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Abstract
When are two germs of analytic systems conjugate or orbitally equivalent under an
analytic change of coordinates in a neighborhood of a singular point? The present
paper, of a survey nature, presents a research program around this question. A way to
answer is to use normal forms. However, there are large classes of dynamical systems
forwhich the change of coordinates to a normal formdiverges. In this paper, we discuss
the case of singularities for which the normalizing transformation is k-summable, thus
allowing to provide moduli spaces. We explain the common geometric features of
these singularities, and show that the study of their unfoldings allows understanding
both the singularities themselves, and the geometric obstructions to convergence of
the normalizing transformations. We also present some moduli spaces for generic
k-parameter families unfolding such singularities.

Keywords 1- resonant singularities · Analytic normal forms · Unfolding of
singularities · Modulus of analytic classification · Stokes phenomenon

Mathematics Subject Classification 37F75 · 32M25 · 32S65 · 34M99

1 Introduction

Singularities of dynamical systems organize the dynamics, thus explaining why their
study is so important. In generic situations, usually, only simple singularities occur.
However, dynamical systems often depend on parameters and, the more parameters
in the system, the more complex the singularities. In [2], Vladimir Arnold explains
that the singularities of codimension ≤ k are unavoidable in k-parameter families of
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2 C. Rousseau

dynamical systems, while we can get rid of singularities of codimension greater than
k by slightly perturbing the family.

In this paper, we discuss singularities of analytic dynamical systems. A fundamen-
tal problem is the equivalence problem: when are two germs of analytic dynamical
systems equivalent in the neighborhood of a singularity under an analytic change of
coordinates? One way of solving the equivalence problem is to use normal forms, the
simplest case being when there exists a linearizing change of coordinates. It is natural
to look for a normalizing change of coordinate as a power series and then to study its
convergence. However, the normalizing changes of coordinates only converge for the
simplest singularities, for instance for a fixed point of a 1-dimensional diffeomorphism
with a multiplier of norm different from 1, or for a node of a planar vector field. Even
in the case of a saddle of a planar vector field (which is a hyperbolic singularity), the
change to normal form generically diverges as soon as the ratio of eigenvalues is not
a diophantian irrational number.

The question we are interested in this paper is:

Why?

Why is it so often the case that the change of coordinates to normal form diverges?
Let us start by discussing the two examples mentioned above where we have con-

vergence to the normal form. The first one is that of a fixed point of a 1-dimensional
diffeomorphism defined on a neighborhood V of the origin with a multiplier λ, such
that |λ| �= 1. The orbit space is the quotient V / f ∪ {0}, which is the union of the
origin with a torus of modulus log λ

2π i . The torus has a unique complex structure, which
is independent of the size of U and of the special form of the diffeomorphism. Hence,
all such 1-dimensional germs of diffeomorphims are conjugate.

The case of the orbital normal form of a planar vector field X in the neighborhood
of a node with eigenvalues 1 and λ ∈ [1,+∞) is similar. In that case, we have
convergence to the normal form X ′, which is linear as soon as λ /∈ N: X ′ = x ∂

∂x +
λy ∂

∂ y , and the solutions are given by y = Cxλ, C ∈ C, together with x = 0, which
corresponds to the limit case C = ∞. The complex space of leaves of the underlying
foliation of the linear node is a quotientCP1/L B , where L B is the linearmapC �→ BC
for B = exp(2π iλ). This very rigid object with a unique complex structure is also the
space of leaves of any node with eigenvalues 1 and λ when λ /∈ N. Hence, this forces
the convergence of the orbital linearization. When λ = n ∈ N, the node is resonant
and the orbital normal form is given by X ′ = x ∂

∂x + (λy + Ayn) ∂
∂ y , for A ∈ {0, 1}.

When A = 0, the space of leaves is the whole of CP1, while for A = 1, the space
of leaves is CP1/TD for the translation TD(C) = C + D with D = 2π i ; indeed, the
leaves have the form y = xn log x + Cxn , C ∈ C, together with x = 0. Again, the
space of leaves is a very rigid object. Even if we had started with a node of a real
planar vector field, we see that the geometric explanation of the convergence of the
normalizing transformation is seen when extending the system to (C2, 0).

In this paper, we will discuss several singularities, 1-resonant singularities, which
share the common properties that the infinite number of resonances in the normal
form all comes from one rational relation between the eigenvalues, and that the formal
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The Equivalence Problem for 1-Resonance 3

normal form contains only a finite number of parameters. These singularities have
been studied in the literature by Écalle [7], Voronin [34], Martinet-Ramis [21,22],
etc., and it has been shown that the change of coordinates to the normal form is gener-
ically divergent and k-summable. (For the reader not familiar with k-summability, a

k-summable series
∑

n∈N anzn is such that |an| ≤ M(n!)1/k

rn for some positive M, r ,
and we can find unique “sums” asymptotic to the power series on sectors of open-
ing larger than π/k covering a neighborhood of the origin. Since we will not work
with k-summability, we do not give a more precise definition.) The divergence of the
normalizing transformation comes from the fact that the “geometry of the system” is
more complicated than the geometry of the formal normal form: the normal form is
too poor to encode all the complex phenomena that can occur.

A common feature of the 1-resonant singularities is that they correspond, in the
codimension k case, to the coallescence of k + 1 special “objects”, which could be
fixed points, periodic orbits, special leaves, etc. Because we are studying limit situa-
tions, it is natural to unfold the systems:when considering a singularity of codimension
k, its full richness can only be uncovered by studying a generic k-parameter unfolding.
A large program has been started around 2000 to systematically solve the equivalence
problem for generic k-parameter unfoldings of 1-resonant singularities of dynamical
systems of codimension k, to which the author has contributed with her collaborators
and students: Arriagada-Silva, Christopher, Hurtubise, Klimeš, Lambert, Mardešić,
Roussarie, and Teyssier (see, for instance, [1,4,10,14,18,20,29,31,32] and [11]), as
well as Ribón [27,28]. The idea of unfolding to study the coallescence was not new.
In the case of 1-resonant systems, it has been proposed by several mathematicians
including Arnold and Bolibruch, and partially studied in historical order by Martinet
[19], Ramis [26], Duval [6] and Glutsyuk [8,9]. The underlying idea of these pio-
neering works was to unfold in sectors in parameter space where the singularities are
hyperbolic. In the neighborhood of the singularities, the system can be analytically
normalized in an almost rigid way. The comparison of these local normalizations,
whenever the domains of normalizations do intersect, is a measure of the obstructions
to a global normalization of the system. If these obstructions have a non-trivial limit
at the confluence, then we have divergence of the normalizing transformation at the
confluence. The limit of this approach in that it does not allow to treat the parameter
values for which, either the local normalizations do not exist, or they exist, but their
domains do not intersect. For instance, when unfolding a saddle-node, the saddle has
no convergent normal form depending on parameters. A breakthrough in this pro-
gram occurred with the vision of Adrien Douady. The thesis of his student, Lavaurs
(see [17]), permitted to treat the unfolding of the parabolic point (double fixed point
of a 1-dimensional diffeomorphism) in a sector complementary to the one studied
by Martinet. The study by Douady, Estrada, and Sentenac of the dynamics of com-
plex polynomial vector fields on CP

1 (see [5]) provided the geometric tools for the
equivalence problem in the general case.

The paper is organized as follows. In Sect. 2, we describe seven examples of 1-
resonant singularities for which the normalizing transformation generically diverges
and is k-summable. In Sect. 3, we explain in detail one geometric obstruction to the
existence of an analytic normalizing transformation in the case of the saddle-node. In
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4 C. Rousseau

Fig. 1 Parabolic points of codimension 1 and 4

Sect. 4, we present the general features common to all seven examples, and we revisit
the examples in more detail. The particular case of the nonresonant irregular singular
point of Poincaré rank k of a linear differential system is discussed in detail in Sect. 5,
and we present the kind of results that can be obtained in solving the equivalence
problem for generic unfoldings. We end up with a short section of perspectives.

2 Examples

We present here the seven examples that we will follow along the paper. In all these
examples, the change of coordinate to normal form is generically 1-summable.

2.1 Example 1

A germ of analytic diffeomorphism f : (C, 0) → (C, 0) with a parabolic point of
codimension k (see Fig. 1), such that

f (z) = z + zk+1 +
(

k + 1

2
− a

)

z2k+1 + o(z2k+1). (2.1)

Such a point is a multiple fixed point of multiplicity k + 1, i.e., the coallescence of
k + 1 simple fixed points. The formal normal form is the time-one map of the vector
field

ż = zk+1

1 + azk
.

Aswewill see below, this example is underlyingmany others. Hence, we give more
detail and explain how to solve the classification problem for germs of the form (2.1).
There are two formal invariants, the codimension, k, and the parameter a, called in
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The Equivalence Problem for 1-Resonance 5

Fig. 2 The two domains on which almost unique normalizing changes of coordinates exist

the literature formal invariant or résidu itératif. The geometric meaning of a will be
discussed later.

Let us now specialize to the case k = 1. It is possible to find almost unique
normalizing changes of coordinates on two domains as in Fig. 2. Because of this
rigidity, the mismatch between the changes of coordinates on the intersection of the
domains is the analytic part of the invariant. Note that the intersection has two parts
(Fig. 2c). To give this invariant in practice, we will describe the space of orbits.

