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Abstract
We introduce partial duality of hypermaps, which include the classical Euler–Poincaré
duality as a particular case. Combinatorially, hypermaps may be described in one of
three ways: as three involutions on the set of flags (bi-rotation system or τ -model), or
as three permutations on the set of half-edges (rotation system or σ -model in orientable
case), or as edge 3-coloured graphs.We express partial duality in each of thesemodels.
We give a formula for the genus change under partial duality.
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Introduction

Maps can be thought of as graphs embedded into surfaces.Hypermaps are hypergraphs
embedded into surfaces. In other words, in hypermaps, a (hyper) edge is allowed to
connect more than two vertices, so having more than two half-edges, or just a single
half-edge (see Fig. 1).

One combinatorial description of hypermaps, called the bi-rotation system or the
τ -model, goes through three involutions acting on the set of local flags, also known as
blades, represented by triples (vertex, edge, face). The motivation for this model was
the study of symmetry of regular polyhedra which is a group generated by reflections
(involutions). As such, it may be traced back to Ancient Greeks. It was used system-
atically by Klein [23] and later by Coxeter and Moser [5]. More recently, this model
was used in the context of maps and hypermaps in [20–22,39]. We review the τ -model
in Sect. 1.2.

Another way to combinatorially study oriented hypermaps, called the rotation sys-
tem or the σ -model, is to consider permutations of its half-edges, also known as darts,
around each vertex, around each hyperedge, and around each face according to the
orientation. This model has been carefully worked out by Cori [6]; however, it can
be traced back to Heffter [18]. It became popular after the work of Edmonds [8]. It
is very important for the Grothendieck dessins d’Enfants theory, see [27], where the
σ -model is called 3-constellation. We review the σ -model in Sect. 1.3.

In 1975, Walsh noted [38] that, if we consider a small regular neighbourhood of
vertices and hyperedges, then we can regard hypermaps as cell decomposition of a
compact closed surface into disks of three types, vertices, hyperedges, and faces, such
that the disks of the same type do not intersect and the disks of different types may
intersect only on arcs of their boundaries. These arcs form a 3-regular graph whose
edges are coloured in 3 colours depending on the types of cells they are adjacent to. The
arcs of intersection of hyperedge-disks with face-disks bear the colour 0. The colour
1 stands for the arcs of intersection of vertex-disks with face-disks. And the arcs of
intersection of vertex-disks with hyperedge-disks are coloured by 2. Thus, we come
to the concept of [2]-coloured graphs, where [2] stands for the set of three colours
[2] := {0, 1, 2}. It turns out that such a [2]-coloured graph carries all the information
about the original hypermap. This gives another combinatorial model for description
of hypermaps. We review this model in Sect. 1.4.

About the same time, this concept was generalized to higher dimensions. Namely,
in the 1970s, Pezzana [31,32] discovered a way of coding a piecewise-linear (PL)
manifold by a properly edge-coloured graph. The idea goes as follows: choose a tri-
angulation K of this given manifold M . Consider then its first barycentric subdivision
K1. The 1-skeleton of K ∗

1 is a properly edge-colourable graph. It turns out that the
colouring of the graph is sufficient to reconstruct M completely. The discovery of
Pezzana allows to bring combinatorial and graph theoretical methods into PL topol-
ogy. This correspondence between PLmanifolds and coloured graphs has been further
developed by Ferri, Gagliardi, and their group [12]. It has also been independently
rediscovered by Vince [35], Lins andMandel [26], and, to a certain extent, Gurau [16].

Originally, partial duality relative to a subset of edges was defined for ribbon graphs
in [3] under the name of generalized duality. The motivation came from an idea to
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Partial Duality of Hypermaps 447

Fig. 1 Local view of a hypermap with its Walsh map superimposed (vertices are red, hyperedges are green,
and faces are blue)

unify various versions of the Thistlethwaite theorems in knot theory relating the Jones
polynomial of knots with the Tutte-like polynomial of (ribbon) graphs. Then, it was
thoughtfully studied and developed in papers [1,9,13,19,28–30,37]. We refer to [10]
for an excellent account on this development.

The main result of this paper is a generalization of partial duality to hypermaps
in Sect. 2. There, we define the partial duality in Sect. 2.1 and then describe it in
each of the three combinatorial models in subsequent subsections. Independently,
this generalization was found by Benjamin Smith [33], but it does not contain the
expression of partial duality in terms of permutational models and does not have any
formula for the genus change. The operation of partial duality usually is different
from the operations of [21,22] and from the operation of [36]. Typically, it changes
the genus of a hypermap. We give a formula for the genus change in Sect. 3. We finish
the paper with general remarks about future directions of research on partial duality
in higher dimensions.

1 Hypermaps

1.1 Geometrical Model

Amap is a cellularly embedded graph in a (not necessarily orientable) compact closed
surface. The edges of a graph are represented by smooth arcs on the surface connecting
two (not necessarily distinct) vertices. A small regular neighbourhood of such a graph
on the surface is a surface with boundary, called ribbon graph, equipped with a
decomposition into a union of topological disks of two types, the neighbourhoods of
vertices and the neighbourhoods of edges. The last one can be regarded as a narrow
quadrilateral along the edges attached to the corresponding vertex-disks at the two
opposite sides. Attaching disks called faces to the boundary components of a ribbon
graph restores the original closed surface. Thus, a map may be regarded as a cell
decomposition of a compact closed surface into disks of three types, vertices, edges,
and faces, such that the disks of the same type do not intersect and the disks of different
types may intersect only on arcs of their boundaries and the edge-disks intersect with
at most two vertex-disks and at most two face-disks (see [10] for example).
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448 S. Chmutov, F. Vignes-Tourneret

(a) (b)

