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Abstract
We investigate the connection between the instability of rationalmaps and summability
methods applied to the spectrumof a critical point belonging to the Julia set of a rational
map.

Keywords Holomorphic Dynamics · Rational maps · Summability methods

1 Motivation andMain Results

Let Ratd be the space of all rational maps R of degree d > 0 defined on the Riemann
sphere C̄. LetCrit(R) be the set of critical points of R. For c ∈ Crit(R), the individual
postcritical set is:

Pc(R) =
⋃

n>0

Rn(c).
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The postcritical set of R is:

P(R) =
⋃

c∈Crit(R)

Pc(R).

The Julia set J (R) is the accumulation set of all repelling periodic cycles. A rational
map R is called hyperbolic if the postcritical set does not intersect the Julia set.

The Fatou conjecture states that hyperbolic rational maps of degree d form an open
and dense subset of Ratd . A rational map R ∈ Ratd is called structurally stable if
there exists a neighborhood U of R in Ratd , such that for every Q in U , there is a
quasiconformal conjugation between R and Q. A theorem of Mañé, Sad, and Sullivan
shows that the set of structurally stable maps forms an open and dense subset of Ratd
(see [18]). Hence, the Fatou conjecture can be reformulated in the following way.

If R ∈ Ratd has a critical point c in the Julia set J (R), then R is not structurally
stable or, equivalently, is an unstable map.

Recall that a critical point c of a rational map R is called summable if the series∑∞
n=0

1
(Rn)′(R(c)) is absolutely convergent.

Among other results, Avila [1], Levin [11], andMakienko [16] proved the following
statement.

Theorem 1.1 If c ∈ J (R) is a summable critical point with non-zero sum, then R is
not J -stable, whenever Pc(R) �= C.

The condition
∑∞

n=0
1

(Rn)′(R(c)) = 0 is a special case which requires additional
considerations (see again [1,11,12,16] and comparewith the discussion in Section 3.1).
However, in [12], it was shown that, with additional conditions on the postcritical set,
among all critical points in J (R) with absolutely convergent series

∑∞
n=0

1
(Rn)′(R(c)) ,

there is at least one critical point with
∑∞

n=0
1

(Rn)′(R(c)) �= 0.
In this paper, we go alongwith the approach initiated byAvila, Levin, andMakienko

to the cases where the series
∑

n≥0
1

(Rn)′(R(c)) is absolutely divergent, but has radius of
convergence at least 1 with respect to the Nörlund–Voronoi summability method (see
definitions and discussion below). Also, we present a class of measures defining direc-
tions in the tangent space of Ratd at R which are not generated by a quasiconformal
deformation of R.

Given a point a, we call the sequence:

σ(a) = {σn(a)} =
{

1

(Rn)′(R(a))

}∞

n=0

the spectrum of a.
To avoid technicalities, in this article, we always assume that:

• the rational map R fixes 0,1 and ∞;
• there are no critical relations;
• the individual postcritical sets under discussion are bounded.
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On Nörlund–Voronoi Summability and Instability of Rational Maps 525

For example, if there are no critical relations and Pc(R) does not contains all fixed
points of R, then a suitable rotation of R satisfies our assumption. However, in many
cases, our arguments do not need all of these restrictions.

Let c be a critical point for R. Let us consider the following trichotomy:

Trichotomy (1) The sequence σn(c) converges to ∞.
(2) There is a subsequence {ni }, such that σni (c) converges to 0.
(3) The number lim infn |σn(c)| is neither 0 nor ∞.

Let us comment on the trichotomy above.

• Conjecturally, the case (1) of the trichotomy should imply that the critical point
c belongs to the Fatou set. For example, let R be an unimodal polynomial
whose critical point c has spectrum σ(c) with bounded multiplicative oscilla-

tion (sup
∣∣∣σn+1(c)

σn(c)

∣∣∣ < ∞). Then, c belongs to the Fatou set by Mañé’s theorem (see

[17]).
• Theorem 1.1 deals with the case (2) for σ(c) ∈ �1 (see [1,11,12,16]).
• In case (3), assume σ(c) ∈ �∞, and then, σ(c) has bounded multiplicative oscil-
lation. If, for instance, R is unimodal, again by Mañé’s theorem, the map R is
parabolic and, hence, is not structurally stable.

Where �1 and �∞ are, as usual, the Banach spaces of absolutely summable and
bounded sequences, respectively.

The following proposition and its subsequent corollaries are the main motivations
to consider the trichotomy above.

Proposition 1.2 Let R be a stable rational map in the complex one-parameter family
Rλ = R + λ and c be a critical point on the Julia set J (R) with bounded individual
postcritical set Pc(R). Consider the partial sums Sn = ∑n

i=0σi (c). Then, for all n, we
have:

|Sn| ≤ C |σn(c)|,

for some constant C .

The proof is contained in Lemma 5 in [16] (see also Avila [1]). The quadratic
polynomial case was also noted by Levin in [11]. However, the proof is elementary
and we include it in the next section for the sake of completeness.

Corollary 1.3 Let R be a rational map and c be a critical point on the Julia set J (R)

with bounded Pc(R). Each of the following criteria implies that the map R is unstable
in the family Rλ = R + λ, for λ ∈ C.

• In case (2) of the trichotomy, a subsequence σni (c) converges to 0 and satisfies
lim sup |Sni | > 0.

• In case (3) of the trichotomy, a subsequence σni (c) converges to a non-zero finite
limit but lim sup |Sni | = ∞.
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Corollary 1.4 Let R be a rational map, such that R′ ≥ 0 on Pc(R) for a critical point
c ∈ J (R) with σ(c) satisfying either one of the conditions (2) or (3) in the trichotomy,
then R is unstable in the family Rλ = R + λ, for λ ∈ C.

The following theorem generalizes Corollary 1.4.

Theorem 1.5 Let R be a rational map. Assume there exists a point x ∈ J (R), such
that R′(z) ≥ 0 for z ∈ ⋃∞

n=1{Rn(x)} and satisfying the following conditions

(1) The set
⋃∞

n=1{Rn(x)} is bounded and does not intersect the set of critical points
of R.

(2) R(x) has non-negative lower Lyapunov exponent.
(3) σ(x) /∈ �1.

Then, R is unstable in the family Rλ = R + λ, for λ ∈ C.

Even more, if x is a critical point, then condition (3) is redundant.

This theorem will be proved after Theorem 4.4. Theorem 1.5 leads to the following
question.

Does there exists a rational map R such that σ(x) ∈ �1 for Lebesgue almost every
point of J (R)?

It seems that the non-negative condition of R′ on Pc(R) is extremal and rare within
rational dynamics. However, there are many examples of critical circle maps conju-
gated to rational maps satisfying this condition. Here, a critical circle map is a map
which leaves the circle invariant with a critical point in the circle. For entire or mero-
morphic maps, there are simple maps holding this condition. For example, consider
λez

2+c, whereλ and c are real numberswithλ > 0,which have non-negative derivative
on the orbit of 0.

In the next section, we will give a family of examples of rational maps with real
coefficients and non-negative derivative on an individual postcritical set Pc(R). Thus,
Corollary 1.4 produces new examples of unstable real rational maps, compare with
the class of real rational maps discussed by Shen in [23].

The following corollary is the main motivation for the constructions in the present
work. To study the spectrum σ(c) of a critical point c, we will consider the Abel
averages Aλ = (1−λ)

∑∞
n=0 σn(c)λn . Recall that a sequence {an} is Abel convergent

to L , which is allowed to be infinity, whenever Aλ = (1 − λ)
∑∞

n=0 anλ
n is finite for

λ < 1 and:

lim
λ→1

Aλ = L.

