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Abstract
Generic spherical quadrilaterals are classified up to isometry. Condition of genericity
consists in the requirement that the images of the sides under the developing map
belong to four distinct circles which have no triple intersections. Under this condition,
it is shown that the space of quadrilaterals with prescribed angles consists of finitely
many open curves. Degeneration at the endpoints of these curves is also determined.
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1 Introduction

A spherical polygon Q is a surface homeomorphic to a closed disk equipped with a
Riemannian metric of constant positive curvature 1, with n conic singularities on the
boundary, labeled a0, . . . , an−1 counterclockwise, and such that the boundary arcs
[a j , a j+1] are geodesic. The singularities a j are the corners of Q, and the boundary
arcs [a j , a j+1] are its sides.

These objects appear in several areas of recent research. One of them is the problem
of classification of spherical metrics with conic singularities on the sphere, see [2–8,
10, 15, 16, 18, 24, 26–28] and references there. In particular, [8] is a recent survey of
the known results related to such metrics. When all singularities lie on a circle on the
Riemann sphere, and the metric is symmetric with respect to that circle, the sphere
is obtained by gluing of two such polygons related by an anti-conformal isometry.
Thus spherical polygons provide an important class of examples of spherical metrics.
In fact, conditions for existence or non-existence of spherical metrics with prescribed
angles on a sphere in [27], and on tori in [4], were obtained with the help of spherical
polygons.
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Another related problem is description of real solutions of Painlevé VI equations
with real parameters [12]. In this problem, real special points (zeros, poles, 1-points and
fixed points) of a solution correspond to circular quadrilaterals. When the monodromy
of the linear equation related to the solution of Painlevé VI is unitarizable (conjugate
to a subgroup of SU (2)), these circular quadrilaterals are spherical quadrilaterals.

Complete classification of spherical triangles is known [5, 13, 23].
The structure of the set of spherical quadrilaterals with prescribed angles strongly

depends on the number of integer angles (the angles with the radianmeasure an integer
multiple of π ).

Spherical quadrilaterals with at least one integer angle have been previously classi-
fied up to isometry: when all angles are integers, in [9]; when two angles are integers
in [15]; when only one angle is integer in [17].

Spherical quadrilaterals with four half-integer angles were classified in [11]. Any
quadrilateral with such angles has two opposite sides mapped to the same circle by its
developing map.

If S is a surface with a Riemannian metric of curvature 1, then every point of S has
a neighborhood isometric to an open set of the standard unit sphere S2 ⊂ R3. This
isometry f is conformal, therefore it is analytic and permits an analytic continuation
along any path in S. If S is simply connected, we obtain a map � : S → S2 which
is called the developing map. The developing map is defined by the metric up to a
composition with a rotation of S2.

Conversely, if� is a disk in the complex plane, and � : � → C a locally univalent
meromorphic function such that �(z) ∼ c j (z − a j )

α j , 0 ≤ j ≤ n − 1 at n boundary
pointsa j , and the arcs�([a j , a j+1]) belong to great circles inC, then� is a developing
map of a spherical quadrilateral with angles πα j . The metric on � is recovered by the
formula for its length element ds = 2|�′|/(1 + |�|2).

We call Q a spherical quadrilateral (resp., triangle, digon) if n = 4 (resp., n = 3,
n = 2). For convenience, we often drop “spherical” and refer simply to polygons
(quadrilaterals, triangles, digons).

If a spherical polygon Q has a removable corner with the angle 1, the metric
on Q is non-singular at such a corner, thus Q is isometric to a polygon with fewer
corners. However, we allow polygons with removable corners, since they may appear
as building blocks of other polygons.

In this paper, we consider classification of generic spherical quadrilaterals, with
the sides mapped to four generic (distinct, no triple intersections) great circles of
the Riemann sphere S (although circle configurations with triple intersections will be
considered in Sect. 5). All angles of a generic spherical quadrilateral are non-integer.
The four circles define a partitionP ofSwith eight triangular faces and six quadrilateral
faces, such that each edge of P separates a triangular face from a quadrilateral one.
This partition is combinatorially equivalent to the boundary of the convex hull of
midpoints of the edges of a cube in R3 (see Fig. 2). Two planar projections of the
partition P are shown in Fig. 1.

Preimage of P defines a net of a quadrilateral Q: a cell decomposition of Q con-
sidered up to a label-preserving homeomorphism, so it is a combinatorial object (see
Definition 2.1). Preimage of each of the circles is the subset of the net consisting of
arcs, simple paths with the ends at vertices of the net, that may contain corners of Q
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Fig. 1 Partition P of the Riemann sphere S by four great circles

Fig. 2 Surface of the convex hull
of midpoints of the edges of a
cube, combinatorially equivalent
to the partition P of S

only at their ends. Each side of Q is a boundary arc of its net. An arc which is not a
side of Q is an interior arc. An interior arc with two ends at distinct corners of Q is a
diagonal arc. Note that a diagonal arc of a spherical quadrilateral may have its ends at
two adjacent corners. An arc is a loop if it has both ends at the same vertex of the net.
A quadrilateral is irreducible if its net does not contain a diagonal arc. Note that an
arc of a generic spherical quadrilateral may have both ends at its adjacent corners but
not at its opposite corners (see Lemma 2.11). An irreducible quadrilateral is primitive
if its net does not contain a loop (Fig. 2).

For example, Fig. 1b can be interpreted as a net of a generic spherical quadrilateral
Q obtained by removing from S an open quadrilateral face of the partition P . Each
circle in Fig. 1b consists of two arcs, a side of Q and a diagonal arc with the ends
at two adjacent corners of Q. Thus Q is not irreducible. The net of Q does not have
loops. A net of an irreducible but not primitive generic spherical quadrilateral P1 is
shown in Fig. 3. It contains a pseudo-diagonal consisting of four loops. Removing two
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quadrilateral faces puqx and pvqw from the net of P1, we get a net of the quadrilateral
Q. Both faces puqx and pvqw of P1 are mapped to the same quadrilateral face of P .
The edges of the net of P1 in Fig. 3 (and the edges of the nets of quadrilaterals shown
in other figures) have four colors (styles) indicating preimages of the four circles of
the partition P .

Classification of generic quadrilaterals is done as follows: We start with four basic
quadrilaterals (see Fig. 13), then build all primitive quadrilaterals using side extensions
in Sect. 3 (see Figs. 14, 15, 16, 17). After that, irreducible quadrilaterals are obtained
by replacing the quadrilateral face of the net of a primitive quadrilateral containing
two opposite corners in its boundary (at most one such face exists) with one of the
quadrilaterals Pμ (μ = 1, 2, . . .) (seeDefinition 2.5). Finally, all generic quadrilaterals
are obtained in Sect. 4 by attaching digons to short (shorter than the full circle) sides
of irreducible quadrilaterals (see Theorem 4.1).

Conditions on the fractional parts of the angles of spherical quadrilaterals with a
given net define a pyramid � in the unit cube ofR4 (see Proposition 5.2) or a pyramid
obtained from � by replacing some of the angles by their complementary angles.
These conditions are compatible with the closure condition in [27] that implies that,
for the existence of a generic quadrilateral with the fractional parts (α, β, γ, δ) of the
angles, and with even (resp., odd) sum of the integer parts, the distance d1 between
the point (α, β, γ, δ) and the odd (resp., even) integer lattice must be greater than 1.
In fact, the union of � and all pyramids obtained from � by taking an even number of
complements coincides with the 4-dimensional cross-polytope (also known as 16-cell
or co-cube) which contains all points in the unit cube ofR4 at the distance d1 > 1 from
the odd integer lattice, other than the point ( 12 ,

1
2 ,

1
2 ,

1
2 ) corresponding to a spherical

rectangle. It was shown in [11] that a spherical rectangle cannot be generic: two of its
opposite sides are mapped to the same circle.

In Sect. 5 we consider chains of spherical quadrilaterals and their nets. If all four
angles of a generic spherical quadrilateral Q are fixed, quadrilaterals with the same
net 
 as Q constitute a one-parametric family (an open segment) I
 in the space of
all spherical quadrilaterals. An important function on this family is the modulus K of
the quadrilateral. Every conformal quadrilateral can be mapped conformally onto a
rectangle, so that the corners (a0, . . . , a3) correspond to the corners of the rectangle
(0, 1, 1+ i K , i K ), where K > 0 is the modulus. We say that a sequence (or a family)
of quadrilaterals conformally degenerates if K tends to 0 or ∞.

Unlike quadrilaterals with at least one integer angle considered in [9, 15–17], differ-
ent generic quadrilaterals in I
 are mapped to conformally non-equivalent four-circle
configurations. Six angles between four great circles satisfy a single relation. Only four
angles are fixed in I
 as fractional parts of the angles of a quadrilateral. This leaves
a “fifth angle” (the angle between the circles corresponding to the opposite sides of a
quadrilateral) that is not fixed in I
 . The main results of Sect. 5 are conditions on the
“fixed” angles of a four-circle configuration that allow it to be deformed to a configu-
ration with a triple intersection (Proposition 5.3) and relations between the fractional
parts of the angles of a quadrilateral and the angles of the corresponding four-circle
configuration, depending on the net of a quadrilateral (Propositions 5.9, 5.10).

At the ends of the segment I
 , a quadrilateral may conformally degenerate, or
converge to a spherical quadrilateral with a non-generic four-circle configuration
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Classification of Generic Spherical Quadrilaterals 155

containing a triple intersection, or else, after appropriate conformal transformations,
converge to a non-spherical (circular) quadrilateral with a four-circle configuration
which is not conformally equivalent to a spherical one. In the second case, the segment
I
 can be extended beyond the quadrilateral with a non-generic four-circle configura-
tion to a segment I
′ of generic quadrilaterals with a different net
′. Amaximal family
of spherical quadrilaterals obtained by such extensions is called a chain of quadrilat-
erals, and the sequence of nets of such family is called a chain of nets (see Definition
5.13). Any chain contains quadrilaterals with finitely many nets. It is an open seg-
ment in the space of spherical quadrilaterals, and the quadrilaterals at its ends either
conformally degenerate or converge to non-spherical quadrilaterals beyond which the
chain cannot be extended. The chains of generic spherical quadrilaterals depend not
only on their nets but also on some inequalities between the fractional parts of their
angles. This makes counting the chains of generic quadrilaterals much harder than
counting the chains of the quadrilaterals with at least one integer angle considered in
[15–17]. As an example, Propositions 5.21 and 5.22 describe different possibilities
for the chains of quadrilaterals with nets Xkl and X ′

pq , depending on the integer and
fractional parts of their angles.

The length of a chain of quadrilaterals is the non-negative number of “links” in it
corresponding to four-circle configurations with triple intersections. Thus the number
of nets in a chain is greater by one than its length. If the quadrilaterals conformally
degenerate in the limits at both ends of a chain, the two degenerations are either of
the same or of the opposite kind, depending on the parity of the length of the chain. If
the length of a chain is even (for example, if all quadrilaterals in a chain of length 0
have the same net) then the modulus K of the quadrilaterals in that chain converges to
distinct values 0 and ∞ at the two ends of the chain. In that case, the chain contains at
least one quadrilateral with each value K > 0 of the modulus. If the length of a chain
is odd, the modulus K of the quadrilaterals in that chain converges to the same value
(either 0 or ∞) at both ends of the chain. In that case, the chain contains at least two
quadrilaterals with either sufficiently small or sufficiently large values of the modulus
K . Thus classification of the chains of quadrilaterals allows one, in principle, to obtain
lower bounds for the number of quadrilaterals with the given angles and modulus, and
to count quadrilaterals with the given angles and either small enough or large enough
value of the modulus. This is a hard combinatorial problem, which is not addressed
in this paper. Note that, according to Lemma 3.2, if the angles at three corners of a
quadrilateral Q are less than 1, then the net of Q is of one of the types X , X ′, X̄ , X̄ ′.
Thus Propositions 5.21 and 5.22 provide the answer for such quadrilaterals.

When the fractional parts of the angles of quadrilaterals with a given net 
 satisfy
an additional equality (see Remark 5.4) then a family I
 of spherical quadrilaterals
may degenerate at one end of the segment I
 so that the modulus converges to a finite
positive value. Applying an appropriate family of linear-fractional transformations
to the sphere, one can replace the family of four-circle configurations to which the
family I
 is mapped by a conformally equivalent family of configurations of four
not necessarily great circles, converging to a configuration with a single quadruple
intersection (see Fig. 31), so that the corresponding family of circular quadrilaterals
would be converging to a non-degenerate circular (non-spherical) quadrilateral (see
Example 5.15; Fig. 35). This phenomenon was observed in [11, 14, 25, 28]. Note that
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in all previously considered cases the angles were half-integer, while there is a single
equality satisfied by the angles of the quadrilaterals in Example 5.15. This equality is
compatible with the non-bubbling condition in [28] (see also [8]).

The author thanksAlexandre Eremenkowho opened to him the fascinatingworld of
spherical polygons and spherical metrics with conical singularities. He explained that,
although generic spherical triangles were classified by Felix Klein in the beginning of
the past Century, classification of generic spherical quadrilaterals remained an open
problem and asked whether it could be solved using the nets, a technique developed in
[9]. After almost 10 years after that conversation, a (partial) answer to his question is
presented in this paper. The author is grateful to Prof. Eremenko and the anonymous
referees for suggesting numerous improvements to this text.

2 Generic Quadrilaterals and Their Nets

Definition 2.1 Let Q be a generic spherical quadrilateral with the sidesmapped to four
circles of a partitionP of the sphereS. Preimage ofP defines a cell decomposition
 of
Q, called the net of Q. The vertices, edges and faces of 
 are connected components
of the preimages of vertices, edges and faces of P . For simplicity, we call them
vertices, edges and faces of Q. The net 
 has the same types of faces (triangles and
quadrilaterals) as the partition P , with the same adjacency rules: if two faces of 


have a common edge then one of them is a triangle and another one a quadrilateral.
The corners of Q are vertices of its net
. The order of a corner p of Q is the integer

part of the angle of Q at p. Since the angle of Q at p is not integer and the four-circle
configuration does not have triple intersections, the two sides of Q adjacent to p map
to two different circles, thus the degree of a corner as a vertex of 
 is even. In addition,
the net 
 of Q may have interior vertices of degree 4 and lateral vertices (on the sides
but not at the corners) of degree 3.

The order of a side L of Q is the number of edges of 
 in L . The union of three con-
secutive edges on the same circle ofP is a half-circle with both ends at the intersection
of the same two circles of P . Since the opposite sides of Q are mapped to different
circles, corners at the ends of each of its side cannot be mapped to intersection of
the same two circles; thus the order of a side of a generic quadrilateral Q cannot be
divisible by 3. A side of Q is short (shorter than a full circle) if its order is less than
6, and long otherwise.

