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Abstract
This article is devoted to the geometry of billiard trajectories in a regular polygon
and geodesics on the surface of a regular polyhedron. Main results are formulated as
conjectures based on ample computer experimentation.

Keywords Billiard trajectories · Parallel trajectories · Short trajectories ·
Dodecahedron · Hyperbolic dodecaherdon · Geodesics

Introduction

Billiard trajectories in regular polygons have been thoroughly studied, and it is difficult
to say something new about them. Known results are usually obtained in a more
general context; most of them belong to William A. Veech [18,19] and his followers.
Sometimes, it is difficult to attribute these results to concrete authors, and I restrict
myself to a comprehensive list of surveys [11–13,15,16].

The goal of this article is to report of a series of detailed computer experimentations
that lead to a series of conjectures (Conjectures 1.7, 2.3, 2.4, 2.5, 2.6, 2.7, and 3.2).
I believe that these are all true, and in fact, can be proved using the works of Veech,
Ward [20], and others. Some results of this kind for regular pentagons are contained
in the recent work of D. Davis and S. Lelievre [5], which may provide a model for
such proofs.

It should be mentioned that Veech’s theory is based mostly on the construction of
Fox-Kirshner and Katok-Zemlyakov [10,21] which represents billiard trajectories in
polygons with rational (with respect to π ) angles as geodesics on flat compact surfaces
with conic singularities. In the case of regular polygon, an algebraic construction of
this surface is contained in the dissertation of Veech’s student Clayton Ward [20]
(Theorem C). Since the main goal of this article is rather statements than proofs, I
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prefer to use more elementary language (sufficient for the statements, but probably
not for the proofs). Still, some constructions below (in particular, in Sects. 2.1 and
2.4) are related to the Fox–Kirshner–Katok–Zemlyakov–Veech approach.

The plan of the article is as follows.
Section 1 contains a survey of known results with some enlightening illustrations.

In Sect. 2, all “short billiard trajectories” (aka “generalized diagonals”) in a regular
n-gon are subdivided into n − 2 “types,” and the conjectures of Sect. 2 demonstrate
the importance of this subdivision for the geometry of billiard trajectories.

It is clear that the behavior of billiard trajectories in a regular n-gon is closely related
to the behavior of geodesics on regular polyhedra (it is true even for the case n = 4, see
a remark in the beginning of Sect. 2.3). In Sect. 3, we apply the main construction of
Sect. 2 to geodesics on the surface of the regular dodecahedron. This section contains
a report of some computer experiments related to the behavior of these geodesics.

Section 4 shows a possible direction of further research. The faces of Platonic solids
have nomore than five edges. However, there are polyhedra of hyperbolic originwhose
faces are regular n-gons with arbitrarily large n. We describe such a polyhedron with
regular heptagonal faces; it has 28 vertices, 42 edges, and 12 faces; thus, its Euler
characteristic is −2. Certainly, it cannot be isometrically embedded into a Euclidean
space. Its group of isometries is small, but it also has geodesics, which correspond
to billiard trajectories in a regular heptagon. So far, there are almost no results, only
statements of problems. (It should be mentioned that there are works about geodesics
on polyhedra which may be regarded as generalizations of Platonic solids; some of
these polyhedra also have hyperbolic origin; see, for example, [14]. The property of
the example in Sect. 4, which makes it relevant for us, is that all the faces are regular
heptagons.)

I am grateful to Sergei Tabachnikov, Anton Zorich, Denis Gorodkov, Jayadev
Athreya, and the anonymous reviewer for enlightening comments and discussions.

1 Known Results

1.1 Parallel Trajectories

A billiard trajectory in a polygon is fully determined by any small segment on it. It
would be fair to say that two such trajectories are parallel, if they contain parallel
segments. In the case of a regular n-gon, it is more convenient to say that two billiard
trajectories are parallel, or have the same directions, if, for any two segments on them,
the sum or the difference of angles they formwith (any) side of the n-gon” is a multiple

of
2π

n
.

At this moment, we first encounter the difference between the cases of odd and
even n. If n is odd, then all the sides and diagonals of the regular n-gon have the same
directions. However, if n is even, then the sides and diagonals split into two classes
(to which we again refer as to even and odd) with a parallelism within each class, but
not between representatives of different class. Belonging to an even or odd class is
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Fig. 1 Trajectories of even and
odd classes
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even class odd class

(b) n is even

determined by the parity of the number of sides between the endpoints of diagonals
or sides (see Fig. 1 on the next page).

1.2 Special Directions

We consider billiard trajectories in a regular n-gon. Short trajectories are trajecto-
ries which go from a vertex to a vertex (the same or other). Closed trajectories are
trajectories which avoid vertices and, from some moment, repeat themselves. Short
trajectories and closed trajectories both have lengths.

Proposition 1.1 The directions of short trajectories and closed trajectories are the
same.