Corollary 1.6 Let R be a rational map and c be a critical point, such that σn(c) = o(n).
Suppose further that the individual postcritical set Pc(R) is bounded. Ifσ(c) is not Abel
convergent to 0, then R is an unstable map in the one-parameter family Rλ = R + λ.

Let us note that if a sequence {an} converges, then the sequence of Abel averages
converges to the same limit. The reciprocal fails to be true.Many unbounded sequences
are Abel convergent.
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On Nörlund–Voronoi Summability and Instability of Rational Maps 527

According to results by Bruin and van Strien [4] and, independently, by Rivera-
Letelier [22], the Julia set J (R) has Lebesguemeasure 0 whenever J (R) contains only
critical points c satisfying σ(c) ∈ �1. Besides, examples given by Buff and Cheritat
[5] and by Avila and Lyubich [2] of quadratic polynomials with Julia set of positive
measure show that there are rational maps R with a critical point c ∈ J (R) with
σ(c) /∈ �1. Perhaps, σ(c) is not in �1 for every infinitely renormalizable unimodal
map. The referee kindly pointed out that σ(c) /∈ �1 for every Feigenbaum quadratic
polynomial.

If J (R) contains several critical points and one of them, say c, has σ(c) ∈ �1, then
R is unstable whenever Pc(R) satisfies additional restrictions (see Avila [1], Levin
[11,12], and Makienko [16]).

To formulate our main results, we need the following construction.

Voronoi measures. First, we discuss some weak conditions on the behavior of σ(c),
for c ∈ J (R), which include many instances of the cases (1), (2), and (3) of the
trichotomy above. To do so, we consider averaged sequences of the spectrum, that
is, the Nörlund–Voronoi averages. The construction of such averages uses the so-
called Nörlund summability method which was first published by Voronoi in 1902.
An English version of Voronoi’s work can be found at [24].

Fix a sequence of non-negative real numbers qn ≥ 0, such that q0 > 0 and
limn

qn
Qn

= 0, where Qn = q0 + · · · + qn are the partial sums. For a sequence of
complex numbers {xn}, the values

tn = qnx0 + qn−1x1 + · · · + q0xn
Qn

are called the Nörlund averages with respect to the sequence {qn}.
If

lim sup n
√|tn| ≤ 1,

then we say that {xn} is Nörlund regular, or N-regular for short.
Indeed, given a sequence {an}, the number lim inf 1

n√|an | is the radius of convergence
of the power series

∑∞
n=0 anz

n . In what follows, we will call the number lim inf 1
n√|an |

the radius of convergence of the sequence {an}.
A convenient way to think about the Nörlund method is to regard the sequence {qn}

as a linear operator N : � → �, where� is the linear space of all complex sequences,
and N is the infinite matrix with coordinates Nm,n = qm−n

Qm
for n ≤ m and Nm,n = 0

for n > m. We call N the Nörlund matrix associated to {qn}. Hence, a sequence {xn}
is N -regular if and only if N ({xn}) has radius of convergence at least 1.

It is known (see, for example, [3]) that N defines a continuous linear endomorphism
of �∞. If C ⊂ � is the subspace of all convergent sequences, then N (C) ⊂ C and,
furthermore, limn xn = limn tn , for {xn} ∈ C.

The next lemma is not difficult to prove and appears as Lemma 3.3.10 in [3].

Lemma 1.7 Let N be the Nörlund matrix associated with {qn} and {xn} be a Nörlund
regular sequence. Then, the following properties hold.

(1) The series q(λ) = ∑∞
n=0 qnλ

n and Q(λ) = ∑∞
n=0 Qnλ

n converge for |λ| < 1.
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(2) The series x(λ) = ∑∞
n=0 xnλ

n converges in a neighborhood of 0.
(3) The convolution series

[CN ({xn})](λ) =
∞∑

n=0

(
n∑

i=0

qi xn−i

)
λn =

∞∑

n=0

tnQnλ
n

converges for |λ| < 1.

According to the lemma above, if {xn} is N -regular, then from the relations

[CN ({xn})](λ) = x(λ)q(λ)

and q0 �= 0, we conclude two facts. First, that the radius of convergence of {xn} is
non-zero and x(λ) can be continued to a meromorphic function X(λ) on the unit disk.
Second, as q(λ) has non-negative Taylor coefficients, there are no zeros on the interval
[0, 1), and so, the poles of X(λ) lay outside [0, 1).

Reciprocally, if the sequence {xn} has non-zero radius of convergence and x(λ) =∑∞
n=0 xnλ

n can be extended to a meromorphic function X(λ) = ψ(λ)
φ(λ)

, such that φ

and ψ are holomorphic and φ has non-negative Taylor coefficients with φ(0) > 0.
Then, the Taylor coefficients of φ define a Nörlund operator N , such that {xn} is an
N -regular sequence. For instance, if {xn} itself has radius of convergence at least 1,
then the choice q0 = 1 and qn = 0 for all n > 0 gives the identity matrix as a Nörlund
matrix or, equivalently, tn = xn .

Another example of a Nörlund matrix is when qn = 1 for every n. Then, the Nör-
lund averages of {xn} becomes the Cesàro averages. Indeed, the Nörlund averages
are a generalization of both iterated Cesàro and Abel averages for suitable sequences
{qn}. Moreover, Cesàro and Abel convergent sequences have non-zero radius of con-
vergence. In our situation, the spectrum σ(c) has non-zero radius of convergence if
and only if the lower Lyapunov exponent of R(c) is bounded below. In fact, we believe
that the following conjecture holds true.

Conjecture For every rational map R, such that J (R) has positive Lebesgue measure,
there exists a critical value v ∈ J (R) with finite lower Lyapunov exponent.

In [21], Przytycki proved that the Lyapunov exponents are non-negative for almost
every point of J (R)with respect to any finite invariant measure supported on the Julia
set. In the case of unimodal polynomials, Levin, Przytycki, and Shen [13] showed that
the radius of convergence of the spectrum σ(c) is always at least 1 whenever c belongs
to the Julia set. Moreover, they proved the stronger statement that the spectrum σ(z)
has radius of convergence at least 1 not only for z = c but for Lebesgue almost every
point z of the Julia set J (R).

On the other hand, let us note that geometrically divergent sequences are not Nör-
lund regular. In particular, for a structurally stable R, if σ(c) is Nörlund regular, then
c ∈ J (R).

Given the data:

(1) A sequence of points {zn} ⊂ C.
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(2) A Nörlund matrix associated with a sequence {qn}.
(3) A sequence {xn} such that N ({|xn|}) = {tn} has radius of convergence at least 1.
We associate the measure:

νλ = (1 − λ)

∞∑

n=0

Tnλ
n,

where Tn = qnx0δz0 + qn−1x1δz1 + · · · + q0xnδzn . Then, by Part (3) of Lemma 1.7,
the measures νλ form an analytic family of finite measures over the open unit disk.

Definition 1.8 Given a regular sequence {xn}, we call a finite complex-valuedmeasure
ν a Voronoi measure with respect to N and the sequence {zn} if there exists a complex
sequence {λn} with λn → 1 (and |λn| < 1), such that the sequence νλn‖νλn ‖ converges
to ν in the ∗-weak topology; here, ‖νλn‖ denotes the total variation of νλn . In other
words, the complex projective classes [νλn ] converge to the complex projective class
[ν], whenever ν �= 0. If {xn} = σ(c) and zn = Rn(R(c)) for a suitable critical point
c ∈ J (R), then we call ν a Voronoi measure associated with c.

Let us mention that, in [11], complex projective classes of related measures were
discussed.

Note that the support of a Voronoi measure associated with c belongs to the indi-
vidual postcritical set Pc(R).

