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Abstract
The Kepler orbits form a 3-parameter family of unparametrized plane curves, consist-
ing of all conics sharing a focus at a fixed point. We study the geometry and symmetry
properties of this family, as well as natural 2-parameter subfamilies, such as those of
fixed energy or angular momentum. Our main result is that Kepler orbits is a ‘flat’
family, that is, the local diffeomorphisms of the plane preserving this family form a
7-dimensional local group, the maximum dimension possible for the symmetry group
of a 3-parameter family of plane curves. These symmetries are different from the
well-studied ‘hidden’ symmetries of the Kepler problem, acting on energy levels in
the 4-dimensional phase space of the Kepler system. Each 2-parameter subfamily of
Kepler orbits with fixed non-zero energy (Kepler ellipses or hyperbolas with fixed
length of major axis) admits PSL2(R) as its (local) symmetry group, corresponding
to one of the items of a classification due to Tresse (Détermination des invariants
ponctuels de l’équation différentielle ordinaire du second ordre y′′ = ω(x, y, y′), vol.
32, S. Hirzel, 1896) of 2-parameter families of plane curves admitting a 3-dimensional
local group of symmetries. The 2-parameter subfamilies with zero energy (Kepler
parabolas) or fixed non-zero angular momentum are flat (locally diffeomorphic to the
family of straight lines). These results can be proved using techniques developed in
the nineteenth century by Lie to determine ‘infinitesimal point symmetries’ of ODEs,
but our proofs are much simpler, using a projective geometric model for the Kepler
orbits (plane sections of a cone in projective 3-space). In this projective model, all
symmetry groups act globally. Another advantage of the projective model is a duality
between Kepler’s plane and Minkowski’s 3-space parametrizing the space of Kepler
orbits. We use this duality to deduce several results on the Kepler system, old and new.
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268 G. Bor, C. Jackman

1 Introduction and Statement of Main Results

A Kepler orbit is a plane conic—ellipse, parabola or hyperbola—with a focus at the
origin (in case of a hyperbola only the branch bending around the origin is taken).
Kepler orbits form a 3-parameter family of plane curves, traced by the motions of
a point mass subject to Newton’s inverse square law: the radial attractive force is
proportional to the inverse square of the distance to the origin. We exclude ‘collision
orbits’ (lines through the origin). See Fig. 1.

1.1 Orbital Symmetries

These are local diffeomorphisms of R
2\0, taking (unparametrized) Kepler orbits to

Kepler orbits. At the outset, it is not clear that there are any such symmetries, local
or global, other than the obvious ones—dilations and rotations about the origin, or
reflections about lines through the origin (a 2-dimensional group of symmetries).
Nevertheless, as we find out, there are many additional orbital symmetries, both for
the full 3-parameter family of Kepler orbits, as well as for some natural 2-parameter
subfamilies.

Theorem 1 The orbital symmetries of the Kepler problem form a 7-dimensional group
of local diffeomorphisms of R

2\0 (aka a ‘pseudo-group’), the maximum dimension
possible for a 3-parameter family of plane curves, generated by the following infinites-
imal symmetries (vector fields whose flows act by orbital symmetries):

r∂r , ∂θ , r∂x , r∂y, −xr∂r , −yr∂r , −r2∂r (1)

(using both Cartesian and polar coordinates).

Note that the first two vector fields generate dilations and rotations, the ‘obvious’
symmetries mentioned above. How about the rest of the symmetries? Where do they
come from?

We emphasize that the 7 vector fields of Theorem 1 do not generate a honest 7-
dimensional Lie group action on R

2\0. The first 4 vector fields do generate an action
of the connected component of the group CO2,1 on R

2\0, but the last three vector
fields are in fact incomplete (their integral curves “run to infinity” in finite time). As
we explain later, to obtain a global group action, one needs to embed the Kepler plane

Fig. 1 Kepler orbit types (ellipse, parabola or hyperbola), shapes and sizes are given by their energy E and
angular momentum M . The major axis is 1/|E | and the Latus rectum (vertical dotted segment) is 2M2. See
Sect. 3
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Revisiting Kepler: New... 269

in a larger surface, a cone inRP3, to which the above 7 vector fields extend, generating
an action of the 7-dimensional subgroup of PGL4(R) preserving this cone.