We would like to have one representative of each orbit { f ◦n(z)}n∈Z, where we limit
ourselves to the iterates that exist and lie in a disk Dr . For that purpose, we take a
curve � transversal to the flow lines of ż = z2

1+az , and its image f (�) (see Fig. 3).
These two lines form the boundary of a crescent. If we identify the two boundaries,
this crescent is conformally equivalent to a sphere with two distinguished points, 0
and ∞, corresponding to the parabolic point. Any point of the sphere represents an
orbit, but there are some points of the disk whose orbit does not intersect the crescent.
Hence, we repeat the process with a second curve �′ and its image f (�′). Again, the
crescent bounded by these two curves is conformally equivalent to a sphere with two
distinguished points 0 and ∞. However, now, there are some orbits which are repre-
sented on each of the two spheres. Hence, we must identify them in the neighborhoods
of 0 and ∞. The identification is done by two germs of analytic diffeomorphisms ψ0

and ψ∞, often called horn maps in the literature. These diffeomorphisms are unique
up to the choice of coordinates on the spheres fixing 0 and ∞, i.e., linear changes
of coordinates: such changes of coordinates induce an equivalence relation on pairs
(ψ0, ψ∞). The equivalence class of a pair of germs (ψ0, ψ∞), noted [(ψ0, ψ∞)] is
the analytic part of the modulus.

Theorem 2.1 (Écalle [7] and Voronin [34]) Two parabolic germs of the form
(2.1) are analytically conjugate, if and only if they have the same modulus(
k, a, [(ψ0, ψ∞)]). Moreover, any modulus

(
k, a, [(ψ0, ψ∞)]) is realizable provided

that (ψ0)′(0)(ψ∞)′(∞) = e4π
2a.

This modulus space is huge and a parabolic germ is analytically conjugate to its
normal form if and only if ψ0 and ψ∞ are both linear. Hence, convergence to the
normal form is an infinite codimension case, which means that there exist a lot of
obstructions to convergence!
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6 C. Rousseau

Fig. 3 The orbit space of a germ
of codimension 1 parabolic
diffeomorphim

2.2 Example 2

A germ of analytic diffeomorphism with a resonant fixed point of codimension k:
f : (C, 0) → (C, 0), such that (see Fig. 4)

f (z) = exp

(
2π i p

q

)(

z + 1

kq
zkq+1 + Az2kq+1 + o(z2kq+1)

)

.

Here, the fixed point is of multiplicity 1, but we see that the origin is a fixed point of
multiplicity kq + 1 of the qth iterate f ◦q of f

f ◦q(z) = z + zkq+1 + Bz2kq+1 + o(z2kq+1),

where B = q A + (kq+1)(q−1)
2q . This is because the origin is the coallescence of one

fixed point with k periodic orbits of period q. The formal normal form for f ◦q is

the time-one map of the vector field ż = zkq+1

1+azkq , where A = − a
q + kq+1

2q2 , and the
formal normal form for f is the time-1/q map of the same vector field followed by
the rotation of angle 2π p

q .
Again, in this example, we have the coallescence of k + 1 objects, which are finite

orbits.

2.3 Example 3

A germ of codimension k saddle-node of a planar vector field (see Fig. 5) with
orbital normal form

{
ẋ = xk+1,

ẏ = y(1 + axk).
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The Equivalence Problem for 1-Resonance 7

Fig. 4 A resonant fixed point of
codimension 1

Fig. 5 A planar saddle-node

A saddle-node is obviously a singular point of multitplicity k + 1. There exists a
closer relationship with the parabolic point of codimension k, which comes from the
holonomy map of the strong separatrix. Indeed, a planar vector field defines a local
singular foliation in (C2, 0). The strong manifold is analytic and can be transformed
through a change of coordinate to the coordinate axis x = 0. The holonomy map is
defined on a small neighborhood � of x = 0 inside a section {y = C} of the strong
manifold x = 0 (see Fig. 6). Consider a closed loop γ = {(0, Ceiθ ) | θ ∈ [0, 2π ]}
through (0, C) surrounding the origin in the strong manifold. Let (x, C) ∈ � and let
γx = {(g(x, θ), Ceiθ ) | θ ∈ [0, 2π ]} be the lifting of γ inside the leaf through (x, C).
Then, the holonomy of the strong separatrix is defined as the map

f (x) = g(x, 2π).

This map is analytic and has a parabolic point at x = 0 of the same codimension k
as the saddle-node. Martinet and Ramis [21] proved that two germs of planar vector
fields with a saddle-node are orbitally equivalent if and only if the holonomies of their
strong separatrices are conjugate.
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8 C. Rousseau

Fig. 6 The holonomy map of a
saddle-node

2.4 Example 4

A weak focus of order k (see Fig. 7), i.e., a singular point of a real analytic planar
vector field with pure imaginary eigenvalues, and which is not a center. The orbital
normal form is given (up to time reversal) by

ż = i z − zk+1zk + az2k+1z2k,

with a ∈ R, which can be rewritten in polar coordinates

{
ṙ = −r2k+1 + ar4k+1,

θ̇ = 1.

Here again, there is a natural 1-dimensional map associated with the vector field,
namely the half Poincaré return map defined on a real analytic transversal section
passing through the origin. If we parametrize the section by ζ , then this map has the
form

P(ζ ) = −ζ + πζ 2k+1 + o(ζ 2k+1);

hence, the origin is the merging of a fixed point with k periodic orbits of period 2, as
in Example 2. At the level of the real analytic vector field, we have the merging of a
singular point with k limit cycles.

2.5 Example 5

A germ of resonant saddle of a planar vector field of codimension k with quotient
of eigenvalues − p

q (see Fig. 8) and with orbital normal form
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The Equivalence Problem for 1-Resonance 9

Fig. 7 A weak focus when
k = 1

Fig. 8 A resonant saddle

{
ẋ = x,

ẏ = y
(
− p

q + xkp ykq + ax2kp y2kq
)

.
(2.2)

As such the origin seems a simple hyperbolic point. To understand where multiplicity
comes from, it helps revisiting Example 4. Taking w = z, the system can be rewritten

{
ż = i z + O(|z, w|2),
ẇ = −iw + O(|z, w|2).

Extending z, w to C, we have a resonant saddle of a complex singular foliation,
corresponding orbitally to the case p = q = 1 in (2.2). And we have seen that we had
the merging of k limit cycles with the origin. When perturbing the vector field, the k
limit cycles lie on special leaves of the foliation that have non-trivial homology. We
will have the same behavior for any germ of resonant saddle point.

For such a point, the stable and unstable manifolds (which are also called the
separatrices) are analytic and an analytic change of coordinates can bring them to the
coordinate axes. Similar to the case of the saddle-node (Example 3), we can define the
holonomies of the two sepatrices of the vector field (see Fig. 6). Martinet and Ramis
proved [22] that two systems with orbital formal normal form (2.2) are analytically
equivalent if and only if the holonomies of their x-separatrices are conjugate and, by
symmetry, if and only if the holonomies of their y-separatrices are conjugate. The
holonomies hx and hy of the x- and y-separatrices, respectively, each have a resonant
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10 C. Rousseau

Fig. 9 Conformal equivalence of
curvilinear angles

fixed point of codimension k at the origin of the form of Example 2

⎧
⎨

⎩

hx (y) = exp
(
− 2π i p

q

)
y + o(y),

hy(x) = exp
(
− 2π iq

p

)
x + o(x).

Moreover, Yoccoz and Pérez-Marco [25] showed that any 1-dimensional germ of
analytic diffeormorphism with a fixed point can be realized as a holonomy map of a
germ of saddle point of an analytic vector field in C2.

2.6 Example 6

A germ of curvilinear angle formed by two germs of real analytic curves (see Fig. 9),
where the angle is of the form 2π p

q , which we call a rational angle.
In this case, the equivalence problem can be stated: When are two germs of curvi-

linear angles conformally equivalent, i.e., mapped one onto the other by a germ of
conformal diffeormorphism?

A Schwarz symmetry z �→ � j (z) is associated with each curve of the angle. (The
Schwarz symmetry� of a germ γ of real analytic curve is defined as follows: let h be a
germof holomorphic diffeomorphism sending γ to the real axis. Then,� = h−1◦σ ◦h,
where σ(z) = z.)

Let

f = �2 ◦ �1.

Then, f is a germ of analytic diffeomorphism f (z) = e4π i p
q z + o(z), satisfying

�1 ◦ f = f −1 ◦ �1. (2.3)

Let us call f the associated diffeomorphism to the curvilinear angle. Then, f is of
the type studied in Examples 1 and 2, together with an additional symmetry. When
considering the conformal equivalence of two curvilinear angles corresponding to
Schwarz symmetries �1, �2 for the first angle, and �′

1, �
′
2 for the second angle, we

can of course suppose that �1 = �′
1 = σ . Then, two germs of curvilinear angles are

conformally equivalent if and only if their associated diffeomorphisms are conjugate
under a change of coordinate h commuting with σ

f ′ = h ◦ f ◦ h−1, h ◦ σ = σ ◦ h.
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The Equivalence Problem for 1-Resonance 11

2.7 Example 7

Anonresonant irregular singular point of Poincaré rank k of a linear differential system

xk+1 dy

dx
= A(x)y = (D0 + O(x))y, y ∈ C

n,

with normal form

xk+1 dy

dx
= (D0 + D1x + · · · + Dk xk)y,

where D0, D1, . . . Dk are diagonal and the eigenvalues of D0 are distinct (this is the
nonresonance condition). The singular point at the origin has multiplicity k + 1. This
example is a bit different from the first six: there is no one-dimensional map to explain
the dynamics. It will be discussed in detail in Sect. 5.

