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Abstract
There is a strange duality between the quadrangle isolated complete intersection singu-
larities discovered by the first author and Wall. We derive this duality from a variation
of the Berglund–Hübsch transposition of invertible polynomials introduced in our pre-
vious work about the strange duality between hypersurface and complete intersection
singularities using matrix factorizations of size two.
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Introduction

Arnold [2] observed a strange duality between the 14 exceptional unimodal singulari-
ties. It is well known that this duality is a special case of the Berglund–Hübsch duality
of invertible polynomials, see e.g. [12]. Wall and the first author [15] discovered an
extension of this duality embracing on one hand series of bimodal hypersurface sin-
gularities and on the other hand, certain isolated complete intersection singularities
(ICIS) in C

4. The duals of these ICIS are not themselves singularities but are virtual
(k = −1) cases of series (e.g. J3,k , k ≥ 0) of bimodal singularities. In [15], the
k = −1 cases of the series were called virtual singularities and Milnor lattices were
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Table 1 The elements with k = 0 of the series

Name Equations Restrictions Dol Weights

J ′
2,0 (xy + w2, ax5 + xw2 + yw + z2) a �= 0, − 4

27 2, 2, 2, 6 2, 6, 5, 4; 8, 10
K ′
1,0 (xy + w2, ax4 + xw2 + y2 + z2) a �= 0, 1

4 2, 2, 4, 4 2, 4, 4, 3; 6, 8
L1,0 (xy + zw, ax4 + xw2 + yw + z2) a �= 0, −1 2, 2, 3, 5 2, 5, 4, 3; 7, 8
M1,0 (2xy + w2 − z2, ax2z + x2w + 2yw) a �= 0, ±1 2, 3, 3, 4 2, 4, 3, 3; 6, 7
I1,0 (x(y − z) + w3, aw3 + y(z − x)) a �= 0, 1 3, 3, 3, 3 3, 3, 3, 2; 6, 6

associated to them, but they do not coincide with the Milnor lattices of the germs at
the origin by setting k = −1 in Arnold’s equations of the series, which are excep-
tional unimodal singularities with a smaller Milnor number. In [13], we showed that
the virtual singularities exist in the sense that the equations have to be considered as
global polynomials and we derived this extension from the mirror symmetry and the
Berglund–Hübsch duality of invertible polynomials.

Arnold’s 14 exceptional unimodal singularities are triangle hypersurface singu-
larities, i.e., they are weighted homogeneous singularities obtained from triangles in
the hyperbolic plane. More precisely, they are determined by triangles with angles
π
b1

, π
b2

, π
b3
, where b1, b2, b3 are positive integers called the Dolgachev numbers of the

singularity. The k = 0 elements of the bimodal series are quadrangle hypersurface
singularities, i.e., they are related in a similar way to quadrangles in the hyperbolic
plane. They are determined by four positive integers b1, b2, b3, b4. For 6 quadruples
(b1, b2, b3, b4), the corresponding quadrangle singularities are hypersurface singular-
ities. They are the k = 0 elements of the 8 series of bimodal hypersurface singularities.
The dual ICIS are triangle complete intersection singularities in C

4. There are 8 of
them determined by 8 triples (b1, b2, b3). For another 5 quadruples (b1, b2, b3, b4),
the quadrangle singularities are ICIS. They are again the k = 0 elements of certain
series of singularities. These series are the 8 series ofK-unimodal ICIS in Wall’s clas-
sification [21]. Wall and the first author also observed a duality between the k = −1
cases of these series (see also [6, Sect. 3.6]). They were called virtual singularities
as well. The objective of this paper is to show that these singularities exist as well
and to derive this duality from the Berglund–Hübsch duality, too. The equations and
notations of these quadrangle complete intersection singularities according to [21]
together with their Dolgachev numbers and systems of weights are listed in Table 1.
The virtual singularities obtained by setting k = −1 in the equations of Wall [21] are
listed in Table 2.

We derive this duality from our paper [13]. An important tool are matrix factoriza-
tions of size two. In [14], we showed that such amatrix factorization can be considered
as an inverse toWall’s reduction of complete intersection singularities to hypersurface
singularities [22]. We proceed as follows. In [13], we classified certain 4× 3-matrices
which provided the duality to complete intersection singularities. Here we consider
the polynomials determined by these matrices for the bimodal series. We determine
the matrix factorizations of size two of the corank 3 polynomials. It turns out that
we get exactly 8 possibilities which correspond to the 8 series of ICIS. We show that
one can associate 4 × 4-matrices to these equations such that the duality is given by
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Table 2 Setting k = −1 in
Wall’s equations

Name Equation

J ′
2,−1 (xy + w2, x4 + xw2 + yw + z2)

K ′
1,−1 (xy + w2, x3 + xw2 + y2 + z2)

K �
1,−1 (xy + w2, x4 + x2w + 2xw2 + y2 + z2)

L1,−1 (xy + zw, x3 + xw2 + yw + z2)

L�
1,−1 (xy + zw,−x4 + x2w + xw2 + yw + z2)

M1,−1 (2xy + w2 − z2, z2 + x2w + 2yw)

M�
1,−1 (2xy + w2 − z2, z2 + x2(w − z) + 2yw)

I1,−1 (x(y − z) + w3, xw + y(z − x))

the Berglund–Hübsch transposition of these matrices. Using the definition of the vir-
tual singularities in [13] and matrix factorizations again, we define virtual quadrangle
complete intersection singularities.

Similarly as in [13], we associate Dolgachev numbers to the virtual singularities.
These are two pairs of numbers corresponding to a decomposition of the equations
into two parts. We also associate Gabrielov numbers to the virtual singularities by
considering deformations to cusp singularities. We consider the second function on
the zero set of the first function. Again this function has to be considered as a global
function. It turns out that these functions have, besides an isolated critical point at
the origin, additional critical points outside the origin. We consider Coxeter–Dynkin
diagrams of distinguished bases of thimbles corresponding to these functions taking
the additional critical points into account.