1.3 Ratios of Lengths of Parallel Short Trajectories

In the case of even n, short trajectories (precisely as sides and diagonals) may belong
to an even or odd class: as before, this is determined by the parity of the number of
sides between the endpoints of the trajectory.

Proposition 1.2 The ratios of lengths of short geodesics of a given special direction
do not depend on the choice of a special direction. In particular, they are the same as
ratios of lengths of sides and diagonals (see Sect. 1.1).

1.4 A Contribution from theMiddle School Trigonometry

Let us assume that the side of our regular n-gon is 1. Then, the lengths of the diagonals
are:

sin((k + 1)π/n)

sin(π/n)
, k = 1, . . . ,

[n
2

]
− 1.
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Proposition 1.3 For an α ∈ R, let λk = sin((k + 1)α)

sin α
. (In particular, λ1 = 2 cosα.)

Then, for all k, the following relation holds:

λ1λk = λk−1 + λk+1.

This relation allows to express all λk as polynomial of λ = λ1 = 2 cosα:

λ0 = 1,
λ1 = λ,

λ2 = λ2 − 1,
λ3 = λ3 − 2λ,

λ4 = λ4 − 3λ2 + 1,
λ5 = λ5 − 4λ3 + 3λ,

λ6 = λ6 − 5λ4 + 6λ2 − 1,

etc. In other words, λk = Uk(λ/2), whereUk is the k-th Chebyshev polynomial of the

second kind. If α = π

n
, then:

λm−1 = λm, if n = 2m + 1,
λm−2 = λm, if n = 2m,

which provides an algebraic equation for λ.

1.5 The Case of Odd n. Examples

If n is odd, n = 2m+1, then, for each special direction, the lengths of short trajectories
assume m different values with the ratio:

1 : λ : λ2 − 1 : . . . , λ = 2 cos
π

n
,

or equivalently:

sin
π

n
: sin

2π

n
: . . . : sin

mπ

n
.

In particular, for n = 5, there are two lengths with the ratio 1 : τ, τ = 1 + √
5

2
is

the golden ratio. For n = 7, there are three lengths with the ratio 1 : λ1 : λ2, where

λ1 = 2 cos
π

7
≈ 1.801938, and λ2 = λ21 − 1 ≈ 2.2498. The examples are shown in

Fig. 2.

1.6 The Case of Even n. Examples

Let n is even, n = 2m.
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Fig. 2 Parallel trajectories run regular odd- gons

Proposition 1.4 For every special direction of trajectories in a regular n-gon, all short
trajectories of this directions belong either to the odd class, or to the even class.

Hence, the ratios of lengths of parallel short trajectories are (dependently on the
parity of the class) either.

sin
π

m
: sin

2π

m
: sin

3π

m
: . . .

or

sin
π

n
: sin

3π

n
: sin

5π

n
: . . .

In particular, if n = 4�, then the lengths of short trajectories of each of the even and
odd classes assume � different values; if n = 4�+2, then the lengths of trajectories of
even class assume � values, while the lengths of trajectories of odd class assume �+1
values. Moreover, in the case of n = 4� + 2, the ratios of lengths of short trajectories
of even class are the same as the ratios of lengths of short trajectories in a regular
(2� + 1)-gon, that is (n/2)-gon.

For example, consider the cases n = 6, 8, 10.
If n = 6, then all parallel short trajectories of even class have equal lengths, while

all parallel short trajectories of odd class have two lengths with the ratio 1 : 2. See
examples in Fig. 3.

If n = 8, then all parallel short trajectories have two lengths. The length ratio is√
2 for even class and is 1 + √

2 for odd class (see Fig. 4).
If n = 10, then parallel short trajectories of even class have two different lengths

with length ratio 1 : τ (where τ denotes, as before, the golden ratio), while parallel
short trajectories of odd class have three lengths with length ratio 1 : 1 + τ : 2τ . See
examples in Fig. 5.
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Fig. 3 Parallel trajectories in a regular hexagon

Fig. 4 Parallel trajectories in a regular octagon

Fig. 5 Parallel trajectories in a regular decagon

1.7 Closed Trajectories

1.7.1 Closed and Preclosed Trajectories

As we have mentioned before (Proposition 1.1), closed billiard trajectories (in a reg-
ular n-gon) are the same as trajectories parallel to short trajectories. To describe the
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relations between the lengths of parallel short and closed trajectories, we will need
some additional terminology.

A trajectory is called preclosed if its endpoints belong to (possibly different) edges,
divide these edges into the parts of the same length and the angles between the trajectory
and these edges are the same (the trajectory and the edges are considered with their
natural orientation). Two parallel closed or preclosed trajectories are called strongly
parallel if their sequences of edges of reflection are identical. Finally, Iwill call a closed
(preclosed) trajectory simple if no proper part of it is closed (preclosed). Below, I will
drop the adjective simple when it is obviously meant.

The following statements are obvious.

Proposition 1.5 (a) A preclosed trajectory becomes closed if repeated a certain num-
ber of times; the smallest number with these properties is a divisor of n. (b) Strongly
parallel closed or preclosed trajectories have equal lengths.