Nowquite generally, there is a standardmethod for finding infinitesimal symmetries
of n-parameter families of plane curves, going back to Lie in the nineteenth century,
consisting of first writing down an nth-order scalar ODE whose graphs of solutions
form the curves of the family. Then, one writes down a system of PDEs for the
infinitesimal symmetries of this ODE, which with some luck and skill, one can solve
explicitly. See Chapter 6 of Olver’s book [38]. This is a straightforward albeit tedious
procedure (best left nowadays to computers), producing the infinitesimal symmetries
above, but the result remains mysterious.

Instead, our proof of Theorem 1 exploits the peculiar geometry ofKepler’s problem,
in particular, its projective geometry, borrowing from Lie’s theory only the upper
bound of 7 on the dimension of the symmetry group. This proof, rather than the actual
statement of Theorem 1, is the main thrust of this article. See Sect. 1.3 for a sketch of
the proof.

1.2 The Space of Kepler Orbits

Every Kepler orbit is the orthogonal projection onto the xy plane (the ‘Kepler plane’)
of a conic section, the intersection of the cone C := {x2 + y2 = z2} ⊂ R

3 with
a plane ax + by + cz = 1, c �= 0. See Sect. 3 below for a proof as well as a
reminder of some other standard facts about the Kepler problem. Let R

2,1 be the 3-
dimensional space with coordinates (a, b, c) equipped with Minkowski’s quadratic
form ‖(a, b, c)‖2 := a2 + b2 − c2 (we use this notation even though the expression
has negative values!). Note that the planes ax + by + cz = 1 and ax + by − cz = 1
(the reflection of the former about the xy plane) generate the same Kepler orbit. Thus
R
2,1
+ = {c > 0} ⊂ R

2,1 is identified with the space of Kepler orbits. Furthermore,
the cone ‖(a, b, c)‖2 = 0 parametrizes Kepler parabolas, its interior ‖(a, b, c)‖2 < 0
parametrizes Kepler ellipses and its exterior ‖(a, b, c)‖2 > 0 parametrizes Kepler
hyperbolas. See Fig. 2.

The orbital symmetries of Theorem 1 clearly act on the space of Kepler orbits and
thus on R

2,1
+ . Again, this is only a local action (a 7-dimensional Lie algebra of vector

fields), but it extends to a global action on all of R
2,1.

Fig. 2 Kepler orbits are orthogonal projections of conic sections. i Ellipses. ii Hyperbolas. iii The space of
Kepler orbits
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270 G. Bor, C. Jackman

Theorem 2 The local group action of the orbital symmetries of the Kepler problem
on R

2,1
+ extends to R

2,1, generating the identity component of the group CO2,1 �

R
2,1 of Minkowski similarities (compositions of Minkowski rotations, dilations and

translations). The infinitesimal generators of this action, corresponding to those of
Eq. (1), are

− a∂a − b∂b − c∂c, −b∂a + a∂b, −a∂c − c∂a, −b∂c − c∂b, ∂a, ∂b , ∂c. (2)

The first vector field generates dilations in R
2,1, the next 3 generate Minkowski

rotations about the origin and the last 3 generate translations. It follows that orbital
symmetries actually ‘mix’ the orbit types (ellipses, parabolas, hyperbolas).

The horizontal plane {c = 0} ⊂ R
2,1 corresponds to ‘ideal’ Kepler orbits which

are inevitably added upon completing the orbital symmetry action. For (a, b, 0) �=
(0, 0, 0) they are (affine) lines inR

2\0, obtained by projecting to the xy plane sections
of C by vertical affine 2-planes in R

3. The point (0, 0, 0) ∈ R
2,1 corresponds to the

‘line at infinity’ in the Kepler plane.

