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Abstract
Inou and Shishikura provided a class of maps that is invariant by near-parabolic renor-
malization, and that has proved extremely useful in the study of the dynamics of
quadratic polynomials. We provide here another construction, using more general
arguments. This will allow to extend the range of applications to unicritical polyno-
mials of all degrees.

Summary of Notations
· · · [ f ] Used to emphasize the dependence on f of a given object
A Immediate basin of the parabolic point of f ∈ F
Bd A unicritical Blaschke product with a parabolic point at z = 1
˜Bd Another normalization of Bd

b∗ The U1-box that contains a punctured neighborhood of the origin
βt Constant so that �t (z) = �attr[ ft ](z)+ βt has a critical value independent

of t ; βt = σd −�attr[ ft ](vt )
B The main dynamical upper chessboard box of A
C A curve through the orbit of the critical value, Proposition 36
C Main object of study of Sect. 3.7
Cd A semiconjugate of Bd , so that the parabolic point has only one attracting

petal
D The open unit disk in C

d1 Infimum over F of some hyperbolic distance
Dom( f ) Domain of definition of the map f
dU Hyperbolic distance w.r.t. U
E E(z) = e2iπ z
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170 A. Chéritat

f0 An element of F
F Shishikura’s invariant class
Fε A class of maps with slightly less structure
ft A deformation of f0, element of Ft

H The upper half plane in C

H[ f ] The horn map of f , semi-conjugatedby E
h[ f ] Normalized extended horn maps, h[ f ] = �attr ◦�rep
�(x) The hyperbolic distance from 0 to x in D

λ[ f0](z) Some contraction factor in W0
� U � r is the set of points z ∈ U with dU (0, z) < dD(0, r)
� V � r is the set of points z ∈ V with E(z) ∈ E(V ) � r
PC( f ) The post critical set of f
R[ f ] The upper parabolic renormalization of f
r2 Defined in Proposition 79
ρU Element of hyperbolic metric w.r.t. U
S Parabolic renormalization invariant class with the full structure
σd Complex number chosen so that E(σd) is the critical value of R[Bd ]
σt A motion appearing in the decomposition ft = f0 ◦ σt
SL The class of Schlicht maps
T0 For f ∈ F[0,T0[ have a (unique) critical value
T1 z �→ z + 1
T ′1 For f ∈ F[0,T ′1], the critical value is attracted to 0
T3 Some parameter in Lemma 67, later chosen to be = T ′1/2
T5 ∃! T5 ∈ ]0, 1[ s.t. �(1− T5) = d1(δ)+ �(1− ε′)
U1 Domain of f ∈ F
Uu Upper component of �−1

rep (A), also of Dom(h[ f ])
Vδ[ f ] The δ-neighborhood of PC( f )
˜Vη[ f ] Some domain used in the proofs
W0 The complement in C of the closure of the post critical set of f0
W ′

0 W ′
0 = f −10 (W0)

�attr Attracting Fatou coordinates; normalized and extended except at the begin-
ning of Appendix A; normalized by the expansion at infinity in Sect. 3

�rep Repelling inverse Fatou coordinates; same remarks as for �attr apply
�t �t = �attr[ ft ] + βt with βt a constant so that the critical value of �t is

independent of t
�t �t (z) = �rep[ ft ](z−β ′t ) for β ′t = βt − iπγ [ ft ]with γ the iterative residue
�θ(R) Some domain in the coordinates u = −1/c f z, extending the half plane on

which we control the Fatou coordinates
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We give here a brief summary of frequently used notations: D refers to the unit disk
in the complex plane andH to the upper half plane. The translation by 1 inC is denoted
by T1 : z �→ z + 1. By convention, N includes 0 and N

∗ denotes the set of positive
integers. We will often make use of the map E(z) = e2iπ z . We adopt the following
convention for open and semi-open intervals: ]a, b[ , [a, b[ , ]a, b]. The notation SL
refers to the class of Schlicht maps, i.e. holomorphic injective maps φ : D → C with
φ(0) = 0 and φ′(0) = 1. There are a lot of more specific notations in this article, and
a (partial) summary of symbols has been included before the table of contents.

1 Introduction

This article has a long introduction and the main theorem appears only on page 9.
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172 A. Chéritat

1.1 Structure of the Paper

In Sect. 1, we sum up the structure of the paper (the present section); we give a
definition of a notion we call structural equivalence and which, though not strictly
necessary, philosophically underlines this work (Sect. 1.2); for maps with a structure
that is complete in some sense ( f ∈ Sd ), we recall the classical results of Shishikura,
Lanford and Yampolsky: universality and renormalization invariant class and restate
renormalization invariance using the language of structural equivalence (Sect. 1.3);
we restate the Inou Shishikura theorem (Sect. 1.4) using this language; finally, we
state the main theorem (Sect. 1.5).

In Sect. 2, we explain how to understand and visualize the structure of horn maps
and other objects associated with parabolic points, using the chessboard graphs. Some
of these chessboards are invariant by the dynamics, and we call them dynamical
chessboards. The others are called structural chessboards. These chessboards are a
crucial tool in the proof of the main theorem. By universality, to describe the structure
of objects assocaited with maps f ∈ Sd we can focus on a particular map. For this, we
choose Blaschke products (Sects. 2.1, 2.2). Chessboards are introduced in Sect. 2.3. In
Sect. 2.4,we describe and showa computer-generated image of the structure associated
with the Inou–Shishikura class. This section shows many illustrative pictures.

In Sect. 3, we prove themain theorem. The titles of its sub-sections are self explana-
tory and we refer the reader to Sect. 3.2 for an overview of the proof.

In Appendix A, we fix notations and conventions for the objects associated with
parabolic points: Fatou coordinates, horn maps, normalizations, parabolic renormal-
izations, iterative residue, etc. In Appendix B, we motivate the study of horn maps by
giving examples of what they can be used for. In Appendix C, we recall the definition
and elementary facts, for singular values.

1.2 Structural Equivalence

In the breakthrough by Inou and Shishikura [19], they make use of a class of maps
defined as follows (notations and details may differ): FIS is the set of maps of the
form f = P ◦ φ−1, where φ varies among the univalent maps on V such that φ(z) =
z + O(z2) at the origin. Here, P(z) = z(1 + z)2 and V is a specific open subset of
C containing 0 defined in their article. The set FIS is better thought of as the set of
maps that cover the plane in a specific way, and with f (z) = z+O(z2). They are not
covers because they have ramification points. And they are not even ramified covers,
because the cardinality of the preimage of a point is not constant, even when counted
with multiplicity. This classFIS comes in fact from another class of maps, invariant by
parabolic renormalization (defined later in this section), with a much richer ramified
cover structure, but which was too rigid for their purposes, which was to have a class
invariant by near parabolic renormalization. They extracted a carefully chosen subset
of this structure to define their class FIS.

We are going to use the same idea, but we will keep more of the original ramified
cover structure. Let us formalize the notion of structure:
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Near Parabolic Renormalization for Unicritical Holomorphic Maps 173

Definition 1 Let X1, X2, Y be dimension one analytic manifolds. Consider an index
set I , and two collections of marked points ai ∈ X1 and bi ∈ X2 indexed by i ∈ I .
We denote a : I → X1 and b : I → X2 defined by a(i) = ai and b(i) = bi .
Consider also two analytic maps which are nowhere locally constant f1 : X1 → Y
and f2 : X2 → Y . We will say that the pairs (a, f1) and (b, f2) are structurally
equivalent if there exists an analytic isomorphism φ : X1 → X2 such that f1 = f2 ◦φ

and b = φ ◦ a, i.e., such that the following diagram commutes

I
a b

X1
φ

f1

X2

f2

Y

i.e., such that φ sends the marked point ai to bi and such that it sends the fiber f −11 (y)
in the fiber f −12 (y) for all y ∈ Y . Note that this requires that f2 ◦b = f1 ◦a. Structural
equivalence is an equivalence relation, which depends on I and Y . To specify them,
we will sometimes use the terminology (I ,Y )-structurally equivalent or structurally
equivalent over Y with marker I . The equivalence classes will be called structures (or
(I ,Y )-structures).

The restriction on these structures (without losingmarked points) induces a preorder
on structures as follows:

Definition 2 With the same definition as above, but assuming φ analytic injective
instead of analytic isomorphism (thus dropping the surjectivity assumption), we will
say that the structure of (a, f1) is a sub-structure of that of (b, f2): this is indeed
independent of the choice of representatives in their equivalence classes. We will also
say that (b, f2) has at least the structure of (a, f1). It is equivalent to the following:
(a, f1) is structurally equivalent to (b, g2), where g2 is a restriction of f2 to a set
containing the image of b. In other words, sub-structures of (b, f2) are equivalence
classes of restrictions of f2 to open sets containing the marked points.

This preorder is not always an order: for instance if I = ∅ , and the sets X1 ⊂ C

defined by Re (z) > 0 and X2 defined by Re (z) > 1/2 are both mapped to C/Z using
the canonical projection from C to the quotient, then each has at least the structure of
the other (take φ1(z) = z+1 and φ2(z) = z), while they are not equivalent. However:

Proposition 3 On the subclass of structures with connected X and at least one marked
point, this preorder is an order.

Proof Assume each of (a, f1) and (b, f2) has at least the structure of the other and
assume that both Xi are connected and I 
= ∅. Call φ1 : X1 → X2 and φ2 : X2 → X1
the two analytic injections. We have to prove that (a, f1) is structurally equivalent to
(b, f2). It is sufficient to prove that φ2 is surjective (the inverse of an analytic bijection
is analytic). Call ζ = φ2 ◦φ1. It is injective, satisfies f1 ◦ ζ = f1 and fixes the marked
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174 A. Chéritat

points of f1. The map f1 being not locally constant at the marked points, each marked
point has a neighborhood on which some iterate ζm of the map ζ is the identity, where
m is the local degree of f1 at the marked point. Since there is at least one marked
point and since X1 is connected, ζm = id holds everywhere by analytic continuation.
Hence, φ2 is surjective. The proof is analogous for φ1. ��

1.3 Universality andMaps with all “the” Structure

In Appendix A, we fix notations and conventions concerning parabolic points, their
Fatou coordinates, the extensions thereof, their horn maps and renormalization. In
Appendix C, we give a reminder on singular values.

For d ≥ 2 an integer, let

Bd(z) =
(

z + a

1+ az

)d

with a = ad = d − 1

d + 1
.

Let

B∞(z) = exp

(

2
z − 1

z + 1

)

.

They induce unisingular self maps of D with a unique singular value z = 0 in D and
they have a non-linearizable parabolic fixed point on the boundary at z = 1 with two
attracting petals. Interestingly:

Bd −→
d→+∞ B∞

uniformly on compact subsets of D.
The unit disk is the (immediate) basin of one of the two petals. The inverse of the

unit disk is the basin of the other. We let�attr[Bd ] : D → C be the extended attracting
Fatou coordinate for the first petal. The map has also two repelling petals, with vertical
axes.We choose the one on the top and let�rep[Bd ] denote the corresponding extended
repelling Fatou parametrization. We let h[Bd ] = �attr ◦�rep. It is defined on an upper
half plane.

The following theorem is an interpretation of a classical theorem of Fatou.

Theorem 4 (Fatou+folk) Let f : U ⊂ ̂C → ̂C a holomorphic map with a non-
linearizable parabolic fixed point. Let A be a cycle of immediate parabolic basins
associated to this fixed point. Then,

• either U = ̂C and f is a homography
• or there is a singular value in A of the restriction of f to A.

Proof (Sketch) Assume that the second point does not hold. Since the set of singular
values is the closure of the union of the set of critical values of and asymptotic values,
it follows that A contains no asymptotic nor critical values of f |A. In particular, there
is no critical point of f in A so �attr has no critical point either.
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Near Parabolic Renormalization for Unicritical Holomorphic Maps 175

From the absence of singular value, one gets the following path-lifting property:
Given a close-ended path γ : [0, 1] → A and a point a ∈ A such that f (a) = γ (0),
there exists a lift γ̃ by f that starts from a and such that γ̃ ([0, 1]) ⊂ A.

Let �attr : A→ C be the attracting Fatou coordinate extended to A. One can then
prove that �attr also has a path lifting property: Given a path γ : [0, 1] → C and a
point a ∈ A such that �attr(a) = γ (0), there exists a lift γ̃ by �attr that starts from a
and such that γ̃ ([0, 1]) ⊂ A. The proof consists in finding n ≥ 0 such that f n(a) is in
an attracting petal P and n + γ is contained in �attr(P), then applying the first path
lifting proprery n times.

One deduces that �attr has no asymptotic values. Since �attr cannot have critical
values either, it has no singular values and hence, it is a covering from A to C. Since
C is simply connected, each connected component of A is conformally isomorphic
to C. So each component is ̂C minus one point, so there is only one such component
and the parabolic point p is the missing point, so U = ̂C. The isomorphism �attr
is a homography, and f restricted to C\{p} is the conjugate of a translation by this
homography; hence, f is a homography of ̂C. ��
Proposition 5 (Complement of Theorem 4) In the second case of Theorem 4, at least
one of the two statements below is true

• there is a critical point of f in A,
• or there is an open-ended path γ : [0, 1[ → A which leaves every compact of U
and whose image f ◦ γ tends to a point of A.

Proof Indeed the set of singular values of f |U is the closure of the set of its critical
values and of its asymptotic values. In the case of an asymptotic value v, we will repeat
here the analysis done in the proof of Lemma 86: there is a path γ : [0, 1[ → A that
leaves every compact of A and with f ◦ γ (t) −→ v as t → 1. Such a path must also
leave every compact of U for otherwise:

– either γ (t) converges inU to a point a that must then be in ∂A but also must satisfy
f (a) ∈ A; hence, a whole neighborhood of a inU is contained in the basin, but it
also contains points of A so a ∈ A, leading to a contradiction.

– or γ (t) has an accumulation set that is bigger than one point. But since f is
holomorphic and nowhere constant, this would contradict that f ◦γ (t) converges.

��
The following theorem treats the case when there is only one such singular value.

Theorem 6 (folk) Let f be as in Theorem 4 and A a cycle of immediate basins of its
parabolic fixed point. Denote by p the period of A. Assume that one and only one
singular value of the restriction of f to A lies in A. Then, the restriction of f p to any
connected component of A is analytically conjugated to the restriction of Bd to D for
some d ∈ {2, 3, . . .} ∪ {∞}.

See for instance [15], exposé IXor [21], Theorem2.9 for similar statements.Wewill
be mainly interested by the case p = 1. This has the following consequences, discov-
ered by several authors, including Shishikura (see [25]), and Lanford and Yampolsky
(see [21]). See also Part 3 of [6].
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176 A. Chéritat

Corollary 7 (S., L.-Y.) With the same notations, call ζ : A → D the conjugacy from
f p to Bd . Then, there exists a constant τ ∈ C (which depends on the normalizations
of the Fatou coordinates) such that �attr[Bd ] ◦ ζ = τ + �attr[ f p], where the right
hand side is restricted to A.

Thus, in particular, using the terminology introduced here, τ +�attr[ f p] restricted
to A is structurally equivalent to �attr[Bd ] over C. This is illustrated on Figs. 2 and 3,
using a widespread visualization technique explained in Sect. 2.

Below is a theorem specifying some structure of renormalizations of maps of The-
orem 6. For simplicity, we restrict to the case with only one attracting petal. For this
statement and the subsequent ones, we will denote Sd the set of maps f as in Theo-
rem 6 that satisfy its conclusion with this value of d and that have only one attracting
petal. In other words:

Definition 8 Let d ∈ {2, 3, . . .} ∪ {∞}. We denote Sd the set of holomorphic maps
f : U ⊂ ̂C → ̂Cwith a non-linearizable parabolic fixed point with only one attracting
petal, such that if we denote A its immediate parabolic basin, then there is one and
only one singular value in A of the restriction of f to A, and such that:

• (if d = ∞) this singular value is an asymptotic value of f |A or
• (if d <∞) there is a critical point of f |A of degree d.

According to Theorem 6, these cases are mutually exclusive.
There is no specification in the statement below of which normalization is chosen

for the parabolic renomalization R[ f ] of f .

Theorem 9 (S., L.-Y.) Consider a map f ∈ Sd . Then, the upper or lower renormal-
izationR[ f ] : V → ̂C is defined on a simply connected subset of C and has exactly 3
singular values: the asymptotic values z = 0, z = ∞ and a critical value z = v ∈ C

∗ if
d is finite or an asymptotic value z = v ∈ C

∗ otherwise. We haveR[ f ]−1({0}) = {0},
R[ f ]−1({∞}) is empty.
• If d < ∞, the set R[ f ]−1({v}) consists in regular points and critical points of
degree d, and v is not an asymptotic value.

• If d = ∞, the setR[ f ]−1({v}) consists only in regular points, and v is an asymp-
totic value.

The following lemma is not optimal but it will be convenient for future reference.

Lemma 10 If v ∈ C
∗ and f : U → Ĉ is such that:

• The set of singular values of f is equal to {0, v,∞},
• f (0) = 0 and f ′(0) = 1,
• U ⊂ C.

Then, f ∈ Sd for some d ∈ {2, 3, . . .} ∪ {∞}.
Proof We first prove by contradiction that f cannot be the identity near 0. Otherwise,
it would be the identity on the component ofU containing 0 by analytic continuation.
Then, ∂U would be contained in the set of singular values of f . Hence, ∂U ⊂ {v,∞}.
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Near Parabolic Renormalization for Unicritical Holomorphic Maps 177

But then 0 cannot be a singular value, leading to a contradiction. Hence, f has a
non-linearizable parabolic point at 0: it has petals.

Since f ′(0) = 1, the petals have period one. We then prove that f can have only
one attracting petal. Let A be the immediate basin of an attracting petal. By Lemma 87,
the restriction of f̃ : A → A has a set of singular values contained in that of f . But
an immediate basin of f cannot contain 0, which is fixed, nor∞, which is not in the
domain of f , so only v is available as a singular value. Moreover, different immediate
basins being disjoint, the singular values that each contains must be distinct. Hence,
there can only be one immediate basin, and it contains v but not 0 nor∞. ��

This applies in particular to the map R[ f ] of Theorem 9. Hence, we get for each
value of d a class that is stable by parabolic renormalization:

Corollary 11 (S., L.-Y.) For every f ∈ Sd we have R[ f ] ∈ Sd .

We make the following conjecture to complement this.

Conjecture 12 Choose and fix any v ∈ C
∗. All the maps f ∈ Sd have structurally

equivalent upper renormalizationsR[ f ], when the latter are normalized so that v is a
singular value (0 and∞ necessarily are). More precisely, they are (I ,Y )-structurally
equivalent with Y = C, I being a singleton and the marked point being the origin.
The same holds for the lower renormalization, and the upper ones are structurally
equivalent to the conjugate of the lower ones by the reflection z �→ 1/z.

There is a special case for which the conjecture is known to hold. To state it we need
to introduce the rational map Cd , semi-conjugate of Bd by z �→ −((1− z)/(1+ z))2.
The map Cd has a parabolic point at 0 with one attracting petal, its basin is A[Cd ] =
C\[0,+∞[ and the semi-conjugacy is a bijection from D to A[Cd ] (see Sect. 2.2 for
details). The horn map of Cd is defined on the complement of the real line and the
domain of the renormalization R[Cd ] is D.

The statement below is a corollary of Proposition 3.16 in [21] together with Theo-
rem 6 above.

Theorem 13 (S., L.-Y.) Let d < ∞. Then for every map f ∈ Sd whose immedi-
ate basin is a Jordan domain, R[ f ] is equivalent to R[Cd ] (for the same notion of
equivalence as in Conjecture 12).

To state the next results, we introduce a temporary notation for the structural equiv-
alence class of Theorem 13.

Definition 14 Let us denote Rd the set of holomorphic maps f that are defined on
an open subset U of C, such that f (0) = 0, f ′(0) = 1 and f is (I ,Y )-equivalent to
R[Cd ] where, as above, Y = C, I is a singleton and 0 is the marked point.

Another way to interpret Theorem 13 is to say that maps f ∈ Sd whose immediate
basin is a Jordan domain satisfy R[ f ] ∈ Rd . And Conjecture 12 states that all maps
f ∈ Sd satisfyR[ f ] ∈ Rd .
Theorem 13 applies to many maps, for instance:
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Theorem 15 (Roesch, Yin) For any polynomial, for any Fatou component U that is
not eventually mapped to a Siegel disk, U is a Jordan domain.

The case of the cauliflower polynomial z �→ z2 + 1/2 is covered by this theorem.
For this map, Theorem 13 is illustrated in Fig. 9.

By Lemma 10, we have (see Proposition 25 for a detailed argument)

Rd ⊂ Sd .

Let us note the following result, that holds on the more general class Sd . (Under the
restriction that the immediate basin is a Jordan domain, it holds in for more general
maps, see Theorem 2.8, in [21].)

Lemma 16 (S., L.-Y.) For every f ∈ Sd the domain of the map R[ f ] is equal to its
maximal domain of analyticity.

Proof We include a sketch of the proof with an approach different from [21], to take
into account that we do not require the boundary of the immediate basin to be a Jordan
curve. Denote D = DomR[ f ]. Recall that by Theorem 9, the mapR[ f ] is a covering
over V = Ĉ\{0, v,∞}. Let D′ = R[ f ]−1(V ). Since D′ ⊂ D, the hyperbolic metric
over D′ is bigger than over D. It follows that for all ε > 0, there is M < +∞
such that the preimage by Rd of the ε-neighbourhood in Ĉ of {0, v,∞} is a subset
of D whose Mε-thickening for the hyperbolic metric of D covers all D. It implies
by commensurability of the hyperbolic metric coefficient to the inverse distance to
the boundary, that preimages by R[ f ] of points arbitrarily close to either 0, v or∞
accumulate on every point of ∂D. ��

The next statement is Theorem 2.8 in [21] where the maximal domain of analyticity
condition is removed, the proof being the same.

Theorem 17 (L.-Y.) Consider a holomorphic map f with a one-petal parabolic fixed
point whose immediate basin is a Jordan domain. Then, the domain of R[ f ] is a
Jordan domain.

The following is Theorem 3.8 in [21] (their clasŝP corresponds to our class Rd ).

Theorem 18 (L.-Y.) Let d < ∞. Consider a holomorphic map f ∈ Rd . Assume that
the domain of f is a Jordan domain. Then, the immediate basin of f is a Jordan
domain,

This allows to use Theorem 13, so R[ f ] ∈ Rd . Together with Theorem 17, this
allows in particular to iterate renormalization under the condition that the domain of
f is a Jordan domain. This is Theorem 3.7 in [21]:

Theorem 19 (L.-Y.) Let d <∞. Assume that f ∈ Rd and that its domain is a Jordan
domain. Then, R[ f ] ∈ Rd and its domain is a Jordan domain.

In fact, we can get rid of the Jordan domain condition in the theorem above, thanks
to a limit argument:
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Theorem 20 Let d <∞. Assume that f ∈ Rd . Then, R[ f ] ∈ Rd .

Proof In this proof, we normalize the mapsR[ f ], f ∈ Rd , so that their critical value
v is a fixed complex number as follows. First, we chooseR[Cd ] so that its domain is
D and its critical value vd is real and positive. Then, we ask that R[ f ] has the same
critical value vd (c.f. Theorem 9).

Let f ∈ Rd . Up to conjugacy by a rescaling, it takes the form f = f0 ◦φ−1 where
f0 = R[Cd ] : D → C and φ : D → U [ f ] is a schlicht map. Pick any sequence
of schlicht maps φn : D → Un such that Un is a Jordan domain and φn tends to φ

locally uniformly. For instance φn(z) = φ(rnz)/rn restricted to z ∈ D, where rn < 1
and rn −→ 1 satisfies these hypotheses. The map fn = f0 ◦ φ−1n is defined on the
Jordan domainUn and tends to f locally uniformly. It follows that h[ fn] tends to h[ f ]
locally uniformly on compact subsets of the domain of h[ f ]. Hence,R[ fn] −→ R[ f ]
uniformly on compact subsets of the domain of R[ f ]. We have seen that Rd ⊂ Sd .
By Theorem 18, we can apply Theorem 13 to fn , i.e.,R[ fn] = R[Cd ]◦ψ−1n for some
schlicht mapψn . The set of schlicht maps is compact and for any cluster valueψ of the
sequenceψn , we have that DomR[ f ] ⊂ ψ(D) andR[ f ](z) = R[Cd ]◦ψ−1(z) holds
for all z ∈ Dom( f ). (It follows that the germ of ψ at 0 is uniquely determined, and by
analytic continuation of equalities, that ψ is unique, hence ψn converges. However,
we do not need that fact). Last, the inclusion DomR[ f ] ⊂ ψ(D) must be an equality,
for otherwiseR[ f ] would have a maximal domain of holomorphy that is bigger than
its domain, contradicting Lemma 16. ��
For what we are concerned with in this article, this is the base of everything.

1.4 Inou and Shishikura: Giving Up Part of the Structure to Gain Flexibility

Here is the central gear in the work of Inou and Shishikura:

Theorem 21 (Inou Shishikura) There exists an explicit pair of open subsets A, B of C
and an explicit holomorphic map f0 : B → C with the following properties:

(1) 0 ∈ A, A is compactly contained in B,
(2) A and B are simply connected,
(3) f0 fixes the origin and has derivative 1 there,
(4) f0 has exactly one critical point in B; this critical point has local degree two,

belongs to A, and is mapped to −4/27 by f0,
(5) for any upper renormalization R[ f ] of a map f ∈ Sd , there exists a subset U

of DomR[ f ] and a holomorphic bijection φ : B → U with φ(0) = 0 and
R[ f ]∣∣U = f0 ◦ φ−1,

(6) for any univalent map φ : A → C with φ(0) = 0 and φ′(0) = 1, there exists a
univalent map ψ : B → C with ψ(0) = 0 and ψ ′(0) = 1, such that the the map
f0 ◦φ−1, which fixes the origin with multiplier one, has an upper renormalization
which has a restriction of the form f0 ◦ ψ−1.

The map f0 has a particularly simple expression: f0(z) = z(1 + z)2. It turns out
that f0 commutes with z �→ z; thus, the theorem holds with the same f0 for lower
renormalization.
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The statement below is a reformulation of their theorem using the language intro-
duced in the present article. Given a structureB and a sub-structureA, we will say that
the second is a relatively compact sub-structure of the first whenever maps in A are
structurally equivalent to restrictions of maps in B to relatively compact open subsets
of their domains (not just subsets).1

Theorem 22 (Inou Shishikura, reformulated) Let I be a singleton and Y = C. There
exists an explicit pair of (I ,Y )-structures A and B with the following properties:

(1) A is a relatively compact sub-structure of B and B is a sub-structure of the
universal structure Rd of Theorem 20,

(2) ∀(a, f ) ∈ A, the map f is defined on a connected and simply connected Riemann
surface and has exactly one critical point, of local degree two; the same holds for
B.

(3) For any map in A whose domain of definition is a subset of C and that fixes
the marked point with multiplier one, its (suitably normalized) upper parabolic
renormalization has at least structure B.

It is also the case for the lower parabolic renormalization, with the same structures
A, B.
Definition 23 (High type numbers) For N ∈ N

∗, let HTN be the set of irrationals
whose modified continued fraction satisfies |an| ≥ N , ∀n ∈ N. In settings where N
has been fixed, the set HTN is often called the set of high type numbers. We will call
it here the set of numbers of type ≥ N .

To keep it short, the following corollary, also by Inou and Shishikura, is stated here
with some imprecision concerning the renormalization:

Corollary 24 (Perturbation) There exists N > 0 such that the class of maps defined
in an open subset of C, with structure A and fixing the marked point with a rotation
number θ of type≥ N, is invariant under a cylinder renormalization operator (called
the near-parabolic renormalization).

They prove more: thanks to the compact inclusion of structure A in B, there is a
form of contraction. Cylinder renormalization was introduced by Yampolsky in the
study of analytic circle homeomorphisms with a critical point.

Consequences of this corollary are numerous and are still being harvested. Its main
quality is that it allows a fine control on the post-critical set of quadratic polynomials
with high type rotation numbers. For instance, Shishikura and Yang Fei proved that
in this case, the boundary of the Siegel disk is a Jordan curve [27]. It allows to study
the hedgehogs and the size of Siegel disks. In [5], we proved the Marmi Moussa
Yoccoz conjecture restricted to high type numbers. Cheraghi has given many other
applications [1,8,11,12] and [14]which is a progress on theMLCconjecture. Itwas also
used in [2] to prove the existence of quadratic polynomials with a Julia set of positive
Lebesgue measure. We believe that it can also give a new approach to the results of

1 If it holds for some representatives then it holds for all representatives in the equivalence class.
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McMullen [22] on the self-similarity of Siegel disks whose rotation number has an
eventually periodic continued fraction expansion2 at the critical point. McMullen used
Ghys’ quasiconformal surgery procedure as a first step in his proofs, to transfer some
properties that are easier to prove for circle maps. It would be nice to have a more
direct proof, that would adapt to situation, like the exponential maps z �→ ez + c,
where a quasiconformal surgery does not exist but where self-similarity still seems to
occur.

1.5 Main Theorem

In this article, we prove the following extension of Inou and Shishikura’s Theorem.

Main Theorem Let I be a singleton and Y = C. For all d ∈ N with d ≥ 2, there exists
(I ,Y )-structures A and B with the following properties:

(1) A is a relatively compact sub-structure of B and B is a sub-structure of the
universal structure Rd of Theorem 20,

(2) every map inA or in B is defined on a connected and simply connected Riemann
surface,

(3) every map inA or in B has exactly one critical value, and all critical points have
local degree d,

(4) for any map in A whose domain of definition is a subset of C and that fixes the
marked point with multiplier one, the upper parabolic renormalization has a at
least structure B, and the lower parabolic renormalization has at least structure
the conjugate of B by z �→ z̄, for appropriate normalizations of the renormaliza-
tions.

The structures A and B are obtained by retaining most of the universal structure
(call it U) of Rd . More precisely, we choose for B the restriction of a map in U to
a subset of its domain U defined as points having U -hyperbolic distance ≤ L to the
point marked by I , and we prove in Sect. 3 that for L big enough, there is a relatively
compact sub-structure A of B such that the main theorem holds.

Remark It should be noted that for d = 2, our theorem can be considered as weaker
than Inou and Shishikura’s. For one thing, maps in our class havemuchmore structure,
so our class is smaller. Second they have many critical points (though only one critical
value); whereas, there is only one in Inou and Shishikura’s. This should not prevent
our class, though, to be applied to zd + c as we explain now. Note that a similar
situation occurs for the IS class: a polynomial z2 + c with and indifferent fixed point
of multiplier close to 1 never has a restriction that belongs to the IS class, but its first
cylinder renormalization has some as soon as the multiplier is close to 0. Here it is the
same: a map of the form zd + c never has structure A or more, but its first cylinder
renormalization does if the rotation number is close enough to 0.

It should be easy to check that the analog of Corollary 24 also holds. We believe
that many of its consequences for quadratic maps, therefore, carry over to unicritical
polynomials.

2 These rotation numbers are the quadratic irrationals.
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About degree three maps:
In [30], Yang Fei has constructed a renormalization invariant class for d = 3, in

the spirit of Inou and Shishikura. In particular, it has the advantage of having only one
critical value.
About unisingular maps:

We wonder if one can extend the above work to the case d = ∞. There are some
subtleties occurring here.

We do not believe that one can take for B a substructure of g ∈ R[Sd ] defined by a
restriction on a compact subset of the domain of g, like we did in the case d <∞, that
would yield a invariant class. The natural idea is to keep instead a whole connected
preimage of a neighborhood of the singular value, which adds a subset of Dom g that
is at least as tangent to its boundary as a horocycle. Unfortunately, we realized that
this does not provide an invariant class either.