Two spherical polygons Q and Q′ are combinatorially equivalent if there is an
orientation preserving homeomorphism Q → Q′ mapping the corners a j of Q to the
corners a′

j of Q
′ and the net 
 of Q to the net 
′ of Q′.

Definition 2.2 Let Q be a generic spherical quadrilateral with the sidesmapped to four
circles of a partition P and the net 
. If C is a circle of P, then the intersection 
C

of 
 with the preimage of C in Q is called the C-net of Q. All interior vertices of 
C

have degree two. A C-arc of the net of Q (or simply an arc when C is not specified)
is a simple path in 
C with the ends at vertices of 
, which may have corners of Q
only at its ends. The order of an arc is the number of edges in it. An arc is a loop if it
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is a closed path. An arc γ of Q is lateral if it is a subset of a side of Q. Otherwise, γ
is an interior arc. An arc is maximal if it cannot be extended to a larger arc.

A diagonal arc is an interior arc of Q with both ends at distinct corners of Q. A
spherical quadrilateral Q is irreducible if it does not have a diagonal arc. An irreducible
quadrilateral is primitive if it does not contain a loop.

2.1 Quadrilaterals P� and Pseudo-Diagonals

Lemma 2.3 Let Q be an irreducible spherical quadrilateral that contains a loop γ .
Then γ has a vertex at a corner of Q.

Proof If all vertices of γ are interior vertices of Q, then γ bounds a disk D inside
Q which is mapped one-to-one onto a disk in the sphere S bounded by a circle C of
the partition P , and γ maps one-to-one onto C . Since all vertices of γ are interior
vertices of the net 
 of Q, the faces of 
 adjacent to γ map one-to-one to the faces of
P adjacent to C . The union of D and all these faces is a spherical triangle T which
maps one-to-one to the complement of a triangular face of the partitionP (see Fig. 1a).
Note that the corners of T cannot be lateral vertices of 
 since they have degree 4. If
a corner of T is an interior vertex of 
, then 
 must have a triangular face completing
the image of T to the full sphere. Since Q is not a sphere, this is possible only when
the other two corners of T are corners of Q. Since any two corners of T are connected
by an interior arc, Q is not irreducible, a contradiction. �	
Lemma 2.4 Let Q be an irreducible spherical quadrilateral that contains a loop γ .
Then Q contains a quadrilateral combinatorially equivalent to the quadrilateral P1
shown in Fig. 3.

Proof According to Lemma 2.3, the loop γ has a vertex p on the boundary of Q. It
cannot be a lateral vertex (otherwise γ would be a side of Q); thus p is a corner of
Q. Since Q is irreducible, all other vertices of γ must be interior vertices of the net

 of Q. The loop γ bounds a disk D ⊂ Q mapped one-to-one to a disk bounded by
a circle C of P . Thus 
 must contain the union of D and six more faces adjacent to
γ outside D, which is the quadrilateral G with corners p, u, q, b shaded in Fig. 3.
Since b is connected to p by an interior arc, it cannot be a corner of Q. Also, b cannot
be a lateral vertex of 
 since its degree is greater than 3. Thus b is an interior vertex,
and 
 contains a triangular face with vertices b, q, v. Similarly, v cannot be a corner
of Q, as it is connected to p by an interior arc. Thus v is an interior vertex, and 


contains a quadrilateral face with vertices p, v, q, w. This implies that Q contains
the quadrilateral P1 with corners p, u, q, w shown in Fig. 3, completing the proof of
Lemma 2.4. Note that vertices p and q of P1 must be opposite corners of Q. �	

Definition 2.5 Starting from the quadrilateral P1 shown in Fig. 3, we define a sequence
Pμ of non-primitive irreducible quadrilaterals as follows: All sides of Pμ have order
1. Two opposite corners p and q of Pμ have order 2μ, and two other corners have
order 0. The net of Pμ contains μ + 1 quadrilateral faces having both p and q as their
opposite vertices. These faces are separated by μ “pseudo-diagonals,” each consisting
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Fig. 3 The net of the quadrilateral P1 with corners p, u, q, w

of four loops, two of them having a common vertex p and another two a common
vertex q. For μ ≥ 1, the quadrilateral Pμ+1 is obtained by replacing any one of these
μ + 1 faces of Pμ by the quadrilateral P1.

For convenience, we define P0 to be a spherical quadrilateral which maps one-to-
one to a single quadrilateral face of the partition P .

2.2 Spherical Digons

A spherical digon D has two corners with equal angles, whichmay be integer and even
removable, and two short sides. Since the boundary of D consists of arcs of at most
two circles, geometrically (up to conformal equivalence) D is completely determined
by the angles at its corners. (See [15], Theorem 4.1.) However, since we need spherical
digons as building blocks of spherical quadrilaterals, we define their nets as preimages
of all four circles of the partition P . The following Lemma provides classification of
combinatorially distinct irreducible spherical digons:

Lemma 2.6 There are three combinatorially distinct types of irreducible digons: D15,
D24 and D33 (see Figs. 4, 5 and 6). Digons D15 and D24 have integer corners of order
1. Digon D33 has non-integer corners of order 0. There are two sorts, Da

15 and Db
15,

of digons D15 (see Fig. 4). Their nets have reflection symmetry. There are two sorts,
Da
24 and Db

24, of digons D24 (see Fig. 5). Their nets are reflection symmetric to each
other. There are two sorts, Da

33 and Db
33, of digons D33 (see Fig. 6). Their nets have

two reflection symmetries.

123



Classification of Generic Spherical Quadrilaterals 159

Fig. 4 Irreducible digons of type D15

Fig. 5 Irreducible digons of type D24

Proof Let D be an irreducible digon with the corners p and q, and the sides L and
L ′. Then L and L ′ map to some circles C and C ′ of the partition P (possibly, to the
same circle). If the equal angles at the corners of D at p and q are non-integer then
C ′ �= C , and D is a digon of a partition of S by the two circles C and C ′. Since D is
irreducible, it is either Da

33 or D
b
33, with the face of the net of D adjacent to its corner

being a quadrilateral or a triangle, respectively.
If the angles at the corners of D are integer then C ′ = C , D maps one-to-one onto

a disk D bounded by C , and, since D is irreducible, the images of p and q are two
vertices of the partition P on C which are not connected by an interior arc. Thus D is
one of the digons Da

15, D
b
15, D

a
24, D

b
24. �	

Theorem 2.7 Any spherical digon D is a union of k > 0 irreducible digons of the
same type with common vertices, glued together along their common sides. The type
of irreducible digons in D is called the type of D. A digon D15 can be only glued
to a digon D15 of a different sort. A digon D24 can be only glued to a digon D24 of
the same sort. A digon D33 can be only glued to a digon D33 of a different sort. The
corners at both vertices of D have order k if its type is D15 or D24, and [k/2] if its
type is D33.
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Fig. 6 Irreducible digons of type D33

The proof is an easy exercise. Sometimes it is convenient to allow k = 0 in Theorem
2.7, to denote an empty digon.

Remark 2.8 Note that a generic quadrilateral Q cannot contain a digon D of type D33
having both corners at the corners of Q, since the same two circles intersect at both
corners of D.

2.3 Spherical Triangles

A spherical triangle has its sides on at most three circles, and classification of such
triangles goes back toKlein (see also [17, Section6]). Sinceweneed spherical triangles
as building blocks of generic spherical quadrilaterals, we consider only spherical
triangles with all sides mapped to some circles of the partition P and all corners
mapped to intersection points of the circles of P . All irreducible spherical triangles
are primitive, and can be classified as follows: Triangle Tn (see Fig. 7a) has an integer
corner of order n and two non-integer corners of order 0. The angles at its non-integer
corners are equal when n is odd and complementary (adding up to 1) when n is even.
Triangle En (see Fig. 7b) has a non-integer corner of order n and two non-integer
corners of order 0.

Remark 2.9 Figure 7 does not show preimages of the fourth circle ofP (which does not
pass through any corners of a triangle).Wewill need these preimages to understand the
nets of generic quadrilaterals obtained by attaching triangles to basic quadrilaterals. In
particular, the triangle T1 geometrically is a digon D33 (see Fig. 6) with one of the side
vertices of the net of D33 being the integer corner of T1. Figures 8 and 9 show possible
nets for triangles T1 and E1, respectively, with the preimages of all four circles of P
included. Note that the net of Tn always has an edge connecting its integer corner with
its base (the side opposite to its integer corner). This property will be important for
understanding the chains of quadrilaterals later in this paper.
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Fig. 7 Irreducible triangles Tn and En

Fig. 8 Nets for a triangle T1

Fig. 9 Nets for a triangle E1

2.4 Interior Arcs of Generic Spherical Quadrilaterals

An arc γ of a spherical quadrilateral Q was defined (see Definition 2.2) as a simple
path in the preimage 
C in Q of a circle C of the partition P , with the corners of Q
allowed only at the ends of γ . An arc is interior if it does not belong to a side of Q. It
follows from Theorem 2.12 below (see Remark 2.14) that an interior arc of a generic
quadrilateral Q cannot have both ends at the lateral vertices on the opposite sides of
Q.
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Definition 2.10 An interior arc γ of a spherical quadrilateral Q is one-sided if both
ends of γ are on the same side of Q, and at least one of them is not a corner of Q.
If the ends of γ are lateral vertices on two adjacent sides of Q, it is two-sided. If one
end of γ is a corner p of Q, and another end is a lateral vertex on the side of Q not
adjacent to p, it is a separator. A separator arc partitions Q into a quadrilateral and a
triangle.

Lemma 2.11 The net of a generic quadrilateral Q does not contain an arc with the
ends at two opposite corners of Q.

Proof Let γ be an arc of the net of Q, and let C be a circle of P such that γ belongs to
the preimage of C . Since the sides of Q map to four distinct circles, only one of two
opposite corners of Q belongs to the preimage of C . Hence γ cannot have the ends at
two opposite corners of Q. �	

The opposite is also true: if a spherical quadrilateral Q with all non-integer corners
has two opposite sides mapped to the same circle then the net of Q, defined as the
preimage of the partition T of the Riemann sphere S by the three great circles to which
the sides of Q aremapped, contains an interior arcwith the ends at two opposite corners
of Q. This follows from a more general statement about spherical polygons over a
three-circle partition of the sphere (see [11, Theorem 2.2]).

Theorem 2.12 Let T be a partition of the Riemann sphere S by three distinct great
circles. Let Q be a spherical n-gon having each side mapped to one of the circles of
T , and all corners mapped to vertices of T . If n > 3, then the net of Q, defined as the
preimage of the partition T , contains an interior arc with the ends at two non-adjacent
corners of Q.

Remark 2.13 Note that a quadrilateral Q with all non-integer corners cannot have all
sides mapped to only two circles. Due to Theorem 2.12 such a quadrilateral would be
a union of two spherical triangles with all corners at the corners of Q. Each of these
triangles would have an integer corner, but a spherical triangle with an integer corner
p cannot have p at the intersection of the two circles to which its sides are mapped.

Remark 2.14 Theorem 2.12 implies that a generic spherical quadrilateral Q cannot
have an interior arc γ with the ends at lateral vertices on opposite sides of Q. Such an
arc would partition Q into two quadrilaterals, one of them having all sides mapped to
three circles (since one of the sides of Q maps to the same circle ofP as γ ). According
to Theorem 2.12, such a quadrilateral has an interior arc with the ends at its opposite
corners. This is impossible since both corners adjacent to its side γ have order 0.

Lemma 2.15 . Let γ be a two-sided arc of a generic irreducible quadrilateral Q with
the ends a and b on the sides of Q adjacent to its corner p. Then p has order 0.

Proof We prove the statement by contradiction, assuming that the corner p has order
1 (the case of a corner with order greater than 1 can be treated similarly). Then Q
contains an irreducible triangle E1 (see Figs. 7b, 9) with the vertices p, a, b, bounded
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Fig. 10 Illustration for the proof of Lemma 2.15

by γ and the two sides of Q adjacent to p. There are two interior arcs of Q, say α

and β, both with one end at p, such that α is mapped to the same circle of P as the
side ap of E1, and β is mapped to the same circle as its side bp. Figure 9 shows four
possibilities for the net of E1. We consider two cases (see Fig. 10a, b) corresponding
to the nets in Fig. 9a, c. Note that the net in Fig. 9d is reflection symmetric to that in
Fig. 9c, and the net in Fig. 9b is obtained from Fig. 10a by exchanging the arcs γ and
δ (see Fig. 10c).

Let F be the face of the net 
 of Q adjacent to p and bounded by the arcs α and β.
In Fig. 10a the face F is a triangle and the faces of 
 adjacent to F are quadrilaterals,
so there should be an interior arc δ at the boundary of each of these faces, mapped to a
circle of P other than those for α, β and γ . Note that vertices c and d of δ are interior
vertices of 
: they cannot be corners of Q since they are connected to p by interior
arcs. For the same reason the intersection point e of α and β should be an interior
vertex of 
. Thus 
 should contain a face G bounded by the side of Q extending ap
and segments of γ , δ, β, α, and a face H bounded by the side of Q extending bp
and segments of γ , δ, α, β (see Fig. 10a). This is a contradiction: a side of Q and an
interior arc mapped to the same circle cannot belong to the boundary of the same face
of 
. The same arguments apply to the case shown in Fig. 10c where the arcs γ and
δ are exchanged. Note that at least one end of the arc δ in Fig. 10c is not a corner of
Q, since Q is irreducible.

In Fig. 10b, the face F is a quadrilateral. The same arguments as before show that

 should contain a face G bounded by the side of Q extending ap and segments of
γ , δ, β and α. This is a contradiction: a side of Q and an interior arc α mapped to the
same circle cannot belong to the boundary of the same face G. �	

Lemma 2.16 . Let γ be a two-sided arc of a generic irreducible quadrilateral Q, with
the ends on the sides of Q adjacent to its corner p. Then one of the sides of Q adjacent
to p has another end at a corner q of Q of order at least 1. The net 
 of Q has a face
H adjacent to q, such that the boundary of H contains segments of two separator arcs
with a common end at q .

Proof According to Lemma 2.15, the corner p of Q has order 0, thus there is a unique
face F of 
 adjacent to p, which may be either triangular or quadrilateral.

If F is a triangle (see Fig. 11a), then γ is a side of F . Let G be the quadrilateral
face of 
 adjacent to γ from the other side. Then the boundary α of G opposite to γ
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Fig. 11 Illustration for the proof of Lemma 2.16

has both ends on the sides of Q adjacent to p. The same arguments as in the proof of
Lemma 2.15 show that α cannot be a two-sided arc; thus α has one end at a corner q
of Q. Since Q is irreducible, the other end of α cannot be a corner of Q; thus α is a
separator arc. Note that q cannot have order 0; otherwise α would be a side of Q, and
Q would be a triangle. Thus the order of q is at least 1, and 
 contains a triangular
face H adjacent to q and bounded by a side of Q and two separator arcs α and β.

