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Abstract
This is a collection of problems composed by some participants of the workshop
“Differential Geometry, Billiards, and Geometric Optics” that took place at CIRM on
October 4–8, 2021.

Keywords Area-preserving maps · Mathematical billiards · Complete integrability ·
Newtonian aerodynamics · Trapping light

B Serge Tabachnikov
sot2@psu.edu

Misha Bialy
bialy@tauex.tau.ac.il

Corentin Fierobe
corentin.fierobekoz@gmail.com

Alexey Glutsyuk
aglutsyu@ens-lyon.fr

Mark Levi
mxl48@psu.edu

Alexander Plakhov
plakhov@ua.pt

1 School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel
Aviv University, Tel Aviv, Israel

2 IST Austria, Am Campus 1, Klosterneuburg, Austria

3 CNRS (UMPA, ENS de Lyon), France and HSE University, Moscow, Russia

4 Department of Mathematics, Pennsylvania State University, State College, USA

5 Department of Mathematics, University of Aveiro, Aveiro, Portugal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40598-022-00198-y&domain=pdf
https://orcid.org/0000-0001-5398-7820


412 M. Bialy et al.

Fig. 1 The surface

γΩ

Misha Bialy

Problem 1 Let γ be a closed smooth strictly convex curve in the plane bounding a
domain �, for example, an ellipse. Consider the geodesic flow on the surface homeo-
morphic to sphere, which is a cylinder of height d with base γ , glued on the top and on
the bottom to �. On the top and the bottom of the surface the motion is along straight
lines, and on the cylindrical part along geodesics of the cylinder, see Fig. 1.

We can describe this motion as follows. Introduce arc-length coordinate s on the
curve γ and let A be the phase cylinder with the coordinates (s, α).

A line starting at γ (s) with an angle α on the top comes to the boundary with an
angle α1 at γ (s1). Then it passes to the surface of the cylinder with the same angle α1
and travels along the geodesic of the cylinder until it hits the bottom at γ (s1+d cot α1)

with the same angle α1. Next it passes to the bottom domain with the angle α1 and so
on1.

This geodesic motion can be described as a map T of the cylinder A as follows.

T : (s, α) �→ (s1 + d cot α1, α1).

This means that T is a composition of two maps, T = T2 ◦ T1, where T1 is the usual
billiard map T1 : (s, α) �→ (s1, α1) and T2 : (s, α1) �→ (s + d cot α1, α1) is the shift
of s-coordinate. Notice that T is a symplectic map of the cylinder. Notice also that if
α1 is small, then d cot α1 is a large shift. We ask

Question 1 Are there invariant curves of T ? For example, are there KAM curves near
the boundary?

Question 2 What are the shapes of γ (other than the circles) such that T is an integrable
map?

Question 3 Can T be ergodic?

Problem 2 This is an old question about the integrability of outer billiards, see [33]
for further discussions and results.

Let γ be a smooth closed strictly convex curve in the plane. Let T be the outer
billiard map acting in the vicinity of γ , see Fig. 2. The outer billiard reflection law
reads: the segment [A, T (A)] is tangent to γ at the midpoint.

1 Supported by ISF Grant 580/20.
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Fig. 2 Outer billiard

Obviously, outer billiard about an ellipse is integrable. Namely, in this case the
whole phase space is foliated by the homothetic ellipses which are invariant curves
for the outer billiard map.

Question: Are there other integrable outer billiards?
This question can be considered as analogous to Birkhoff’s conjecture (see recent

paper [9] and the references therein) for the usual billiards.

Problem 3 This problem is about Gutkin billiards on the sphere and the hyperbolic
plane.

Let γ be a smooth closed strictly convex curve in the plane, different from a circle,
and let δ ∈ (0, π/2). We say that γ has δ-Gutkin property if the curve consisting of the
incoming oriented lines with the constant angle δ is an invariant curve of the Birkhoff
billiard inside γ .