It shall be noted that some consequences of Inou and Shishikura’s invariant class
for d < ∞ will not hold anymore for d = ∞: for instance, there are unisingular
maps for which the boundary of the Siegel disk is not a Jordan curve. This includes
the exponential z �→ λ(exp(z) − 1) (or equivalently z �→ ez + κ) when it has an
indifferent periodic point of rotation number in Herman’s class.3 Interestingly, there
are some other maps with only one free singular value, with d = ∞, and for which
the Siegel disk seems to be more often locally connected (always): for instance, the
semi-conjugate of z �→ eiθ/2 tan z by z �→ z2, i.e., z �→ eiθ (tan

√
z)2. See Fig. 1 for

a plot of the Julia set and Siegel disk of z �→ eiθ/2 tan z.
It is to be noted that though the two (essentially) unisingular families λ(ez − 1)

and λ(tan t z)2 have very different Siegel disks for θ = the golden mean, computer
experiments weakly hint at a possible identical asymptotic limit when zooming at the
singular value: there might exist a cylinder renormalization operator with a fixed point
capturing both maps.

2 Visualizing Structures with the Chessboard Graph

An often used and very useful technique of visualization of ramified covers (and partial
cover structures that are not too messy) consists in cutting the range in domains, often
simply connected, along lines joining singular values, and taking the pre-image of
these pieces, which gives a new set of pieces. The way they connect together and the
way they map to the range give information about the structure.

2.1 Changes of Variables

The map Bd is the composition of the automorphism μ : z �→ z+a
1+az of the disk, with

a = (d − 1)/(d + 1), followed by pow : z �→ zd : Bd = pow ◦μ. If we conjugate Bd

3 By [18] the Siegel disk is unbounded and then by [4] it is not locally connected. Thanks to Lasse Rempe
for pointing this out to me.
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Fig. 1 Rotated by 90°, the Julia set of the map z �→ λ tan z with λ so that the origin is indifferent with
rotation number θ/2 and θ = (

√
5−1)/2 is the golden mean. The Julia set is periodic of period π , we drew

only two periods. There also seems to be an asymptotic similarity by some imaginary translation. There are
red points at the origin and at the two (symmetric) asymptotic values. A few orbits inside the Siegel disk have
been drawn. The Siegel disk seems to be bounded by a Jordan curve (but not a quasicircle: there must be a
dense set of cusps). The rotation number is θ/2 but the picture has a symmetry of order 2 and quotienting
out, i.e., semi-conjugating by z �→ z2, gives a transcendental meromorphic map z �→ λ2(tan

√
z)2 with

rotation number θ at 0, with infinitelymany critical points but that all map to 0, andwith only one asymptotic
value −λ2

by μ, we get the map μ ◦ pow:

˜Bd = μ ◦ Bd ◦ μ−1 : z �→ zd + a

1+ azd
,

which is a Blaschke product too and has its critical point at the origin, the parabolic
point still being at z = 1. As d →∞, ˜Bd tends to the constant 1 uniformly on compact
subsets of D.

The map B∞ is the composition of μ : z �→ i 1−z1+z (mapping the disk to the upper
half plane) followed by z �→ exp(2i z). Interestingly, if we conjugate B∞ with μ, we
get the trigonometric map:

μ ◦ B∞ ◦ μ−1 : z �→ tan z,

whose non-linearizable parabolic fixed point is at the origin and which maps the upper
half plane to itself, the asymptotic value in the upper half plane being i .

2.2 Preferred Representative

Theorems 13 and 20 say that all maps satisfying some assumption have structurally
equivalent upper parabolic renormalizations (appropriately normalized). Their equiv-
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Fig. 2 Illustration of Theorem 6. Above: zoom on the fat Douady rabbit, the Julia set of the quadratic map
P = e2iπ/3z+z2,which has a parabolic fixed pointwith three attracting petals, and acts transitively on them.
The Fatou componentU that contains the finite critical point has been coloredwith the parabolic chessboard,
whose definition is recalled later in the present article. In red, the orbit of the critical value. OnU , P3 satisfies
the hypotheses of the theorem. According to the conclusion, P3 is conjugated onU to the Blaschke product

B2(z) =
( z+1/3
1+z/3

)2 Below: the chessboard of μ2 ◦ B2 ◦ μ−12 , with μ(z) = (z + 1/3)/(1+ z/3), which is

conjugated to B2 and, hence, to P3 on U . The conjugacy has to transport the chessboard and the critical
orbit
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Fig. 3 Another illustration of Theorem 6. This time, d = 3. The parabolic point on the first picture is
indicated by a red dot. The orbit of the critical value is indicated in red on the second picture
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alence class, that depends only on d, is universal in some sense. We will here choose
a preferred representative in this equivalence class, and for this use the maps Bd . A
defect of the maps Bd and ˜Bd , seen as maps from the Riemann sphere to itself, is
that their parabolic point has two attracting petals instead of one. We prefer to work
with a semi-conjugate Cd of Bd that we introduce now. The map Bd commutes with
z �→ 1/z and with z �→ z hence with z �→ 1/z. It is, therefore, a well-defined map on
pairs {z, 1/z}. A first change of variables u = (1− z)/(1+ z)maps the unit disk to the
right half plane

{

z ∈ C
∣

∣Re (z) > 0
}

sending the parabolic point to 0 and conjugates
Bd to a map which can be formulated as follows:

u �→
odd

(

(

1+ u
d

)d
)

even
(

(

1+ u
d

)d
) ,

where odd and even refer to the sum of monomials of odd and even power in u in the
polynomial expansion of (1+u/d)d . For d = ∞, we get the ratio of the odd and even
parts of the exponential,

u �→ tanh(u).

Setting v = −u2 = −((1 − z)/(1 + z))2 identifies pairs {z, 1/z} with single values
of v. There exists a map Cd , rational of degree d if d < ∞, entire transcendental if
d = ∞, such that the following diagram commutes

Bd

S S

Cd

where S(z) = v = −u2 = (i(1− z)/(1+ z))2. If d = ∞we get C∞(v) = (tan
√

v)2.
If d < ∞ the formula is more complicated. The map S is a bijection from the unit
disk to the complement A of [0,+∞] in the Riemann sphere, and sends 1 to 0, −1
to ∞ and 0 to −1. The map Cd has a parabolic fixed point at the origin with one
attracting petal, whose immediate basin is A. By construction,Cd is conjugate on A to
the restriction of Bd to D. The extended horn map of Cd is defined on the complement
of a horizontal line. Thus, the upper and lower parabolic renormalizations of Cd are
defined on round disks centered on the origin. A lengthy computation shows that

γ [Cd ] = 3

20
· d

2 + 1

d2 − 1

where γ is defined in Appendix A. We have not defined in this article a general theory
of Fatou coordinates, horn maps and their normalizations, for parabolic points with
more that one attracting petal. However, in the particular case of Bd , which has two
attracting petals, we defined in Appendix A the objects�attr[Bd ],�rep[Bd ] and h[Bd ].
Let us recall this here.
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The unit disk is the (immediate) basin of one of the two attracting petals of Bd . We
let �attr[Bd ] : D → C be the extended attracting Fatou coordinate for this petal. The
map has also two repelling petals, with vertical axes. We choose the one on the top
and let �rep[Bd ] denote the corresponding extended repelling Fatou parametrization.
We then let h[Bd ] = �attr ◦�rep. It is defined on an upper half plane.

The object for Bd are related to those of Cd as follows:

T ◦�attr[Bd ] = �attr[Cd ] ◦ S
∣

∣

D

S ◦�rep[Bd ] = �rep[Cd ] ◦ T ′
T ◦ h[Bd ] = h[Cd ]

∣

∣

H ◦ T ′

where H is the upper half plane on which h[Bd ] is defined, T and T ′ are translations
that depends on normalizations, and S is the 2:1 rationalmap defined a few lines above,
that semi conjugates Bd to Cd . If we choose a normalization for the objects associated
to Cd , this induces a normalization for the objects associated to Bd by declaring that
T and T ′ must be the identity:4

�attr[Bd ] = �attr[Cd ] ◦ S
∣

∣

D

S ◦�rep[Bd ] = �rep[Cd ]
h[Bd ] = h[Cd ]

∣

∣

H

LetH[Bd ]denote the semi-conjugate of h by E , thatwe complete byH[Bd ](0) = 0.
Then,H[Bd ] is defined and holomorphic on the unit disk. We now defineR[Bd ] and
a preferred normalization for it:

R[Bd ] = A ◦H[Bd ] ◦ B,

with A and B linear such that: B = id, and R[Bd ]′(0) = 1.

2.3 Dynamical and Structural Chessboards

Let f be as in Theorem 13. Let v f denote the unique singular value of f |A in the
immediate parabolic basin A. The set of singular values of h overC is of the form v′+Z

for v′ = �(v f ). Let us cut the range along the horizontal line v′ +R passing through
them. To understand the shape of the preimages of this line and of the upper and lower
half planes it bounds, it is useful towork first with themap Bd . Recall: h is the hornmap
associated with a dynamical system f with an immediate parabolic basin A, on which
there is a conjugacy ζ : A→ D to the map Bd , and �[Bd ] ◦ ζ = τ +�[ f ]. Thus, the
preimage �[ f ]−1(v′ +R) is mapped by the isomorphism ζ to a universal shape, that
depends only on d. The set�[ f ]−1(v′+R) is called the parabolic chessboard graph of

4 There is a way to extend convention 2 on page 80 for the normalizations, using asymptotic expansions
of Fatou coordinates and the general definition of the iterative residue, see for example, [7], Chapter 1. A
remarkable fact is then that these normalizations of Bd and Cd are compatible: T and T ′ are automatically
the identity.
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Fig. 4 Light and dark stripes, preimages of vertical strips of width 1 under the extended attracting Fatou
coordinate �, for ˜B2 and ˜B3

f on A. The connected components of its complement in A are called the chessboard
boxes (in an actual chessboard they are called squares but here they have infinitely
many corners and not just four). The chessboard is the name of this decomposition of
A into a graph and boxes. Since the chessboard is universal, it can be well understood
by looking only at the maps Bd . Note that these maps have a singular orbit contained
in [0, 1[ and that they send reals to reals; thus, the chessboard graph is also the union
of the preimages of [0, 1[.

Each chessboard box of f is mapped by � = �[ f ] to the upper or the lower
half plane delimited by v′ +R, and we colored them accordingly (yellow and blue in
most illustrations of the present article). The set of singular values of � is precisely
{v′−1, v′−2, v′−3, . . .}. These singular values, however, have also regular preimages,
so these universal structures we are considering are not so simple as ramified covers.
Under the dynamics of f , each box is mapped to a box of the same color, and there
is exactly one box of each color that is fixed by f : these are the ones that have the
singular value in their boundaries. The Fatou coordinate � conjugates the dynamics
of f on these two fixed boxes to the dynamics of the translation by 1 on the upper and
lower half planes. The chessboard also tells us about the structure of � as defined in
Sect. 1.2. In view of this, the chessboard in the immediate basin A is both a dynamical
object w.r.t. f and a structural object w.r.t. �.

The figures can be enhanced a little bit: let us use two shades of yellow and two
shades of blue in the range of�. Use the light shade if the floor integer part �Re (z−v′)�
is even, and the dark shade otherwise. Color points in A according to �(z). Then, we
get Fig. 4 for f = ˜B2, ˜B3 and B∞. This color scheme is useful to visualize the pull-
back by �[ f ] of the vertical direction. Under f , a light stripe is mapped to a dark
stripe and vice versa.

The chessboard graph has no endpoint, and it is closed in A but not compact. Since
we considered the chessboard graph as a subset ofC endowedwith its topology, not as a
combinatorial object, there is an ambiguity outside branching points concerningwhich

123



Near Parabolic Renormalization for Unicritical Holomorphic Maps 189

Fig. 5 The extended attracting Fatou coordinates of ˜B2 conjugate the restriction of ˜B2 to the two principal
chessboard boxes and the segment ]0, 1[, indicated on the left, to the translation z �→ z + 1 on a slit plane,
as on the right

points are vertices of valence 2 and which points belong to edges: the singular value
is one such point w. So let us define an abstract graph with vertices at all preimages
of the singular value by π ◦�[ f ] : A→ C/Z, where π : C → C/Z is the canonical
projection, and edges as preimages of the horizontal circle through it.

Remark We will not make use of it, but it would make sense to consider some supple-
mentary topological information on the abstract graph, like the cyclic order induced
by the embedding in the plane on edges at every vertex.

The abstract graph and the way it is embedded in A tell us how are glued together
pieces obtained by cutting A along the preimages of the horizontal circle through the
critical value of π ◦�[ f ]. They also tell us how are glued together pieces obtained by
cutting A along the preimages of the vertical line through this critical value: each of
these piece is a union of two light stripes or two dark stripes, glued along a segment
of the graph.

Figure 5 explains how the union of the edges that touch points in the orbit of the
singular value forms an infinite line in the graph, and how the union of this line and of
the two chessboard boxes whose closures contain the line, make a domain where the
dynamics is conjugated to the translation by 1 restricted to C\] − ∞, 0[. The bright
and dark stripes help to figure out how things are mapped and what the dynamics is
within this domain. This would work for any d ≥ 2, including∞.

Let us now introduce the chessboard associated to the horn map h. It is defined
using the pre-image of the horizontal line through the set of singular values of h, and
of the upper and lower half plane cut by this line. From the definitions, it follows that
it is also equal to the pre-image by � (the extended repelling Fatou parametrization)
of the chessboard of f in the full parabolic basin (the union of all iterated preimages
of A by f ). This time, it is not a dynamically invariant object, but it gives information
on the structure of h as defined in Sect. 1.2.
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Fig. 6 These two pictures show the structures of the extended horn maps h of respectively B2 and B3. They
are all defined on the complement of a horizontal line; in each case, we only drew the picture above this
line; the full picture is obtained by reflection through this line, permuting blue↔yellow. The same coloring
conventions apply as in the previous figures: yellow boxes map by h to the upper half plane delimited by
the horizontal line through the singular value, blue boxes to the lower half plane. The boundaries between
dark and light shades of a given color are mapped by π ◦ h to the vertical line through the critical value,
where π : C → C/Z denotes the canonical projection

The next set of pictures, in Fig. 6, shows the structure of the horn maps of Bd . The
image of these three pictures by the exponential map z �→ exp(2π i z) is shown on
Figs. 7 and 8 and gives us information about the structure of the upper renormalization
R[Bd ] of Bd . One sees that it is also defined on a disk centered on the origin. For the
beauty of the thing, we replaced the dark and light strips by a lighting scheme that
gives the illusion of a texture made of cylinders.5 A more shameful reason for this
change is that the light and dark stripe scheme does not pass to the quotient.

5 The trick to produce such a computer picture is called normal mapping, it is the same trick used to
give a realistic look in 3D imaging to texture-mapped polygons subjected to a light source. Some specular
reflection reinforces the feeling of relief.
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Recall that H[Bd ] denotes the semi-conjugate of h[Bd ] by E : z �→ e2π i z , i.e.,
H ◦ E = E ◦ h, completed byH[Bd ](0) = 0, and thatR[Bd ] = A ◦H[Bd ] for some
linear map A. Recall also that there are three singular values ofR[Bd ]: 0,∞ and some
third point v. The only preimage of 0 is 0.

The chessboard decomposition for R[Bd ] has two equivalent definitions. First as
the preimage by R[Bd ] of the decomposition of C into the circle of center 0 going
through v and the two connected components of its complement, yellow corresponding
to the inside and blue to the outside. But it is also the image by E of the chessboard
decomposition of h[Bd ].

With our coloring convention, the box surrounding 0 is yellow, every blue box is
mapped byR[Bd ] to the set |z| > |v| as a universal cover, the yellow box containing
the origin is mapped 1 : 1 to |z| < |v| and every other yellow box is mapped as a
universal cover to |z| < |v| minus the origin.

This can be generalized to the renormalizationR[ f ] for any f ∈ Sd . It is both: on
one hand, the preimage of the decomposition of C into the circle of center 0 going
through the singular value v of R[ f ] and the two components of its complement; on
the other hand, the image by E of the chessboard of h, subject to the same restriction,
rescaling and possibly inversion if we are performing lower parabolic renormalization
instead of upper, as were done to pass from h toR[ f ], and completed by adding 0. The
partition of the domain ofR[ f ] into two colors and the graph separating them is called
the structural chessboard of R[ f ]. It is different from the dynamical chessboard of
R[ f ], which is defined only in the basin of its parabolic point z = 0 and only if the
normalization ofR[ f ] is such that 0 is a parabolic point ofR[ f ]. In particular, unlike
the dynamical chessboard, the structural chessboard is not dynamically invariant.

In the case d < ∞, notice that there is a tiny loop bounding a small yellow box
containing the origin and that looks like a droplet. When d increases, the angle at
the tip of the loop decreases and the tip gets closer to the boundary of the domain of
definition of the map. In the case d = ∞, the droplet touches the boundary.

The next picture illustrates Theorems 9 and 13. Figure 9 shows the famous case
dubbed the Cauliflower: this is the Julia set of z �→ z2 + 1/4. We removed the colors
and drew the boundaries between boxes and the boundaries of the definition domains.
The six images are ordered in a 2 × 3 grid whose first column figures the dynamical
chessboard of f atop and of B2 below. The next column represents views of their
chessboards in repelling Fatou coordinates or, more precisely, two periods of their
preimage by �rep. The last column is the projection to C

∗ of the middle column
by the map b[ f ]−1E : z �→ b[ f ]−1 exp(2π i z) where b[ f ] is some constant used
in normalizing R. The vertical arrows are isomorphisms between the three pairs of
domains, mapping graph to graph, respecting box colors (not figured here) and even
better: they are structure isomorphisms for the following respective maps (properly
normalized): the attracting Fatou coordinate for the first column, the horn map for
the second column and the parabolic renormalization for the last one. This diagram
is also commutative if one adds the following self maps of the six sets: column 1: f ,
B2, column 2: T1, T1, column 3: Id, Id. From all this, we can build a big commutative
diagram, but we do not think that it would be much readable. Note that the tiny
loops in the last column are the images of the big unbounded square that lie above in
both middle images. The image of this square by �rep is one of the two f -invariant
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Fig. 7 Structure ofR[B2]

Fig. 8 Structure ofR[B3]
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(resp. B2-invariant) squares (they touch the fixed point), but the latter has many other
preimages by �rep.

2.4 Inou and Shishikura’s Sub-structure

To finish this visualization chapter, we present here the structure B of Theorem 22
(Inou–Shishikura’s theorem), and how B and its sub-structure A fit as sub-structures
of R[B2].

The first set of drawings shows one of the ways Inou and Shishikura used to present
it. They defined a Riemann surface with a natural projection over C/Z as follows:
cut the cylinder C/Z so as to retain only the part where Im (z) > −η with η = 2.6

Slit this cylinder along the vertical segment from 0 to−ηi . To this, glue the rectangle
Re (z) ∈ ] − 1, 1[ and Im (z) ∈ ] − η, η[, cut along the same segment. As usual with
Riemann surfaces, we glue each side of the segment in one piece to the opposite side
on the other piece. This is represented on the upper left part of Fig. 10. This method
is reminiscent of the way Perez-Marco uses to build structures in his work. Below it
in the same figure, is a tentative to picture the way it projects to the cylinder C/Z,
while on its right, there is a planar open set isomorphic to it (conformal moduli are
not respected in the figure). In the lower right corner, there is the image of the lower
left by z �→ exp(2π i z) (rotated by 90 degrees). The right column is a map f with
structure B (the marked point is z = 0). The left part of Fig. 11 accurately shows how
B sits as a substructure of the structure ofR[B2]. The right part identifies the pieces.

Structure A is a substructure of B, obtained by mapping conformally the domain
of f minus the origin to the complement of the closed unit disk and removing the
interior of some specific and explicitly defined ellipse (see [19]). The result, mapped
to the set of Fig. 11, is shown in Fig. 12.

Recall that R[Bd ] is the unit disk D. Let U � V � D be the sub-domains cor-
responding to respectively A and B. Inou and Shishikura worked with the particular
sets we just described. It is more natural, though not easy, to take for U and V a pair
of disks centered on the origin. The objective of the present article is to prove that this
works. The downside is that we lose unicriticality of maps in the class we construct.
Yet, it still applies to unicritical polynomials, after taking one renormalization (they
becomemulticritical, with only one critical value); recall that even Inou and Shishikura
need to take first one iteration of renormalization of to get a map in their class from a
quadratic polynomial anyway. The upside is that our approach will work for critical
points of any degree.

3 Proof

The element of hyperbolic metric of a connected open subset U of C will be denoted
by ρU (z)|dz| and the corresponding hyperbolic distance by dU (z, z′).

6 There is some flexibility in the value of this lower bound. In [19], they proved that their theorem holds
for any real η between 13 and 2 included. Here, we drew the domain only for their original value η = 2.

123



194 A. Chéritat

Fig. 9 (Rotated 90◦) Illustration of Theorems 9 and 13 for f (z) = z2 + 1/4. See the text page 19 for a
description
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Fig. 10 Only the upper left section of this figure is conformally correct. Explanations in the text on page 20

Conventions: The hyperbolic metric on D is chosen to be |dz|
1−|z|2 , and the hyperbolic

metric on open strict subsets U of C is normalized according to this convention, i.e.
it is the image of the metric of the disk by its identification with the universal cover
of U . With that convention, the hyperbolic metric on H takes the form |dz|/2Im z.
(Some authors prefer using 2|dz|

1−|z|2 on D so that one gets |dz|/Im z on H.)
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Fig. 11 Caption in the text. Note that compared to the upper right part of Fig. 10, there is a supplementary
corner. The picture is accurate

Fig. 12 Comparison of A and B. The picture is accurate. Though it is hard to see, the boundary of the
light-toned domain and the boundary of the color-saturated domain are disjoint
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3.1 A Convenient Notation

Given r ∈ ]0, 1[ and a subset U of C conformally equivalent to D and containing 0,
we will denote

U � r = {

z ∈ U
∣

∣ dU (0, z) < dD(0, r)
}

.

Note that U � r = φ(B(0, r)), where φ : D → U is a conformal isomorphism
mapping 0 to 0.

Recall that we denoted E(z) = e2π i z , which is a universal cover from C to C
∗.

Given a set of the form V = E−1(U ) where U is as above, we will denote

V � r = E−1(U � r).

3.2 Outline

Our main theorem will be proved in two steps. Let us fix in this section some d ∈ N

with d ≥ 2. From now on, parabolic renormalization refers to upper parabolic renor-
malization. In Sect. 2.2 we defined the objects �attr[Bd ], �rep[Bd ], h[Bd ],H[Bd ] and
R[Bd ] and adopted specific normalizations for them (except forR[Bd ]). In particular,
we chose to define h[Bd ] on the upper half plane H only. The map H[Bd ] is defined
on D, maps 0 to 0 and satisfiesH[Bd ] ◦ E = E ◦ h[Bd ]. The mapR[Bd ] is defined as

R[Bd ] = bH[Bd ],

where b ∈ C
∗ is chosen so that R[Bd ]′(0) = 1. In Sect. 2.2 we introduced a semi-

conjugate Cd of Bd by a 2:1 rational map, such that Cd has only one attracting petal,
and we gave relations between the objects for Bd and the objects for Cd . Note that
R[Bd ] coincides with R[Cd ] and

DomR[Bd ] = D.

In the introduction, we introduced, Definition 14, a classRd that wewill also denote
by F :

F = Rd =
{R[Bd ] ◦ φ−1

∣

∣φ : D → C is univalent and φ(z) = z +O(z2)
}

.

Let

Fε =
{R[Bd ] ◦ φ−1

∣

∣φ : B(0, 1− ε) → C is univalent and φ(z) = z +O(z2)
}

.

In other words, F is the invariant class of Shishikura, Lanford, Yampolsky consisting
of maps f with a fixed point at the origin tangent to the identity and such that f is
structurally equivalent to the renormalization of the Blaschke product Bd , and Fε is
a class of maps having only a subset of this structure. The smaller the ε, the more
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the structure. Note that F = F0. To be more precise and to stick to the language
introduced in Sect. 1.2, let I be a singleton. If we mark the origin by the unique map
I → {0}, maps in Fε are all (I ,̂C)-structurally equivalent.

The maps f ∈ F have the same set of singular values as R[Bd ] and they have the
same nature: {0, v,∞} for some v ∈ C

∗ that depends only on d, with 0 and∞ two
asymptotic values, R[ f ]−1({0}) = {0}, R[ f ]−1({∞}) = ∅ and v is a critical value
that is not an asymptotic value, andR[ f ]−1({v}) consists in regular points and critical
points of degree d.

Allmaps f ∈ F are tangent to the identity at the origin. For the following statement,
recall that Sd is the class of Definition 8.

Proposition 25

F ⊂ Sd .

Proof This has already been mentioned in the introduction and follows from
Lemma 10, let us give details: f ∈ F has exactly the same singular values asR[Bd ],
hence f ∈ Sd ′ for some d ′. We also have to check that d = d ′. The singular value
of f in the immediate basin A is v which is not an asymptotic value hence d ′ 
= ∞
(see Definition 8). Then by Definition 8 again, f has a critical point of degree d ′ in
A, hence d ′ = d. ��

We will prove the following more precise version of the main theorem:

Theorem 26 The main theorem page 9 holds with B = the structure of maps f ∈ Fε1

with marked point 0 and A = the substructure Fε0 , for some pair ε0 > ε1.

The class of Schlicht maps is denoted by SL, thus F = {R[Bd ] ◦ φ−1
∣

∣ φ ∈ SL}

.
The two steps are the following:

(1) Contraction: for f ∈ F denote f = R[Bd ]◦φ−11 , φ1 ∈ SL. Then by Theorem 20,
with an appropriate normalization, R[ f ] is of the form R[Bd ] ◦ φ−12 , φ2 ∈ SL.
We will prove that “the definition of R[ f ] on Dom(R[ f ]) � (1− ε) uses only
iteration of f on Dom( f ) � (1− ε′) where ε′ � ε ”.

(2) Perturbation: for a map f ∈ F , we will define a continuous deformation ft ∈ Ft .
Every map in Ft will be a deformation of a map in F . We will prove that R[ ft ]
has structure at least Fε, provided t ≤ ε′/K for some K > 1, where ε′ is given
by the first step.

Let us give a slightly more detailed formulation of these two steps; we leave here
some imprecisions; they will be fully stated and proven in details in Sect. 3.7 to 3.10.

Step 1: Let E(z) = e2π i z , �attr the extended attracting Fatou coordinate of f , �rep
the extended repelling inverse Fatou coordinate of f , and recall that R[ f ](z) can be
defined (up to pre and post composition by two linear maps) as

E(�attr( f
m(�rep(u)))),

where u ∈ E−1(z) is chosen so that it belongs to the image of the repelling petal by
the repelling Fatou coordinates and m ∈ N is chosen so that f m(�rep(u)) belongs to
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the attracting petal. So we are following the orbit of w = �rep(u) under iteration of
f from the repelling petal to the attracting petal. The claim is that this orbit stays in
Dom( f ) � 1− ε′. Now recall that by the properties of the extended repelling Fatou
parametrization, we have f k(w) = �rep(u + k) and that the domain of definition of
h is invariant by the translation T1. Therefore, using that E−1(DomR[ f ]) is equal to
the translate by an appropriate complex constant of the domain of the horn map h,
point (1) above can be stated as follows:

�rep(Dom(h) � 1− ε) ⊂ Dom( f ) � 1− ε′.

The relation ε′ � ε will take the form:

log
1

ε′
≤ c′ + c log

(

1+ log
1

ε

)

for some positive constants c, c′ (Proposition 45).
Step 2: In the perturbation part, given r = 1− t0 and f ∈ Fr , we define an element

f0 ∈ F together with a smooth interpolation ft , t ∈ [0, t0], between f0 and f = ft0 .
It has the following form:

ft = R[Bd ] ◦ φ−1t .

The map φt is a univalent map, defined on B(0, 1− t) with φt (0) = 0 and φ′t (0) = 1
and is defined as follows: let rt = 1 − t , decompose f (z) = R[Bd ] ◦ ˜φ−1, let
φ(z) = r−1t0

˜φ(rt0 z), whence φ ∈ SL, and define

φt (z) = rtφ(r−1t z).

The map φt is an isomorphism from B(0, 1− t) to rt ·Dom( f ). In particular φt is not
the restriction7 of φ to B(0, 1− t), and

Dom ft = rt · Dom f ,

and is, thus, usually not equal to Dom( f ) � rt .
Now since f0 = R[Bd ]◦φ−1 belongs toF , its renormalizationR[ f0] decomposes

as R[Bd ] ◦ φ−12 for some Schlicht map φ2. By the first step, given ε > 0 and a point
z ∈ DomR[ f0] � (1− ε) = φ2(B(0, 1 − ε)), we know that the value of R[ f0] is
obtained through iteration under f0 of a point w in the repelling petal of f0, point
whose orbit remains in Dom f0 � 1− ε′ = φ(B(0, 1 − ε′)) with ε′ � ε. We will
then vary t from 0 to t0 and follow by continuity the points in the orbit of w, not by
fixing the initial value, but instead by imposing that their attracting Fatou coordinate
stays the same, where we normalize the attracting Fatou coordinates (it varies with t

7 It would be too much to ask for an interpolation ft = R[Bd ] ◦ φ−1t for which φt is the restriction of
some φ to B(0, 1− t). Look for instance at t = r : this would mean that the initial univalent map ˜φ is the
restriction to B(0, r) of the univalent map φ. But there are plenty of univalent maps ˜φ on B(0, r) that are
not the restriction of a univalent map defined on B(0, 1).
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since ft does) by putting its critical values at the nonnegative integers. In particular,
w moves with t . A local study shows that the tail of the orbit will not move much.
The motion of the other points will be bounded from above inductively by iterating
backwards along the orbit, until we reach w. We will measure the motion in terms of
the hyperbolic metric on the complement inC of the post-critical orbit of f0. The study
will show (Proposition 66) that there is some K > 0 independent of f (necessarily
K > 1) such that, provided ε′ is small enough, an orbit that is initially completely
contained in Dom( f0) � 1− ε′ survives all the way as t varies from 0 to ε′/K . Thus,
R[ ft ] has at least structure Fε provided t ≤ ε′/K . The main theorem thus holds for
A = (0, f ∈ Fε0) and B = (0, f ∈ Fε1) with ε0 = ε′/K and ε1 = ε with ε small
enough, as ε′ � ε will imply ε0 > ε1.

3.3 Normalizations

In the rest of Sect. 3, i.e., in the proof of the main theorem, more precisely of Theo-
rem 26,

• normalized Fatou coordinates refer to the normalization by the the asymptotic
expansion at infinity, convention numbered 2 on page 80,

• �attr will refer to extended attracting Fatou coordinates, normalized according to
the same convention,

• �rep will refer to extended inverse of the repelling Fatou coordinates that are
normalized according to the same convention,

• h[ f ] = �attr ◦�rep,
• R[ f ] is the parabolic renormalization, normalized by the critical value (convention
numbered 3 on page 81); see details below,

• in the second step, we will use the notation �t and �t to denote the extended
repelling inverse Fatou coordinate and the extended attracting Fatou coordinate of
ft , normalized not by their asymptotic expansion but according to a convention
analog to number 3.

Let f satisfy the hypotheses of Theorem 20. Let us call (only in this paragraph) U
the connected component of Dom(h[ f ]) that contains an upper half plane and � the
map such that

E ◦ h[ f ]∣∣U = � ◦ E .