We show that the Dolgachev numbers of a virtual singularity are the Gabrielov
numbers of the dual one, and vice versa. Moreover, we show that an analogue of
[13, Theorem 6] holds: the product

∏2
j=1 ζ X , j (t) of the reduced zeta functions of

the monodromies of a virtual singularity X coincides with the product of the Poincaré
series PX̃0

(t) and a polynomial Or X̃0
(t) related to the Dolgachev numbers of the k = 0

element X̃0 of the dual series. The results are summarized in Table 3. Here we use for
a rational function

∏
m|h(1 − tm)χm (χm ∈ Z) the symbolic notation

∏
m|h mχm . For

more details we refer to Sect. 7.

1 Invertible Polynomials

We recall some general definitions.
A complete intersection singularity in C

n given by polynomial equations f1 =
· · · = fk = 0 is calledweighted homogeneous if there are positive integersw1, . . . , wn

(called weights) and d1, . . . , dk (called degrees) such that f j (λw1x1, . . . , λwn xn) =
λd j f j (x1, . . . , xn) for j = 1, . . . , k and for λ ∈ C

∗. We call (w1, . . . , wn; d1, . . . , dk)
a system of weights.

A weighted homogeneous polynomial f (x1, . . . , xn) is called invertible if it can
be written
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Strange Duality Between the Quadrangle...

f (x1, . . . , xn) =
n∑

i=1

ai

n∏

j=1

x
Ei j
j ,

where ai ∈ C
∗, Ei j are non-negative integers, and the n × n-matrix E := (Ei j ) is

invertible over Q.
An invertible polynomial is called non-degenerate if it has an isolated singularity

at the origin.

Remark 1 Note that sometimes an invertible polynomial is defined to be a non-
degenerate invertible polynomial, see e.g. [12].

Let f be an invertible polynomial given as above. By rescaling of the variables, one
can assume that ai = 1 for i = 1, . . . , n. Moreover, we can assume that det E > 0.

The Berglund–Hübsch transpose [4] f̃ of f is defined by the transpose matrix ET

of E , i.e.

f̃ (x1, . . . , xn) =
n∑

i=1

ai

n∏

j=1

x
E ji
j .

Let f (x1, . . . , xn) be an invertible polynomial. The canonical system of weights
W f of f is the system of weights (w1, . . . , wn; d) given by the unique solution of the
equation

E

⎛

⎜
⎝

w1
...

wn

⎞

⎟
⎠ = det(E)

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ , d := det(E).

We define

q1 := w1

d
, . . . , qn := wn

d
.

The maximal group of diagonal symmetries of f is the group

G f = {(λ1, . . . , λn) ∈ (C∗)n | f (λ1x1, . . . , λnxn) = f (x1, . . . , xn)}.

It always contains the exponential grading operator

g0 := (e2π iq1 , . . . , e2π iqn ).

Denote by G0 the subgroup of G f generated by g0.
By [3] (see also [10, Proposition 2]), Hom(G f ,C

∗) is isomorphic to G f̃ . For a

subgroup G ⊂ G f , Berglund and Henningson [3] defined its dual group G̃ by

G̃ := Hom(G f /G,C∗).
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2 Wall’s Reduction

Let (X , 0) be an ICIS in C
4 given by an equation F = 0 where

F(x, y, z, w) = (xy − a(z, w), yb(z, w) + c(x, z, w))

where a(z, w) and c(x, z, w) are polynomials of degree ≥ 2, b(z, w) is a polynomial
of degree ≥ 1, and x, b(z, w) form a regular sequence in C[x, z, w]. Then we can
consider the reduction

LyF(x, z, w) = xc(x, z, w) + a(z, w)b(z, w)

of [22] corresponding to the variable y. This means that we eliminate the variable y to
get the equation of a hypersurface singularity in C

3. Geometrically, this elimination
corresponds to the projection along the y-axis on the coordinate space of the remaining
variables x, z, w. It is proved in [22, Theorem 7.9], for the case b(z, w) = z, that the
Milnor number increases by one.

In [14], we considered certain polynomials of the form

f (x, z, w) = xc(x, z, w) + a(z, w)b(z, w)

with the conditions on a(z, w), b(z, w), and c(x, z, w) as above and associated a
complete intersection singularity to a graded matrix factorization of size two of f .
We showed that, in this way, we get an inverse to Wall’s reduction. More precisely, a
matrix factorization (of size two) of f is given by two matrices

q0 =
(

a(z, w) −x
c(x, z, w) b(z, w)

)

and q1 =
(

b(z, w) x
−c(x, z, w) a(z, w)

)

such that

q0q1 = q1q0 =
(
f 0
0 f

)

.

We associate to this the complete intersection singularity (XQ, 0) given by

FQ(x, y, z, w) = (FQ,1(x, y, z, w), FQ,2(x, y, z, w))

:= (−a(z, w) + xy, c(x, z, w) + yb(z, w)).

If f = LyF , then we obtain back (XQ, 0) = (X , 0).
According to [14], the quadrangle ICIS correspond to matrix factorizations of the

quadrangle hypersurface singularities Q2,0, S1,0, and U1,0. They are given by non-
degenerate invertible polynomials with [G f : G0] = 2. In [13, Proposition 1], we
classified such polynomials. The coordinates are chosen so that the action of G̃0 =
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Table 4 Functions f of 4 of the quadrangle hypersurface singularities