Gutkin studied those billiards in the plane [17]. Here we ask what the Gutkin
billiards are on the sphere and the hyperbolic plane. A first step was made in [3],
where infinitesimal deformations of the circle with the Gutkin property were studied.

Problem 4 Consider Birkhoff billiard inside a closed smooth strictly convex hyper-
surface S ⊂ R

d . In the case d = 2, Lazutkin proved the existence of large family of
convex caustics near S. However, for d ≥ 3, caustics may exist only for ellipsoids
[6,7,16]. Nevertheless, it still can happen that the billiard map T , acting on the space
A of all oriented lines intersecting S, leaves invariant a smooth hypersurface � ⊂ A.

It would be interesting to have an example of the billiard table (different from
ellipsoids) S ⊂ R

d having an invariant hypersurface � ⊂ A. What are geomet-
ric/dynamical properties of those �?

Problem 5 Consider a convex, smooth billiard table γ in the plane which is symmetric
with respect to a symmetry axis l. Suppose that C is a convex caustic of the billiard.
Prove, or give a counterexample, that C is necessarily symmetric with respect to l.
One can show that if a non-symmetric caustic C exists, then the rotation number of
the corresponding invariant curve must be rational. This problem appeared in [5].
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Fig. 3 Left: a convex closed curve with a field of transverse lines. Center: the so-called right-spherical
billiard which is 3-reflective. It is defined by triangular domain, and each transverse line on a side join the
opposite vertex of the triangle. Right: a 4-reflective projective billiard inside a quadrilateral. The transverse
lines join the intersection point of the latter’s diagonals

Corentin Fierobe

Problem 1 The following problem is related to a wide class of billiards, called pro-
jective billiards. They were introduced and studied by Tabachnikov [31,32].

A projective billiard in the Euclidean plane can be defined as a bounded domain
with a (piecewise) smooth boundary which is endowed with a smooth transverse line
field (see Fig. 3). Given such a domain � ⊂ R

2, whose boundary ∂� is endowed with
a transverse line field L , we define a law of reflection of oriented lines intersecting
∂� as follows: if 	 is an oriented line intersecting ∂� at a point p, we say that it is
reflected into a line 	′ intersecting ∂� at p if the four lines 	, 	′, L(p) and Tp∂� form
a harmonic quadruple, that is, if the unique non-trivial involution of the pencil of lines
containing p fixing L(p) and Tp∂� permutes 	 and 	′.

Moreover, the line 	′ is naturally oriented in the opposite direction to 	. Then, by
construction, when L(p) is orthogonal to ∂�, 	′ is given by the usual reflection law of
optics (angle of incidence= angle of reflection), and, therefore, the class of projective
billiards contains all usual billiards.

k-reflective billiards. A projective billiard is said to be k-reflective if its correspond-
ing billiard map has an open set of periodic points. Unlike the usual billiards, it is not
difficult to find examples of k-reflective projective billiards, namely for k = 3 or for
any even k ≥ 4 (see Fig. 3, and [11,12] for more precise descriptions and elemen-
tary proofs). These examples consist of projective billiards inside polygons. To our
knowledge there are no examples of k-reflective projective billiard with k ≥ 5 odd.
Therefore, we ask the following questions.

Question 1 Can one find examples of k-reflective projective billiards with k ≥ 5 odd?

Question 2 (Projective Ivrii’s conjecture): Given an integer k ≥ 4, are there other
examples of k-reflective projective billiards within a class of domains with a specific
boundary smoothness (polygonal, piecewise-algebraic or analytic, etc.)?

123



Open Problems on Billiards and Geometric Optics 415

Fig. 4 A caustic of a caustic is a
caustic

Alexey Glutsyuk

Problem 1 TheBirkhoff Conjecture concerns a bounded strictly convex planar billiard
with smooth boundary.

Suppose that some neighborhood of the boundary from the inner (convex) side is
foliated by closed caustics. The Birkhoff Conjecture states that in this case the billiard
boundary is an ellipse2.