1.3 Sketch of Proof of Theorems 1 and 2

With Fig. 2 in mind, consider the group CO2,1 ⊂ GL3(R), preserving the quadratic
form x2 + y2 − z2 up to scale. Its identity component acts on C+ := {x2 + y2 =
z2, z > 0}, preserving its set of plane sections, thus projects to an action on R

2\0 by
orbital symmetries. This accounts for the first 4 vector fields of Eq. (1).

Next, consider the 3-dimensional projective space RP3 with homogeneous coordi-
nates (X : Y : Z : W ) and embed R

3 ↪→ RP3 as the affine chart W �= 0, (x, y, z) �→
(x : y : z : 1). The closure of C in RP3, C = {(X : Y : Z : W ) | X2 + Y 2 = Z2}, is
obtained by adding to C the ‘circle at infinity’ S1∞ = {X2 + Y 2 = Z2, W = 0}. See
Fig. 3. Now consider the group ˜G ⊂ GL4(R), preserving the (degenerate) quadratic
form X2 + Y 2 − Z2, up to scale. A simple calculation (see Sect. 5 below) shows that
˜G is an 8-dimensional group, thus its image G = ˜G/R

∗ ⊂ PGL4(R) is 7-dimensional,
acting effectively on C, preserving its set of (projective) plane sections. It leaves invari-
ant the set of sections by planes not passing through the vertex of C, parametrized by
R
2,1. The action restricts to a local action on C+ ⊂ C, then projects to a local action on

R
2\0 by orbital symmetries. Equations (1) and (2) follow easily from this description.
Finally, we use a basic result of Lie’s theory of symmetries of ODEs (reviewed

in the Appendix), according to which the maximum dimension of the group of point
symmetries of a 3rd-order ODE is 7, thus the above construction provides the full
group of orbital symmetries of the Kepler problem. See Sect. 5 for the full details.

1.4 2-Parameter Subfamilies

The simplest example of a 2-parameter family of plane curves (also called a ‘path
geometry’) is the family of straight lines. It admits an 8-dimensional local group of
symmetries (the projective group), themaximumdimension possible for a 2-parameter
family of plane curves. A 2-parameter family of plane curves locally diffeomorphic
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Revisiting Kepler: New... 271

Fig. 3 In the affine chart {Z �= 0} ⊂ RP3, the cone C = {(X : Y : Z : W )|X2 + Y 2 = Z2} ⊂ RP3

appears as an infinite vertical cylinder, its vertex (0 : 0 : 0 : 1) is ‘at infinity’ and the ‘circle at infinity’
S1∞ = C ∩ {W = 0} is visible (the dotted horizontal circle). A conic section may intersect S1∞ in 0, 1
or 2 points; the corresponding Kepler orbit is an ellipse, parabola or hyperbola, as in figures (a), (b) or
(c), respectively. In the hyperbolic case (c), S1∞ divides the section into two ‘branches’; the Kepler orbit
corresponds to the branch whose convex hull intersects the vertical axis (the dark arc of the solid ellipse)

to this family is called flat. There are no straight lines among Kepler orbits, but there
are flat 2-parameter subfamilies.

Theorem 3 Kepler’s parabolas form a flat 2-parameter family of curves. The map
z �→ z2 (in complex notation) is a local diffeomorphism taking straight affine lines to
Kepler parabolas.

This theorem is essentially known. The squaring map z �→ z2, in the context of the
Kepler problem, is known sometimes as the Levi-Civita or Bohlin map. It can be also
used to define a local orbital equivalence between Hooke and Kepler orbits (see, e.g.,
Appendix 1 of [5]).