3 The Example of the saddle-node

The formal normal form at a saddle-node is given by

ẋ = x2,

ẏ = y(1 + Ax).
(3.1)

Questions.

(1) We cannot get rid of the term Axy in the second equation. What is the meaning
of A?

(2) Generically, the change to normal form diverges: Why?

The first question will be answered below at the end of Example 3.1.
Spirit of the answer to the second question:

(1) We need to extend (x, y) to a small polydisk in C2.
(2) The saddle-node is a multiple singular point. Hence, it is natural to unfold it. The

orbital formal normal form of a generic unfolding is

ẋ = x2 − ε,

ẏ = y(1 + A(ε)x).
(3.2)

In the unfolding, there are rigid models near each of the two singular points.
Generically, thesemodelsmismatch till themerging of the singular points, yielding
divergence at the limit.

Example 3.1 One example of mismatch. Consider the unfolding of a saddle-node
with normal form (3.1) It is known that generically a saddle-node has no analytic
center manifold. A famous equation is
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12 C. Rousseau

Fig. 10 The generic form of a center manifold: we have drawn x ∈ C and y ∈ R

ẋ = x2,

ẏ = −x2 + y,
(3.3)

where the formal series for the center manifold is the divergent series

y =
∑

n≥1

(n − 1)! xn+1,

which is the solution asymptotic to 0 of the linear differential equation x2y′− y+x2 =
0. This divergent series is 1-summable and its sum yields a function defined over a

sector of opening 3π : arg x ∈
(
−π

2 , 5π
2

)
(see Fig. 10a).

In the general case of a germ of saddle-node of the form

ẋ = x2,

ẏ = f (x) + y(1 + Ax + O(x2)) + O(y2),
(3.4)

where f (x) = O(x2), the formal series for the center manifold would also be gener-
ically divergent and 1-summable with a sum defined on a sector

V =
{

x : |x | < r , arg x ∈
(

−π

2
+ δ,

5π

2
− δ

)}

with δ > 0 arbitrarily small and r depending on δ (in the general case, r → 0 when
δ → 0).

This could seem mysterious. It is not, if we consider an unfolding

ẋ = x2 − ε,

ẏ = fε(x) + y(1 + A(ε)x + O(x2)) + O(y2),
(3.5)

where fε(x) = O(x2 − ε). Indeed, for ε > 0, we now have two singular points, a
saddle at (−√

ε, 0) and a node at (
√

ε, 0). The saddle has a unique analytic stable
manifold and the saddle-node has a unique center manifold on the side x < 0. Hence,
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The Equivalence Problem for 1-Resonance 13

Fig. 11 A node

it makes sense that the center manifold is the limit of the stable manifold of the saddle
when ε → 0. Let us now look at the node. It has one small eigenvalue λ1 = 2

√
ε, and

a large eigenvalue λ2 = 1 + O(
√

ε). When the node is nonresonant, i.e., λ2/λ1 /∈ N,
then the node is linearizable, by an analytic change of coordinates (x, y) �→ (X , Y ).
Apart from the strong manifold X = 0, the solutions in the neighborhood of the node
are of the form Y = C Xλ2/λ1 (see Fig. 11). As complex functions, they are all ramified
except the one for C = 0, which we call the weak analytic manifold. Hence, among all
the trajectories with α-limit at the node, the node has two exceptional ones which are
analytic. Suppose that the center manifold is not analytic. Then, for small ε > 0, we
have no choice: the analytic stable manifold of the saddle must be ramified at the node
(see Fig. 10b). This means that it does not coincide with the weak analytic manifold
of the node. This is of course the generic situation. If this situation persists until the
limit, then we are not surprised that we may have a ramified center manifold, and even
that this situation should be the generic one. The divergence comes from the limit of
this mismatch of the two local models at the saddle and at the node, each having a
distinguished weak manifold. We have reached our:
Conclusion 1: When we unfold a system with no analytic center manifold, then the
analytic separatrices of the two singular points do not match.

Let us now consider the sequence of parameter values εn → 0 for which the node
is resonant, i.e., λ2/λ1|ε=εn

= n ∈ N. In this case, the node is analytically conjugate
by a change of coordinates (x, y) �→ (X , Y ) to its normal form

Ẋ = λ1X ,

Ẏ = λ2Y + Bn Xn .

If Bn = 0, then all solutions apart from the strong manifold have the form Y = C Xn ,
and none of them is ramified. Hence, this situation is forbidden when εn is sufficiently
small, and the center manifold at ε = 0 is not analytic. We are then forced to have
Bn �= 0, when εn is sufficiently small, i.e., n sufficiently large. In that case, all solutions
apart from the strong manifold are ramified since of the form

Y = B

λ1
Xn log X + C Xn .

123



14 C. Rousseau

That means that on this convergent sequence {εn} of parameter values, the mismatch
is carried by the singular point itself. We have reached our:
Conclusion 2: When we unfold a system with no analytic center manifold, then
the node is non-linearizable as soon as resonant. This is the parametric resurgence
phenomenon.

We have understood why divergence of the center manifold is the generic case
and convergence is the exception. This is just one example of the many mismatches
that occur within analytic dynamical systems and that follow very similar rules to
Conclusions 1 and 2.

Andwhat about the formal invariant and Question 1? Let us look again at the formal
orbital normal form (3.2) of the unfolding. The ratios of eigenvalues at the singular
points are

μ± = ± 2
√

ε

1 ± A
√

ε
.

Then

1

μ+
+ 1

μ−
= A,

whichmeans that A is ameasure of themismatch of these ratios of eigenvalues until the
limit. In the orbital formal normal form,we have two singular points, eachwith its ratio
of eigenvalues, hence two ratios of eigenvalues. Therefore, to allow full generality, we
need two independent parameters to control these, namely, ε and A. We get our third
conclusion:
Conclusion 3: In the formal normal form of the unfolding, the number of parameters
is equal to the number of analytic invariants at the linear level at each simple singular
point.

Again, this is a very general rule in all the examples we are considering. For planar
vector fields, if we would consider full normal forms and not only orbital normal
forms, the rule would still hold. For instance, the formal normal form of the unfolding
of a saddle-node is

ẋ = (x2 − ε)(B0 + B1x),

ẏ = y(1 + Ax)(B0 + B1x).

The four parameters ε, A, B0 and B1 allow for the four eigenvalues (two at each
singular point) to behave independently.

If we now look again at the orbital formal normal form (3.2) of the saddle-node,
we see that

1√
ε

= 1

μ+
− 1

μ−
. (3.6)

Hence, we reach our last conclusion:
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The Equivalence Problem for 1-Resonance 15

Conclusion 4: The parameter of the formal normal form is an analytic invariant.
Again, this is a general feature of all the examples we are considering except

Example 7.

4 Revisiting the Seven Examples and Going Further

4.1 The Common Features

Here are common features of all seven examples, some of which we have already seen,
and some we will explore further.

(1) In each case, we have coallescence of k + 1 “special objects”, which come with
their local model. The special objects could be singular points, periodic orbits,
limit cycles, and special leaves.

(2) To understand why we have divergence, we unfold: when we have k + 1 objects
(codimension k), this leads to k-summability in the limit.

(3) In the unfolding, generically, the divergence can be seen as the limit of the gluing
of the k + 1 local models which are rigid. Hence, divergence is the rule and
convergence is exceptional.

(4) Except in Example 7, the parameters in the formal normal form of the unfolding
are canonical, since they are analytic invariants (up to an action of the rotation
group of order k.) We discuss why Example 7 is exceptional in Remark 4.1.

(5) In all cases, we have a finite parameter family representing a formal normal form:
“the model family”. This is because all resonances are consequences of a unique
one: this is the 1-resonance case.

(6) The extra formal parameter(s) are present to match, in the unfolding, the need of
independent multipliers in the diffeomorphism case, or the need of independent
eigenvalues (resp. ratios of eigenvalues) for vector fields, depending whether the
equivalence relation is conjugacy (resp. orbital equivalence).

(7) Except in Example 7, the “dynamics” can be reduced to that of a 1-dimensional
map.

(8) In all cases, we observe a parametric resurgence phenomenon, i.e., the unfolded
singular points have pathologies on discrete sequences of parameter values {εn}
converging to ε = 0.

(9) In all cases, the study of the dynamics of a generic k-parameter unfolding is
governed by the dynamics on CP

1 of the k-parameter polynomial vector field
ż = Pε(z) or ż = Qε(z), where

Pε(z) = zk+1 + εk−1zk−1 + · · · + ε1 + ε0, (4.1)

and

Qε(z) = zk+1 + εk zk + εk−1zk−1 + · · · + ε1. (4.2)

The vector field ż = Pε(z) is the generic unfolding of ż = zk+1, and ż = Qε(z)
is the generic unfolding preserving the singular point at the origin.
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Remark 4.1 A linear system Pε(x)y′ = A(x)y can be written as an analytic system in
C

n+1

ẋ = Pε(x),

ẏ = A(x)y,

for P given in (4.1). However, the time has no intrinsic meaning here and we could
equivalently consider any system

ẋ = Pε(x)h(x, ε),

ẏ = h(x, ε)A(x)y,

where h is a germ of nonvanishing function. Now, by Kostov’s Theorem [15], the
first equation is analytically equivalent through an analytic change of coordinate and
parameter (x, ε) �→ (X , η) to Ẋ = Pη(X).

4.2 The First Six Examples Revisited

Let us now revisit our first six examples and discuss briefly the unfoldings in each
case.