Name Type p1, p2, p3 f a1, a2, a3, a4

Q2,0 IV1 3, 12, 24 a1x
3 + a2xy

4 + a3yz
2 + a4x

2y2 1, 1, 1,−2

S1,0 IV2 5, 10, 20 a1x
5 + a2xy

2 + a3yz
2 + a4x

3y 1, 1, 1,−2

S�
1,0 IV�

2 5, 10, 20 a1x
2z2 + a2xy

2 + a3yz
2 + a4x

3y −1, 1, 1, −1

U1,0 IV�
2 3, 6, 18 a1xz

3 + a2xy
2 + a3yz

3 + a4x
2y −1, 1, 1, −1

Table 5 Matrix factorizations of the functions f

Name Coord. change f Name

Q2,0 (x, y, z) �→ (w, x, z) x(a2wx3 + a3z
2 + a4xw

2) + (a1w) · w2 J ′
2,0

S1,0 (x, y, z) �→ (x, z, w) x(a1x
4 + a2z

2 + a4x
2z) + (a3z) · w2 K ′

1,0

S1,0 (x, y, z) �→ (x, z, w) x(a1x
4 + a2z

2 + a4x
2z) + (a3w) · zw L1,0

S�
1,0 (x, y, z) �→ (x, z, w) x(a1xw

2 + a2z
2 + a4x

2z) + (a3z) · w2 K �
1,0

S�
1,0 (x, y, z) �→ (x, z, w) x(a1xw

2 + a2z
2 + a4x

2z) + (a3w) · zw L�
1,0

U1,0 (x, y, z) �→ (w, x, z) x(a2xw + a3z
3 + a4w

2) + (a1z) · z2w M1,0

U1,0 (x, y, z) �→ (z, w, x) x(a1x
2z + a3x

2w) + (a2w + a4z) · zw M�
1,0

U1,0 (x, y, z) �→ (x, z, w) x(a1w
3 + a2z

2 + a4xz) + (a3z) · w3 I1,0

Z/2Z on f̃ is given by (x, y, z) �→ (−x,−y, z). The singularities Q2,0, S1,0, and
U1,0 are given by an invertible polynomial of type IV, namely

f (x, y, z) = x p1 + xy
p2
p1 + yz

p3
p2 with (p1, p2, p3)

= (3, 12, 24), (5, 10, 20), and (3, 6, 18)

respectively. In [13, Proposition 2], we classified certain 4×3 matrices corresponding
to data determined by such polynomials, see [13] for details. Using [13, Table 1, 9 and
10] and the notations used there, this amounts to the list of Table 4. The last column
indicates the coefficients a1, a2, a3, a4 ∈ C which are used in [13] and will be used in
Sect. 4.

We now consider the matrix factorizations of the functions f of Table 4. They are
given in Table 5, where we use suitable coordinates (x, z, w) instead of (x, y, z).

In the case Q2,0, the matrix factorization from [14, Table 2]

q1 =
(
y4 − (1 + λ4)xy2 + λ4x2 −y

z2 −x

)

is equivalent to the matrix factorization from Table 5 with a1 = λ4, a2 = −1, a3 = 1,
a4 = 1+λ4, which is seen by adding the second columnmultiplied by y3−(1+λ4)xy
to the first column.

123



W. Ebeling, A. Takahashi

3 An Extension of the Berglund–Hübsch Duality

We shall now show that the duality between the quadrangle complete intersection
singularities canbederived from theBerglund–Hübsch transpositionof certain polyno-
mials in 4 variables.We use the procedure in [13] to associate aweighted homogeneous
non-invertible polynomial with 4 terms in 4 variables to each of the quadrangle com-
plete intersection singularities. We consider the complete intersection singularities
associated to the matrix factorizations in Table 5 defined by equations (FQ,1, FQ,2),
where we set ai = 1, i = 1, . . . , 4, and where we take a suitable order of the terms.
Moreover, in the equation for I1,0 we replace X Z + Y Z by X2 + Y 2. We also sub-
stitute temporarily the variables x, y, z, w by capital letters X ,Y , Z ,W . We have the
following 4 cases:

(a) FQ,1(X ,Y , Z ,W ) = XY − W 2,
(b) FQ,1(X ,Y , Z ,W ) = XY − W 3,
(c) FQ,1(X ,Y , Z ,W ) = XY − ZW ,
(d) FQ,1(X ,Y , Z ,W ) = XY − Z2W .

We make the following coordinate substitutions in FQ,2(X ,Y , Z ,W ):

(a) XY − W 2 : X := x2w,Y := y2w, Z := z,W := xyw,

(b) XY − W 3 : X := x6w3,Y := y6w3, Z := z,W := x2y2w2.

(c) XY − ZW : X := xw,Y := yz, Z := xz,W := yw,

(d) XY − Z2W : X := y2z2,Y := x2w2, Z := xz,W := y2w2,

Then the polynomial FQ,2(X ,Y , Z ,W ) is transformed to a non-invertible polynomial

f (x, y, z, w) =
4∑

i=1

x Ei1 yEi2 zEi3wEi4

for a 4×4-matrix E of exponents. The corresponding polynomials are listed in Table 6.
This procedure can be explained as follows.We observe that the kernel of thematrix

E is generated by one of the following vectors:

(a),(b) (1, 1, 0,−2)T,
(c),(d) (1, 1,−1,−1)T.

Let R := C[x, y, z, w]. There exists aZ-graded structure on R given by the respective
C

∗-action (here λ ∈ C
∗):

(a), (b) λ ∗ (x, y, z, w) = (λx, λy, z, λ−2w)

(c), (d) λ ∗ (x, y, z, w) = (λx, λy, λ−1z, λ−1w)

Let R = ⊕
i∈Z Ri be the decomposition of R according to one of these Z-gradings.