1.7.2 Lengths of Preclosed and Short Trajectories

Proposition 1.6 (a) If n is odd, then, for any special direction, the lengths of simple
preclosed trajectories of this direction are the same, as the lengths of short trajectories

of this direction, multiplied by 2 cos
π

n
. (b) If n is even, then for any special direction

of even or odd class, the amount and ratios of different lengths of simple preclosed
trajectories of this direction are the same as the amount and ratios of different lengths
of short trajectories of the oppositeclass.

An explanation of this fact will be given in Sect. 2.6.

1.7.3 Lengths of Closed Trajectories: Experimental Data

It follows from Proposition 1.5 that the lengths of (simple) closed trajectories stay
unchanged within the class of strongly parallel trajectories and are equal to the lengths
of preclosed trajectories multiplied by some divisor of n. This means that the length
ratios of parallel closed trajectories are obtained from the length ratios of parallel pre-
closed trajectories by multiplication by (possibly, different) divisors of n. Certainly,
we can assume that these factors (within a class of parallel trajectories) do not have
any proper common factors. However, the problem of finding these factors stays open
in many cases.

CONJECTURE 1.7 After the cancelation described, the factors distinguishing the
length ratios of closed and preclosed trajectories are never equal to n.

This statement is supported by ample experiments, but, so far, is not proved. Some
results of the experiments are shown in the table in Sect. 1.7.3.2.

1.7.3.1. The case of prime n.

Proposition 1.8 If n is prime, then for any special direction, the lengths of closed
trajectories of this direction are either all equal to the length of short trajectories
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multiplied by 2 cos
π

n
or all equal to the length of short trajectories multiplied by

2n cos
π

n
. In particular, if n is prime, then the length ratios of closed trajectories of

any special direction are the same as the length ratios of short trajectories of this
direction.

This statement follows from Proposition 1.6 and Conjecture 1.7, so must be also
considered as a conjecture. For n = 5 and 7, a proof is contained in [3].

1.7.3.2. Experimental Data for Composite n ≤ 12. The table table on the next
page on the next page contains experimentally found length ratios of parallel closed
trajectories for the cases n = 6, 8, 9, 10, 12. One can expect that no other ratios are
possible. These data may be a ground for general conjectures, but we prefer to refrain
from any guessing.

2 Types of Short Trajectories

In Sect. 1.1, we introduced for short trajectories in regular even-gons two classes:
even and odd. Now, we are introducing a finer subdivision of the set of all short
trajectories in regular n-gons. According to a definition we are going to give, every
short trajectory in a regular n-gon belongs to one of n−2 types, which we will denote
as A0 = An−2, A1, A2, . . . , An−3.

It will be explained in Sect. 2.4 that, in some informal sense, Conjectures 2.3 and
2.4 in that section mean that the types are orbits of the Veech group.
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Fig. 6 Development of a short trajectory in a regular pentagon

Fig. 7 Development of a short
trajectory in a regular hexagon
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2.1 Developments of Trajectories and Reachable Points

Consider a regularn-gon in the (x, y)plane, such that one of the vertices is the originO ,
the first side is contained in the positive x semi-axis, and the whole n-gon is contained
in the upper half-plane y ≥ 0. We consider short trajectories emanating from O . Such
trajectory gives rise to a development, which appears if we replace reflections of the
trajectory in sides by reflections of the whole n-gon. It is illustrated (for n = 5) in
Fig. 6 on the next page. The endpoint of this development is a point within the angle
formed by two sides at the vertex O . Such points are called reachable. Thus, reachable
points form a set within the named angle.

Figure 6 contains also numbers of vertices of the initial pentagon and the pentagons
covering the development. We see a chain of pentagons, the ones in the odd-numbered
places are parallel translations of the initial pentagon, and the ones in the even-
numbered places are parallel translations of the initial pentagon flipped upside down.
The numeration of vertices is, respectively, counterclockwise and clockwise. The pic-
ture will look similarly for all odd-gons, but for even-gons, it will be different. The
picture for hexagons is shown in Fig. 7 on the next page.

The most visible difference between the developments in Figs. 6 and 7 is that all the
hexagons covering this development are parallel translates of each other. And although
the ordering of numbers of vertices are still alternating counterclockwise and clock-
wise, the parity of the numbers is preserved by the translations. This property, which
is shared by all developments of short trajectories in regular even-gons, provides a
splitting of the set of reachable points into “even” and “odd.” This, obviously, corre-
sponds to the splitting of special directions into even and odd classes, as described in
Sect. 1.1.
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Fig. 8 To definition of types
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2.2 Types of Short Trajectories: Definition

We are going to describe now one of the most important constructions of this article.
According to this construction, a short trajectory in an oriented regular n-gon belongs
to one of n − 2 types, which we will denote by Ak , where k is a residue modulo
n − 2. This subdivision of the set of short trajectories into types may be regarded as a
refinement of the subdivision of the set of short trajectories in even-gons into classes
(see Proposition 2.2 below).