Then,R[ f ] = Ma ◦�◦M−1
b for a pair of linear maps Ma : z �→ az and Mb : z �→ bz

that depend on f , hence

Ma ◦ E ◦ h[ f ]
∣

∣

U = R[ f ] ◦ Mb ◦ E .

The constants a and b depend on f .
By Theorem 20, there exists a choice of a and b in the equation above, such that

R[ f ] = R[Bd ] ◦ φ−1,
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i.e., such thatR[ f ] ∈ F . This is the normalization that we choose forR[ f ]. We have
R[ f ]′(0) = 1 and R[ f ] and R[Bd ] have the same (unique) critical value, and these
two conditions characterize this choice of normalization. It coincides with convention
numbered 3 on page 81. The classF is stable by renormalization with this convention:

R : F → F .

3.4 Universality

For later reference, let us mention and prove the following two universality statements
for the repelling extended Fatou coordinates and the horn map, analog to Theorems 19
and 20.

Proposition 27 (S., L.–Y.) Let d < ∞. Recall h = �attr ◦ �rep. Let f be either a
holomorphic map as in Theorem 13, i.e., f ∈ Sd and its immediate basin is a Jordan
domain, or as in Theorem 20, i.e. f ∈ F = Rd . Let U [ f ] denote the component
of the domain of h[ f ] that contains an upper (resp. a lower) half plane. (Up to a
complex rescaling, resp. an inversion and a complex rescaling, the image of U [ f ]
by E : z �→ e2π i z is the domain of the renormalization of f .) Then, there is a
conformal isomorphism φ0 : U [ f ] → U [Bd ] that commutes with T1 and such that
�rep[Bd ] ◦ φ0 = ζ ◦ �rep[ f ], where ζ : A[ f ] → A[Bd ] = D is the conjugacy on
the immediate parabolic basins of the respective fixed attracting petals, mentioned in
Theorem 6.

Proof First case: for maps as in Theorem 13, this is proved in [21]. Second case: for
maps f ∈ Rd , the proof proceeds similarly as the proof of Theorem 20: we introduce
the same sequence fn to which the first case applies. We get a sequence of conformal
isomorphisms φn : U [ fn] → U [Bd ] that commute with T1 and such that �rep[Bd ] ◦
φn = ζn ◦ �rep[ fn], ζn : A[ fn] → A[Bd ]. We normalize �rep[ fn] by the expansion
(convention numbered 2 on page 80), in particular, it tends to�rep[ f ] on every compact
subset of the domain of�rep[ f ]. By extracting a limit as in the proof of Theorem 20we
have a conformal map φ commuting with T1 from a simply connected subset U of C

with T1(U ) = U with Dom�rep[ f ] ⊂ U and �rep[Bd ] ◦φ = ζ ◦�rep[ f ]. Again, the
inclusionmust be an equality for otherwise, by post-composing by�attr[Bd ]wewould
get that R[ f ] is not defined on its maximal domain of holomorphy, in contradiction
with Lemma 16. ��
Lemma 28 For f ∈ F , let v f denote the critical value of f and v′f = �attr(v f ).
There is a conformal map φ from the upper component U [Bd ] of Dom(h[Bd ]) to the
upper component U [ f ] of Dom(h[ f ]) that commutes with T1 and such that

Tτ ◦ h[ f ]
∣

∣

U [ f ] = h[Bd ] ◦ φ−1,

with τ = v′Bd − v′f and Tτ (z) = z + τ .

Proof By Corollary 7,�attr[Bd ] ◦ ζ = τ +�attr[ f ]
∣

∣

A for some τ ∈ C and ζ : A→ D

the conjugacy from f on its immediate parabolic basin to Bd . By applying to the unique
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critical value of f
∣

∣A, we get τ = v′Bd − v′f . By Proposition 27, �rep[Bd ] ◦ φ−1 =
ζ ◦ �rep[ f ] for some conformal isomorphism φ : U [Bd ] → U [ f ] that commutes
with T1. We conclude using h = �attr ◦�rep. ��

3.5 Chessboards

Just before we begin the proofs, let us recall that maps f ∈ F have a structural
chessboard and a dynamical chessboard. The first is a partition of Dom f that is a
pre-image by f of the partition of C

∗ cut by the circle of center 0 and passing through
the critical value of f . The second is a partition of the basin (or of the immediate basin)
of the parabolic point z = 0 of f , and is f -invariant. The second is also a structural
object w.r.t. �attr[ f ]. See Sect. 2.3 for more details.

We defined a chessboard for the horn maps h associated with parabolic points of
maps f ∈ F (more generally to maps f in the class Sd of Definition 8). It is the
preimage in repelling Fatou coordinates of the dynamical chessboard of f and it is
also the preimage by h of the partition of its range cut by a horizontal line. There is a
box that contains an upper half plane, we call it the main upper box of h. Similarly,
the box that contains a lower half plane is called the main lower box of h.

The map φ introduced in Lemma 28 maps the chessboard decomposition of h[Bd ]
to the chessboard decomposition of h[ f ].

3.6 Toolkit

In this section, we redo classical computations on Fatou coordinates and first terms
of their expansion. We add dependence on a map staying in a compact class and put
the emphasis on uniformity of the bounds obtained. The section mainly serves as a
reference for the rest of the text. The trusting reader may skip it.

3.6.1 Compact Classes of Parabolic Maps with One Attracting Petal

Proposition 29 Assume G is a set of holomorphic maps g : D → C with g(z) =
z + cgz2 + · · · , that G is compact for the topology of local uniform convergence and
that cg is never 0, i.e., that g has one attracting petal. Denote γg the iterative residue
of g. Let logp be the principal branch of the complex logarithm. Then, there exists r0
such that ∀g ∈ G
• the disk Dattr of diameter [0, r0eiα], where α is the direction of the attracting axis
of g, is contained in the parabolic basin of g; g(Dattr) ⊂ Dattr and every orbit in
the parabolic basin eventually enters Dattr;

• the extended attracting Fatou coordinate of g is injective on Dattr and maps Dattr
to a set of the form

{

z ∈ C
∣

∣Re (z) > ζ(Im (z))
}

with ζ : R → R an analytic
function (that depends on g) satisfying ζ(x)/x −→ 0 when x −→ ±∞;

• on Dattr, the normalized attracting Fatou coordinates � of g and the map ˜� :
z �→ −1

cgz
− γg logp

−1
cgz

have a difference uniformly bounded by a quantity that is
independent of g.
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The above points also hold if r0 is replaced by any smaller positive real.

Proof The techniques in this proof are standard (see [7,15,20,26]). We will insist here
on providing uniformity of the bounds as g varies in G.

By compactness, uniformly on G:
• cg is bounded away from 0: ∃ε > 0 such that ∀g ∈ G, |cg| ≥ ε;
• g is bounded on B(0, 1/2): ∃K > 0 such that ∀g ∈ G, |g| ≤ K on B(0, 1/2).

Also, by Cauchy’s inequality,

|cg| ≤ 4K .

Since |g(z)−z| ≤ K+1/2 on B(0, 1/2), we get |g(z)−z| ≤ K ′|z2|with K ′ = 4K+2,
and in particular g does not vanish on B(0, 1/K ′) except at the origin.

We will make a series of change of variables z �→ u �→ w �→ ξ with

u = −1
cgz

, w = u − γg logp u, Z = �(z),

where logp denotes the principal branch of the logarithm. We will denote z′ = f (z)
and use the notation u �→ u′, …, Z �→ Z

′ for the dynamical systems z �→ z′ will be
conjugated to.

The first change of variable is injective on C
∗. It maps Dattr to the half plane

Hattr : Re (u) > U0(g) = 1/r0|cg|.

We have the following asymptotic expansion

u′ =∞ u + 1+ γg

u
+O(u−2).

The condition z ∈ B(0, 1/K ′) is equivalent to |u| > K ′/|cg|. Under this condition
the map u �→ u′ is holomorphic, and depends continuously on g. From compactness
of G, it follows that these restrictions form a compact family too. In particular, if we
further restrict to |u| > 1+ K ′/|cg|, we get by a simple application of the maximum
principle that

|u′ − (u + 1)| ≤ M1/u

|u′ − (u + 1+ γg

u
)| ≤ M2/u

2,

for some constants M1, M2 independent of g ∈ G. Thus for r0 ≤ 1/(|cg|max(1 +
K ′/|cg|, 4/M1)), we have

M1

|u| ≤
1

4
,
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204 A. Chéritat

thus,

|u′ − (u + 1)| ≤ 1/4,

thus, the set Hattr is invariant under the dynamics of u �→ u′, so Dattr is invariant
under z �→ z′. It is also easy to see that in the u-coordinate, an orbit tending to∞must
eventually get into Hattr. The right-hand side of the condition r0 ≤ 1/(|cg|max(1 +
K ′/|cg|, 4/M1)) depends continuously on g and reaches, thus, a positive minimum:
it is satisfied as soon as r0 ≤ r1, where r1 is independent of g.

The constant γg is finite and depends continuously8 on g. Thus, it is bounded over
G, say by �:

|γg| ≤ �.

Thechangeof variablew = u−γg logp u has derivative 1−γg/u. It is, thus, injective on
the convex set Re (u) > 2|γg|. Thus, when r0 ≤ r2, where r2 = ming∈G(1/2|γgcg|) >

0, then ∀g ∈ G, the map u �→ w is injective on Hattr. We will require in fact a bit more:
r0 ≤ r ′0 = r2/2, so that

∣

∣
∂w
∂u − 1

∣

∣ ≤ 1
4 . This implies that the image of Hattr by u �→ w

is a set that is of the form Re (w) > ζ(Im (w)) for some analytic function ζ : R → R

that depends on g and satisfies |ζ ′(y)| < 1/
√
15. Moreover, ζ(y)/y −→ 0 when

y −→ ±∞ because w ∼ u when |u| → ∞. In this new coordinates, we get

w′ − w =
∫

[u,u′]

(

1− γg

a

)

da,

whence

w′ − w = 1+ γg

u
+ ≤ M2

u2
− γg log

(

1+ 1

u
+ ≤ M1

u2

)

,

where≤ M2 means a complex number that depends on u but whose module is at most
M2; we require r0 ≤ r3, where r3 is chosen independent of g and so that the quantity
1
u + ≤M1

u2
has necessarily modulus < 1/2: recall that 1/u = −cgz and that |cg| ≤ 4K .

We can then apply the following estimate: |a| < 1/2 �⇒ | logp(1+a)−a| ≤ L0|a|2
for some L0 > 0. Hence, (thanks to a cancellation of the term γg/u)

w′ − w = 1+ ≤ M2

u2
+ γg

≤ M1

u2
+ γg

≤ (1+ 1/4)2L0

u2
,

(recall that M1/|u| < 1/4). Thus for some constant M3 independent of g:

|w′ − (w + 1)| ≤ M3

u2
.

8 Because it is equal to 1− a3/c
2
g if we denote g(z) =

0
z + cgz2 + a3z

3 + · · · .
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Near Parabolic Renormalization for Unicritical Holomorphic Maps 205

The Fatou coordinates can be defined by

�(z) = μ+ lim(wn − n),

where μ is a constant (that depends on the normalization) and wn is the n-th iterate
of w under the dynamics. Since Re (un) > Re (u0)+ 3

4n and Re (u0) ≥ 1
r0|cg | , using

r0 ≤ r4 = min(r1, r ′2, r3), we, thus, get

lim |wn − (w0 + n)| ≤
∑ M3

|un|2 ≤
∑ M3

(

1
4Kr4

+ 3/4
n

)2 = M4.

Thus, |�(z)− (μ+w)| ≤ M4 holds on Dattr for all g. The normalizing constant μ is
so that �(z) = w + o(1) as z → 0 (iff. w → ∞) and therefore, |μ| ≤ M4 whence:
∀g ∈ G, ∀z ∈ Dattr,

|�(z)− w| ≤ 2M4.

Recall that Hattr is the image of Dattr in the u-coordinate and that it is equal to the
half plane Re (u) > U0(g) = 1/r0|cg|. Let U4(g) = 1/r4|cg| and H4 be defined by
Re (u) > U4(g). Let� : H4 → C, u �→ �(z). Then |�(u)−(u−γg logp(u))| ≤ 2M4
and by Cauchy’s inequality, |�′(u)− (1−γg/u)| ≤ 2M4/(Re (u)−u4). In particular,
the image of Hattr by u �→ Z = �(z) is of the form Re (Z) > ζ(Im (Z)) for some
function ζ : R → R provided r0 ≤ r5 = r4/(1+ 8M4) so that 2M4/(Re (u)− u4) ≤
1/4 andprovided r0 ≤ r6 = 1/16K� so that |γg/u| ≤ 1/4.The fact that ζ(y)/y −→ 0
as y −→ ±∞ follows again from |�(u)− (u − γg logp(u))| ≤ 2M4.

We can now fix the value of r0 to min(r5, r6) (or any smaller value) and this gives
us a set Dattr that satisfies all points stated in the proposition. ��

For reference, let us extract the following point (far from being optimal) from the
proof:

Lemma 30 Under the assumptions of Proposition 29, the change of variable u =
−1/cgz conjugates z �→ z′ = g(z) to u �→ u′ satisfying:

∀z ∈ B(0, r0), ∀g ∈ G, |u′ − (u + 1)| ≤ 1

4
.

Similar arguments provide:

Proposition 31 Under the same assumptions as in the Proposition 29, let

Drep = −Dattr.

Then, for r0 small enough, the following holds: ∀g ∈ G,
• there is a branch � of g−1 defined on a neighborhood of 0 containing Drep such
that �(Drep) ⊂ Drep, Drep is contained in the parabolic basin of �, every orbit in
the parabolic basin of � eventually enters Drep;
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206 A. Chéritat

• a normalized repelling Fatou coordinate�rep for g is defined on Drep; it is injective
on this set andmaps it to a domain of the formRe (z) < ζ(Im (z)) for some analytic
function ζ ;

• �rep − ˜�rep is uniformly bounded on Drep by a constant Mrep independent of g,
where ˜�rep = −1

cgz
−γg logp

1
cgz

(notice the change of sign inside the log compared
to attracting Fatou coordinates);

We will also need a control on the inverse Fatou coordinates, that we easily deduce
from the control on the Fatou coordinates:

Proposition 32 Using the notations of Proposition 29, provided r0 was chosen small
enough, then for all g ∈ G:
• Let � = �−1. Then, the difference between −1/cg�(Z) and Z + γg log Z is
bounded by a quantity independent of g and of Z ∈ �(Dattr).

• The domain of definition of �−1, i.e., �(Dattr), contains the set

{

Z ∈ C
∣

∣Re Z > ξ(Im Z)
}

,

where ξ is a function independent of g and satisfying ξ(y) = O(log |y|) as y −→
±∞.

Proof We will use the notations of the proof of Proposition 29. There was a change
of variables u = s(z) = −1/cgz and a bound

|Z − (u − γg logp u)| ≤ M,

for some constant M independent of g, where Z .

|Z − (u − γg logp u)| ≤ M .

There exists C > 0 such that for |z| > C then �| logp z| + M < |z|/4 (recall
� = sup

g∈G
|γg|), whence if r0 < 1/C sup |cg| then Hattr is contained in |u| > C and

thus: |�(u)− u| < |u|/4 i.e. |�(u)/u − 1| < 1/4, i.e.,

∀Z ∈ �(Dattr), |Z/u − 1| < 1/4.

Now

|u − (Z + γg logp Z)| ≤ |Z − (u − γg logp u)| + |γg|| logp u − logp Z |
≤ M + sup |γg|

∣

∣

∣logp
u

Z

∣

∣

∣

≤ M + sup |γg| log 3

2
.
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Near Parabolic Renormalization for Unicritical Holomorphic Maps 207

The proof of the second point is similar. Recall that Hattr depends on g, and is defined
by Re z > ag , where

ag = 1/r0|cg|.

The image �(Dattr is of the form
{

z ∈ C
∣

∣Re z > ζ(|Im z|)} where ζ : R → R is an
analytic function that depends on g. Let �(u) = Z = �(s−1(u)). Then, �(Dattr) =
�(Hattr). Themap� extends to a neighborhood of the closure of Hattr and still satisfies
|�(u)− (u − γg logp u)| ≤ M on this closure. The curve ζ(R) is the image of ∂Hattr
under this extension of �. Let b ∈ R parameterize a point u = ag + ib varying on
∂Hattr and and denote x + iy = �(ag + ib). Then, logp u = log |u| + i argp(u) and
argp(u) < π/2 thus the bound |�(u)− (u − γg logp u)| < M yields for the real and
imaginary parts:

|x − (ag − Re (γg) log |ag + ib|)| ≤ M ′ := M + �π/2,

|y − (b − Im (γg) log |ag + ib|)| ≤ M ′.

There existsC ′ > 0, independent of g, such that for all b ∈ R, |Im (γ ) logp |ag+ib|| ≤
|b|/2+C ′. The second line thus yields |b| ≤ |b|/2+C ′+|y|+M ′ i.e. |b| ≤ 2|y|+M ′′
for some M ′′. Whence x ≤ ξ(y) := sup(ag)+M ′ +� log | sup(ag)+ i(2|y| +M ′′)|,
which is independent of g and has the right order of growth w.r.t. y. ��
Proposition 33 Under the sameassumptions, there exists h > 0 such that for all g ∈ G,
the normalized extended repelling inverse Fatou coordinate �rep and the normalized
extended horn map h[g] are defined on a set containing the half planes Im (z) > h
and Im (z) < −h, and injective on the union of those half planes. Moreover, for all
r > 0, there exists h > 0 such that for all g ∈ G, �rep maps these half planes inside
the disk B(0, r).

Proof Let us continue with the notations of the proof of Proposition 29. Note that,
decreasing the value of r0, we can assume that the maps g ∈ G are all injective on
B(0, r0). Without loss of generality, we assume r < r0. Let us again work in the
coordinates

u = s(z) = −1/cgz.

Let D′(r) be the disk of diameter [0, reiα] where α is the repelling direction of f .
(In particular Drep = D′(r0).) The set D′(r) is transformed by s into the half plane
H ′ : Re (z) < −1/r |cg|. Let us also denote

H ′0 : Re (z) < −1/r0|cg|.

Recall that if |u| > 1/r0|cg| then |u′ − (u + 1)| < 1/4. To shorten formulas, we will
work with �u

rep(u) = �rep ◦ s−1(u), ˜�u
rep(u) = ˜�rep ◦ s−1(u) = u − γg logp(−u)

and �u
rep(Z) = s ◦�rep(Z). Consider the line of slope −1/√15 that is tangent to the

disk B(0, 1/r |cg|). Consider open half plane H ′′ above this line: it does not contain
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208 A. Chéritat

this disk. In particular, |u′ − (u + 1)| < 1/4 holds on U and thus H ′′ is stable:
u ∈ H ′′ �⇒ u′ ∈ H ′′. Consider now the vertical bi-infinite strip S of width
5/4 whose rightmost bounding line is the boundary of H ′0. Its image in repelling
Fatou coordinates contains a fundamental domain for the translation z �→ z + 1. The
intersection of S with H ′′ contains all points u ∈ S with Im (u) > h1 for some h1 that
depends on r and r0 and the lower bound ε on |cg| mentioned at the beginning of the
proof of Proposition 29. Using |�u

rep − ˜�u
rep| < Mrep and the upper bound |γg| ≤ �,

we deduce that �u
rep(S ∩ H ′′) contains every point of �u

rep(S) with imaginary part
≥ h, where h depends on r and on the other constants but not on g.

5/4H ′
0

1
r0|cg|

1
r|cg|

H ′′

Recall that�u
rep maps the vertical line bounding H ′0 to a y-graph, i.e., a curve which

crosses each horizontal line exactly once. The translate by−1 of this curve is the image
by �u

rep of a curve C , preimage in H ′0 of ∂H ′0 by u �→ u′. Because of the inequality
|u′ − (u + 1)| < 1/4, we get C ⊂ S. Thus, �u

rep(S) contains a domain bounded by a
y-graph and and its translate by −1, i.e., a fundamental domain for the translation by
−1.

Let us prove that the domain of the extended normalized inverse repelling Fatou
coordinate �rep contains all points at height > h. Recall �rep is defined by extending
�−1rep, which is defined only on �u

rep(H
′), by setting �rep(Z) = gn(�−1rep(Z − n)) for

all n ≥ 0 and all Z ∈ C such that the right-hand side is defined. Consider now Z ∈ C.
By the fundamental domain property proved above, there exists m ∈ Z such that
Z−m ∈ �u

rep(S). Ifm ≤ 0, then Z ∈ �u
rep(H

′) = Dom(�−1rep), hence Z ∈ Dom�rep.
If m ≥ 0 and Im (Z) > h then Im (Z − m) = Im Z > h and thus we have seen
that u−m := (�u

rep)
−1(Z − m) belongs to H ′′ ∩ S. Since H ′′ is stable, the whole

forward orbit of u−m belongs to H ′′. In particular gm(�−1rep(Z −m)) is defined, hence
Z ∈ Dom�rep. We have proven that the half plane

{

Z ∈ C
∣

∣ Im (Z) > h
}

is contained
in Dom�rep.

Let now Z ∈ C with Im (z) > h and let us prove that �rep(Z) ∈ B(0, r) and
to the parabolic basin. Again consider m ∈ Z such that Z − m ∈ �u

rep(S). Then,
in the case m ≥ 0 we just saw that the whole orbit of u−m is in H ′′, in particular
the m-th iterate, which is equal to �u

rep(Z). Thus the point �rep(Z) = s−1(�u
rep(Z))
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Near Parabolic Renormalization for Unicritical Holomorphic Maps 209

belongs to B(0, r). Also, the orbit of u tends to ∞ hence �rep(Z) belongs to the
basin of the parabolic point of g. In the case m ≤ 0, then Z ∈ �rep(D′(r)) and thus,
�rep(Z) = �−1rep(Z) ∈ D′(r) ⊂ B(0, r). Since moreover Z −m satisfies the first case
and, thus, the point �rep(Z − m) belongs to the parabolic basin, we get that �rep(Z)

also belongs to the basin, as it is mapped to the former point by the |m|-th iterate of g.
The proofs for the lower half plane

{

z ∈ C
∣

∣ Im z < −h}

are similar. Let us prove
injectivity of �rep on the union V of

{

z ∈ C
∣

∣ Im z < −h}

and
{

z ∈ C
∣

∣ Im z > h
}

.
First, it is injective on U = �rep(D′(r)), because it is equal to �−1rep there. The map g
is injective on �rep(V ) because the latter is contained in B(0, r0). The set �rep(V ) is
also stable by g, thus gn is also injective on it. Then, for each n, the map gn ◦�−1rep◦T−n
is a composition of injective maps on Tn(U )∩V , and coincides there with�rep. Since
the union over n of T n(U ) is the whole complex plane, the claim follows.

Injectivity of h[g] on V is similar, since h[g] is the union over n ≥ 0 of the maps
T−n ◦�attr

∣

∣

Dattr
◦ gn ◦�rep, which are injective when restricted to V . ��

Let us introduce a weak notion of convergence of analytic maps: let X , Y be
connected Riemann surfaces and let fn : Un → Y and f : U → Y be analytic withU
andUn open subsets of X . Endow Y with any metric compatible with its topology. Let
us say that fn tends to f if for all compact subset K of U , K is eventually contained
in Un and fn tends to f uniformly on K . This does not depend on the choice of the
metric.9 Note that this does not preventUn to have a bigger limit thanU . In particular,
limits are not unique. We will use the following notation:

fn ⊃−→ f ,

which is chosen so to express the fact that f can be contained in limits with a big-
ger domain. We do not define an associated topology but we will use the notion of
sequential continuity with respect to that notion of convergence, as illustrated by the
following two properties, whose proofs are left to the reader:

(1) The composition f ◦ g depends continuously on the pair f , g: if fk ⊃−→ f and
gk ⊃−→ g then fk ◦ gk ⊃−→ f ◦ g.

(2) For a fixed n, f n depends continuously on f : if fk ⊃−→ f then f nk ⊃−→ f n .

For the next statement, recall that�attr andψrep denote the extended Fatou functions.

Proposition 34 (Continuous dependence) Assume gn : Un → C is a sequence of
holomorphic maps defined on an open subset Un of C containing the origin, with
expansion gn(z) = z+ cnz2+· · · at 0, and with cn 
= 0. Assume g is also of this form
with cg 
= 0 and that gn ⊃−→ g. Then �attr[gn] ⊃−→ �attr[g], �rep[gn] ⊃−→ �rep[g]
and h[gn] ⊃−→ h[g].
Proof The claim on h = �attr ◦�rep follows from the claims on �attr and �rep.

9 This definition has the following equivalent topological formulation. Let X ′ = {0, 1, 1/2, 1/3, 1/4, . . .}×
X ⊂ R × X and embed X ′ with the topology induced by R × X . Let W ⊂ X ′ be defined by (0, z) ∈
W ⇐⇒ z ∈ U and (1/n, z) ∈ W ⇐⇒ z ∈ Un . Let F : W → Y defined by F(0, z) = f (z) and
F(1/n, z) = fn(z). Then fn ⊃−→ f ⇐⇒ [W is open relative to X and F is continuous].
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210 A. Chéritat

Recall that Dattr[g] is the disk of diameter [0, r0eiα[g]] where α[g] is the direction
of the attracting axis of g, and that r0 is independent of g. Hence, Dattr[g] depends
continuously on g. A compact set K contained in the parabolic basin of g is mapped
in Dattr[g] by an iterate gk . The latter depends continuously on g when k is fixed.
Since the center and radius of Dattr[g] depend continuously on g, gkn(K ) ⊂ Dattr[gn]
for all n big enough. Continuity, as a function of g, of the restriction of �attr to Dattr,
follows for instance from the third point of Proposition 29 combined with uniqueness
of Fatou coordinates: the sequence �attr[gn] forms a normal family, and any extracted
limit is a Fatou coordinate for g because the functional equation �attr[gn] ◦ gn =
T1 ◦�attr[gn] passes to the limit, and uniqueness of the normalized Fatou coordinates
implies uniqueness of the extracted limit. From the convergence of�attr[gn] to�attr[g]
on Dattr[g], we deduce the convergence of�attr = �attr[gn] ◦ gkn−k to�attr[g] ◦ gk−
k = �attr[g] on g−k(Dattr[g]), and hence on the whole parabolic basin of g.

The proof for �rep is similar. ��
3.6.2 Transferring toF

Fix some d ∈ {2, 3, . . . ,∞} and recall the definition F = {R[Bd ] ◦ φ−1
∣

∣ φ ∈ SL}

.
The conclusions of the previous propositions hold forF . Indeed, the set of restrictions
toD of maps A◦ f ◦ A−1 with A(z) = 4z satisfies the assumptions of the propositions.
First, the set of Schlicht maps SL is compact, and by Koebe’s one quarter theorem,
the domain of their reciprocal contains B(0, 1/4). The restriction of these reciprocals
on B(0, 1/4) forms a compact family. We saw in Proposition 25 that F ⊂ Sd . In
particular, maps in F have only one attracting petal. This is, therefore, also the case
for the conjugate map A ◦ f ◦ A−1. This proves the claim.

Call ˜f the restriction of A ◦ f ◦ A−1 to D. The conclusions of the previous propo-
sitions are easily transposed from ˜f back to f because they were all local (except for
Proposition 34, which directly applies): for instance, normalized Fatou coordinates
satisfy �attr[˜f ](z) = �attr(A(z)) for all z in the domain of the left hand side (it is
contained in the domain of the right-hand side but not necessarily equal to it, because
˜f is a restriction). Proposition 34 did not assume that the maps are defined on the
unit disk, it applies directly, so continuous dependence of �attr[ f ] and �rep[ f ] holds
without restricting the domain.

Recall h[ f ] has the following expansion:

h[ f ](z) = z + aup / down + o(1),

as Im (z) −→ ±∞, where aup and adown are two complex constants. For any map in
the class F , denote {0, v f ,∞} its singular values.10 The corresponding map h[ f ] has
a set of singular values of the form vh + Z where

vh = vh[ f ] = �attr[ f ](v f ).

By Proposition 33 there is a uniform h > 0 such that for all f ∈ F , the domain of
h[ f ] contains the half planes Im z > h and Im z < −h.
10 It turns out that v f is independent of f for a fixed d, but we will not use that fact.
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For any d ∈ {2, 3, . . . ,∞}, the set F is sequentially compact, for the notion of
convergence defined above. By this, we mean that every sequence fn ∈ F has a
subsequence fk such that fk ⊃−→ f .11 A sequentially continuous real-valued function
over a sequentially compact set is bounded. This implies the following proposition.

Proposition 35 For any d ∈ {2, 3, . . . ,∞} over the class F , the following holds:

(1) (bound in the normalized attracting Fatou coordinates)
∃M such that ∀ f ∈ F , |Im (vh)| ≤ M.

(2) (bound on the horn map at the ends of the cylinder)
∃M such that ∀ f ∈ F , |aup[ f ]| ≤ M and |adown[ f ]| ≤ M.

(3) (bound in the normalized repelling Fatou coordinates)
∃M such that ∀ f ∈ F , the main12 upper and lower chessboard boxes of h[ f ]
respectively contain the half planes Im (z) > M and Im (z) < −M.

Proof The map f ∈ F �→ vh ∈ C is sequentially continuous by Proposition 34. The
set F being sequentially compact, its image by f �→ vh is sequentially compact in C

(i.e., compact), thus bounded. The first point follows.
For the second, by periodicity and the maximum principle and according to the

expansion, the distance |h[ f ](z)− z| is bounded over Im (z) > h+1 by its supremum
over a segment of length 1 inside the line Im (z) = h+1, for instance the segment [i(h+
1), 1+i(h+1)]. Continuous dependence implies the distance is uniformly bounded as
f varies in F . Since aup is the limit of this difference as Im (z) −→ +∞, this implies

the bound on aup. (Alternatively, one can use the fact that aup =
∫ ih+i+1
ih+i (h(z)−z)dz.)

The proof is similar for adown.
For the third, we will use the following trick: first h[ f ] is an analytic isomorphism

commuting with T1(z) = z + 1 from the upper and the lower structural boxes to one
of the half plane delimited by vh + R. By Koebe’s one quarter theorem, the upper
box must contain Im (z) >

log 4
2π + Im (vh)− Im (aup). The previous bounds allows to

conclude. The proof is similar for the other half plane. ��
Let us now prove an independent proposition. Let f be a map in Sd . Then we can

apply Lemma 28 about universality and we know that �attr : A → C is structurally
equivalent to �attr[Bd ] for some d ∈ {2, 3, . . . ,∞}. The singular values of �attr are
∞ and the points of the form �attr(v)− n with n > 0 (see for instance Proposition 2
in [3], where a notion of ramified cover is used: their proposition implies that �attr is
a cover outside∞ and the critical values).

Proposition 36 Under these conditions, the preimage � by �attr of the horizontal half
line �attr(v) + [0,+∞[ has a connected component C that is a curve starting from
the singular value of f in A and ending at the parabolic point. It is stable: f (C) ⊂ C,
and contained in the common boundary of the two principal dynamical chessboard
boxes of f .

This curve will be called the principal curve. It contains in particular the orbit of the
singular value of f . Note that all connected components of � are curves since the
horizontal half line considered contains no singular value of �attr.

11 Note that if we restrict our notion of convergence to F , we recover uniqueness of the limit.
12 terminology introduced in Sect. 3.5.