Fig. 2 Map and hypermap

Hypermaps differ frommaps in that the edges are allowed to behyperedges andmay
connect several vertices. Let us consider a graph, the vertices of which are coloured
black say. Subdivide each of its edges by adding a white vertex at its center. A graph is
thus equivalent to a bipartite graph; all the vertices of one class of its bipartition are of
degree 2. A hypergraph is then equivalent to a (general) bipartite graph. Hypermaps
maybe considered as cellularly embeddedhypergraphs.Moreover, hypermaps can also
be defined as cell decomposition of a compact closed surface into disks of three types,
vertices, hyperedges, and faces, such that the disks of the same type do not intersect
and the disks of different types may intersect only on arcs of their boundaries. In
contrast with maps, edge-disks of hypermaps need not be quadrilaterals. Therefore,
the definition of a hypermap is completely symmetrical with respect to the types of
the cells. Figure 2 shows a non orientable mapm0 and a hypermap hm0 obtained from
m0 by uniting the right vertex with the three edges into a single hyperedge.

As abstract surfaces, both m0 and hm0 are homemorphic to a Möbius band with a
hole in it (a cycle labeled by 1 − 2 − 12 − 11 on m0). Therefore, gluing two disks
(faces) to its boundary components, we will get a projective plane.

1.2 Permutational �-Model

In this model, also called bi-rotation system, a hypermap hm is described in a pure
combinatorial way as three fixed point-free involutions, τ0, τ1, and τ2, acting on a set
X of local flags of hm. A (local) flag is a triple (v, e, f ) consisting of a vertex v, the
intersection e of a hyperedge incident to v with a small neighbourhood of v, and the
intersection f of a face adjacent to v and ewith the same neighbourhood of v. Another
way of defining a local flag is to consider a triangle in the barycentric subdivision of
faces of hm considered as an embedded hypergraph. We will depict a flag as a small

Fig. 3 A local flag
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Partial Duality of Hypermaps 449

Fig. 4 Involutions τ0, τ1, τ2

black right trianglewith one acute angle at v, another one at a pointwhere all three disks
v, e, and f meet and a right angle at an arc of intersection of disks v and e (Figs. 3, 4).

When a hypermap is understood as a [2]-coloured cell decomposition of a surface,
the local flags correspond to the points where all three types of cells meet together.
Three lines of cell intersections emanate fromeach such point, the 2-line of intersection
of the vertex-disk with the (hyper) edge-disk, the 1-line of intersection of the vertex-
disk with the face-disk, and the 0-line of intersection of the edge-disk with the face-
disk. These lines yield three partitions of the set X of local flags into pairs of flags
whose corresponding points are connected by 0-, 1-, or 2-lines. The permutation τi
swaps the flags in the pairs connected by the i-lines.

In Fig. 2, the local flags are labeled by numbers. For these hypermaps, the permu-
tations τi are the following. For the map m0

τ0 = (1, 11)(2, 12)(3, 10)(4, 9)(5, 8)(6, 7),

τ1 = (1, 2)(3, 4)(5, 6)(7, 9)(8, 10)(11, 12),

τ2 = (1, 6)(2, 3)(4, 5)(7, 11)(8, 9)(10, 12).

For hm0

τ0 = (1, 2)(3, 5)(4, 6), τ1 = (1, 2)(3, 4)(5, 6), τ2 = (1, 6)(2, 3)(4, 5).

Any three fixed point-free involutions on a set X yield a hypermap. Its vertices
correspond to orbits of the subgroup 〈τ1, τ2〉 generated by τ1 and τ2, edges to the
orbits of 〈τ0, τ2〉, and faces to the orbits of 〈τ0, τ1〉. A hyperedge is a genuine edge if
the corresponding orbit consists of four elements. Thus, a hypermap is a map if and
only if τ0τ2 is also an involution.

Remark Tutte [34] introduced a less symmetrical description of combinatorial maps
in terms of three permutations θ , φ, and P . They can be expressed in terms of τ0, τ1,
and τ2 as follows:

θ = τ2, φ = τ0, P = τ1τ2.

1.3 Permutational�-Model

This model, also known as rotation system, gives a presentation of an oriented hyper-
map in terms of three permutations σV , σE , and σF of its half-edges H satisfying the
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450 S. Chmutov, F. Vignes-Tourneret

Fig. 5 Permutations σV , σE , σF , and the identity σFσEσV = 1

relation σFσEσV = 1. We may think of half-edges as non complete local flags (v, e)
consisting of a vertex v and the intersection e of a hyperedge incident to v with a small
neighbourhood of v. Therefore, a genuine edge has two half-edges, but a hyperedge
may have more than two half-edges or even a single half-edge. If we think of a hyper-
map as an embedded bipartite graph, then the hyperedges of the hypermap precisely
correspond to the edges of the bipartite graph. In the following, we place an empty
square at the center of the hyperedge to distinguish it from a vertex.

The permutation σV is a cyclic permutation of half-edges incident to a vertex
according to the orientation of the hypermap. The permutation σE acts as the cyclic
permutation of rays in each star according to the orientation. For the permutation
σF , we need to direct the half-edges with arrows pointing away from the vertices to
which they are attached. These arrows point toward the centers of the stars of the
hyperedges. The permutation σF cyclically permutes those half-edges in each face
which are directed along the orientation of the face.

One can easily check that σFσEσV = 1, see Fig. 5. The cycles of σV correspond
to the vertices of the hypermap, the cycles of σE correspond to the hyperedges, and
the cycles of σF correspond to the faces of the hypermap. Consequently any three
permutations σV , σE , and σF of a set H satisfying the relation σFσEσV = 1 uniquely
determine an oriented hypermap.

Now, let us describe the relation with the τ -model of Sect. 1.2. Each half-edge has
two local flags in which it participates. If x ∈ X is one of them, then τ2(x) is the other
one. Therefore, the cardinality of H is twice smaller that the cardinality of X .