The new coordinates X ,Y , Z ,W are some invariant polynomials with respect to these
actions and they satisfy the relation given by the corresponding first equation.
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Table 6 Strange duality

Name (FQ,1, FQ,2) f Dual

J ′
2,0 (XY − W 2, X3W + YW + Z2 + XW 2) x7yw4 + xy3w2 + z2 + x4y2w3 J ′

2,0

K ′
1,0 (XY − W 2, X4 + Z2 + Y Z + X2Z) x8w4 + z2 + y2zw + x4zw2 K ′

1,0

K �
1,0 (XY − W 2, XW 2 + Z2 + Y Z + X2Z) x4y2w3 + z2 + y2zw + x4zw2 L1,0

L1,0 (XY − ZW , X4 + Z2 + YW + X2Z) x4w4 + x2z2 + y2zw + x3zw2 K �
1,0

L�
1,0 (XY − ZW , XW 2 + Z2 + YW + X2Z) xy2w3 + x2z2 + y2zw + x3zw2 L�

1,0

M1,0 (XY − Z2W , Z3 + W 2 + Y Z + XW ) x3z3 + y4w4 + x3zw2 + y4z2w2 M1,0

M�
1,0 (XY − ZW , X2W + Y Z + YW + X2Z) x2yw3 + xyz2 + y2zw + x3zw2 M�

1,0

I1,0 (XY − W 3, X2 + Y 2 + Z2 + W 3) x12w6 + y12w6 + z2 + x6y6w6 I1,0

Table 7 Functions h of 4 of the quadrangle hypersurface singularities

Name f Coord. change h

Q2,−1 w3 + x4w + xz2 − 2x2w2 w �→ w + x2 w3 + x2w2 + xz2 − x3z

S1,−1 x5 + xz2 + zw2 − 2x3z z �→ z + x2 xz2 + zw2 + x2w2 − wx3

S�
1,−1 −x2w2 + xz2 + zw2 − x3z z �→ z + x2 xz2 + x3z + zw2 − x3w

U1,−1 −z3w + x2w + xz3 − xw2 x �→ x + w x2w + xw2 + xz3 − zw2

An inspection of Table 6 shows that the Berglund–Hübsch transpose of the polyno-
mial f is either the polynomial f itself or another polynomial appearing in the table.
This leads to the indicated duality.

4 Virtual Isolated Complete Intersection Singularities

We now derive the equations for the virtual singularities.
In [13, Section 4], we associated a polynomial h to f , which defines the correspond-

ing virtual bimodal hypersurface singularity. This is done as follows. We consider the
polynomial f(x, z, w) from Table 4 (using the coordinate transformation of Table 5)
with the choice of coefficients a1, a2, a3, a4 given in the last column. Then the corre-
sponding equation defines a non-isolated singularity.We consider the cusp singularity

f(x, z, w) − xzw

and perform the coordinate change indicated in Table 7.
Then this polynomial is transformed to

h(x, z, w) − xzw,
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where the polynomial h(x, z, w) is indicated in Table 7. The polynomial h(x, z, w)

has an isolated singularity at the origin, but also an additional critical point of type A1
outside the origin.Moreover, if we consider the 1-parameter familyh(x, z, w)−t ·xzw
for t ∈ C, then, for t �= 0, 1, the polynomial h(x, z, w) − t · xzw has two additional
critical points of type A1 outside the origin. One of them merges with the singularity
of h(x, z, w) at the origin for t = 0 and the other one merges with the singularity of
f(x, z, w) − xzw at the origin for t = 1.

Example 2 Consider the case Q2,0. Then

f(x, z, w + x2) − xz(w + x2)

= (w + x2)3 + x4(w + x2) + xz2 − 2x2(w + x2)2 − xz(w + x2)

= w3 + x2w2 + xz2 − x3z − xzw

= h(x, z, w) − xzw.

The polynomial h(x .z, w) has a singularity of Arnold type Q12 at the origin. On the
other hand, for t �= 0,

h
(

x, z, w − 1

t
x2

)

− t · xz
(

w − 1

t
x2

)

=
(

w − 1

t
x2

)3

+ x2
(

w − 1

t
x2

)2

+ xz2 − x3z − t · xz
(

w − 1

t
x2

)

= w3 +
(

3
1

t2
− 2

1

t

)

x4w +
(
1

t2
− 1

t3

)

x6 + xz2 +
(

1 − 3
1

t

)

x2w2 − t · xzw.

Using the proof of [12, Theorem 10], one can show that, for t �= 1, this is a cusp
singularity of type T3,3,6. For t = 1, it is a cusp singularity of type T3,3,7. Using this,
one can check the above statements.

Nowweare looking at possiblematrix factorizations of the polynomialshofTable 7.
They are listed together with the corresponding isolated complete intersection singu-
larities in Table 8. The resulting pairs of polynomials (h1,h2) are called the virtual
quadrangle complete intersection singularities or, shortly, the virtual singularities and
they are denoted by replacing the index 0 by −1.

There is another matrix factorization in the case U1,−1, namely

x(xw + z3 + w2) − zw · w.

It is equivalent to the matrix factorization corresponding to I1,−1.
The equations (h1,h2) will be used in the sequel. Note that they differ from the

equations in Table 2 in a similar way as the equations in [12, Table 12] for the interpre-
tation of Arnold’s strange duality as the Berglund–Hübsch transposition of invertible
polynomials differ partly from Arnold’s equations. In a similar way, the equations in
[13] deviate from the equations of Arnold as well, cf. [13, Table 10].
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Table 8 Virtual singularities

Name Matrix factorization of h (h1,h2) Virtual

Q2,−1 x(−x2z + z2 + xw2) + w · w2 (xy − w2, −x2z + yw + z2 + xw2) J ′
2,−1

S1,−1 x(−x2w + z2 + xw2) + z · w2 (xy − w2, −x2w + z2 + yz + xw2) K ′
1,−1

S�
1,−1 x(−x2w + z2 + x2z) + z · w2 (xy − w2, −x2w + z2 + yz + x2z) K �

1,−1

S1,−1 x(−x2w + z2 + xw2) + zw · w (xy − zw,−x2w + z2 + yw + xw2) L1,−1

S�
1,−1 x(−x2w + z2 + x2z) + zw · w (xy − zw,−x2w + z2 + yw + x2z) L�

1,−1

U1,−1 x(xw + z3 + w2) − z · w2 (xy − w2, −yz + xw + z3 + w2) M1,−1

U1,−1 x(−z2 + x2w) + zw · (z + w) (xy − zw,−z2 + yw + x2w + yz) M�
1,−1

U1,−1 x(−xw + z2 + xz) + z · w3 (xy − w3, −xw + z2 + yz + xz) I1,−1

Let (h1,h2) with

h1(x, y, z, w) = xy − zcwd , h2(x, y, z, w) =
4∑

i=1

ai x
Ai1 yAi2 zAi3wAi4

be a virtual singularity. We consider the polynomial h2(x, y, z, w) on the zero set of
the polynomial h1(x, y, z, w). This means that we substitute y = x−1zcwd in the
polynomial h2(x, y, z, w) to get a Laurent polynomial