One of the first famous results on this conjecture is due to Hillel Poritsky. In his
paper [27], where he first stated the Birkhoff Conjecture in print, he proved it under the
additional assumption that for any two nested caustics the smaller caustic is a caustic
for the billiard in the bigger caustic. See the Fig. 4.

For recent results and survey of the Birkhoff Conjecture, see [9,21,22].
Question (Konstantin Khanin, August 2019): Suppose that a bounded strictly con-

vex planar billiard has just two nested closed caustics satisfying the above condition:
the smaller caustic is a caustic for the billiard in the bigger one. Is it true that the
billiard boundary is an ellipse?

Problem 2 Consider a closed strictly convex hypersurface γ ⊂ R
n . Let 
 denote the

phase cylinder for the billiard inside the domain bounded by γ : this is the set of those
oriented lines in Rn that intersect γ transversally at two points. It is an open subset in
the space of oriented lines equipped with the standard symplectic structure.

There is an important open question stated in [26]: which symplectomorphisms can
be realized by compositions of reflections?

Question [14, Sect. 1.6]: Is it true that for every given ε > 0 and k ∈ N each C∞-
smooth Hamiltonian symplectomorphism 
 → 
 is the C∞-limit of compositions

2 Partially supported by Laboratory of Dynamical Systems and Applications, HSE University, of the Min-
istry of science and higher education of the RF Grant ag. No 075-15-2019-1931 and by RFBR and JSPS
(research project 19-51-50005).
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of reflections from the hypersurface γ and from hypersurfaces ε-close to γ in the
Ck-topology?

Remark Compositional differences of reflections from a hypersurface γ and from its
deformations were introduced in [25] and studied in [14,25]. The positive answer to
the above question was proved in [14] for compositions of not just reflections, but of
reflections and of their inverses.

The famous Ivrii’sConjecture [19] states that in every billiardwith smooth boundary
the set of periodic initial conditions for the billiard map has Lebesgue measure zero. In
particular, it implies a slightly weaker conjecture stating that no iterate of the billiard
ball map can coincide with the identity on an open subset in the space of oriented
lines.

A bit stronger version of the latter conjecture states that nowell-defined composition
of reflections from smooth germs of hypersurfaces can be equal to the identity.

Remark If in this conjecture we replace “composition of reflections” by “composition
of reflections and of inverses of reflections”, then the conjecture is false, since, for
example, the billiard ball maps in confocal ellipses commute [33, p.59, corollary 4.6],
[30, p.58].

Due to this remark, it is important to understand which symplectomorphisms of
the phase cylinder are limits of compositions of reflections, without including their
inverses.

Mark Levi

Problem 1 Consider a curve C in R2, and an ε-sized square lattice. As I translate the
curve, every time it meets a lattice point, a click sounds. Think of a line (translation
parameter λ) with points on it (the values of λwhen the curve contains a lattice point).

Question 1 Can one recover the shape of the curve given this distribution of points for
any ε > 0 (presumably only small ε are needed, of course) for the curve C? Or—an
easier question—for the curve and for all of its rotations?

This question of recovering the shape of the curve from the cloud of clicks is a
kind of a “big data” question. It involves extracting/recognizing patterns in the cloud
of indistinguishable clicks. These patters encode information about the curvature: for
example, near points with “very rational” slopes one can write asymptotics of the
distribution in terms of the curvature and the slope at the point of rational slope.

Question 2 The problem is that all these clicks are dumped on the segment; is there
a “Fourier transform” which extracts the “curvature-induced patterns from a cloud of
clicks?

Question 3 Analyze special cases of the segment; a polygon; a circle. (A trivial obser-
vation: the cloud evolves as a periodic function of the translation parameter λ, of period
ε, so only λ ∈ [0, ε] needs to be considered).
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Alexander Plakhov

Problem 1 dimension of a trapped set.

Consider a smooth flow or cascade on R
2 preserving the Lebesgue measure3,

gt : R2 → R
2, gt+s = gt ◦ gs, g0 = id, t ∈ R or t ∈ Z.