Suppose an oriented hypermap hm is given by its σ -model on the set of half-edges
H = {1, . . . ,m}. We set X to be a double of H , X := {1−, 1+, 2−, 2+, . . . ,m−,m+},
and the involution τ2 to swap i− and i+. Define the permutation τ0 to be τ0(i−) :=
(σE (i))+ and τ0(i+) := (σ−1

E (i))−. Finally, define τ1 as τ1(i−) := (σ−1
V (i))+ and

τ1(i+) := (σV (i))−. Obviously, they are involutions and the hypermap they define is
hm.

In the opposite way, suppose a hypermap hm is given by its τ -model on the set of
local flags X = {1, . . . , n}. Also, suppose that hm is connected. That means the group
generated by τ0, τ1, and τ2 acts transitively on X .

For an orientable hypermap, we can consistently arrange X in pairs with subscripts
+ and− as in Fig. 6. For a nonorientable hypermap, such an arrangement is impossible.
One may observe that τ s always change the subscript to the opposite one. This means
that the subgroup G of words of even length in τ ’s preserve the subscript. The group
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Fig. 6 σ and τ permutations

G is generated by τ2τ1, τ0τ2, and τ1τ0. For a nonorientable hypermap, the subgroup
G also acts transitively on X . In the orientable case, X splits into two orbits of G,
one with the subscript + and another one with the subscript −. Let H be the one
with subscript +. Then, we set σV (resp. σE and σF ) to be the restriction of τ2τ1
(resp. τ0τ2, and τ1τ0) on the orbit H . Obviously, these restrictions satisfy the relation
σFσEσV = (τ1τ0)(τ0τ2)(τ2τ1) = 1. It is clear fromFig. 6 that theσ -model constructed
in this way gives the original orientable hypermap hm. The restriction to the “−”-orbit
gives the same hypermap with the opposite orientation.

Example 1 For hypermaps on Fig. 2, the subgroup G is generated by the following
permutations. For m0

τ2τ1 = (1, 3, 5)(2, 6, 4)(7, 8, 12)(9, 11, 10),

τ0τ2 = (1, 7)(2, 10)(3, 12)(4, 8)(5, 9)(6, 11),

τ1τ0 = (1, 12)(2, 11)(3, 8, 6, 9)(4, 7, 5, 10).

For hm0, τ2τ1 = (1, 3, 5)(2, 6, 4), τ0τ2 = (1, 4, 3)(2, 5, 6), τ1τ0 = (1, 2)(3, 6)(4, 5).
In both cases, the groupG acts transitively on flags. This is a combinatorial expression
of the fact that these two hypermaps are non orientable.

On the contrary, consider the two oriented hypermaps of Fig. 7.
The permutations τi are the following. For the map m1

τ0 = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7),

τ1 = (1, 2)(3, 4)(5, 6)(7, 9)(8, 10)(11, 12),

τ2 = (1, 6)(2, 3)(4, 5)(7, 11)(8, 9)(10, 12).

For hm1, τ0 = (1, 2)(3, 4)(5, 6), τ1 = (1, 2)(3, 4)(5, 6), τ2 = (1, 6)(2, 3)(4, 5). The
generators of the subgroup G for m1 are

τ2τ1 = (1, 3, 5)(2, 6, 4)(7, 8, 12)(9, 11, 10),
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(a) (b)

Fig. 7 Map and hypermap. Second example

τ0τ2 = (1, 7)(2, 10)(3, 12)(4, 9)(5, 8)(6, 11),

τ1τ0 = (1, 12)(2, 11)(3, 8)(4, 10)(5, 7)(6, 9).

For hm1: τ2τ1 = (1, 3, 5)(2, 6, 4), τ0τ2 = (1, 5, 3)(2, 4, 6), τ1τ0 = 1. One can
see that the group G has two orbits on the set of flags. The “+”-orbits are: for m1,
H = {1, 3, 5, 7, 8, 12}; for hm1, H = {1, 3, 5}. The restriction of the generators on
this orbit gives the σ -models.

Form1:σV = (1, 3, 5)(7, 8, 12),σE = (1, 7)(3, 12)(5, 8),σF = (1, 12)(3, 8)(5, 7).
For hm1: σV = (1, 3, 5), σE = (1, 5, 3), σF = 1.

There is an elegant formula for the Euler characteristic of a hypermap in terms of
its σ -model.

Lemma 1.1 [27, Proposition 1.5.3] Let hm = (σV , σE , σF ) be an oriented hypermap
given by its σ model on the set H of n half-edges, n := #H. Let cV (resp. cE and cF)
denote the number of cycles of σV (resp. σE and σF ). Then, the Euler characteristic
χ(hm) of the surface of hm is equal to

χ(hm) = cV + cE + cF − n .

Proof Let T be the cell decomposition (tesselation) given by the hypermap hm.
Note that

• 2n is the number of vertices of T ;
• the number of polygons in T is cV + cE + cF ;
• the number of edges of T is 3n.

Then, the formula follows. ��

1.4 Edge-Coloured Graphs

As indicated in Sect. 1.2, the boundaries of cells of a hypermap form a 3-regular graph
embedded into the surface of the hypermap. It carries a natural edge colouring: the
arcs of intersection of hyperedges and faces are coloured by 0, the arcs of intersection
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Partial Duality of Hypermaps 453

of vertices and faces are coloured by 1, and the arcs of intersection of vertices and
hyperedges are coloured by 2. In this subsection, we show that the entire hypermap
can be reconstructed from this information.

Definition 1.2 Let κ be a finite set. A κ-coloured graph is an abstract connected graph,
such that each edge carries a “colour” in κ and each vertex is incident to exactly one
edge of each colour.

Note that a κ-coloured graph is necessarily #κ-regular and has no loops (but may
contain multiple edges). In the following, for all I ⊂ κ , we will denote κ \ I by I .