Voronoi measures always exist for every regular sequence {xn} and every sequence
of points {zn}. However, a Voronoi measure may not be uniquely determined by fixing
either one of the sequences {xn} or {zn}.

Fix {xn} and {zn}, according to the Consistence Theorem (see Theorem 17 in page
65 of the Hardy’s book [9]), if, for two given Nörlund matrices N and N ′, the Nörlund
averages {tn} and {t ′n} of {xn} converge then lim tn = lim t ′n . Assume that N and N ′
send the sequence {xnφ(zn)} to convergent sequences, for every φ ∈ C(

⋃{zn}) the
space of continuous functions on

⋃∞
n=0{zn}. Then, by the Consistence Theorem, the

set of Voronoi measures for N coincides with the set of Voronoi measures for N ′.
Since there are Abel convergent sequences that are not Cesàro convergent, then it

is possible that different Nörlund matrices have different sets of Voronoi measures.
Now, fix a Nörlund matrix N , a regular N -sequence {xn} and a sequence of points

{zn}, then the correspondence φ → {φ(zn)}, for φ ∈ C(
⋃∞

n=0{zn}), is a continuous
linear operator T : C(

⋃∞
n=0{zn}) → �∞. Hence, the family of measures ωλ = νλ‖νλ‖

induces a family of functionals Lλ(T (φ)) = ∫
φ dωλ which extends to an analytic

uniformly bounded family of functionals on �∞. Using arguments from functional
analysis, we have the following observation.

Lemma 1.9 Let {xn} be an N-regular sequence for the identity matrix N. Let Lλ be
the functionals on �∞ constructed above; assume that the ∗-weak accumulation set of
Lλ is a single-point set, and then {xn} ∈ �1, for λ → 1 and |λ| < 1,

For convenience of the reader, we prove this lemma in the following section.
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FromLemma 1.9, even in the simplest case, the accumulation set of {ωλ}, regarding
each ωλ as a functional in �∞, is not unique whenever the sequence {xn} /∈ �1.

For instance, it is possible that there exists a bounded sequence {xn}, such that the

function given by φ(λ) =
∑∞

n=0 xnλ
n

∑∞
n=0 |xnλn | is not continuous at 1 from the interior of the unit

disk. Then, the set of Voronoi measures for {xn} has more than one point regardless
of the choice of the sequence {zn}.

Nevertheless, it is possible to show that the space of all Voronoi measures, which
are of Mergelyan type (see definition below), associated with a critical point c ∈ J (R)

with bounded individual postcritical set, is finitely dimensional.
We call a finite complex-valued measure μ a Mergelyan type measure, or an M-

measure for short, when its Cauchy transform fμ(z) = ∫
C

dμ(t)
t−z is not identically 0

outside the support of μ.
For K ⊂ C compact, let C(K ) be the space of continuous functions on K and

Rat(K ) be the space of rational functions restricted to K with poles outside of K . If
Rat(K ) is dense in C(K ) with respect to uniform convergence, then any complex-
valued finite measure supported on K is an M-measure. When either m(K ) = 0 or
inf{diam(W ) : W component of C\K } > 0, by classical results, we get Rat(K ) =
C(K ). For a more deep treatment of the theory, see, for example, the book by Gamelin
[7].

As a consequence, if R is a map with a completely invariant Fatou component, then
every finite complex-valued non-zero measure supported on J (R) is an M-measure.
In particular, this is the case when R is a polynomial.

Now, we are ready to formulate our first main theorem.

Theorem 1.10 Suppose that for a critical point c ∈ J (R), with bounded Pc(R), the
sequence {|σn(c)|} is N-regular for a Nörlund matrix N. If a Voronoi measure ν

associated with c is an M-measure, then R is unstable.

The following theoremdealswith the situationwhen the sequence ofmeasures {νλi }
converges to zero in the ∗-weak topology for a suitable sequence λi → 1. However, as
in the case discussed by Avila, Levin, and Makienko, we need additional restrictions
on the individual postcritical set. We say that a critical point c and the individual
postcritical set Pc(R) are separated by the Fatou set if there exists a Jordan curve in
F(R) separating c and Pc(R).

Theorem 1.11 Under the conditions of Theorem 1.10, assume that λi is a sequence
of real numbers with λi < 1 and λi → 1 for which νλi is ∗-weakly convergent to 0.
Then, R is unstable whenever c and Pc(R) are separated by the Fatou set.

The separation condition is stronger than non-recurrence of critical points and is
void for connected Julia sets. However, for disconnected Julia sets, the two conditions
are closely related. For instance, if J (R) is a Cantor set, then every non-recurrent
critical point in J (R) satisfies the separation condition.

Also, if the Fatou set F(R) contains a completely invariant component and J (R)

is disconnected, then generically J (R) contains uncountably many wandering single-
point components. If a non-recurrent critical point c is one of those wandering single-
point components, then c also satisfies the separation condition.
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On the other hand, if a critical point c belongs to a preperiodic (non-periodic) non
single-point component, then c satisfies the separation condition. This happens, for
example, when c belongs to the boundary of a preperiodic but not periodic Fatou
component.

Finally, let us note that, in general, if there is no completely invariant component
but there is an infinitely connected Fatou component, then the set of buried points
contains uncountably many single-point components. Then, again, if a non-recurrent
critical point c is a buried single-point component of J (R), then also the separation
condition holds.

Nevertheless, the separation condition applies to a single critical point regardless
of the behavior of other critical points.

Let us note that Theorem 1.11 is complementary to Theorem 1.10 in the sense that
if {xn} ∈ �∞, then ‖νλ‖ = O(‖xn‖∞) for real λ and the assumption that all Voronoi
measures are null implies that νλ → 0 for λ → 1 in the ∗-weak topology. However,
it is possible that νλ converges to 0 even when there are non-zero Voronoi measures;
for instance, consider a sequence {xn} ∈ �1.

Among other facts, in [16], it was established that if c ∈ J (R) is non-recurrent and
the series

∑∞
n=0 σn(c) is absolutely convergent, then R is unstable. However, it is yet

unclear whether a structurally stable map may have a critical point c ∈ J (R) with
σ(c) ∈ �∞.

As a consequence of the previous theorem, we answer this question positively
by replacing the non-recurrent condition by a separation condition on the individual
postcritical set Pc. Recall that a sequence {xn} ∈ �∞ is Abel summable to L (maybe
∞) whenever the limit

lim
λ→1

∞∑

n=0

λnxn

for λ < 1 exists and is equal to L.

Theorem 1.12 Let c be a critical point in J (R) with bounded Pc(R) and spectrum
σ(c) ∈ �∞. Then:

(1) The map R is unstable whenever Pc(R) has zero Lebesgue measure and σ(c) is
not Abel summable to 0.

Even more, if c and Pc are separated by the Fatou set, then each of the following
conditions implies that R is unstable.

2. The individual postcritical set Pc(R) has measure 0.
3. The spectrum σ(c) is convergent.

Moreover, the condition that the Lebesguemeasure of Pc(R) is zero can be dropped
in the case of maps with a completely invariant Fatou domain.

2 Preliminary Results

In this section, we prove Proposition 1.2 and Lemma 1.9 together with its corollaries.
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Proof of Proposition 1.2 Given a stable map R in the family Rλ = R + λ for |λ| < 1.
According to Mañé, Sad, and Sullivan [18], there exists a holomorphic family fλ of
quasiconformal automorphisms ofC, such that for ε small enough and λwith |λ| < ε,
we have:

Rλ = fλ ◦ R ◦ f −1
λ .

Let F(z) = ∂ fλ
∂λ

|λ=0(z) be the variation of fλ. Then, F is a continuous function on
C. By a straightforward computation of the variation of Rλ, we obtain:

F(R(z)) − R′(z)F(z) = 1.