123



212 A. Chéritat

Proof It is enough to prove the proposition for Bd , which is easy because the latter
map is real preserving and its singular value is on the real line. Then it transfers to
f by universality: all claims are immediate except the statement that C tends to the
parabolic point. The latter follows for instance from C being the concatenation of the
sucessive images by f of its part from v f to f (v f ). ��

Let us go back to maps f ∈ F . As we remarked before, convergence of maps
fn ⊃−→ f where fn and f belong to F is well behaved: limits are unique and in
fact it is equivalent to the classical notion of convergence of a sequence with respect
to a (metrizable) topology making F compact: Indeed, let fn, f ∈ F . Write fn =
R[Bd ] ◦ φ−1n and f = R[Bd ] ◦ φ−1 with φn and φ ∈ SL (uniquely determined).
Then, the following are equivalent:

(1) fn ⊃−→ f ,
(2) for some ε > 0, the map fn tends to f uniformly on B(0, ε),
(3) for some ε > 0, the map φn tends to φ uniformly on B(0, ε),
(4) φn tends to φ uniformly on every compact subsets of D.

A proof of (3) �⇒ (4) is, for instance, given by compactness of SL together with
analytic continuation of equalities. The last three notions of convergence are easily
metrized and all endow F with the same topology. It is Hausdorff and compact for
this topology. The map SL→ F , φ �→ R[Bd ] ◦ φ−1 is hence a homeomorphism.

Recall that we denote 0, v f ,∞ the singular values of f over ̂C. It turns out that
the class F has been defined so that v f does not depend on f , but let us temporarily
ignore that.

Lemma 37 (Uniform bound on the trapping time) For any r > 0, denote Dr [ f ] the
disk of diameter [0, reiα], where α is the direction of the attracting axis of f . There
exists n0 ∈ N such that ∀ f ∈ F , f n0(v f ) ∈ Dr [ f ].
Proof Consider r ′ = min(r , r0), where r0 is provided by Proposition 29. The set
Dr ′ [ f ] is an attracting petal for f and is contained in Dr [ f ]. For each f ∈ F it takes
a finite number of iterates for v f to be trapped by Dr ′ [ f ]. The same number of iterates
is enough for nearby13 maps in F . By compactness14 of F , it follows that there is
n0 ∈ N such that ∀ f ∈ F , ∃n ≤ n0 such that fn(v f ) ∈ Dr ′ [ f ]. Since Dr ′ [ f ] is a trap
this implies f n0(z) ∈ Dr ′ [ f ] and thus ∈ Dr [ f ]. ��

We will also use a slightly stronger statement:

Lemma 38 There exists n0 ∈ N and η0 > 0 such that ∀ f ∈ F , f n0(B(v f , η0)) ∈
Dr [ f ].
Proof Done by compactness as above, using the following modification of the local
statement, which is immediate by continuity for ⊃−→ of f �→ f n for a fixed n: for
each f ∈ F and each n such that f n(v f ) ∈ Dr [ f ], there is η > 0 such that for all
maps g ∈ F close enough to f the n-th iterate of g sends B(vg, η) in Dr [g]. ��
13 We may use the topology on F , in which case it means that the same iterate is enough for all maps in a
neighborhood. Or we may use the notion ⊃−→, in which case it means that for all sequence fn ⊃−→ f , this
iterate is eventually enough.
14 cover argument or sequence argument.
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We have not checked if all compactness arguments in the rest of the article can be
reformulated using ⊃−→ only. This is not the main point, however. Moreover, since
there is on F a topology for which convergence of sequences is equivalent to ⊃−→,
in the sequel we will use compactness of F for this topology and convergence of
sequences in F w.r.t. this topology. Recall it is a metrizable topology for which F is
compact.

Below, dC refers to the Euclidean distance on C and if U is a open subset of C

whose complement has at least two points, dU denotes the hyperbolic distance on U .
Let C = C[ f ] be the curve introduced in Proposition 36.

Lemma 39 For f ∈ F , let PS( f ) the orbit of the singular value v f of f . The following
holds:

(1) The sets C[ f ] and PS( f ) depend continuously on f for the Hausdorff topology
on compact subsets of C.

(2) sup
{|z| ∣∣ z ∈ PS( f ), f ∈ F}

< +∞
(3) sup

{

dDom( f )(0, z)
∣

∣ z ∈ PS( f ), f ∈ F}

< +∞
(4) inf

{

dC(z, ∂ Dom( f ))
∣

∣ z ∈ PS( f ), f ∈ F}

> 0

Proof Let us use the same notations as in Lemma 37. For any r ≤ r0, denote Dr =
Dr [ f ]: it is an attracting petal for f . Let n0(r) = n0 be provided by Lemma 37.
For a fixed m < n0(r), f m(v f ) depends continuously on f . The rest of the orbit of
v f is contained in Dr . Continuity of PS( f ) = PS( f ) ∪ {0} follows, as well as the
point 2. For point 4, note that B(0, 1/4) ⊂ Dom( f ) (this follows from Koebe’s 1/4
theorem). Choose now r = min(r0, 1/8).For each fixedm < n0 = n0(r), the distance
from f m(v f ) to ∂ Dom( f ) reaches a positive minimum as f varies in F , again by
continuity and compactness. For m ≥ n0, this distance is ≥ 1/8. For point 3 first note
that, on one hand, for m ≥ n0, f m(v) ∈ B(0, 1/8) and thus dDom( f )(0, f m(v)) ≤ 1
(better constants can be computed but that is not the point here). Let us now use the sets
O and Oattr introduced in Proposition 36. The map �attr is a holomorphic bijection
from Oattr to O = C\ ] − ∞, v′ − 1] and the set X = {

f m(v)
∣

∣ 0 ≤ m < n0
}

is the
preimage by this map of v′ + {0, 1, . . . , n0 − 1}). Therefore, the Dom( f ) hyperbolic
distance from X to B(0, 1/8) is ≤ the hyperbolic distance in O from v′ to v′ + n0,
which is itself < n0. ��

3.6.3 Lemmas for the Second Step

Consider again a class of maps G as in Proposition 29, i.e., G is a set of holomorphic
maps g : D → C with g(z) = z + cgz2 + · · · , that is compact for the topology of
local uniform convergence and such that cg is never 0, i.e., g has one attracting petal.
In the second step of the proof of the main theorem, we will need some control on the
variation of Fatou coordinates in terms of the variation of the map. For this, we first
need to extend Fatou coordinates to bigger petals, as in [26].

Let θ ∈ [π/2, π ] and �θ(r) denote the following domain: it contains a right half
plane and is bounded by the arc of circle of center 0, radius r and argument ranging
from−(θ−π/2) to θ−π/2, and by the two half lines continuing this arc tangentially
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z-coordinate, Dθ(r0) u-coordinate, Ωθ(r0)

Fig. 13 Bigger domains for Fatou coordinates. On the left : z-coordinate and different domains Dθ (r0)
(in this example, the attracting axis is the positive reals), θ − 90◦ = 0, 30◦, 60◦, difference between these
regions are highlighted in different colors. On the right, the u-coordinate, with u = −1/c f z, and the
corresponding domains �θ (R0). In light green are Dattr and Hattr

to the circle (see Fig. 13). For θ = π/2 and r = R0[g] = 1/|cg|r0, this domain is
exactly the half plane, image of Dattr in the u-coordinates of g.

Lemma 40 There is r0 such that for all g ∈ G, the change of variablew = u−γg logp u
is injective on the non-convex set �π(R0[g]).
Proof Let us give a computational but elementary proof of this fact.Writeu = reiα and
u′ = r ′eiα′ withα, α′ ∈ ]−π, π [ and note that r , r ′ ≥ R0[g] ≥ 1/r0 infg∈G |cg|. Then,
|r−r ′| ≤ |u−u′| and |eiα−eiα

′ | ≤ |u−u′|/min(r , r ′). If |α−α′| ≤ π (case 1,) then
|α − α′| ≤ (π/2)|eiα − eiα

′ |. Otherwise (case 2), let us just use that |α − α′| ≤ 2π .
Now w = w′ means u − u′ = γg(log r ′ − log r) + γgi(α′ − α) whence (case 1)

|u−u′| ≤ |γg |(1+π/2)
min(r ,r ′) |u−u′| therefore u−u′ = 0 provided r0 was chosen big enough

(independently of g).Or (case 2) |u−u′| ≤ |γg |
min(r ,r ′) |u−u′|+2π |γg|. In the second case,

choose r0 small enough (independently of g) so that |γg |
min(r ,r ′) ≤ 1/2. Then, |u− u′| ≤

4π |γg|. Sinceα−α′ > π the points u and u′must have opposite imaginary part and one
of them at least has negative real part. Since they belong to�π(R0[g]), which does not
contain the half strip of equation

{

z ∈ C
∣

∣Re z ≤ 0 and − R0[g] ≤ Im z ≤ R0[g]
}

,
we get in particular that |u − u′| > R0[g]. So if we choose r0 small enough so that,
∀g ∈ G, R0[g] > 4π |γg|, this is impossible. ��
Proposition 41 Let θ ∈ [π/2, π [. Proposition 29 still holds if we replace Dattr with
the domain Dθ (r0)[g] whose image in the u-coordinate is �θ(R0[g]), where R0[g] =
1/|cg|r0, and if we replace the condition on ζ by ζ(x) = −|x tan(θ − π/2)| + o(x).
Similar statements hold for repelling Fatou coordinates.

Proof The proof carries over with little modification. The constant 1/4 has to be
replaced by a smaller constant (by sin θ ) when θ is too close to π . Injectivity of the
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change of variable w = u−γg logp u on the non-convex set �θ(R0) follows from the
previous lemma. For the uniform bound on

∑

M3/|un|2: divide the orbit of un into
three parts, according to Re (un) being in ]−∞,−R0[, in [−R0, R0], or in ]R0,+∞[.
In the central part, there is a uniformly bounded number of un . The two other parts
are bounded exactly like before. ��

In particular, �attr[g] is defined on a set containing the image of �θ(R0[g]) by
u �→ −1/cgz. Recall that R0[g] is bounded, hence the sets �θ(R0[g]) all contain
�θ(R0) for some R0 independent of g. Choose any θ with π/2 < θ < π . Let

�[g](w) = �(z),

where u = −1/cgz, w = u − γg logp(u), and � is the attracting Fatou coordinate:
we take � defined on the image of �θ(R0[g]) by u �→ w. Note that this change of
coordinates depends on g, but if one chooses any other θ ′ < θ , there exists R′2 > 0
such that for all g ∈ G, it contains �θ ′(R′2). By Proposition 41, �[g](w) − w is
bounded by a constant independent of g. Hence there exists R2 > 0 such that for all
g ∈ G, the domain and the range of �[g] contains �θ ′(R2). Recall that maps in G are
assumed to be defined on D.

The next three lemmas express a form of Lipschitz dependence with respect to g
for �[g], �[g]−1 and �[g].
Proposition 42 Let R2 as above. Let r ′ ∈]0, 1[. There exists M > 0, R1 > R2 and
ε0 > 0 such that for all f , g ∈ G with supB(0,r ′) | f − g| ≤ ε0 then ∀w ∈ C with
w ∈ �θ ′(R1), |�[ f ](w)−�[g](w)| ≤ M supB(0,r ′) | f − g|.15
Proof A trick to shorten the proof is to use holomorphic dependence of Fatou coordi-
nates w.r.t. the map. Let ‖ f −g‖ = supB(0,r ′) | f −g|. Let c0 = inf |cg| over all g ∈ G.
Let first ε0 be such that the sum h of a map in G with a holomorphic map defined on
B(0, r ′) and with a double root at the origin and sup norm≤ 2ε0, satisfies |ch | > c0/2.
Let G′ be the union of G and of all the maps of the form ht = f + t 2ε0‖ f−g‖ (g − f ),
where t ∈ D, f , g ∈ G and ‖ f − g‖ ≤ ε0. Then G′ is compact (for the topology
associated to uniform convergence on compact subsets of B(0, r ′)) and, conjugating
its members by z �→ z/r ′ and restricting toD, gives a family satisfying the hypotheses
of Propositions 29 and 41. Using the latter and the same analysis as in the paragraph
that follows it, we see that maps h ∈ G′ all have a function �[h] that is defined
on a set containing �θ ′(R1) for some R1 independent of h. Moreover, this function
depends holomorphically on t ∈ D (recall the definition of � as a limit of wn − n
and realize that wn depends holomorphically on wn) and its difference with w �→ w

is uniformly bounded, hence �[ht ](w)− �[ f ](w) is also bounded. The proposition
follows by Schwarz’s inequality16 applied to t �→ �[ht ](w)−�[ f ](w), specialized
to t = ‖ f − g‖/2ε0. ��

Similarly, Proposition 42 holds word for word with � replaced by �−1, i.e.:

15 A better bound holds, that decays when w tends to infinity, but it will not be used here.
16 We mean: if f : D → C is holomorphic and satisfies f (0) = 0 and sup | f | < +∞ then | f (z)| ≤
|z| sup | f |.
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Proposition 43 There exists M > 0, R1 > R2 and ε0 > 0 such that for all f , g ∈
G with supB(0,r ′) | f − g| ≤ ε0, then ∀Z ∈ C with Z ∈ �θ ′(R1), |�−1[ f ](Z) −
�−1[g](Z)| ≤ M supB(0,r ′) | f − g|.
Proof This follows from the above proposition applied to some θ ′′ between θ and
θ ′, and from the fact that, the derivative of �g is uniformly bounded17 over g ∈ G.
Computations are left to the reader. ��
Remark Note that since the maps �g and �−1g all differ from identity by a bounded
amount that is independent of g ∈ G, it follows that in both propositions, by increasing
the value of M , we can remove the assumption supB(0,r ′) | f − g| ≤ ε0.

From Proposition 42, we deduce the following control, which is somewhat weaker:

Proposition 44 (variation of Fatou coordinates) Let r ′ ∈ ]0, 1[. Let R1 be given by
Proposition 42. Let θ ′′ < θ ′. Then, there exists M > 0, R3 > R1 and ε0 > 0 such that
for all f , g ∈ G with supB(0,r ′) | f − g| ≤ ε0 and ∀z ∈ C with −1/c f z ∈ �θ ′′(R3),
then −1/cgz ∈ �θ ′(R1) and

∣

∣�attr[ f ](z)−�attr[g](z)
∣

∣ ≤ M

|z| sup
B(0,r ′)

| f − g|.

The same holds for repelling Fatou coordinates.

Proof Let d = supB(0,r ′) | f − g|. The claim −1/cgz ∈ �θ ′(R1) follows from con-
tinuity of g �→ cg and its non-vanishing: given any R3 > 1 and θ ′′ < θ ′, a small
enough d will ensure that the quotient cg/c f is close enough to 1 so that an element
of�θ ′′(R3)multiplied by c f /cg is still in�θ ′(R1). Now �attr[ f ](z) = �[ f ](w1) and
�attr[g](z) = �[g](w2)withw1 = u1−γ [ f ] logp(u1) andw2 = u2−γ [g] logp(u2)
with u1 = −1/c f z and u2 = −1/cgz. The constants c, 1/c and γ are Lipschitz
functions of f ∈ G w.r.t. the distance d. Now, under the assumption d ≤ ε0, we suc-
cessively get |u1−u2| ≤ M1d/|z|, |w1−w2| ≤ M2d/|z| (use that | logp u| ≤ M ′

2/|z|
for some constant and that u2/u1 = c f /cg is close enough to 1), then we decompose
|�[ f ](w1) − �[g](w2)| ≤ |�[ f ](w1) − �[g](w1)| + |�[g](w1) − �[g](w2)| The
first term is dealt with using Proposition 42 and the second term using the fact that
there is a uniform bound on �′. ��
Remark • Here, the condition supB(0,r ′) | f − g| ≤ ε0 cannot be removed.

• Also, in the conclusion |�attr[ f ](z) − �attr[g](z)
∣

∣ ≤ M
|z| supB(0,r ′) | f − g|, the

factor 1/|z| cannot be removed because �attr[ f ](z) ∼ −1/c f z and c f varies with
f .

Let us stress again that, though maps in F are not defined on the unit disk, they
are all defined in B(0, 1/4) and the results above easily transfer to F by a homothety.
(See Sect. 3.6.2.)

17 Increase R2 by 1 and use Cauchy’s formula and the uniform bound on �− id.
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3.7 Step 1: Contraction Argument (i.e., There is a Lot of Room)

Fix d ∈ N with 2 ≤ d <∞: we now exclude d = +∞. In this section we will define
constants c1, c2, … They all depend on d but not on f ∈ F .

Recall that R[Bd ] is defined on the unit disk and has derivative one at the origin.
Recall the definition of the set SL of Schlicht maps: univalent holomorphic maps
φ : D → C such that φ(z) = z +O(z2). Recall that F = {R[Bd ] ◦ φ−1

∣

∣ φ ∈ SL}

,
and that for all f ∈ F , the mapR[ f ] is again in F , for an appropriate normalization.
Since all maps in F have the same unique critical value, this normalization coincides
with the one numbered 3 on page 81, which we called “by the critical value”.

Let f ∈ F :

f = R[Bd ] ◦ φ−11 ,

where φ1 ∈ SL. Denote

U1 = φ1(D) = Dom( f ).

Let L(ε) be the hyperbolic radius in D of the Euclidean ball B(0, 1− ε):

L(ε) = tanh−1(1− ε) = 1

2
log

2− ε

ε
. (1)

In particular,

1

2
log

1

ε
≤ L(ε) ≤ log 2

2
+ 1

2
log

1

ε
.

Since R[ f ] belongs to F (Theorem 6), there exists φ2 ∈ SL such that:

R[ f ] = R[Bd ] ◦ φ−12 .

The map φ2 is an isomorphism from D to the domain of definition ofR[ f ].
Denote by A ⊂ U1 the immediate basin of the parabolic fixed point 0 of f . LetUu

denote the connected component of Dom(h[ f ]) that contains an upper half plane. It is
also equal to the connected component of �−1

rep (A) that contains an upper half plane.
Denote by C ⊂ A the following set, which is the object under study in the present
section:

C = C[ f ] = �rep

(

Uu � (1− ε)
)

.

(The notation � has been introduced in Sect. 3.1). We claim it can be rewritten as

C = φ3(C[Bd ]),

where φ3 : D → A is the conformal isomorphism conjugating Bd to f
∣

∣

A. Indeed,
according to Proposition 27, φ3 ◦�rep[Bd ] = �rep[ f ] ◦ φ4 for some conformal map
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Fig. 14 The set C[Bd ] (bottom row, light tones) for d = 2 and (left) ε ≈ 0.85 (this is quite high a value
for an ε) and (right) ε ≈ 0.22
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φ4 from H = Uu[Bd ] to Uu[ f ], commuting with T1, thus φ4(Uu[Bd ] � (1− ε)) =
Uu[ f ] � (1− ε).

The setC[Bd ], which is equal to�rep[Bd ](H(ε))where H(ε) = E−1(B(0, 1−ε))

is the half plane defined by Im z > 1
2π log

(

1
1−ε

)

, depends only on d and ε, not on f ,

and is forward invariant under Bd . Figure 14 shows examples of sets C[Bd ].
In this section, we will prove:

Proposition 45 There exists c, c′ and ξ > 0 (these constants depend on d) such that
for all ε < ξ , there exists ε′ > 0 satisfying

log
1

ε′
≤ c′ + c log

(

1+ log
1

ε

)

such that for all f ∈ F ,

C ⊂ Dom( f ) � (1− ε′).

Above, the set C = C[ f ] depends also on ε but we did not figure it in the notation, to
avoid clutter. The notation U � r has been introduced in Sect. 3.1.

We begin with an easy lemma (recall L was defined near (1)):

Lemma 46 The set C[Bd ] is contained within hyperbolic D-distance ≤ c2 + L(ε) of
the upper main chessboard box of Bd .

Proof The upper chessboard box of Bd is the image by �rep[Bd ] of an open set
that contains a half plane

{

z ∈ C
∣

∣ Im (z) > Md
}

and is contained in another half
plane strictly smaller that H. Recall that C[Bd ] = �rep[Bd ](H(ε)) with H(ε) =
{

z ∈ C
∣

∣ Im (z) > 1
2π log

(

1
1−ε

)

}

. For ε big, H(ε) ⊂ {

z ∈ C
∣

∣ Im (z) > Md
}

. For

other values of ε, every point in H(ε) can be joined to
{

z ∈ C
∣

∣ Im (z) > Md
}

by

a vertical segment of hyperbolic length in H at most 1
2

(

logMd − log
log 1

1−ε

2π

)

. Since

�rep[Bd ] : H → D contracts hyperbolic metrics and 1
2 log

1
log 1

1−ε

≤ 1
2 log

1
ε
≤ L(ε),

the lemma follows. ��

Note that φ3 : D → A is an isometry for the respective hyperbolic metrics, and that
the upper main chessboard box of Bd is mapped by φ3 to the main upper dynamical
chessboard box of A, call itB:

B = φ3(B[Bd ]).

See Fig. 15. From the lemma above, it follows that the set C = C[ f ] under study is
contained within A-hyperbolic distance c2 + L(ε) of B. To prove an estimate con-
cerning the latter set, we first need the following easy consequence of the compactness
of F :
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220 A. Chéritat

Fig. 15 Some open sets associated withR[P]with P : z �→ z+ z2: its domainU1, its parabolic immediate
basin A, and the latter’s main upper dynamical box B. The rightmost column features the dynamical
chessboard of A in shades of brown. The blue and yellow shades depict the structural chessboard of U1
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Lemma 47 For all M > 0 there exists c′ > 0 such that for all f ∈ F , the upper main
and the lower main chessboard boxes of h[ f ] are both at hyperbolic Dom(h[ f ])-
distance ≤ c′ from respectively the half planes Im (z) > M and Im (z) < −M
(intersected with Dom(h[ f ]) if necessary).
Proof The extended normalized horn map of Bd is defined on C\R. The upper/lower
main chessboard boxes of h[Bd ] are at positive Euclidean distance fromR. Recall (see
Sect. 3.3, in particular Lemma 28) that we have the following: h[ f ]◦φ = Tw[ f ]◦h[Bd ]
where w[ f ] = vh[ f ] − vh[bd ] and φ is an isomorphism commuting with T1 from
H, which is the upper connected component of Dom h[Bd ], to the upper connected
component of Dom h[ f ], and that φ maps the chessboard graph of h[Bd ] to that of
h[ f ]. Therefore, it is enough to prove that φ−1(

{

z ∈ C
∣

∣ Im (z) > M
}

) contains an
upper half plane independent of f , and a similar statement for the lower part. Let us
write, as Im (z) −→ +∞:

φ(z) = z + τ f + o(1).

From the first point of Proposition 35 if follows that |Im (w[ f ])| is bounded over
F . From this and the second point, it follows that |Im (τ f )| is bounded over F .
Now one of Koebe’s inequalities states that ∀ f ∈ SL, | f (z)| ≤ |z|

(1−|z|)2 . Equiv-
alently, ∀r ∈ ]0, 1[, f −1

(

B
(

0, r/(1 − r)2
)) ⊃ B(0, r). The map T−τ f ◦ φ is

semi-conjugate by E to a Schlicht map thus: φ−1(
{

z ∈ C
∣

∣ Im (z) > M
}

) contains
the half plane

{

z ∈ C
∣

∣ Im (z) > M ′} where M ′ = M ′[ f ] > 0 is related to M ∈ R by

e2π(M+Im τ f ) = e2πM ′ + e−2πM ′ − 2 = 2(cosh(2πM ′)− 1). Since τ f is bounded, the
constant M ′[ f ] is bounded too. The proof for the lower box is similar. ��

Recall U1 denotes the domain of f .

Lemma 48 The box B is contained in a hyperbolic U1-ball of uniform diameter c7.

Proof Choose r small enough so that B(0, 2r) ⊂ U1 for all f ∈ F . By Proposition 33,
there is some h > 0 such that for all f ∈ F , the half planes Im (z) > h and Im (z) <

−h aremapped by�rep[ f ] inside B(0, r). FromLemma 47 the upper box is at distance
≤ c7 from

{

z ∈ C
∣

∣ Im (z) > h
}

for the hyperbolic metric of Dom(h[ f ]). The map
�rep : Dom(h[ f ])→ A is holomorphic thus a contraction for hyperbolicmetrics, thus
the image by �rep of the upper chessboard box is at bounded A-hyperbolic distance
of B(0, r) (the latter is not contained in A but it does not matter) and, thus, at U1-
hyperbolic distance even smaller, since the inclusion of A in U1 is a contraction too.

��
By Lemmas 46 and 48, to fulfill the objectives of Step 1, it is enough to prove that

a path starting fromB, contained in A and of A-hyperbolic length ≤ c2 + L(ε) has a
U1-hyperbolic length much smaller than c2 + L(ε). The precise bound obtained will
yield Proposition 45. Note that we will in fact bound theU∗1 -hyperbolic length, which
is bigger that the U1-hyperbolic length, where

U∗1 = U1\{0}.
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Let us make the following change of coordinates: w = log(z)/2iπ . Let ˜A be a lift
of A: it is a connected and simply connected subset of C that does not intersect its
translates ˜A+k when k ∈ Z is non-zero. As a consequence, each horizontal intersects
this open set along a union of open segments of length at most 1 (in fact the sum of
lengths is at most 1). Thus, the Euclidean distance from any z ∈ ˜A to the boundary of
˜A is ≤ 1/2. This implies by Koebe’s 1/4 theorem:

ρ
˜A(z) ≥ 1/2

(a better bound holds butwe do not need it; recallρU (z)|dz| designates the infinitesimal
element of hyperbolic metrics on U ).

Remark The set ˜A is unbounded upwards, since the image in ˜A of an attracting petal
in A is an infinite finger-shaped domain extending upwards. See Fig. 16 for examples.
One should not expect ˜A to be bounded in the other directions either. Recall that
f ∈ F is characterized by the choice of its domain U1, which can be any simply
connected domain containing the origin with conformal radius 1 w.r.t. the origin. For
well-chosen unboundedU1, the set ˜A is unbounded downwards. One could object that
since in the applications, the renormalization operator is iterated, we could restrict to
maps in R[F] instead of F , and that maps in R[F] all have a uniformly bounded
domain of definition, as follows for instance from Proposition 35. But this will not
prevent unboundedness in the horizontal direction: even for bounded U1, provided
its boundary winds infinitely many times around 0, carefully chosen U1 will yield
a set ˜A whose projection on the real line is unbounded. The latter case is not just a
curiosity but does happen for f = R[z �→ zez], i.e., the first renormalization of the
map g(z) = zez which has a non-linearizable parabolic point at the origin, and whose
set of singular values are the two asymptotic values∞, 0 and the image g(−1) of the
unique critical point −1. Its immediate basin must contains a singular value, and the
only possible one is g(−1). Hence, the map g satisfies the hypotheses of Theorem 6,
thus f = R[g] ∈ F . A careful study shows that the domain of definition of R[g]
swirls like above, more precisely that its lifted immediate basin ˜A has infinitely many
accesses to infinity by curves asymptotic to some common horizontal line. The map g
does not belong to F but we believe that for all n > 0,Rn[g], that belongs to F , will
have a set ˜A with the same properties. To prove this, one may try and see if there is
invariance by R of the following property for f ∈ F : let c be the main critical point
of f (the one on the boundary of the main upper structural box); let ˜f be a lift of f
and let γ be the lift by ˜f starting from c, of the horizontal half line ˜f (c)+ [0,+∞[,
such that γ intersects the boundary of the upper box only at c; then Re (γ ) tends to
infinity.

Now consider a point z0 ∈ C = φ3(C[Bd ]) and consider a path γ of A-length at
most c2 + L(ε) from B to z0. Let us apply f once. Then A is mapped to itself and
so are C and B. The path γ is mapped to a path f (γ ) contained in A, from B to
z1 = f (z0), and by the Schwarz-Pick inequality, the A hyperbolic length of f (γ ) is
≤ that of γ . Consider a lift γ2 of f ◦ γ by E (the path f (γ ) is contained in A, thus
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Fig. 16 Two examples of lifted immediate parabolic basins ˜A for maps f ∈ F . Top: f = R(z �→ z+ z2),
bottom: f = R(z �→ zez)

does not meet the origin). The Euclidean length of γ2 is equal to

∫

γ2

|dz| =
∫

γ2

ρ
˜A(z)|dz|
ρ

˜A(z)
≤ 2

∫

γ2

ρ
˜A(z)|dz| ≤ 2(c2 + L(ε)). (2)

Let us now relate the element of length ρU∗1 (z)|dz| to |d log f (z)/2π |. Let ˜f be the

continuous lift of f by E that fixes ˜A: ˜f : ˜U1
def= E−1(U1)→ C and E ◦ ˜f = f ◦ E .

The inverse of E is the multivalued function E−1(z) = 1
2π i log z. Let ṽ + Z be the
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set of critical values of ˜f . The map ˜f has no asymptotic value over C. Denote by C
±

the upper half plane and the lower half plane delimited by the horizontal line through
these critical values. For every point z mapped to C

± by any branch of 1
2π i log f , the

latter map has inverse branches defined inC
±, with image the f -structural chessboard

box containing z. This inverse branch is univalent, except for z in the little loop around
0 where it is infinite-to one. In all cases, these inverse branches map in U∗1 and are
non-expanding for the respective hyperbolic metrics as follows:

ρU∗1 (z)|dz| ≤ ρC±(ζ )|d log f (z)/2π |, (3)

where ζ is the image of z by the considered branch of 1
2π i log f .

Near the boundary of C
±, better estimates hold. For instance:

Lemma 49 There exists c3 > 0 such that for all f ∈ F , the following holds. Let ṽ be
a critical value of ˜f and V be any connected component of the pre-image by ˜f of the
square ṽ + I + i I where I = [−1/2, 1/2]. Then, the hyperbolic diameter in U∗1 of
E(V ) is ≤ c3.

Proof Recall the critical values of ˜f , are the elements of ṽ + Z and that its only
asymptotic value over ̂C is∞. Consider the disk ṽ+D and the component U of ˜f −1
that contains V . Then, ˜f factors onU as a ◦ pow ◦b where pow : D → D is either the
identity or the map z �→ zd , where a(z) = ṽ+ z and where b is an isomorphism from
U to D. Then, a−1(V ) = I + i I ⊂ B(0, 1/

√
2) thus (a ◦ pow)−1(V ) is contained in

the Euclidean ball B(0,
(

1√
2

)1/d
). The map b−1 : D → E−1(U1) is non-expanding

for the respective hyperbolic metrics, and E : E−1(U1)→ U∗1 also is, thus, the lemma
holds with c3 = the hyperbolic distance in D from 0 to the d-th root of 1/

√
2. ��

Another easy lemma:

Lemma 50 Let a, b be two points in the hyperbolic plane H:

Im (a) ≥ 1

2
and Im (b) ≥ 1

2
�⇒ dH(a, b) ≤ log(1+ 2|a − b|).

Proof Use the following formula for the hyperbolic distance in H:

dH(a, b) = argsh
|b − a|

2
√
Im a Im b

,

and the inequality argsh t ≤ log(1+ 2t). ��
So for instance, the hyperbolic distance from i to i+x is aO(log x)when x −→ +∞,
thus much smaller than x . Recall that the geodesic between a and b in H is an arc of
Euclidean circle. For the hyperbolic metric, this arc turns out to be much shorter than
the straight euclidean line.