h′
2(x, z, w) := h2(x, x−1zcwd , z, w) =

4∑

i=1

ai x
Ai1−Ai2 zAi3+cAi2wAi4+d Ai2

in the variables x, z, w. Define Supp(h′
2) := {(Ai1 − Ai2, Ai3 + cAi2, Ai4 + d Ai2) ∈

Z
3 | i = 1, . . . , 4}. Let �∞(h′

2) be the Newton polyhedron of h′
2 at infinity [17], i.e.

�∞(h′
2) is the convex closure inR

3 of Supp(h′
2)∪{0}. TheNewton polyhedron�∞(h′

2)

has two two-dimensional faces which do not contain the origin. Call these faces �1
and �2. Let Ik := {i ∈ {1, . . . , 4} | (Ai1 − Ai2, Ai3 + cAi2, Ai4 + d Ai2) ∈ �k},
k = 1, 2, and let

h2,k =
∑

i∈Ik
ai x

Ai1 yAi2 zAi3wAi4 .

Then (h1,h2,k) defines a non-isolated weighted homogeneous complete intersection
singularity. The polynomials h2,1 and h2,2 and their systems of weights are listed in
Table 9.

5 Dolgachev Numbers

We shall now define Dolgachev numbers for our virtual singularities.
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Table 9 Decomposition of equations

Name h2,1 Weights h2,2 Weights

J ′
2,−1 −x2z + z2 + xw2 2, 4, 4, 3; 6, 8 z2 + xw2 + yw 2, 6, 5, 4; 8, 10
K ′
1,−1 −x2w + z2 + xw2 2, 2, 3, 2; 4, 6 z2 + xw2 + yz 2, 4, 4, 3; 6, 8

K �
1,−1 −x2w + x2z + yz 2, 4, 3, 3; 6, 7 x2z + yz + z2 2, 4, 4, 3; 6, 8

L1,−1 −x2w + z2 + xw2 2, 3, 3, 2; 5, 6 z2 + xw2 + yw 2, 5, 4, 3; 7, 8
L�
1,−1 −x2w + x2z + yw 2, 4, 3, 3; 6, 7 x2z + yw + z2 2, 5, 4, 3; 7, 8

M1,−1 xw + z3 + w2 3, 3, 2, 3; 6, 6 z3 + w2 − yz 2, 4, 2, 3; 6, 6
M�
1,−1 −z2 + x2w + yz 2, 3, 3, 2; 5, 6 x2w + yz + yw 2, 4, 3, 3; 6, 7

I1,−1 −xw + yz + xz 3, 3, 2, 2; 6, 5 yz + xz + z2 3, 3, 3, 2; 6, 6

The Dolgachev numbers of the virtual singularity (h1,h2) are defined in a similar
way as [13, Section 5]. Let i = 1, 2 and let Vi := {(x, y, z, w) ∈ C

4 |h1(x, y, z, w) =
0, h2,i (x, y, z, w) = 0}. We consider the C

∗-action on Vi given by the system of
weights of (h1,h2,i ) (see Table 9). We consider exceptional orbits (i.e. orbits with a
non-trivial isotropy group) of this action. We distinguish between three cases:

(A) Vi contains a linear subspace L of C4 of codimension 2 obtained by setting two
coordinates to be zero.

(B) Vi = U ∪U ′, where

(h1(x, y, z, w),h2,i (x, y, z, w)) = (g1(x, y, w), zg2(x, y, z)),

U = {(x, y, z, w) ∈ C
4 | g1(x, y, w) = z = 0},

U ′ = {(x, y, z, w) ∈ C
4 | g1(x, y, w) = g2(x, y, z) = 0}.

(C) Vi is not of the form of (A) or (B).

In case (A) we consider those exceptional orbits which are not contained in L . In case
(B) we consider those exceptional orbits which are not contained in U . In case (C)
we consider those exceptional orbits which do not coincide with the singular locus of
Vi . We call these the principal orbits. It turns out that in all cases we have exactly two
principal orbits.

Definition TheDolgachev numbers of the virtual singularity (h1,h2) are the numbers
α1, α2;α3, α4 where α1, α2 and α3, α4 are the orders of the isotropy groups of the
principal exceptional orbits of (h1,h2,1) and (h1,h2,2) respectively.

The Dolgachev numbers of the virtual singularities are computed as follows. The
two pairs of polynomials (h1,h2,i ), i = 1, 2, of Table 9 define non-isolated weighted
homogeneous complete intersection singularities of certain types. The systems of
weights correspond to the five quadrangle ICIS and three elliptic complete intersection
singularities as considered by Wall [23]. We indicate the notation of Wall [23] in
Table 10. The corresponding orbifold curves have genus zero. We list the orders of the
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isotropy groups of the exceptional orbits of these ICIS in this table (see also [8]). Some
of them correspond to the orders of the isotropy groups of the exceptional orbits for the
non-isolated singularities given by the pairs (h1,h2,i ), i = 1, 2. Those ones which do
not occur are stroken out. The orders of the isotropy groups of the principal orbits are
indicated in bold face. We also indicate for each pair which of the corresponding cases
(A), (B), or (C) applies. An exceptional orbit which coincides with the singular locus
is marked by ∗. The Dolgachev numbers α1, α2;α3, α4 of the virtual singularities are
indicated in the last column.