4.2.1 Example 1 Revisited

The parabolic point of codimension k is the coallescence of k +1 fixed points. Given a
generic k-parameter unfolding of a parabolic germ, there exists a change of parameter,
such that its normal form is the time-one map of

ż = Pε(z)

1 + a(ε)zk
, (4.3)

with Pε(z) given in (4.1). Fixing this new parameter ε, there exists a change of coor-
dinate depending analytically on ε and bringing the unfolding to the prepared form

fε(z) = z + Pε(z) (1 + Rε(z) + Pε(z)h(ε, z)) ,

where

• Rε(z) is a polynomial in z of degree ≤ k depending analytically on ε;
• h is an analytic function of (z, ε);
• if z1, . . . zk+1 are the zeroes of Pε (i.e., the fixed points of fε), then f ′

ε(z j ) =
exp

(
P ′

ε(z j )
)
.

The parameters are unique up to the action of the rotation group of order k in (4.3)
(see Sect. 7.3).

Let us now discuss the case k = 1 in more detail. Two approaches were proposed
in the literature. The first one was proposed, among others, by Arnold, and studied
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The Equivalence Problem for 1-Resonance 17

Fig. 12 For ε in the Poincaré domain, domains of normalizations near each fixed point intersect

by Martinet [19] and Glutsyuk [8]. It consists in unfolding in the Poincaré domain
in parameter space, namely a sector in parameter space where the fixed points are
hyperbolic, one attracting, one repelling, and, moreover, there are orbits going from
the repelling fixed point to the attracting one. In that case, there exists an analytic
change of coordinate to the normal form in the neighborhood of each fixed point,
and the domains of normalization intersect (see Fig. 12). The normalizing changes
of coordinates are unique up to a global symmetry of the formal normal form. A
modulus of analytic classification comes from the comparison of these normalizing
changes of coordinates. This approach was also considered for unfoldings of irregular
singular points of linear differential equations by Ramis, Bolibruch, and Glutsyuk
among others (see for instance [26] and [9]). For a long time, no one in the field had
any idea how to treat the other direction, since the fixed points could have multipliers
given by an irrational rotation, a very difficult case, for which there is no modulus of
analytic classification.

The second approach allows to treat the complementary sector, the Siegel domain.
It first appeared in the thesis of Lavaurs [17], a student of Douady, when studying
the parabolic implosion in Julia sets. As before, it consists in finding almost unique
changes of coordinates to the normal form and to read the modulus by comparing
these normalizations (see Fig. 13). However, the difference is that the domains of
these normalizing changes of coordinates have a sector shape in the neighborhood of
each singular point.

As in Sect. 2.1, we discuss the space of orbits in each case.
Poincaré domain. It this case, it is natural to take fundamental domains for each fixed
point. These have the form of annuli: around each singular point, we take a close
curve � sufficiently transversal to the flow lines of the vector field ż = z2 − ε, so that
fε(�) is disjoint from � (see Fig. 14a). Then, � and f (�) bound an annular region.
Using fε to identify � and f (�), each fundamental domain is a torus. Hence, we have
two tori corresponding to fundamental domains at each fixed point. The identification
ψG

ε identifies two annuli, one on each torus. When ε → 0, each torus is pinched in
the middle of its annulus and degenerates in a sphere with two points identified, thus
cutting the annulus into two punctured disks. Hence, in the limit, the domain of the
transition map ψG

ε becomes disconnected.
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Fig. 13 For ε in the Siegel domain, domains of normalizations are adherent to the two fixed points

Fig. 14 The different ways of taking fundamental domains

Siegel domain. Here, we take fundamental domains in the shape of crescents, with
endpoints at the fixed points: the construction is the same as in the case ε = 0 in
Sect. 2.1 (see Fig. 14b). Identifying the two sides of each crescent with fε yields
fundamental domains conformally equivalent to spheres with two distinguished points
0 and ∞ corresponding to the fixed points of fε. As in the case ε = 0, this yields
transition maps ψ0

ε and ψ∞
ε defined, respectively, in the neighborhoods of 0 and ∞

and identifying a point on one sphere to a point on the other sphere belonging to the
same orbit. It is possible to choose coordinates on the spheres, so that ψ0

ε and ψ∞
ε

depend analytically on ε �= 0 with continuous limit at ε = 0.
A new phenomenon occurs here: there is a global transition map Lε between the

two crescents, called the Lavaurs map, which is linear when parametrizing the doubly
punctered spheres with C

∗. Hence, when ε �= 0 belongs to the Siegel domain, one
sphere is enough to describe the orbit space. In that case, the orbit space is given by
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The Equivalence Problem for 1-Resonance 19

one sphere quotiented by two renormalized first return maps in the neighborhoods of
0 and ∞, for instance τ 0ε = Lε ◦ ψ0

ε and τ∞
ε = Lε ◦ ψ∞

ε if we keep the right sphere.
Note that the Lavaurs map has no limit when ε → 0, but it depends only on the formal
normal form. Hence, the first return maps also have no limit when ε → 0. However,
they are used to describe the parametric resurgence phenomenon.
The parametric resurgence phenomenon. The phenomenon at the fixed point
−√

ε (resp.
√

ε) is controlled by ψ0
ε (resp. ψ∞

ε ). Let us discuss it at −√
ε. The

Lavaurs map is of the form w �→ K (ε)w, where K (ε) = exp
(

C(ε)√
ε

)
for some

nonzero C(ε) continuous, bounded, and bounded away from 0. Hence, for each
p, q ∈ N with (p, q) = 1, there exist sequences of parameter values εn → 0,

such that K (εn)(ψ
0
εn

)′(0) = exp
(
2π i p

q

)
. Since ψ0

ε depends continously on ε, then

K (0) = limn→∞ K (εn) exists and K (0)(ψ0
0 )′(0) = exp

(
2π i p

q

)
. The parametric

resurgence phenomenon is simply the fact that if K (0)ψ0
0 is non-linearizable (because

of some nonzero resonant monomial in the formal normal form), then the renormal-
ized first return map τ 0εn

= K (εn)ψ0
εn

= Lεn ◦ ψ0
εn

is also non-linearizable when εn is
sufficiently small, i.e., n is large enough. In the particular case p = q = 1, this occurs
as soon as ψ0

0 is non-linear. If the renormalized first return map is non-linearizable at
0, then this means that fε is non-linearizable at−√

ε. Remember that the non-linearity
of ψ0

0 is an obstruction to the convergence of the normalizing transformation. In the
parametric resurgence phenomenon, the mismatch is carried by the fixed point itself.

A similar phenomenon occurs at
√

ε when considering the renormalized first return
map Lε ◦ ψ∞

ε and adequate sequences of parameter values.

Remark 4.2 (1) Consider the parametric resurgence phenomenon under the hypoth-
esis that τ 0εn

= Lεn ◦ ψ0
εn

is resonant non-linearizable of codimension k with

(τ 0εn
)′(0) = exp

(
2π i p

q

)
a fixed root of unity of some order q. Then, −√

εn is the

coallescence of a fixed point with k periodic orbits of period q of τ 0εn
. Slightly

perturbing slightly εn to ε′ unfolds the situation and creates k periodic orbits of
fε′ (multiplicity taken into account) around the fixed point. Each of these orbits
intersect the fundamental domain in q points. The larger n, the higher the period
of the periodic orbits (all of the same period).

(2) Note that (under generic conditions) we could have one sequence εn associated

with each root of unity exp
(
2π i p

q

)
.

(3) Note that while τ 0ε has no limit when ε → 0, limn→∞ τ 0εn
does exist. Indeed, ψ0

ε

depends continuously on ε and (τ 0εn
)′(0) = exp

(
2π i p

q

)
.

Covering the whole parameter space with the approach of the Siegel domain [20].
So far, we have used two charts, the Poincaré domain and the Siegel domain, to cover
the whole parameter space. However, this is not necessary. It is possible to cover the
full parameter space using fundamental domains in the shape of crescents from one
fixed point to the other (see Fig. 15). However, there is a double price to pay:

• The crescents must spiral when the parameter is in the Poincaré domain.
• The construction of continuous fundamental domains is ramified in the parameter.
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Fig. 15 Lavaurs type fundamental domains for all parameter values

4.2.2 Example 2 Revisited

The germ of resonant fixed point of codimension k corresponds to the coallescence of
a fixed point with k periodic orbits of period q. Modulo a change of coordinate and
parameter, a generic k-parameter unfolding of f is of the form

f (z) = exp

(
2π i p

q

)

z

(

1 + 1

kq
Qε(z

q)(1 + O(z, ε))

)

,

where

Qε(z) = zk + εk−1zk−1 + · · · + ε1z + ε0. (4.4)

And the normal form is the time-1/q map of

ż = zQε(zq)

1 + azkq
(4.5)

composed with the rotation of angle 2π p
q . The parameters are unique up to the action

induced by rotations of order k in (4.5).
This corresponds to a special slice of dimension k in the parameter space of Example

1 revisited (Sect. 4.2.1) for the codimension K = kq.
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Fig. 16 The Hopf Bifurcation of order 1

4.2.3 Example 3 Revisited

An orbital formal normal form of a generic k-parameter unfolding of a saddle-node
of codimension k is given by

ẋ = Pε(x),

ẏ = y
(
1 + A(ε)xk

)
,

(4.6)

for Pε in (4.1). Again, we have k + 1 parameters to control the k + 1 quotients of
eigenvalues and the parameters are unique up to the action of the rotations of order
k. The result of Martinet–Ramis can be generalized to the unfoldings: two unfoldings
of a codimension k saddle-node are orbitally equivalent if and only if the unfolded
holonomies of the strong separatrices are conjugate.

