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Abstract
The main result of the paper is the formula that calculates the dispersion of the asymp-
totic Hopf invariant of a magnetic field. The paper contain examples, which describe
magnetic fields in a conductive medium.

1 Introduction

The main result of the paper is the formula that calculates the dispersion of the asymp-
totic Hopf invariant of a magnetic field. The paper contain examples, which describe
magnetic fields in a conductive medium. The basic equations and the problem can be
found in [4]. A new application assumes that the Fourier spectra of magnetic fields
are random. This assumption is analogous to the hydrodynamic turbulence introduced
by A.N.Kolmogorov, see [5]. The situation with magnetohydrodynamic turbulence is
more complicated and Arnold’s asymptotic ergodic Hopf invariant is very important.
The asymptotic Hopf invariant is called the magnetic helicity; this magnetic helicity is
denoted by χB. The definition of the magnetic helicity is in [4], we recall it in formula
(5). Basic constructions for magnetohydrodynamic turbulence are in [6]. Example 4,
Sect. 5 illustrates the importance of magnetic helicity.

Magnetic lines have a complicated geometry. A distribution function of asymptotic
linking numbers is said to be random. The approach by V. I. Arnold shows that the
helicity is the mean value of the distribution of asymptotic linking numbers of mag-
netic lines. Dispersions of the distribution are interesting. Dispersions of asymptotic
numbers of magnetic lines are called the quadratic helicities. In the paper, we inves-
tigate one of the two dispersions, which is denoted by χ

[2]
B , with the spectral density,
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which is denoted by χ [2]. A new Example 5 is analogous to Example 4, this example
illustrates the importance of the quadraticmagnetic helicity formagnetohydrodynamic
turbulence.

This paper is dedicated to our school teacher Rafail Kalmanovich Gordin, who
works in the Moscow Mathematical School. The authors are grateful to Parusnikova
for discussions and to the reviewer for remarks. Work of Akhmet’ev was supported in
part by RFBR GFEN_a 19-52-53045. Work of Vyugin was supported by the Russian
Science Foundation Grant 18-41-05003.

2 The Arnold’s Asymptotic Hopf Invariant and Its Random
Distribution

Let us recall the definition of the asymptotic linking number of a pair of trajectories
like you can see in [4], Ch. III. LetB be a divergent-free (magnetic) field in 3D domain
� ⊂ R

3. We assume that B is tangent to the boundary ∂� and has no zeros. Denote
by gt : � → � the phase flow of B.

Definition 1 1) The linking number lkB(x1, x2; T ) is defined as follows:

lkB(x1, x2; T ) = 1
4π

∫ T

0

∫ T

0

(γ̇1, γ̇2, γ1 − γ2)

||γ2 − γ1||3 dt1dt2, γ̇i (ti ) = B(gti (xi )), i = 1, 2

(1)
of two segments γ1 = gt1(x1), t1 ∈ [0, T ], γ2 = gt2(x2), t2 ∈ [0, T ] and starting
points x1, x2 ∈ �.

2) The asymptotic linking number λB(x1, x2) of a pair of trajectories gt (x1), gt (x2)
is defined as the limit

λB(x1, x2) = lim
T→+∞

lkB(x1, x2; T )

T 2 . (2)

The linking number lkB(x1, x2; T ) can be expressed as follows:

lkB(x1, x2; T ) =
∫ T

0

∫ T

0
G(x1(t1), x2(t2))dt1dt2, γ̇i (ti ) = B(gti (xi )), i = 1, 2,

(3)
where the integral in formula (3) is called the Gauss integral. If trajectories γ1, γ2
are parametrized by closed circles of the unit length, then limit (1) coincides with the
linking number of these two circles, which is a topological invariant.

Let us denote the points gti (xi ) by xi (ti ), i = 1, 2. In the right-hand side of formula
(3) by

G(x1(t1), x2(t2)) = 1

4π

(γ̇1, γ̇2, γ1 − γ2)

||γ2 − γ1||3 (4)

is denoted the kernel of the Gauss integral. The denotation G(x1, x2) = (B(x1),
A(x2; x1)), where
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A(x2; x1) = 1

4π

B(x2) × (x1 − x2)

||x1 − x2||3

is the Biot–Savart potential. It will be used below in formula (10).
Let us consider the subset of such points (x1, x2) in � × � that λB(x1, x2) is well

defined. If the trajectory issued from x1 contains the point x2, the function λB(x1, x2)
is not defined. The domain of λB is a measurable subset in�×�. The ergodic theorem
implies that the function λB : � × � → R is well defined almost everywhere, and
belongs to the space L1. This follows from the fact that the function (1) belongs to L1.