Let κ = {1, 2, . . . , #κ}. For a κ-coloured graph �, we can define a permutational
τ -model as a set of involutions τ1, τ2, . . . , τ#κ acting on the set X of vertices of � as
follows. τi interchange the vertices connected by an edge of colour i . For the coloured
graphs coming from hypermaps, these permutations coincide with the τ -model from
Sect. 1.2.

Each coloured graph � contains some special coloured subgraphs called bubbles
in [16] and residues in [35].

Definition 1.3 Let � be a κ-coloured graph and I ⊂ κ . An #I -bubble of colours I in
� is a connected component of the I -coloured subgraph of � induced by the edges of
� with colours in I .

In particular, 0-bubbles, corresponding to I = ∅, are the vertices of �. The set of
bubbles in � of colours I ⊂ κ is denoted by B I (�) or B I if there is no ambiguity. BI

is its cardinality #B I . We also define Bn(�), 0 ≤ n ≤ #κ − 1, to be the set of all n-
bubbles in �: Bn := ⋃

I⊂κ,#I=n B I and Bn := #Bn . Finally, the whole set of bubbles
of �,

⋃
0≤n≤#κ−1 Bn , is written as B(�). The subgraph inclusion relation provides

B(�) with a poset structure.

1.4.1 Topology of Edge-Coloured Graphs

To each coloured graph �, one can associate two cell complexes, �∗(�) and its
(“Poincaré”) dual �(�), as follows.

For each D ∈ N, let [D] be the set {0, 1, . . . , D}.
The dual complex �∗(�). Let � be a [D]-coloured graph. To each D-bubble

b ∈ B{i}(�), one associates a 0-simplex s(b) coloured i . To each (D − 1)-bubble
b ∈ B{i, j}, one associates an edge s(b), the endpoints of which are, respectively,
coloured i and j . In general, to each k-bubble b ∈ B{i1,...,ik }, one associates an abstract
(D − k)-simplex s(b) coloured [D] \ {i1, · · · , ik}. Now, the poset structure of B(�)

provides gluing data for those simplices. Indeed, let us consider two (D−k)-simplices
s(b) and s(b′). If the corresponding k-bubbles b and b′ are contained in a common
(k+1)-bubble b′′, identify s(b) and s(b′) along their common facet s(b′′). This gluing
respects the colouring structure of the simplices. It can be shown that such a complex
is a trisp (for triangulated space) [24]. Vince [35, p.4] called the topological space of
this simplicial complex the underlying topological space of the combinatorial map �.
However, there is also another complex associated with �, dual to 	∗.

The direct complex �(�). It is constructed inductively, like a CW complex. To
each k-bubble, 0 ≤ k ≤ D, one will associate a k-dimensional topological space. To
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454 S. Chmutov, F. Vignes-Tourneret

each 0-bubble b, i.e. to each vertex of�, corresponds a point |b|. Each edge e of�, i.e.,
each 1-bubble, contains two vertices u and v. Define |e| as the cone over |u| ∪ |v|. The
realization |e| of e is thus a segment. Now, consider a 2-bubble b. It is a bicoloured
cycle in �. b contains a set of edges whose realization forms a circle. |b| is defined
as a cone over this circle hence a 2-disk. In general, let b be k-bubble. It contains a
set Bk−1(b) of (k − 1)-bubbles. The realization of any b′ ∈ Bk−1(b) has been defined
at the previous induction step. The realizations |b1| and |b2| for b1, b2 ∈ Bk−1 are
identified along |b1 ∩ b2| (which is a union of lower dimensional bubbles). Then, the
whole set Bk−1(b) has a (connected) realization that we denote ∂|b|. Finally, |b| is
defined as the cone over ∂|b| (hence the name).

In fact, one can prove that the union of the realizations of the (k − 1)-sub-bubbles
of a given k-bubble b is homeomorphic to the link of s(b) in 	∗(�). Therefore, the
realization of b is homeomorphic to the dual block of s(b) in the first barycentric
subdivision of 	∗(�).

The realization |�|of� corresponds to the gluingof the D-blocks of	(�).	(�) is a
complex whose blocks are topological spaces glued along their common boundaries.
However, in general, its blocks are not homeomorphic to balls. And indeed, |�| is
generally not a manifold but a normal pseudo-manifold [17].

1.4.2 Hypermaps as Edge-Coloured Graphs

It was mentioned at the beginning of this subsection that a hypermap hm determines
a [2]-coloured graph �hm. Its vertices corresponds to (local) flags of hm and its edges
of colour i correspond to the orbits of the involution τi .

Here is an inverse construction. Let us consider a [2]-coloured graph �. The 2-
cells of its direct complex	(�) are polygons and |�| is thus the result of the gluing of
polygons along common boundaries. Randomly gluing polygons along edges does not
generally produce manifolds. However, the gluing of polygons, dictated by a coloured
graph, is always a manifold and thus a closed compact (not necessarily orientable)
surface. Moreover, those polygons are of three types: they are bounded by either 01-,
02-, or 12-cycles (2-bubbles). Said differently, 	(�) is, in dimension 2, a polygonal
tessellation of a closed compact (not necessarily orientable) surface with polygons of
three different types, i.e., a hypermap hm. Thus, [2]-coloured graphs provide another
description of hypermaps (Fig. 8).

In the case of maps, namely when all 02-cycles are of length 4, the [2]-coloured
graphs are also known as graph-encoded maps [25].

Example 2 Here are the examples of [2]-coloured graphs for hypermaps hm0 from
Fig. 2 and hm1 from Fig. 7.

A reader may enjoy constructing the direct complexes	(�hm0) and	(�hm1), and
checking that they are indeed isomorphic to the hypermaps from Figs. 2 and 7.

Lemma 1.4 A hypermap corresponding to a [2]-coloured graph � is orientable if and
only if � is bipartite.