Example 3 (a) We consider the singularity K �
1,−1. We have (h1,h2,1) = (xy −

w2,−x2w + x2z + yz) with the system of weights (2, 4, 3, 3; 6, 7). We are in case
(C). The exceptional orbits are

x = y = w = 0 singular line, order of isotropy group: 3
y = z = w = 0 order of isotropy group: 2
x = z = w = 0 order of isotropy group: 4

This gives (α1, α2) = (2, 4).
(b) We again consider the singularity K �

1,−1, but now (h1,h2,2) = (xy−w2, x2z+
yz + z2) with the system of weights (2, 4, 4, 3; 6, 8). Here we are in case (B). The
singular locus is the curve z = x2 + y = x3 + w2 = 0 with trivial isotropy group. It
is contained in U = {xy − w2 = z = 0}. The exceptional orbits contained in U are

y = z = w = 0 order of isotropy group: 2
x = z = w = 0 order of isotropy group: 4

The exceptional orbits not contained in U are

y = w = x2 + z = 0 order of isotropy group: 2
x = w = y + z = 0 order of isotropy group: 4

This gives (α3, α4) = (2, 4).
(c) We consider the case L1,−1 with (h1,h2,1) = (xy − zw,−x2w + z2 + xw2).

The system of weights is (2, 3, 3, 2; 5, 6). Here V1 contains the hyperplane L = {x =
z = 0}, so we are in case (A). The exceptional orbits contained in L are

x = z = w = 0 singular line, order of isotropy group: 3
x = y = z = 0 order of isotropy group: 2

The exceptional orbits not contained in L are

y = z = w = 0 order of isotropy group: 2
x − w = y = z = 0 order of isotropy group: 2

This gives (α1, α2) = (2, 2).

Remark 4 Using the primary decomposition algorithm of the computer algebra soft-
ware Singular [5], one can show that, for each pair (h1,h2,i ) where we have case
(A), the subspace L is an irreducible component of Vi . If one removes this compo-
nent L in case (A), the component U in case (B), and the point corresponding to the
singular line in case (C), one gets P1

α2i−1,α2i
with one point removed. Here P1

α2i−1,α2i
denotes the complex projective line with two orbifold points with singularitiesZ/α jZ,
j = 2i − 1, 2i .
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6 Gabrielov Numbers

We now want to define Gabrielov numbers. They will be defined as in [13, Section 5].
For this purpose, we consider the pairs (h1,h2) of polynomials of Table 8.Here the first
three cases J ′

2,−1, K
′
1,−1, and K �

1,−1 are suspensions of the curve singularities J2,−1,

K1,−1, and K
�
1,−1. In these cases, we consider as the first polynomial h1(x, y, z, w) :=

xy − w2 − z2. Then we consider the complete intersection singularity (X ′, 0) defined
by

{
h1(x, y, z, w),

h2(x, y, z, w) − zw.

As in [12], one can show that the singularity (X ′, 0) isK-equivalent to the singularity
defined by

{
xy − zγ1 − wγ2 ,

xγ3 + yγ4 − zw.

This means that (X ′, 0) is a cusp singularity of type T 2
γ1,γ3,γ2,γ4

in the notation of [6,
3.1].

Definition TheGabrielov numbers of the virtual singularity given by the pair (h1,h2)
are the numbers γ1, γ2; γ3, γ4.

Proposition 5 TheGabrielov numbers of the virtual quadrangle complete intersection
singularities are given by Table 11.

Proof WeconsiderWall’s reduction of the virtual quadrangle singularities according to
Table 8. The cusp singularityH′ := (h1(x, y, z, w),h2(x, y, z, w)− zw) corresponds
to the hypersurface cusp singularity LyH′ = h(x, z, w) − xzw. In all cases except
I1,−1, by transformations similar to the transformations in [13], we obtain the indicated
Gabrielov numbers. More precisely, for a suitable permutation σ : {1, 2, 3, 4} →
{1, 2, 3, 4}, theGabrielovnumbers satisfy (γσ(1), γσ(2), γσ(3), γσ(4)) = (2, γ̃1−1, γ̃2−
1, γ̃3 − 1), where (γ̃1, γ̃2, γ̃3) are the Gabrielov numbers of the corresponding virtual
hypersurface singularity.

In the case I1,−1, we indicate the claimed K-equivalence. We add the first polyno-
mial h1(x, y, z, w) to the second one h2(x; y, z, w) − zw and obtain

(xy − w3, xy − w3 − xw + z2 + yz + xz − zw). (6.1)

By the transformation w �→ w + y, this is transformed to

(xy − w3 − p1(y, w),−y3 − w3 − q1(y, w) − xw + z2 + xz − zw), (6.2)

where p1(y, w) and q1(y, w) are certain polynomials of degree 3 in the variables y
and w. Using [1, Lemma 7.3] and the fact that y divides p1(y, w), one can get rid of
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the polynomial p1(y, w) with the help of the term xy. Similarly, one can get rid of
the polynomial q1(y, w) in the second equation with the help of the term zw. Now we
apply the transformation w �→ w + x . Then the pair (6.2) gets

(xy − w3 − x3 − p2(x, w),−x3 − y3 − q2(x, w) − xw − x2 + z2 − zw),

(6.3)

where p2(x, w) and q2(x, w) are again polynomials which can be removed. Applying
the transformation x �→ x + z, one gets

(xy − w3 − z3 − p3(x, z),−x3 − y3 − q3(x, z) − xw − x2 − 2xz − 2zw),

(6.4)

again with certain removable polynomials p3(x, z) and q3(x, z). Finally, by the trans-
formation z �→ 1

2 (z − x) followed by w �→ w − x and rescaling, we obtain

(xy − z3 − w3 + p4(x, w), x3 + y3 − zw), (6.5)

again with a removable polynomial p4(x, w). �
By [6], one can compute Coxeter–Dynkin diagrams of the (global) singularities

defined by (h1,h2). In the cases M1,−1 and I1,−1, the polynomials h1 and h2 have to
be interchanged. Let X (1) := {(x, y, z, w) ∈ C

4 |h1(x, y, z, w) = 0} and consider
the function h2 : X (1) → C. It has besides the origin one or two additional critical
points which are of type A1. The singularity at the origin is indicated in Table 11 using
the notation of [21]. We define theMilnor number of the virtual singularity by the sum
of the Milnor numbers of the singular points. It is equal to 12 in all cases.