Now, let us give the definition of types. Consider for an oriented N -gonal short
trajectory in an oriented regular n-gon its endpoints and define the angles α and β, as

shown in Fig. 8. It is easy to understand that either α + β or α − β is divisible by
2π

n
;

the sign is −, if N is even, and +, if N is odd.

Definition 2.1 If n = 2m, then a short trajectory belongs to the type Ak , if one of the
following triples of conditions is satisfied:

k ≤ m − 1, α ≤ m − k − 1

m
π, β − α = k + 1

m
π;

k ≤ m − 1, α ≥ m − k − 1

m
π, β + α = n − k − 1

m
π;

k ≥ m − 1, α ≥ n − k − 2

m
π, β − α = k + 3 − n

m
π;

k ≥ m − 1, α ≤ n − k − 2

m
π, β + α = n − k − 1

m
π.
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Fig. 9 Types of diagonals of a
regular polygon
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If n = 2m+1, then a short trajectory belongs to the type Ak , if one of the following
conditions is satisfied:

k ≤ m + 1, α ≤ n − 2(k + 1)

n
π, β − α = 2(k + 1)

n
π;

k ≤ m − 1, α ≥ n − 2(k + 1)

n
π, β + α = 2(n − k − 1)

n
π;

k ≥ m, α ≥ 2(n − k − 2)

n
π, β − α = 2(k + 3 − n)

n
π;

k ≥ m, α ≤ 2(n − k − 2)

n
π, β + α = 2(n − k − 1)

n
π.

This definition, together with remarks in the end of Sect. 2.1, implies the following
statement (implicitly promised above).

Proposition 2.2 If n is even, then short trajectories of the type Ak belong to the even
class, if k is even, and belong to the odd class, if k is odd.

The most obvious example.Let X0 = (0, 0), X1, . . . , Xn−2, Xn−1 = (1, 0) be
the clockwise ordered vertices of the “initial” regular n-gon. Then, for 0 ≤ k ≤ n−2,
X0Xk+1 is a short trajectory of the type Ak (see Fig. 9).

To make Definition 2.1 more transparent, we will present it in tables.
If n is even, n = 2m, then belonging of the short trajectory to the type Ak, 0 ≤

k ≤ n − 3, is determined by the table on the next page.
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If n is odd, n = 2m + 1, then belonging of the short trajectory to the type Ak is
determined by the following table:
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Notice that the type A0 is always characterized by the condition β −α = 2

n
π (with

no restriction for α), and if n = 2m, then the “middle” type Am−1 is characterized by
the condition β + α = π (again, with no restriction for α).

Let us say, in conclusion, that although the definition of types may appear long and
boring, we will demonstrate its importance in the rest of this article.

2.3 The Cases of n ≤ 6

If n = 4, then reachable points are the points (p, q) in the first quadrant with positive
relatively prime p and q (and also points (1, 0) and (0, 1). There are two easily
distinguishable types: if p and q are both odd, then the type of (p, q) is A1; otherwise,
it is A0. This case has zero importance for us now (and the main result of Sect. 2.4
holds only for n ≥ 5), but it is demonstrated in [7–9] that the behavior of closed
geodesic on the surface of a cube depends in a very essential way on the type of the
related short trajectory in the square.

The case n = 6 is also not especially important to us, but it is instructive, because
the description of types becomes very explicit and some conjectures of the remainder
of Sect. 2 obtain very elementary and convincing proofs.

Consider the beehive tiling of the sector x
√
3 ≥ −y and use the coordinate system

with the basis (1, 0),
1

2
(−1,

√
3). Then, the vertices of the hexagonal tiles will have

coordinates (p, q) with non-negative integers p, q, such that p + q �≡ 2 mod 3. Such
point (p, q) is reachable if the interval

(
(0, 0), (p, q)

)
contains no vertices of the

tiles. In other words, the point (p, q) (with p + q �≡ 2 mod 3) is reachable if either
GCD(p, q) = 1 or GCD(p, q) = 2 and p + q ≡ 1 mod 3.

The description of types becomes very simple: the (reachable) point (p, q) belongs
to the type:

A1, if (p, q) ≡ (1, 2) mod 3,
A2, if (p, q) ≡ (0, 0) mod 2,
A3, if (p, q) ≡ (2, 1) mod 3,
A0, if (p, q) does not belong to A1, A2, A3.

Another description of the type A0: p + q ≡ 1 mod 3 and p, q are not both even.
Notice also that if the point (p, q) belongs to the type A2, then p + q ≡ 1 mod 3.

Indeed, otherwise
p

2
+ q

2
�≡ 2 mod 3, and hence, the point

( p

2
,
q

2

)
is reachable, so

the point (p, q) is not reachable. These remarks, together with the descriptions of the
types A0, A1, A2, A3 given above, show that a reachable point (p, q) belongs to the
even class, if p + q ≡ 1 mod 3 and belongs to the odd class, if p + q ≡ 0 mod 3.