The proof of this goes back to [2]. The maps case can also be found in [25].
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Fig. 8 [2]-coloured graphs �hm0 and �hm1

Proof According to Sect. 1.3, a hypermap is orientable if and only if the vertices of �

can be split into two parts with subscripts + and − as in Fig. 6. ��
Remark In [35], A. Vince proposed a way to associate a [d]-coloured graph � to any
cell decomposition K of a closed d-manifold. � is defined as the 1-skeleton of the
complex dual to the first barycentric subdivision of K . Whereas his method works
for any cell complex associated to closed manifolds, it does not define a one-to-one
correspondence between hypermaps and [2]-coloured graphs (not all coloured graphs
have a dual complex which is the barycentric subdivision of another cell complex).
Moreover, the coloured graph thus associated with K is of higher order than ours.

2 Partial Duality

2.1 Definition

Assume that a hypermap hm is connected. Otherwise, wewill need to do partial duality
for each connected component separately and then take the disjoint union. Let S be
a subset of cells of hm of the same type, either vertex-cells, or hyperedge-cells, or
face-cells. We will define the partial dual hypermap hmS relative to S. If S is the set
of all cells of the given type, the partial duality relative to S is the total duality which
swaps the two types of the remaining cells without changing the cells themselves and
reverses the orientation of all cells in an oriented case.

For example, if hm is a graph cellularly embedded into a surface, then the total
duality relative to the whole set of edges is the classical duality of graphs on surfaces
which interchanges vertices and faces. Since the concept of hypermap is completely
symmetrical, we can make the total duality relative to the set of vertices for example.
Then, the edges and faces will be interchanged. The hypermap hm1 fromFig. 7 has one
vertex, one hyperedge, and three faces. Therefore, we have three total duals relative to
the vertex, relative to the hyperedge, and relative to all three faces, which differ only by
the colour (type) of the corresponding cells. In Fig. 9, the three duals are shown as cell
decomposed spheres together with the corresponding embeddings of the hypergraphs;
the hyperedges are embedded as one-dimensional stars centered at little squares.

The left picture represents hm{v}
1 and has three hyperedges with a single half-edge

each.Themiddle picture representshm{e}
1 with a single hyperedgeof valency3 adjacent

to 3 distinct vertices and a single face. The right picture hm{ f1, f2. f3}
1 is isomorphic to

the original hypermap hm1.
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Fig. 9 Total duals of the hypermap hm1 from Fig. 7

Definition 2.1 Without loss of generality, we may assume that S is a subset of the set
of vertex-cells. Choose a different type of cells, say hyperedges. Later, in Lemma 2.2,
we show that the resulting hypermap does not depend on this choice; we could choose
faces instead of hyperegdes if we want to.

Step 1. Consider the boundary ∂F of the surface F which is the union of the cells
from S and all cells of the chosen type, hyperedges in our case.

Step 2. Glue a disk to each connected component of ∂F . These will be the
hyperedge-cells for hmS . Note that we do not include the interior of F into the hyper-
edges. Although if ∂F has only one component, gluing a disk to it results in the surface
F itself, and then, we may consider F as the single hyperedge of hmS . See Fig. 10.

Step 3. Take a copy of every vertex. These disks will be the vertex-cells for hmS .
Their attachment to the hyperedges is as follows. Every vertex-disk of the original
hypermap hm contributes one or several intervals to ∂F . Indeed, if a vertex belong
to S, then it contributes to F itself and a part of its boundary contributes to ∂F . If a
vertex is not in S, then it has some hyperedges attached to it, because hm is assumed
to be connected. Therefore, such a vertex-disk has a common boundary intervals with
F and therefore contributes these intervals to ∂F . The new copies of the vertex-disks,

123
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as vertices of hmS , are attached to hyperedges exactly along the same intervals as the
old ones. See Fig. 11.

Step 4. At the previous steps, we constructed the vertex and hyperedge-cells for
the partial dual hmS . Their union forms a surface with boundary. Glue a disk to each
of its boundary components. These are going to be the faces of hmS . See Fig. 12.

This finishes the construction of the partial dual hypermap hmS .

Partial duality of hypermaps thus defined is a generalization of partial duality for maps
[3]. Both indeed coincide on maps.

Example 3 We exemplify the construction of the partial dualm{v}
1 for the mapm1 from

fig. 7 relative to its left vertex v.

Similarly, one may find the partial dual m{v}
0 for the non orientable map m0 from

Fig. 2. The resulting surface after step 3 will be similar to the one above, only one
half-edge will be twisted. It still has one boundary component, and therefore a single
face. Therefore, its Euler characteristic is still −2; only now the resulting hypermap
will be non orientable. It represents a surface homeomorphic to a connected sum of 4
copies of the projective plane.

Lemma 2.2 The resulting hypermap does not depend on the choice of type at the
beginning of Definition 2.1.

Proof Decompose the boundary circles of faces on a hypermap hm into the union of
three sets of arcs intersecting only at the end points of the arcs, D0(hm)∪ D1,S(hm)∪
D1.�S(hm). The set D0(hm) consists of arc of intersection of faces with hyperedges,
D1,S(hm)—of faceswith vertices from the set S, and D1.�S(hm)—of faceswith vertices
not from S. Analyzing the result of Step 3 of the construction, one can easily note that

Fig. 10 Steps 1 & 2: forming hyperedges of m{v}
1

Fig. 11 Step 3: copying vertices and gluing them to hyperedges
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Fig. 12 Step 4: gluing faces and the resulting hypermap m{v}
1

D0(hm) = D0(hm
S) and D1.�S(hm) = D1.�S(hmS). Moreover, D1,S(hm

S) consists
of the complementary arcs of the boundary circles of vertices from S to the arcs
D1,S(hm); formally, the complementary arcs on the second copies of the vertices of S.
This means that the boundary circles of faces of hmS are exactly the boundary circles
of the surface obtained by the union of vertices of S and all the faces. In other words
on Step 1, we may take faces instead of hyperedges and we will get the same boundary
circles as for hmS . Then, by symmetry, the hyperedges will also be the same. ��

Analogously to [3, Sec.1.8], the following lemma describes simple properties of
the partial duality for hypermaps. Its proof is obvious.