Let β0 be the structuralU1 chessboard box that is a punctured neighborhood of the
origin. Recall thatwe denoteU∗1 = U1\{0}. Consider any structuralU1 chessboard box
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β. Let us callU1-box the set β ∩U∗1 . Let us endowU∗1 \ f −1(v) with the infinitesimal
metric induced by pulling back the Euclidean metric by 1

2π i log f . We call this the flat
metric. It has a regular and locally flat extension to a neighborhood of the non-critical
preimages of v and is singular precisely at the critical preimages of v, where it has a
conical point of angle 2πd. Let us call box-Euclidean distance the distance induced
on U∗1 by this flat metric. Recall that if β 
= β0, then 1

2iπ log f is well defined on β

and maps it to a half plane C
±. It also maps the U1-box β ∩U∗1 to the closure of this

half plane.
In the sequel, we call b∗ theU1-box that contains a punctured neighborhood of the

origin: b∗ = β0 ∩U∗1 .
Corollary 51 Consider two points in a U1-box b. Denote de the distance between these
two points for the metric induced by the flat metric restricted to b and dh the distance
between these two points for hyperbolic metric on U∗1 . Then,

dh ≤ c′5 + log(1+ c5de).

Proof Let us apply 1
2π i log f so as to work in a half plane, and to fix ideas, let us

assume it is the half plane C
+. If the U1-box b is b∗, then when we lift the two points

we choose these lifts so that their euclidean distance is minimal, so as to coincide with
de. If any of the two points is at distance ≤ 1/2 from the boundary of C

+ then move
it up so that it is at distance 1/2: we get a new pair of points in C

+ that corresponds to
a new pair of points in b. By Lemma 49, each new point is at U∗1 -hyperbolic distance≤ c3 from the former so the U∗1 -hyperbolic distance between the the points in the
pair has changed by at most c3, and by at most 2c3 if we needed to move both points.
Similarly, the Euclidean distance between the points in C

+ has changed by at most 1.
By Equation (3), the U∗1 -hyperbolic distance between the two (possibly) new points
will be at most their C

+-hyperbolic distance. Using Lemma 50, on the latter, we get
dh ≤ 2c3 + log(1+ 2(de + 1)) = (2c3 + log 3)+ log(1+ 2

3de). ��
Let ˜U1-boxes be defined similarly: these are sets of the form b ∩ ˜U1, where b is a

structural chessboard box of ˜f . The map ˜f is a bijection from such a set to the closed
upper or lower half plane. We can endow ˜U1 with an infinitesimal box-Euclidean
metric, by pulling-back by ˜f the canonical Euclidean metric element |dz| on the
complex plane. Recall that f ◦ E = E ◦ ˜f , thus we get the following compatibility
statements. The projection by E of an ˜U1-box is aU1-box.18 The box-Euclideanmetric
element on ˜U1 is the pull-back by E of the box-Euclidean metric element on U∗1 .

The following result is not used here, but we find it interesting:

Lemma 52 A connected union of U1-boxes that includes b∗ is simply connected if we
add {0} to the union.
Proof Remove the loop from the parabolic structural chessboard graph of U1. Then
we get a tree (an infinite tree), on which the union retracts to a connected subset, which
is thus simply connected and homotopically equivalent to the union. ��

18 The connected components of the preimage of aU1-box by ˜f are ˜U1-boxes with one notable exception
where we get a chain of U1-boxes that meet at corners.
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Fig. 17 A slow path in black, a quick path in red. The first one stays on the boundary of a single box. The
other one turns alternately left and right at every corner. Here, speed is to be understood as the order of
magnitude of the hyperbolic distance from the origin, when the curve is followed at constant box-Euclidean
speed (on this picture, it takes the same time to get from a corner to the next one): in the first case it is
logarithmic, in the second case linear

Note that there are paths in U1 reaching the boundary, and whose compact subsets
are of hyperbolic diameter comparable to their box euclidean length: see Fig. 17. An
important task is thus to formulate and prove a combinatorial statement (Lemma 54)
about the U1-boxes that the immediate basin A may cross, and that prevents this kind
of behaviour for paths contained in A.

Define a chain of boxes to be a finite sequence b0, b1, …, bn of U1-boxes such
that two consecutive elements have non empty intersection, i.e. consecutive boxes are
equal or share a side or a corner within U1. The integer n is called the length of the
chain. With our convention there are n+ 1U1-boxes in a chain of length n. Define the
combinatorial distance between U1-boxes as the minimal length of chains from one
to the other. With our convention, this is a distance.

Lemma 53 Let b, b′ be U1-boxes and consider points x ∈ b and x ′ ∈ b′. Then the
box-Euclidean distance L between x and x ′ and the combinatorial distance n between
b and b′ satisfy:

n ≤ �L� + 1.

Proof First case: L < 1. Recall that the set of critical values of ˜f is of the form ṽ+Z

for some ṽ and that ˜f has no asymptotic value over C. Consider a path γ from x to
x ′ and of box-Euclidean length < 1. Let γ̃ be a lift of γ by E . The image of γ̃ by
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˜f has Euclidean length < 1 in the plane. There will, therefore, exist k ∈ Z such that
γ̃ is completely contained in the plane minus the translate of ] −∞,−1] ∪ [1,+∞[
by ṽ + k. The connected components of the pre-image by ˜f of such a slit plane are
contained in unions of 2 or 2d of ˜U1-boxes that touch at a common point: this is
because there is at most one critical value (and no asymptotic value) of ˜f in the slit
plane. Now, γ̃ is contained in such a component, hence n ≤ 1.

In the general case, we could use that there is a shortest path from x to x ′ (see
Lemma 55) but we can do here without that information: consider a path γ from x to
x ′ of length close enough to L so as to have the same integer part as L . Let ε > 0 and
cut the path into pieces of length 1− ε, except maybe for the last piece for which we
require length ≤ 1 − ε. Let k be the number of pieces obtained: if ε small enough,
k = �L� + 1. Let x0, …, xk denote the sequence of starting and end points of these
pieces. Let b0 = b, bk = b′ and for 0 < n < k let bn be aU1-box containing xn . From
the first case, we get that the combinatorial distance between bn and bn+1 is ≤ 1 for
0 ≤ n < k. The combinatorial distance between b and b′ is, thus, ≤ k. ��

For n ≥ 0, consider the set Bn of U1-boxes at combinatorial distance ≤ n of the
U1-box b∗. Note that for n ≥ 2, the set Bn is a infinite union of U1-boxes. The next
lemma is illustrated by Fig. 18.

Lemma 54 There exists c4 ∈ N such that ∀ f ∈ F , A ⊂ Bc4 .

Proof Let us consider the principal curve C = C[ f ] defined in Proposition 36, starting
from v = v f and ending at 0. We recall it is a connected component of the preimage
by�attr = �attr[ f ] of�attr(v)+[0,+∞[, that starts from v and ends on the parabolic
point ( and is contained in the common boundary in A of the two principal dynamical
chessboard boxes of f ), that f (C) ⊂ C and hence C contains the orbit of the critical
value. Let us use Proposition 29, that provides a disk Dattr = Dattr[ f ] of uniform
diameter r0 contained in the basin of f and which eventually traps any orbit in the
parabolic basin. By Lemma 37, the number of iterates needed for the critical value
v to enter Dattr is bounded over F : ∃n0 ≥ 0 such that ∀ f ∈ F , f n0(v) ∈ Dattr[ f ].
The second point of Proposition 29 implies that the subset C′ of C corresponding to
�attr(v)+ [n0,+∞[ satisfies C′ ⊂ Dattr.19

We will also require r0 < |v|. Then, the set C′ ⊂ Dattr does not cross the circle
of equation |z| = |v|. Now C is the union of C′ and of a connected component of
the preimage by �attr of the segment �attr(v) + [0, n0]. As f varies in F , the maps
�attr − �attr(v) all have an inverse branch defined on a common open connected
neighborhood V of the segment S = [0, n0], mapping 0 = �attr(v)−�attr(v) back to
v. This family is normal.20 It also avoids 0. Take a lift ˜C of C by E : z �→ e2π i z . This is

19 The restriction of�attr to the unionW of the principal chessboard boxes of A and their commonboundary
(minus endpoints) maps W univalently to the complement V of �attr(v)+] − ∞,−1]. The normalized
attracting Fatou coordinate � of Proposition 29 necessarily coincides with �attr on some smaller petal.
Because of the shape of U = �(Dattr), we necessarily have U ⊂ V , for otherwise, one can prove there
would be a critical point of f in U , leading to a contradiction with injectivity of � claimed in the second
point of Proposition 29. It follows that Dattr ⊂ W , and then that � = �attr on Dattr .
20 There are many reasons for this; for instance, one can use continuity of f �→ �attr[ f ] together with
compactness ofF ; or remark that it is 1-Lipschitz, hence equicontinuous, from the hyperbolic norm on the
chosen neighborhood V of the segment S to the metric |dz|/4|z|, because it maps in the simply connected
set A that avoids 0 so one can use the Schwarz–Pick inequality and Koebe’s one quarter theorem.
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Fig. 18 Example for d = 3. We chose some f ∈ F (more precisely we took the first renormalization of
z �→ z3 + c with c so that there is a fixed point tangent to the identity). The blue graph is the structural
chessboard of f . The origin is marked by a tiny green dot and the critical value of f by a red one. It is
a non-linearizable parabolic point of f . We drew in brown shades the dynamical chessboard of f in the
immediate basin A of this point. The dark lines are the set f −1(C), where C is the principal curve (see
the text). The light blue set is the component containing A of Dom( f ) minus all the dark lines that are
not contained in A. The picture has been accurately drawn, the curve C is a small edge part in the black
graph, from the green dot to the red one. It is very close to be a segment. As a consequence, f −1(C) is
formed of curves that are very close to intrinsic verticals of U1-boxes. It seems therefore that the light blue
is completely contained in B2. This is probably the case for all maps in F for d = 3 because the loop
is very small. It may still hold when d gets close to ∞, but that would require a more detailed specific
analysis as in [19], starting from the fact that v f is close to 0 (|v f | = ud only depends on d, ud ∈ [u2, u∞]
and u2 ∼ 1/140, u∞ ∼ 1/20). We decided instead to resort to general arguments instead: in the proof of
Lemma 54 we consider cases where C may be very far from a segment

a curve starting from a preimage ṽ of v and ending at∞ tangentially to a vertical line.
The part corresponding to C′ lives in the upper half plane {

Im (z)
∣

∣ Im (̃v)
}

because we
took r0 < |v|. The rest is the image of S by a normal family defined in V . In particular
it has bounded Euclidean length. Let L1 be a bound, independent of f ∈ F .

There are infinitelymany connected component of f −1(C). Consider any. It consists
either in a single curve or in a union of d curves starting from a common critical point
of f . Each of these curves has a part mapped in C\C′ by f that has box-Euclidean
length ≤ L1, and a part mapped to C′ by f that is completely contained in one box.
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By Lemma 53, the union of U1-boxes visited by the full curve has

combinatorial diameter ≤ �L1� + 1. (4)

The lifted immediate basin ˜A contains exactly one component of E−1 f −1(C) and
is disjoint from all other components. We claim that A is contained in B�L1�+2: indeed
consider the union G1 of the 2d − 1 U1-boxes which contain the critical point in
A. It is contained in B1. The immediate basin A contains exactly one component of
f −1(C). Let G2 be the component containing A of the complement inU∗1 of the union
of all other components of f −1(C) (Fig. 18 may help). It is enough to prove that G2
is contained in B�L1�+2.

The boundary of G2 in U∗1 consists in curves all of whose starting points s are
preimages of v. We claim that they all belong to B1. Indeed, the curve C is isotopic in
C to the straight segment from v to 0 by an isotopy that does not move its endpoints.
This isotopy extends to the whole Riemann sphere into an isotopy fixing ∞. The
singular values of f are {0, v,∞} and, thus, the isotopy does not move the singular
values of f . Hence, the extended isotopy lifts by f to an isotopy of U1. This lifted
isotopy does not move the points in f −1(v). Now, a starting point s as above can be
linked to the unique critical point c0 ∈ b∗ by a path within G2 (except at its starting
point s ∈ ∂G2). The lifted isotopy deforms this path into a pathwith the same endpoints
and that is completely contained in the complement of f −1([0, v]). The image by f
of the new path is contained in C\[0, v] and goes from v to v. It is homotopic to a path
completely contained |z| > 1. The homotopy lifts by f . Hence, s and c0 are linked
by a path contained in a U1-box. Whence the claim.

Consider any point z ∈ G2. If z belongs to f −1(C) then it belongs to the unique
component of f −1(C) inG2, which is the one attached to the critical point in A, which
belongs to b∗. Hence z ∈ B�L1�+1 by the bound (4) above. Otherwise, f (z) /∈ C. Then
f (z) ∈ H for H = D\{0} or H = C\D (if | f (z)| = 1 then either can be chosen).
There is a path γ ⊂ H from f (z) to a point of C\{0} (which may be its endpoint v).
Let b be the (unique) U1-box containing z and such that f (b) = H . The path γ lifts
by f to a path within b from z to a point w in f −1(C), and w is either in G2 or in
∂G2. We saw that the component of f −1(C) that w belong to is attached to a point in
f −1(v) that belongs to B1. By the bound (4), we get that b ∈ B�L1�+2. This ends the
proof that G2 ⊂ B�L1�+2. ��

Let the combinatorial distance between two points of Dom ˜f be the smallest com-
binatorial distance of boxes containing them. Two important facts used in the proof
of the following lemma are that the chessboard graph of Dom ˜f is a tree and that the
boundary in Dom ˜f of a ˜U1-box is a connected subset of this graph.

Lemma 55 For any two points w, z ∈ Dom ˜f , then there is a unique shortest path γ ′
from w to z for the box-Euclidean distance. If m denotes the combinatorial distance
from w to z then γ ′ can be cut into ≤ m + 1 connected pieces, each of which stays in
some U1-box.
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Proof 21 Let us define aprojection fromDom ˜f to the chessboardgraphof ˜f as follows.
Recall that each ˜U1-box b is homeomorphicallymapped by ˜f to a closed half plane and
that the box-Euclidean metric element is sent to the canonical Euclidean element |dz|
of C. The vertical projection on this half plane to its boundary is 1-Lipschitz and can
be conjugated back to a projection from b to its boundary in Dom ˜f . The union of all
these projections for allU1-boxes b is easily seen to match at the boundary points and
corners, and yields a projection function from Dom ˜f to the chessboard graph, which
is locally 1-Lipschitz for the box-Euclidean metric (the only place where checking
this claim is not trivial is at corners). In particular, it is 1-Lipschitz for path-length.

Given any path γ from w to z, if the path meets the chessboard graph then the part
from its first intersection with the graph to its last can be projected as above. The new
path is strictly shorter unless the part was already contained in the graph. This part
can be further simplified into an injective path within the graph, strictly shorter unless
it was already injective.

If moreover both w and z belong to a given U1-box c, the first and last point in
the graph are also in c, and since the graph is a tree and the boundary of a U1-box
is a connected subset of this tree, the simplified part is necessarily contained in this
boundary, hence the simplified path is contained in c. We have, thus, in particular
proved that for any path that is not completely contained in c there is a strictly shorter
path contained in c. Hence the straight segment γ ′′ from w to z for the Euclidean
structure on c is the unique shortest box-Euclidean path from w to z within Dom ˜f .
The other conclusions of the lemma are trivial in this case: m = 0 and γ ′′ does not
need to be cut.

In the rest of the proof of the lemma, we assume that there is noU1-box containing
both w and z.

Then, given the simplification of path constructed above, it follows that the infimum
of box-Euclidean lengths of paths betweenw and z is the same as the infimum over the
set A of paths defined below, and that a path that is not in A cannot be minimal. The
set A consist in paths that are a straight box-Euclidean line from w to the boundary
of its box if w is in the interior of a box, then an injective path within the graph, then
similarly a straight box-Euclidean line to z if z is in the interior of a box. From the
form ofA and the fact that the distance along the graph between two points a and b of
the graph is a continuous function of the pair (a, b), the fact that a minimal distance
is reached on A easily follows. Let us sum up what we have proved so far: there is at
least one shortest path, all shortest paths are in A.

Let Iw be defined as follows: if w is in the graph we let Iw = {w}; otherwise we let
Iw be the boundary in Dom ˜f of the unique U1-box containing w. In the latter case,
Iw is an infinite curve in the graph. The set Iw ∩ Iz is either empty or a point or a
connected curve, of finite or infinite box-Euclidean length.

First case: Iw ∩ Iz is empty or a point. Then, there is a unique shortest path γ ′′
within the graph from the set Iw to the set Iz ; we allow γ ′′ to be reduced to a single
point to include the case when Iw ∩ Iz is a single point. We call w′ the initial point
of γ ′′ and z′ the endpoint; as we explained, z′ may be equal to w′. It is also possible
that w = w′, similarly z = z′ is possible. If w 
= w′ then there is a unique U1-box

21 Special thanks to Arnaud Mortier for a great help in this proof.

123



Near Parabolic Renormalization for Unicritical Holomorphic Maps 231

containing both. Similarly for z and z′. In all cases, the box-straight path fromw tow′,
followed by γ ′′, followed by the box-straight path from z′ to z is the unique shortest
path in A, and thus the unique shortest path within Dom ˜f . Call it γ ′.

Consider now anyU1-box chain b0, …, bm with w ∈ b0 and z ∈ bm . We claim that
this chain necessarily covers γ ′. Let us prove this claim. Note that the part of γ ′ from
w to w′ is contained in b0 and the part from z′ to z in bm . Each bm is path connected,
so by definition of a chain, the union of the bm is path connected. Consider path from
w′ to z′ within this union. Project it on the graph and simplify it as above. This leads
to an injective path from w′ to z′ contained in the graph. By uniqueness of injective
paths in a tree, this path is equal to γ ′′. This proves the claim

The intersection of a U1-box with the graph is a connected subset of this tree (it
is a curve, infinite in both directions). It follows that the intersection of γ ′ with a
U1-box is necessarily a connected portion of γ ′. Let us now split γ ′ as follows: choose
any U1-box bi containing w, define i1 = i and cut γ ′ at the last point where it is
contained in bi1 . Note that the part before the cut is entirely contained in bi1 . If this
cutpoint is not the endpoint of γ ′, then a non-trivial sub-part of the path starting from
bi1 belongs to another U1-box bi ′ . Define i2 = i ′ and cut the remaining part of the
path at the last point where it is contained in bi2 . And so on. This process necessarily
ends (because, for instance, the cut points are contained in a discrete set, because they
are either branch points of the graph or the first or the last intersection of γ ′ with the
graph). So we get a finite sequence of U1-boxes bi1 , bi2 , …, bim′ for some m′ ∈ N

∗
and a splitting γ ′1, …, γ ′m′ of γ into connected pieces with γ ′j ⊂ bi j for all j ≤ m′.
By construction bi j+1 
= bi j . Now by the property that the intersection of a U1-box
with γ ′ is necessarily connected, and the it follows that no two U1-boxes bi j and bik
can be equal for j ≥ k + 2, for otherwise the whole part of the path between γ ′j and
γ ′k (included) would be contained in bik , contradicting the way we built the splitting.
Hence, m′ ≤ m + 1.

Second case: Iw ∩ Iz is a connected curve in the graph. Let b be the uniqueU1-box
containingw and b′ be the same for z. Note that b and b′ are adjacent, andm = 1. The
union b∪b′ is connected. It consists in the interior of b, the interior of b′, the common
curve, and at most four disjoint pieces of curves in the boundaries of b or b′, attached
to an end point of the common curve. Because the graph is a tree, all paths in A are
contained in b ∪ b′ and all paths in A must meet the common curve, possibly at an
end thereof. It follows that the shortest path in A from w to z is a straight segment to
a point in the common curve, followed by a straight segment. We have, thus, cut the
shortest path in two pieces satisfying the conclusion of the lemma, since m + 1 = 2.

��

Let us now go back to the situation we were studying: recall L(ε) was defined at
the beginning of Sect. 3.7; for convenience we denote L = L(ε); we had a path γ of
A-length at most c2 + L , starting from B and going to some point z0. We are ready
to prove that:

dU∗1 (γ (0), γ (1)) ≤ c′6 + c6 log(1+ L). (5)
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Recall that there is a special U1-box b∗ that is a punctured neighborhood of the
origin. Note that b∗ is the only U1-box that has a unique lift by E , which we denote
˜b∗. Let γ̃ be a lift of γ by E and γ2 = ˜f ◦ γ̃ . Then γ2 is also a lift of f ◦ γ by E .
The U∗1 -hyperbolic length of γ is equal to the Dom( ˜f )-hyperbolic length of γ̃ . The
box-Euclidean length of γ̃ is equal to Euclidean length of γ2 and is thus ≤ 2(c2 + L)

by Eq. (2). By Lemma 54, the path γ is contained in Bc4 . There is, thus, for any
t ∈ [0, 1], a chain ofU1-boxes of length at most c4 from someU1-box containing γ (t)
to b∗. This chain lifts by E into a chain ofU1-boxes from γ̃ (t) to˜b∗. Applying this to
t = 0 and t = 1, we get that the combinatorial distance22 from γ̃ (0) to γ̃ (1) is≤ 2c4.
Consider the path γ ′ provided by Lemma 55, from γ̃ (0) to γ̃ (1), of box-Euclidean
length at most that of γ̃ , and consisting in p ≤ 2c4+1 parts γ ′i each contained in some
U1-box. Denote Li the box-Euclidean length of γ ′i . Then,

∑p
i=1 Li ≤ 2(c2 + L) and

in particular Li ≤ 2(c2+L). By Corollary 51, the endpoints of γ ′i sit atU∗1 -hyperbolic
distance ≤ c′5 + log(1+ c5Li ) from each other. Thus, putting it all together:

dU∗1 (γ (0), γ (1)) ≤ dDom ˜f (γ̃ (0), γ̃ (1))

≤
p

∑

i=1
c′5 + log(1+ c5Li )

≤ pc′5 + p log(1+ 2c5(L + c2))

≤ (2c4 + 1)c′5 + (2c4 + 1) log (1+ 2c5L + 2c5c2)

≤ c′6 + c6 log (1+ L)

for some constants c6, c′6 that depend only on c2, c4, c5 and c′5, which proves (5).
Because of the inclusion U∗1 ⊂ U1, the U1-hyperbolic distance between γ (0) and

γ (1)will be even shorter. UsingLemma48,we get that z0 belongs to theU1-hyperbolic
ball of center 0 and radius

L ′ = c7 + c′6 + c6 log(1+ L).

Hence, the set C object of Proposition 45, which we are proving, is contained in
this hyperbolic ball (see the discussion after Lemma 48). Recall that L = L(ε) =
tanh−1(1− ε). Introduce ε′ ∈ ]0, 1[ such that tanh−1(1− ε′) = L ′. Then

C ⊂ φ1(B(0, 1− ε′)).

Now, ε′ = 2/(e2L
′ +1) ≥ e−2L ′ and L ′ = c7+c′6+c6 log(1+L) and L ≤ c1+ 1

2 log
1
ε

so L ′ ≤ c′8 + c8 log(1+ log(1/ε)), thus

log
1

ε′
≤ c′9 + c9 log

(

1+ log
1

ε

)

. (6)

22 Notion defined just before Lemma 55.
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In particular, as ε −→ 0, ε′ also tends to 0 but remains much bigger than ε. This
proves Proposition 45.

3.8 Step 2, I: Perturbation Argument

Let us recall the notations introduced in Sect. 3.2:

F = {R[Bd ] ◦ φ−1
∣

∣φ : D → C is univalent and φ(z) = z +O(z2)
}

,

and

Fε =
{R[Bd ] ◦ φ−1

∣

∣φ : B(0, 1− ε) → C is univalent and φ(z) = z +O(z2)
}

,

where R[Bd ] is the (upper) parabolic renormalization of the Blaschke product, nor-
malized to be defined on the unit disk. In particular,

F0 = F .

Last, for X ⊂ [0, 1], we will denote

FX =
⋃

x∈X
Fx .

3.8.1 An Interpolation

Let ε1 > 0 and f ∈ Fε1 :

f = R[Bd ] ◦ ˜φ−1.

For convenience, we will denote

r ′ = 1− ε1

and φ(z) = 1
r ′

˜φ(r ′z). Then φ ∈ SL (the class of Schlicht maps) and

f (z) = R[Bd ](r ′φ−1(z/r ′)).

Let U = φ(D). We will interpolate smoothly between f , which belongs to Fε1 , and
an element of F as follows: for t ∈ [0, 1[, let

φt (z) = rtφ(z/rt ) with rt = 1− t .

Then the map φt is an isomorphism from B(0, rt ) to rtU . Let

ft (z) = R[Bd ] ◦ φ−1t : rtU → C.
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Then,

fε1 = f ,

and

ft ∈ Ft thus f0 ∈ F .

In the sequel, we will start from knowledge about f0 and transfer it to fε1 , by contin-
uously increasing t from 0 to ε1.

Using the language of structures that we introduced in Sect. 1.2, let us stress that
maps in Ft are all (I ,̂C)-structurally equivalent (I being a singleton and the origin
being the marked point). For t ′ > t , the structure of maps in Ft ′ is a sub-structure of
that of maps in Ft .

Remark Though, for t ′ > t , ft ′ is a sub-structure of ft , it is very unlikely that the map
ft ′ would be conjugate to a restriction of ft .

Let us show a non-commuting diagram that the reader may find useful in order to
follow the arguments.

φ−10

·/rt

rt × ·

R[Bd ]
.

The map ft consists in turning once around this diagram, starting from the upper right
corner.23

3.8.2 About the Critical Value

Let T0 be one minus the absolute value of the critical point ofR[Bd ] that is closest to
0. Then for all t ∈ [0, T0[, maps in Ft have a unique critical value.

Lemma 56 There exists T ′1 ∈ ]0, T0[ such for all maps f ∈ F[0,T ′1], the critical value
is attracted to 0.

Proof By Fatou’s theorem (Theorem 4), this is the case for all maps in F0. The exis-
tence of T ′1 then follows from compactness of F0 and the fact that for a parabolic
map with one petal attracting a given point, nearby parabolic maps will attract nearby
points. ��
23 It may at first seem to be better to start from the upper left corner, since the corresponding composition
has a domain U that does not depend on t . However, when we iterate these maps, we basically go in round
circles along a non-commuting diagram again and again, and the author thinks that it would not simplify
the proof that much.
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A consequence of the uniqueness of the critical value is that the extended attracting
Fatou coordinate �attr[ ft ] has a set of critical values contained in

{

v′ − n
∣

∣ n > 0
}

,
where v′ = �attr[ ft ](v) and v is the critical value of ft . Unlike the case t = 0, when
t > 0 the map �attr[ ft ] probably has a big set of asymptotic values (it is likely that it
contains curves).

3.9 Step 2, II: Following Fibers

3.9.1 A Motion of the Fibers of the Fatou Coordinates and of the Renormalized Map

The point of view outlined in Sect. 3.8.1 can be reversed and we may start from any
map f0 = R[Bd ] ◦φ−10 ∈ F , which has the full structure ofR[Bd ] and perturb it into
the map ft ∈ Ft as before, which has less and less structure as t ∈ [0, 1[ increases.
Let us recall how ft is defined:

ft (z) = R[Bd ] ◦ φ−1t with φt (z) = rtφ0(z/rt ) and rt = 1− t .

Studying the survival of (part of) the structure of the parabolic renormalizationR[ ft ]
as t increases means following fibers of R[ ft ].

Recall that R[ ft ] is defined by

(a−1 ◦R[ ft ] ◦ b) ◦ E = E ◦ (�attr[ ft ] ◦�rep[ ft ])
∣

∣

Wt
,

with E(z) = e2π i z , Wt is some domain, and a and b are linear maps that depend
on ft and on normalization conventions. Recall that we chose to normalize Fatou
coordinates by their expansion at infinity, and to normalizeR[ ft ] by fixing its critical
value. See Sect. 3.3 for more details.

To lighten the expressions, let us abbreviate Rt = R[ ft ] and introduce extended
Fatou coordinates�t and�t of ft , normalized differently from�attr[ ft ] and�rep[ ft ],
and so that

Rt ◦ E = E ◦�t ◦�t
∣

∣

Wt
.

We defined in Sect. 3.8.2 two constants T0 and T ′1 < T0 such that:

• For t ≤ T0, for all f ∈ F , ft has a unique critical value. Let us denote it by vt .
• For t ≤ T ′1, this point vt is in the domain of definition of �attr[ ft ].

Let

�t (z) = �attr[ ft ](z)+ βt ,

where βt = σd − �attr[ ft ](vt ), so that �t (vt ) does not depend on t and where σd
is a constant that depends only on d and is chosen so that E(σd) is the critical value
of R[bd ].24 For the repelling inverse Fatou coordinate (whose normalization is less

24 One can for instance take σd = iπγ [Bd ] but we will not use this fact.
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important), we let

�t (z) = �rep[ ft ](z − β ′t ),

for β ′t = βt − iπγ [ ft ] (recall γ is the iterative residue, see Appendix A). Let � :
(t, z) �→ �t (z), that we define on

Dom� = {

(t, z) ∈ [0, T ′1[×C
∣

∣ z ∈ Dom(�t )
}

.

It is an open subset of [0, T ′1[×C, and � is a continuous function of (t, z) by Propo-
sition 34 (in fact, it is analytic, see [28]). Similarly, let

R :
{

Dom R → C

(t, z) �→ Rt (z)

The domain of R is an open subset of [0, T ′1[×C and R is continuous, analytic w.r.t.
z for fixed values of t . (It is also analytic w.r.t. (t, z) but we will not use this fact.)

The critical values of�t and Rt do not movewhen t varies (evenwhen some critical
points vanish). It has the following consequence:

Proposition 57 (following part of the structure) Let F = � or F = R. Then,

• (Lemma 59) fibers of � form a foliation that is locally parallelizable over the first
coordinate.

It follows that there exists a function τ : Dom F0 →]0, T ′1] (survival time) and
function ζ(t, z) (fiber follower) such that:

• Dom ζ = {

(t, z) ∈ [0, T ′1[×Dom(F0)
∣

∣ t ∈ [0, τ (z)[ }
• the map τ is lower semi continuous, i.e., for all t ∈ [0, T ′1[ , the set Ut =

τ−1( ]t, T ′1]) ⊂ C is open
• the above two points imply that Dom ζ is an open subset of [0, T ′1[×C and
Dom ζ = {

(t, z) ∈ [0, T ′1[×C
∣

∣ z ∈ Ut
}

• the map ζ is continuous
• for each fixed t ∈ [0, T ′1[ , the map z ∈ Ut �→ ζ(t, z) is holomorphic and injective
• ∀(t, z) ∈ Dom ζ , F0(z) = Ft (ζ(t, z)), i.e., the map t ∈ [0, τ (z)[�→ (t, ζ(t, z))
follows a fiber of F

• (maximality and uniqueness) consider any continuous map following a fiber of F
as t varies from 0 to some t0, starting from (0, z) ∈ Dom F; then τ(z) > t0 and
the continuous map must coincide with t ∈ [0, t0] �→ ζ(t, z).

The rest of the present section (Sect. 3.9.1) is devoted to the proof of the above
proposition. The proof is written for � but is the same, word for word, for R.