In Fig. 10, we show the beehive tiling (within the “positive quadrant” q ≥ 2p− 1).
Reachable points aremarkedwith special symbols; for the types,we used the following
code: A0 = ◦; A1 = �; A2 = ♦; A3 = ×.

The meaning of violet lines in Fig. 10 will be explained in Sect. 2.4.
In Fig. 11, we show a picture of reachable points for the case n = 5. It shows all

reachable points at the distance ≤ 60 (where the side of the pentagon is taken for 1)
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Fig. 10 Reachable points for a
regular hexagon

Fig. 11 Reachable points for a regular pentagon

within the sector 0 ≤ θ ≤ 3π

10
(θ is the polar angle). The code used is A0 = •, A1 =

◦, A2 = +.

To get the “full picture” in the angle
3π

5
, we need to reflect the picture provided in

the radius θ = 3π

10
and, in the appearing new part to switch ◦ and +. The meaning of

long and narrow pentagons will be explained in Sect. 2.4.
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2.4 Reachable n-Gons

A reachable n-gon is defined as an SL(2,R)-image of the initial regular n-gon, whose
vertices (with the exceptionofO) are reachable points. Thus, a reachablen-gonmust be

contained in the sector 0 ≤ θ ≤ n − 2

n
π and is the union of segments of developments

of trajectories emanating from O . Examples of reachable n-gons are shown in Figs.
10 and 11 in violet.

CONJECTURE 2.3 Let n ≥ 5, let v0, v1, . . . , vn−1 be the vertices of a reachable
n-gon ordered clockwise, and let v0 = O. Then, v1, . . . , vn−1 belong, respectively, to
the types A0, A1, . . . , An−3, A0.

This statement reveals a true meaning of the types of short trajectories. In view of
“the most obvious example” in Sect. 2.2, it shows that the SL(2,R)-transformation
from the definition of a reachable polygon preserves the types. This observation may,
possibly, pave a way to proving Conjecture 2.3.

Proof of Conjecture 2.3 for n = 6 Let v1 = (p, q) and v5 = (p′, q ′). Then, the Fig. 12
shows that v2 = (2p+p′, 2q+q ′), v3 = (2p+2p′, 2q+2q ′), v4 = (p+2p′, q+2q ′).
Since the point v3 is reachable and its coordinates are both even, v3 is of the type A2;
moreover, 2p + 2p′ + 2q + 2q ′ ≡ 1 mod 3, and hence, p + p′ + q + q ′ ≡ 2 mod 3.
However, p + q �≡ 2 mod 3 and p′ + q ′ �≡ 2 mod 3 (since (p, q) and (p′, q ′) are
both reachable); hence, p + q ≡ p′ + q ′ ≡ 1 mod 3. Next, since our hexagon is
SL(2)-equivalent to the standard regular hexagon, we have:

det

∣∣∣∣
p′ q ′
p q

∣∣∣∣ = det

∣∣∣∣
1 0
0 1

∣∣∣∣ = 1.

Hence, neither p, q, nor p′, q ′ can be both even, and v1 and v5 are of the type A0.
Finally, the system of congruences

⎧⎨
⎩

p′q − pq ′ ≡ 1 mod 3
p + q ≡ 1 mod 3

p′ + q ′ ≡ 1 mod 3

Fig. 12 To proof of Conjecture
2.3 for n= 6
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has three solutions:

(p, q) ≡ (0, 1) mod 3, (p′, q ′) ≡ (1, 0) mod 3,
(p, q) ≡ (2, 2) mod 3, (p′, q ′) ≡ (0, 1) mod 3,
(p, q) ≡ (1, 0) mod 3, (p′, q ′) ≡ (2, 2) mod 3;

in all these cases, 2(p, q) + (p′, q ′) ≡ (1, 2) mod 3 and (p, q) + 2(p′, q ′) ≡
(2, 1) mod 3, so v2 is of the type A1 and v4 is of the type A3. This completes the
proof.

Let us return to the case of an arbitrary n. ��
CONJECTURE 2.4 Every reachable point is a vertex of (infinitely many) reachable
n-gons.

Togetherwith Conjecture 2.3 (and a remark after it), thismeans the following. Call a
transformationϕ ∈ SL(2,R) aVeech transformation ifϕ{0 < θ < (n−2)π/n}∩{0 <

θ < (n − 2)π/n} �= ∅ and ϕ takes reachable points from ϕ−1{0 < θ < (n − 2)π/n}
into reachable points. Claim: for reachable points A, Ba Veech transformation ϕwith
ϕ(A) = B exists if and only if A and B belong to the same type.

Conjecture 2.4 may be refined in many ways. Here is one of them.
We will say that reachable points u, v of type A0 form a unitary pair, if det(u, v)

is equal to sin
n − 2

n
π (that is, to det(ξ, η) where η =

(
− cos

n − 2

n
π, sin

n − 2

n
π

)
,

ξ = (1, 0) are the sides of the standard regular n-gon at the vertex O). Equivalently
(equivalence follows from Theorem 3.1), a unitary pair is the same as a pair of vertices
of a reachable n-gon, joined by sides with the vertex O .