Lemma 2.3 (a) (hmS)S = hm.
(b) There is a bijection between the cells of type S in hm and the cells of the same

type in hmS. This bijection preserves the valency of cells. The number of cells of
other types may change.

(c) If s /∈ S, but has the same type as the cells of S, then hmS∪{s} = (
hmS){s}

.

(d)
(
hmS′)S′′ = hm	(S′,S′′), where	(S′, S′′) := (S′ ∪ S′′)\ (S′ ∩ S′′) is the symmetric
difference of sets.

(e) Partial duality preserves orientability of hypermaps.

2.2 Partial Duality in�-Model

For an oriented hypermap hm represented in the σ -model of Sect. 1.3, we shall write

hm = (σV , σE , σF ) .

Theorem 2.4 Let S be a subset S := V ′ of vertices (resp. subset of hyperedges S := E ′
and subset of faces S := F ′) of a hypermap hm. Then, its partial dual is given by the
permutations

hmV ′ = (σV ′σ
−1
V ′ , σEσV ′ , σV ′σF )

hmE ′ = (σE ′σV , σE ′σ
−1
E ′ , σFσE ′)

hmF ′ = (σV σF ′ , σF ′σE , σF ′σ
−1
F ′ ) ,
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where σV ′ , σE ′ , σF ′ denote the permutations consisting of the cycles corresponding
to the elements of V ′, E ′, F ′, respectively, and overline means the complementary set
of cycles.

Similar formulas in the particular case of maps were announced in [14] (see also
[13, Section 5.2]).

Proof Because of the symmetry, it is sufficient to prove the theorem in the case S = V ′.
FromDefinition 2.1, it follows that the number of half-edges is preserved by the partial
duality. We need to make a bijection between half-edges of hm and those of hmS , such
that the corresponding permutations are related as in the first equation of the theorem.

Half-edges are attached to vertices. If a vertex does not belong to S, then the
attachment of half-edges to it does not change with partial duality (Step 2). Therefore,
for those half-edges, the required bijection is the identity.

Half-edges attached to vertices of S change, so we need to indicate the bijection
for them. Consider a vertex-disk from the set S of the original hypermap hm. It can
be represented as a 2k-gon, because the arcs of its boundary circle intersecting with
hyperedges and faces alternate. In hm, it has k half-edges attached along every other
side. We call them old half-edges. These half-edges together with the vertex-disk
form a piece of the surface F on Step 1 near the vertex. The orientation of F induces
an orientation on its boundary ∂F . In the partial dual hmS , the hyperedges, the new
hyperedges, are attached to every connected component of ∂F (Step 2). The orientation
of ∂F induces the orientation on new hyperedges. They are attached to a new vertex
(Step 3) along the other sides of the 2k-gon, which form new half-edges. Set the label
of a new half-edge to be the same as the label of the old one preceding the new half-
edge in the direction of the orientation of the old vertex. This gives the bijection of
half-edges around vertices of S. The orientation on the new vertex, as well as on the
entire hypermap hmS , is induced from the new hyperedges.

Figure 13 shows that the labels of the new half-edges appear around new vertices
in the order opposite to the one around old ones. This means that the cycle in the
permutation σV corresponding to a vertex in S of the initial hypermap hm should be

Fig. 13 Permutation σV (hmS)
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Fig. 14 Permutation σE (hmS)

inverted to get the cycle for hmS . This proves that the first term of the first formula of
the theorem σV (hmS) = σ−1

V ′ (hm)σV ′(hm).
For the second term, we need to analyze the cyclic order of new half-edges around

new hyperedge according to its orientation. It may be read off from labels of the half-
edges met when traveling along the boundary of the hyperedge in the direction of its
orientation. Such a boundary for hmS is exactly a connected component of ∂F with the
orientation induced from hm. The last is given precisely by the product of permutations
σE (hm)σV ′(hm). Indeed, consider Fig. 14 and suppose that σE (hm) : 2 �→ i for
some i . Then, the new half-edge labels appear at ∂F in the order . . . , 1, i, . . . . So
σE (hmS) : 1 �→ i , which is equal to σE (hm)σV ′(hm)

1 � σV ′ (hm) �� 2 � σE (hm) �� i .

This proves the second term.
The third term follows from the relation σFσEσV = 1. ��

Example 4 This is a continuation of Example 1.We found that for themapm1 in Fig. 7,
the permutations σ ’s act on the set of half-edges H = {1, 3, 5, 7, 8, 12} as

σV = (1, 3, 5)(7, 8, 12), σE = (1, 7)(3, 12)(5, 8), σF = (1, 12)(3, 8)(5, 7).

The cycle (1, 3, 5) of σV corresponds to the the left vertex v.
For the σ -model of the partial dual m{v}

1 , we set V ′ = {v}. Then, σV ′ = (1, 3, 5)
and σV ′ = (7, 8, 12). According to the theorem

σV (m
{v}
1 ) = σV ′σ

−1
V ′ = (1, 5, 3)(7, 8, 12),

σE (m
{v}
1 ) = σEσV ′ = (1, 7)(3, 12)(5, 8)(1, 3, 5) = (1, 12, 3, 8, 5, 7),

σF (m
{v}
1 ) = σV ′σF = (1, 3, 5)(1, 12)(3, 8)(5, 7) = (1, 12, 3, 8, 5, 7).

One may check that these permutations agree with the last picture in Figs. 12 and 15.
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Fig. 15 Partial duality in σ -model

Corollary 2.5 The total duality with respect to S := V (resp. S := E and S := F)

is reduced to the classical Euler–Poincaré duality which swaps the names of two
remaining types of cells and reverse the orientation.