Hence, F(R(c)) = 1, and by induction:

F(Rn(R(c))) = (Rn)′(R(c))Sn .

Weend upwith |Sn| ≤ supz∈Pc(R) |F(z)σn(c)|. Since F is bounded on compact subsets
of the plane, we are done. ��

Corollary 1.3 is an immediate consequence of Proposition 1.2. Now, we prove
Corollary 1.4.

Proof of Corollary 1.4 By contradiction, assume that R is structurally stable in {Rλ}. By
assumption, the partial sums Sn = ∑n

i=0 σi (c) satisfy Sn < Sn+1 with lim supn Sn >

0. Suppose that σ(c) satisfies the condition (2) of the trichotomy. Immediately, we
have σ(c) ∈ �1 which contradicts Corollary 1.3. Now, suppose that σ(c) satisfies the
condition (3) of the trichotomy. Since lim infn σn(c) �= 0,∞, then limn→∞Sn = ∞
which again contradicts Corollary 1.3. ��

Now, we briefly describe a large set of rational maps with real coefficients and
non-negative derivative on the individual postcritical set Pc(R) for a suitable critical
point c.

Let f be a real rational function which attains a finite minimumm0 in the extended
real line, and then, f (z) − m0 is non-negative with a zero in the extended real line.
If R(z) is a real primitive of f (z) − m0, then R(z) has a real critical point c and
R′(z) = f (z) − m0 is non-negative on Pc(R). Note that, for γ, τ ∈ PSL(2,R), the
map γ ◦ R ◦ τ also has the desired property. To construct a real rational function f as
above, fix the following data:

(1) A real polynomial of even degree P(z), with positive leading coefficient. Here,
P(z) may be a positive constant.

(2) A finite set {ai } of real points.
(3) A finite set {bi } of positive real numbers.
(4) A finite set {ni } of even integers numbers.
(5) A finite set {ki } of integers greater than 1.
(6) A finite set {di } of real numbers.
(7) A finite set {wi } of non-real complex numbers.
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Then, the function:

f (z) = P(z) +
∑ bi

(z − ai )ni
+

∑
di

(
1

(z − wi )ki
+ 1

(z − wi )ki

)

is the desired real rational function. The set of rational maps for which R′ ≥ 0 on
Pc(R) for a suitable critical point c includes real maps with non-real critical points.

Proof of Corollary 1.6 By contradiction, if R is a stable rational map in the family {Rλ},
then by assumption and Proposition 1.2, there exists a constant C , such that:

|Sn|
n

≤ C

n
|σn(c)|.

As the right-hand side of the latter inequality converges to 0, the Cesàro averages of the
spectrum converge to 0. This implies that the Abel averages of the spectrum converge
to 0, which is a contradiction. ��

We finish the section with the proof of Lemma 1.9.

Proof of Lemma 1.9 Fix an arbitrary sequence of real numbers λi → 1 and λi < 1.

For each i , define the sequence αi = {αi
n} given by αi

n = λni xn∑∞
n=0 |λni xn | , so αi ∈ �1. If

b ∈ �∞ is the sequence {bn}, where:

bn =
{ |xn |

xn
, xn �= 0

0, xn = 0
,

then Lλi (b) = ∑∞
n=0 αi

nbn = 1. Therefore, we identify each functional Lλi with
the sequence αi . Thus, every accumulation point of Lλi in the ∗-weak topology as
functionals on �∞ is a continuous non-zero functional.

By assumption, the sequence Lλi converges to a non-zero functional in the ∗-weak
topology on �∞. That is the same that the sequence {αi } converges in theweak topology
on �1. Since �1 is weakly complete and the weak topology coincides with the strong
topology, the sequence {αi } converges in norm to a non-zero element β = {βn} ∈ �1.
In particular, we have:

lim
i

αi
n = βn .

Let k be such that βk �= 0; then:

lim
i→∞

∞∑

n=0

λni |xn| = xk
βk

.

Since {λi } is arbitrary, we conclude that the limit limλ→1
∑∞

n=0 λn|xn| exists and is
finite; therefore,

∑∞
n=0 |xn| < ∞. ��
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3 Some Background in Dynamics and Poincaré Series

Most of the material in this section can be found in [16] (see also [15]).
A rational map R defines a complex push-forward map on L1(C) with respect to

the Lebesgue measure. This contracting endomorphism is called the complex Ruelle–
Perron–Frobenius, or the Ruelle operator for short. The Ruelle operator is explicitly
given by the formula:

R∗(φ)(z) =
∑

y∈R−1(z)

φ(y)

R′(y)2
=

∑

i

φ(ζi (z))(ζ
′
i (z))

2,

where ζi is any local complete system of branches of the inverse of R. The Beltrami
operator Bel : L∞(C) → L∞(C) given by:

Bel(μ) = μ(R)
R′
R′

is dual to the Ruelle operator acting on L1(C). The fixed point space Fix(B) of the
Beltrami operator is called the space of invariant Beltrami differentials.

Every element μ ∈ L∞(C) defines a continuous function on C via:

Fμ(a) = a(a − 1)
∫

C

μ(z)

z(z − 1)(z − a)
|dz|2,

which is called the normalized potential for μ. By convenience, we write γa(z) =
a(a−1)

z(z−1)(z−a)
, so we get Fμ(a) = ∫

γa(z)μ(z)|dz|2.
The following statement appears as Lemma 5 and Remark 6 in [16].

Lemma 3.1 Let R be a structurally stable rational map. Then, for every critical value
vi , there exists an invariant Beltrami differential μi , such that Fμi (v j ) = δi j , the
Kroenecker delta function.

Now, we present the formal relation of the Poincaré–Ruelle series.

Definition 3.2 The Poincaré–Ruelle series are:

•

Ba(z) =
∞∑

n=0

(R∗)n(γa(z)),

•

Aa(z) =
∞∑

n=0

1

(Rn)′(a)
γRn(a)(z).
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The lemma below gives a formal relation between both Poincaré–Ruelle series. The
proof can be found in Proposition 7 of [16] and further details are contained in [15].

Lemma 3.3 Let R be a rational map with simple critical points ci fixing 0, 1, and ∞.
Set vi = R(ci ) and let a be a value, such that

⋃
n{Rn(a)} does not contains critical

points. Then, we have the following formal relation between the above series:

Ba(z) = Aa(z) +
∑

i

1

R′′(ci )
Aa(ci ) ⊗ Bvi (z); (∗)

where ⊗ is the formal Cauchy product.

Hence, we have (see again Proposition 7 in [16]):

(R∗)n(γa(z)) = 1

(Rn)′(a)
γRn(a)(z) +

∑

i

1

R′′(ci )

[
γRn−1(a)(ci )

(Rn−1)′(a)
γvi (z)

+ γRn−2(a)(ci )

(Rn−2)′(a)
R∗(γvi (z)) + · · · + γa(ci )(R∗)n−1(γvi (z))

]
.

To the formal series Aa(z) and Ba(z) involved in Eq. (*), we associate a formal
Abel series parameterized by the unit disk as follows. For |λ| < 1, write:

Aa(z, λ) =
∞∑

n=0

λn

(Rn)′(a)
γRn(a)(z)

and

Ba(z, λ) =
∞∑

n=0

λn(R∗)n(γa(z)).

We have the following lemma.

Lemma 3.4 Let R be a structurally stable rational map, c ∈ J (R) be a critical point
with bounded Pc(R), and v = R(c). Assume that the spectrum σ(c) has radius of
convergence r > 0, and then for any complex number λ with |λ| < r , we have the
following.

(1) The series Av(z, λ) is absolutely convergent almost everywhere with respect to z
and is an integrable function holomorphic off Pc(R) ∪ {0, 1,∞}.