Lemma 58 Let (t0, z0) ∈ Dom� and assume that z0 is a critical point of �t0 . Then,
there exists a connected neighborhood I of t0 in [0, T ′1[, and r0 > 0 such that for all
t ∈ I , �t has a unique critical point in B(z0, r0), it moves continuously with t and its
multiplicity does not change.
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Proof We apply Hurwitz’s theorem25 to �′t and to �t (note that �′t also depends
continuously on t , by Cauchy’s estimates): let u = �t0(z0). Take r0 > 0 small enough
so that z0 is the only critical point of �t0 in B := B(z0, r0), the only solution of
�t0(z) = u in B, and such that �t0 maps this disk in B(u, 1/2); there exists ε0 such
that for all t ∈ [0, T ′1[ with |t − t0| < ε0, �t is defined on B and maps it in B(u, 1/2);
then by Hurwitz’s theorem, there exists 0 < ε < ε0 such that for |t − t0| < ε, �t − u
has d − 1 critical points counted with multiplicity in B and d roots in B. Now recall,
we normalized the maps �t so that all critical values belong to Z+ u and u does not
depend on t . Since �t (B) ⊂ B(u, 1/2), this implies that all critical points of �t in B
map to u. Thus, the sum of local degrees of �t at preimages of u in B equals d, and
the sum of local degrees minus one equals d − 1: there is exactly one preimage of u,
thus exactly one critical point. Moreover, its local degree is d, thus its multiplicity is
constant. Continuous dependence is a classical application of Hurwitz’s theorem and
is left to the reader.26 ��

Now consider the fibers of �: Xc =
{

(t, z) ∈ Dom�
∣

∣�(t, z) = c
}

. They form a
collection of disjoint closed subsets of Dom�. We will prove that this collection is a
locally trivial foliation, in the following precise sense:

Lemma 59 (local trivialization) All (t0, z0) ∈ Dom� has an open neighborhood V
in Dom� on which a change of variable U : V → V ′ ⊂

open
[0, T ′1[×C of the form

U : (t, z) �→ (t, u(t, z))

is defined,

(1) U is a homeomorphism to V ′,
(2) for all t , z �→ u(t, z) is holomorphic,
(3) ∀c ∈ C, U (Xc) is the intersection of a horizontal with V ′: it is of the form

V ′ ∩ ([0, T ′1[×{w}) for some w ∈ C.

Proof Case 1: z0 is not a critical point of�t0 . It is an application of Hurwitz’s theorem.
Since the family �t depends continuously on t and �t0 is not locally constant near
z0, one can deduce from Hurwitz’s theorem that the map U = � itself, restricted to
an appropriate neighborhood V , will be a local trivialization. Details are left to the
reader.
Case 2: z0 is a critical point of �t0 . A consequence of Lemma 58, is that we can factor
�t (z) = (z − ct )dht (z) where ht (z) is a holomorphic function in z, continuous in
(t, z), defined locally and non-vanishing. Themap g(t, z) = d

√
ht (z) is defined locally,

25 There seems to be several statements called Hurwitz’s theorem. We are referring to the following: for
a sequence of holomorphic functions fn converging uniformly on compact subsets of an open subset U of
C, call its limit f . If D is a disk compactly contained in U and f does not vanish on the boundary of D
then for all n big enough, f and fn have the same number of zeroes in D, counted with multiplicity.
26 There is a more direct proof, with Hurwitz’s theorem used only at the end to deduce continuity. From
the fact that z0 is in a parabolic basin and that all critical points of ft map to the same point, it follows that
the orbit of z0 hits the set of critical points only once. Then, one uses that �attr = −n + �attr ◦ f n , and
that �attr is injective in the petal Dattr[ ft ] and that the latter moves continuously with t . Similar arguments
can be carried out for R in place of �.
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and we leave to the reader to check that the map (t, z) �→ (t, (z− ct )g(t, z)) is a local
trivialization. ��

Hence, connected components of fibers are graphs of continuous functions t �→
z(t) defined on connected open subsets of [0, T ′1[. Now, given any z ∈ Dom(�0),
we follow its fiber as t increases from 0 as long as possible: this gives a maximal
continuous function t ∈ [0, τ (z)[ �→ ζz(t) such that ζz(0) = z and �t (ζz(t)) is
constant. The real number τ(z) belongs to ]0, T ′1]. Uniqueness and maximality (last
point of Proposition 57) follow easily. In the lemma below, the point ζz(t) is denoted

z〈t〉.

Lemma 60 The following holds:

(1) The function τ is lower semi-continuous, i.e. for all t ∈ [0, T ′1[, the set Ut =
τ−1(]t, T ′1]) ⊂ C is open.

(2) On Ut , the function z �→ z〈t〉 is holomorphic.
Proof For a given z ∈ Ut , since t < τ(z), cover the compact set [0, t] by open subsets
on which there is a local trivialization of the fiber z belongs to. Extract a finite cover.
From it, one can build a trivialization like in the previous lemma, but in a whole
neighborhood of z〈[0, t]〉 relative to [0, t] × C. The lemma follows. ��

This ends the proof of the Proposition 57.

3.9.2 Objectives

Let f ∈ F and denote by τR[ f ] the τ function corresponding to R in Proposition 57:
i.e. τR[ f ](z) is the time up to which the fiber of (t, z) �→ Rt (z) that contains (0, z) can
be followed. Recall thatR[ ft ] denotes the parabolic renormalization of ft , normalized
so that the critical value does not move as t varies, and recall that ft is a specific
perturbation of f0 = f . Consider the parabolic renormalization R[ f0] of f0.

Lemma 61 If ∀z ∈ Dom(R[ f0]) � (1− ε1), τR[ f0](z) > ε0 then R[ fε0 ] has a
restriction that belongs to Fε1 .

Proof The map R[ f0] belongs to F , thus it can be written as R[ f0] = R[Bd ] ◦ φ−12
where φ2 : D → C is univalent and φ2(z) = z + O(z2). By hypothesis, the set Uε0

contains Dom(R[ f0]) � (1− ε1) = φ2(B(0, 1 − ε1)) (the sets Ut were defined in
Proposition 57 and Lemma 60). According to Proposition 57, the map ζ t : z ∈ Ut �→
ζ(t, z) is a holomorphic bijection to its image, andR[ ft ](ζ t (z)) = R[ f0](z) holds on
Ut . Apply this to t = ε0: let V = ζ ε0(φ2(B(0, 1− ε1))), then ζ ε0 ◦ φ2 is a structural
equivalence, with 0 as a marked point, between the restriction ofR[ fε0 ] to V and the
restriction of R[Bd ] to B(0, 1− ε1). ��

So the Main theorem (more precisely Theorem 26) will be proved if we can prove
the following claim:
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Proposition 62 (survival of fibers of R) There exists a pair ε1 < ε0 with ε0 < T ′1 such
that for all f0 ∈ F , for all z ∈ Dom(R[ f0]) � (1− ε1),

τR[ f0](z) > ε0.

The constant T ′1 was defined in Sect. 3.8.2. We will in fact prove more: for all ε0
small enough, there exists ε1 < ε0 such that the conclusion of the proposition holds.
Better: we can take ε1 $ ε0 (see details in Sect. 3.11).

3.9.3 Restatement of the Objectives

Let ε > 0 and consider some

z ∈ Dom(R[ f0]) � (1− ε).

The map Rt = R[ ft ] is the semi-conjugate by E of the composition �t ◦ �t , but
it can also be viewed differently: recall that the extended Fatou coordinates �t and
extended inverse �t are defined via iteration of ft , using bijective Fatou coordinates
in petals as a starting point. Let Prep be a repelling petal and �rep be a repelling
Fatou coordinate such that �t = �−1rep holds on �rep(Prep). The value Rt (z), thus,
decomposes as follows (see Fig. 22 in Appendix A):

Rt (z) = E(�t ( f
m0
t (�t (u)))),

where E(z) = e2π i z , u ∈ E−1(z)∩�rep(Prep) andm0 = m0(z) ∈ N is chosen so that
f m0
t (�t (u)) belongs to the attracting petal. Let us now focus on the initial situation,

at t = 0: consider the f0 bilateral orbit

(n ∈ Z) ωn := �0(u + n).

It depends on z and on the choice of u ∈ E−1(z) ∩ �rep(Prep). Interestingly, if one
chooses another u ∈ E−1(z) ∩�rep(Prep), we get the same orbit, but with the index
n shifted. According to the first step, if z ∈ Dom(R[ f0]) � (1− ε) then the orbit ωn

is contained in Dom( f0) � (1− ε′) = φ0(B(0, 1− ε′)) with ε′ � ε:

∀n ∈ Z, ωn ∈ Dom( f0) � (1− ε′).

Let us again insist on our interpretation of this fact, that is the central idea of the whole
machinery: given f0 ∈ F , the restriction of its renormalized map R0 to a map with
substructure Fε, can be defined using a restriction of the map f0 that has structure
Fε′ , i.e. much less structure. If all maps with structure Fε′ were restrictions of maps
in F we would be done (the main theorem would follow at once), but this is of course
not the case, and this is the reason why we introduced the interpolation ft . The idea
is then the following: since ε $ ε′, for t at most ε or just slightly bigger, the map ft
will be extremely close to f0 on a set slightly bigger than Dom( f0) � (1− ε′). The
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task is then to check that this is close enough so that the fibers attached to the orbits
ωn survive and thus the Fε-structure of the parabolic renormalization survives.

Let us now denote τ�[ f ] the τ function corresponding to� in Proposition 57. This
proposition also provides a map (t, z) �→ ζ(t, z), to be interpreted as a motion of z as
t varies. For convenience, in the sequel, we will use the notation

z〈t〉 = ζ(t, z).

Lemma 63 (themotion is compatiblewith the dynamics)∀z ∈ U0, τ�( f0(z)) ≥ τ�(z)
and ∀t < τ�(z), ft (z〈t〉) = f0(z)〈t〉.
Proof By construction of the extended Fatou coordinates, if (t, z) ∈ Dom� then
(t, ft (z)) ∈ Dom� and �(t, ft (z)) = 1 + �(t, z). By hypothesis, the graph of
t ∈ [0, τ�(z)) �→ z〈t〉 is contained inDom�hence so is the graphof t ∈ [0, τ�(z)) �→
ft (z〈t〉) and �(t, ft (z〈t〉)) = 1+�(t, z〈t〉), and, thus, remains constant as t varies,
by construction of the motion z〈t〉. This means that t ∈ [0, τ�(z)) �→ ft (z〈t〉) is in
the unique fiber of � containing f0(z): hence, ft (z〈t〉) = f0(z)〈t〉. ��
Now for a given t , consider the sequence

ωn〈t〉.

It is an orbit of ft , though, depending on t , it may not be defined for all n:

Lemma 64 For all t ∈ [0, T ′1[:
• if ωn〈t〉 is defined (i.e. τ�(ωn) > t) then ωn+1〈t〉 is defined and ωn+1〈t〉 =

ft (ωn〈t〉),
• ωn〈t〉 is defined when n is big enough.

Proof Since ωn〈0〉 = ωn is an orbit for f0: ωn+1〈0〉 = f0(ωn〈0〉). The first point
follows from the previous lemma. Informally, the second point states that points deep
enough in the attracting petal can be followed for a long time. Let us apply Proposi-
tion 32 and its companion Proposition 29 to the family of maps G = {

fs
∣

∣ s ∈ [0, t]}.
The Fatou coordinates in this proposition are normalized by the expansion. They, thus,
differ from�s by the constant βs = σd−�attr[ ft ](vt ) of Sect. 3.9.1, which is bounded
for s ∈ [0, t]. Hence, there is a map ξ , independent of s ∈ [0, t], such that the domain
of equation Re (z) > ξ(Im (z)) is contained in the image by �s of the attracting
petal Dattr[ fs] (defined in Proposition 29). Choose N1 so that ωN1〈0〉 ∈ Dattr[ f0]. For
N = N1 + k ≥ N1, we have ωN 〈0〉 ∈ Dattr[ f0] and �0(ωN 〈0〉) = �0(ωN1) + k,
hence there is some N2 ≥ N1 such that for all n ≥ N2, ωn〈0〉 is in the domain of
equation Re (z) > ξ(Im (z)). Let us call �attr,s the inverse of the restriction of �s to
the petal. The function s �→ �attr,s(�0(ωn〈0〉)) then defines a motion of ωn〈0〉within
a fiber of �, whence the conclusion by the uniqueness point of Proposition 57. ��

The sequence ωn〈t〉 is, thus, defined either for all n ∈ Z or for all n ≥ N ∈ Z,
where N depends both on t and on the orbit ωn = ωn〈0〉. Proposition 31 provides a
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repelling petal Drep[ ft ] of diameter r0 that varies continuously with ft . Here, r0 can
be any small enough constant independent of ft . Proposition 62, and thus, the main
theorem (more precisely Theorem 26) will follow from:

Proposition 65 (survival of orbits as fibers of�, and control)There exists r ′0 < r0 anda
pair ε1 < ε0 with ε0 < T ′1 such that for all f0 ∈ F , for all z ∈ Dom(R[ f0])�(1− ε1),
if we consider the orbit ωn associated with z, then

• for all n ∈ Z

τ�[ f0](ωn) > ε0,

• there exists M ∈ Z such that (t ≤ ε0 and n ≤ M) �⇒ ωn〈t〉 ∈ Drep[ ft ](r ′0).
Indeed, let �+,t be the repelling Fatou coordinates on Drep[ ft ] such that �t ◦

�+,t (z) = z holds on Drep[ ft ]. It depends continuously on t . Consider a point
z ∈ Dom(R0) � 1− ε1 and the f0-orbit ωn associated to z. Let then z(t) =
E(�+,t (ωM 〈t〉)). Then, z(t) ∈ Dom Rt and ∀n ≥ M , Rt (z(t)) = E(�+,t (ωM 〈t〉)) =
E(�t (ωn〈t〉)+ M − n) = E(�t (ωn〈t〉)) = E(�0(ωn〈0〉)) (the last equality because
we follow a fiber of �), i.e., Rt (z(t)) is constant as t varies. Since z(0) = z〈0〉, we
have followed the R-fiber associated to z: z(t) = z〈t〉. In particular τR(z) > ε0.

Again, we will get slightly stronger information on the valid pairs (ε0, ε1) for
Proposition 65, see Sect. 3.11.

3.10 Step 2, III: Survival of Fibers

In this section, we will prove the following proposition (see the paragraph just before
Proposition 65 for information about the constant r0):

Proposition 66 There exists K > 0, r ′0 < r0 and ε′0 such that for all ε′ < ε′0, for all
f0 ∈ F0, for all f0-orbit ωn indexed by I = Z that tends to 0 in the future (in an
attracting petal) and in the past (in a repelling petal), if the orbit (ωn) is completely
contained in Dom( f ) � (1− ε′), then its survival time is at least ε′/K:

∀n ∈ Z, τ�(ωn) > ε′/K .

Moreover27 there is some M ∈ Z such that ∀n ∈ Z with n ≤ M and ∀t ≤ ε′/K,
ωn〈t〉 ∈ Drep[ ft ](r ′0).

Herewe do not need to assume that ε′ is related to some ε > 0 like in Proposition 45.

3.10.1 Local Orbits

Wefirst consider those orbits that stay near the parabolic point, and prove their survival
for some uniform time.

27 This constant M will of course not be independent of the orbit (ωn).
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Lemma 67 (Survival of local orbits) For all T3 < T ′1 there exists r1 > 0 such that for
all f0 ∈ F0 and for all f0-orbit ωn indexed by I = Z or I = N, if the sequence (ωn)

is contained in B(0, r1), then

• for all n ∈ I , τ�[ f0](ωn) > T3,
• if I = Z, then there exists N ∈ Z such that ∀n ∈ Z with n ≤ N and ∀t ∈ [0, T3] ,

ωn〈t〉 ∈ Drep[ ft ](r0).

Proof Recall the statements and notations of Propositions 29 and 32 and apply them to
the compact set of mapsF[0,T3], which yields a value r0. In their proofs, we introduced
the right half plane Hattr[ f ], image of the disk Dattr[ f ] by z �→ s(z) = −1/c f z.
The boundary of Hattr is a vertical line of abscissa 1/r0|c f |. Call R0 the supremum
of 1/r0|c f | when f varies over F0. The function �attr was the inverse of �attr :
Dattr → �attr(Dattr). It is important to note a difference: the Fatou coordinates were
normalized by they asymptotic expansion in these propositions; whereas, here, they
are normalized using the critical value v[ ft ]: �t (z) = �attr[ ft ](z) + βt where βt =
β[ ft ] = σd −�attr[ ft ](v[ ft ]). Let

z �→ st (z) = −1/c[ ft ]z.

Let ˜�t = �−1t defined on �t (Dattr[ ft ]). Choose any T ′3 ∈ ]T3, T ′1[. The following
three bounds are finite:

B = sup
f ∈F[0,T ′3]

∣

∣c f
∣

∣, B ′ = sup
f ∈F[0,T ′3]

|βt | and � = sup
f ∈F[0,T ′3]

∣

∣γ [ f ]∣∣.

Since B ′ < +∞, one can translate the estimates given in Propositions 29 and 32 into
estimates on ˜�t and �t as follows:

|st ( ft (z))− (st (z)+ 1)| ≤ 1/4 (∀z ∈ B(0, r0))
|�t (s

−1
t (u))− (u − γ logp u)| ≤ M1

|st ◦ ˜�t (Z)− (Z + γ logp Z)| ≤ M2

Dom(˜�t ) ⊃ {

Z ∈ C
∣

∣Re Z > ξ(Im Z)
}

ξ(y) =
y→±∞ O(log |y|),

where st , γ = γ [ ft ], �t and ˜�t all depend on ft , but the function ξ and the constants
M1, M2 are independent of f0 and of t . Consider now a real number a > R0 and the
sector S ⊂ Hattr defined by arg(z − a) < π/3. By the first estimate above, s−1t (S)

is stable by ft . By the other estimates, if a is big enough, for all ft ∈ F[0,T ′3], for
all z 
= 0, if s0(z) ∈ S, then ˜�t (�0(z)) is defined. It follows a fiber of �, hence by
uniqueness in Proposition 57, τ�(z) ≥ T ′3 and

z〈t〉 = ˜�t (�0(z)).
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Near Parabolic Renormalization for Unicritical Holomorphic Maps 243

Fig. 19 Illustration of the proof of Lemma 67. Both pictures live in the u-plane. The small circle has radius
R0, the big circle radius R1, both are centered on the origin. The sector S has apex having some real affix
a > R0, which we depicted closer to R0 than to R1. See the text for further description

Using the estimate above on ˜�t , we get ∀t ∈ [0, T ′3[ , st (z〈t〉) ∈ Hattr[ ft ] provided
a ≥ A′ for some A′ independent of f0, t and z. Let

u(t) := st (z〈t〉) = st ◦ ˜�t (�0(z)).

In particular u(0) = s0(z). We then get the following bound on the motion:

∣

∣u(t)− u(0)
∣

∣ ≤ M4 log(M
′
4 + |u(0)|),

where M4 and M ′
4 are independent of t , f0 and z. Indeed, we start from | logp(x)| ≤

π + log |x | when log |x | > 0. We then use the estimates above to first get |�0(z)| ≤
M1 + |u(0)| + �π + � log |u(0)| (we can ensure log |u(0)| > 0 by taking a >

1) and |�0(z)| > 1 (take a big enough). Then, |u(t)| ≤ M2 + |�0(z)| + �π +
� log |�0(z)| ≤ M + M ′|u(0)| for a pair (M, M ′) independent of t , f0, z. Then,
|u(t)− u(0)| ≤ |u(t)−�0(z)| + |�0(z)− u(0)|. Last, we use for t ′ = t and t ′ = 0
that |u(t ′)−�0(z)| ≤ M1 + � log |u(t ′)|.

So far, we have proved survival of points z with in s0(z) ∈ S, i.e. τ�(z) ≥ T ′3 >

T3. Figure 19 illustrates the next step of the proof. Let r1 to be chosen later, with
r1 < r0. Let R1 = inf(1/|c f r1|) = 1/(r1 sup |c f |) where the extrema are taken over
f ∈ F[0,T ′3]. Assume zn is an orbit of f0 indexed by N that is contained in B(0, r1).

Then, the sequence un = s0(zn) is contained in
{

u ∈ C
∣

∣ |u| > R1
}

. If u0 ∈ S then
∀n ≥ 0, τ�(z) ≥ T ′3. If u0 /∈ S, let n0 be the smallest positive integer such that un0 ∈ S
(there is one, by the first estimate in the list). Since un0−1 ∈

{

u ∈ C
∣

∣ |u| > R1
}\S

and un0 ∈
{

u ∈ C
∣

∣ |u| > R1
} ∩ S, the first estimate in the list gives, again, that un0

must belong to the set�, depicted in red in Fig. 19, intersection of
{

u ∈ C
∣

∣ |u| > R1
}

with the set of points in S at distance ≤ 5/4 from ∂S. By the bound on the motion,
∀t ∈ [0, T ′3[, un0(t) belongs to the set�′, depicted in light red, union of balls of center
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u ∈ � andof radiusM4 log(M ′
4+|u|). Themap ft still satisfies thefirst inequality in the

list, hence, provided R1 is big enough then for all f0 and for all t ∈ [0, T ′3[, and for all
sequence un as above, there is an inverse orbit of the conjugate of ft by st , starting from
un0(t) and remaining in

{

u ∈ C
∣

∣ |u| > R0
}

, in fact remaining above or belowadomain
delimited by the dotted line on the figure (onwhichwe interrupted the dotted linewhen
it reaches the repelling petal, delimited by the vertical plain line). By continuity, this
orbit is equal to st (zn〈t〉) and τ�(zn) ≥ T ′3 > T3, for all n ∈ I = Z or N. If I = Z, let
as above n0 be the smallest relative integer such that un0 ∈ S. By the first inequality it
exists, and moreover the inverse orbit un(t), n negative, must enter the repelling petal
(and stay there) as soon as |un0 | + M4 log(M ′

4 + |un0 |)+ 3
4 (n − n0) < −R0. ��

We can in fact bound their motion.

Lemma 68 (Bound on the motion of local orbits) The following can be added to the
conclusions of Lemma 67:

• ∀t ∈ [0, T3], ∀n ∈ I , let z = ωn: |z〈t〉 − z| ≤ K1|z|t .
The constant K1 is independent of f0, t and z but may depend on T3.

Proof To shorten the proof, we will use holomorphic motions:28 let us extend the
deformations ft to complex values of t in an open neighborhood V of [0, T3] that
does not depend on f0 ∈ F . The hyperbolic length of [0, T3] in V is thus inde-
pendent of f0. For those values of t such that |rt | > 1, where rt = 1 − t , the
map ft is only defined on rtφ0(r

−1
t D) instead of rtφ0(D) when |rt | ≤ 1. Those

sets contain a common ball B(0, r) for some r independent of f . By compact-
ness, an analog of Lemma 67 still holds. The function t �→ z〈t〉 is defined on V
and holomorphic.29 Consider the cone of vertex 0, axis R+ and angle 3π : this is
a Riemann surface over C

∗ that is bijectively parameterized in polar coordinates
(r , θ) by ]0,+∞[× ] − 3π/2, 3π/2[. The study made in the previous lemma shows
that, for r1 small enough, the points ωn satisfying the assumptions of the theorem
have a motion ωn〈t〉 such that un(t) := −1/c[ ft ]ωn〈t〉 stays in this cone when
t varies. The element of hyperbolic metric on the cone has expression c(θ)|du|/r
where c(θ) ≥ c(0) > 0. The movement of u is holomorphic, hence bounded
in this metric by the hyperbolic length of [0, T3] in V . In Euclidean terms, un(t)
has moved by at most Kt |un(0)| for some K independent of f0. Moreover, |un(t)|
and |un(0)| are of comparable size. Going back to ωn〈t〉 = −1/c[ ft ]un(t), we get
|ωn〈t〉−ωn〈0〉| ≤ |1/c[ ft ]un(t)−1/c[ ft ]un(0)|+ |1/c[ ft ]un(0)−1/c[ f0]un(0)| ≤
|un(0)−un(t)|/|c[ ft ]un(0)un(t)|+|1/c[ ft ]−1/c[ f0]|/|un(0)|. One concludes recall-
ing c[ ft ] is not too close to 0 and depends holomorphically on t . ��

3.10.2 Contraction

Arguments in this section are standard in holomorphic dynamics in complex dimension
one.

28 It is possible to avoid holomorphic motions completely, using Propositions 42 and 43 and the remark
that follows, which can themselves be proved without holomorphic motions. However, that is much longer.
29 Hence we have a holomorphic motion, because it is injective w.r.t. z, but we will not use that fact.
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Let PC( f0) denote the post critical set of f0, i.e. the orbit of the (unique) critical
value. Since this orbit tends to 0, the closure PC( f0) equals PC( f0) ∪ {0}. Let

W0 = C\PC( f0).

It is well known that inverse branches of f0 are locally contracting for the hyperbolic
metric of W0. Let us recall the argument: f0 is a cover from W ′

0 := f −10 (W0) to W0.
As such, it is an isometry, at the infinitesimal level, from the hyperbolic metric of W ′

0
to that ofW0. NowW ′

0 ⊂ W0, and strict inclusion maps are locally contracting. Recall
that for a hyperbolic domain U of C we denote ρU (z)|dz| the element of hyperbolic
metric of U . For z ∈ W ′

0, let us denote λ(z) the contraction factor of f −10 from f0(z)
to z, measured with the hyperbolic metric element of W0:

λ(z) = ρW0(z)

ρW0( f0(z))

∣

∣

∣

∣

dz

d f0(z)

∣

∣

∣

∣

;

it is also equal to the contraction factor at z of the inclusion map from W ′
0 to W0:

λ(z) = ρW0(z)

ρW ′
0
(z)

.

The function λ is continuous and takes values in ]0, 1[.
Let us recall that a hyperbolic open subset of the Riemann sphere with an isolated

point a in its complement has a hyperbolic metric coefficient ρ(z) ∼ 1
2|z−a| log 1

|z−a|
as

z −→ a 
= ∞, or ρ(z) ∼ 1
2|z| log |z| as z −→ a = ∞.

Lemma 69 Let zn ∈ W ′
0 be a sequence.

(1) If zn leaves every compact subset of the open set W ′
0∪ PC( f0), then λ(zn) −→ 0.

(2) If λ(zn) −→ 1 then zn −→ PC( f0).

Proof Wemay extract a subsequence and assume zn convergent in theRiemann sphere.
Point (1): If zn −→ ∞ then ρW0(z) ∼ 1

2|z| log |z| , whereas ρW ′
0
(z) ≥ ρDom( f0)(z) and

the latter is≥ 1
4dC(z,∂ Dom( f0))

by Koebe’s one quarter theorem. Now since the domain
of f0 is the image of D by a Schlicht map, there is at least one point in its complement
that is at distance at most 1 from 0. Hence, dC(z, ∂ Dom( f0)) ≤ 1+ |z|. Putting it all
together, we get that ρW0(z)/ρW ′

0
(z) −→ 0 as |z| −→ +∞. In the remaining case:

lim zn 
= ∞ so ρW0(z) converges to a constant, whereas ρW ′
0
(z) −→ +∞.

Point (2): The function λ is continuous and λ(z) < 1 thus if λ(zn) tends to 1 then zn
leaves every compact subset of W ′

0, and we conclude by the previous point. ��
Lemma 70 (Definite contraction factor at definite distance of PC) For all δ > 0, there
exists�(δ) < 1 such that ∀ f ∈ F , ∀z ∈ W ′

0, if dC(z, PC( f )) ≥ δ, then λ(z) ≤ �(δ).

Proof If not, there would be sequences fn = R[Bd ] ◦ φ−1n ∈ F and zn ∈ W ′
0[ fn]

such that dC(zn, PC( fn)) ≥ δ but λ[ fn](zn) −→ 1. Let us extract convergent subse-
quences and assume that zn −→ z′ ∈ ̂C andφn −→ φ, thus fn −→ f = R[Bd ]◦φ−1.
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Since PC( f ) is contained in a ball B(0, R) with R independent of f ∈ F (Point 2
of Lemma 39), W0( f ) contains V := C\B(0, R), hence ρW0(z) ≤ ρV (z) ∼
1/2|z| log |z| as z −→∞. This gives an upper bound like in Point (1) of Lemma 69,
but moreover independent of f ∈ F . It follows that z′ 
= ∞. By Lemma 39, PC( f )
depends continuously on φ thus dC(z′, PC( f )) ≥ δ. Hence z′ ∈ W0[ f ]. Now, the
marked domains (W0[ fn], zn) converge for the Caratheodory topology on marked
domains. Hence their universal cover from (D, 0) with real positive derivative at the
origin converge, and the coefficient of the hyperbolic metric converges locally uni-
formly: ρW0[ fn ](zn) −→ ρW0[ f ](z′). Concerning the marked domains (W ′

0[ fn], zn),
there are two cases: either z′ ∈ W ′

0[ f ] in which case there is Caratheodory conver-
gence to (W ′

0[ f ], z′) and thus ρW ′
0[ fn ](zn) −→ ρW ′

0[ f ](z
′); or z′ /∈ W ′

0[ f ] in which
case we will prove in the next paragraph the following claim: ρW ′

0[ fn ](zn) −→ +∞.
In the first case, λ[ fn](zn) −→ λ[ f ](z′) < 1. In the second case, λ[ fn](zn) −→ 0.
Both cases lead to a contradiction.

Let us prove the claim.There exists then a point xn ∈ C\W ′
0[ fn] such that xn −→ z′.

Let r ′ = |z′| and let r ′′ ≥ 1 be any real such that r ′′ 
= r ′, for instance r ′′ = r ′ + 1.
Since the conformal radius w.r.t. 0 of the simply connected set Dom fn is 1, there
exists a point in C\Dom fn of any modulus ≥ 1, in particular a point yn of modulus
r ′′. Let Vn = C\{xn, yn}. Then, ρW ′

0[ fn ](zn) ≥ ρVn (zn). Let φn be the unique C-affine

map sending 0 to xn and 1 to yn and let un = φ−1n (zn). Then φ′n = yn − xn and
ρC\{0,1} = φ∗n (ρVn ) = |φ′n| × ρVn ◦ φn . For n big enough, the sequence xn − yn is
bounded away from 0 (and∞) thus un −→ 0 thus ρC\{0,1}(un) −→ +∞ and also
ρVn (zn) = ρC\{0,1}(un)/|yn − xn| −→ +∞. ��

3.10.3 Putting Back the Post Critical Set

The following easy lemma will be useful in several places.

Lemma 71 There exists a function δ > 0 �→ M(δ) > 0 such that the following holds.
For all f ∈ F , for all z ∈ Dom( f ), if dC(z, PC( f )) ≥ δ, then

ρW0( f )(z)

ρDom( f )(z)
≤ M(δ).

Proof In this proof, the notation B(z, r) denotes the euclidean ball and PC = PC( f ).
By Lemma 39, there is R > 0 such that for all f ∈ F , PC ⊂ B(0, R). Let U =
C\B(0, R). Then for |z| > R:

ρW0(z) ≤ ρU (z) = 1

2|z| log |z|R
.

For any z ∈ W0, since the disk D of center z and radius dC(z, PC) is contained in
W0, we get

ρW0(z) ≤ ρD(z) = 1

dC(z, PC)
.
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By the theory of univalent functions,

ρDom( f )(z) ≥ 1

4(1+ |z|) .

The lemma follows. ��

3.10.4 Homotopic Length and Decomposition

I was introduced to the notion of homotopic length by reading [13].
For γ a path defined on an interval I containing [a, b], let us denote its restriction

to [a, b] by

γ
∣

∣[a, b].

Let us similarly denote

ωn〈[0, t]〉 : s ∈ [0, t] �→ ωn〈s〉,

where ωn is an orbit of f0 as in Sect. 3.9.3.
To bound the motion of ωn〈t〉, we will look at the homotopic length of the path

ωn〈[0, t]〉 for the hyperbolic metric onW0 = C\PC( f0). Homotopic length of a path
γ refers to the infimum of W0-hyperbolic lengths of paths homotopic to γ in W0,
where the ends of the path are fixed. It will be denoted

hlenW0(γ ).

Bycontrast,wedenote as follows the usual length of a rectifiable path for the hyperbolic
metric of W0:

lenW0(γ ).

Last, we will call extent of a path γ defined on [0, t] the quantity

extentW0(γ ) = sup
t ′∈[0,t]

hlenW0(γ
∣

∣[0, t ′]).