CONJECTURE 2.5 Let n ≥ 5, let u, v be a unitary pair, and let λ = 2 cos
π

n
. Then:

(a) um = u + m(λ + 1)v (where m is an integer, such that um lies in the upper
half-plane) is a reachable point of type A0 (and hence (um, v) is a unitary pair);

(b) wm = u + (λ+m(λ+ 1))v (where m is an integer, such that wm lies in the upper
half-plane) is a reachable point of type A1,

(c) there are no other reachable points on the line u + tv;
(d) all reachable points on the line v + tu are described in the similar way (they all

belong to the types A0 and An−3).

Proofs of Conjectures 2.4 and 2.5 for n = 6 Let (in the coordinate system of
Sect. 2.3) u = (p′, q ′) and v = (p, q). Consider the equation xp + yq = 1.
Since det(u, v) = 1, (x, y) = (−q ′, p′) is a solution of this equation, and, since
GCD(p, q) = 1, all solutions have the form (x, y) = (−q ′, p′)+k(−q, p). Thus, all
points w with integral coordinates have the form u + kv with integral k. For u + kv =
(p′+kp, q ′+kq, we have (p′+kp)+(q ′+kq) = (p′+q ′)+k(p+q) ≡ 1+k mod 3.
Also GCD(x, y) = GCD(p′ +kp, q ′ +kq) = 1, so the coordinates of u+kv are not
both even. Hence, the point u + kv belongs to the type A0, if k ≡ 0 mod 3, belongs
to the type A1, if k ≡ 2 mod 3, and is not reachable, if k ≡ 1 mod 3. This proves the
statement (a), (b), and (c); proof of (d) is similar.
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Fig. 13 Directions of parallel trajectories (n = 7)

Fig. 14 Directions of parallel
trajectories (n = 8)

2.5 Types of Parallel Trajectories

For a short trajectory emanating from O , we will refer to the angle which it forms
with the horizontal direction at to the slope angle. If n is odd, then for the trajectory

with the slope angle α ∈
(
0,

π

2n

)
, the parallel trajectories (emanating from O) have

the slope angles α,
π

n
± α, . . . ,

(n − 3)π

n
± α,

(n − 2)π

n
− α; there are 2(n − 2) of

them (see Fig. 13a). Another description of this trajectories is shown in Fig. 13b.
Appropriate rotations of the n-gon in Fig. 13b transform the trajectories shown into

trajectories emanating fromO under the slope anglesα,
π

n
+α, . . . ,

(n − 3)π

n
+α. The

reflection in the bisector of the angle O transforms these trajectories into trajectories

with the slope angles
π

n
− α, . . . ,

(n − 2)π

n
− α.

If n is even, n = 2m, then for the trajectory with the slope angle α ∈
(
0,

π

n

)
,

there are n − 2 parallel trajectories; they have the slope angles α,
π

m
± α, . . . ,

(m − 2)π

m
± α,

(m − 1)π

m
− α. The picture similar to the previous picture for the

case of even n is shown in Fig. 14.
The following conjecture describes the types of parallel trajectories (we assume

that, in the notation Ak for the type, k is a residue modulo n − 2.)
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CONJECTURE 2.6 Suppose that a short trajectory emanating from O with the slope
angle α belongs to the type Ak. Then, the parallel short trajectory emanating from O

with the slope angle
�π

n
+ εα (where ε = ±1) belongs to the type Aεk−�.

Notice that this statement does not make difference between the cases of odd and
even n; but if n is even, then � in the statement must be also even.

To make the statement more transparent, we present it in the tables on the next
page.

In each of these tables, the left column contains slope angles, the upper row shows
types of trajectories with the slope angle α, and the rest of the tables contain types of
all parallel trajectories.

Proof of Conjecture 2.6 for n = 6Consider three linear transformations of the plane
which map the vector with the slope angle α into vectors of the same length with the

slope angles
π

3
− α,

π

3
+ α,

2π

3
− α. In the coordinates described in Sect. 2.3, these

transformations are presented by the matrices

[
1 0
1 −1

]
,

[
1 −1
1 0

]
, and

[
0 1
1 0

]
; thus,

they take (p, q) into (p, p − q), (p − q, p) and (q, p).
If (p, q) is a reachable point of the type A0, then p+q ≡ 1 mod 3 andGCD(p, q)

= 1. Hence, p + (p − q) = 2p − q ≡ 2(p + q) ≡ 2 mod 3, so (p, p − q) is
not reachable, and, since GCD(p, p − q) = GCD(p, q) = 1, to make this point
reachable, we need to multiply it by 2. However, 2(p, p − q) is of the type A2.
Similarly, 2(p − q, p) is of the type A2, and (q, p) is obviously a reachable point of
the type A0.