(2) Let c̃ be a critical point. The numerical series Av(c̃, λ) is absolutely convergent.
(3) The series Ba(z, λ) is absolutely convergent almost everywhereand is an integrable

function for every |λ| < 1 and every a ∈ C.

Furthermore, each of the series above defines a holomorphic function with respect to
λ for |λ| < r .
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Proof By assumption the series
∑

λnσn(c) is absolutely convergent for |λ| < r and
defines a holomorphic function with respect to λ in the disk |λ| < r .

Part (1). As there exists a constant C , such that
∫ |γa(z)||dz|2 ≤ C |a ln |a|| (see,

for example, the books by Gardiner–Lakič [8] and Krushkal [10]), we get:

∫

C

|Av(z, λ)||dz|2 ≤
∑

|λnσn(c)|
∫

C

∣∣γRn(v)(z)
∣∣ |dz|2

≤ C
∑

|λnσn(c)Rn(v) ln |Rn(v)||.

Since Pc(R) is bounded for every |λ| < r , the last expression is absolutely convergent.
Hence, Aν(z, λ) converges in the L1 norm and is a holomorphic integrable function
outside Pc(R) ∪ {0, 1,∞}. By the mean value theorem, the partial sums of the series
Av(z, λ) are uniformly bounded on compact sets outside Pc(R) ∪ {0, 1,∞}. Hence,
the series Aν(z, λ) converges uniformly on compact sets off Pc(R) ∪ {0, 1,∞}.

Part (2). If c̃ /∈ Pc(R), then by Part (1), we are done. Otherwise, we have c̃ ∈ Pc(R).
Given ε > 0, let Uε be the ε neighborhood of c̃. Let ni be such that Rni (v) ∈ Uε . As
in the arguments in Part(1), it is enough to estimate the expression:

∣∣∣∣∣
∑

i

λniσni (c)γRni (v)(c̃)

∣∣∣∣∣ .

Note that for z ∈ Uε , we have R′(z) = (z − c̃)R′′(c̃) + O(|z − c̃|2). Thus, we get:
∣∣∣∣

1

Rni (v) − c̃

∣∣∣∣ ≤
∣∣∣∣
R′′(c̃) + O(|Rni (v) − c̃|)

R′(Rni (v))

∣∣∣∣ ≤ M

∣∣∣∣
1

R′(Rni (v))

∣∣∣∣

and

∣∣γRni (v)(c̃)
∣∣ ≤ M

∣∣∣∣
1

R′(Rni (v))
· R

ni (v)(Rni (v) − 1)

c̃(c̃ − 1)

∣∣∣∣ ≤ M1

∣∣∣∣
1

R′(Rni (v))

∣∣∣∣ ,

where M and M1 are suitable constants depending on ε and c̃. As a result of the
previous computation, we obtain:

∣∣∣∣∣
∑

i

λniσni (c)γRni (v)(c̃)

∣∣∣∣∣ ≤ M1

∑

i

∣∣∣∣
λniσni (c)

R′(Rni (v))

∣∣∣∣

≤ 1

|λ|M1

∑

i

|λni+1σni+1(c)| < ∞,

for 0 < |λ| < r .
Part (3). Since ‖R∗( f )‖L1 ≤ ‖ f ‖L1 holds for any f ∈ L1(C), then for every

|λ| < 1, the series Ba(z, λ) is an integrable function and so converges absolutely
almost everywhere for a ∈ C. ��
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We have the following immediate consequence.

Corollary 3.5 Let c be a critical point of a rational map R with bounded Pc(R). If
the spectrum σ(c) of a critical point c has radius of convergence r > 0, then we can
rewrite Eq. (*) as:

BR(c)(z, λ) = AR(c)(z, λ) + λ
∑

i

1

R′′(ci )
AR(c)(ci , λ) · Bvi (z, λ), (∗∗)

for every |λ| < r and almost every z ∈ C.

Proof This comes from the previous lemma and the Cauchy product theorem. ��

4 Proofs of theMain Theorems

Now, we are ready to proof Theorems 1.5, 1.10, 1.11, and 1.12.

4.1 The Abel Case

Our plan is first to prove these theorems in the case where a spectrum has radius
of convergence at least 1 and taking the identity matrix as Nörlund matrix, this is
what we call the Abel case. We will consider general matrices in the next subsection.
Accordingly, aVoronoimeasure associatedwith the identitymatrix, a regular sequence
{xn}, and a sequence of points {zn} will be called an Abel measure. Again, as in the
Voronoi case, we say that an Abel measure is associated with a point a whenever
σ(a) = {xn} and zn = Rn(a). In this situation, the measure νλ has the following
simple form:

νλ = (1 − λ)

∞∑

n=0

σn(a)λnδRn(a).

Lemma 4.1 Let c be a critical point with bounded Pc(R), such that the σ(c) has
radius of convergence at least 1. Let ν0 be a finite complex valued measure. Let {λi }
and {ri } be sequences of complex numbers, with |λi | < 1, so that riνλi converges
∗-weakly to ν0. If R is structurally stable, then for any critical point c̃ �= c, the
sequence {ri AR(c)(c̃, λi )} is bounded and convergent. Finally, for the critical point c,
the sequence {ri (1 − 1

R′′(c) AR(c)(c, λi ))} is bounded and convergent.

Proof Let {c j }2deg(R)−2
j=1 be the set of critical points with c1 = c and v j = R(c j ) their

respective critical values. For a critical value w, take an invariant Beltrami differential
μw as in Lemma 3.1.

As μw is invariant, we get:

∫

C

μw(z)Bv j (z, λ)|dz|2 = 1

1 − λ
Fμw(v j ) =

{
1

1−λ
, w = v j

0 otherwise.
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Integrating Eq. (**) in Corollary 3.5 with respect to μw yields:

∫

C

μw(z)Bv1(z, λ)|dz|2 =
∫

C

μw(z)Av1(z, λ)|dz|2

+ λ
∑

j

1

R′′(c j )
Av1(c j , λ) ·

∫

C

μw(z)Bv j (z, λ)|dz|2.

After multiplying on both sides of the latter equation by ri (1 − λi ) and taking
λ = λi , we obtain:

ri (1 − λi )

∫
μw(z)Av1(z, λi )|dz|2 = ri

[
Fμw(v1) − λi

R′′(c)
Av1(c, λi )

]
. (1)

On the other hand, as we have (1−λi )Av1(z, λi ) = ∫
γa(z)dνλi (a), then applying

Fubini’s theorem, we get:

ri (1 − λi )

∫
μw(z)Av1(z, λi )|dz|2 = ri

∫
dνλi (a)

∫
γa(z)μw(z)|dz|2

=
∫

Fμw(a)ridνλi (a).

Since Fμw is continuous on C and Pc(R) is bounded, we have:

lim
i→∞

∫
Fμw(a)ridνλi (a) =

∫
Fμw(a)dν0(a),

and then returning to (1), by the choice of μw, we conclude the proof. ��

Proposition 4.2 Let R be structurally stable and ν0 be as in Lemma 4.1. Then, φ(z) =∫
γa(z)dν0(a) is a well-defined integrable function that satisfies R∗(φ(z)) = φ(z).

Proof First, again, since Pc(R) is bounded and using Fubini’s theorem, we get:

∫
|φ(z)||dz|2 ≤

∫
|dν0(a)|

∫
|γa(z)||dz|2

≤ M
∫

|a|| ln |a|||dν0(a)| < ∞.

Therefore, φ is integrable. Applying ri (1−λi )[I −λi R∗] to Eq. (**) in Corollary 3.5
with λ = λi , and then using the resolvent equation

(I d − λR∗) ◦
( ∞∑

n=0

λn(R∗)n
)

= I d,
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we obtain:

ri (1 − λi )γv1(z) = ri (1 − λi ) [I d − λi · R∗] (Av1(z, λi )

+ ri (1 − λi )λi
∑

j

1

R′′(c j )
Av1(c j , λi ) · γv j (z)).