Theorem 4 Kepler’s orbits with fixed angular momentum ±M �= 0 form a flat 2-
parameter family of curves. The map r �→ r/(1 − r/M2) takes Kepler orbits with
angular momentum M to straight lines.

See Sect. 3 for a reminder about the angular momentum (also Fig. 1). One could
verify this theorem by a straightforward calculation in polar coordinates (see Sect. 5.4)
but the result becomesmore transparent using the geometry of the spaceR

2,1 of Kepler
orbits: the family of Kepler orbits with fixed |M | is represented inR

2,1 by a horizontal
plane; a vertical translation in this space, which according to Theorem 2 is available
as an orbital symmetry, maps this plane to the plane c = 0, parametrizing lines in the
xy-plane.

Next we consider Kepler orbits with fixed energy E �= 0. These fill up a plane
region HE , the Hill region. For E ≥ 0 (Kepler hyperbolas with major axis 1/E or
Kepler parabolas), the Hill region is the whole punctured plane, for E < 0 (Kepler
ellipses with major axis 1/|E |) it is a punctured disk of radius 1/|E |. See Fig. 4.
Theorem 5 (a) For each fixed energy E �= 0, the 2-parameter family of Kepler orbits

with energy E is non-flat but is locally homogeneous: its orbital symmetry group
is a 3-dimensional subgroup of the 7-dimensional group of Kepler’s orbital sym-
metries, isomorphic to PSL2(R) and generated by the infinitesimal symmetries

∂θ , r(∂x + Ex∂r ), r(∂y + Ey∂r ). (3)
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272 G. Bor, C. Jackman

Fig. 4 Kepler orbits of fixed energy E fill up the Hill regionHE

Fig. 5 Theorem 5. iKepler ellipses of fixed (negative) energy correspond to sections of C by planes tangent
to the lower part of a fixed paraboloid of revolution P inscribed in C. ii Kepler hyperbolas of the opposite
(positive) energy correspond to sections of C by planes tangent to the upper part of P . iii The surface dual
to P is a 2-sheeted hyperboloid of revolution P∗ ⊂ R

2,1 tangent to the c = 0 plane. Its upper and lower
sheets correspond to P− and P+, respectively

(b) For E < 0 the action of PSL2(R) on the Hill region HE is global; for E > 0 it is
only local.

This theorem is also essentially known, or at least can be deduced by experts on
‘superintegrable metrics’ from known results (see Remark 5.4 below for more details
and references).

Our proof of this theorem is quite simple using the geometry of the space of orbits
R
2,1: aswe explain in Sect. 3, orbits of fixed energy E correspond to one of the sheets of

the hyperboloid of two sheets a2+b2−(c−|E |)2 = −E2 (the upper sheet for E < 0,
the lower one for E > 0). See Fig. 5(iii). The Minkowski metric in R

2,1 restricts to a
hyperbolicmetric in each of these sheets, the subgroup ofG 
 CO2,1�R

2,1 preserving
the hyperboloid acts as the full group of isometries of thismetric, with generators given
by Eq. (3).

Any twoHill regionswith the same sign of energy are obviously orbitally equivalent
by dilation. For opposite signs of energies, this is still true but less obvious.

Theorem 6 H1 is orbitally embedded in H−1 by the map r �→ r/(1+ 2r). See Fig. 6.

Viewed inR
2,1, where the two Hill regions correspond to the two sheets of a hyper-

boloid, the map is simply the reflection about a horizontal plane c = 1, interchanging
the two sheets. See Fig. 5(iii).