A dimension of λB is G2 · cm−2. This means that the transformation B �→ lB,
x �→ mx, x ∈ R

3 determines the transformation λB �→ l2m−2λB of the asymptotic
linking number. In the CGS system, magnetic field is measured in Gaussian units G.
The average self-linking number

χB =
∫ ∫

λB(x1, x2)d�d� (5)

of a magnetic field B in � is called the asymptotic Hopf invariant or the helicity. We
mean that the integral (5) is a Lebesgue integral over domain �×� by 6-dimensional
Lebesgue measure. The helicity (5) is a lower bound of the magnetic energy by the
Arnold’s inequality (see [4] Sect. 3, Theorem 1.4). For a divergence-free vector field
(a magnetic field) B, ∫

�

(B(x),B(x))dV ≥ C |χB|, (6)

where C is a positive constant dependent on the shape and size of the compact domain
� with a magnetic field. In the right-hand side of formula (6), we have the invariant of
volume-preserved transformation of the domain. In the left-hand side of the formula,
we have the magnetic energy. The inequality proves that the absolute value of the
magnetic helicity χB determines a lower bound of the magnetic energy. Example 4
for magnetohydrodynamic turbulence is an analogous one.

In [3] (the bottom remark in Example 5.2) is mentioned that the function m(λ0),
defined as the measure of the set {(x1, x2) ∈ � × �|λB(x1, x2) < λ0}, is the much
stronger invariant of volume-preserved transformations than the helicity. A lower
bound of the magnetic energy, which is calculated using this distribution function,
is more sharp than the bound, which is calculated using the magnetic helicity χB in
the Arnold’s inequality.

The functionm(λ0) is a distribution function of asymptotic linking numbers. Using
ergodic theorem for the function G(x1, x2) with respect to the flow gt1 × gt2 in �×�

one may say only that m(λ0) admits a mean value: the helicity. But, what to do
if dispersion of this distribution is well-defined? We give a positive answer to this
question.

3 Quadratic Helicity: A Local Formula

Formally, the dispersion of the asymptotic self-linking number λB(x1, x2) is defined
by the integral:
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202 P. M. Akhmet’ev, I. V. Vyugin

DλB =
∫∫

(λB(x1, x2) − χB

Vol(�)
)2 d�d�, (7)

where Vol(�) is the volume of the domain �, χB
Vol(�)

is the average value of the
linking numbers of magnetic line in �. Obviously, (7) is equivalent to the integral

DλB =
∫∫

λ2B(x1, x2) d�d� − χ2
B. (8)

The quadratic helicity χ
[2]
B is defined as the first term of the integral (8):

χ
[2]
B = 2

∫∫
λ2B(x1, x2) d�d� = mx1,x2 [λ2B(x1, x2)]. (9)

In [2], it is proved that χ [2]
B (a dimension of χ

[2]
B is G4cm2) is well defined (this fact is

easy: we know that λB is integrable by ergodic theorem, but we have to prove that the
integral of the square λ2B of this measurable function is finite). Also, in this paper, an

inequality between χB and χ
[2]
B is proved. The goal of this section is a generalization a

local formula from [1] for the quadratic helicity χ(2) (see Sect. 4 for a brief definition
and [2] for definition) for χ [2].

Let us recall definition of δ
[2]
B , which is called (a component of) the magnetic

correlation tensor:

δ
[2]
B (x1, x2) = G2(x1, x2) = (B(x1),A(x2; x1))2 = (A(x1; x2),B(x2))

2, (10)

whereA(x; y) is the Biot–Savart potential as in formula (1), see [4] Ch 3 Paragraph 4;
G2(x1, x2) is the square of the Gaussian kernel. Let us recall that (B(x1),A(x2; x1))
is the kernel G(x1, x2) of the Gauss integral (4). The inequality

χ
[2]
B ≤

∫∫
δ
[2]
B d�d� (11)

is proved in [2]. This proof follows from the fact that the function δ
[2]
B (x1, x2) is

integrable over � × �.
The correlation tensor

G2(B1(x1),B2(x2)) = (B1(x1),A2(x2; x1))2 = (A1(x1; x2),B2(x2))
2

for a pair B1, B2 of magnetic fields is not integrable over � × �, because the formal
asymptotic of G2(B1(x1),B2(x2)) 	 ||x1 − x2||−4, when x1 → x2.