One can compute that there exists a (strongly) distinguished basis of thimbles
(e1, . . . , eμ+1) = (erj | 1 ≤ j ≤ 8, 1 ≤ r ≤ Mj ), where the intersection matrix

of (e1, . . . , e8) = (e11, . . . , e
1
8) coincides with the intersection matrix of the system

(̂δ′
1, . . . , δ̂

′
8) of [6, Sect. 2.3], the numbers M1, M3, M8 are equal to one and the other

numbers M2, M4, M5, M6, M7 are indicated in Table 11, and the intersection matrix
of (erj | 1 ≤ j ≤ 8, 1 ≤ r ≤ Mj ) is computed according to [6, Theorem 2.2.3].
By the proof of [6, Proposition 3.6.1], one can transform these bases to (strongly)
distinguishedbases of thimbleswithCoxeter–Dynkin diagramsof the formγ1,γ2,γ3,γ4

of Fig. 1, where γ1, γ2; γ3, γ4 are the Gabrielov numbers of the virtual singularity.

7 Strange Duality

We now consider the duality defined in Sect. 1. We summarize the results on the
Dolgachev and Gabrielov numbers of the virtual singularities in Table 3. From this
table, we get the following result:

Theorem 6 The Gabrielov numbers of a virtual quadrangle complete intersection
singularity coincide with the Dolgachev numbers of the dual one, and vice versa.
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•δρ−2

•δρ−4 • δρ

•
δ21

· · · •
δ2γ2−1

•
δρ−3

•
δρ−1

•
δ4γ4−1

· · · •
δ41

•
δ1γ1−1

•
δ3γ3−1

· · · · · ·

•
δ11

•
δ31

Fig. 1 The graph γ1,γ2,γ3,γ4

Table 11 Coxeter–Dynkin diagrams of virtual singularities

Virtual Germ at 0 M2 M4 M5 M6 M7 γ1, γ2; γ3, γ4

J ′
2,−1 J ′

11 3 1 1 1 3 + 1 2, 2; 2, 5 + 1

K ′
1,−1 K ′

10 2 2 + 1 2 + 1 1 1 2, 2; 3 + 1, 3 + 1

K �
1,−1 K ′

11 2 + 1 2 3 1 1 2, 2; 3, 4 + 1

L1,−1 L10 2 2 + 1 1 1 2 + 1 2, 3 + 1; 2, 3 + 1

L�
1,−1 L11 2 + 1 3 1 1 2 2, 3; 2, 4 + 1

M1,−1 J ′
10 3 1 + 1 1 + 1 1 2 2 + 1, 2 + 1; 2, 4

M�
1,−1 M11 2 2 + 1 2 1 2 2, 3; 3, 3 + 1

I1,−1 M11 2 2 2 1 + 1 2 2 + 1, 3; 3, 3

For another feature of this duality, we have to introduce some notions.
Let f1,…, fk be weighted homogeneous functions onCn of degrees d1,…, dk with

respect to weightsw1,…,wn . We suppose that the equations f1 = f2 = . . . = fk = 0
define a complete intersection X in C

n . There is a natural C∗-action on the space Cn

defined by λ ∗ (x1, . . . , xn) = (λw1x1, . . . , λwn xn), λ ∈ C
∗.

Let A = C[x1, . . . , xn]/( f1, . . . , fk) be the coordinate ring of X . Then the C
∗-

action on C
n induces a natural grading A = ⊕∞

s=0As on the ring A, where

As := {g ∈ A | g(λ ∗ (x1, . . . , xn)) = λsg(x1, . . . , xn) for λ ∈ C
∗}.
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We shall consider the Poincaré series PX (t) = ∑∞
s=0 dim As · t s of this graded

algebra. One has

PX (t) =
∏k

j=1(1 − td j )
∏n

i=1(1 − twi )
.

For a map ϕ : Z → Z of a topological space Z , the zeta function is defined to be

ζϕ(t) =
∏

p≥0

{
det

(
id − t · ϕ∗|Hp(Z;C)

)}(−1)p
.

If, in the definition, we use the actions of the operators ϕ∗ on the reduced homology
groups H p(Z;Z), we get the reduced zeta function

ζ ϕ(t) = ζϕ(t)

(1 − t)
.

For 0 ≤ j ≤ k, let X ( j) be the complete intersection given by the equations
f1 = . . . = f j = 0 (X (0) = C

n , X (k) = X ). The restriction of the function f j ( j =
1, . . . , k) to the variety X ( j−1) defines a locally trivial fibration X ( j−1)\X ( j) → C

∗.
Let V ( j) = f −1

j (1) ∩ X ( j−1) be the typical fibre (Milnor fibre) of this fibration. Note

that it is not necessarily smooth. There is a monodromy transformation ϕ( j) : V ( j) →
V ( j) on it. Let

ζ X , j (t) := ζ ϕ( j) (t).

One can show that (ϕ( j)∗ )d j = id and therefore ζ X , j (t) can be written in the form

∏

�|d j

(1 − t�)α�, α� ∈ Z.

Following Saito [18,19], we define the Saito dual to ζ X , j (t) to be the rational function

ζ
∗
X , j (t) =

∏

m|d j

(1 − tm)
−α(d j /m)

(note that different degrees d j are used for different j).
Let Y (k) = (X (k)\{0})/C∗ be the space of orbits of the C∗-action on X (k)\{0} and

Y (k)
m be the set of orbits for which the isotropy group is the cyclic group of order m.