By Lemma 4.1, we have that: limi→∞‖ri (1 − λi ) [I d − λi · R∗] Av1(z, λi )‖L1 = 0.
Rearranging, we get:

ri (1 − λi )[I d − λi R∗]Av1(z, λi ) = [I d − R∗][ri (1 − λi )Av1(z, λi )]
+ R∗[ri (1 − λi )

2Av1(z, λi )].

Finally:

‖R∗(ri (1 − λi )
2Av1(z1, λi ))‖L1 ≤ |1 − λi |‖ri (1 − λi )Av1(z, λi )‖L1

However, the latter converges to 0 as i tends to ∞, since ‖ri (1 − λi )Av1(z, λi )‖L1 is
bounded. Since φ(z) = limi→∞ri (1−λi )Av1(z, λi ) holds almost everywhere, we are
done. ��
Lemma 4.3 Under conditions of Proposition 4.2, assume that measure ν0 is an M-
measure, and then, φ(z) = ∫

γz(z)dν0(a) is non-zero identically on C\Pc(R).

Proof Since ν0 is anM-measure, then we can think that ν0 is a non-zero Abel measure.
By assumption, R is structurally stable, and then, we can assume that σ(c) /∈ �1 by
Proposition 9 and Proposition 10 (2) in [16]. A direct computation gives

∫ f (R)
R′ dν0 =∫

f dν0 for every continuous function f .
Now, we proceed by contradiction, if φ(z) ≡ 0 on C\Pc(R), then by assumption:

∫
1

z − a
dν0(a) = A

z
+ B

z − 1
,

for suitable A and B complex numbers not both equal to 0. In other words, if ν1 =
ν0 − (Aδ0 + Bδ1), where δa denotes the delta measure at the point a, the function
�(z) = ∫ 1

z−a dν1 = 0 for z ∈ C\Pc(R).
For z ∈ C\Pc(R), we have:

0 = R∗(�(z)) =
∫

R∗
(

1

z − a

)
dν1(a);

by part 1 of Lemma 5 in [16], we have:

R∗(�(z)) =
∫ (

1

R′(a)(z − R′(a))
+

∑

i

1

R′′(ci )(ci − a)(z − R(ci ))

)
dν1(a)

=
∫

1

R′(a)(z − R(a))
dν1(a) + R1(z),
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where R1 is a rational function with simple poles only in critical values of R. However,
since

∫ 1
R′(a)(z−R(a))

dν0(a) = ∫ 1
z−a dν0(a), we conclude:

∫
1

R′(a)(z − R(a)
dν1(a) =

∫
1

R′(a)(z − R(a))
dν0(a) − A

R′(0)z
− B

R′(1)(z − 1)

= A

z

(
1 − 1

R′(0)

)
+ B

z − 1

(
1 − 1

R′(1)

)
: = R0(z)

is a rational function with 0 = R∗(�(z)) = R0(z) + R1(z). Then, by the Residue
theorem, either R′(0) = 1 or R′(1) = 1 which contradicts the structural stability of
R. ��

The following theorem is the Abel version of Theorem 1.10.

Theorem 4.4 Let c ∈ J (R) be a critical point, so that Pc(R) is bounded and σ(c)
has radius of convergence at least 1. Then, R is unstable whenever the Abel measure
associated with c is an M-measure.

Proof Let ν0 be an Abel measure associated with c, and then, there is a sequence of
λi → 1, such that

νλi‖νλi ‖ converges ∗-weakly to ν0. Since ν0 is an M-measure, then

ν0 �= 0.
Assume that R is structurally stable, and then, by Lemma 4.3, we have that φ(z) =∫
γa(z)dν0(a) �≡ 0 on C\Pc(R), and R∗(φ) = φ by Proposition 4.2. Hence, by

Corollary 12 in [16] and Lemma 3.16 of [19] (see also [6]), R is a flexible Lattès map.
This is a contradiction with the structural stability of R. ��

Now, we are ready to prove Theorem 1.5.

Proof of Theorem 1.5 Since R(x) has non-negative lower Lyapunov exponent, then
σ(x) has radius of convergence at least 1. Because R′(z) ≥ 0 on

⋃∞
n=1 R

n(x), then,
for each 0 ≤ λ < 1, the measure

ωλ =
∑∞

n=0λ
nσn(x)δRn(x)∑∞

n=0λ
nσn(x)

is a probability measure. Let ω be an accumulation point of {ωλ}, and then, ω is a
probability measure. Since σ(x) /∈ �1, then a straightforward calculation gives:

∫
φ(R)

R′ dω =
∫

φdω (2)

for every continuous function φ on the support of ω.

Assume that R is stable in the family Rλ, and then, by Proposition 1.2, there exist
a function F , continuous on the plane, with

F(R)(a)

R′(a)
− F(a) = 1

R′(a)
,
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integrating the latter equation with respect to ω leads to a contradiction with Eq. (2)
above. Since the right side becomes 0, whereas the left side becomes 1.

If x is a critical point, then σ(x) does not belong to �1 by Corollary 1.3. ��
Remark Indeed, the non-negative condition on the orbit of x is not necessarywhenever
ω is non-zero, σ(x) /∈ �1 and R(x) has non-negative lower Lyapunov exponent.

Theorem1.5 gives examples of rationalmaps having non-zeroAbelmeasures. Now,
we give three criteria for a complex sequence to allow a non-zero Abel measure. The
first is elementary and states that if the arguments of the sequences λni an are close
enough to 0, then this sequence has a non-zero Abel measure with respect to every
rational map R and z ∈ C̄. More precisely, we have the following lemma.

Lemma 4.5 Let {an} be a complex sequence with radius of convergence at least 1.
Assume there exist α < 1 and a complex sequence {λi } converging to 1 with |λi | < 1,
such that:

∣∣λni an − |λni an|
∣∣ ≤ α|λni an|.

Then, for every rational map R and every point z ∈ C, there exists a non-zero Abel
measure with respect to {an} and z.

Proof Fix R and z ∈ C. Then, every ∗-weak limit of the family of the probability
measures

wλ =
∑ |λ|n|an|δRn(R(z))∑ |λn||an|

is a probability measure. Write:

uλ =
∑

λnanδRn(R(z))∑ |λn||an| ,

so that uλ is a family of complex-valued measures absolutely continuous with respect
to wλ. For the sequence {λi }, assume by contradiction that uλi converges ∗-weakly to
0. Define X = ⋃

Rn(z) and let 1X be the characteristic function on X . Notice that
the supports of wλ and uλ belong to X . Now, the inequality

1 = lim
λi→1

∣∣∣∣
∫

1Xduλi −
∫

1Xdwλi

∣∣∣∣

= lim
λi→1

| ∑n λni an − ∑
n |λni an||∑

n |λni an|
≤ lim

λi→1

∑
n |λni an − |λni an||∑

n |λni an|
≤ α < 1

establishes a contradiction. ��
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The second criterion is connected with the L1 norm of the function Az(λ) on
C\Pc(R). Indeed, we prove a more general statement.

Lemma 4.6 Let K ⊂ C be compact and let νi be a bounded sequence of complex-
valued measures on K . If we assume

lim sup
i

∫

C

∣∣∣∣
∫

C

γa(z)dνi (a)

∣∣∣∣ |dz|2 > 0,

then there exists a ∗-weak accumulation point ν0 which is not null. The reciprocal is
also true.