In σ -model, it is given by the formulae

hmV = (σ−1
V , σEσV , σV σF ) = (σ−1

V , σ−1
F , σ−1

E )

hmE = (σEσV , σ−1
E , σFσE ) = (σ−1

F , σ−1
E , σ−1

V )

hmF = (σV σF , σFσE , σ−1
F ) = (σ−1

E , σ−1
V , σ−1

F ) .

The inverse of these permutations is responsible for the change of orientation of the
hypermap.

2.3 Partial Duality in �-Model

Theorem 2.6 Consider the τ -model of a hypermap hm given by the permutations

τ0(hm) : (v, e, f ) �→ (v′, e, f ), τ1(hm) : (v, e, f ) �→ (v, e′, f ),

τ2(hm) : (v, e, f ) �→ (v, e, f ′)

of its local flags. Let V ′ bea subset of its vertices, τ V ′
1 be theproduct of all transpositions

in τ1 for v ∈ V ′, and τ V ′
2 be the product of all transpositions in τ2 for v ∈ V ′. Then,

its partial dual hmV ′
is given by the permutations

τ0(hm
V ′

) = τ0, τ1(hm
V ′

) = τ1τ
V ′
1 τ V ′

2 , τ2(hm
V ′

) = τ2τ
V ′
1 τ V ′

2 .

In other words, the permutations τ1 and τ2 swap their transpositions of local flags
around the vertices in V ′. Similar statements hold for partial dualities relative to the
subsets of hyperedges E ′ and of faces F ′.

A particular case of these formulas for maps was rediscovered in [15, Equation 14]
and announced in [14] (see also [13, Section 5.2]).

Proof From Definition 2.1, one may see that if a vertex does not participate in the
partial duality, v /∈ V ′, then nothing changes with local flags around it. However, if
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v ∈ V ′, then the roles of edges and faces in its local flags are interchanged. This may
be seen on Step 3 and also in Figs. 13, and 14 when the second copy of the vertex is
attached to the new hyperedges. Therefore, if two such local flags were transposed by
τ1 of the original hypermap, then they will be transposed by τ2 of the partial dual and
vice versa. ��

Example 5 In Example 1, we found the τ -model for the map m1 of Fig. 7

τ0 = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7), τ1 = (1, 2)(3, 4)(5, 6)(7, 9)(8, 10)(11, 12),

τ2 = (1, 6)(2, 3)(4, 5)(7, 11)(8, 9)(10, 12).

There are six flags around the left vertex v labeled by 1, 2, . . . , 6. The corresponding
transpositions around this vertex are

τ
{v}
1 = (1, 2)(3, 4)(5, 6), τ

{v}
2 = (1, 6)(2, 3)(4, 5).

Swapping them between τ1 and τ2, we get the τ -model of the partial dual

τ0(hm
{v}) = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7),

τ1(hm
{v}) = (1, 6)(2, 3)(4, 5)(7, 9)(8, 10)(11, 12),

τ2(hm
{v}) = (1, 2)(3, 4)(5, 6)(7, 11)(8, 9)(10, 12).

This agrees with the labeling of flags on Figs. 12 and 16.

Corollary 2.7 The τ -model of the total dual hmV of a hypermap hm is given by the
involutions

τ0(hm
V ) = τ0(hm), τ1(hm

V ) = τ2(hm), τ2(hm
V ) = τ1(hm).

One may check that this agrees with Corollary 2.5 in the case of oriented hypermaps.

Fig. 16 Partial duality in τ -model
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2.4 Partial Duality for Coloured Graphs

Let �hm be the [2]-coloured graph corresponding to a hypermap hm. Let I be a subset
of two out of three colours, for example I = {1, 2}, and let S be a subset of 2-bubbles
in B I which corresponds to a subset of vertices of hm.

Theorem 2.8 The [2]-coloured graph �hmS of the partial dual hypermap hmS is
obtained from �hm by swapping the colours 1 and 2 for all edges in the 2-bubbles of
S. In particular, the underlying graphs of �hmS and �hm are the same.

Ellingham and Zha [11] obtained a similar result in the case of maps.

Proof The edges of�hm of colour 1 (resp. 2) correspond to 2-element orbits of τ1 (resp.
τ2). According to Theorem 2.6, the partial dual hypermap is obtained by swapping the
corresponding transpositions of τ1 and τ2. This corresponds to swapping the colours
1 and 2 in the bubbles of S. ��
Example 6 Here are the [2]-coloured graphs�hmV

1
,�hmE

1
and�hmF

1
for the total duals

of the hypermap hm1 from Fig. 7 relative to the set of all vertices V , all edges E , and
all faces F . These dual hypermaps are shown in Fig. 9.

Remark (Higher dimensional partial duality) Such an easy interpretation of partial
duality for [2]-coloured graphs easily allows to make a higher dimensional general-
ization to [D]-coloured graphs �. Namely, fix a set I of D colours out of the total
number of D + 1 colours, and let S be a subset of D-bubbles in B I . The partial dual
�S relative to S is a [D]-coloured graph obtained from � by a permutation of the
colours of the edges in S.

In this case, the word “duality” is inappropriate. It is rather an action of a symmetric
group SD on colours of edges of bubbles of S. In the hypermap case, D = 2. This group
is isomorphic to Z2, so the partial duality corresponds to the only nontrivial element
of order 2. However, for higher D, the group SD contains higher order elements, so
they will not be “dualities” anymore (Fig. 17).

This concept of higher dimensional partial duality is completely unexplored up
to now. It would be very interesting to study it. In particular, is it true that if the
realization |�| of � through its direct complex	(�) is a manifold, then the realization
of its partial dual |�S| is also amanifold? How partial duality affects the (co)homology
groups H∗(	(�))?