A point x ∈ R
2 is called trapped, if the positive semi-orbit {gt x, t ≥ 0} is bounded

and the negative semi-orbit {gt x, t ≤ 0} is unbounded. Let Tg ⊂ R
2 be the set of

trapped points of g. The Lebesgue measure of Tg is zero.

Question What is the maximum Hausdorff dimension of Tg?

Example Consider the flow g induced by the differential equations ẋ = −x , ẏ = y.
Here the dimension of Tg = R × {0} is 1.

Hint. The answer depends on the smoothness of g. In particular, if no smoothness
assumptions are made, the answer is as follows: the dimension of Tg for a certain
measurable cascade g is 2 (themaximumpossible value). In general, the answer should
look like this: let g be Cm in x (or in both x and t), then the maximum dimension of
Tg is d(m) (a value between 1 and 2 to be determined).

This problem arose from a similar problem for trapping sets in billiards.

Problem 1 motion in Newtonian aerodynamics.

Consider a solid body in R
2, that is, a compact domain B ⊂ R

2 with piecewise
smooth boundary, with the mass uniformly distributed in B. The total mass of B is
m > 0. Consider a uniform medium in R

2\B composed of point particles at rest.
(There are infinitely many particles of zero mass; the total mass of particles contained
in any domain D ⊂ R

2\B equals the area of D).
At the instant t = 0 the body starts the (translational and/or rotational) motion.

When colliding with the body’s boundary, the particles are reflected elastically.4

Problem:Suppose that B has a simple shape: an ellipse, a triangle, a rod B = [−1, 1]×
{0}, etc. (The trivial case when the body is a disc is excluded.) Describe the motion of
B for t ≥ 0.

Related questions: The rod B = [−1, 1] × {0} starts the rotational motion around its
center (no translation). Will the total number of turns be finite or infinite? In the latter
case, will the velocity of rotation go to zero? What is the asymptotic behavior of the
velocity as t → +∞?

More questions: A centrally symmetric body (for example, an ellipse, a square, etc.)
starts the rotational motion around its center (no translation). The same questions as
in the previous paragraph.

3 Supported by CIDMA through FCT (Fundação para a Ciência e a Tecnologia), ref. UIDB/04106/2020.
4 More precisely, let a particle hit the body at a regular point x of its boundary. One needs to take an inertial
reference system in which the point x is at rest; in this system the reflection occurs according to the familiar
billiard law.
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Fig. 5 Trap for a parallel beam of light: F is the focus of the parabolas

Problem 1 equations of motion in a rarefied medium. (This problem is closely con-
nected with the previous one.)

A body moves freely in the framework of Newtonian aerodynamics in R
n , n ≥ 1

in a rarefied medium.

Problem:Determine the equation(s) of dynamics and prove a/the theorem of existence
and uniqueness.

Particular case: n = 1. A massive point with mass 1 moves on the line in a medium
composed of identical infinitesimal particles. A motion should be defined by the triple
μt , X(t), P(t), where μt is a measure on R

2 � (x, v) describing the distribution of
particles at the instant t , and X(t) and P(t) = X ′(t) are the position and the velocity
of the massive particle at the instant t .

Serge Tabachnikov

Problem 1 Figure5 presents a trap for a planar vertical beam of light. Consider two
confocal and coaxial parabolas, and let a ray of light, parallel to the axis, enter the
domain between the parabolas through an aperture. The optical property of parabolas
imply that if this ray optically reflects from the parabolas, it will be trapped inside the
domain and will never cross the axis. See [33] for another design of a trap.

The trap in Fig. 5 can capture a parallel beam of light. The space of oriented lines L
in R2 is 2-dimensional, and a parallel beam is a curve in L. Similarly, one can design
a trap for any local 1-parameter family of rays (by first sending it to a parallel beam
by reflection in a mirror). However, the Poincaré recurrence theorem implies that one
cannot trap a 2-parameter family of rays5.