For an arbitrary function E(x1, x2) which is singular, when x1 → x2, we define
the symmetrization Esim(x1, x2) = 1

2 [E(x1, x2) + E(x2, x1)].
Theorem 1 With assumptions below,


 (1) B is smooth in � everywhere, except points on the boundary ∂� of the
domain;
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 (2) the function G(x1, x2), x1 ∈ l1, x2 ∈ l2 in � × �\diag (the kernel of the
Gauss integral) contains a Fourier spectrum with wavenumbers k in a finite interval
{0} ∪ [	′;	], 0 < 	′ << 	 < +∞;

the following equation is satisfied:

χ
[2]
B = lim

a→+∞

∞∑
s=0

(−a)smx1,x2

⎡
⎢⎣

⎡
⎣ ∑
i, j;i+ j=s

1

i ! j !
∂ i

∂t i1

∂ j

∂t j2
G(B(x1(t1)),B(x2(t2)))

⎤
⎦
sim

⎤
⎥⎦
2

.

(12)

Remark 2 1. Obviously, the main term of formula (12) for i = 0, j = 0 is given by∫∫
G2(x1, x2)d�d�. In formula (12), the parameter a has the dimension G−1cm;

with this assumption, all terms in formula (12) have the dimension G4cm2.
2. In formula (12), there are three operations: symmetrization (on each partial

derivative), squaring and average mx1,x2 over the phase space. These operations are
not commuted, in particular, in the case we take the average before the squaring, we
get the quadratic helicity χ(2) instead of χ [2], see Sect. 4.

Proposition 3 Terms

⎡
⎢⎣

⎡
⎣ ∑
i, j;i+ j=s

1

i ! j !
∂ i

∂t i1

∂ j

∂t j2
G(B(x1(t1)),B(x2(t2)))

⎤
⎦
sim

⎤
⎥⎦
2

, (13)

which are defined as symmetrizations of corresponding terms in the right-hand side
of formula (12) belong to the space L2(� × �).

3.1 Proof of Proposition 3

When x1 �→ x2, the kernel of integral (1) becomes singular, but correlation tensor (12)
is absolutely integrable. After we take derivatives, as in (12), the integrability of terms
is not obvious. Let us prove that the symmetrization of terms keeps the integrability.

Take expression (13) for s = 0. When x1 �→ x2, the function G(B(x1),B(x2)) has
the formal asymptotic ||x1 − x2||−2 and the asymptotic ||x1 − x2||−1. As the result,
[G(B(x1),B(x2))]2 converges (with no symmetrization). To pass to the next step, we
take the term [ ∂

∂t1
+ ∂

∂t2
]G(B(x1),B(x2)), which has the formal asymptotic ||x1−x2||−3

and the asymptotic ||x1 − x2||−2 before the symmetrization. After symmetrization,
we get the formal asymptotic ||x1 − x2||−2 and the asymptotic ||x1 − x2||−1.

A meaning of the calculation above is as follows. The magnetic flow gt1+dt (x1),
gt2+dt (x2) of a pair of closed points x1(t1), x2(t2) keeps the asymptotic of the correlator
G(x1, x2). This gives the induction for the estimation of terms in (12). 
�
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204 P. M. Akhmet’ev, I. V. Vyugin

3.1.1 Proof of Theorem 1

Take an ordered marked pair of magnetic lines l1, l2. Take the natural measure dt1dt2
on l1 × l2, where t1, t2 are magnetic parameters, see Definition 1. Then the bottom
term i = 0, j = 0 in (12), restricted to the standard [0, T ] × [0, T ]-segments in the
Cartesian product l1 × l2, coincides with the integral (1).

Integral (12) is a family of asymptotic integrals over pairs ofmagnetic lines. Take the
Cartesian product�×�×[0, T ]2 and define a small parameter δ and a large parameter
T as follows. Consider a subspace [�×�×[0, T ]2]δ,T ⊂ �×�×[0,+∞]2, which
consists of all pairs of magnetic T -lines with δ-disjoin in � × �. Take the limit
δ → +0, T → +∞. Formula (9) is an asymptotic integral over�×�×[0,+∞]2 of
the kernel G(x1, x2), which is extended to this Cartesian product as G(x1(t1), x2(t2)).
By the ergodic theorem, formula (9) for a subset [� × � × [0, T ]2]δ,T tends to χ [2]
in the limit.