4.2.4 Example 4 Revisited

The generic k-parameter unfolding of a weak focus of order k is the generic Hopf
bifurcation of order k, which corresponds to the coallescence of a focus and k limit
cycles (see Fig. 16 in the case k = 1). It has orbital normal form

ż = z
(

i + Qε(zz)(1 + a|z|2k)
)

,

where Qε is given in (4.4).
Taking w = z, the orbital normal form can be rewritten

ż = z(i + Qε(zw)(1 + a(zw)k)),

ẇ = w(−i + Qε(zw)(1 + a(zw)k)),

If we now take (z, w) ∈ (C2, 0), then this equivalent to the orbital unfolding of a
resonant complex saddle. If X1, . . . , Xk are the zeroes of Q(X), then each complex
curve zw = X j is a special leaf of the foliation, which has non-trivial homology.

In [3], it is shown that two 1-parameter generic real analytic families unfolding a
weak focus of codimension 1 are orbitally equivalent if and only if the families of
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their Poincaré return maps are conjugate. And, most probably, the result is also true
in higher codimension.

4.2.5 Example 5 Revisited

This is the case of the planar resonant saddle with orbital formal normal form (2.2).
An orbital formal normal form of a generic k-parameter unfolding is

{
ẋ = x,

ẏ = y
(
− p

q

(
1 + Qε(x p yq) + ax2kp y2kq

))
,

where Qε is given in (4.4). The result of Martinet–Ramis has been generalized in
codimension 1 [31] and is most probly true in higher codimension: two unfoldings of a
codimension k resonant saddles are orbitally equivalent if and only if the holonomies of
a pair of corresponding separatrices are conjugate.Generically, a k parameter unfolding
has k special leaveswith non-trivial holonomywhichmergewith the separatriceswhen
ε = (ε0, . . . , εk−1) = 0. Hence, the k + 1 “special objects”, which merge together at
ε = 0, are the k special leaves together with the singular point.

Remark 4.3 This merging of the special leaves with the singular point is what has been
called materialization of the Poincaré resonances by Ilyashenko and Pjartli [12]. This
phenomenon is very important. Indeed, consider a saddle point with an irrational ratio
−α of eigenvalues. Then, in any neighborhood of α, there are infinitely many rational
numbers p/q. Generically, a special leaf (or special leaves) appears when the ratio
of eigenvalues is perturbed from a rational value. Hence, it has been conjectured by
Arnold and others that this accumulation of special leaves in the neighborhood of the
singular point could be the obstruction to the linearizability of the saddle point when
α is a Liouvillian irrational number (i.e., an irrational number well approximated by
the rationals). On the other hand, if α is a Diophantian irrational number (i.e., badly
approximated by the rationals), then the special leaves escape from a neighborhood
of the origin sufficiently fast, so that the point be orbitally linearizable. In view of
[25], it suffices to consider fixed points of germs of 1-dimensional diffeomorphisms,
in which case the special leaves correspond to periodic points of the holonomy maps
of separatrices. Yoccoz [35] proved that the mechanism of accumulation of periodic
points in the neighborhood of a fixed point with multiplier eiπα when α is irrational
Liouvillian does indeed exist, thus preventing linearizability, and that it is present
in particular in the quadratic map f (z) = e2π iαz + z2. Later, Pérez-Marco [23,24]
showed that there exist other mechanisms preventing orbital linearizability of the fixed
point: a fixed point with no periodic points in a neighborhood can be non-linearizable.

4.2.6 Example 6 Revisited

Let us look at a rational curvilinear angle of size 2π p
q (to fix the exact value, we need

to orient the curves γ1 and γ2). Associated to each curve γ j of the angle is a Schwarz
symmetry z �→ � j (z) and we have introduced the analytic germ of diffeormorphism
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Fig. 17 Copies of the angle by symmetry with respect to the sides a until the two curves are tangent; b all
copies pass through the periodic points after deformation. The dotted lines correspond to the fourth, fifth,
and sixth copies of the angle

f = �2 ◦ �1 satisfying f (z) = e4π i p
q z + o(z). It could seem surprising that f

is generically not analytically linearizable. It is not. Indeed, we can make symmetric
copies of the angle: for instance, the curve γ3,which is the symmetric image of γ1 under
�2 corresponds to the Schwarz symmetry �3; and the diffeomorphism corresponding
to the angle curvilinear formed by γ1 and γ3 is f ◦2. We iterate the construction by
taking the symmetric of γ2 with respect to γ3, etc. until we get γq+1 which is tangent to
γ1 (see Fig. 17a). Of course, generically, two tangent curves do not coallesce but have a
multiplicity of intersection at the contact point, while they would have coallesced if f
was analytically linearizable. Let us focus on this case. Thismultiplicity of intersection
is an obstruction to the linearizability of f . Note that the diffeomorphism associated
with the angle between γ1 and γq+1 is f ◦q , which has the form

f ◦q(z) = z + Czqk+1 + o(zqk+1) (4.7)

for C �= 0 and a positive integer k.
Let us now slightly perturb the angles between γ1 and γ2. Then, we unfold the

multiple fixed point of f ◦q . However, if the angle 2π p
q is not a multiple of π , then

the perturbed γ1 and γ2 will still have a unique intersection point. Hence, the multiple
fixed point of f ◦q corresponds to the merging of a fixed point of f with k orbits of
periodic q, hence kq periodic points (see Fig. 17b). And, if we continue tomake copies
of the angle after γq+1, all the new curves pass through the kq periodic points drawn
on the figure, since periodic points of f are periodic points of f m for any integer m.

Remark 4.4 Depending on the perturbation, there could exist other periodic points of
f of period larger than q and than the kq described above, but the claim is that the
existence of these kq periodic points is guaranteed by the form (4.7) before perturba-
tion.

Note that we have created in the perturbation sequences of curves that intersect at
the periodic points. Now, these curves can also make rational angles and we can iterate
the construction above with these angles.
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Fig. 18 The horn and its deformations in the two directions

Fig. 19 The orbit space

A particular case of curvilinear angle is that of the horn: two tangent curves (see
Fig. 18). In that case, in the normal form, it is natural to take �1 as the reflection with
respect to the real axis. Then, because of (2.3), a formal normal form of the associated
diffeomorphism is the time-one of the vector field i z2−ε

1+a(ε)z
d
dz . In the case ε < 0,

the associated diffeomorphism fε has two fixed points outside the curve (Fig. 18b).
These points control the size of the neighborhood on which the unfolded angle can
be analytically brought to the normal form: the neighborhood should not contain the
points. In the case ε > 0, the two curves intersect at ±√

ε with (oriented) angles θ±
(Fig. 18c). Then

1

θ+
+ 1

θ−
= a(ε). (4.8)

Hence, a introduces a difference between |θ+| and |θ−|, which persists until the limit
if a(0) �= 0.

The space of orbits can of course be described as in Sect. 2.1: see Fig. 19. Let us now
concentrate on the case ε > 0. Locally, at each intersection point, we have a curvilinear
angle and, depending on the value of ε, this curvilinear angle may be rational, which
means that we can apply to it the theory we just described. As explained in Sect. 4.2.1,
the dynamics near −√

ε (resp.
√

ε) is described through the renormalized first return
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map, which has the form τ 0ε = Lε ◦ ψ0
ε (resp. τ∞

ε = Lε ◦ ψ∞
ε ), and the phenomenon

of parametric resurgence also occurs here.
Let us discuss its meaning near −√

ε. Let {εn} be a sequence of parameter values

for which (τ 0εn
)′(0) = exp

(
2π i p

q

)
, which means that the curvilinear angle at −√

ε

is rational. Taking symmetric copies of this angle, we get a horn. The maximum
multiplicity of intersection of the two curves forming this horn can be read from the
codimension of the fixed point of τ 0 = limn→∞ τεn [see Remark 4.2(2)]. In the same
way, the order of magnitude of the formal invariant (résidu itératif) of τεn is given by
that of τ 0. And we have given an interpretation of the formal invariant as a kind of shift
in the angles at two intersection points of two perturbed curvilinear curves (see (4.8)).
But which curvilinear curves? The curvilinear curves which are the perturbations of
the two sides of the horn when perturbing ε slightly from εn . In particular, if the formal
invariant of τ 0 is nonzero, then so is the case for the formal invariant of τεn . And this

is the case for all exp
(
2π i p

q

)
. We see that a lot of information is encoded in τ 0, i.e.,

in ψ0! This explains why the modulus is so large.

5 The Irregular Nonresonant Singular Point of Codimension 1
(Example 7)

This case corresponds to the confluence of two regular singular points of a linear
differential system. A normal form for a generic unfolding is given by

(x2 − ε)
dy

dx
= (D0(ε) + D1(ε)x) y, y ∈ C

n,

where D0(ε) = diag(λ1(ε), . . . , λn(ε)) with the λ j (ε) all distinct and D1(ε) =
diag(ν1(ε), . . . , νn(ε)) is also diagonal.Modulo a rotation in x , we can always suppose
that

Re(λ1(0)) > · · · > Re(λn(0)). (5.1)

It can be shown (see [18]) that the system itself is analytically conjugate in a
neighborhood of the origin to a system of the form

(x2 − ε)
dy

dx
=

(
D0(ε) + D1(ε)x + (x2 − ε)B(x, ε)

)
y, y ∈ C

n .

