,2,...,2,1,1 is odd.

The r -fold intersection cocycle depends on an arbitrary choice of orientations, but the triviality condition
defined below does not.
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Theorem 2.4.10 (Özaydin) If r is not a prime power, then for every 2-hypergraph K
the r-fold intersection cocycle of any general position PL map K (1) → R

2 is trivial.

This is implied by the following Proposition 2.4.11.b because when r is not a prime
power, the numbers r !/pαr ,p , for all primes p < r , have no common multiple. Here

αr ,p = ∑∞
k=1

⌊
r

pk

⌋
is the power of p in the prime factorisation of r !.

Proposition 2.4.11 (cf. Proposition 2.4.7) Let K be a 2-hypergraph and f : K (1) →
R
2 a general position PL map.

(a) Threefold intersection cocycle of f multiplied by 3 is trivial.
(b) If r is not a power of a prime p, then the r-fold intersection cocycle of f multiplied

by r !/pαr ,p is trivial.

Part (a) is a special case of part (b) for r = p + 1 = 3.
The usual formof theÖzaydin Theorem [Skopenkov 2018a, Theorem3.3] states the

existence of certain equivariant maps. Theorem 2.4.10 is equivalent to that statement
because the r -fold intersection cocycle equals to the obstruction cocycle [Mabillard
and Wagner 2015, Lemma 41.b] which is a complete obstruction to the existence
of certain equivariant map [Mabillard and Wagner 2015, Theorem 40]. Analogously
Proposition 2.4.11 is equivalent to the corresponding intermediate result from the
proof of the ‘usual’ Özaydin Theorem. See simplified exposition in survey [Skopenkov
2018a, Sect. 3.2].

It would be interesting to obtain a direct proof of Proposition 2.4.11, cf. the above
direct proofs of Propositions 1.5.13 and 2.4.7.

3 Conclusion: Higher-Dimensional Generalizations

3.1 Radon, Tverberg and van Kampen–Flores Theorems

Theorem 3.1.1 (Radon, cf. Theorem 2.1.1) For every integer d > 0 any d + 2 points
in R

d can be decomposed into two groups such that the convex hulls of the groups
intersect.

Theorem 3.1.2 (Linear van Kampen–Flores, cf. Proposition 1.1.1.a) For every integer
k > 0 from any 2k+3 points inR2k one can choose two disjoint (k+1)-tuples whose
convex hulls intersect.

This implies linear non-realizability in R2k of the complete (k + 1)-homogeneous
hypergraph on 2k + 3 vertices.

Theorem 3.1.3 (Tverberg, see proof in [Matoušek 2008]; cf. Theorem 2.1.5)For every
integers d, r > 0 any (d+1)(r −1)+1 points inRd can be decomposed into r groups
such that all the r convex hulls of the groups have a common point.

Here the number (d + 1)(r − 1)+ 1 could be remembered by remembering simple
examples showing that this number is the least possible [Matoušek 2008, Excercise 2
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to Sect. 6.4]. Analogous remark holds for Theorems 3.1.1, 3.1.2, 3.1.5, 3.1.6 and (the
proved case when r is a power of a prime) of Conjecture 3.1.7.

Conjecture 3.1.4 (Linear r -fold vanKampen–Flores) For every integers k, r > 0 from
any (r−1)(kr+2)+1 points inRkr one can choose r pairwise disjoint (k(r−1)+1)-
tuples whose r convex hulls have a common point.

This is true for a prime power r [Volovikov 1996b] and is an open problem for
other r [Frick 2017, beginning of Sect. 2].

Here the number (r − 1)(kr + 2) + 1 could be remembered by remembering the
following simple examples showing that this number is the least possible. Take in
R
kr the vertices of a kr -dimensional simplex and its center. Either take every of these

kr+2 points with multiplicity r−1 or for every point take close r−1 points in general
position. We obtain (r − 1)(kr + 2) points in Rkr such that for any r pairwise disjoint
(k(r − 1) + 1)-tuples all the r convex hulls of the tuples do not have a common point.

Denote by �N the N -dimensional simplex.

Theorem 3.1.5 (Topological Radon theorem, [Bajmóczy and Bárány 1979], cf. The-
orem 2.2.2) For any continuous map �d+1 → R

d there are two disjoint faces whose
images intersect.

Theorem 3.1.6 (van Kampen–Flores, cf. Theorem 1.4.1) For any continuous map
�2k+2 → R

2k there are two disjoint k-dimensional faces whose images intersect.

This implies non-realizability in R2k of the complete (k + 1)-homogeneous hyper-
graph on 2k + 3 vertices.