Proof According to a well-known result on quasiconformal theory (see, for example,
Gardiner and Lakič [8] or Krushkal [10]), the operator T : L∞(C̄) → C(K ) given
by:

T (μ)(a) =
∫

C

γa(z)μ(z)|dz|2,

which maps μ to Fμ|K , is continuous and compact. The same is true for the dual
operator T ∗ : M(K ) → (L∞(C))∗ given by:

T ∗(m)(z) =
∫

K
γa(z)dm(a),

which is continuous and compact.
By Fubini’s theorem, we have rank(T ∗) ⊂ L1(C) and each T ∗(m)(z) is holomor-

phic off of K ∪ {0, 1,∞}. Hence, T ∗ : M(K ) → L1(C) is a compact operator. Now,
by assumption, passing to a subsequence, we have that:

fi (z) =
∫

K
γa(z)dνi (z) = T ∗(νi )(z)

converges in norm to a non-zero f in L1(C).

Note that we have ∂z̄ fi = νi in the sense of distributions. If νi converges ∗-weakly
to 0, then, by continuity, the integrability of f , and an application of Weyl’s lemma,
we get f = 0, which is a contradiction, so νi cannot converge ∗-weakly to 0.

Reciprocally, if a measure ν0 �= 0 is a ∗-weak limit of νi , then T ∗(ν0) �≡ 0 almost
everywhere on C and T ∗(νi ) converges to T ∗(ν0) in norm. ��

The last criterion is formulated for bounded sequences and follows fromProposition
1.2. In this situation, we consider the Abel sum S(λ) = ∑

anλn . If the Abel averages
A(λ) = (1−λ)S(λ) are not continuous at 1 from the left, then there exists a non-zero
Abel measure. However, if lim supλ<1 |S(λ)| is bounded, then limλ→1− A(λ) = 0. In
this situation, we have the following existence lemma.

Lemma 4.7 If R is structurally stable and z0 ∈ C has infinite bounded forward orbit,
such that σ(z0) ∈ �∞. Then, there is a non-zero Abel measure whenever σ(z0) is
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not Abel summable to a finite limit. Moreover, if z0 is a critical value, then the Abel
measure is non-zero whenever σ(z0) is not Abel summable to zero.

Proof Let F be the continuous function on the plane constructed in the proof of
Proposition 1.2, and then for every n we have:

F(Rn(z0))

(Rn)′(z0)
= F(z0) − 1 + (1 + σ1(z0) + · · · + σn(z0)) = F(z0) − 1 + Sn(z0).

Multiplying by λn and adding with respect to n, we get:

∞∑

n=0

λn F(Rn(z0))σn(z0) = F(z) − 1

1 − λ
+

∞∑

n=0

λn Sn(z0),

and so

(1 − λ)

∞∑

n=0

λn F(Rn(z0))σn(z0) = F(z0) − 1 +
∞∑

n=0

λnσn(z0).

Since σ(c) ∈ �∞ and the only Abel measure is 0, then the left-hand side of the
previous equation converges to 0 as λ → 1−, which contradicts the fact that the
right-hand side is not continuous at 1 from the left. If z0 is a critical value, then by
Proposition 1.2, we have F(z0) = 1, and now, we apply the formulae above to finish
the proof. ��

To prove the Abel version of Theorem 1.11, we need some additional preparation.
Recall that a positive Lebesgue measurable subset W of C̄ is called wandering if
R−n(W ) forms a family of pairwise almost disjoint sets with respect to the Lebesgue
measure. The union D(R) of all wandering sets is called the dissipative set, its com-
plement C̄\D(R) is the conservative set. A Fatou component U belongs to D(R)

precisely when U is not an invariant rotational component.
We start the proof of Theorem 1.11 with the following lemma which is reminiscent

of Lemma 3.1 and the arguments of the proof of Lemma 4.1.

Lemma 4.8 Let R be a structurally stable map. If the measures νλi converge ∗-weakly
to 0 for a suitable sequence of reals λi → 1 and a critical point c ∈ J (R), then:

lim
λi→1

AR(c)(c̃, λi ) =
{
0 if c̃ �= c

R′′(c) if c̃ = c.

Proof By assumption, νλi converges ∗-weakly to 0, and then, sup ‖νλi ‖ < ∞, where
‖ν‖ is the total variation of ν. Since Pc(R) is bounded, by Fubini’s theorem, we have:

‖(1 − λ)AR(c)(z, λi )‖L1 ≤ M sup
a∈Pc(R)

|a|| ln |a|| sup
i

‖νλi ‖ ≤ ∞
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for a suitable constant M depending on Pc(R). For every critical point c j , we define:

D(c j , λi ) =
⎧
⎨

⎩

∣∣∣λi
AR(c)(c j ,λi )

R′′(c j )

∣∣∣ if c j �= c
∣∣∣λi

AR(c)(c j ,λi )
R′′(c j ) − 1

∣∣∣ if c j = c.

By structural stability, Eq. (**) of Corollary 3.5, and Lemma 3.1, there are constants
M1 and M2, such that for every i :

M1 max
j

(
D(c j , λi )

) ≤ ‖(1 − λ)AR(c)(z, λi )‖L1 ≤ M2

⎛

⎝
∑

j

D(c j , λi )

⎞

⎠ .

Since νλi converges ∗-weakly to 0, then by Lemma 4.6, we have limi→∞‖(1 −
λ)AR(c)(z, λi )‖L1 = 0, and thus for every j , the limit limi→∞D(c j , λi ) = 0 which
finishes the proof. ��

We have the following.

Proposition 4.9 Let R be as in Lemma 4.8. If the measures νλi converge ∗-weakly to
0 for a suitable sequence of reals λi → 1 and a critical point c ∈ J (R), then:

lim
i→∞

1

1 − λi

∫
γa(z)dνλi (a) = 0

for almost every z ∈ D(R). Moreover, on the Fatou set, the limit above is uniform on
compact subsets outside the postcritical set P(R).

Proof First, let us show that, for any φ ∈ L1(C), the series
∑

Rn∗(φ) is finite and
converges absolutely almost everywhere on D(R). It is enough to show that

∑ |Rn∗(φ)|
is integrable on any wandering set W . Direct computations show:

∫

W
|Rn∗(φ)(z)||dz|2 ≤

∫

R−n(W )

|φ(z)||dz|2,

which yields:

∫

W

∞∑

n=0

|Rn∗(φ)(z)| ≤
∞∑

n=0

∫

R−n(W )

|φ(z)||dz|2 ≤
∫

C

|φ(z)||dz|2.

In particular, Rn∗(φ)(z) converges to 0 almost everywhere on D(R).

Second, if z0 ∈ F(R)\P(R), we can find a disk D0 ⊂ D(R) centered at z0. Now,
suppose that φ is holomorphic on C\P(R). Since, we have:

∫

D0

|Rn∗(φ)(z)|dz|2 ≤
∫

C

|φ(z)||dz|2;
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by the mean value theorem, {Rn∗(φ)} forms a normal family of holomorphic functions
on D0. By the discussion above, Rn∗(φ) and

∑
Rn∗(φ)(z) converge to their respective

limits uniformly on compact subsets of D0. Then, by the Abel theorem, we get:

lim
λi→1

∑
λni R

n∗(φ)(z) =
∑

Rn∗(φ)(z)

almost everywhere on D(R) and uniformly on compact subsets of F(R)\P(R).

To finish the proof, we take λi → 1 and apply Lemma 4.8 and the discussion above
to Eq. (**) of Corollary 3.5 to get:

lim
i→∞ AR(c)(z, λi ) = lim

i→∞
1

1 − λi

∫

C

γa(z)dνλi (a) = 0

almost everywhere on the dissipative set D(R) and uniformly on compacts subsets of
F(R)\P(R). ��

Now, we are ready to prove the Abel version of Theorem 1.11.