Consider the Fourier basis ℵ in � × �\diag, as in Condition 
 (2). This basis is
extended to the Cartesian product [(� × �\diag) × [0, T ]2]. Restrict this basis to the
subspace [�×�×[0, T ]2]δ,T ⊂ [(�×�\diag)×[0, T ]2], and denote the restriction
byℵT . Take another basisℵT

0 in [�×�×[0, T ]2]δ,T , which is the tensor product of the
basis ℵwith the standard Fourier basis over the plane [0, T ]2. Take the decomposition
ofG(x1(t1), x2(t2)) in ℵT

0 . We cut this decomposition to the segment k ∈ [0,	] of the
wavenumbers with fixed upper bound 	. When (the exterior limit) 	 → +∞, we get
the total decomposition. By this assumption, the function G(x1(t1), x2(t2)) satisfies
the analogous Condition 
 (2) in ℵT

0 .
Definemx1,x2 [. . . ] as the integration of a function, which depends on x1, t1, x2, t2 ∈

[� × � × [0, T ]2]δ,T , over all points x1(t1), x2(t2) with prescribed t1, t2.
A preliminary formula (12) is the following:

χ
[2]
B = T−2

∫∫
[0,+T ]×[0,+T ]

lim
a→+∞

∞∑
s=0

(−a)s

s! mx1,x2

[(
∂

∂t1
+ ∂

∂t2

)s [G(x1(t1), x2(t2))]
]2

dt1dt2.
(14)

The main term in the right-hand side of formula (14) is

T−2
∫∫

[0,+T ]×[0,+T ]
mx1,x2 [G2(x1(t1), x2(t2))]dt1dt2. (15)

The function G2(x1(t1), x2(t2)) is absolutely integrable in the largest space [�×�×
[0, T ]2]. The limit of integrals over [� × � × [0, T ]2]δ,T , δ → +0, convergences
uniformly and absolutely. The limit of integral (15) coincides with the main term in
(12); this limit does not depend on T .

Consider a pair of magnetic lines l1, l2 of the length T , which are issued from fixed
points x1 = x1(0), x2 = x2(0). To prove (14) we assume that the Fourier spectrum of
G(t1, t2), (t1, t2) ∈ [0,+T ]2 is of the form:

G(t1, t2) = λ0 + λ sin(αt1 + θ1) sin(βt2 + θ2), (16)
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α, β ∈ R; θ0, θ1 ∈ [0, π ] are shifts of the coordinate from the starting points
x1(0), x2(0) along the magnetic lines l1, l2. Then formula (14) for these two magnetic
lines is (the only terms with non-zero mean values alongmagnetic the pair of magnetic
lines are presented):

T−2
∫∫ [

λ20 + λ2

4
+ λ2

4
(exp2(−∞) − exp2(0))

]
dt1dt2.

The formula for the quadratic helicity is

∫∫
λ2B(x1, x2)d�d� = χ

[2]
B ,

where λB = λ0(x1, x2) is the mean value of the main term in (16), which depends only
on a pair of starting points of magnetic lines (l1, l2). This proves preliminary formula
(14) in a particular case. A general case assuming the Fourier basis contains only a
finite number of harmonics that follow from linearity, orthogonality of harmonics, and
the fact that the limit a → +∞ commutes with the Fourier integral. 
�

The following calculation will be used in Sect. 5. Let us prove that the term s = 1
with first-order partial derivatives ∂G(x1(t1),x2(t2))

∂t1
, ∂G(x1(t1),x2(t2))

∂t2
are simplified.

We get

∂G̃(t1, t2)

∂t1
= ∂ 〈B(x1(t1)),B(x2(t2)), x1(t1) − x2(t2)〉

∂t1
= 〈∇B1B1(t1),B2(t2), x1 − x2

〉
,

G̃(x1(t1), x2(t2)) = ||x1 − x2||3G(x1(t1), x2(t2)). because
∂x1
∂t1

= B1(t1). For
∂Ĝ(t1,t2)

∂t2
the formula is analogous.