If (p, q) is a reachable point of the type A1, that is, GCD(p, q) = 1 and (p, q) ≡
(1, 2) mod 3, then GCD(p, p − q) = GCD(p − q, p) = GCD(q, p) = 1 and
(p, p − q) ≡ (1, 1 − 2) ≡ (1, 2) mod 3, (p − q, p) ≡ (1 − 2, 1) ≡ (2, 1) mod
3, (q, p) ≡ (2, 1) mod 3. Thus, (p, p − q), (p − q, p) and (q, p) are reachable
points of the types, respectively, A1, A2, and A2.

In a similar way, we check that if (p, q) is a reachable point of the type A2, then
(p, p−q), (p−q, p) and (q, p) are reachable points of the types, respectively, A2, A1,
and A1.

Finally, if (p, q) is a reachable point of the type A2, then p+q ≡ 1 mod 3 and p, q
are both even. In this case, all the points (p, p − q), (p − q, p) and (q, p) have even
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coordinates and p + (p − q) ≡ (p − q) + p ≡ 2 mod p, Thus, the points (p, p − q)

and (p−q, p) are not reachable, and to make them reachable, we need to divide them

by 2. The points
1

2
(p, p − q) and

1

2
(p − q, p) are of the type A0.

Thus, dependence of the type of the trajectories on the slope angle is as shown in the
table below. This table coincides with the right table above form = 3. This completes
the proof of Conjecture 2.6 for n = 6.

In conclusion, we formulate a statement, which may be regarded as a sharpening
of Proposition 1.2.

CONJECTURE 2.7 The length ratio of parallel short trajectories of types Ak and A�

is sin
(k + 1)π

n
: sin (� + 1)π

n
.

Remark Conjecture 2.7 implies the statement that the shortest of parallel short trajec-
tories belongs to the type A0. In turn, this shows that all the sides of a reachable n-gon,
are developments of short trajectories of the type A0. Indeed, every side of a reachable
n-gon is parallel to a sufficient amount of diagonals of this n-gon. These diagonals are
also developments of short trajectories, and they all are longer than the side.

2.6 Lengths of Preclosed Trajectories Revisited

In this section, we will explain how Proposition 1.6 from Section 1.7.2 is related to
the results of Sect. 2.5. The main geometric idea (for the odd-gonal case) is presented
in Figs. 15 and 16.

Since every preclosed trajectory is strongly parallel to a short trajectory, we can
restrict ourselves to trajectories which are very close to short trajectories. Consider a
development of a short trajectory of the type Ak emanating from O . If we continue it
through its endpoint B, then the added line may be considered as a development of
a short trajectory in two ways (because two sides of the n-gon contain B); we show
them in Figs. 15 and 16.

Below, we present two calculations based on conjectures from Sect. 2.5.
The first one shows that the trajectory BC is the development of a short trajectory

of the type Ak−2 or A−(k+2), which is symmetric with respect to the bisector of the
angle O to (and have the same length as) the trajectory of the type Ak+2. Indeed, for
this trajectory, the slope angle, we denote it by α′, is the same as β for the trajectory
OB. According to formulas in Definition 2.1 (Sect. 2.2), there are three possibilities
for β = α′; for each of these possibilities, the type Ak′ of the trajectory BC may be
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Fig. 15 Developments of parallel short and long trajectories (example)

Fig. 16 Developments of
parallel short and long
trajectories (another example)

determined by means of Conjecture 2.6:

α′ = β = α + 2(k + 1)

n
π, k′ = k − 2(k + 1) = −k − 2;

α′ = β = −α + 2(n − k − 1)

n
π, k′ = −k − 2(n − k − 1) ≡ k − 2 mod (n − 2);

α′ = β = α + 2(k + 3 − n)

n
π, k′ = k − 2(k + 3 − n) ≡ −k − 2 mod (n − 2).

The second calculation shows that the slope angle α′′ of the continuation of the lime
BC is always equal to α. This calculation requires considering many cases, but they
are all similar, and we restrict ourselves to showing one of them. If the trajectories
OB and BC are both covered by the first of the formulas in the odd-gonal case of
Definition 2.1, then:

α′′ = α′ + 2(k′ + 1)

n
π = α + 2(k′ + 1) + 2(k + 1)

n

π = α + 2(−k − 2 + 1 + k + 1)

n
π = α.

The length of the preclosed trajectory is the sum of the lengths of the short trajectories
OB and BC , so it is equal to the length of the minimal length of the short trajectory
of our direction times:

λk + λk+2 = λ1λk+1 or λk + λk−2 = λ1λk−1

(we use the notations and the formula from Proposition 1.3). This proves Proposition
1.6(a).
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Our computations are confirmed by Figs. 15 and 16. For n = 7, λ1 =
sin(2π/7)

sin(π/7)
, λ2 = sin(3π/7)

sin(π/7)
. In Fig. 15, OC = λ21OB; in Fig. 16, left, OC = λ1BC,

and in Fig. 16, right, OC = λ21BC .
Our arguments work also in the even-gonal case, but in addition to this, we can

notice that the parity of k − 1 and k + 1 is opposite to the parity of k − 2, k, and k + 2,
which explains class reversion in Proposition 1.6(b).