Consider the situation in R
n . Then dim L = 2n − 2, and this space carries a

natural symplectic structure. A variation of the previous construction yields a trap for
a parallel beam and, more generally, for any local normal family of rays (the rays that
are perpendicular to a hypersurface; such families comprise Lagrangian submanifolds
in L).
5 Supported by NSF Grant DMS-2005444.
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Fig. 6 A circle map

Question 1 What is the greatest dimension of a family of rays inRn that can be trapped?

Question 2 In R3, can one trap a non-normal 2-parameter family of rays?

Problem 2 Consider a planar oval γ (a smooth closed strictly convex curve) and
choose two directions, say, vertical and horizontal. We construct a map F : γ → γ

as follows. Given a point x ∈ γ , draw the line in the first direction through it until the
intersection with γ , and then draw the line in the second direction through this new
point until the intersection with γ at point y. One has F(x) = y, see Fig. 6.

This map was considered in a number of papers from different perspectives [4,13,
18,20,23,24,29].

If γ is an ellipse, then F is conjugated to a rotation for every choice of the pair of
directions.

Question 1 Is this property characteristic of ellipses?

The answer is in the affirmative if one additionally assumes that γ is centrally sym-
metric, see [34].

Let us modify the construction by replacing the two families of parallel lines by two
pencils of lines passing through points P and Q. This provides a projective version of
the previous map (where P and Q were points at infinity).

If γ is an ellipse and the line PQ is disjoint from it, the respective map F is still
conjugated to a rotation. If an oval γ has the property that for every choice of points
P and Q, such that (PQ) ∩ γ = ∅, the map F is conjugated to a rotation, then γ is
an ellipse, see [34].

However, if the line PQ intersects γ , the map F has two fixed points. If γ is an
ellipse, this map is conjugated to a Möbius (projective) transformation.

Question 2 Let an oval γ have the property that for every choice of points P and Q,
such that (PQ) ∩ γ �= ∅, the map F is conjugated to a Möbius transformation. Is it
true that γ is an ellipse?

Problem 3 A planar symplectic billiard is a dynamical system on oriented chords of
an oval given by a non-conventional reflection law depicted in Fig. 7, see [1]. Similarly
one defines polygonal symplectic billiards.

In [1,2], a number of polygons are described that have the property that all sym-
plectic billiard orbits are periodic (in particular, the affine-regular polygons and the
trapezoids have this property).
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Fig. 7 Left: the chord xy reflects to yz if the tangent line to the oval at y is parallel to xz. Right: all orbits
in this quadrilateral are periodic (with the periods equal to 20 and 36)

Fig. 8 The first three caustics by reflection in a circle

Question 1 Describe all such polygons.

Question 2 Does every polygon have a periodic orbit?

For the usual billiards, the latter is a famous problem, open even for triangles.

Question 3 Is the symplectic billiard dynamic in the stadium chaotic?

Numerically, this seems to be the case.

Problem 4 Consider an oval γ , thought of as an ideal mirror, and a source of light
inside it. The envelope of the rays of light that have undergone n reflections in γ is
called nth caustic by reflection. See Fig. 8.

One can prove that, for every oval, and the source of light in general position, all
caustics by reflection has at least four cusps, see [10].

Question 1 Is it true that each (generic) caustic by reflection in an ellipse has exactly
four cusps?

Question 2 Does the above property characterize ellipses?

These questions are related to the Last Geometric Statement of Jacobi concerning
the conjugate locus of a point on an ellipsoid, see, e.g., [28].
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Problem 5 The length spectrum of the billiard in an oval γ , that is, the set of lengths
of its periodic trajectories, is related to the spectrum of the Laplace operator with the
Dirichlet boundary condition in γ by the Poisson summation formula, see [15].

The outer billiard about an oval γ has the associated area spectrum: the set of areas of
polygons formed by the periodic outer billiard trajectories (these are the circumscribed
polygons of extremal areas). Is this area spectrum related to the spectrum of some
differential operator?

Note that, in the spherical geometry, the inner and outer billiards are related by the
spherical duality that assigns to an oriented great circle its pole (see, e.g., [33]).
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