4 Cubic Helicities

All helicities in this section are invariants for the group of volume-preserved diffeo-
morphisms of domains with magnetic fields. There exists three quadratic magnetic
helicities χ

(2)
B G4cm5; χ

[2]
B G4cm2; χ2

B, G
4cm8. Only χ

(2)
B , χ

[2]
B determine second

momenta (dispersions) of the asymptotic self-linking number, the square of the helic-
ity χ2

B is the second momentum, which is the square of the first-order momentum. The

quadratic magnetic helicity χ
(2)
B , certainly, is deduced from the distribution function

of Arnold’s asymptotic ergodic Hopf invariant. The same time the helicity χ
(2)
B is

interesting by itself, this is the L2-norm of the ”‘Field line helicity”’ (see [8]).
There exist eight different third-order momenta of the asymptotic self-linking num-

ber, which are called the cubic magnetic helicities, let us list them and indicate
dimensions. The following diagram explains how to define the corresponding cubic
helicity as a sum of corresponding products of three pairwise linking coefficients
(denoted by − − −) for a collection of magnetic lines (denoted by 
).
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χ3
B G6cm12 
 − − 
 
 − − 
 
 − − 


χ
(2)
B χB G6cm9 
 − − 
 − − 
 
 − −


χ(3,1) G6cm8 
 − − 
 − − 

|



χ(3,2) G6cm8 
 − − 
 − − 
 − − 


χ
[2]
B χB G6cm6 
 == 
 
 − − 


χ((3,1)) G6cm3 
 == 
 − −


χ(3,2) G6cm3 
 − −

� �




χ [3] G6 
 ≡≡ 


4.1 Explanations

χ3
B is the cube of the magnetic helicity; χ(2)

B χB is the product of the quadratic magnetic

helicity and the magnetic helicity; χ
[2]
B χB is the product of the quadratic momentum

of magnetic helicity and the magnetic helicity; χ [3] is the cubic momentum of the
magnetic helicity, which is analogous to χ

[2]
B . The difference between χ [3] and χ

[2]
B

is as follows: for χ [3], the correlation tensor is unlimited. Only five cubic helicities
determine independent third-order momenta of the asymptotic self-linking number;
the cubic helicities χ3

B, χ
(2)
B χB, χ

[2]
B χB are functions of quadratic helicity and helicity;

they are central momenta of independent cubic helicities.
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Let us consider an arbitrary connected graph with n edges (multiple edges are
admissible, edges from a vertex to itself are not admissible), graphs for n = 3 are on
the picture. The correlation tensor of a momenta of magnetic helicity is well defined
for the corresponding graph. Assume a graph satisfies the following property: for an
arbitrary k vertexes, there are strongly less than 3k − 3 edges between them. In this
case, the correlation tensor is limited. In particular, the graph for χ [3] has 2 vertexes
and 3 edges. The inequality (2 − 1)3 < 3 is not satisfied and the correlation tensor
is unlimited. In the case k = 6, consider the graph with the only edge between an
arbitrary pair of vertexes. Then the number of edges is 15 and 3(k − 1) = 15; for this
graph, the correlation tensor is unlimited.

4.1.1 Problem

Estimate the asymptotic of independent n-momenta of the helicity (of the Arnold’s
asymptotic linkingnumber), andn-momenta forwhich the correlation tensor is limited,
n → +∞.

5 The Spectrum of Magnetic Fields

By the spectrum of magnetic fields, we mean the following expression:

B(x) =
∫
k
B(k) exp(ik · x)dk, (17)

where k · B(k) = 0 (B is divergent free), B(−k) = B∗(k) (B corresponds to a real
solution), and ∗ is the complex conjugation. In formula (17) B, we also assume that
random amplitudes ||B(x)|| of elementary harmonics B(k) satisfy the power low:
||B(x)|| ∼ k−α (for short: kB ∼ k−α), where α is a real parameter.

For the turbulence with no magnetic fields the definition can be found in [5], the
MHD turbulence is analogous (and more complicated). The goal is to explain a basic
exercise “helicity is a lower bound of magnetic energy”, Example 4 [compare with the
Arnold inequality (6)]. An analogous exercise, Example 5, is defined with quadratic
magnetic helicity instead of magnetic helicity. A question with such a generalization
was formulated by D.Sokoloff.

Example 4 Assume kB ∼ k−α . Recall A is the vector-potential for B: rotA = B. In
the case B is a proper vector of the operator rot , one gets A = k−1B, where k is the
proper value of B. Then we get kA ∼ k−α−1. We get k(A,B) ∼ k−2α−1. We assume
that for a fundamental domain vol(�) = 1. We get k

∫
(A,B)d� ∼ k−2α−1. The

helicity integral is uniformly distributed over the k-line in the case α = −1
2 .