If F is a quadrilateral (see Fig. 11b) then one of its boundary edges belongs to γ ,
and the triangular face G of 
 on the other side of γ is bounded by a side of Q and the
edges of arcs γ and α. Note that α cannot be a two-sided arc of
. If it were a two-sided
arc, the quadrilateral face H of 
 on the other side of α would have two boundary
arcs (other than γ and α) belonging to two sides of Q adjacent to p, intersecting at
a vertex of H . This is impossible, since the sides of Q adjacent to p do not intersect
at any other point. Thus the end q of α is a corner of Q, and both arcs α and β at the
boundary of H are separator arcs. �	
Lemma 2.17 Let γ be a one-sided arc of a generic primitive quadrilateral Q, with the
ends a and b on a side L of Q. Then there are two separator arcs of the net 
 of Q
with a common end at a corner p of Q and the other ends inside the segment (a, b)
of L. If both a and b are not corners of Q then the order of p is greater than 1.

Proof Since the endpoints a and b of γ belong to the intersection of the same two
circles, there are two lateral vertices of
 inside the segment (a, b) of L , corresponding
to the intersections of L with preimages of two circles of P other than those to which
L and γ are mapped. Let α and β be interior arcs of 
 with endpoints at the two
vertices inside (a, b). The face F of 
 bounded by the arcs α and β is either a triangle
(see Fig. 12a) or a quadrilateral (see Fig. 12b).

If F is a triangle then the faces G and H of 
 adjacent to a and b outside γ

are triangular; thus the edges of arcs α and β outside γ (with endpoints c and d,
respectively) must have other ends mapped to the same circle as L . This is impossible
since the face I of 
 (see Fig. 12a) cannot have two disjoint segments mapped to the
same circle in its boundary. This argument holds also when either a or b is a corner
of Q.

If F is a quadrilateral then the arcs α and β intersect at a point p outside γ . Note
that p cannot be a lateral vertex since both cp and dp are interior edges of 
. If p
were an interior vertex of 
, the edges of arcs α and β beyond p would have their
other ends mapped to the same circle as L , which is impossible for the same reason
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Fig. 12 Illustration for the proof of Lemma 2.17

as when F a triangle. Thus p must be a corner of Q. If both a and b are not corners of
Q, then p cannot have order 1. Otherwise, the boundary edges of G and H opposite
γ would be two sides of Q, each of them having one end at p and the other end on
the side L of Q, thus Q would be a triangle, a contradiction. �	
Corollary 2.18 Let Q be a generic quadrilateral with all four angles of order 0. Then
the net of Q does not have interior arcs.

Proof Note that Q is primitive and cannot have separator arcs. It follows fromLemmas
2.16 and 2.17 that Q cannot have two-sided or one-sided arcs. �	

3 Classification of Nets of Primitive and Irreducible Quadrilaterals

In this section, Q is a primitive (see Definition 2.2) generic spherical quadrilateral. It is
shown below that Q has at least two corners of order 0. We order corners (a0, . . . , a3)
of Q so that the order of a0 is 0, and the sum of orders of a0 and a2 does not exceed
the sum of orders of a1 and a3.

3.1 Extension of a Side

Let p be a corner of Q of order 0, with the angle α < 1. Let L and M be two sides of
Q adjacent to p. Suppose that M has order at most 2, and let q be the corner of Q at
the other end of M . Then we can attach to Q a spherical triangle Tn with an integer
corner at q and two other corners at p and p′, so that the side [p, q] of Tn is common
with the side M of Q, and the base [p, p′] of Tn is extending L beyond p. The union
of Q and Tn is a primitive spherical quadrilateral Q′ with the side L ′ = L ∪ [p, p′],
and the angle at its corner p′ equal α if n is even and 1 − α if n is odd. We call this
operation extension of the side L of Q beyond its corner p. Note that extending L ′
beyond p′ by attaching a triangle Tm to Q′ is the same as a single extension attaching
a triangle Tn+m to Q.
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Fig. 13 Basic primitive quadrilaterals and their nets

Theorem 3.1 Every generic primitive quadrilateral Q can be obtained from one of
the basic quadrilaterals P0, X ′

00, X̄
′
00 and Z ′

00 (see Fig. 13) by at most two extension
operations.

Proof of Theorem 3.1 will be given at the end of this section. It implies that the nets
of all primitive quadrilaterals belong to the following list (see Figs. 14, 15, 16 and 17
where the basic quadrilateral is shaded):
Type X . A quadrilateral Xkl for k, l ≥ 0 and k + l ≥ 1 (see Fig. 14) can be obtained
by attaching triangles Tk and Tl to adjacent sides of the basic quadrilateral P0. When
either k = 0 or l = 0, only one triangle is attached. The quadrilateral Xkl has one
corner of order k + l, the other three corners being of order 0. A quadrilateral X̄kl is
reflection-symmetric (preserving opposite corners of order 0) to Xkl .
Type X ′. A quadrilateral X ′

kl for k, l ≥ 0 (see Fig. 14) can be obtained by attaching
triangles Tk and Tl to adjacent sides of the basic quadrilateral X ′

00 so that Tk and Tl
have a common vertex at the corner of X ′

00 of order 1. The quadrilateral X
′
kl has one

corner of order k + l + 1, the other three corners being of order 0. A quadrilateral X̄ ′
kl

is reflection-symmetric (preserving opposite corners of order 0) to X ′
kl .

Type Z . A quadrilateral Zkl for k, l ≥ 0 and k + l ≥ 1 (see Fig. 15) can be obtained
by attaching triangles Tk and Tl to adjacent sides of the basic quadrilateral X̄ ′

00 so that
Tk and Tl have a common vertex at the corner of X̄ ′

00 opposite to its corner of order 1.
When either k = 0 or l = 0, only one triangle is attached. The quadrilateral Zkl has
opposite corners of orders k+ l and 1, the other two opposite corners being of order 0.
A quadrilateral Z̄kl is reflection-symmetric (preserving the corners of order 0) to Zkl .
Type Z ′. A quadrilateral Z ′

kl for k, l ≥ 0 (see Fig. 15) can be obtained by attaching
triangles Tk and Tl to adjacent sides of the basic quadrilateral Z ′

00 so that Tk and Tl
have a common vertex at a corner of Z ′

00 of order 1. The quadrilateral Z
′
kl has opposite

corners of orders k+l+1 and 1, the other two corners being of order 0. A quadrilateral
Z̄ ′
kl is reflection-symmetric (preserving the corners of order 0) to Z ′

kl .
Type R. A quadrilateral Rkl for k ≥ l ≥ 1 (see Fig. 16) can be obtained by attaching
triangles Tk and Tl to opposite sides of the basic quadrilateral P0 so that both triangles
extend the same side of P0. The quadrilateral Rkl has adjacent corners of orders k and
l, the other two corners being of order 0. A quadrilateral R̄kl is reflection-symmetric
(preserving the corners of order 0) to Rkl .
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Fig. 14 Quadrilaterals of types Xkl , X̄kl , X
′
kl and X̄ ′

kl

Type S. A quadrilateral Skl for k ≥ l ≥ 1 (see Fig. 16) can be obtained by attaching
triangles Tk−1 and Tl (or Tk and Tl−1) to opposite sides of the basic quadrilateral
X ′
00, so that both triangles extend the same side of order 2 of X ′

00. The quadrilateral
Skl has adjacent corners of orders k and l, the other two corners being of order 0. A
quadrilateral S̄kl is reflection-symmetric(preserving the corners of order 0) to Skl .
Type U . A quadrilateral Ukl for k, l ≥ 1 (see Fig. 17) can be obtained by attaching
triangles Tk and Tl to opposite sides of the basic quadrilateral P0, so that Tk and Tl have
vertices at the opposite corners of the quadrilateral P0 and extend its opposite sides.
The quadrilateral Ukl has opposite corners of orders k and l, the other two corners
being of order 0. A quadrilateral Ūkl is reflection symmetric (exchanging the opposite
corners of order 0) to Ukl .
Type V . A quadrilateral Vkl for k ≥ 1, l ≥ 2 (see Fig. 17) can be obtained by attaching
triangles Tk and Tl−1 to opposite sides of the basic quadrilateral X̄ ′

00, so that Tl−1 has
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Fig. 15 Quadrilaterals of types Zkl , Z̄kl , Z
′
kl and Z̄ ′

kl

its vertex at the corner of order 1 of X̄ ′
00, and Tk has its vertex at the opposite corner. The

quadrilateral Vkl has opposite corners of orders k and l, the other two corners being of
order 0. A quadrilateral V̄kl is reflection symmetric (exchanging the opposite corners
of order 0) to Vkl . A quadrilateral V ′

kl is rotation symmetric to Vlk . A quadrilateral V̄ ′
kl

is reflection symmetric (exchanging the opposite corners of order 0) to V ′
kl .

Type W . A quadrilateral Wkl for k, l ≥ 2 (see Fig. 17) can be obtained by attaching
triangles Tk−1 and Tl−1 to opposite sides of the basic quadrilateral Z ′

00, so that Tk−1
and Tl−1 have vertices at the opposite corners of order 1 of Z ′

00 and extend its opposite
sides. The quadrilateral Wkl has two opposite corners of orders k and l, the other two
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Fig. 16 Quadrilaterals of types Rkl , R̄kl , Skl and S̄kl

corners being of order 0. A quadrilateral W̄kl is reflection symmetric (exchanging the
opposite corners of order 0) to Wkl .

Note that an extended side of a quadrilateral has order greater than 3. It is short (of
order less than 6) only when extended by a single triangle T1. Quadrilaterals of types
R and S have one extended side. Quadrilaterals of types X , X ′, Z , Z ′ have either one
extended side or two adjacent extended sides. Quadrilaterals of types U , V , W have
two opposite extended sides.

Lemma 3.2 Let Q be a generic primitive quadrilateral with one corner p of order
greater than 0 and three other corners of order 0. Then the net of Q is of the type
either X or X ′, or one of their reflection symmetric quadrilaterals X̄ and X̄ ′.

Proof Let q be the corner of Q opposite to p, and let F be the face of the net 
 of Q
adjacent to q. It follows from Lemma 2.16 that there are no two-sided arcs of 
 with
the ends on the sides of Q adjacent to q. Thus F must be a quadrilateral face of 
. The
vertex a of F opposite to its vertex q cannot be an interior vertex of 
. Otherwise the
two arcs of the boundary of F would be two-sided, in contradiction with Lemma 2.16.
The vertex a cannot be a lateral vertex of 
, since in that case one of the arcs of the
boundary of F would have two ends at the opposite sides of Q, which is forbidden,
or would be a one-sided arc, in contradiction with Lemma 2.17. Thus a = p is the
corner of Q opposite q.

It follows that Q is a union of F and either two triangles Tk and Tl with integer
angles k and l at their common vertex p attached to the sides of F adjacent to p, such
that k + l > 0 is the order of p, or two triangles Ek and El with non-integer corners
of order k and l at their common vertex p attached to the sides of F adjacent to p,
such that k + l + 1 is the order of p. In the first case, Q has type Xkl or X̄kl , in the
second case Q has type X ′

kl or X̄
′
kl . �	
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Fig. 17 Quadrilaterals of types Ukl , Ūkl , Vkl , V̄kl , V
′
kl , V̄

′
kl , Wkl , W̄kl

Lemma 3.3 Let Q be a generic primitive quadrilateral with two adjacent corners p
and q at the ends of its side pq. If the angles of Q at both p and q are greater than 1
then its side pq has order 1.

Proof Assume that pq has order 2 (larger orders can be treated similarly). Then the
net of Q contains two faces, one triangular and one quadrilateral, adjacent to pq. We
may assume that these two faces are psr and qrst (see Fig. 18). Note that the vertex s
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Fig. 18 Illustration for the proof
of Lemma 3.3

Fig. 19 Illustration for the proof of Lemma 3.4

cannot be a corner of Q since it is connected to its corner p by an interior arc. Similarly,
the vertex t cannot be a corner of Q as it is connected to q. The vertex s cannot be a
boundary vertex of the net of Q since ps and rs are interior arcs. Thus s is an interior
vertex, and the net of Q contains a quadrilateral face puvs and a triangular face svt .
The vertex t cannot be a boundary vertex since st and qt are interior arcs. Thus t is
an interior vertex, and the net of Q contains a quadrilateral face tvwz and a triangular
face qtz. The vertex v cannot be a corner of Q as it is connected to q by an interior
arc. It cannot be a boundary vertex, as sv and tv are interior arcs. Thus v is an interior
vertex, and the net of Q contains a triangular face vuw. The same arguments as above
show that both u and w should be interior vertices. This contradicts irreducibility of
Q, since p and q are connected by an interior arc puwzq. �	

Lemma 3.4 Let Q be a generic primitive quadrilateral with two corners p and q at
the ends of its side pq, with both angles greater than 1. Let C be the circle of P to
which the side of Q opposite to pq is mapped. Then the net of Q has no interior arcs
mapped to C, and has the type either R or S, or one of their reflection symmetric
quadrilaterals R̄ and S̄.
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Fig. 20 Illustration for the proof of Lemma 3.5

Proof According to Lemma 3.3, the side pq of Q has order 1. The face F of the net

 of Q adjacent to pq may be either a quadrilateral prsq (see Fig. 19a) or a triangle
prq (see Fig. 19b).

Consider first the case F = prsq. Note that its arc rs is mapped toC . Neither r nor
s may be a corner of Q, since r is connected to p and s is connected to q by an interior
arc of 
. If one of these vertices, say r , is an interior vertex of 
, then 
 contains the
faces pur , uwtr and r ts. It follows that s is also an interior vertex of 
, since it has
two interior arcs rs and qs adjacent to it. Thus 
 contains faces ruwt and st xv. Note
that t cannot be a corner of Q since the two arcs intersecting at t are preimages of
the circles of P corresponding to two opposite sides of Q. Since r t and st are interior
arcs of 
, t must be an interior vertex of 
, and twx is a face of 
. This implies that
the arc puwxvq of 
 connects p and q, contradicting irreducibility of Q. Thus both
r and s must be boundary vertices of 
, and ursv is part of the side of Q opposite pq.
Extending this side till the corners y and z of Q results in a quadrilateral Rkl or R̄kl ,
the union of prsq and two triangles Tk and Tl (see Fig. 19c where k = l = 1).