Theorem 4.10 Assume that for a critical point c ∈ J (R), the sequence measure {νλi }
converges ∗-weakly to 0 for a suitable sequence λi < 1 converging to 1. Then, R is
an unstable map whenever c and the individual postcritical set Pc(R) are separated
by the Fatou set.

Proof By contradiction, assume that R is structurally stable. Then, by Lemma 4.8, we
get:

lim
λi→1

AR(c)(c, λi ) = R′′(c) �= 0.

On the other hand, by Proposition 4.9, we have that:

AR(c)(z, λi ) = 1

1 − λi

∫
γa(z)dνλi (a)

converges to 0 uniformly on compact subsets of F(R)\P(R). By assumption, we can
select a Jordan curve γ ⊂ F(R)\P(R) separating c and Pc(R). Since AR(c)(z, λi ) is
holomorphic for z in the interior of γ , by Cauchy’s theorem, we have:

lim
λi→1

AR(c)(c, λi ) = 1

2π i

∫

γ

AR(c)(z, λi )

z − c
dz = 0,

a contradiction. ��
Proof of Theorem 1.12 The first part of the Theorem is a consequence of Lemma 4.7
and Theorem 4.4.

For the last part, we proceed by contradiction. Assume that R is structurally stable.
Since the measures νλ form a uniformly bounded family of measures for 0 ≤ λ < 1,
then by Theorem 1.11, every ∗-weak limit of νλ for λ → 1 is a non-zero Abel measure.
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(2) Since Pc(R) has measure zero, then we have a contradiction with Theorem 4.4.
(3) Assume that σ(c) is convergent. Let τ �= 0 be an Abel measure which is not an

M-measure. Then:

f (z) =
∫

C

γa(z)dτ(a)

is a non-zero integrable function on C supported on Pc(R) satisfying R∗( f ) = f . By
Lemma 11 in [16], there exists an invariant Beltrami differential μ with μ(z) = | f (z)|

f (z)
almost everywhere on the support of f . Computations give rise to:

0 �=
∫

C

| f ||dz|2 =
∫

C

μ(z) f (z)|dz|2

= lim
λi→1

(1 − λi )

∫

C

μ(z)AR(c)(z, λi )|dz|2

= lim
λi→1

(1 − λi )

⎡

⎣
(

1

R′′(c)
AR(c)(c, λi ) − 1

) ∫

C

μ(z)BR(c)(z, λi )|dz|2

+
∑

c̃∈Crit(R)\{c}

1

R′′(c̃)
AR(c)(c̃, λi )

∫

C

μ(z)BR(c̃)(z, λ)|dz|2
⎤

⎦ .

By the invariance of μ, this reduces to:

0 �= Fμ(v) lim
λi→1

[
1

R′′(c)
AR(c)(c, λi ) − 1

]
+

∑

c̃∈Crit(R)\{c}

Fμ(ṽ)

R′′(c̃)
lim

λi→1
AR(c)(c̃, λi ).

(3)

Now, as R is stable and since σ(c) is convergent, then by Corollary 1.3, we have
that σ(c) converges to 0. Let sn(c̄) be the partial sums of the formal series AR(c)(c̄),
and here, c̄ is any critical point. Then, the assumptions, Lemma 3.1, and the formula
after Lemma 3.3 together with the fact that σ(c) converge to 0 yield:

lim
n→∞ sn(c̄) =

{
0 if c̄ �= c

R′′(c) if c̄ = c.

Abel’s theorem then gives:

lim
λ→1

AR(c)(c̄, λ) = (1 − λ)
∑

n

sn(c̄)λ
n =

{
0 if c̄ �= c

R′′(c) if c̄ = c.

After replacing these values in (3), we achieve the desired contradiction. ��
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Note that the condition that Pc(R) has measure zero is used to guarantee that the
measure τ is an M-measure. As mentioned in the introduction, this condition can be
dropped for maps with a completely invariant Fatou domain.

With small modifications, the theorems above can be extended to the case of entire
or meromorphic functions with finitely many critical and asymptotic values.

4.2 TheVoronoi Case

Now, we prove Theorem 1.10 which extends the ideas of the Abel versions of Theo-
rems 4.4 and 4.10 to the Voronoi case.

Proof of Theorem 1.10 As |σn(c)| is Nörlund regular with respect to the matrix N =
{ qn−m

Qn
}, it has radius of convergence r > 0. Hence:

eλ = (1 − λ)
∑

λnσn(c)δRn(c)

is a finite measure for |λ| < r . By Part (3) of Lemma 1.7, we have:

q(λ) · eλ = νλ.

Thus, eλ can be extended to the open unit disk as a meromorphic family of measures
which is holomorphic on a neighborhood of [0, 1). Let Eλ = νλ

q(λ)
be the induced

extension. In this way, the function

Av(z, λ) = 1

1 − λ

∫

C

γa(z)deλ(a)

extends to

Ev(z, λ) = 1

q(λ)(1 − λ)

∫

C

γa(z)dνλ(a)

= 1

(1 − λ)

∫

C

γa(z)dEλ(a).

In other words, for z outside Pc(R) ∪ {0, 1,∞}, the sequence {σn(c)γRn(v)(z)} is
Nörlund regular with respect to N .

Like in the proofs of Lemma 3.1 and Corollary 3.5, we extend Av(c̃, λ) to a mero-
morphic function Ev(c̃, λ) for every critical point c̃, so that:

Bv(z, λ) = Ev(z, λ) + λ
∑

ci∈Crit(R)

1

R′′(ci )
Ev(ci , λ)Bvi (z, λ) (∗∗∗)

holds on a neighborhood of [0, 1).
Under the assumptions, the arguments of Proposition 4.2 apply. ��
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Proof of Theorem 1.11 We proceed as in Theorem 4.10, but we only need to apply
Lemma 3.1 and Proposition 4.9 to Eq. (***). If R is structurally stable, we get a
contradiction to the assumptions proceeding as in Theorem 4.10. ��

So far, we have consider the Nörlund–Voronoi method to produce finite non-zero
measures. A general averaging mechanism can be hinted to establish the Fatou con-
jecture for a wider class of sequences.

Let � be the space of all complex sequences. An infinity matrix M is regular
if, when restricted to C, the space of converging sequences, it defines a continuous
operator, such that if {tn} = M{an}, then lim an = lim tn . A basic fact here is Agnew’s
theorem which states that given x, y ∈ � if either:

(1) x ∈ �∞\C and y ∈ �∞ or
(2) x ∈ �\�∞ and y ∈ �,

then there is regular matrix M with Mx = y (see Theorem 2.6.4 in [3]). The matrix M
is not unique. Moreover, the space of all regular matrices sending x to y is infinitely
dimensional.

Let us recall that �1 acts on � by convolutions. Take an infinite matrix M subject
to the following two conditions.

(i) If c ∈ J (R), then M transforms the measures ρk = ∑k
n=0 δRn(v)σn(c) onto

measures tk with supk ‖tk‖ < ∞, and there is a non-zero α which is a ∗-weak
accumulation point of the sequence {tk}. (Agnew’s theorem guarantees the exis-
tence of such a matrix for non-convergent complex sequences).

(ii) The matrix M commutes with the action of �1 by convolutions.

When this happens, using the formal Eq. (*), we can show the instability of the corre-
sponding rational map whenever α is an M-measure. Although the algebra of linear
operators on � commuting with the action of �1, by convolutions, is non-separable
and the space of regular matrices mapping x to y is infinitely dimensional, the authors
were not able to find a matrix satisfying the conditions (i) and (ii) above. On the other
hand, most of the summation methods discussed, for instance, in the book by Boos
[3] satisfy both conditions. In this paper, we used one of the most general summation
methods.
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