In conclusion, let us notice that if k = 1, then λk−2 or λk+2 may be λ−1 = 0 (sere
again Proposition 1.3). In this case, the trajectory BC collapses to a point, and the
length of the preclosed trajectory is the same as the length of a short trajectory. This
happens if the length of the short trajectory is λ1 = λ1 · 1.

3 Geodesics on the Surface of a Dodecahedron

Since faces of a regular dodecahedron are regular pentagons, geodesics of the surface
of a regular dodecahedron are essentially the same as billiard trajectories in the regular
pentagon. In this sense, “short” geodesics, which begin and end at the vertices, cor-
respond to short billiard trajectories. In particular, short geodesics can belong to the
types A0, A1, and A2. In addition to that, short geodesics on the regular dodecahedron
possess a characteristic not directly related to the properties of billiard trajectories: the
vertices of the dodecahedron, where they begin and end.

It is known that the case of the regular dodecahedron is sharply different from the
cases of other Platonic solids.

Theorem 3.1 [4,8,17] No short geodesic on regular polyhedra, besides the dodecahe-
dron, can end at a vertex where it begins.

In the dodecahedron case, however, it was demonstrated in [1,2,8,17] that short
geodesics beginning and ending at the same vertex exist. Moreover, the article [2]
contains a full classification of such geodesics.

Below, we present some computer generated results concerning short geodesics on
the regular dodecahedron.

We fix a face f of the dodecahedron, an edge e contained in this face, and vertex v

contained in this edge. Then, every vertex w of the dodecahedron has a distance from
v, which is the minimal number of edges forming a path from v to w. Then, all 20
vertices of the dodecahedron are divided into six groups:

1 vertex at the distance 0 from v (this is v),

3 vertices at the distance 1 from v,

6 vertices at the distance 2 from v,

6 vertices at the distance 3 from v,

3 vertices at the distance 4 from v,

1 vertex at the distance 5 from v.
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We consider short geodesics beginning at the vertex v, whose first segment is
contained in the face f . We compiled a list of all such geodesics of length < 120 (we
assumed that the length of an edge of the dodecahedron is 1), whose first segment

makes the angle <
3π

10
. The total amount of these geodesics is 3,750. The table below

shows the numbers of such geodesics of every type depending on the group of vertices
containing the end of the geodesic. We combined the types A1 and A2, since these
types are switched by the reflection of the dodecahedron in the plane passing through
the bisector of the angle v of the face f .

This table has some striking properties. The most visible is appearing two zeroes
in the A0 column. One of them means that no short geodesic of the type A0 can be
closed. This statement follows from the classification of closed short geodesics given
in the article [2]. Still, it may be interesting to find a geometric proof of this fact.

Another zero gives rise to the following

CONJECTURE 3.2 A short geodesic of the type A0 beginning at a vertex v never
ends at a vertex at the distance 2 from v.

In addition to that, we can observe that the distribution of endpoints of short geodesics
of the type A0 is sharply different from that for types A1 and A2. There arise a
temptation to make guesses based on the figures in the table, but we prefer to refrain
from that.

In conclusion, remark that some statistical information regarding closed and pre-
closed geodesics on the regular dodecahedron is contained in the article [7]. This
information also may be a source of exciting conjectures.

4 Regular Polyhedra of Hyperbolic Origin

Platonian polyhedra arise from tessellations of the sphere by identical regular poly-
gons. Are there such tessellations of compact surfaces of constant negative curvature?
An answer to this question is contained in the beautiful (and almost forgotten) article
[6]. The main result of this article is the following
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Fig. 17 Faces and vertices of the hyperbolic dodecahedron

Theorem 4.1 [6] Let p, q, and g ≥ 2 be positive integers, and let V , E, and F be
positive integers with pF = 2E = qV and V − E + F = 2 − 2g. Then, there
exists a tessellation of the surface of genus 2 furnished with a Riemannian structure of
constant curvature −1 by regular p-gons with vertices of valence q with V vertices,
E edges, and F faces.

(The article [6] contains also a classification of such tessellations.)
Using such a tessellation as a pattern, we can form a union of F identical Euclidean

regular p-gons, such that every edge is shared by precisely 2 p-gons and every vertex
is shared by precisely q p-gons. This is a regular polyhedron of a hyperbolic origin.
The problems of classification of short, preclosed, and closed geodesics on it looks
quite worthwhile. The goal of this section is not to present any results (this may be a
subject of subsequent articles), but rather to draw attention to this circle of problems.

Consider the following example. Let p = 7, q = 3 and g = 2. Take V = 28, E =
42, and F = 12. We get a “hyperbolic dodecahedron” with 12 hexagonal faces,
28 vertices, and 42 edges. A decomposition of this “dodecahedron” into faces with
vertices numerated is shown in Fig. 17.
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