Remark Homotopic length is also the hyperbolic distance between the starting point
and the end point of a lift of the curve to the universal cover. There are in particular
shortest homotopic paths. The extent of a curve is the smallest radius of a ball in the
universal cover containing a lift of the curve and centered on the initial point of this
lift. If U is connected and γ ⊂ U � V then the V -homotopic length of γ is strictly
smaller than its U -homotopic length: consider, for instance, the shortest homotopic
path for V ; itsU -length is strictly shorter. IfU and V are hyperbolic Riemann surfaces
and f : U → V is a cover then hlenU (γ ) = hlenV ( f ◦ γ ).
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Remark The sequence (ωn〈t〉)n∈N is an orbit of ft , not f0. It may therefore seem
unnatural to measure the motion of t �→ ωn〈t〉 using the hyperbolic metric on the
complement of PC( f0). However, we found the proof simpler to write that way. Note
that the motion will be evaluated only at some distance from the post critical points,
and in the end it will be small.

Recall that f0 ∈ F decomposes as

f0 = R[Bd ] ◦ φ−10

with φ0 : D → U0 a Schlicht map. Let us decompose the map ft as follows:

ft = f0 ◦ σt ,

where

σt (z) = φ0 ◦ rt ◦ φ−10 ◦ r−1t

with the notations of Sect. 3.8.1 and letting rt denote the multiplication by

rt = 1− t .

Themap σ0 is the identity restricted to Dom f0. If we interpret σt (z) as amotion of z as
t varies, then it can be viewed as the composition of two motions: (t, z) �→ (t, r−1t z)
followed by the conjugate by φ0 of the radial motion (t, z) �→ (t, rt z) on the unit
disk:

σt = μt ◦ r−1t

with

μt = φ0 ◦ rt ◦ φ−10 .

The domain of definition of the reciprocal σ−1t equals φ0(B(0, rt )) = Dom( f0) � rt
and thus, as t varies away from 0, it shrinks.

One way to get a control ωn−1〈s〉 is to do it inductively from a control on ωn〈s〉,
using the relation fs(ωn−1〈s〉) = ωn〈s〉 of Lemma 64. Consider the case where ωn〈0〉
is not equal to 0 nor to the singular value v of f0. Then, ωn〈s〉 /∈ {0, v}, because 0 and
v do not move under the fiberwise motion, and �-fibers are disjoint. Recall that the
singular values of f0 are precisely 0,∞ and v. We claim that, under some condition
stated below, the path s ∈ [0, t] �→ ωn−1〈s〉 is homotopic (with endpoints fixed) in
W0 to the concatenation of the following two paths (see Fig. 20):

• Thefirst path, denoted γ1 = f ∗0 ωn by a slight abuse of notation, is parameterised by
s ∈ [0, t] and is defined by continuity by γ1(0) = ωn−1〈0〉 and f0(γ1(s)) = ωn〈s〉,
i.e. we replaced fs by f0 in fs(ωn−1〈s〉) = ωn〈s〉. Existence of this path follows
from ωn〈s〉 never hitting the singular values of f0. It ends at some point w′ (which
depends on t);
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(x, y) �→ h(x, y)

ωn−1〈0〉

ωn−1〈t〉
ωn−1

f∗
0ωn

w′

σ−1
s (w′)

0 (0, t)

(t, t)

Fig. 20 Themap h(x, y) = σ−1y ( f ∗0 ωn(x)) defined on the triangle of inequations x ∈ [0, t], y ∈ [0, t], y ≤
x induces a homotopy between ωn−1 on [0, t] and the concatenation of f ∗0 ωn and s ∈ [0, t] �→ σ−1s (w′)

• The second path is γ2 : s ∈ [0, t] �→ σ−1s (w′). For it to be defined up to s = t , we
need to assume that w′ ∈ Dom( f0) � (1− t) = φ0(B(0, 1− t)).

The homotopywill be defined bymeans of amap h defined on the set of (x, y) ∈ [0, t]2
such that y ≤ x by

h(x, y) = σ−1y (γ1(x)).

For it to be well defined, we will make assumptions on t , on the length of ωn and on
the ε such that ωn−1〈0〉 ∈ Dom( f0)� (1− ε). For it to be a homotopy inW0, we need
to prove that its support does not intersect PC( f0) and for this, we will make further
assumptions on t , on the length of ωn and on the Euclidean distance from ωn−1〈0〉 to
PC( f0).

To state these sufficient conditions, we will introduce the following objects and
quantities. For δ > 0 let Vδ[ f ] denote the δ-neighborhood of PC( f ), i.e. the set
of points whose Euclidean distance to PC( f ) is < δ (see Fig. 21). According to
Lemma 39, the following quantity is positive:

δ1 := inf
f0∈F0

dC(PC( f0), C\Dom f0),

where dC refers to the Euclidean distance, and the following are finite:

R1 := sup
{|z| ∣∣ z ∈ PC( f0), f0 ∈ F0

}

,

R2 := sup
{

dDom f0(0, z)
∣

∣ z ∈ PC( f0), f0 ∈ F0
}

.

Lemma 72 For all (δ, δ′) with δ′ < δ < δ1, there exists T = T (δ, δ′) > 0 such that
∀ f0 ∈ F0, ∀t < T :

• μ−1t
(

C\Vδ[ f0]
) ∩ Vδ′ [ f0] = ∅,

• rt
(

C\Vδ[ f0]
) ∩ Vδ′ [ f0] = ∅,

• σ−1t
(

C\Vδ[ f0]
) ∩ Vδ′ [ f0] = ∅.
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vf 0

Vδ[f ]

Fig. 21 A schematic illustration of Dom( f ), Dom( f ) � r and Vδ[ f ]. Scales are not respected. The outer
curve represents the boundary of the domain of some f ∈ F , the nearby smooth curve the boundary of the
sub-domain Dom( f )�1− ε. The post-critical set is indicated by dots, its δ-neighborhood for the Euclidean
metric is Vδ[ f ] and its boundary is indicated by thin curves

Proof We can deduce the third point from the first two, using an intermediary value
δ′′. This may not be optimal30 but it is not the point here. For the second point,
an explicit valid value of T can easily be computed using Lemma 39: assume z ∈
rt

(

C\Vδ[ f0]
) ∩ Vδ′ [ f0]. Then, there exists z′ ∈ PC( f0) such that |z − z′| < δ′,

thus |z| < R1 + δ′. Then |z − r−1t z| ≤ (R1 + δ′)(r−1T − 1). If T is chosen so that
(R1 + δ′)(r−1T − 1) < δ − δ′, then r−1t z cannot belong to C\Vδ[ f0]. For the first
point, let us work by contradiction and assume there is fn ∈ F0, an ∈ C\Vδ[ fn],
bn ∈ Vδ′ [ fn] and tn > 0 such that tn −→ 0 and an = μtn (bn). We may assume that
fn −→ f ∈ F0, an −→ a ∈ ̂C and bn −→ b ∈ C. From |an − bn| > δ − δ′ we get
|a − b| ≥ δ− δ′. Write fn = R[Bd ] ◦ φ−1n and f = R[Bd ] ◦ φ−1 . From δ′ < δ1 and
R2 < +∞, we deduce that φ−1n (bn) remains in a compact subset of D, thus b belongs
to Dom( f ), but then a = μ0(b) = b, a contradiction. ��

We will later choose some

δ < δ1.

Let then

d1 = d1(δ) = inf
f0∈F0

dW ′
0

(

Vδ/3[ f0] , C\Vδ/2[ f0]
)

30 Near z = 0, the Euclidean motion of σt is of order |z|2, thus smaller than the sum of the motions of μt
and of rt , which are both of order |z|.
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with W ′
0 := f −10 (W0). Let also

d ′′1 = d ′′1 (δ) = inf
f0∈F0

d f −1(C\{0,v})
(

Vδ/3[ f0] , C\Vδ/2[ f0]
)

,

v being the critical value of f0, and note that d ′′1 < d1. Using the notation of Lemma 72
let

T4(δ) = T
(

δ/3 , δ/4
)

so that ∀ f0 ∈ F0, ∀t < T4(δ), σ
−1
t

(

C\Vδ/3[ f0]
)∩ Vδ/4[ f0] = ∅. Let �(x) denote the

hyperbolic distance from 0 to x in D:

�(x) = dD(0, x) = argth(x).

It is a bijection from [0, 1[ to [0,+∞[. For a given ε′ > 0, let T5 = T5(δ, ε′) ∈ ]0, 1[
be the unique solution to

�(1− T5) = d1(δ)+ �(1− ε′).

Note that the solution T ′′5 of �(1 − T ′′5 ) = d ′′1 (δ) + �(1 − ε′) satisfies T ′′5 > T5. We
will later look at how T5(δ, ε′) varies as ε′ −→ 0 for a fixed δ. Recall the definition
of extent given at the beginning of the present section on page 66.

Proposition 73 Let t > 0. If we assume that

(1) τ�(ωn〈0〉) > t ,
(2) the path s ∈ [0, t] �→ ωn〈s〉 is contained in W0,
(3) extentW0(ωn〈[0, t]〉) ≤ d1(δ),
(4) ωn−1〈0〉 ∈ Dom( f0) � (1− ε′),
(5) ωn−1〈0〉 /∈ Vδ/2[ f0],
(6) t ≤ T4(δ),
(7) t ≤ T5(δ, ε′),
then τ�(ωn−1〈0〉) > t and the function h mentioned above is well defined and has
support in W0 (even better: it avoids Vδ/4[ f ]). In particular, s ∈ [0, t] �→ ωn−1(s) is
homotopic in W0 to the concatenation γ1 ·γ2, of the two paths defined earlier, page 66.
We also have γ1 ⊂ Dom( f0) � (1− T5).

Proof By (2) the path ωn is contained in C\{0, v} thus the path γ1, defined as the
pull-back by f0 of ωn〈·〉 starting from ωn−1〈0〉, is well defined. Let t ′ ∈ [0, t]:

hlenDom f0(γ1
∣

∣[0,t ′]) < hlenW ′
0
(γ1

∣

∣[0,t ′]) = hlenW0(ωn〈·〉
∣

∣[0,t ′]) ≤ d1

(the first inequality comes from the strict inclusionW ′
0 ⊂ Dom f0, the equality follows

from f0 being a cover from W ′
0 to W0, the second inequality comes from point (3)).

In particular, the Dom f0-hyperbolic distance from γ1(0) to γ1(t ′) is ≤ d1. Since
moreover by (4), dDom f0(0, ωn−1〈0〉) ≤ �(1 − ε′) we get that γ1 is contained in the
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Dom f0 hyperbolic ball of center 0 and radius d1 + �(1 − ε′) = �(1 − T5). Hence,
γ1 ⊂ Dom( f0)� (1− T5). Hence, by (7), γ2 and the map h defined at the same place
are well defined. Let us check that h takes values in W0, i.e., that it avoids PC( f0).
Note that we have already proved that hlenW ′

0
(γ1

∣

∣[0,t ′]) ≤ d1. In particular, the W ′
0-

hyperbolic distance from γ1(0) to γ1(t ′) is ≤ d1. Together with point (5) and the
definition of d1, it implies that γ1 is contained in C\Vδ/3[ f0]. Point (6) then implies
that γ2 and h take value in C\Vδ/4[ f0], which is contained in W0. The points h(s, s)
and ωn−1〈s〉 are both mapped by fs to the same point: ωn〈s〉, for which we recall that
�s(ωn〈s〉) stays constant when s varies. The uniqueness statement in Proposition 57
applied to � then implies that τ�(ωn−1) > t and that the functions defined on [0, t],
s �→ h(s, s) and s �→ ωn−1〈s〉, are in fact equal. ��

We have the following variation with W0 replaced by C\{0, v} in the hypotheses,
but not in the conclusion:

Proposition 74 Let t > 0. If we assume that

(1) τ�(ωn〈0〉) > t ,
(2) the path s ∈ [0, t] �→ ωn〈s〉 is contained in C\{0, v},
(3) extentC\{0,v}(ωn〈[0, t]〉) ≤ d ′′1 (δ),
(4) ωn−1〈0〉 ∈ Dom( f0) � (1− ε′),
(5) ωn−1〈0〉 /∈ Vδ/2[ f0],
(6) t ≤ T4(δ),
(7) t ≤ T ′′5 (δ, ε′),
then τ�(ωn−1〈0〉) > t and the function h is well defined and avoids Vδ/4[ f ]. In
particular, it has support in W0 and the path s ∈ [0, t] �→ ωn−1(s) is homotopic in
W0 to γ1 · γ2. We also have γ1 ⊂ Dom( f0) � (1− T ′′5 ).

Proof As in the previous proof. ��
Lemma 75 Under the conditions of Proposition 73, the W0-homotopic length of γ1 is
at most �(δ/3) times the W0-homotopic length of ωn, where �(δ/3) < 1 is given by
Lemma 70.

Proof We have seen that hlenW ′
0
(γ1) ≤ d1. Consider a shortest path γ homotopic

to γ1 in W ′
0: lenW ′

0
(γ ) = hlenW ′

0
(γ1). It is a geodesic for the hyperbolic metric, in

particular all its points are at W ′
0-hyperbolic distance ≤ d1 from its starting point. By

the definition of d1 this implies that γ is disjoint from Vδ/3[ f0]. By Lemma 70, we
have λ(z) ≤ �(δ/3) for z in the support of γ , with λ(z) = ρW0(z)/ρW ′

0
(z). Thus,

hlenW0(γ1) ≤ lenW0(γ ) ≤ �(δ/3) lenW ′
0
(γ ) = �(δ/3) hlenW0(ωn). ��

Lemma 76 Under the conditions of Proposition 74, the W0-homotopic length of γ1 is
at most M(δ/3) times the C\{0, v}-homotopic length of ωn, where M(· · · ) is given in
Lemma 71.

Proof This is done as in the previous lemma, with W ′
0 replaced by f −1(C\{0, v}),

d1 by d ′′1 and λ(z) by ρW0(z)/ρ f −1(C\{0,v})(z). By inclusion, the latter quantity is
≤ ρW0(z)/ρDom f (z), thus ≤ M(δ/3). ��
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TheW0-homotopic length of γ2 will be controlled using Lemma 77 below. To state
it, we need to introduce another quantity. By Lemma 72, there exists T6 = T6(δ) such
that ∀ f0 ∈ F0, ∀t < T6, μ−1t

(

C\Vδ/4[ f0]
) ∩ Vδ/5[ f0] = ∅ and rt

(

C\Vδ/5[ f0]
) ∩

Vδ/6[ f0] = ∅.

Lemma 77 For all δ < δ1, there exists K0 = K0(δ) such that under the conditions of
Proposition 73 or 74, and assuming moreover

• t ≤ T6(δ) and t ≤ T5(δ, ε′)/2,

then the W0-homotopic length of γ2 is ≤ K0t/T5(δ, ε′).

Proof Similarly to the proof of the propositions, the condition t < T6 ensures that
there is a homotopy in W0 between γ2 and γ3.γ4 where γ3(s) = μ−1s (γ2(0)) and
γ4(s) = rsw′′ where w′′ is the endpoint of γ3. The motion μs is the conjugate by φ0
of the radial motion and we have seen that x := |φ−10 (γ2(0))| ≤ 1− T5 (in the case of
Proposition 74 we have x ≤ 1−T ′′5 < 1−T5), thus the length of γ3 for the hyperbolic

metric ofφ0(D) = Dom f0 is≤ dD(x, x
1−t ) ≤ dD(1−T5,

1−T5
1−t ) = 1

2 log

(

1− t
2−T5

1− t
T5

)

≤
1
2 ×− log(1− t

T5
) ≤ t log(2)/T5, the latter because t/T5 ≤ 1/2. Lemma 71 implies

that itsW0-length is at most M(δ/5) times this quantity. To bound theW0-length of γ4,
note that it is contained in the complement of Vδ/6, thus ∀z ∈ γ4, ρW0(z) ≤ 6/δ. Also,
ρW0(z) ≤ 1/(|z| − R1) where R1 = sup

{|z| ∣∣ f ∈ F , z ∈ PC( f )
}

. If |w′′| > 4R1
then since t ≤ 1/2, the whole path γ4 is contained in the complement of B(0, 2R1) and

thus ρW0 ≤ 2/|z| whence a W0-length of γ4 that is≤
∫

|z|
1−t
|z|

2
x dx = 2 log(1/(1− t)) ≤

4t log 2 because t ≤ 1/2. If |w′′| ≤ 4R1, then the whole euclidean length of γ4 is
≤ 4R1t ; hence, the W0-length is ≤ (6/δ)4R1t . Recall that T5 < 1. ��
Remark The linearity of the boundw.r.t. t is not crucial for this article:weaker orders of
convergence to 0 would work for our purpose, thanks to the fact that in Proposition 45,
ε′ is much bigger than ε. What will be important is that values of t for which the bound
is a given small constant are much bigger than ε. So how T5 depends on ε will be
important too (recall δ will be fixed).

Remark Lemmas 75 to 77 give an upper bound on the W0-homotopic length of the
curve s ∈ [0, t] �→ ωn−1〈s〉 on each of its subsegments s ∈ [0, t ′] for t ′ < t , by
applying Proposition 73 to t ′ instead of t . So we get in fact bounds on the extent. This
allows for induction.

3.10.5 Visits in the Repelling Petal

Lemma 78 There exists K4 > 0 such that ∀ f ∈ F , ∀z ∈ W0, if |z| ≤ 1, then
ρW0(z) ≥ 1/K4|z|.
Proof Let us work by contradiction and assume that there exist fn ∈ F and zn ∈ D

such that zn ∈ W0[ fn] and ρW0[ fn ](zn)|zn| −→ 0. Consider the dilatation by 1/zn :
the set z−1n W0[ fn] ⊂ C does not contain 0, but it contains the point 1 and has a
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hyperbolic metric coefficient at this point tending to 0 as n → +∞. There would,
thus, exist Rn, rn > 0 such that Rn > |zn| > rn , such thatW0[ fn] contains the annulus
{

z ∈ C
∣

∣ rn < |z| < Rn
}

and such that Rn/|zn| −→ +∞ and rn/|zn| −→ 0 (this can
be proved by contradiction, using that C minus two points is hyperbolic, and that
inclusion is non-expanding for the hyperbolic metric).

Let us apply Lemma 37 to r = r0 where r0 is provided by Proposition 29. The
point f n0(v f ) belongs to Dr0 [ f ]. It depends continuously on f and thus it remains
in a compact subset of C\{0}. Let an[ f ] = −1/c f f n(v f ) where c f is defined in
Proposition 29 and is bounded away from 0 and∞ as f varies inF . Then, an0 [ f ] also
belongs to a compact set. By Lemma 30, ∀n ≥ 0, 3n/4− A ≤ |an0+n[ f ]| ≤ A+5n/4
for a constant A > 0 that is independent of f . It follows that there is A′, A′′ > 0 and
n1 ≥ n0 such that for all f ∈ F and for all n ≥ n1, A′

n ≤ | f n(v f )| ≤ A′′
n .

Hence, the aforementioned sequence of annuli cannot exist, which yields a contra-
diction. ��

In coordinates u = −1/c f z, this reads ρ−1/(c f W0)(u) ≥ 1/K4|u|.
Proposition 79 There exists r2, T8 and d ′1, positive reals, such that for all f0 ∈ F , for
all n0, n1 ∈ Z with n0 < n1, for all f0-orbit ωn indexed by Z∩ [n0,+∞[, and for all
t > 0, if

(1) ωn0〈0〉, . . . , ωn1〈0〉 ∈ Drep[ f0](r2),
(2) τ(ωn1) > t ,
(3) t ≤ T8,
(4) extentW0(ωn1〈[0, t]〉) < d ′1,
then τ(ωn0) > t , the paths γ1 and γ2 defined below are well defined, and s ∈ [0, t] �→
ωn0〈s〉 is homotopic in W0[ f0] to their concatenation γ1 · γ2. The path γ1 is the
pull-back of s ∈ [0, t] �→ ωn1〈s〉 by f n1−n00 that starts from ωn0〈0〉; the path γ2 :
[0, t] → C is the continuous solution, starting from γ1(t), of f

n1−n0
s (γ2(s)) = const =

f n1−n00 (γ1(t)) = ωn1〈t〉.
Proof Consider the domains �θ(R) and Dθ (r0)[g] introduced in Sect. 3.6.3, with
−1/cgDθ (r0) = �θ(1/|cg|r0). We will take some T8 ≤ 1/2. The class of maps
F[0,1/2] is compact and the domain of its members all contain B(0, 1/8), so we can
apply Propositions 41 and 44 to the restriction to D of the conjugates of maps in this
class by z �→ 8z. Choose θ = 3π/4, θ ′ = (θ + π

2 )/2, θ ′′ = (θ ′ + π
2 )/2, so that

π/2 < θ ′′ < θ ′ < θ . It was proved in Proposition 41 that for r0 > 0 small enough,
the (invertible) repelling Fatou coordinates of g ∈ F[0,1/2] extend to −Dθ (r0)[g] for
some r0 > 0, and that −Dθ (r0)[g], −Dθ ′(r0)[g] and −Dθ ′′(r0)[g] are all invariant
by a branch of g−1. By compactness, for r0 small enough, there is only one such
branch. Also, provided r0 has been chosen small enough, it can be checked using
Proposition 29 and Lemma 37 that PC[g] does not intersect −Dθ (r0)[g].

Now choose any r1 < r0, for instance r1 = r0/2 and impose r2 ≤ r1. Let

γ0 : [0, t] → C, s �→ ωn1〈s〉.

By assumption, its initial point is contained in Dπ/2[ f0](r2). By Lemma 78, for d ′1
small enough, we are ensured that γ0 is contained in −Dθ ′′(r0)[ f0] (this is more
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easily seen in coordinates u = −1/c f0 z: the path stays in a ball of center its initial
point u0 and radius O(d ′1|u0|)). Since −Dθ ′′(r0)[ f0] is stable by a branch of f −10 ,
the path γ1 is well defined and contained in −Dθ ′′(r0)[ f0]. Now, as in the proof
of Proposition 73, we set up a triangular homotopy h(x, y) for y ≤ x ≤ t with
f n1−n0y (h(x, y)) = f n1−n00 (γ1(x)) = γ0(x) and h(x, 0) = γ1(x). Taking T8 small
enough, we get −Dθ ′′(r0)[ f0] ⊂ −Dθ ′(r0)[ fy] for all y ≤ T8 and all f0 ∈ F . In
particular γ0 ⊂ −Dθ ′(r0)[ fy]. Since the latter is invariant by a branch of f −1y , unique
and continuously depending on y, it follows that h is well defined, continuous, and has
support in −Dθ ′(r0)[ fy]. For T8 small enough, −Dθ ′(r0)[ fy] ⊂ −Dθ (r0)[ f0], hence
h takes values in W0[ f0]. ��

This proof yields more:

Proposition 80 (Complement of Proposition 79) There is some r4 > 0 and θ ′ > π/2
such that under the conditions of the proposition above, and ∀s ∈ [0, t],−Dθ ′ [ fs](r4)
is a repelling petal for fs and for all k with n0 ≤ k ≤ n1, ωk〈s〉 ∈ −Dθ ′ [ fs](r4).
Proof Change the value of n0 to that of k in the previous proposition. Its proof provided
some quantities called r0 and θ ′, and proved the claim of the complement for r4 = r0
and the same value of θ ′. ��

Note that by infinitesimal contraction of f −10 for the hyperbolic metric of W0,

hlenW0(γ1) < hlenW0(s ∈ [0, t] �→ ωn0〈s〉).

Since γ2 stays far from the boundary ofW0, the control we get on its homotopic length
is better than in Lemma 77:

Lemma 81 We can add the following conclusion to the previous lemma

hlenW0(γ2) ≤ K5t .

Proof In this proof, we will say that a constant is independent if it is independent of f ,
of t , of the chosen orbit ωn and of the length n1−n0. We will use= O(expression) to
express a quantity that is atmost the expression times a constant that is independent.We
will write that two quantities are comparablewhen their quotient is bounded away from
0 and∞with bounds that are independent of f , of t , of the chosen orbit ωn and of the
length n1− n0. Let us continue with the notations of the previous proof. In particular,
θ = 3π/4.Note that γ2(y) = h(t, y) and γ2(t) ∈ −Dθ (r0)[ f0]. Since there are sectors
−Dθ3(r3)[ f0] contained inW0[ f0] for θ3 = (θ+π)/2 > θ with r3 independent of f0,
by imposing r0 < r3, we have ∀z ∈ −Dθ (r0)[ f0], B(z, |z|/K ) ⊂ W0[ f0] for some
K > 1. Hence, it is enough to prove that for y ≤ t ,

|γ2(y)− γ2(0)| = O(K ′t |γ2(0)|),

in which case, for t < T8, T8 is small enough, the euclidean ball B(γ2(0), K ′t |γ2(0)|)
is contained in W0[ f0] and contains γ2 thus γ2 is homotopic in W0[ f0] to the straight
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segment from γ2(0) to γ2(t) and the latter has a W0[ f0]-hyperbolic length at most its
B(γ2(0), |γ2(0)|/K )-hyperbolic length, thus at most K5t for T8 small enough. As in
the proof of Proposition 79, let

γ0(s) = ωn1〈s〉,

and let �rep[ fy] be a repelling Fatou coordinate on −Dθ (r0)[ fy], normalized by the
expansion. We have seen in this former proof that γ1 and γ2 and γ0 are contained in
−Dθ ′(r0)[ fy] for all y ≤ T8, for some constant θ ′ = 5π/8 < θ = 3π/4. Then,

�rep[ fy](γ2(y)) = �rep[ fy](γ0(t))− (n1 − n0).

Let us denote Repy z = �rep[ fy](z). By taking r0 small enough we can ensure
that for all z ∈ −Dθ (r0)[ fy], the quantity Repy z is comparable to 1/z and the
quantity Rep′y(z) is comparable to 1/z2 (use the bound on ˜� given in Propo-
sition 29 that extends to �θ according to Proposition 41). For y ≤ 1/2, we
have sup|z|<1/16 | f0(z) − fy(z)| ≤ Ky for some K independent of f . We have
∣

∣Repy γ2(y)−Rep0 γ2(0)
∣

∣ = ∣

∣Repy γ0(t)−Rep0 γ0(t)
∣

∣. Provided r2 has been chosen
small enough, Proposition 44 gives

∣

∣Repy γ0(t)−Rep0 γ0(t)
∣

∣ = O(y/|γ0(t)|), as�rep
is normalized by the expansion. Let ux = −1/(c[ f0]γ0(x)) and Zx = Rep0 γ0(x).
The size of the quantities Zx , Z0, ux , u0, 1/γ0(x) and 1/γ0(0) are all compara-
ble. Similarly, |1/γ2(0)| is comparable to |Rep0 γ2(0)| = |Zt − (n1 − n0)|. Note
that the positive integer n1 − n0 can be arbitrarily large. However since Zt is
contained in −�3π/4(10) (provided r2 is small enough), there is an independent
lower bound on |Zt − (n1 − n0)|/|Zt | thus y/|γ0(t)| = O(y|Z0|) = O(y|Zt |) ≤
O(y|Zt − (n1 − n0)|) = O(y|Rep0 γ2(0)|) = O(y/|γ2(0)|): for some M > 0

∣

∣Repy γ2(y)− Rep0 γ2(0)
∣

∣ ≤ My/|γ2(0)|.

Then, by Proposition 44, again, we get
∣

∣Repy γ2(0) − Rep0 γ2(0)
∣

∣ ≤ M ′y/|γ2(0)|
thus

∣

∣Repy γ2(y) − Repy γ2(0)
∣

∣ ≤ ∣

∣Repy γ2(y) − Rep0 γ2(0)
∣

∣ + ∣

∣Rep0 γ2(0) −
Repy γ2(0)

∣

∣ ≤ (M + M ′)y/|γ2(0)|. The straight segment from Repy γ2(y) to
Repy γ2(0) is contained in the subset −�θ ′(R2) of the domain of Rep−1y and
|(Rep−1y )′(Z)| is comparable to 1/|Z |2 for Z ∈ −�θ ′(R2). Using moreover that
Repy(Z) is comparable to 1/Z , we get: provided T8 was chosen small enough, for all
y ≤ t , |γ2(y)− γ2(0)| ≤ K ′y|γ2(0)|. ��
Lemma 82 If in Proposition 79 we take n0 = −∞, i.e., start from an orbit indexed by
Z such thatωn〈0〉 ∈ Drep[ f0](r2) for all n ≤ n1, and leave the other three assumptions
unchanged, then for all α > 0 and all r > 0, ∃n′ ∈ Z such that ∀n ≤ n′, ∀s ∈ [0, t],
ωn0〈s〉 belongs to the sector of apex 0, radius r , and angle α around the repelling axis
of fs .

Proof In the course of the proof of Proposition 79, we proved that γ0 : s ∈ [0, t] �→
ωn〈s〉 has a support contained in−Dθ ′ [ fy](r0) for all y ≤ t . In particular the function
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χ : s �→ −1/c fsγ0(s) takes values in −�θ ′(1/|c fs r0|). Recall that on this set, the
dynamics differs from the translation by 1 by at most 1/4. The path χ has compact
image. The lemma follows. ��

3.10.6 Bounding the Motion of Orbits (Putting It All Together)

We now have the tools to prove Proposition 66.
Recall that we are considering an orbitωn indexed byZ of amap f0 ∈ F , eventually

captured by an attracting petal in the future, by a repelling petal in the past, and defined
a movement ωn〈t〉 of this sequence, for which it remains an orbit of ft and so that
its attracting Fatou coordinate, normalized by immobilizing the image of the critical
value, remains constant. The starting hypothesis is that ωn is entirely contained in
Dom( f0)� (1− ε′) = φ0(B(0, 1− ε′)). In particular condition (4) of Proposition 73
and its analog in Proposition 74 are satisfied for all n ∈ Z by the assumption.

We will now compute a lower bound for the survival time τ(ωn), that depends only
on ε′.

This will be done by decreasing induction on n, using Propositions 73, 74 and 79
and their complements Lemmas 75–77 and 81. The induction hypothesis will be that
the motion of t �→ ωn〈t〉, measured with the hyperbolic metric of the setW0[ f0], more
precisely what we called the extent at the beginning of Sect. 3.10.4, is smaller than
the constants d1, d ′1 and d ′′1 appearing in the propositions. The complements then give
a upper bound on the motion of t �→ ωn−1〈t〉. We will show that for t small enough,
this bound is also less than d1, d ′1 and d ′′1 , so that the induction can go on, and we will
give a lower bound on how small t needs to be.

Recall r0 is a small enough constant provided by Proposition 29–33, and 41.
By Lemma 67, we know the survival of local orbits. More precisely let us choose

T3 = T ′1/2. Lemma 67 yields a value r1. If the whole orbit (ωn〈0〉)n∈Z is contained
in B(0, r1) then we get the lower bound τ(ωn) ≥ T3. In this simple case, the lower
bound is independent of ε′, so it is even better. In the sequel, we assume that we are
not in this case, i.e., that the orbit (ωn〈0〉)n∈Z leaves B(0, r1) at least once.

Recall thatmaps f ∈ F all have the same critical value v.We have already remarked
that by compactness of F and Proposition 34 (see also Lemma 38), there exists η0
such that ∀ f ∈ F , B(v, η0) is contained in the basin of the parabolic point. Recall
Drep(r) = Drep[ f ](r) denotes the disk of diameter [0, reiθ ] where eiθ points in the
direction of the repelling axis of f . Let f N(B(v, r)) denote the union of B(v, r) and
of all its images by iteration of f .

Lemma 83 There exists r3 > 0 and η′0 < η0 such that ∀r ≤ r3, ∀ f ∈ F , the set
f N(B(v, η′0)) is disjoint from f (B(0, r))\B(0, r) and from f (Drep(r)).