Next we consider the case when F = prq is a triangle. Since r is not a corner of
Q (it is connected to both p and q by interior arcs) it must be an interior vertex of 
.
Thus 
 contains the faces pusr , rst and qrtv (see Fig. 19b). Note that neither s nor
t may be corners of Q (they are connected by interior arcs to q and p, respectively).
If one of these vertices, say s, is an interior vertex of 
 then suw and swxt are faces
of 
, thus t is also an interior vertex of 
 (it has interior arcs r t and st adjacent to
it) and t xv is a face of 
. This implies that the arc puwxvq of 
 connects p and q,
contradicting irreducibility of Q. Thus both s and t must be boundary vertices of 
,
and ustv is part of the side of Q opposite pq. Extending this side till the corners y
and z of Q results in a quadrilateral Skl or S̄kl , the union of prq and two triangles Tk
and Tl (see Fig. 19c where k = l = 1 intersecting over rst) (Fig. 20). �	

Lemma 3.5 Let Q be a generic primitive quadrilateral with two opposite corners p
and q of order 1, and two other corners of order 0. Then the net 
 of Q is one of the
following: Z ′

00, Z01, Z10, Z̄01, Z̄10, U11, Ū11.

Proof If Q does not have one-sided arcs, there are two separator arcs α and α′ with
a common end at p, and two separator arcs β and β ′ with a common end at q. If the
other ends of α and α′ are on different sides of Q, then the same is true for β and β ′;
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thus the net of Q is Z ′
00. If the other ends of α and α′ are on the same side of Q then

the same is true for β and β ′, thus the net of Q is either U11 or Ū11.
Next, Q may have a one-sided arc γ with one end at a corner of Q (due to Lemma

2.17, if both ends of γ were not at corners of Q then Q would have a corner of order
greater than 1, a contradiction). Then the net of Q is one of Z01, Z10, Z̄01, Z̄10.

If two one-sided arcs were adjacent to the same corner of Q, Lemma 2.17 would
imply that there should be at least 4 separator arcs with the common end at the opposite
corner, a contradiction. Finally, having two one-sided arcs with the ends at opposite
corners of Q would imply that each of these corners must have, in addition to a one-
sided arc, two separator arcs with a common end in it, a contradiction. This completes
the proof of Lemma 3.5. �	
Lemma 3.6 Let Q be a generic primitive quadrilateral with a corner p of order greater
than 1. Then there is a separator arc of the net 
 of Q partitioning Q into a generic
primitive quadrilateral Q′ smaller than Q and an irreducible triangle T with an
integer corner.

Proof If the net 
 has a one-sided arc γ with both ends on the side L of Q, then
there are, according to Lemma 2.17, two separator arcs of 
 with a common end at a
corner of Q and the other ends on L inside γ . One of these two arcs partitions Q into
a quadrilateral with one integer corner and a triangle with all non-integer corners, and
another one partitions Q into a generic quadrilateral Q′ smaller than Q and a triangle
T with an integer corner. Thus we may assume that 
 does not have any one-sided
arcs. In this case, there are at least four separator arcs with a common end at the corner
p of Q. At least two of these arcs must be at the boundary of the same face of 


adjacent to p and have their other ends on the same side of Q. Then one of these
two arcs partitions Q into a quadrilateral with one integer corner and a triangle with
all non-integer corners, and another one partitions Q into a generic quadrilateral Q′
smaller than Q and a triangle T with an integer corner. This completes the proof of
Lemma 3.6. �	
Proof of Theorem 3.1 According to Lemma 3.6, every generic primitive quadrilateral
with a corner of order greater than 1 can be partitioned into a smaller generic quadri-
lateral and a triangle along one of the separator arcs of its net. This implies that every
generic primitive quadrilateral Q can be obtained by attaching triangles with integer
corners to a quadrilateral Q′ with all corners of order at most 1. If all corners of Q′
have order 0 then Q′ is the quadrilateral P0 (see Corollary 2.18). If only one corner of
Q′ has order 1, the other three corners having order 0, then the net of Q′ is one of X01,
X10, X ′

00, X̄01, X̄10, X̄ ′
00 according to Lemma 3.2. Note that each of the quadrilaterals

X01, X10, X̄01 and X̄10 can be partitioned into the quadrilateral P0 and a triangle T1.
If two adjacent corners of Q′ have order 1 then the net of Q′ is either R11 or S11
according to Lemma 3.4. If two opposite corners of Q′ have order 1 then the net of Q′
is either Z ′

00 or one of Z01, Z10, Z̄01, Z̄10, U11, Ū11, according to Lemma 3.5. Note
that each of the latter six quadrilaterals can be further reduced to either P0 or X ′

00 or
X̄ ′
00.
There are eight options for attaching a triangle T with an integer corner to the

quadrilateral P0. The vertex of T can be placed at any of the four corners of the
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Fig. 21 Attaching one or two triangles T1 to the quadrilateral P0

Fig. 22 Attaching a triangle T1 to the quadrilateral X ′
00

quadrilateral, and the base of T at the extension of one of its two sides opposite to that
corner. Combining these options would result in quadrilaterals Xkl , X̄kl , Rkl , R̄kl ,Ukl

and Ūkl (see Fig. 21).
There are six options for attaching a triangle T with an integer corner to the quadri-

lateral X ′
00 (and to X̄ ′

00). The vertex of T can be placed at the corner p of order 1, and
the base of T at the extension of one of its two sides opposite to p. Alternatively, the
vertex of T can be placed at the corner q opposite p and the base of T at the extension
of one of the two sides adjacent to p. Finally, the vertex of T can be placed at one of
the corners u and v other than p and q, and the base of T at the extension of the side
of order 2 not adjacent to the corner where the vertex of T is placed. Figure 22 shows
six options of attaching the triangle T1 to the quadrilateral X ′

00. Attaching T1 to X̄ ′
00

corresponds to replacing all quadrilaterals in Fig. 22 by their reflections preserving
the corners of order 0. Combining these options would result in quadrilaterals X ′

kl ,
X̄ ′
kl , Zkl , Z̄kl , Vkl , V̄kl , V ′

kl , V̄
′
kl , Skl , S̄kl (see Fig. 23).
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Fig. 23 Attaching two triangles T1 to the quadrilateral X ′
00

Fig. 24 Attaching one or two triangles T1 to the quadrilateral Z ′
00

There are four options to attach a triangle T to the quadrilateral Z ′
00. The vertex

of T can be placed at one of the corners of order 1 of the quadrilateral, and the base
of T at the extension of one of its two sides opposite to that corner. Combining these
options would result in quadrilaterals Z ′

kl , Z̄
′
kl , Wkl and W̄kl (see Fig. 24).

Summing up, all primitive quadrilaterals that can be obtained by attaching at most
two irreducible triangles, each with an integer corner, to one of the basic quadrilaterals
P0, X ′

00, X̄
′
00 and Z ′

00, appear in the list of primitive quadrilaterals in Theorem 3.1.
This completes the proof of Theorem 3.1. �	
Corollary 3.7 Every generic irreducible quadrilateral is either primitive or is obtained
from a primitive quadrilateral Q listed in Theorem 3.1, of type other than R, S, R̄
and S̄, by replacing a quadrilateral face of the net of Q adjacent to its two opposite
corners with the quadrilateral Pμ, for some μ > 0 (see Definition 2.5).

Proof If Q is an irreducible quadrilateral that is not primitive then, according toLemma
2.4, Q contains a quadrilateral P1 (see Fig. 3). In particular, the net of Q has a
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quadrilateral face adjacent to two of its opposite corners. Replacing P1 with P0, we
obtain a smaller quadrilateral. We can repeat this operation μ times until we get a
primitive quadrilateral Q′. Since Q′ still has a quadrilateral face adjacent to two of
its opposite corners, it should belong to one of the types listed in Theorem 3.1 other
than R, S, R̄ and S̄. The original quadrilateral Q is obtained from Q′ by replacing its
quadrilateral face adjacent to two of its opposite corners with the quadrilateral Pμ, as
stated in Theorem 3.7. �	

Notation. The irreducible quadrilaterals obtained from the primitive quadrilaterals
Xkl , X̄kl , X ′

kl , X̄
′
kl , Zkl , Z̄kl , Z ′

kl , Z̄
′
kl ,Ukl , Ūkl , Vkl , V̄kl , V ′

kl , V̄
′
kl ,Wkl , W̄kl by replacing

a quadrilateral face of their net by the quadrilateral Pμ are denoted Xμ
kl , X̄

μ
kl , X

′μ
kl , X̄

′μ
kl ,

Zμ
kl , Z̄

μ
kl , Z

′μ
kl , Z̄

′μ
kl , U

μ
kl , Ū

μ
kl , V

μ
kl , V̄

μ
kl , V

′μ
kl , V̄

′μ
kl , W

μ
kl , W̄

μ
kl , respectively. The original

primitive quadrilaterals are assigned the same notation with μ = 0.

4 Classification of Nets of Generic Spherical Quadrilaterals

Theorem 4.1 Any generic spherical quadrilateral can be obtained by attaching spher-
ical digons of types either D15 or D24 to some of the short (of order less than 6) sides
of an irreducible quadrilateral Q0. The types of digons attached to the sides of Q0
are completely determined by its net.

Proof According to Lemma 2.11, any diagonal arc γ of a reducible quadrilateral Q
must have its ends at adjacent corners p and q of Q. Thus γ partitions Q into a digon D
and a quadrilateral Q′. Note that D must have integer angles at its corners. Otherwise,
the common side of D and Q′ would be mapped to a circleC ′ different from the circle
C to which the common side of D and Q is mapped. This would imply that p and q
are mapped to the intersection of the same two circles C and C ′, which is not possible
since Q is a generic quadrilateral. Thus D should be of type either D15 (when the
order k of γ is odd) or D24 (when k is even). �	

Remark 4.2 An irreducible quadrilateral Q0 in Theorem 4.1 may be not unique. If
an irreducible quadrilateral Q0 has a short side L of order greater than 3, and the
quadrilateral Q obtained by attaching a disk D to L contains a disk D′ other than D,
with part of the boundary of D′ being at a side of Q, then D′ can be removed from Q to
obtain an irreducible quadrilateral Q1. All such non-uniqueness cases are listed below.
All other cases can be obtained from these by attaching digons or pseudo-diagonals.
Note that a quadrilateral Q obtained by attaching a disk D to a side of order less than
3 of an irreducible quadrilateral Q0 does not contain a disk other than D having part
of its boundary on the side of Q.

4.1 Non-Uniqueness Cases in Remark 4.2

(a) The quadrilateral S11 ∪ D15 (see Fig. 25a) contains three more disks. Removing
each of them results in a quadrilateral S11.

123



Classification of Generic Spherical Quadrilaterals 177

(b) The quadrilateral X01∪D24 (see Fig. 25b) contains one more disk D24. Removing
it results in a quadrilateral X10 (see Fig. 25c). In the opposite direction, removing
a disk from X10 ∪ D24 may result in X01.

(c) The quadrilateral X1k ∪ D24 with k > 0 contains one more disk D24 (shaded in
Fig. 26a). Removing it results in a quadrilateral Uk1. In the opposite direction,
removing a disk from Uk1 ∪ D24 results in X1k . Similarly, removing a disk from
Xk1∪D24 with k > 0 (shaded in Fig. 26b) results in Ūk1, and removing a disk from
Ūk1∪D24 results in Xk1. Note that X11 allows to attach a disk D24 to any of its two
sides of order 4. Removing a disk from X11 ∪ D24 results either in U11 or in Ū11,
depending on the side of X11 to which the disk is attached (see Fig. 26a, b). The
cases X̄1k ∪ D24 and X̄k1 ∪ D24 are obtained by reflection symmetry preserving
the opposite corners of order 0.

(d) The quadrilateral X ′
1k ∪D15 contains a disk D24 (shaded in Fig. 26c). Removing it

results in a quadrilateral Vk+1,1 (a quadrilateral Z̄10 when k = 0, see Fig. 26d). In
the opposite direction, removing a disk D15 from Vk+1,1 ∪ D24 (from Z̄10 ∪ D24
if k = 0) results in X ′

1k . Similarly, removing a disk D24 (shaded in Fig. 26e) from
X ′
k1 ∪ D15 results in V̄k+1,1 (in Z̄01 if k = 0, see Fig. 26f), and removing a disk

D15 from V̄k+1,1 ∪ D24 (from Z̄01 if k = 0) results in X ′
k1. Note that X

′
11 allows

to attach a disk D15 to any of its two sides of order 5. Removing a disk D24 from
X ′
11 ∪ D15 results either in V21 or in V̄21, depending on the side of X ′

11 to which
the disk is attached (see Fig. 26c, e). The cases X̄ ′

1k ∪ D24 and X̄ ′
k1 ∪ D24 are

obtained by reflection symmetry preserving the opposite corners of order 0.
(e) The quadrilateral Z1k∪D24 contains disk D15 (shaded area in Fig. 27a). Removing

it results in a quadrilateral Vk2 (in X̄ ′
10 if k = 0, see Fig. 27b). In the opposite

direction, removing a disk D24 from Vk2 ∪ D15 (from X̄ ′
10 if k = 0) results in Z1k .

Similarly, removing a disk D15 (shaded in Fig. 27c) from Zk1 ∪ D24 results in V̄k2
(in X̄ ′

01 if k = 0, see Fig. 27d), and removing a disk D24 from V̄k2 ∪ D15 (from
X̄ ′
01 if k = 0) results in Z1k . Note that Z11 allows to attach a disk D24 to any of its

two sides of order 4 (see Fig. 27a, c). Removing a disk D15 from Z11∪D24 results
either in V12 or in V̄12, depending on the side of Z11 to which the disk is attached.
Also, V12 (resp., V̄12) has one side of order 4 and another one of order 5. Thus
either D24 or D15 can be attached to a side of V12 (resp., V̄12). Removing either
D15 or D24 would result in either X ′

11 or Z11. The cases Z̄1k ∪ D24 and Z̄k1 ∪ D24
are obtained by reflection symmetry preserving the opposite corners of order 0.

(f) The quadrilateral Z ′
01 ∪ D15 contains another disk D15. Removing it results in a

quadrilateral Z̄ ′
01. In the opposite direction, removing a disk D15 from Z̄ ′

01 ∪ D15
results in Z ′

01. The cases Z ′
10 ∪ D15 and Z̄ ′

10 ∪ D15 are obtained by reflection
symmetry exchanging the opposite corners of order 0.

(g) The quadrilateral Z ′
1k ∪ D15 for k > 0 contains another disk D15 (shaded in

Fig. 27e). Removing it results in a quadrilateral W̄k+1,2. In the opposite direction,
removing a disk D15 from W̄k+1,2 ∪D15 results in Z ′

1k . Similarly, removing a disk
D15 from Z ′

k1 ∪ D15 for k > 0 results in Wk+1,2, and removing a disk D15 from
Wk+1,2 ∪ D15 results in Z ′

k1. Note that Z
′
11 allows to attach a disk D15 to any of

its two sides of order 5. Removing a disk D15 from Z ′
11 ∪ D15 results either in

W22 or in W̄22, depending on the side of Z ′
11 to which the disk is attached. The
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Fig. 25 Non-uniqueness of an irreducible quadrilateral, cases (a) and (b)

cases Z̄ ′
1k ∪ D15 and Z̄ ′

k1 ∪ D15 are obtained by reflection symmetry preserving
the opposite corners of order 0.