The Topological Radon and the van Kampen–Flores Theorems 3.1.5 and 3.1.6 gen-
eralize Radon and the Linear van Kampen–Flores Theorems 3.1.1 and 3.1.2. These
results are nice in themselves, and are also interesting because they are corollaries
of the celebrated Borsuk–Ulam Theorem (see e.g. [Skopenkov 2018a, Sect. 2.1]),
of which the topological Radon Theorem 3.1.5 is also a simplicial version. The PL
(piecewise-linear) versions of the Topological Radon and the Linear van Kampen–
Flores Theorems 3.1.5 and 3.1.6 are as interesting and non-trivial as the stated
topological versions, see Remark 3.3.1.

The above results have ‘quantitative version’ analogous to Propositions 1.1.1.b and
2.1.2, Lemmas 1.4.3 and 2.2.3, see e.g. [Skopenkov 2018a, Sect. 4]. For direct proofs
of some implications between these results see [Skopenkov 2018a, Sect. 4].

Conjecture 3.1.7 (topological Tverberg conjecture) For every integers r , d and any
continuous map f : �(d+1)(r−1) → R

d there are pairwise disjoint faces σ1, . . . , σr ⊂
�(d+1)(r−1) such that f σ1 ∩ · · · ∩ f σr �= ∅.

This conjecture generalizes both the Tverberg and the topological Radon Theorems
3.1.3 and 3.1.5. This conjecture is true for a prime power r [Bárány et al. 1981,Özaydin
2019, Volovikov 1996a], is false for r not a prime power and d ≥ 2r + 1 by Remark
3.3.1.a and Theorem 3.3.3.a below, and is an open problem for r not a prime power
and d ≤ 2r (e.g. for d = 2 and r = 6).
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Conjecture 3.1.8 (r -fold vanKampen–Flores) For every integers r , k > 0 and any con-
tinuous map f : �(kr+2)(r−1) → R

kr there are pairwise disjoint k(r −1)-dimensional
faces σ1, . . . , σr ⊂ �(kr+2)(r−1) such that f σ1 ∩ · · · ∩ f σr �= ∅.

This is true for a prime power r [Sarkaria 1991], [Volovikov 1996b, Corollary in
Sect. 1], is false for r not a prime power and k ≥ 2 by Theorem 3.3.3.a below, and is
an open problem for r not a prime power and k = 1.

The arguments for results of this subsection form a beautiful and fruitful interplay
between combinatorics, algebra, geometry and topology. Recall that more motivation,
detailed description of references and proofs can found in the surveys mentioned in
the ‘historical notes’ of the Introduction.

3.2 Realizablity of Higher-Dimensional Hypergraphs

Definition of a k-hypergraph is recalled in Sect. 2.4.1. The body |K | of a hypergraph
K = (V , F) is the union of faces corresponding to F of a simplex with the set of
verticesV . Embeddability (linear, PLor topological) of a hypergraph intoRd is defined
as the existence of an injective (linear, PL or continuous) map of its body into Rd . For
d = k = 2 this is equivalent to the definition of Sect. 2.4.1.

Every k-hypergraph linearly (and then PL and topologically) embeds intoR2k+1. Here
the number 2k+1 is the least possible: for any k there is a k-hypergraph topologically
(and then PL and linearly) non-embeddable into R2k . As an example one can take

• the complete (k + 1)-hypergraph on 2k + 3 vertices, or the k-skeleton of the
(2k + 2)-simplex (by the van Kampen–Flores Theorem 3.1.6; this hypergraph is
K5 for k = 1),

• the (k + 1)-th join power of the three-point set (see a short proof in [Skopenkov
2008, Sect. 5], [Skopenkov 2019, Sect. 5.8.4 ‘Topological non-realizability of
hypergraphs’]; this hypergraph is K3,3 for k = 1),

• the k-th power of a non-planar graph (conjectured by Menger in 1929, proved in
[Ummel 1978, Skopenkov 2003], see exposition in [Skopenkov 2014]).

Theorem 3.2.1 (a) (cf. Proposition 1.1.3) For every fixed d, k there is an algorithm
for recognizing the linear embeddability of k-hypergraphs in Rd .

(b) (cf. Proposition 1.2.2 and Theorem 2.4.1) For every fixed d, k such that d ≥
3k+3
2 there is a polynomial algorithm for recognizing the PL embeddability of

k-hypergraphs in Rd .
(c) [Matoušek et al. 2018] There is a polynomial algorithm for recognizing the PL

embeddability of 2-hypergraphs in R3.

In [Čadek et al. 2019, text after Theorem1.4], [Skopenkov andTancer 2017, Sect. 1]
it is explained that part (b) follows from [Čadek et al. 2019, Theorem 1.1] and the
Weber ‘configuration spaces’ embeddability criterion (stated there or in the survey
[Skopenkov 2008, Sect. 8]).