For ε �= 0, there are two regular singular points at±√
εwith respective eigenvalues

μ±
j (ε) = ±λ j (ε) ± ν j (ε)

√
ε

2
√

ε
.

The monodromy map at a singular point is defined as follows: we consider a loop
γ : [0, 1] → C surrounding the singular point, and an initial condition y(0) ∈ C

n . Let
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y(t) be the solution of the differential equation along the loop. Then, the monodromy
map around the singular point is the linear map M : y(0) �→ y(1). Its similarity class
is independent of the free homotopy class of γ . The eigenvalues of the monodromy
maps around each singular point are given by exp(2π iμ±

j (ε)).
We can already observe the following:

(1) The eigenvalues of themonodromyhave a verywild behaviorwhen ε → 0, namely
that of an essential singularity in

√
ε. However, this wild behavior depends only

on the formal normal form.
(2) The eigenvalues of the monodromy map are distinct for generic values of the

parameters, in which case the monodromy maps are diagonalizable: for these
parameter values, there exists at each singular point a basis of eigensolutions,
i.e., of special solutions, which are eigenvalues of the corresponding monodromy
maps. This is the case where the regular singular points are nonresonant.

(3) Of course, we expect that the generic situation is when the eigensolution at −√
ε

attached to the eigenvalue exp(2π iμ−
j (ε)) is not the analytic extension of the

eigensolution at
√

ε attached to the eigenvalue exp(2π iμ+
j (ε)).

(4) Moreover, for special sequences of resonant values of the parameter converging
to the origin, at least two eigenvalues of one monodromy map are equal, and
the monodromy map is in general not diagonalizable. Then, some solutions have
logarithmic terms.

In the same spirit as for the saddle-node, we can go further:
Conclusion 1. If we have divergence of the change of coordinate to the normal form
when ε = 0, then this divergence in the limit forces the eigenbases at each singular
point to mismatch for sufficiently small ε.
Conclusion 2. If we have divergence of the change of coordinate to the normal form
when ε = 0, this will force the existence of sequences of resonant parameter values
converging to 0 for which there will exist solutions with nonzero logarithmic terms.
This is again the parametric resurgence phenomenon, since the mismatch is carried
by one singular point for which a basis of eigensolutions does not exist.
Conclusion 3. In the formal normal form of the unfolding, the number of parameters
is equal to the number of analytic invariants at the linear level (here the eigenvalues)
at each simple singular point.

Let us now discuss in more detail the case ε �= 0. The eigenvalue μ+
j (ε) at

√
ε

is almost opposite to the eigenvalue μ−
j (ε) at −√

ε. And the eigenvalues control the
asymptotic behavior of the eigensolutions at the singular points; indeed, there exists
(generically), in the neighborhood of each singular point, a basis of solutions {γ ±

j,ε}
with asymptotic expansion

γ ±
j,ε(x) � (x ∓ √

ε)
μ±

j (ε) (
c j (ε)e j + O(x ∓ √

ε)
)
, (5.2)

where c j (ε) ∈ C
∗.
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Fig. 20 The two sectors Vε and V ′
ε and their three (resp. two intersection parts) for ε > 0 (resp. ε = 0)

Let us take the case ε ∈ R
+. Then, using (5.1), this asymptotic behavior induces

an ordering of the eigensolutions according to flatness

{
γ +
1,ε ≺ γ +

2,ε ≺ · · · ≺ γ +
n,ε,

γ −
n,ε � · · · � γ −

2,ε � γ −
1,ε.

In turn, this allows to define flags of the solution space at each singular point

{
W +

1,ε ⊂ W +
2,ε ⊂ · · · ⊂ W +

n,ε,

W −
n,ε ⊃ · · · ⊃ W −

2,ε ⊃ W −
1,ε.

The flags depend analytically on ε, with a continuous limit at ε = 0. From the
nonresonance of the irregular singular point at ε = 0, it follows that the flags are
transversal at ε = 0, yielding that they are transversal for small ε > 0. Hence, taking
two generalized sectors Vε and V ′

ε covering a disk Dr as in Fig. 20a, this allows to
define on Vε (resp. V ′

ε) a basis Bε (resp. B′
ε) that has the right asymptotic behavior at

each singular point, namely the j th vector has the asymptotic behavior (5.2) at ±√
ε.

Moreover, the bases Bε and B′
ε are almost unique, the only degree of freedom being

nonzero multiples of the vectors in the bases. It is possible to choose bases depending
analytically on ε �= 0 in a sector around R

+, and with continuous limit at ε = 0.
Can we push these bases continuously for all values of ε? The surprise is that the

answer is positive, and we can construct bases Bε̂ (resp. B′
ε̂
) depending analytically on

ε̂ in a sector of opening larger than 2π in the universal covering of ε-space punctured
at the origin (Fig. 21), and with a continuous limit at ε = 0. The key ingredient is the
following lemma, which can be proved by mere calculations.

Lemma 5.1 Let β = a + ib ∈ C, with b �= 0. Then, there exists logarithmic spirals γ

and γ ′ with limit point at 0, such that limz→0
z∈γ

zβ = 0 and limz→0
z∈γ ′

zβ = ∞.
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Fig. 21 The sector � in ε̂-space

Fig. 22 The two spiraling sectors for all values of ε and their three (resp. two) intersection parts in darker
gray for ε �= 0 (resp. ε = 0)

Then, when ε moves outside R
+, we can deform the generalized sectors Vε and

V ′
ε , so that they approach the singular points ±√

ε along trajectories of some rotated
vector field ż = eiα(z2 − ε), which are very close to logarithmic spirals (see Fig. 22).

Hence, if the sectors V U
ε , V L

ε , and V G
ε are the three intersection parts of the sectors

Vε and V ′
ε , then the comparison between the bases Bε and B′

ε over V U
ε , V L

ε and V G
ε

is the classifying object. Because of the flatness properties, comparing the two bases
is done via an upper triangular matrix SU

ε over V U
ε , a lower triangular matrix SL

ε over
V L

ε , and a diagonal matrix SG
ε over V G

ε . (The matrix SG
ε is diagonal, because the two

bases Bε and B′
ε have the same asymptotic behavior at the two singular points, and

the only degree of freedom for such bases is nonzero multiples of the vectors of the
bases by transversality of the flags.)
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Conclusion 5. We have decomposed the dynamics into:

• a wild diagonal part SG
ε depending only on the formal normal form and having no

limit at ε = 0;
• two triangular parts SU

ε and SL
ε , which converge to the classical Stokes matrices

SU
0 and SL

0 at the irregular singular point for ε = 0 (see Fig. 20b).

Remark 5.2 Since the change of basis is given by a diagonal matrix SG
ε over V G

ε , we
could have used the same basis Bε on both Vε and V ′

ε , and this basis would have not
been defined in a uniform way when turning around each singular point. In that point
of view, the dynamics is defined by the monodromy around the singular points. The
price to pay is that this monodromy has no limit when ε → 0: its eigenvalues at each
singular point are essential singularities in

√
ε.

Conclusion 6. The construction can be pushed to cover all values of ε in a small
neighborhood of the origin (see Fig. 22), with the following constraints:

• The generalized sectors Vε and V ′
ε may have to spiral at the singular points;

• The construction is ramified in ε, i.e., done on a sector � of opening larger than
2π centered on R

+ as in Fig. 21.

As before, let us denote by ε̂ an element of the universal covering of the ε-space
punctured at 0.

Theorem 5.3 [18] Two families of linear differential systems unfolding an irregular
nonresonant singular point of Poincaré rank 1 are analytically conjugate if and only
if they have the same modulus, namely

(1) they have the same formal normal form;
(2) they have “equivalent” collections of unfolded Stokes matrices (SU

ε̂
, SL

ε̂
) depend-

ing continuously on ε̂ in a sector � = {ε̂ : |ε| < ρ; arg(ε̂) ∈ (−π −δ, π +δ)} for
some δ ∈ (0, π) (see Fig. 21). The equivalence on collections of unfolded Stokes

matrices (SU
ε̂

, SL
ε̂
) is defined as follows:

(
SU
1,ε̂, SL

1,ε̂

)
≡

(
SU
2,ε̂, SL

2,ε̂

)
if and only if

there exists invertible diagonal matrices D(ε̂), D′(ε̂) depending continuously on
ε̂ ∈ �, such that

{
SU
1,ε̂ = D(ε̂) SU

2,ε̂ D′(ε̂),
SL
1,ε̂ = D(ε̂) SL

2,ε̂ D′(ε̂).

Conclusion 7.The conditions for analytic conjugacy of two linear differential systems
with an irregular singular point of Poincaré rank k are well known in the literature:
the two systems must have the same normal form and equivalent collections of Stokes
matrices. Theorem 5.3 states that the unfolding of the modulus of the system for ε = 0
is the modulus of the unfolded system.

Again, conclusions similar to Conclusions 5–7 are a general feature for all our
examples, as well as classification theorems of the type of Theorem 5.3.
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6 The Common Features to all ExamplesWhen the Codimension is 1

Let us summarize some common features to all generic unfoldings of the singularities
of all examples when k = 1.

(1) There exists a formal normal form, whose the number of parameters is equal to
the number of analytic invariants at the singular points, when these are simple.

(2) Except for Example 7, the parameter of the formal normal form is an analytic
invariant. See for instance (3.6) in the case of the saddle-node.