5 Chains of Generic Spherical Quadrilaterals

In this section we show that generic quadrilaterals with a given net 
 and fixed four
angles form an open segment I
 in the set of all generic quadrilaterals, parameterized
by the angle between any two circles of the four-circle configurations corresponding
to opposite sides of the quadrilaterals. In the limits at the ends of the interval I
 , a
quadrilateral either conformally degenerates or converges to a non-generic spherical
quadrilateral Q′ (with the sides mapped to a non-generic four-circle configuration), or
converges to a non-spherical quadrilateral after appropriate conformal transformations.
When a non-generic spherical quadrilateral Q′ is the limit of two families of generic
quadrilaterals with the same angles and distinct nets 
− and 
+, we say that the two
families of generic quadrilaterals belong to a chain of quadrilaterals, and their nets 
−
and 
+ belong to a chain of nets (see Definition 5.13 below).

Remark 5.1 The chains of spherical quadrilaterals with at least one integer angle con-
sidered in [15–17] were completely determined by the integer parts of their angles. For
generic quadrilaterals, the chains depend also on the fractional parts of their angles.

Consider a generic quadrilateral Q0 with the net 
0 and the sides mapped to four
circles of a partitionP0 of the sphere.We claim that the set of all generic quadrilaterals
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Fig. 26 Non-uniqueness of an irreducible quadrilateral, cases (c) and (d)

Fig. 27 Non-uniqueness of an irreducible quadrilateral, cases (e–g)
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Fig. 28 The face F of the
four-circle configuration P with
fixed angles (a, b, c, d)

Q with the same net 
0 and the same angles as Q0, obtained from Q0 by continuous
deformation P of the partition P0, constitute an open segment, with the limit at each
end corresponding either to a non-generic four-circle partition P ′ of the sphere with a
triple intersection of circles, or to a three-circle partition. At this limit, the quadrilateral
Q may conformally degenerate, its conformal modulus converging to either 0 or ∞
(see [16, Sections 14-15] and [17, Section 7]). If it does not conformally degenerate,
it usually converges to a spherical quadrilateral Q′ over a non-generic partitionP ′ (see
Remark 5.4 below for an exception). In this case, the deformation of Q can be extended
through Q′ to another segment of generic quadrilaterals, with a net 
1 different from

0. A chain of quadrilaterals is a sequence of such extensions, starting and ending
with degenerate quadrilaterals. The corresponding sequence of nets is called a chain
of nets (see Definition 5.13 below).

LetC1, . . . ,C4 be the circles of the partition P to which the sides of Q are mapped,
indexed according to the order of the sides of Q. Since the angles of Q are fixed, the
angles a, b, c, d between the circles of P are also fixed. Here a is the angle between
C1 and C2, b is the angle between C2 and C3, c is the angle between C3 and C4, and d
is the angle between C4 and C1 (see Fig. 28). The angle between two circles is defined
up to its complement, but we can choose the values a, b, c, d uniquely by requiring
that there is a quadrilateral face F of the partition P having exactly these angles. In
fact, there are exactly two such faces of P , having the same angles a, b, c, d (with
opposite cyclic orders). The cyclic order of the circles at the sides of these faces is
either the same or opposite to the cyclic order of the circles C1, . . . ,C4 to which the
sides of Q are mapped.

Proposition 5.2 Let P be a partition of the sphere defined by a generic configuration
of four great circles, and let F be a quadrilateral face ofP with the angles a, b, c, d.
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Then the following inequalities are satisfied:

0 < a, b, c, d < 1, 0 < a + b + c + d − 2 < 2min(a, b, c, d). (1)

The subset of the unit cube in R4 defined by these inequalities is an open convex
pyramid � with the vertex (1, 1, 1, 1) and the base an octahedron P in the plane
a + b + c + d = 2 having vertices (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1),
(1, 0, 1, 0), (1, 1, 0, 0).

Proof By definition, (a, b, c, d) is a point of the unit cube in R4. Since the area
A = a + b + c + d − 2 of F is positive, we have a + b + c + d > 2. Since F
is an intersection of the four digons with the angles a, b, c, d and the areas 2a, 2b,
2c, 2d, respectively, we have A < 2min(a, b, c, d). Note that � is defined by linear
inequalities, thus it is a convex polytope with each facet on a plane defined by one
of these inequalities. The octahedron P belongs to the plane a + b + c + d = 2, it
is the convex hull of the six vertices listed in Proposition 5.2, and each of its eight
triangular facets belongs to a side of the unit cube. Each of the remaining facets of� is
a 3-simplex, the convex hull � of the union of (1, 1, 1, 1) and one of the facets δ of P .
If one of the variables, say a, equals 1 on δ then� belongs to the plane a = 1. If a = 0
on δ then a = min(a, b, c, d) on�, and� belongs to the plane a+b+c+d−2 = 2a.
This proves that on each facet of the pyramid � one of the inequalities in (1) becomes
an equation. Since a+b+c+d > 2 in�, and all other inequalities in (1) are satisfied
at the center (1/2, 1/2, 1/2, 1/2) of P , we conclude that the pyramid � is indeed the
set in R4 defined by the inequalities (1). This completes the proof. �	

There are four triangular faces of the four-circle configurationP in Fig. 28 adjacent
to the face F . The areas of the bottom and top faces are 1−a−b+e and 1−c−d+e,
respectively. The areas of the left and right faces are 1− a − d + z and 1− b− c+ z,
respectively. Here e is the angle between C1 and C3 and z is the angle between C2
and C4. When the configuration P is deformed, the areas of the top and bottom are
either both decreasing or both increasing as e decreases or increases, with the same
rate as e. It follows from the cosine theorem that the top and bottom sides of F are
decreasing or increasing as e decreases or increases. Similarly, the areas of the left and
right triangular faces adjacent to F are either both decreasing or both increasing as z
decreases or increases, with the same rate as z, and the left and right sides of F are
decreasing or increasing as z decreases or increases. Since the area of F is constant, e
and z cannot be both increasing or both decreasing when P is deformed. This implies
the following statement.

Proposition 5.3 If a + b > c + d (resp., a + b < c + d) then a generic four-circle
configurationP can be deformed until the bottom (resp., top) triangular face adjacent
to F is contracted to a point, so that the circles C1, C2, C3 (resp., C3, C4, C1) have
a triple intersection, but cannot be deformed so that the top (resp., bottom) face is
contracted to a point. Similarly, if a + d > b + c (resp., a + d < b + c) then P can
be deformed until the left (resp., right) triangular face adjacent to F is contracted to
a point, so that the circles C4, C1, C2 (resp., C2, C3, C4) have a triple intersection,
but cannot be deformed so that the right (resp., left) face is contracted to a point.
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Fig. 29 Degenerations of a family of four-circle configurations to triple intersections

Four possible degenerations of a family of four-circle configurations to non-generic
configurations with triple intersections are shown in Fig. 29. The color (style) of each
arrow between configurations in Fig. 29 indicates a circle that is not part of a triple
intersection in the corresponding non-generic configuration. Note that, according to
Proposition 5.3, at most two of the four possible degenerations (one with a horizontal
arrow and another one with a vertical arrow) can be realized for any given angles
(a, b, c, d). If a generic four-circle configuration can be deformed to a non-generic
configuration with a triple intersection, its deformation can be extended beyond the
triple intersection to a combinatorially different generic four-circle configuration. Four
possibilities for such generic configurations are shown in Fig. 30, on top, bottom, left
and right of the original (central) configurationP , depending on the four possible triple
intersections to which it may degenerate. The color (style) of each arrow between
configurations in Fig. 30 indicates a circle that is not part of a triple intersection in the
corresponding non-generic configuration, as in Fig. 29.

Note that condition on the angles of the face F of P which determines whether
it can be deformed through a triple intersection to a configuration P ′ (either top or
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Fig. 30 Transformations of a family of four-circle configurations beyond triple intersections

bottom, left or right in Fig. 30) is exactly the inequality for the fixed angles ofP ′ which
guarantees that the quadrilateral face F ′ ofP ′ with four fixed angles has positive area.

Remark 5.4 What happens if, e.g., a+b = c+d? Then configurationP (see Fig. 31a)
can be deformed so that in the limit both top and bottom triangular faces adjacent
to F are contracted to a point, and all four circles intersect at two opposite points in
the limit (see Fig. 31b). However, combining this family of four-circle configurations
with an appropriate family of linear-fractional transformations of the sphere, one can
obtain a configuration with only one four-circle intersection point (see Fig. 31c). This
limit configuration cannot be realized by great circles, and the family of four-circle
configurations cannot be extended beyond the quadruple intersection to a four-circle
family equivalent to a family of generic great circles with the net different from the
net shown in Fig. 31a. Note that four-circle configuration in Fig. 31c is conformally
equivalent to a four-line configuration shown in Fig. 32. A (circular but not spherical)
quadrilateral mapped to such a configuration is called a “singular flat quadrilateral”
(see [10, 11, 14]). Here “singular” refers to the possibility of the developing map of
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Fig. 31 Degeneration of a family of four-circle configurations (a) to a configuration with quadruple inter-
sections (b) and to a non-spherical four-circle configuration (c)

Fig. 32 A four-line configuration conformally equivalent to the configuration in Fig. 31c

such quadrilateral to have simple poles inside the quadrilateral or on its sides (but not
at the corners).

In Fig. 31 we assume that a < d, thus the angle between the circles C2 and C4 in
Fig. 31b, c is d − a = b − c. If, in addition, a = d (thus b = c) then the circles C2
and C4 converge in the limit to a single circle passing through the intersection points
of C1 and C3. Combining this family of four-circle configurations with an appropriate
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family of linear-fractional transformations of the sphere, one can obtain in the limit
a configuration with two tangent circles C2 and C4, their tangency point being at an
intersection of the circles C1 and C3 (see [10], Section 4).

5.1 Relations Between Adjacent Four-Circle Configurations in a Chain

Consider a generic four-circle configurationP (see Fig. 28) with the angles (a, b, c, d)

of a quadrilateral face F . WhenP is deformed beyond a triple intersection to a generic
configuration P ′ (see Fig. 30) keeping the angles (a, b, c, d) fixed, the face F of
P is replaced with a quadrilateral face F ′ of P ′ with the following different fixed
angles: the angles (1 − a, 1 − b, c, d) in the top configuration in Fig. 30, the angles
(a, b, 1 − c, 1 − d) in the bottom configuration, the angles (a, 1 − b, 1 − c, d) in
the left configuration, and the angles (1 − a, b, c, 1 − d) in the right configuration.
The general rule for the transformation through a triple intersection is that two fixed
angles of F which are at the vertices not passing through a triple intersection are
replaced with their complementary angles of F ′. If we apply the same rule to the four
configurations in Fig. 30 that can be obtained from P , we get more generic four-circle
configurations. Eight distinct generic four-circle configurations obtained this way are
shown in Fig. 33a–h. Four more configurations shown in the bottom row of Fig. 33 are
equivalent to configurations in its top row: Fig. 33i is equivalent to Fig. 33c, Fig. 33j
is equivalent to Fig. 33d, Fig. 33k is equivalent to Fig. 33a, Fig. 33l is equivalent to
Fig. 33b. The original configuration P and its four transformations (see Fig. 30) are
shown in Fig. 33f and Fig. 33b, e, g, j, respectively.

Any two configurations in Fig. 33 adjacent either vertically or horizontally can be
obtained from each other by a deformation passing through a triple intersection when
certain inequalities on (a, b, c, d) are satisfied. In fact, Fig. 33 should be considered
as part of a double periodic square lattice with periods (4, 0) and (2, 2). For example,
configuration in Fig. 33a (and Fig. 33k) has a quadrilateral face with the fixed angles
(a, 1− b, c, 1− d). It exists when a + c > b + d and a − b + c − d < 2min(a, 1−
b, c, 1 − d). It can be obtained, when a + c > b + d, either from the configuration
in Fig.33b, replacing the angles 1 − a and d by their complementary angles, or from
the configuration in Fig.33e, replacing the angles 1− c and d by their complementary
angles.

Note that configurations in Fig. 33 twice removed either horizontally or vertically
have all four fixed angles of a quadrilateral face complementary, reversing the second
inequality in (1). Thus at most one of them may exist for any given values of the fixed
angles.

Remark 5.5 All configurations in Fig. 33 are “even”: each of them has a quadrilateral
face with four fixed angles, an even number of them complementary to the angles
(a, b, c, d). Replacing one of the angles by its complementary angle we get eight
distinct “odd” configurations with the given angles (a, b, c, d). Any transformation
through a triple intersection preserving the angles (a, b, c, d) is possible either between
two even configurations or between two odd ones.
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Fig. 33 Generic “even” four-circle configurations related by deformation with fixed angles (a, b, c, d)

through triple intersections

Let us return to configuration P in Fig. 33f and assume that

a + b < c + d, a + d < b + c, a + c < b + d. (2)

Then configuration P can be transformed either upward, to configuration in Fig. 33b,
or to the right, to configuration in Fig. 33g. Configuration in Fig. 33b has a quadrilateral
face with the angles (1−a, 1−b, c, d). It can be transformed either downward, back to
configuration in Fig. 33f, or to the left, to configuration in Fig. 33a, since a+c < b+d
implies 1 − a + d > 1 − b + c. Configuration in Fig. 33g has a quadrilateral face
with the angles (1 − a, b, c, 1 − d). It can be transformed either to the left, back to
configuration in Fig. 33f, or downward, to configuration in Fig. 33k, since a+c < b+d
implies 1 − a + b > c + 1 − d. Note that configuration in Fig. 33k is equivalent to
configuration in Fig. 33a. Thus any sequence of transformations of a configuration
satisfying inequalities (2) is possible within the “ladder” pattern in Fig. 33.

Consider now configuration P in Fig. 33f, with the angles satisfying

a + b < c + d, a + d < b + c, a + c > b + d. (3)

Then configuration P can be transformed, as before, either upward, to configuration
in Fig. 33b, or to the right, to configuration in Fig. 33g, since this depends only on the
first two inequalities in (2) and (3). The configuration in Fig. 33b can be transformed
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either downward, back to configuration in Fig. 33f, or to the right, to configuration in
Fig. 33c, since a + c > b+ d implies 1− a + d < 1− b+ c. Similarly, configuration
in Fig. 33g can be transformed either to the left, back to configuration in Fig. 33f, or
upward, to configuration in Fig. 33c, since a+c > b+d implies 1−a+b < c+1−d.
Thus any sequence of transformations of a configuration satisfying inequalities (3) is
possible within the “box” pattern in Fig. 33. This can be summarized as follows:

Proposition 5.6 Let (a, b, c, d) be the fixed angles of a quadrilateral face F of a
generic four-circle configuration P , such that the “opposite” pairs (a, c) and (b, d)

are at the opposite vertices of F. According to Proposition 5.3,exactly one of the angles
remains unchanged when P is deformed through both permitted triple intersections.
The “ladder” pattern, as in (2), appears when the sum of two angles in the opposite
pair containing the “twice unchanged” angle is smaller than the sum of two angles
in the other opposite pair. Otherwise, the “box” pattern, as in (3), appears.