Proof Let r0 be provided by Proposition 29: for all f ∈ F , and all r ≤ r0, Dattr(r)
is stable by f and contained in the parabolic basin. Note that for some r ′ small
enough, then for all r small enough, then for all f ∈ F , f (B(0, r))\B(0, r) and
f (Drep(r)) are disjoint from Dattr(r ′), as easily follows from Lemma 30 and the
fact that in the change of variable u = −1/c f z, the factor c f is bounded away
from 0 and from ∞. By Lemma 38 there is some n0 and some η′0 > 0 such that
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258 A. Chéritat

∀ f ∈ F , f n0(B(v, η′0)) ⊂ Dattr(r ′), and hence ∀n ≥ n0, f n(B(v, η′0)) ⊂ Dattr(r ′).
By compactness of F again, there is a uniform lower bound on the distance from 0 to
f n(B(v, η′0)) as n varies between 0 and n0 − 1 and f varies in F . So the lemma will
hold for r small enough. ��

Let T8, d ′1 and r2 be provided by Proposition 79. Let

r ′0 = min(r0, r1, r2, r3),

and denote

Drep = Drep[ f ] = Drep[ f ](r ′0).

We introduced earlier the δ-neighborhood Vδ[ f ] of PC( f ). Let ˜B(r) = ˜B(r)[ f ]
be the set of points in B(0, r)\{0} whose forward orbit by f is contained in B(0, r).
Let

˜Vη = ˜Vη[ f ] = ˜B(η) ∪ f N(B(v, η)).

By construction, f (˜Vη) ⊂ ˜Vη (do not forget that there is no other preimage of the
origin than itself31).

Lemma 84 The following holds, where D = Drep[ f ](η):

(1) ∀η > 0, ∃δ > 0 s.t. ∀ f ∈ F , Vδ[ f ] ⊂ ˜Vη[ f ] ∪ (D ∩ f −1(D)),
(2) ∃η2 > 0, ∀η ≤ η2, ∃δ > 0 s.t. ∀ f ∈ F , Vδ[ f ] ∩ f −1(˜Vη[ f ]) ⊂ ˜Vη[ f ],
Proof These are again proved by compactness arguments. Let r0 be provided byPropo-
sition 29 applied to F . Then, Dattr[ f ](r) is an attracting petal for all r ≤ r0.

(1) The set ˜B(η) ∪ (Drep[ f ](η) ∩ f −1(Drep[ f ](η))) ⊂ ˜Vη[ f ] ∪ (Drep[ f ](η) ∩
f −1(Drep[ f ](η))) is a neighborhood of 0 thus contains a ball B(0, r). We can take
a uniform value of r for maps f ∈ F (this can be seen in coordinates u = −1/c f z
as in the proof of Proposition 29: the constant c f is bounded away from 0 and∞
and the map f is conjugated to a map u �→ u′ defined on a uniform neighborhood
of∞ and with |u′ − (u+1)| < 1/4). We impose δ ≤ r/2. By Lemma 37 for some
n0 we have ∀ f ∈ F , f n0(v f ) ∈ Dattr[ f ](r) and thus ∀n ≥ n0, B( f n(v f ), δ) ⊂
˜Vη[ f ]∪(Drep[ f ](η)∩ f −1(Drep[ f ](η))). Finally by compactness, there is a lower
bound on inf

{

δ > 0
∣

∣∀ f ∈ F , ∀k < n0, B( f k(v f ), δ) ⊂ f k(B(v f , η))
}

.
(2) Let η0 > 0 to be determined below and set η2 = η0/2. Let us assume by con-

tradiction that for some η ≤ η0/2, there exists sequences δn −→ 0, fn ∈ F ,
zn such that zn ∈ Vδn [ fn], fn(zn) ∈ ˜Vη[ fn], zn /∈ ˜Vη[ fn]. We may extract a
subsequence so that fn −→ f0, and zn −→ z0. If z0 
= 0 then z0 ∈ PC( f0)
(see point (1) of Lemma 39), a fortiori z0 ∈ f N0 (B(v f0 , η)) and thus for n big
enough zn ∈ f N0 (B(v fn , η)) by Hurwitz’s theorem, thus zn ∈ ˜Vη[ fn], leading to
a contradiction. If zn −→ 0 then for n big enough, let us prove the statement

31 And even if there were, it would be sufficient to assume η small enough.
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Near Parabolic Renormalization for Unicritical Holomorphic Maps 259

fn(zn) ∈ ˜Vη[ fn] �⇒ zn ∈ ˜Vη[ fn], which leads to a contradiction. Indeed either
fn(zn) ∈ ˜B(η)[ fn] but then as soon as |zn| < η, the whole orbit of zn by fn is in
B(0, η) and thus zn ∈ ˜B(η)[ fn] thus zn ∈ ˜Vη[ fn]. Or fn(zn) ∈ f Nn (B(v fn , η)),
say fn(zn) ∈ f kn (B(v fn , η)). For a fixed k, by compactness, there is a lower bound
on the distance from 0 to f k(B(v f , η0/2)) for k′ < k and f ∈ F . So kn →+∞.
Now fn is injective on B(0, r) for some uniform r ≤ r0. By Lemma 38 there is
some n0 and η0 > 0 such that ∀ f ∈ F , we have f n0(B(v f , η0)) ⊂ Dattr[ f ](r).
As soon as kn ≥ n0+1, both f kn−1n (B(v fn , η)) and f knn (B(v fn , η)) are contained
in Dattr[ f ](r) ⊂ B(0, r), and zn also belongs to B(0, r) for n big enough. Hence,
f (zn) ∈ f knn (B(v fn , η)) �⇒ zn ∈ f kn−1n (B(v fn , η)).

��
Let

η1 = min(η0/2, r0, r1, r2, r3, δ1/2, η
′
0, η2),

where δ1 was defined just before Lemma 72, r2 in Proposition 79, η0, r0 and r ′0 =
min(r0, r1, r2, r3) at the beginning of the current section (Sect. 3.10.6), η′0 and r3 in
Lemma 83, η2 in Lemma 84.

Let δ be the smallest of the two values associated to η = η1 by points (1) and (2)
of Lemma 84. Since η1 ≤ r ′0 we get Drep[ f ](η1) ⊂ Drep[ f ](r ′0) = Drep[ f ] and thus:
∀ f ∈ F ,

Vδ[ f ] ⊂ ˜Vη1 [ f ] ∪ (Drep[ f ] ∩ f −1(Drep[ f ])), (7)

f −1(˜Vη1 [ f ]) ∩ Vδ[ f ] ⊂ ˜Vη1 [ f ]. (8)

Let d1 = d1(δ), d ′′1 = d ′′1 (δ) and T4 = T4(δ) be the values associated to δ just
before Proposition 73, and T6 = T6(δ) defined just before Lemma 77.

Just before Proposition 73 we also defined T5(δ, ε′), by �(1− T5(δ, ε′)) = d1(δ)+
�(1 − ε′) where �(x) = dD(0, x). Since we just have fixed δ, let us denote T5(ε′) =
T5(δ, ε′). Then

T5(ε
′) ∼

ε′→0
K3 ε′

with K3 = e−2d1(δ) (the value of this constant is not important, nor is its dependence
on δ).

Lemma 85 There exists K2 > 0 and T7 > 0 such that for all f0 ∈ F , for all z ∈
˜Vη1 [ f0], τ(z) > T7 and for all t ≤ T7, the length of the curve x ∈ [0, t] �→ z〈x〉 is
≤ K2t when measured with the hyperbolic metric of C\{v, 0}.
Proof If the starting point z〈0〉 belongs to the part ˜B(η1) of ˜Vη1 of points whose
orbit never leaves B(0, η1), this follows from Lemma 68 since η1 ≤ r1 and since
ρ(z) := ρC\{0,v}(z) = o(1/|z|) near 0 thus ρ(z)|z| is bounded on B(0, η1) (note that
η1 < η0 < |v|). Otherwise the starting point z〈0〉 belongs to f N0 (B(v, η1)). Note first
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that only a finite number of iterates of B(v, η1), bounded independently of f0, are
not already contained in the first part. Moreover, let m − 1 be such a bound. Then
for all k ≤ m, for all z ∈ f k0 (B(v, η1)), z〈t〉 = f −(m−k)

t ◦ �−1t ◦ �0 ◦ f m−k0 (z) for

some inverse branch of f (m−k)
t . Since we do not hit a critical point, everything moves

differentiably w.r.t. the pair (t, z). We thus get32 the claimed bound on the hyperbolic
length of the curve z〈t〉 away from v, i.e., if z〈0〉 /∈ B(v, η1). Last, for starting points
z〈0〉 near v, i.e., in B(v, η1), note first that v does not move at all: v〈t〉 = v. Then,
|z〈t〉− z| ≤ K |z− v|t since the function (z, t) �→ z〈t〉− z is at least C2 and vanishes
whenever t = 0 or z = v. Since ρ(z) = o(1/|z − v|) near v, the lemma follows. ��

Recall that we are dealing with the case where the sequence n ∈ Z �→ ωn〈0〉 is not
completely contained in B(0, r1). Together with Lemma 83 and η1 ≤ r1, this implies
that the first point in this orbit that does not belong to B(0, r1) also does not belong to
˜Vη1 [ f0]. On the other hand the orbit tends to 0 thus eventually stays in B(0, η1) hence
in ˜B(η1)[ f0] ⊂ ˜Vη1 [ f0]. The set ˜Vη1 [ f0] is mapped in itself by f0. Therefore, there is
a unique n+ ∈ Z such that

ωn〈0〉 ∈ ˜Vη1 [ f0] ⇐⇒ n ≥ n+ .

If we follow the orbit in the past, it eventually stays in Drep = Drep[ f0](r ′0) in the
past. There is, thus, a maximal n− ∈ Z such that ∀n ≤ n−, ωn〈0〉 ∈ Drep. Moreover,
n− + 1 < n+ because by Lemma 83, ωn−+1〈0〉 cannot belong to f N(B(v, η1)) and if
ωn−+1〈0〉 were in B(0, η1), then the whole orbit would be contained in B(0, r1).

Between n− and n+, the orbit may visit and leave the repelling petal several times.
Let J denote the set of n ∈ Z with n− < n < n+ and ωn〈0〉 /∈ Drep. This set is
non-empty and its extreme values are n− + 1 and n+ − 1 (these two values may be
equal).

Denote as follows the constant provided by Lemma 70 and used in Lemma 75:

� := �(δ/3) < 1.

Let now tmax ≤ min(T3, T4, T5/2, T6, T7, T8) to be determined later. Let us work
with t ∈ [0, tmax] and let us do a finite decreasing induction on J . In the process, more
conditions will be imposed on tmax.

Initialization: By Lemma 85, τ(ωn+) > tmax and for all t ≤ tmax, the length of γ :
s ∈ [0, t] �→ ωn+〈s〉 is≤ K2t whenmeasured with the hyperbolic metric onC\{0, v}.
Provided K2tmax ≤ d ′′1 , we can apply Proposition 74 (in particular condition (5) of this
proposition follows from Equation (8)), thus τ(ωn+−1〈0〉) > tmax and ∀t ∈ [0, tmax],
the path s ∈ [0, t] �→ ωn+−1〈s〉 is homotopic in W0 to γ1 · γ2, where γ1 and γ2 are
defined in Proposition 74. By Lemma 76, hlenW0(γ1) ≤ M(δ/3) hlenC\{0,v}(γ ) thus
≤ M0K2t with M0 = M(δ/3). And by Lemma 77, hlenW0(γ2) ≤ K0t/T5. Let us
sum up: we assumed K2tmax ≤ d ′′1 and got ∀t ∈ [0, tmax], hlenW0(ωn+−1

∣

∣[0,t]) ≤
M0K2t + K0t/T5. In particular

extentW0(ωn+−1〈[0, tmax]〉) ≤ M0K2tmax + K0tmax/T5.

32 Here we are not using complex values of t .
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Let us assume moreover that

M0K2tmax + K0tmax/T5 ≤ min(d1, d
′
1),

so that extentW0(ωn+−1〈[0, tmax]〉) ≤ min(d1, d ′1).
Induction:Let n ∈ Z satisfying n−+1 < n ≤ n+−1 and either n ∈ J or n−1 ∈ J

and assume that we have proved τ(ωn〈0〉) > tmax and extentW0(ωn〈[0, tmax]〉) ≤
min(d1, d ′1).

By Eq. (7), ωn−1〈0〉 /∈ Vδ[ f ] thus condition (5) of Proposition 73 is satis-
fied. Hence we can apply it, and its complements Lemmas 75 and 77 and we
get hlenW0(ωn−1

∣

∣[0,t]) ≤ �min(d1, d ′1) + K0t/T5. Let us impose on tmax that
�min(d1, d ′1)+K0tmax/T5 ≤ min(d1, d ′1), so thatweget extentW0(ωn−1〈[0, tmax]〉) ≤
min(d1, d ′1). If n−1 ∈ J , we can carry on the inductionwith n−1. If n−1 /∈ J , let n′ be
the first element of J below n and let n1 = n−1 and n0 = n′ +1: n0 ≤ n1. If n0 = n1
we can also carry on the induction with n − 1, because (n − 1) − 1 ∈ J . If n0 < n1
we can apply Proposition 79 and its complement Lemma 81: hlenW0(ωn0

∣

∣[0,t]) ≤
hlenW0(ωn1

∣

∣[0,t]) + K5t . Then, we can carry on the induction with n′, provided we
require on tmax that �min(d1, d ′1)+ K0tmax/T5 + K5tmax ≤ min(d1, d ′1).

In all cases, for the induction to carry on it is enough to assume that

�min(d1, d
′
1)+ K0tmax/T5 + K5tmax ≤ min(d1, d

′
1).

Post induction:wenowknow that extentW0(ωn〈[0, tmax]〉) ≤ min(d1, d ′1) holds for
n = n−+1.We can apply oncemore Proposition 79 andwe get that the rest of the orbit
(for all n ∈ Zwith n ≤ n−) is defined at least up to time tmax.Moreover, by Lemma 82,
we get that for all n below some relative integer, possibly much smaller33 than n−,
the full motion takes place in the petal: one of the conclusions of Proposition 66.

Taking everything into account, we get that the full orbit ωn survives for any time
t satisfying t ≤ tmax for any tmax satisfying tmax ≤ min(T3, T4, T5/2, T6, T7, T8),
tmax ≤ d ′′1 /K2, tmax ≤ min(d1, d ′1)/(M0K2 + K0/T5) and tmax ≤ min(d1, d ′1)(1 −
�)/(K0/T5 + K5).

Recall that δ is fixed but not ε′. All constants depend only on δ thus are fixed, except,
as we saw earlier, T5 ∼ K3ε

′ (K3 also depends on δ, thus is fixed). As ε′ −→ 0, the
biggest tmax we can take is equivalent to K6T5 where K6 = min(1/2,min(d1, d ′1)(1−
�)/K0).

Hence, for ε′ small enough, the survival time of the full orbit is > K6ε
′:

∀n ∈ Z, τ�(ωn) > K6ε
′.

This completes the proof of Proposition 66 with K = 1/K6.

33 Proposition 66 claims uniformity w.r.t. t , but not w.r.t. f .
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3.11 Step 2, Conclusion

Here, we will prove Proposition 65 (which is what is left to prove the main theorem,
more precisely Theorem 26), whose statement we recall:

Proposition There exists r ′0 < r0 and a pair ε1 < ε0 with ε0 < T ′1 such that for all
f0 ∈ F , for all z ∈ Dom(R[ f0]) � (1− ε1), if we consider the orbit ωn associated
with z, then

• for all n ∈ Z

τ�[ f0](ωn) > ε0,

• there exists M ∈ Z such that (t ≤ ε0 and n ≤ M) �⇒ ωn〈t〉 ∈ Drep[ ft ](r ′0).

Consider ε1 ∈ ]0, 1[ to be determined later. Let f0 ∈ F , and z ∈ Dom(R[ f ]) �
(1− ε1) and apply Proposition 45 to ε = ε1. For this, we have to assume ε1 < ξ for
some ξ > 0 given by the proposition. We obtain some ε′ = ε′(ε1) > 0 such that the
associated orbitωn〈0〉of f0 is contained inDom( f0)�(1− ε′). By the previous section
(Proposition 66), ∀n ∈ Z, τ�(ωn) > ε′(ε1)/K . We can take ε0 = min(T ′′1 , ε′(ε1)/K )

where T ′′1 < T ′1 is any chosen constant. Since ε′(ε) � ε, for small enough values of
ε1 we have ε0 > ε1. Proposition 66 also provides the second claim in Proposition 65.

��
Now comes a final set of remarks. Let us call (ε0, ε1) a valid pair whenever ε1 <

ε0 < T ′1 and the proposition holds with these values. Given ε1 small enough, the set
of valid values for ε0 includes the interval ]ε1, ε′(ε1)/K [. As the right bound is� ε1,
it is easy to deduce that: ∀ε0 there exists ε1 such that (ε0, ε1) is a valid pair. Moreover,
we can take ε1 = o(ε0).

This implies that if one iterates renormalization starting from a map in Fε with ε

small enough, the map Rn[ f ] will have at least structure Fεn with 1/εn increasing
faster than any exponential: the structure tends rapidly to the full structure F .

Now, given the specific formula in Proposition 45:

log
1

ε′(ε1)
≤ c′ + c log

(

1+ log
1

ε1

)

,

and the computations above, we get that we can take ε1 ≤ exp(β − α/ε0) for some
constants α, β > 0, i.e. 1/εn increases at least like an iterated exponential.
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Appendix A: Parabolic points

The present section is given only to fix notations and normalizations and is not an
introduction to the subject of parabolic points. We recommend learning it in any of
the classic books introducing holomorphic dynamics, or in [16,31]. The article [3] is
also instructive and very well illustrated. There is no claim that any of the statements
given in this section is due to the author.

What is understood under the terminology parabolic point has variations, according
to whether or not linearizable maps are allowed, and according to whether the allowed
values of the multiplier should be 1 or any root of unity. So, here, we will try and avoid
solely mentioning parabolic points and use instead the following terminology:

• Tangent to identity: fixed point whose multiplier is equal to 1.
• Rationally indifferent: fixed (or periodic) point whose multiplier is a root of unity.
• Non-linearizable parabolic point: rationally indifferent fixed (or periodic) point
which is not linearizable.

Non-linearizability is the condition to have petals. A parabolic point with petals will
thus be a synonym for a non-linearizable parabolic point.

Wewill often denotePattr andPrep attracting and repelling petals of non-linearizable
parabolic points. We denote �attr and �rep the attracting and repelling coordinates,
defined on such petals. The extended attracting Fatou coordinate will be denoted by
�attr too (context shouldmake it clear which one is referred to). The extended repelling
Fatou parametrization will be denoted �rep: it satisfies

�rep ◦ T1 = f ◦�rep,

in the sense that the domains of the two hand sides of the equality are equal and that
the equality holds on this set.

Recall that Fatou coordinates are unique up to addition of constants. The choice
of a Fatou coordinate among �attr + c or �rep + c, c ∈ C, is called a normalization
thereof. Normalizing �rep normalizes �rep.

One petal: The rest of the present section focuses on non-linearizable parabolic
fixed points with only one attracting petal, i.e. in some chart f has expression

f (z) = z + a2z
2 +O(z3)

with a2 
= 0.
Extended horn maps and parabolic renormalization: In this case, the extended

horn map is the composition

h = �attr ◦�rep

of these extensions. Changing the normalizations of the Fatou coordinates replaces
h with its pre composition and post composition with two unrelated translations. In
Appendix B we discuss examples of what horn maps can be used for.
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H[f ] EE

ΨrepΦattr

f

z ζ

ζ − n
PrepPattr

h[f ](ζ) + m − n

Fig. 22 Decomposing h[ f ] and H[ f ]. For convenience, we have chosen petals Pattr and Prep whose
images in Fatou coordinates are right and left half planes. Note that the orbit may visit the repelling petal
more than one time, and does not necessarily enter the attracting petal by its leftmost part (the crescent
shaped fundamental domain)

To define a renormalization, we proceed as follows. This definition does not pretend
to be the best one, it is well suited to our purposes. The map h commutes with T1 and
its domain of definition is T1-invariant and contains an upper and a lower half plane.
There is, thus, a quotient map Dom(h)/Z → C/Z. Conjugate it by E : z �→ e2iπ z

to a map defined on an open subset of C
∗ containing a neighborhood of 0 and∞. It

can be holomorphically extended at these points, and the extension fixes 0 and ∞.
We will denote H this extension, or H[ f ] to emphasize its dependence on f . For
the upper parabolic renormalization of f , denoted R[ f ], consider the restriction of
this extension to the connected component of its domain of definition that contains 0,
and possibly pre and post compose it with two linear maps (z �→ az and z �→ bz)
to be chosen according to conventions. For the lower parabolic renormalization of f ,
conjugate first the extension by z �→ 1/z, then restrict it to the connected component
of the domain of definition containing 0 and finally compose with linear maps. The
reason why we allow for these linear maps is that we will find it convenient later to
use a different normalization for parabolic renormalization than for Fatou coordinates
and the associated horn map.

Another point of view on extended horn maps, and parabolic renormalization:
Since�attr and�rep are defined beyond the petalPattr and beyond�rep(Prep) by using
iteration of f , the definition of h[ f ] can be reformulated as follows:

• for ζ ∈ Dom(h[ f ]), there exists n ∈ N such that ζ − n ∈ �rep(Prep),
• ζ − n = �rep(z) for a unique z ∈ Prep,
• there exists m ∈ N such that f m(z) ∈ Pattr,
• h(ζ ) = �attr( f m(z))− m + n.

We have illustrated a possible orbit on Fig. 22.
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The iterative residue: Let

f (z) = z + a2z
2 + a3z

3 + · · ·

be the power series expansionof f . The iterative residue of f is the quantityγ = 1− a3
a22
.

It is related to the residue at 0 of the meromorphic form dz
f (z)−z by the following

formula: 1
2π i

∮ dz
f (z)−z = γ − 1. In fact the (multivalued near the origin) primitive

∫ dz
f (z)−z + dz

z turns out to be an interesting approximation of the Fatou coordinates, as
their expansions share the same first two terms: as z tends to 0 within a closed sector
avoiding the repelling axis for � = �attr or the attracting axis for � = �rep:

�(z) = −1
a2z

− γ log z + constant+o(1).

Another characterization is in terms of the horn map: there are expansions

h(z) = z + aup + o(1) as Im (z)→+∞,

h(z) = z + adown + o(1) as Im (z)→−∞.

The constants aup and adown depend on the normalization of Fatou coordinates, but
not the quantity aup − adown. It turns out that

aup − adown = −2π iγ.

Interestingly, if we consider the horn map with the normalization number 2 presented
below, then aup = −π iγ and adown = π iγ .

Some normalizations: We will give here three examples of normalizations for the
upper parabolic renormalization R[ f ] of f . The first two work well for germs,34 the
third makes strong structural assumptions on f . Recall that H[ f ] denotes the semi-
conjugate of the horn map by the map E : z �→ e2π i z , extended at 0 and∞ by fixing
them, and that

34 We use the word germ in the following meaning: an equivalence class of holomorphic maps defined near
the origin, with f ∼ g if they coincide in some neighborhood of 0. This is equivalent to f and g having
the same power series expansion at the origin.
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R[ f ] = A ◦Hr [ f ] ◦ B(z),

for some linear maps

A : z �→ az and

B : z �→ bz,

where Hr [ f ] denotes the restriction of35 H[ f ] to the component containing 0 of its
domain. Let

f (z) = z + a2z
2 + a3z

3 + · · ·
H[ f ](z) = b1z + b2z

2 + · · ·
R[ f ](z) = b′1z + b′2z2 + · · ·

be their power series expansions. We have b1 ∈ C
∗, and b2 ∈ C. The constants b′1 and

b′2 are expressed from a, b, b1 and b2 as follows b′1 = abb1 and b′2 = ab2b2. Here are
our examples of normalizations:

(1) By imposing b′1 = 1 and b′2 = 1: this first approach is easier but assumes that
b2 
= 0. Then there is a unique pair of linear maps A, B such that R[ f ](z) =
z + z2 +O(z3).

(2) By normalizing the expansion of the Fatou coordinates and takingR = H: Fatou
coordinates are uniqueup to additionof a constant.Moreover, the following limited
expansion is valid (even though there is not a convergent power series expansion in
general): on all closed sectors avoiding respectively the repelling and the attracting
axis, we have, as z → 0:

�attr(z) = −1
a2z

− γ logp
−1
a2z

+ constant+o(1),

�rep(z) = −1
a2z

− γ logp
1

a2z
+ constant+o(1),

where logp denotes the principal branch of the logarithm. The normalization just
consists in adding constants to both Fatou coordinates so as to cancel the two
constants in the above expansions. This normalizes h = �attr ◦�rep and we then
choose R[ f ] = H[ f ]. Note that with this normalization,

h(z) = z − iπγ + o(1) as Im z →+∞ and

h(z) = z + iπγ + o(1) as Im z →−∞.

where γ is the iterative residue.

35 For lower renormalization instead of upper, replace H[ f ] with s ◦H[ f ] ◦ s, where s(z) = 1/z.
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(3) By the singular value: we meet in this article a class of maps whose renor-
malizations have a unique critical value.36 Fix a preferred complex number
v ∈ C

∗. We then choose the linear map A so as to place the critical value of
R[ f ] = A ◦Hr [ f ] ◦ B at v and then B so that A ◦R[ f ] ◦ B has derivative 1 at
the origin.

Each of these conventions has its own advantages. Conventions number 1 and 3 have
the property thatR[g ◦ f ◦ g−1] = R[ f ] in a neighborhood of 0 for all holomorphic
maps g fixing the origin with g′(0) 
= 0. They also give back a germR[ f ] tangent to
the identity. Number 2 does not necessarily, but it is defined for all f . We will work
with a class of maps satisfying number 3. Our choice in most of the article will be to
normalize Fatou coordinates, the horn map andH[ f ] according to number 2, and the
parabolic renormalization R[ f ] according to number 3.

Appendix B: What are hornmaps good for?

Horn maps occur in at least two ways:

• First as local conjugacy invariants. A complete local conjugacy invariant of a non-
linearizable parabolic germ with one attracting petal is more or less given by the
data of the pair of germs of its horn maps at both ends of the cylinder (see [29] for
precise statements; [23] gives an interesting equivalent point of view).

• Second as limits of cylinder renormalization. If a sequence of maps fn tends to f
and fix the origin with multiplier λn and if 2π i/(λn − 1) = Nn + a + o(1) with
Nn ∈ Z, Nn −→ ±∞ and a ∈ C, under some mild supplementary assumptions,
the fixed point of f at the origin is the limit of a pair of fixed points of fn , the origin
and another one, and is possible to draw crescent shaped domains with tips at these
two fixed points delimited by a curve Cn and its image fn(Cn). The quotient of
this domain by identifying z ∈ Cn with fn(z) is isomorphic as a Riemann surface
to the cylinder C/Z. The first return map from the cylinder to itself then tends, as
n −→ +∞, to the horn map (up to pre and post composition with translations).
See [16,19,20,25,26].

The second point justifies why it makes sense to iterate horn maps.
A very important application comes from Lavaurs’ theorem: let σ ∈ C and let the

Lavaurs map gσ be defined as

gσ = �rep ◦ Tσ ◦�attr,

where Tσ (z) = z + σ . Then under the same assumptions as above, f Nn
n −→ gσ

for some value of σ that depends on a (and on the chosen normalizations of the
Fatou coordinates). This is why the Lavaurs maps are also called geometric limits by
analogy with the field of Kleinian groups. Application of Lavaurs’s theorem include
parabolic enrichments (understanding the Hausdorff limits of Julia sets of a sequence

36 Or a unique non-zero singular value.
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of polynomials tending to one with a non-linearizable parabolic point), non local
connectedness of some bifurcation loci, and several discontinuity theorems.

Now, horn maps are closely related to Lavaurs maps because each are semi-
conjugate of the other. More precisely, consider the following non-commuting
diagram:

C

C C
Tσ

�rep �attr

The map gσ is the composition obtained by starting from the top node, and following
the arrows in a loop back to the starting node. The map hσ := Tσ ◦ h is the same but
starting from the lower left corner.

C

C C

gσ

hσ

Tσ

�rep �attr

Following one resp. two arrows from one corner to another gives a semi-conjugacy
from hσ to gσ resp. from gσ to hσ . The first advantage of horn maps over Lavaurs
maps is that they are easier to understand and have better covering properties in many
applications (the best is to project the extendedhornmaps, they commutewithT1, down
to a dynamical system on C/Z). From this stems a second advantage: the invariance
under parabolic renormalization of some classes of maps, as explained in Sects. 1.3
to 1.5.

Appendix C: A reminder about singular values of maps

Let f : X → Y be a holomorphic map where X and Y are Riemann surfaces. Let us
recall that a singular value of f , as a map from X to Y , is an element z ∈ Y which
has no open neighborhood over which f is a cover37. Every critical value is singular,
as is every asymptotic value38, and it is a simple yet very useful theorem that the set
of singular values is the closure of the set of all critical and asymptotic values (see for
instance39 [17] or Corollary 2.7 in [24]).

37 I.e. there is no open subset V of Y containing z s.t. f is a cover from f −1(V ) to V . The definition is
equivalent if we consider only neighborhoods V of z homeomorphic to disks.
38 A point z ∈ Y is an asymptotic value whenever there exists a continuous path γ : [0, t[→ X that leaves
every compact of X and whose image by f tends to z.
39 The language is slightly different in [17] since he calls singular values the critical or asymptotical ones.
But his Proposition 1 amounts to our claim.
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It shall be noted that restricting the domain of a map will likely introduce a lot of
singular values: if U ⊂ X , every point in f (∂U ) will be a singular value of f as a
map from U to Y . In fact:

Lemma 86 (folk.) Let F : X → Y be holomorphic and denote S its set of singular
values. Assume A ⊂ X and B ⊂ Y are open X and that f (A) ⊂ B. Then the set
of singular values of the restriction f̃ : A → B of f contains B ∩ f (∂A) and is
contained in f (∂A) ∪ S.

Proof First inclusion: The set of points in ∂A that are accessible from A is dense in
∂A. If b = f (a) ∈ B with a ∈ ∂A then a is the limit of an ∈ ∂A which is accessible
and f (an) is an asymptotic value of f̃ and tends to b, hence b is a singular value.

Second inclusion: it is enough to prove it for critical values and critical points, since
the set of singular values of f̃ is the closure of their union. All critical values of f̃ are
of course critical values of f , hence in S. Consider an asymptotic value b of f̃ and let
γ : [0, 1[ → A with f ◦ γ (t) −→

t→1
b and γ (t) leaves every compact of A. If the set of

accumulation points of γ in X contains more than one point, then f must be constant
on the connected component of Dom f containing γ , and then b is a singular value.
Otherwise either γ leaves every compact of X , and then b is an asymptotic value of
f hence in S, or γ converges to a point a ∈ ∂A, whence b = f (a) ∈ f (∂A). ��
Similarly, enlarging the range Y of f : X → Y will introduce singular values at

boundary points.
As a corollary of Lemma 86, if we restrict f to a parabolic immediate basin, we do

not introduce new singular values:

Lemma 87 (folk.) If f : U ⊂ X → X is a holomorphic map with a non-linearizable
parabolic fixed point p, and if A denotes the union of a cycle of immediate basins of
p, then the set of singular values of f |A : A → A is contained in the intersection of
A with the set of singular values of f .

Proof Indeed f (∂A) ∩ A = ∅ (here ∂ is relative to U ). ��
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