This example can be interpreted in the following way: the distribution of the linking
number ofmagnetic lines in� does not depend on a scale when α = −1

2 . Themagnetic
energy U = ∫

B2d� (dimension is G2cm3) in this case is distributed over the k-line
as ∼ k−2α = k. The spectrum admits an upper bound |k| ≤ 	, because the magnetic
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208 P. M. Akhmet’ev, I. V. Vyugin

energy is finite. Assume that the magnetic helicity χB is sufficiently large, then the
magnetic energy has to be large, and the upper bound of the spectrum has to be
sufficiently large.

To formulate a new example, let us considered Example 4 from the point of view
of Gaussian kernel G in (1). With assumptions of Example 4, we get the follow-
ing k1 × k2 × (x1, x2)-distribution, x1 ∈ �, x2 ∈ R

3, of the kernel G(x1, x2) =
(B1(x1),A2(x2; x1)):

k1×k2×(x1x2)(B1(x1),A2(x2; x1)) ∼ .k−2α+2.

Passing to the average over (x1, x2), using vol(�) = 1, we get a distribution

k1×k2mx1,x2 [(B1(x1),A2(x2; x1))] ∼ k−2α−1.

This gives the distribution of the helicity integral over the k-line: kχB ∼ k−2α−1,
k = |k1| = |k2| as above.
Example 5 A distribution of the integral kernelG2(x1, x2) of the main term in formula
(12) is well defined over the Cartesian product k1 ×k2 ×k′

1 ×k′
2. Proper vectors give

contribution to G2(x1, x2) only with its square, this gives k1 × k2-distribution. With
assumptions of Example 4, we get the following distribution of the kernel

G2(x1, x2) = (B1(x1),A2(x2; x1))

at a prescribed point (x1, x2) ∈ � × R
3:

k1×k2×(x1,x2)G
2(x1, x2) ∼ k−4α+4.

After the average of the distribution over x2, we get the following k1×k2-distribution:

k1×k2δ
[2](B1,B2) ∼ k−4α+1.

This describes the distribution

kδ
[2](B1,B2) ∼ k−4α+1

of the main term in (12), where k is the module of the vector k1 × k2.
Let us describe distribution (12). We have to take two collections of random vec-

tors {Bk1,a ;Bk1,1 , . . . ,Bk1,i } {Bk2,a ,Bk2,1 , . . . ,Bk2, j } in the spectrum. This collections

determine random distribution of the term δ[2](B(i)
1 ,B( j)

2 ), i + j = s on the right-hand
side of formula (12).

B(i)
1 (k1,a,k1,1, . . . ,k1,i ) = ∇Bk1,i

. . . ∇Bk1,1
Bk1,a ,

B( j)
2 (k2,a,k2,1, . . . ,k2, j ) = ∇Bk2, j

. . . ∇Bk2,1
Bk2,a .
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In the case i = 0, j = 0, we get the distribution above for B1 = B1,a , B2 = B2,a .
For s = 1 (we consider one of the two similar distributions with i = 1, j = 0),

using calculations from the last part of Sect. 2, we get

kδ
[2](B(1)

1 ,B2) ∼k δ[2](B1,a,B2,a)sin2(θ)C,

where θ is a random angle on the unit sphere between vectorsB1,1 andB1,a , a positive
constant C is dimensionless, g(θ) is the mean value of a distribution g(θ).

By induction for s ≥ 2 (we assume that i ≥ 1 to get an inductive step i − 1 �→ i),
we get

kδ
[2](B(i)

1 ,B( j)
2 ) ∼

kδ
[2](B1,B2)| sin(θ1,1)|2 . . .

| sin(θ1,i−1)|2 sin2(θ1,i ) | sin(θ2,1)|2 . . . | sin(θ2, j )|22s−1Cs,

(18)

where θ1,1, . . . θ1,i , θ2,i , . . . , θ2, j are latitudes on the coordinate unit sphere, pointed
by the vectors B1,1, . . . ,B1,i with B1,a , and by B2,1, . . . ,B2, j with B2,a . The angles
have a common distribution and the convolution of (18) is distributed as

∼k δ[2](B1,B2)
sin2(θ)

2(| sin(θ)|)2C
s .