Remark 5.7 The conditions on the angles (a, b, c, d) related to the possibility of trans-
forming generic configurations through triple intersections can be described as subsets
of the unit cube in R4. According to Proposition 5.2, the point (a, b, c, d) for the par-
tition P belongs to the open pyramid � with the vertex (1, 1, 1, 1) and the base an
octahedron with vertices (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0),
(1, 1, 0, 0).Adding thefirst inequality in (2) or (3) cuts this pyramid in half: the inequal-
itya+b < c+d removes the vertex (1, 1, 0, 0) from the octahedron, leaving the convex
hull of the remaining vertices of �. Note that the inequalities a + b+ c+ d − 2 < 2c
and a+ b+ c+ d − d < 2d in (1) are now automatically satisfied, so the last inequal-
ity in (1) can be replaced with a + b + c + d − 2 < 2min(a, b). Adding the second
inequality in (2) or (3) leaves a quarter of �, which is a 4-simplex: the inequality
a + d < b + c removes the vertex (1, 0, 0, 1) from the octahedron, reducing � to the
convex hull of its remaining 5 vertices. The last inequality in (1) can be now replaced
with a + b + c + d − 2 < 2a, i.e., b + c + d < 2 + a. Adding the third inequality
in (2) or (3) cuts that simplex in half, removing one more vertex of the octahedron
(either (1, 0, 1, 0) for the ladder pattern or (0, 1, 0, 1) for the box pattern) and leaving
the convex hull of the 4 remaining vertices of � and the center (1/2, 1/2, 1/2, 1/2)
of the octahedron. Note that in the box case the last inequality in (1) is automatically
satisfied.

The fractional parts (α, β, γ, δ) of the angles of a spherical quadrilateral Q are
either some of the fixed angles (a, b, c, d) of a quadrilateral face of its four-circle
configuration or some of their complementary angles (1 − a, 1 − b, 1 − c, 1 − d).
The choice between each angle and its complement is determined by the net of Q (see
Propositions 5.9 and 5.10 below). For the basic primitive quadrilaterals (see Fig. 13)
the fractional parts (α, β, γ, δ) of the angles are

(a, b, c, d) for P0, (1 − a, b, 1 − c, 1 − d) for X ′
00,

(1 − a, 1 − b, 1 − c, d) for X̄ ′
00, (a, 1 − b, c, 1 − d) for Z ′

00. (4)

Note that the quadrilateral faces with the fixed angles (a, b, c, d) of the four-circle
configurations corresponding to the quadrilaterals X ′

00 and X̄ ′
00 are outside their nets.
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Attaching a triangle Tk with an integer angle to the side of a quadrilateral does not
change the fractional parts of its angles when k is even and replaces the fractional
part of one of its angles with its complement when k is odd. According to Theorem
3.1, every primitive quadrilateral can be obtained by attaching one or two triangles,
each with an integer angle, to the sides of one of the basic quadrilaterals. Corollary
3.7 states that each irreducible quadrilateral can be obtained from a primitive one by
inserting a quadrilateral Pμ with two of its angles of order 2μ and the other two angles
of order 0. Theorem 4.1 states that any generic quadrilateral can be obtained from
an irreducible one by attaching some digons, with two equal integer angles each, to
its sides. Note that the sum � of the integer parts of the angles of a quadrilateral is
increased by k when a triangle Tk is attached. Note also that � = 0 for P0, � = 1 for
X ′
00 and X̄ ′

00, � = 2 for Z ′
00. Thus relations (4) imply the following relation between

the angles of a generic spherical quadrilateral Q and the fixed angles of a quadrilateral
face of its underlying partition P of the sphere:

Proposition 5.8 Let Q be a generic spherical quadrilateral with the sum � of the
integer parts of its angles, and the corresponding partition P with a quadrilateral
face having angles (a, b, c, d), each of them being either a fractional part of the
angle of Q or its complementary angle. Then the number of the complements among
(a, b, c, d) has the same parity as �.

Relations between the fractional parts (α, β, γ, δ)of the angles of a primitive quadri-
lateral Q from the list in Sect. 3 and the fixed angles (a, b, c, d) of a quadrilateral face F
of its underlying partition P are presented in the following two Propositions, separate
for even and odd values of the sum � of the integer parts of the angles of Q.

Proposition 5.9 Let Q be a primitive spherical quadrilateral with the even sum of the
integer parts of its angles. Let P be the corresponding partition of the sphere having
a quadrilateral face with the fixed angles (a, b, c, d) which are either fractional parts
(α, β, γ, δ) of the angles of Q or their complements. The following list describes the
angles (a, b, c, d) in terms of the angles (α, β, γ, δ), depending on the net of Q:

(α, β, γ, δ) for P0, Xkl with k and l even, X̄kl with k and l even, Rkl with k and l
even, R̄kl with k and l even, Ukl with k and l even, Ūkl with k and l even;

(1 − α, 1 − β, γ, δ) for Rkl with k and l odd, X̄ ′
kl with k even and l odd, Zkl with

k even and l odd, Vkl with k and l even, V̄kl with k and l odd;
(1− α, β, 1− γ, δ) for Xkl with k and l odd, X̄kl with k and l odd, Ukl with k and

l odd, Ūkl with k and l odd;
(1 − α, β, γ, 1 − δ) for R̄kl with k and L odd, X ′

kl with k even and l odd, Z̄kl with
k even and l odd, V ′

kl for k and l odd, V̄ ′
kl for k and l even;

(α, 1 − β, 1 − γ, δ) for X̄ ′
kl with k odd and l even, Zkl with k odd and l even, S̄kl

with k and l even, Vkl with k and l odd, V̄kl with k and l even;
(α, 1 − β, γ, 1 − δ) for Z ′

kl with k and l even, Z̄ ′
kl with k and l even, Wkl with k

and l odd, W̄kl with k and l odd;
(α, β, 1 − γ, 1 − δ) for Skl with k and l even, X ′

kl with k odd and l even, Z̄kl with
k odd and l even, V ′

kl for k and l even, V̄ ′
kl for k and l odd;

(1− α, 1− β, 1− γ, 1− δ) for Skl with k and l odd, S̄kl with k and l odd, Z ′
kl with

k and l odd, Z̄ ′
kl with k and l odd, Wkl with k and l even, W̄kl with k and l even.
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Proposition 5.10 Let Q be a primitive spherical quadrilateral with the odd sum of the
integer parts of its angles. Let P be the corresponding partition of the sphere having
a quadrilateral face with the fixed angles (a, b, c, d) which are either fractional parts
(α, β, γ, δ) of the angles of Q or their complements. The following list describes the
angles (a, b, c, d) in terms of the angles (α, β, γ, δ), depending on the net of Q:

(1− α, β, γ, δ) for Xkl with k odd and l even, X̄kl with k odd and l even, Rkl with
k odd and l even, R̄kl with k odd and l even, Ukl with k odd and l even, Ūkl with k
even and l odd;

(α, 1− β, γ, δ) for Rkl with k even and l odd, X̄ ′
kl with k and l odd, Zkl with k and

l odd, Vkl with k odd and l even, V̄kl with k odd and l even;
(α, β, 1 − γ, δ) for Xkl with k even and l odd, X̄kl with k even and l odd, Ukl with

k even and l odd, Ūkl with k odd and l even;
(α, β, γ, 1− δ) for R̄kl with k even and l odd, X ′

kl with k and l odd, Z̄kl with k and
l odd, V ′

kl for k even and l odd, V̄ ′
kl with k even and l odd;

(α, 1 − β, 1 − γ, 1 − δ) for Skl with k even and l odd, S̄kl with k even and l odd,
Z ′
kl with k even and l odd, Z̄

′
kl with k odd and l even, Wkl with k odd and l even, W̄kl

with k even and l odd;
(1− α, β, 1− γ, 1− δ) for X ′

kl with k and l even, Z̄kl with k and l even, Vkl with k
and l even, V̄kl with k and l even, Skl with k odd and l even, V ′

kl for k odd and l even,
V̄ ′
kl with k odd and l even;
(1 − α, 1 − β, γ, 1 − δ) for Z ′

kl with k odd and l even, Z̄ ′
kl with k even and l odd,

Wkl with k even and l odd, W̄kl with k odd and l even;
(1 − α, 1 − β, 1 − γ, δ) for X̄ ′

kl with k and l even, Zkl with k and l even, S̄kl with
k odd and l even, Vkl with k even and l odd, V̄kl with k even and l odd.

Remark 5.11 Note that adding pseudo-diagonals or attaching disks to the sides of a
quadrilateral does not change relations between the angles (α, β, γ, δ) and (a, b, c, d)

in Propositions 5.9 and 5.10, so these relations hold for any generic spherical quadri-
lateral.

Example 5.12 If the angles of Xkl in Fig. 14 are (α, β, γ, k + l + δ), then the angles
(a, b, c, d) of the shaded quadrilateral face of its net are (α, β, 1 − γ, δ) for X01,
(1 − α, β, 1 − γ, δ) for X11, (1 − α, β, γ, δ) for X12.

Definition 5.13 A chain of quadrilaterals of length n ≥ 0 is a maximal sequence
of segments I j in the space of generic spherical quadrilaterals with given angles,
corresponding to distinct nets 
0, . . . , 
n , so that the segments I j and I j+1, for j =
0, . . . , n − 1, have a common non-generic non-degenerate quadrilateral Q j in the
limit at their ends, its sides being mapped to a four-circle configuration with a triple
intersection. A chain of length 0 is a segment I0 of generic spherical quadrilaterals
with the net 
0 such that the limits of quadrilaterals at both ends of I0 degenerate.

Example 5.14 In Fig. 34a, the shaded quadrilateral Q0 with the net X01 and angles
(α, β, γ, 1 + δ) is shown together with the configuration P0 to which its sides are
mapped. Note thatP0 has a quadrilateral face with the angles (a, b, c, d) = (α, β, 1−
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γ, δ). According to (1), the angles of Q0 satisfy the inequalities

0 < α + β − γ + δ − 1 < 2min(α, β, 1 − γ, δ). (5)

Proposition 5.3 describes the conditions on (a, b, c, d) and (α, β, γ, δ) that allow one
to transform P0 to one of the four four-circle configurations with triple intersections.
It is easy to check that only one of these four transformations results in a deformation
of Q0 that is non-degenerate in the limit: if α + δ < 1 − γ + β then P0 can be
deformed to a configuration with a triple intersection shown in Fig. 34b, and Q0
to the quadrilateral shaded in Fig. 34b. Passing through the triple intersection, we
get a generic configuration P1 shown in Fig. 34c, and a quadrilateral Q1 (shaded in
Fig. 34c) with the same angles as Q0. The net of Q1 is X ′

00. Configuration P1 has a
quadrilateral face with the angles (1− α, β, 1− γ, 1− δ). If 1+ α < β + γ + δ then
P1 can be transformed to a configuration with a triple intersection shown in Fig. 34d.
The quadrilateral Q1 shaded in Fig. 34d is non-degenerate. Passing through the triple
intersection we get a generic configuration P2 shown in Fig. 34e, and a quadrilateral
Q2 (shaded in Fig. 34e) with the same angles as Q0. The net of Q2 is X10, and any
deformation of P2 to a configuration with a triple intersection, other than that shown
in Fig. 34, results in a degenerate quadrilateral. Thus the chain of nets for the angles
satisfying (5) and

α + γ + δ < 1 + β, β + γ + δ > 1 + α (6)

has length 2. Remark 5.7 implies that the last inequality in (5) can be replaced by
β − γ + δ < 1 + α when the inequalities in (6) are satisfied. If the first inequality in
(6) is violated then the quadrilateral Q1 with the net X ′

00 does not exist, and the chain
breaks down into two chains of length 0 consisting of the quadrilaterals X01 and X10.
If the second inequality in (6) is violated then our chain of length 2 reduces to a chain
{X01, X ′

00}of length 1. If both the first and the second inequalities are violated, the
chain of length 2 reduces to a chain of length 0 consisting of a single net X01.

Example 5.15 If α+γ +δ = 1+β in (6) then the configurationP0 of the quadrilateral
Q0 with the net X01 in Fig. 34a (shown also in Fig. 35a) can be deformed (see
Remark 5.4) so that in the limit the four circles intersect at one point, and the limit
quadrilateral (see Fig. 35c), with the same angles as Q0, is not degenerate. Note that
the limit quadrilateral is not spherical, and the family of quadrilaterals obtained by
deformation of P0 cannot be extended beyond the limit configuration with quadruple
intersection as a spherical configuration.

Example 5.16 In Fig. 36a, a quadrilateral Q0 with the net R11 (see Fig. 16) with
angles α, β, 1 + γ , 1 + δ is shown. The quadrilateral face with fixed angles of the
corresponding configuration P0 has the angles (a, b, c, d) = (1 − α, 1 − β, γ, δ)

satisfying the inequalities

0 < γ + δ − α − β < 2min(1 − α, 1 − β, γ, δ). (7)
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Fig. 34 The chain of quadrilaterals X01, X ′
00, X10

Fig. 35 Limit of the quadrilateral X01 when α + δ = β + 1 − γ

Deforming P0 to a configuration with a triple intersection such that one of triangular
faces of Q0 adjacent to its top side is contracted to a point results in conformal
degeneration of the quadrilateral with modulus tending to 0 in the limit. If 1 − α +
1 − β > γ + δ, i.e.,

α + β + γ + δ < 2 (8)

then P0 can be deformed to a configuration with a triple intersection such that the
corresponding quadrilateral shown in Fig. 36b is not degenerate. Passing through the
triple intersection we get a generic configurationP1 corresponding to the quadrilateral
Q1 shown inFig. 36c. The net of Q1 is S11 (see Fig. 16).Note thatP1 has a quadrilateral
face with the angles (1 − α, 1 − β, 1 − γ, 1 − δ) which is not part of the net of Q1

123



192 A. Gabrielov

Fig. 36 The chain of quadrilaterals R11 and S11

but can be seen if a disk D51 is attached to the side of order 5 of Q1 (shaded area in
Fig. 36d). Thus R11 and S11 form a chain of length 1 when the inequalities (7) and
(8) are satisfied. Note that, according to Remark 5.7, the last inequality in (7) can be
replaced with γ + δ − α − β < 2min(γ, δ).