(3) The description of the dynamics is not uniform in the parameter space. InExamples
1, 3, 6 (in the case of a zero angle), and 7, it is done over a sector � of opening
2π + 2δ for some δ ∈ (0, π), in the universal covering ε̂ of the ε-space punctured
at 0 (see Fig. 21). The upper bound for δ depends on the singularity type. It is
equal to π for parabolic points of diffeomorphisms, and saddles or saddle-nodes
of vector fields. It is generically smaller for nonresonant singular points of linear
differential systems, and depends on the eigenvalues λ j . The larger δ, the smaller
the radius of the sector in ε̂. In Examples 2, 4, 5, 6 (in the case of a nonzero angle),
the description of the dynamics is done over two sectors �1 and �2 of opening
larger than π and covering a disk in parameter space ε.

(4) The dynamics of the generic 1-parameter family of systems is described on the
union of two generalized sectors Vε̂ and V ′

ε̂
covering a disk Dr . The sectors are

bounded by C0 curves, each being a union of a finite number of flow lines of some
rotated vector field ż = eiα(z2 − ε) of the organizing vector field ż = z2 − ε. In
Examples 2, 4, 5, 6 (in the case of a nonzero angle), we rather use the vector field
ż = z(z − ε), which has a fixed singular point at the origin.

(5) There exists over each sector Vε̂ and V ′
ε̂
an almost unique change of coordinate to

the formal normal form.
(6) Then, the modulus is obtained by comparing the changes of coordinates to the

normal form over the three parts V U
ε̂
, V L

ε̂
and V G

ε̂
of the intersection of Vε̂ and V ′

ε̂
(see Figs. 20, 22).

(7) The changes of coordinates to the formal normal form over Vε̂ and V ′
ε̂
can be

chosen, so that their comparisons over V U
ε̂

and over V L
ε̂
have a limit when ε̂ → 0,

which is given by the classical modulus for the case ε = 0. Then, the change
of coordinate over V G

ε̂
is trivial (diagonal or linear depending on the context),

but with very wild behavior and no limit when ε̂ → 0: the nonzero entries have
an essential singularity in

√
ε̂ (resp. ε) in Examples 1, 3, 6 (in the case of a zero

angle), and 7 at ε = 0 (resp. in Examples 2, 4, 5, 6 (in the case of a nonzero angle)).
However, this wild behavior is completely controlled by the formal normal form.

(8) Hence, we have a decomposition of the dynamics into a wild formal part with no
limit at ε = 0, and an analytic part, which tends to the analytic part of the modulus
when ε̂ = 0.

6.1 The Realization in Codimension 1

All the classification problems for ε = 0 are classical (see for instance [13] or [36]).
In all of them, a complete modulus of classification is given, which has two parts:
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• a formal part depending on a finite number of parameters;
• an analytic part, usually given as an equivalence class (modulo the global symme-
tries of the formal normal form).

Moreover, the realization problem is solved, which consists in identifying which mod-
uli can be realized. This allows giving themoduli set. Except forExample 7, thismoduli
set is of infinite dimension and no topology is given on it. We rather see theorems of
the form: If the codimension 1 (resp. k) singularity occurs in a family with fixed formal
normal form depending analytically on � parameters, then there exists a representative
of the modulus depending analytically on these parameters.

The realization is trickier when one is considering generic one-parameter unfold-
ings of a codimension 1 singularity of the types described above. Remember that the
analytic part of the modulus does not depend analytically on the parameter in a full
neighborhood of the origin. It is either defined on a sector� of opening larger than 2π
in the universal covering ε̂ of the parameter space punctured at the origin, or in two
sectors � j , j = 1, 2, of opening larger than π . It is possible to realize any potential
modulus for each ε̂ and to get a family depending analytically on ε̂ ∈ � (resp. ε̂ ∈ � j ,
j = 1, 2), with continuous limit at ε = 0. However, without an additional condi-
tion, there is no reason why there would exist a change of coordinates over � (resp.
changes of coordinates over�1 and�2) depending analytically on ε̂ and transforming
the realized family into a family depending analytically on ε. An obvious necessary
condition is that on the self-intersection of the neighborhood � in ε-space (resp. on
�1 ∩ �2), the two realizations are conjugate. Together with a technical condition on
the limits, when ε = 0, this turns out to be sufficient, and realization theorems exist
in codimension 1 for the seven types of singularities listed above (see for instance [4]
for the parabolic case, [31] for the fixed point with periodic multiplier and resonant
saddle, and [18] for the irregular nonresonant singular point of a linear differential
equation).

7 Moving to Higher Codimension

Whenwe have the confluence of k+1 special objects, we often observe k-summability
of the normalizing changes of coordinates. This is the case in our seven examples.

The dynamics of the vector field ż = z2 − ε (or ż = z(z − ε)) played a very
important role in the codimension 1 case. It the codimension k case, it is replaced
by the dynamics of the vector field ż = Pε(z), with Pε given in (4.1), or by that of
ż = zQε(z), with Qε given in (4.4). Indeed, in Examples 1–6, there is an underlying
1-dimensional map, whose formal normal form is the time-one map of a vector field
close to ż = Pε(z) or ż = zQε(z) for small (z, ε). We limit the discussion to the case
of ż = Pε(z).

In Example 7, a generic unfolding has the form

Pε(x)
dy

dx
= Aε(x)y, y ∈ C

n,

123



32 C. Rousseau

Fig. 23 The phase portrait of ż = Pε(z): a the pole at infinity for k = 4 and the 8 separatrices; b a separatrix
graph; c two zones for k = 9

which can also be rewritten as an ODE

ẋ = Pε(x),

ẏ = Aε(x)y,
(7.1)

in which the vector field ẋ = Pε(x) organizes the type of the singular points.
The dynamics of the family of vector fields ẋ = Pε(x) was studied by Douady,

Estrada, and Sentenac in a visionary paper [5]. For each parameter value, the dynamics
on CP

1 is governed by the pole of order k − 1 at infinity, which has 2k separatrices,
alternately attracting or repelling (Fig. 23a). Generically, these separatrices land at
the singular points (Fig. 23b). Exceptionally, a homoclinic loop occurs between two
separatrices. The structurally stable vector fields are dense. These are the vector fields
with simple singular points and no homoclinic loop through infinity. The structurally

stable vector fields are of C(k) different topological types, where C(k) = (2k
k )

k+1 is the
kth Catalan number. The parameter value corresponding to a given topological type is
a simply connected open domain. For parameter values in any of these domains, the
separatrix graph composed of the union of the separatrices dividesCP1 into k simply
connected domains in z-space called zones (Fig. 23c). Each zone has no singular
point inside and two singular points on the boundary, both of node or focus type, one
attracting, one repelling. Moreover, all trajectories inside a zone have their α-limit at
the repelling singular point, and their ω-limit at the attracting singular point.

In the codimension 1 case, therewas no uniformway to describe the dynamics for all
parameter values: the dynamics needed to be described over a sector of opening larger
than 2π in the universal covering of ε-space at the origin. In higher codimension, the
dynamics will be described over C(k) open sets U j , called DES domains, which are
enlargements of the parameter regions described byDouady, Estrada, and Sentenac, so
that the union of the U j cover all parameter values where the special objects (singular
points, periodic orbits, etc.) are distinct. The open sets U j are roughly unions of
domains of local structural stability of a given topological type for rotated vector
fields ẋ = eiα Pε(x).

This description will allow to generalize to codimension k > 1 what has been done
in codimension 1. Indeed, on each zone, we will look for almost unique changes of
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Fig. 24 The zones are cut into
half-zones along the dotted lines

coordinates to normal form, very similar to the ones obtained in the codimension 1
case. Comparing these normalizing changes of coordinates will yield the modulus of
analytic classification, which encodes the obstruction to a global analytic change of
coordinate to normal form. In practice, however, each zone splits into two parts at the
limit when the two attached singular points merge together, and if we work with a
unique change of coordinate to the normal form, we cannot have convergence at the
limit when the two points merge together. Hence, we will work with half-zones as in
Fig. 24. The change of normalizing coordinate from one half-zone to the other one
along the border line is essentially trivial: it is a symmetry of the formal normal form
over the full neighborhood and it depends only on the formal normal form. Let us now
give more detail in the special case of Example 7.

7.1 Example 7 Revisited in Codimension k

Let us consider a nonresonant irregular singular point of Poincaré rank k of a linear
differential system

xk+1 dy

dx
= A(x)y, y ∈ C

n .

The formal normal form of the unfolding is given by

Pε(x)
dy

dx
= (D0(ε) + D1(ε)x + . . . Dk(ε)xk)y,

where

Pε(x) = xk+1 + εk−1xk−1 + · · · + ε1x + ε0,

and the D j are diagonal. We can of course suppose that A(0) = D0(0) is diagonal
and that the eigenvalues satisfy (5.1).

All together this gives (k + 1)n parameters to control the eigenvalues at k + 1
singular points.