The value of expression (12) is distributed as 1
3 of the main term (this follows from

the formulas:
∫
S2 sin

2(θ)dS2 = 1
3

∫
S2 dS

2;
∫
S2 | sin(θ)|dS2 = 1

2

∫
S2 dS

2). After we
pass to the k-line, terms in (12) are distributed as the main term by the formula:

kχ
[2]
B ∼ k−4α+1. (19)

The uniform distribution for χ
[2]
B is in the case α = 1

4 .
An elementary magnetic vector in (17) admits the complex and the real component.

As the result, for a given k we get two magnetic harmonics with positive (right) and
negative (left) helicity. Assume that the contribution of left and right harmonics for
all k in (17) is opposite. Then Example 4 gives us no estimate of the magnetic energy
from above, because χB = 0. The quadratic helicity is an invariant of ideal MHD;
assume its value is sufficiently large. In this case, the lower bound of the spectra can
be estimated.

Cut-out wave vectors with 	′||k|| < 	, 	 >> 1, 0 < 	′ << 1. The interior limit
a → +∞, a >> 	, and the exterior limit 	 → +∞, 	′ → 0+ are defined as the
two variables’ limits.
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6 Applications

Assume that a mean velocity field in a liquid conductive domain ū(t) is given, in this
case, the dynamo mean field equation is following:

rot(ηrotB̄) − rot(ū × B̄ + E) + ∂B̄
∂t = 0,

E = αB̄ − βrot(B̄, div(B̄) = 0.
(20)

We assume for simplicity that η = 0, α > 0, β > 0. Assume that the magnetic
helicity of B̄ is uniformly distributed over thewavenumbers in the interval δ1−δ0 = 	,
0 < δ0 << 1. We get χ(k)(t) = χ(t), χB̄(t) = 	χ(t):

dχB̄(t)

dt
= α	χB̄(t) − 2β	2

3
χB̄(t). (21)

Assume that the magnetic helicity spectrum of B̄[2] is trivial, more precisely, we
assume that the right and left harmonics have a common distribution, such that the
quadratic helicity spectrum is uniformly distributed over the wavenumbers in the
interval δ1 − δ0 = 	, 0 < δ0 << 1 with the denominator α = − 1

4 . Then by
dimensional reasons, we get

UB̄[2] =
√

χ
[2]
B̄[2]	

−2. (22)

Generalized formula (22) is as follows:

dχB̄(t)

dt
= 2α

√
χ

[2]
B̄[2]	

−2. (23)

The β-term is trivial, because the current helicity is trivial. We give no assumption
about the density χ(2) of the quadratic helicity χ

(2)
B[2] (see [1] and Sect. 4) for the

magnetic field B[2].

Appendix by the First Author: 40 Years Ago

Rafail Kalmanovich remembers the following theorem [7].

Theorem 6 Assume we get in the plane congruent copies of a given figure �, which is
homeomorphic to the standard segment, and which does not contain a small segment
or a small circle arc. The number of the pairwise disjoint figures can be more than
countable if and only if one of the following two conditions is satisfied:


 (A) there exists a point O and a positive number ε, such that all the figures
Rϕ
O(�) (Rϕ

O are denoted the rotation with the fixed point O though the angle ϕ),
where 0 < ϕ < ε are pairwise disjoint;


 (B) there exists a parallel translation A such that all the figures (λA)(�), where
0 < λ < 1 are pairwise disjoint.
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As an illustration of the theorem, onemay take an ellipse E = {(x, y)| x2
a2

+ y2

b2
= 1},

a, b > 0, a �= b. Then let us consider the intersection E with the half-plane x ≥ −ε,
where ε > 0 is a small number, ε << a, b. Onemay prove that the conditions (A), (B)

are satisfied. Then a set of pairwise disjoint copies of E is not more than countable.
Rafail Kalmanovich explained me a much more interesting example concerning

my theorem.

Example 7 Let � be the union of the graphics f (x) = x2, g(x) = ax2, a > 1, and
x ∈ [0, x0]. Then � satisfies the statement of Theorem 6 (the number of the pairwise

disjoint figures can be greater then countable) iff 0 < x0 ≤
√
a−1√
2a

.

In publication [7], the assumption that the figure � does not contain a segment or
an arc is missed, but this condition is required in a proof. The situation is similar to
Theorem 1. In Theorem 6, the extra assumption is also required for the proof. In both
theorems, the additional assumptions give restrictions for applications.
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