If α + β + γ + δ > 2, then P0 could be deformed so that the top side of Q0 is
contracted to a point. This would result in conformal degeneration of Q0 with the
modulus tending to ∞. Thus the net R11 would constitute a chain of length 0 in that
case. Note that a quadrilateral with the net S11 does not exist in this case. However,
when α + β + γ + δ > 2, in addition to a quadrilateral Q0 with the net R11, a
quadrilateral Q2 with the same angles as Q0, such that its net is P0 ∪ D15, with a disk
attached to one side of a quadrilateral P0, may exist. The chain of Q2 consists of a
single net and has length 0. Thus there may be either one chain or two chains of length
0 (either R11 or P0 ∪ D15, or both) in this case.

Attaching disks to the sides of R11 and S11 does not affect the existence (or non-
existence) of the chain of length 1 containing the two nets, except when a disk D51
is attached to the side of order 5 of S11 (see Fig. 36d). In this case, even when both
(7) and (8) hold, the quadrilateral S11 + D51 conformally degenerates (its bottom side
is contracted to a point) when configuration P1 is deformed to a configuration with a
triple intersection corresponding to the quadrilateral in Fig. 36b. Accordingly, no disk
can be attached to the side of order 7 of the quadrilateral R11.

Example 5.17 The chains of quadrilaterals associated with the quadrilateral Z ′
00 are

shown in Fig. 37. All quadrilaterals in Fig. 37 have the angles α, 1+β, γ, 1+ δ. The
net Z ′

00 of the quadrilateral in the center of Fig. 37 has a quadrilateral face with the
angles (α, 1 − β, γ, 1 − δ) satisfying

0 < α − β + γ − δ < 2min(α, 1 − β, γ, 1 − δ) (9)

Ifα+δ > β+γ then the quadrilateral Z ′
00 can be deformed through a triple intersection

to the quadrilateral Z10. If α + δ < β + γ then the quadrilateral Z ′
00 can be deformed

through a triple intersection to the quadrilateral Z̄01. Note that these two deformations
are not compatible.
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Fig. 37 The chains of quadrilaterals associated with Z ′
00

If α + β < γ + δ then the quadrilateral Z ′
00 can be deformed through a triple

intersection to the quadrilateral Z01. If α + β > γ + δ then the quadrilateral Z ′
00 can

be deformed through a triple intersection to the quadrilateral Z̄10. Note that these two
deformations are not compatible.

If instead of (9) we have

0 < β − α + δ − γ < 2min(1 − α, β, 1 − γ, δ) (10)

then each of the quadrilaterals Z10 and Z̄01 can be deformed through a triple inter-
section to the quadrilateral U11, and each of the quadrilaterals Z01 and Z̄10 can be
deformed through a triple intersection to the quadrilateral Ū11. Note that these defor-
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Fig. 38 The chains of quadrilaterals associated with Z11

mations are not compatible with the deformations from Z10, Z̄01, Z01 and Z̄10 to
Z ′
00.
Thus a chain of length 2 containing the quadrilateral Z ′

00 and either quadrilaterals
Z10 and Z01 or the quadrilaterals Z̄01 and Z10 exists when inequalities (9) are satisfied
and α+δ �= β +γ , α+β �= γ +δ. Two chains of length 1, one of them containing the
quadrilateralU11 and one of the quadrilaterals Z10 and Z̄01, and another one containing
the quadrilateral Ū11 and one of the quadrilaterals Z01 and Z̄10, exist when inequalities
(10) are satisfied and α + δ �= β + γ , α + β �= γ + δ.
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Example 5.18 Figure 38 shows the chains of quadrilaterals associated with the quadri-
lateral Z11. All quadrilaterals in Fig. 38 have the angles α, 1 + β, γ, 2 + δ. The net
of Z11 has a quadrilateral face with the angles (α, 1 − β, γ, δ) satisfying

1 < α − β + γ + δ > 1 + 2min(α, 1 − β, γ, δ). (11)

If α + β + δ < 1+ γ , the quadrilateral Z11 can be deformed to the quadrilateral Z ′
10.

If β +γ +δ < 1+α, the quadrilateral Z11 can be deformed to the quadrilateral Z ′
01. If

α+β +γ < 1+δ, the quadrilateral Z ′
10 can be deformed to the quadrilateral V21, and

the quadrilateral Z ′
01 can be deformed to the quadrilateral V̄21. If α + β + γ > 1+ δ,

the quadrilateral Z ′
10 can be deformed to the quadrilateral V ′

21, and the quadrilateral
Z ′
01 can be deformed to the quadrilateral V̄ ′

21. Note that conditions on the angles of
V ′
21 and V̄ ′

21 are opposite to those on the angles of V21 and V̄21, thus only one of the
two deformations is possible for Z ′

10 and Z ′
01.

If α + β + δ > 1 + γ , the quadrilaterals V21 and V ′
21 can be deformed to the

quadrilateral U21. If β + γ + δ > 1 + α, the quadrilaterals V̄21 and V̄ ′
21 can be

deformed to the quadrilateral Ū21. Note that the condition on the angles of U21 and
Ū21 are opposite to those on the angles of Z ′

10 and Z ′
01, respectively.

Summing up, if in addition to (11) the inequalities

α + β + δ > 1 + γ, β + γ + δ < 1 + α, α + β + γ < 1 + δ (12)

are satisfied, then there is a chain {V21, Z ′
10, Z11, Z ′

01, V̄21} of length 4. If the last
inequality in (12) is replaced by the opposite inequality, V21 is replaced by V ′

21 and
V̄21 is replaced by V̄ ′

21, still having a chain of length 4. If the first inequality in
(12) is replaced by the opposite inequality, Z ′

10 is replaced by U21, and we get a
chain {Z11, Z ′

01, V̄21} of length 2 and a chain {V21,U21} of length 1. If both the first
and the last inequalities are replaced by their opposite inequalities, we get a chain
{Z11, Z ′

01, V̄
′
21} of length 2 and a chain {V ′

21,U21} of length 1.
The chains described in this example remain the same if we add pseudo-diagonals

and attach disks to the sides of our quadrilaterals, except if a disk D is attached to
the side of order 5 of Z ′

10 (resp., Z
′
01) the deformation to V21 (resp., to V̄21) becomes

impossible evenwhen (12) is satisfied, as the quadrilateral Z ′
10 (resp., Z

′
01) degenerates

at the triple intersection. Accordingly, no disks can be attached to the “long” sides of
order 7 of V21, V̄21, U21, and Ū21.

Example 5.19 The chains of quadrilaterals associated with the quadrilateral Z ′
11 are

shown in Fig. 39. The angles of all quadrilaterals in Fig. 39 are α, 1+β, γ, 3+δ. The
net Z ′

11 has a quadrilateral face with the angles (1− α, 1− β, 1− γ, 1− δ) satisfying

2 > α + β + γ + δ > 2max(α, β, γ, δ). (13)

Ifα+β < γ +δ then the quadrilateral Z ′
11 can be deformed through a triple intersection

to the quadrilateral Z21. If β + γ < α + δ then the quadrilateral Z ′
11 can be deformed

through a triple intersection to the quadrilateral Z12. Eachof the other twodeformations
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Fig. 39 The chains of quadrilaterals associated with Z ′
11

of the four-circle configuration to a triple intersection results in degeneration of the
quadrilateral Z ′

11.
The net Z21 has a quadrilateral face with the angles (1−α, 1−β, γ, δ). If α +γ >

β + δ then the quadrilateral Z21 can be deformed through a triple intersection to the
quadrilateral Z ′

20. The net Z12 has a quadrilateral face with the angles (α, 1 − β, 1 −
γ, δ). If α + γ > β + δ then the quadrilateral Z12 can be deformed through a triple
intersection to the quadrilateral Z ′

02.
The net Z ′

20 has a quadrilateral face with the angles (α, 1−β, γ, 1− δ). If α + δ >

β + γ then the quadrilateral Z ′
20 can be deformed through a triple intersection to the

quadrilateral V31. If α+δ < β+γ then the quadrilateral Z ′
20 can be deformed through

a triple intersection to the quadrilateral V ′
31. Note that these two deformations are not

compatible.
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Fig. 40 The chains of quadrilaterals associated with W22

The net Z ′
02 has a quadrilateral face with the angles (α, 1−β, γ, 1− δ). If α +β <

γ + δ then the quadrilateral Z ′
02 can be deformed through a triple intersection to the

quadrilateral V̄31. If α+β > γ +δ then the quadrilateral Z ′
02 can be deformed through

a triple intersection to the quadrilateral V̄ ′
31. Note that these two deformations are not

compatible.
The netsV31,V ′

31, V̄3,1 and V̄
′
31 have quadrilateral faceswith the angles (α, 1−β, 1−

γ, δ), (1−α, β, γ, 1−δ), (1−α, 1−β, γ, δ) and (α, β, 1−γ, 1−δ), respectively. Note
that V31 and V ′

31 do not exist with the same values of the angles α, β, γ, δ. Similarly,
V̄31 and V̄ ′

31 do not exist with the same values of the angles α, β, γ, δ.
Each of the netsU31 and Ū31 has a quadrilateral face with the angles (1−α, β, 1−

γ, δ) satisfying

0 < β − α + δ − γ < 2min(1 − α, β, 1 − γ, δ). (14)

If α +γ < β + δ then each of the quadrilaterals V31 and V ′
31 can be deformed through

a triple intersection to the quadrilateral U31, and each of the quadrilaterals V̄31 and
V̄ ′
31 can be deformed through a triple intersection to the quadrilateral Ū31. Note that

these deformations are not compatible with the deformations between Z21 and Z ′
20,

and between Z12 and Z ′
02.

Summing up, if in addition to (13) the inequalities

α + β < γ + δ, α + δ > β + γ, α + γ > β + δ (15)
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are satisfied, then there is a chain {V31, Z ′
20, Z21, Z ′

11, Z12, Z ′
02, V̄31} of length 6. Note

that, according to Remark 5.7, the last inequality in (13) can be removed when the
inequalities (15) are satisfied.

If the first inequality in (13) is violated then Z ′
11 is removed from the chain, and

we have two chains of length 2 each. If either the first or the second inequality in (15)
is violated then either Z21 is removed and V̄31 is replaced by V̄ ′

31, or Z12 is removed
and V31 is replaced by V ′

31. In both cases we have a chain of length 3 and a chain of
length 1. If the third inequality in (15) is violated then Z ′

20 and Z ′
02 are removed, U31

and Ū31 are added, and we have a chain of length 2 and two chains of length 1.
If, in addition to (13), only the first inequality in (15) is satisfied, then there are

three chains {Z ′
11, Z21}, {V ′

31,U31} and {V̄31, Ū31} of length 1.
If, in addition to (13), only the second inequality in (15) is satisfied, then there are

three chains {Z ′
11, Z12}, {V31,U31} and {V̄ ′

31, Ū31} of length 1.
If, in addition to (13), only the third inequality in (15) is satisfied, then there is

a chain of length 0 consisting of a single net Z ′
11, and two chains {Z ′

20, V
′
31} and

{Z ′
02, V̄

′
31} of length 1.

Example 5.20 Figure 40 shows the chains of quadrilaterals associated with the quadri-
lateralW22 with the angles α, 2+β, γ, 2+ δ. The net ofW22 has a quadrilateral face
with the angles (1 − α, 1 − β, 1 − γ, 1 − δ) satisfying

2 > α + β + γ + δ > 2max(α, β, γ, δ). (16)

If α + β < γ + δ, the quadrilateral W22 can be deformed through a triple intersection
to a quadrilateral V22. If α + β > γ + δ, the quadrilateral W22 can be deformed
through a triple intersection to a quadrilateral V ′

22. Note that these two transformations
are incompatible. If α + β + γ + δ > 2, each of the quadrilaterals V22 and V ′

22
can be deformed through a triple intersection to a quadrilateral U22. Note that these
transformations are incompatible with the transformations between V22 and W22 or
between V ′

22 and W22. In any case, we have one chain of length 1.

Proposition 5.21 The chains containing generic quadrilaterals Xkl and X ′
pq with even

n = k + l = p + q + 1 and fixed angles α, β, γ, n + δ may be of the following kind:

(i) The chain X0,n, X ′
0,n−1, X1,n−1, . . . , Xn,0, of length 2n, if

α + β + γ + δ > 2, α + δ < β + γ, α + γ < β + δ, α + β > γ + δ. (17)

(ii) If all inequalities except the first in (17) are satisfied, there are n/2 chains of
length 2 obtained from the chain in (i) by removing all entries X2m,n−2m for
m = 0, . . . , n/2.

(iii) If all inequalities except the second in (17) are satisfied, there are n/2 chains of
length 2 and one chain of length 0 obtained from the chain in (i) by removing
all entries X ′

2m,n−2m−1 for m = 0, . . . , n/2 − 1.
(iv) If all inequalities except the third in (17) are satisfied, there are n/2+ 1 chains

of length 1 obtained from the chain in (i) by removing all entries X2m+1,n−2m−1
for m = 0, . . . , n/2 − 1.
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(v) If all inequalities except the fourth in (17) are satisfied, there are n/2 chains of
length 2 and one chain of length 0 obtained from the chain in (i) by removing
all entries X ′

2m+1,n−2m−2 for m = 0, . . . , n/2 − 1.
(vi) If only the first and second inequalities in (17) are satisfied, there are n/2 chains

of length 1 and one chain of length 0 obtained from the chain in (i) by removing
all entries X2m+1,n−2m−1 and X ′

2m+1,n−2m−2 for m = 0, . . . , n/2 − 1.
(vii) If only the first and third inequalities in (17) are satisfied, there are n+1 chains

of length 0 obtained from the chain in (i) by removing all entries X ′
m,n−m−1 for

m = 0, . . . , n − 1.
(viii) If only the first and fourth inequalities in (17) are satisfied, there are n/2 chains

of length 1 and one chain of length 0 obtained from the chain in (i) by removing
all entries X ′

2m,n−2m−1 and X2m+1,n−2m−1 for m = 0, . . . , n/2 − 1.
(ix) If only the second and third inequalities in (17) are satisfied, there are n/2 chains

of length 1 obtained from the chain in (i) by removing all entries X2m,n−2m for
m = 0, . . . , n/2 and X ′

2m+1,n−2m−2, for m = 0, . . . , n/2 − 1.
(x) If only the second and fourth inequalities in (17) are satisfied, there are n chains

of length 0 obtained from the chain in (i) by removing all entries Xm,n−m for
m = 0, . . . , n.

(xi) If only the third and fourth inequalities in (17) are satisfied, there are n/2 chains
of length 1 obtained from the chain in (i) by removing all entries X2m,n−2m for
m = 0, . . . , n/2 and X ′

2m,n−2m−1 for m = 0, . . . , n/2 − 1.
(xii) If only the first inequality in (17) is satisfied, there are n/2+ 1 chains of length

0, each of them consisting of a single quadrilateral X2m,n−2m for m = 0, . . . n.
(xiii) If only one inequality in (17), either second, third or fourth, is satisfied, there

are n/2 chains of length 0, each of them consisting of a single quadrilateral.