The assumption of part (b) is fulfilled when d = 2k ≥ 6. The idea of proof for
d = 2k ≥ 6 generalizes proof Proposition 1.2.2.b, see Sect. 1.5 and [Skopenkov 2019,
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Sect. 5.6 ‘An algorithm for recognition realizability of hypergraphs’]. Proof of (b) for
the general case is more complicated.

Conjecture 3.2.2 For every fixed d, k such that 3 ≤ d ≤ 3k
2 + 1 the algorithmic

problem of recognizing linear embeddability of k-hypergraphs into Rd is NP hard.15

Theorem 3.2.3 (a) For every fixed d, k such that 3 ≤ d ≤ 3k
2 + 1 the algorithmic

problem of recognizing PL embeddability of k-hypergraphs into R
d is N P-hard

[de Mesmay et al. 2019, Matoušek et al. 2011].
(b) For every fixed d, k such that either 4 ≤ k ∈ {d − 1, d} or 8 ≤ d ≤ 3k+1

2 there is
no algorithm recognizing PL embeddability of k-hypergraphs into R

d .

See a simpler exposition of part (a) for d ≥ 4 in [Skopenkov and Tancer 2017]
(where also a generalization was proved). Part (b) for 5 ≤ d ∈ {k, k+1} is deduced in
[Matoušek et al. 2011, Theorem 1.1] from the Novikov theorem on unrecognizability
of the sphere, and for 8 ≤ d ≤ 3k+1

2 is announced in [Filakovsky et al. 2019]. I hope
that β-invariant of [Skopenkov 2007] could be used to extend part (b) to d = 3k

2 + 1.
For a ‘3- and 2-dimensional explanation’ of ideas of proof see Proposition 1.1.2,

[Skopenkov 2018c, Proposition 1.6.1] and [Skopenkov 2019, Sect. 5.6 ‘An algorithm
for recognition realizability of hypergraphs’].

The following table summarizes the above results on the algorithmic problem of
recognizing PL embeddability of k-hypergraphs into Rd (+ = always embeddable, P
= polynomial-time solvable, D = algorithmically decidable, NPh = NP-hard, UD =
algorithmically undecidable).

k\ d 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P + + + + + + + + + + + +
2 P D,NPh NPh + + + + + + + + + +
3 D,NPh NPh NPh P + + + + + + + +
4 NPh UD NPh NPh P + + + + + +
5 UD UD NPh UD P P + + + +
6 UD UD UD UD NPh P P + +
7 UD UD UD UD UD P P P

15 Here N P-hardness means that using a devise which solves this problem EMBED(k,d) at 1 step, we can
construct an algorithm which is polynomial in n and which recognizes if a boolean function of n variables
is identical zero, the function given as a disjunction of some conjunctions of variables or their negations
(e.g. f (x1, x2, x3, x4) = x1x2x3 ∨ x2x3x4 ∨ x1x2x4). M. Tancer suggests that it is plausible to approach
the conjecture the same way as in [Matoušek et al. 2011, Skopenkov and Tancer 2017]. Namely, one can
possibly triangulate the gadgets in advance and glue them together so that the ‘embeddable gadgets’ would
be linearly embeddable with respect to the prescribed triangulations. By using the same triangulation on
gadgets of same type, one can achieve polynomial size triangulation. Realization of this idea should be
non-trivial.
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3.3 Algorithmic Recognition of Almost Realizablity of Hypergraphs

A (continuous, or PL) map f : K → R
d from a hypergraph K is an almost r -

embedding if f σ1 ∩ · · · ∩ f σr = ∅ whenever σ1, . . . , σr are pairwise disjoint faces
of K .

Remark 3.3.1 (a) In this language the Topological Tverberg Conjecture 3.1.7 and the
r -fold van Kampen–Flores Conjecture 3.1.8 state that

(T Tr ,d ) for every integers r , d there are no almost r -embeddings �(d+1)(r−1) →
R
d .
(V K Fr ,k) for every integers r , k there are no almost r -embeddings of the union of

k(r − 1)-faces of �(kr+2)(r−1) in Rkr .
We have (T Tr ,kr+1) ⇒ (V K Fr ,k). This was proved in [Gromov 2010, 2.9.c] and

implicitly rediscovered in [Blagojević et al. 2014, Lemma 4.1.iii and 4.2], [Frick
2015, proof of Theorem 4]; see survey [Skopenkov 2018a, Constraint Lemma 1.8 and
Historical Remark 1.10].

(b) The notion of an almost 2-embedding implicitly appeared in studies realizabil-
ity of graphs and hypergraphs (Theorems 1.4.1, 3.1.6 and 3.2.1.b). It was explicitly
formulated in the Freedman–Krushkal–Teichner work on the van Kampen obstruction
[Freedman et al. 1994].