For k = 1, the almost unique bases we had constructed came from flags of solutions
associated with each singular point. The flags were in inverse direction and transverse
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Fig. 25 The phase portrait, zones, and half-zones of the vector field ẋ = eiα
(

x3 − i
4 x + 1

8 (1 + i)
)
. For

α = 0, the situation is non-generic with a center at 1+i
2 . Hence, it is necessary to rotate the vector field

when approaching the singular points. Rotating in different directions gives non-equivalent partitions of the
disk in zones. This means that the parameter value is in the intersection of two DES domains

one to the other. When k > 1, let us first consider the case where all singular points of
the vector field ẋ = Pε(x) have real eigenvalues and are hence attracting or repelling
nodes. In that case, wework over each zone,which is attached to one attracting singular
point xa and one repelling singular point xr of the vector field. On each zone, we find
one flag attached to each singular point. The flags are inverse one to the other and
transversal. Hence, by intersecting the flags associated with the singular points xa

and xr , we can, as in the codimension 1 case, find on each zone a basis of solutions
Bε = {γ1,ε, . . . , γn,ε}, such that

{
γ1,ε ≺ γ2,ε ≺ · · · ≺ γn,ε, near xa,

γn,ε � · · · � γ2,ε � γ1,ε, near xr .
(7.2)

Moreover, this basis is unique up to multiples of the basis vectors.
When we move to values of ε for which the eigenvalues of singular points of

ẋ = Pε(x) are no more real, we may have to replace the zones by generalized zones.
In a generalized zone, we may approach xa along trajectories of some ẋ = eiαa Pε(x)

and approach xr along trajectories of ẋ = eiαr Pε(x), where αr could possibly be
different from αa (see Fig. 25). When approaching along such trajectories, which
can be chosen depending continuously on ε and which are very close to logarithmic
spirals, we deform continuously the flags while preserving their inverse character and
their transversality. We can then deform the basis Bε associated with a (generalized)
zone, while preserving (7.2). Each angle αu is attached to its singular point xu , and all
generalized zones adherent to a fixed xu use the same angle.

Let us now consider parameter values in a fixed DES domain and the associated
zones for each parameter value. In practice, the zones split into two pieces when
the singular points on their boundaries merge together for parameter values on the
boundary of the DES domain. Hence, we split each zone into two half-zones, which
will have a continuous limit when the singular points merge together. It is then possible
to find basesBε associatedwith each half-zonewhich have a continuous limit when the
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Fig. 26 The four enlarged half-zones, the four intersection sectors touching the boundary of the disk, and
the two intersection sectors between two enlarged half-zones of a zone for the two cases (b) and (c) of
Fig. 25

two singular points on the boundary merge together. The half-zones can be extended
sectorially around the singular points, so that twohalf-zoneswhose closures intersected
along an arc, now intersect along an open set ending as a sector at the singular point(s)
(see Fig. 26 and imagine thickened separating regions along each arc inside the disk in
Fig. 24). On each intersection region which goes from the boundary to a singular point
the comparison of the bases over the two half-zones is given by a “Stokes matrix”,
which is an unfolding of the classical Stokes matrix (see the gray lines in Fig. 24).
The unfolded Stokes matrices are alternately upper and lower diagonal when one
turns around the boundary of the disk. The comparison between the bases associated
with the two half-zones of a zone is given by a “wild” diagonal matrix (see the blue
dotted lines in Fig. 24). For an appropriate normalization of the diagonal terms of
the unfolded Stokes matrices, each diagonal matrix is completely determined by the
eigenvalues at the singular points, i.e., by the formal normal form. The Stokes matrices
havewell defined limits when singular pointsmerge together on the boundary of aDES
domain. The wild diagonal matrices have no limit, but the corresponding domains of
comparison of the bases disappear at the limit.

Theorem 7.1 [10] Two families unfolding an irregular nonresonant singular point of
Poincaré rank k are analytically conjugate if and only if

(1) They have the same formal normal form;
(2) Over each DES domain Us, they have “equivalent” collections of unfolded

Stokes matrices Ss =
(

SU
1,s,ε, . . . , SU

k,s,ε, SL
1,s,ε, . . . , SL

k,s,ε

)
. The C(k) open DES

domains Us cover the parameter space minus the discriminant set. The equiva-
lence relation on collections Ss of Stokes matrices over Us is that corresponding
to the degrees of freedom in the choice of bases over the different zones.
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Moreover, given a formal normal form, the moduli space, i.e., the realizable collec-

tions of unfoldedStokesmatrices

{{(
SU
1, j,ε, . . . , SU

k, j,ε, SL
1, j,ε, . . . , SL

k, j,ε

)}

ε∈U j

}C(k)

j=1
,

has been identified [11]. The realization is done in the following way. One first realizes
the modulus over each DES domain U j in parameter space. A necessary condition,
the compatibility condition is then introduced which guarantees that two realizations
over DES domains U j and U j ′ are analytically equivalent over U j ∩ U j ′ : the con-
dition is that the monodromy representations given by the formal normal form and
the unfolded Stokes matrices are conjugate, plus a technical condition: the cocycle
giving the conjugacy is trivial. Together with limit conditions when approching the
discriminantal set, these conditions are also sufficient.

7.2 The First Six Examples

Classification theorems of the type [10] exist or are straightforward for all seven
examples. In all cases, the modulus of analytic classification is given by the formal
normal form andC(k) unfoldings of themodulus overC(k)DESdomains in parameter
space. One difficulty was to identify canonical parameters (see Sect. 7.3 below). The
realization is trickier and only done in Example 7. A partial realization is done in
the saddle-node case, under the hypothesis that the unfolding has an analytic center
manifold for all ε (see [33]). It is easy to realize unfolded moduli over each DES
domain. The difficulty is to identify the compatibility conditions that the different
unfolded moduli over the C(k) DES domains in parameter space must satisfy in order
that there exists a realization which is analytic in the parameters. For the saddle-
node of codimension k, in the particular case of an analytic center manifold, there
exists a monodromy pseudo-group and the compatibility condition is similar to that
of Example 7. Indeed, Example 7 can be rewritten in the form (7.1), which has some
similarity with the unfolding of a saddle-node with analytic center manifold.

7.3 Canonical Parameters

Showing that there exist canonical parameters for Examples 1–6 in the higher codimen-
sion case is non-trivial. In all cases, it amounts to show that the unfolding ż = Pε(z)

1+a(ε)zk

(Pε defined in (4.1)) of a parabolic singular point ż = zk+1 + o
(
zk+1

)
is universal.

The versality was proved by Kostov [15]. The universality was first proved in [32].
The precise statement is the following.

Theorem 7.2 Let� : (x, ε) = (x, ε0, . . . , εk−1) �→ (ϕε (x) , h0 (ε) , . . . , hk−1 (ε)) =
(z, h) be a germ of an analytic change of coordinates at (0, 0, · · · , 0) ∈ C

1+k . The
following assertions are equivalent:

(1) The families Xε :
(

Pε(x)

1+a(ε)xk
∂
∂x

)

ε
and X̃ε :

(
Ph(z)

1+ã(h)zk
∂
∂z

)

h
are conjugate under

�.
(2) There exist T ∈ C{ε}, and τ with τ k = 1, such that
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• ϕε (x) = �
T (ε)
Xε

◦ Rλ (x), where Rτ (x) = τ x and �
T (ε)
Xε

is the flow of Xε at
time T (ε),

• ε j = τ j−1h j (ε),
• a (ε) = ã (h (ε)).

The proof is done by infinite descent (see [32], Theorem 3.5, or [16]).

8 Perspectives

In the case of dynamical systems having simple normal forms, we encounter different
types of divergence of the normalizing changes of coordinates, for instance:

(1) k-summability. It usually occurs in 1-resonant systems, i.e., all resonance relations
are generated by one rational relation between the eigenvalues. All examples of
the paper belong to this category.

(2) Multi-summability. It occurs when studying irregular resonant singular points of
linear differential equations.

(3) Small divisors. It occurs close to an infinite number of independent resonances.

The divergence of the normalizing changes of coordinates reflects that the geometry
of the system is more complex than that of the normal form. In the case of 1-resonance
presented in this paper, this comes from the coallescence of k + 1 special “objects”.
When unfolding to separate the objects, we can generically analytically transform to
the normal form in the neighborhood of each special object and the divergence comes
from the mismatch of these local models.

The challenge is to find similar descriptions for the other cases (namely, multi-
summability and small divisors) and then to integrate all cases in a larger portrait.
Indeed, as illustrated in this paper, unfolding a singularity allows to understand the
local geometry of a system and the obstructions to the convergence of the normalizing
transformation.

The third case was already discussed above in Remark 4.3. A fixed point of a 1-
dimensional germ of diffeomorphism with multiplier e2π iα for irrational α is formally
linearizable. It is analytically linearizable if α is Diophantian, and generically non-
linearizable if α is Liouvillian. Yoccoz showed that the precise frontier is the Bruno
condition on the continued fraction of α (see [35]). He also showed that when we are
very close to the Bruno condition, there is only one mechanism which prevents lin-
earizability, namely the existence of an infinite number of periodic points. Generically,
the periodic points of period q merge with the fixed point when α is perturbed to some
close rational p

q . When α is more Liouvillian (closer to the rationals), Pérez-Marco
[23,24] showed that there exist other mechanisms preventing orbital linearizability:
the existence of a complicated invariant set, the hedgehog. The geometric studies of
(1) and (3) have been done in parallel, but would deserve more integration.

In the case of an irregular singular point of Poincaré rank k of a linear differen-
tial system, we have k-summability when the singular point is nonresonant (i.e., the
diagonal matrix has distinct eigenvalues). In the resonance case, however, we have
multi-summability of the normalizing changes of coordinates. This is a more complex
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case, which does not share the common features described in this paper. In particu-
lar, the dynamics of the vector field ẋ = Pε(x) is no more organizing the geometry.
A very interesting question is to study the geometric obstructions to convergence in
the unfoldings of some system for which the normalizing transformation is multi-
summable. Martin Klimeš (see [14]) determined the modulus of an unfolding of a
resonant irregular singular point of Poincaré rank 1 of a linear differential system of
dimension 2, but it is still premature to draw common features for the resonant case.
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