Proposition 5.22 The chains containing generic quadrilaterals Xkl and X ′
pq with odd

n = k + l = p + q + 1 ≥ 3 and fixed angles α, β, γ, n + δ may be of the following
kind:

(i) The chain X0,n, X ′
0,n−1, X1,n−1, . . . , Xn,0, of length 2n, if

α+β+δ > 1+γ, α+γ +δ < 1+β, β+γ +δ > 1+α, α+β+γ > 1+δ. (18)

(ii) If all inequalities except the first in (18) are satisfied, there are (n−1)/2 chains
of length 2 and one chain of length 1 obtained from the chain in (i) by removing
all entries X2m,n−2m for m = 0, . . . , (n − 1)/2.

(iii) If all inequalities except the second in (18) are satisfied, there are (n − 1)/2
chains of length 2 and two chains of length 0 obtained from the chain in (i) by
removing all entries X ′

2m,n−2m−1 for m = 0, . . . , (n − 1)/2.
(iv) If all inequalities except the third in (18) are satisfied, there are (n−1)/2 chains

of length 2 and one chain of length 1 obtained from the chain in (i) by removing
all entries X2m+1,n−2m−1 for m = 0, . . . , (n − 1)/2.

(v) If all inequalities except the fourth in (18) are satisfied, there are (n+1)/2 chains
of length 2 obtained from the chain in (i) by removing all entries X ′

2m+1,n−2m−2
for m = 0, . . . , n/2 − 1.
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(vi) If only the first and second inequalities in (18) are satisfied, there are (n +
1)/2 chains of length 1 obtained from the chain in (i) by removing all entries
X2m+1,n−2m for m = 0, . . . , (n−1)/2 and X ′

2m+1,n−2m−2 for m = 0, . . . , (n−
3)/2.

(vii) If only the first and third inequalities in (18) are satisfied, there are n+1 chains
of length 0 obtained from the chain in (i) by removing all entries X ′

m,n−m−1 for
m = 0, . . . , n − 1.

(viii) If only the first and fourth inequalities in (18) are satisfied, there are (n − 1)/2
chains of length 1 and one chain of length 0 obtained from the chain in (i) by
removing all entries X2m+1,n−2m−1 for m = 0, . . . , (n−1)/2 and X ′

2m,n−2m−1
for m = 0, . . . , (n − 1)/2.

(ix) If only the second and third inequalities in (18) are satisfied, there are (n+1)/2
chains of length1obtained from the chain in (i) by removingall entries X2m,n−2m
for m = 0, . . . , (n − 1)/2 and X ′

2m+1,n−2m−2 for m = 0, . . . , (n − 3)/2.
(x) If only the second and fourth inequalities in (18) are satisfied, there are n chains

of length 0 obtained from the chain in (i) by removing all entries Xm,n−m for
m = 0, . . . , n.

(xi) If only the third and fourth inequalities in (18) are satisfied, there are (n− 1)/2
chains of length 1 and one chain of length 0 obtained from the chain in (i) by
removing all entries X2m,n−2m and X ′

2m+1,n−2m−2 for m = 0, . . . , (n − 1)/2.
(xii) If only one inequality, first, second or third in (18) is satisfied, there are (n+1)/2

chains of length 0, each of them consisting of a single quadrilateral.
(xiii) If only fourth inequality in (18) is satisfied, there are (n − 1)/2 chains of length

0, each of them consisting of a single quadrilateral.

5.2 Lower Bounds on the Number of Generic Spherical Quadrilaterals with Given
Angles

Given a generic spherical quadrilateral Q0, we want to understand how many generic
spherical quadrilaterals with the same angles and the same modulus as Q0 may exist.
The chains of quadrilaterals provide a lower bound for that number.

For eachquadrilateralQwith the sameangles andmodulus asQ0, consider the chain
C of quadrilaterals containing Q. If the quadrilaterals at both ends of C conformally
degenerate, the modulus of these quadrilaterals converges either to 0 at both ends, or
to ∞ at both ends, or else to 0 at one end and to ∞ at another. We claim that the first
two options are realized when C has odd length (contains an even number of nets)
while the third possibility is realized when C has even length.

Let Q be a spherical quadrilaterals with the corners a0, . . . , a3 and the sides
[a j−1, a j ]mapped to the circleC j of a generic four-circle configurationP . According
to [16, Lemma 13.1], (see also [12, LemmaA4]), whenP degenerates to a four-circle
configuration with a triple intersection, Q conformally degenerates with the modulus
tending to 0 when intrinsic distance between its sides mapped to C1 and C3 tends to 0
while intrinsic distance between its other two sides does not. Accordingly, Q confor-
mally degenerates with the modulus tending to ∞ when intrinsic distance between its
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sides mapped to C2 and C4 tends to 0 while intrinsic distance between its other two
sides of does not.

When the configuration P degenerates to a four-circle configuration with a triple
intersection that does not include a circle C j , the quadrilateral Q conformally degen-
erates only when an arc γ of its net 
 is contracted to a point. This happens when γ

is mapped to the complement of C j , if the following three conditions are satisfied:

• γ has order 1 (either it is an interior arc without interior vertices or a boundary arc
without lateral vertices),

• two ends of γ are on the opposite sides of Q, mapped to Ck and C� where k and
� have opposite parity of j ,

• none of the two ends of γ is mapped to C j .

Since the values j and j ′ for the two ends of I
 always have opposite parities, the
arcs γ and γ ′ contracted to points in the limits at the two ends of any chain C have
the ends on the same opposite sides of Q if C has odd length and on different opposite
sides of Q if C has even length.

If a chain C has even length (contains an odd number of nets) and the quadrilaterals
at both ends of C conformally degenerate, then the limit of the values of modulus at
one end of C is 0, and the limit at its other end is ∞. This implies that there exists at
least one quadrilateral with a net in in C with any given modulus 0 < K < ∞. Thus
the number of chains C such that length of C is even and quadrilaterals at both ends of
C conformally degenerate is a lower bound for the number of quadrilaterals with the
given angles and modulus.

If a chain C has odd length (contains an even number of nets) and the quadrilaterals
at both ends of C conformally degenerate, then the limits of the values of modulus at
its ends are either both 0 or both ∞. In the first (resp., second) case, there exist two
quadrilaterals with the nets in C with small enough (resp., large enough) modulus.

Finally, if the quadrilaterals at only one end of a chain C of any length conformally
degenerate, with the limit of the values of modulus at that end is 0 (resp.,∞) then there
is exactly one quadrilateral with the net in C with small enough (resp., large enough)
modulus..

Thus chains of generic quadrilaterals allowone to count the number of quadrilaterals
with the given angles and either small enough or large enough modulus.

Example 5.23 Quadrilaterals with the angles (α, β, 1 + γ, 1 + δ) satisfying (7) in
Example 5.16 belong to a single chain C of length 1, consisting of the quadrilaterals
with the nets R11 and S11 when α + β + γ + δ < 2. At both ends of that chain, the
modulus tends to 0, thus the lower bound for the number of quadrilaterals with the
given modulus is 0. Since C is the only chain of quadrilaterals with such angles, there
are exactly two quadrilaterals with such angles for small enough values of themodulus,
and no quadrilaterals with such angles for large enough values of the modulus.

When α+β+γ +δ > 2, there may be either one or two chains of length 0, with the
nets either R11 or P0 ∪ D15, or both. This implies that there may be either at least one
or at least two spherical quadrilaterals with such angles for any value of the modulus,
depending on the angles.
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Example 5.24 Quadrilaterals with the angles (α, β, γ, n+δ), where n is even, are con-
sidered in Proposition 5.21 (see also Example 5.14 for n = 2). If the inequalities (17)
are satisfied (item (i) of Proposition 5.21) then there is a single chain of quadrilaterals
with such angles of even length 2n, such that the modulus tends to 0 at the X0,n end of
the chain and to∞ at the Xn,0 end. This gives the lower bound of one quadrilateral for
each value of the modulus. If the first inequality in (17) is α + β + γ + δ < 2 instead
of α + β + γ + δ > 2 (item (ii) of Proposition 5.21), then there are n/2 chains of
length 2, and the lower bound becomesn/2. The maximal lower bound n + 1 appears
when the second and fourth inequalities in (17) are reversed (item (vii) of Proposition
5.21).

References

1. Ahlfors, L.: Conformal Invariants. Topics in Geometric Function Theory, Reprint of the 1973 Original.
AMS Chelsea Publishing, Providence (2010)

2. Bartolucci, D., de Marchis, F., Malchiodi, A.: Supercritical conformal metrics on surfaces with conical
singularities. Int. Math. Res. Not. 24, 5625–5643 (2011)

3. Chen, C.-C., Lin, C.-S.: Mean field equation of Liouville type with singular data: topological degree.
Commun. Pure Appl. Math. 68, 887–947 (2015)

4. Chen, Z., Lin, C.-S.: Sharp nonexistence results for curvature equations with four singular sources on
rectangular tori. Am. J. Math. 142, 1269–1300 (2020)

5. Eremenko, A.: Metrics of positive curvature with conic singularities on the sphere. Proc. Am. Math.
Soc. 132, 3349–3355 (2004)

6. Eremenko, A.: Metrics of constant positive curvature with four conic singularities on the sphere. Proc.
Am. Math. Soc. 148, 3957–3965 (2020)

7. Eremenko, A.: Co-axial monodromy. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20, 619–634 (2020)
8. Eremenko, A.: Metrics of constant positive curvature with conic singularities. A survey.

arXiv:2103.13364 (2021)
9. Eremenko, A., Gabrielov, A.: Rational functions with real critical points and the B. and M. Shapiro

conjecture in real enumerative geometry. Ann. Math. 155, 105–129 (2002)
10. Eremenko, A., Gabrielov, A.: On metrics of curvature 1 with four conic singularities on tori and on

the sphere. Ill. J. Math. 59, 925–947 (2015)
11. Eremenko, A., Gabrielov, A.: Spherical rectangles. Arnold Math. J. 2, 463–486 (2016)
12. Eremenko, A., Gabrielov, A.: Circular pentagons and real solutions of PainlevéVI equations. Commun.

Math. Phys. 355(1), 51–95 (2017)
13. Eremenko, A., Gabrielov, A.: Schwarz-Klein triangles. J. Math. Phys. An. Geom. 16, 263–282 (2020).

arXiv:cw2006.16874
14. Eremenko, A., Gabrielov, A., Mondello, G., Panov, D.: Moduli spaces for Lamé functions and Abelian

differentials of the second kind. Commun. Contemp. Math. 24, 1–68 (2022)
15. Eremenko, A., Gabrielov, A., Tarasov, V.: Metrics with conic singularities and spherical polygons. Ill.

J. Math. 58, 739–755 (2014)
16. Eremenko, A., Gabrielov, A., Tarasov, V.: Metrics with four conic singularities and spherical quadri-

laterals. Conformal Geometry Dyn. 20, 128–175 (2016)
17. Eremenko, A., Gabrielov, A., Tarasov, V.: Spherical quadrilaterals with three non-integer angles. J.

Math. Phys. Anal. Geometry 12, 134–167 (2016)
18. Eremenko, A., Mondello, G., Panov, D.: Moduli of spherical tori with one conical point.

arXiv:2008.02772 (2020)
19. Fujimori, S., Kawakami, Y., Kokubu, M., Rossman, W., Umehara, M., Yamada, K.: CMC-1 trinoids

in hyperbolic 3-space and metrics of constant curvature one with conical singularities on the 2-sphere.
Proc. Jpn. Acad. 87, 144–149 (2011)

20. Ihlenburg,W.: Über die geometrischen Eigenschaften derKreisbopgenvierecke. NovaActa Leopoldina
92, 1-79+5 (1909)

123

http://arxiv.org/abs/2103.13364
http://arxiv.org/abs/cw2006.16874
http://arxiv.org/abs/2008.02772


Classification of Generic Spherical Quadrilaterals 203

21. Klein, F.: Mathematical seminar at Göttingen, winter semester 1905/6 under the direction of Professors
Klein, Hilbert andMinkowski, talks by F. Klein, notes byO. Toeplitz. www.claymath.org/sites/default/
files/klein1math.sem_._ws1905-06.pdf

22. Klein, F.: Forlesungen über die Hypergeometrische Funktion, Reprint of the 1933 Original. Springer,
Berlin (1981)

23. Klein, Felix: Vorlesungen über die Hypergeometrische Funktion. Springer, Berlin (1981)
24. Luo, F., Tian, G.: Liouville equation and spherical convex polytopes. Proc. Am. Math. Soc. 116,

1119–1129 (1992)
25. Lin, C.-S., Wang, C.-L.: Elliptic functions, Green functions and the mean field equations on tori. Ann.

Math. 172, 911–954 (2010)
26. Mazzeo, R., Zhu, X.: Conical metrics on Riemann surfaces, II: spherical metrics. arXiv:1906.09720

(2019)
27. Mondello, G., Panov, D.: Spherical metrics with conical singularities on a 2-sphere: angle constraints.

Int. Math. Res. Not. 16, 4937–4995 (2016)
28. Mondello, G., Panov, D.: Spherical surfaces with conical points: systole inequality and moduli spaces

with many connected components. Geom. Funct. Anal. 29, 1110–1193 (2019)
29. Schilling, F.: Ueber die Theorie der symmetrischen s-Funktion mit einem einfachen Nebenpunkte.

Math. Ann., 51, 481–522
30. Troyanov, M.: Metrics of Constant Curvaturer on a Sphere with Two Conical Singularities. Lecture

Notes in Mathematics, vol. 1410, pp. 296–306. Springer, Berlin (1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

www.claymath.org/sites/default/files/klein1math.sem_._ws1905-06.pdf
www.claymath.org/sites/default/files/klein1math.sem_._ws1905-06.pdf
http://arxiv.org/abs/1906.09720

	Classification of Generic Spherical Quadrilaterals
	Abstract
	1 Introduction
	2 Generic Quadrilaterals and Their Nets
	2.1 Quadrilaterals Pµ and Pseudo-Diagonals
	2.2 Spherical Digons
	2.3 Spherical Triangles
	2.4 Interior Arcs of Generic Spherical Quadrilaterals

	3 Classification of Nets of Primitive and Irreducible Quadrilaterals
	3.1 Extension of a Side

	4 Classification of Nets of Generic Spherical Quadrilaterals
	4.1 Non-Uniqueness Cases in Remark 4.2

	5 Chains of Generic Spherical Quadrilaterals
	5.1 Relations Between Adjacent Four-Circle Configurations in a Chain
	5.2 Lower Bounds on the Number of Generic Spherical Quadrilaterals with Given Angles

	References