(c) Any sufficiently small perturbation of an almost r -embedding is again an almost
r -embedding. So the existence of a continuous almost r -embedding is equivalent to
the existence of a PL almost r -embedding, and to the existence of a general position
PL almost r -embedding. Cf. [Skopenkov 2020, Approximation Lemma 1.4.6].

See more introduction in [Skopenkov 2018a, Sect. 1.2].

Problem 3.3.2 Which 2-hypergraphs admit a PL map to R
2 without triple points?

Which 2-hypergraphs are almost 3-embeddable in R
2? Are there algorithms for

checking the above properties of 2-hypergraphs? Same questions for R2 replaced
by R

3, or for ‘triple’ and ‘almost 3-embeddable’ replaced by ‘r -tuple’ and ‘almost
r -embeddable’.16

Theorem 3.3.3 If r is not a prime power, then

(a) for any k ≥ 2 there is an almost r-embedding of any k(r − 1)-hypergraph in Rkr

[Mabillard and Wagner 2015, Avvakumov et al. 2019b],

(b) there is an almost r-embedding of any s-hypergraph in R
s+

⌈ s+3
r

⌉
[Avvakumov

et al. 2019a].

Part (a) follows from Theorems 3.3.5 and 3.3.6 below.

Theorem 3.3.4 ([Mabillard and Wagner 2016, Avvakumov et al. 2019b, Skopenkov
2017a, Skopenkov 2017b]) For every fixed k, d, r such that either rd ≥ (r + 1)k + 3
or d = 2r = k + 2 �= 4 there is a polynomial algorithm for checking PL almost
r-embeddability of k-hypergraphs in Rd .

16 Analogous problems formaps fromgraphs to the line are investigated in studies of cutwidth, see [Thilikos
et al. 2005, Lin and Yang 2004, Khoroshavkina 2019] and references therein.
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Fig. 10 A 3-fold point and its 3-intersection sign

For (r − 1)d = rk Theorem 3.3.4 was deduced in [Mabillard and Wagner 2015,
Avvakumov et al. 2019b] from Theorem 3.3.5 below.

For a version of Theorem 3.2.3.b with ‘embeddability’ replaced by ‘almost 2-
embeddability’ see [Skopenkov and Tancer 2017].

We shall state the Özaydin Theorem [Özaydin 2019] (generalizing the Özaydin
Theorem in the plane 2.4.10) in the simplified form of Theorem 3.3.6 below. This
is different from the standard form [Skopenkov 2018a, Theorem 3.3] but is equiva-
lent to the standard form by a proposition of Mabillard–Wagner [Skopenkov 2018a,
Proposition 3.4]. For the statement we need the following definitions.

Let K be a k(r − 1)-hypergraph for some k ≥ 1, r ≥ 2, and f : K → R
kr a PL

map in general position.
Then preimages y1, . . . , yr ∈ K of any r -fold point y ∈ R

kr (i.e. of a point having
r preimages) lie in the interiors of k(r − 1)-dimensional simplices of K . Choose
arbitrarily an orientation for each of the k(r − 1)-simplices. By general position, f is
affine on a neighborhood Uj of y j for each j = 1, . . . , r . Take a positive basis of k
vectors in the oriented normal space to oriented f U j . The r -intersection sign of y is
the sign ±1 of the basis in Rkr formed by r such k-bases. See Figs. 3 and 10.

This is classical for r = 2, see Sect. 1.3, and is analogous for r ≥ 3, cf. Sect. 2.3.3,
[Mabillard and Wagner 2015, Sect. 2.2].

We call the map f a Z-almost r -embedding if f σ1 · . . . · f σr = 0 whenever
σ1, . . . , σr are pairwise disjoint simplices of K . Here the algebraic r -intersection
number f σ1 · . . . · f σr ∈ Z is defined as the sum of the r -intersection signs of all
r -fold points y ∈ f σ1 ∩ · · · ∩ f σr . The sign of f σ1 · . . . · f σr depends on an arbitrary
choice of orientations for each σi and on the order of σ1, . . . , σr , but the condition
f σ1 · . . . · f σr = 0 does not. See Fig. 4 for r = 2.
Clearly, an almost r -embedding is a Z-almost r -embedding.

Theorem 3.3.5 ([Mabillard andWagner 2015, Avvakumov et al. 2019b]; cf. Theorems
1.5.3 and 2.4.2) If k ≥ 2, k+r ≥ 5 and there is aZ-almost r-embedding of a k(r −1)-
hypergraph K in Rkr , then there is an almost r-embedding of K in Rkr .
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Theorem 3.3.6 (cf. [Avvakumov et al. 2019a, Theorem 4], [Avvakumov and Karasev
2019, Theorem 5.1]) If r is not a prime power and k ≥ 2, then there is a Z-almost
r-embedding of any k(r − 1)-hypergraph in R

kr .
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