Fig. 17 [2]-Coloured graphs of total duals �
hmV

1
, �

hmE
1
, �

hmF
1
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3 Genus Change

The Euler genus γ is equal to twice the genus for orientable hypermaps and to the
number of Möbius bands μ in presentations of the surfaces of hypermaps as spheres
with μ bands in them in the unorientable case. The bijection between hypermaps and
[2]-coloured graphs, see Sect. 1.4.2, allows us to derive a simple formula for the Euler
genus change under partial duality, in terms of change of the numbers of bicoloured
cycles (or 2-bubbles). In the case of maps, it expresses the genus change in terms of
certain induced subgraphs of the map and of its total dual.

Definition 3.1 (Special subgraphs) Let � be a [2]-coloured graph and C be a subset
of B{i, j}(�), i, j ∈ [2] relative to which we are going to do the partial duality. Let k
denote the unique element of [2] \ {i, j}. For all t ∈ {i, j}, we define

• �̄[C; tk] as the (possibly disconnected ) edge-coloured subgraph of � made of the
cycles in C and all the tk-cycles incident with C ,

• �s[C; tk] as the (possibly disconnected ) edge-coloured graph obtained from
�̄[C; tk] by contracting (in the sense of coloured graphs) all the t-edges not in C .
Therefore, every tk-path outside C will be replaced by a single edge of colour k.

An example is given in Fig. 18.
Recall the definition of I -bubbles in Definition 1.4.

(a)

(b) (c)
Fig. 18 Special subgraphs of coloured graphs
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Lemma 3.2 Let �, C, k and t be as in Sect. 3.1. Then

	C
tk := B{tk}(�C ) − B{tk}(�) = B{t̄ k}(�s[C; tk]) − B{tk}(�s[C; tk])

= − 2B{tk}(�s[C; tk]) − #C + n(�s[C; tk]) − γ (�s[C; tk]) + 2k(�s[C; tk]),
where n(�s[C; tk]) is half of the number of vertices of �s[C; tk] and k denotes the
number of connected components.

Proof Let t̄ be the unique element of {i, j} \ {t}. By definition

B{tk}(�C ) − B{tk}(�) = B{tk}(�C
s [C; tk]) − B{tk}(�s[C; tk])

= B{t̄ k}(�s[C; tk]) − B{tk}(�s[C; tk]).
(3.1)

The surface corresponding to a [2]-coloured graph � has Euler characteristic

χ(�) = 2k(�) − γ (�) = B{i j}(�) + B{ik}(�) + B{ jk}(�) − n(�). (3.2)

For � = �s[C; tk], we have B{i j}(�s[C; tk]) = #C and Eq. (3.2) gives

B{t̄ k}(�s[C; tk])
= −B{tk}(�s[C; tk]) − #C + n(�s[C; tk]) − γ (�s[C; tk]) + 2k(�s[C; tk]).

Substituting it into Eq. (3.1), one gets the desired result. ��
Theorem 3.3 Let � be a [2]-coloured graph and C be a subset of B{i, j}(�). Let k be
the unique element of [2] \ {i, j}. Then

γ (�C ) − γ (�) = −	C
ik(�) − 	C

jk(�),

where 	C
tk is given by Lemma 3.2.

Proof One simply uses Eq. (3.2) and remarks that k(�C ) = k(�), n(�C ) = n(�), and
B{i j}(�C ) = B{i j}(�). ��
Remark Theorem 3.3 allows to derive bounds on γ (�C ) − γ (�). For any t ∈ {i, j}
and any coloured graph �, the number of tk-cycles in �s[C; tk], B{tk}(�s[C; tk]) lies
between 1 and n(�s[C; tk]) = 1

2

∑
c∈C length(c). This gives

|γ (�C ) − γ (�)| ≤
∑

c∈C
(length(c) − 2).

This bound is optimal and Fig. 19 shows an example where it is reached.

Given the bijection between hypermaps and [2]-coloured graphs, ribbon graphs are
[2]-coloured graphs, the 02-cycles of which all have length four. Theorem 3.3 then
applies and allows to quantify the change of topology of ribbon graphs under partial
duality.
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Fig. 19 A coloured graph �,
such that g(�C ) − g(�) = 2, C
is any of its 01-cycles

Corollary 3.4 Let G be a ribbon graph and E ′ be a subset of its edges. Let G[E ′] be
the subribbon graph of G induced by E ′ and G∗[E ′] be the subribbon graph of its
Euler–Poincaré dual G∗ induced by E ′. Then

1
2

(
γ (GE ′

) − γ (G)
) = v(G[E ′]) + v(G∗[E ′]) − #E ′ − 1

2χ(G[E ′]) − 1
2χ(G∗[E ′]).

Proof With our conventions, C = E ′ is a subset of 02-cycles, vertices are 12-
cycles, and faces are 01-cycles. Thus, �s[E ′; 12] = G[E ′], �s[E ′; 01] = (G∗[E ′])∗,
n(�s[E ′; 1t]) = 2#E ′, and the Corollary follows. ��

In particular, for partial duality of ribbon graphs relative to a single edge, #E ′ = 1,
Corollary 3.4 immediately gives the results of [13, Table 1.1] which were recently
used in to prove one of the conjectures from [13].

4 Directions of Future Research

• The paper [13] contains several interesting conjectures about partial dual genus
distribution polynomial for ribbon graphs. One of them was recently proved in
[7]. The definition of this polynomial works for hypermaps, as well. It would be
interesting to formulate and prove analogs for hypermaps.

• Maps (ribbon graphs) provide a special class of	-matroids (Lagrangianmatroids)
[4]. Are there any matroid type structure underlying the concept of hypermaps?
Can the general Coxeter matroids be obtained from hypermaps?

• It would be interesting to study higher dimensional partial “duality” concept as
outlined in Sect. 2.4. In particular, is it true that a partial “dual” to a [D]-coloured
graph corresponding to a manifold is also a manifold?
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