For a topological space Z , denote by χ(Z) its Euler characteristic. Define

OrX (t) :=
∏

m≥1

(1 − tm)χ(Y (k)
m ).
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Now let X be a complete intersection in C
4 defined by two polynomial equations

f1 = f2 = 0 and assume that both X (1) = f −1
1 (0) and X (2) = X have isolated

singularities at the origin. Moreover, assume that X (1) has a singularity of type A1.
Consider the mapping F := ( f1, f2) : C

4 → C
2. Let CF be the critical locus of

F and DF = F(CF ). The mapping F |C4−F−1(DF ) : C4 − F−1(DF ) → C
2 − DF

defines a locally trivial fibration. Assume that (1, 1) /∈ DF . Let V (1) = f −1
1 (1) and

V2 = f −1
2 (1) ∩ V (1). (Note that V2 �= V (2) but V2 and V (2) are homeomorphic to

each other.) Then V2 ⊂ V (1) and the monodromy transformation ϕ(1) : V (1) → V (1)

induces a relative monodromy operator ϕ̂∗ : H3(V (1), V2;Z) → H3(V (1), V2;Z).
Let

�X (t) := det
(
id − t · ϕ̂∗|H3(V (1),V2;C)

)

be the characteristic polynomial of this operator.

Proposition 7 We have

�X (t) = (1 − t)2
2∏

j=1

ζ X , j (t).

Proof We have the following commutative diagram of split short exact sequences:

0 �� H3(V (1);Z) ��

ϕ
(1)∗

��

H3(V (1), V2;Z) ��

ϕ̂∗
��

H2(V2;Z) ��

ϕ
(2)∗

��

0

0 �� H3(V (1);Z) �� H3(V (1), V2;Z) �� H2(V2;Z) �� 0

This shows that

�X (t) = det
(
id − t · ϕ(1)∗ |H3(V (1);C)

)
det

(
id − t · ϕ(2)∗ |H2(V2;C)

)

= ζ X ,1(t)
−1ζ X ,2(t) = (1 − t)2

2∏

j=1

ζ X , j (t)

since ζ X ,1(t) = (1 − t)−1. �
Let X be an ICIS with a Coxeter–Dynkin diagram of type γ1,γ2,γ3,γ4 . Then the

polynomial �X (t) is equal to the characteristic polynomial �(γ1,γ2,γ3,γ4)(t) of the
Coxeter element corresponding to this Coxeter–Dynkin diagram. By [6, Proposition
3.6.2], we have

�(γ1,γ2,γ3,γ4)(t) = (1 − t)2�(Sγ1,γ2,γ3,γ4)(t)

where�(Sγ1,γ2,γ3,γ4)(t) is the characteristic polynomial of the Coxeter element corre-
sponding to the graph Sγ1,γ2,γ3,γ4 depicted in Fig. 2. (Note that there is a slight mistake
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• δμ

• δμ−1

•
δ21

· · · •
δ2γ2−1

•
δμ−2

•
δ4γ4−1

· · · •
δ41

•
δ1γ1−1

•
δ3γ3−1

· · · · · ·

•
δ11

•
δ31

Fig. 2 The graph Sγ1,γ2,γ3,γ4

in the proof of [6, Proposition 3.6.2] which was corrected in [7].) By Proposition 7 we
get

2∏

j=1

ζ X , j (t) = �(Sγ1,γ2,γ3,γ4)(t). (7.1)

This also gives an interpretation of the characteristic polynomial of theCoxeter element
c� considered in [7].

A k = 0 element of one of the series can again be given as the zero set of two
weighted homogeneous functions of weights w1, w2, w3, w4 and degrees d1, d2. We
are now ready to state the following analogue of [13, Theorem 6]:

Theorem 8 Let X be a virtual ICIS and X̃0 be the k = 0 element of the dual series.
Then we have

2∏

j=1

ζ X , j (t) = PX̃0
(t) · Or X̃0

(t) =
2∏

j=1

ζ
∗
X̃0, j (t). (7.2)

Proof ByEquation (7.1), the left-hand sideofEquation (7.2) is equal to�(Sγ1,γ2,γ3,γ4)(t).
By [6, p. 98] (unfortunately, there is a misprint), there is the following formula for this
polynomial :
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�(Sγ1,γ2,γ3,γ4)(t) = (t3 − 2t2 − 2t + 1)
4∏

i=1

tγi − 1

t − 1

+t2
4∑

i=1

tγi−1 − 1

t − 1

4∏

j=1, j �=i

tγ j − 1

t − 1
. (7.3)

Using this formula, we can compute the polynomial
∏2

j=1 ζ X , j (t) in each case. The
result is given in Table 3. Under a certain non-degeneracy condition, the function
ζX ,2(t) can also be computed by the formula of [16, Theorem 4] from the Newton
polytope.

On the other hand, we can compute the Poincaré series of X̃0 from the weights and
degrees given in Table 1. The polynomial Or X̃0

(t) is given by

Or X̃0
(t) = (1 − t)−2

4∏

i=1

(1 − tγi )

where γ1, γ2; γ3, γ4 are theGabrielov numbers of X which are theDolgachev numbers
of X̃ (and of X̃0). The result is also given in Table 3. Comparing these polynomials,
we obtain the first equality of Equation (7.2).

The second equality follows from [9, Theorem]. �
Remark 9 The spectrum of an ICISwas defined in [11]. In a similar way one can define
the spectrum of a virtual quadrangle complete intersection singularity X . Spectra for
the series of ICIS above have been calculated by Steenbrink [20]. The spectrum of a
virtual quadrangle complete intersection singularity agrees with the spectrum defined
by setting k = −1 in the corresponding formulas of [20]. The numbers e2π

√−1α ,
where α is a number of this spectrum, coincide with the roots of

∏2
j=1 ζ X , j (t).
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