1.5 Further Results

1. We establish a dictionary between the Minkowski geometry of the Kepler orbit
space R

2,1 and properties of Kepler orbits. For example: a parabolic (or isotropic)
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Fig. 6 Theorem 6. The image of H1 = R
2\0 (left) under r �→ r/(1 + 2r) is the darker punctured disk

of radius 1/2 in H−1 = {0 < x2 + y2 < 1} (right). Each hyperbolic orbit in H1 (the solid curve) is
mapped onto ‘one half’ of an elliptic orbit in H−1. The map, r �→ r/(1 − 2r) maps H1 onto the annulus
1/2 < x2 + y2 < 1 inH−1, taking the ‘repulsive’ branch (dotted) onto the other half of the ellipse

plane in R
2,1 corresponds to the family of Kepler orbits passing through a fixed

point. See Table 1 of Sect. 4.
2. We give three illustrations of the usage of this dictionary: a new proof of ‘Kepler’s

fireworks’ (Proposition 4.13), a Keplerian analogue of the 4 vertex and Tait–Kneser
theorems (Theorem 8) and a ‘minor axis version’ of Lambert’s Theorem (Theorem
9).

3. Similar results to Theorems 1–6 hold for orbital symmetries of the Hooke
problem—the set of conics sharing a center (trajectories of mass points under
central force proportional to the distance to the origin), and the orbits of the corre-
sponding ‘Coulomb’ problems, where the sign of the force is reversed, becoming
a repelling force. By central projection, our results extend to Hooke and Kepler
orbits on surfaces of constant curvature (sphere and hyperbolic plane). See Table 2.

4. We establish a converse to Theorem 1: among all central forces, Hooke and Kepler
force laws are the only ones producing ‘flat’ families of orbits (3 parameter families
with a 7-dimensional group of symmetries). See Theorem 10. This is reminiscent of
Bertrand’s Theorem (1873), characterizing these two force laws as the only central
force laws with bound orbits all of whose bound orbits are closed [9], [6, p. 37].

* * *

Techniques. Other than standard projective and differential geometric constructions,
we use some of the work of Lie (1874), [45] and [47] on point symmetries of 2nd
and 3rd order ODEs. We do not assume the reader’s familiarity with their work. We
summarize in the Appendix the needed tools of this theory.

Figures.The figures here were computer generated usingWolfram’sMathematica and
Apple’s Keynote.

2 Wider Context: ‘Orbital’ Versus ‘Dynamical’ Symmetries

The Kepler problem is centuries old with an enormous literature. It is hard to imagine
one can add anything new to this problem in the twenty-first century. Yet, new and
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interesting works continue to appear. See, for example, [8, 10, 24, 29, 36, 43]. Some
facts have been rediscovered several times, centuries apart, especially before the exis-
tence of internet search engines. For example, V.I. Arnol’d attributes in his 1990 book
[5, Appendix 1] the fact that z �→ z2 maps Hooke orbits to Kepler orbits to Bohlin’s
1911 article [11], then goes on to generalize it to a ‘duality’ between central force
power laws. In fact, all this appeared in Maclaurin’s 1742 ‘Treatise of fluxions’ [33,
Book II, Chap. V, §875] (we thank S. Tabachnikov for pointing out this reference to
us).

One of the most studied aspects of the Kepler problem are its symmetry properties.
The most obvious symmetries are diffeomorphisms of the plane, mapping solutions
r(t) of the underlying ODE, r̈ = −r/r3, to solutions. One can show that these consist
only of the rotations about the origin and reflections about lines through the origin,
valid for any central force motion.

More interesting symmetries arise when the Kepler problem is considered as a
Hamiltonian system, ie a flow defined on its phase space T ∗(R2\0). The symplec-
tomorphisms of phase space preserving parametrized trajectories of this flow form
a larger group of symmetries, associated with the Hamiltonian flows of additional
conserved quantities such as components of the Laplace–Runge–Lenz vector. These
symmetries generate a (local) SO3-action on the open subset of phase space with neg-
ative energy. Apart from the lift of the rotation symmetries above, these oft-called
‘hidden’ symmetries do not descend to an action on the Kepler plane, even locally.
The action is rather on phase space, mixing position and momentum variables. A good
reference for this type of ‘dynamic’ or ‘phase space’ symmetries of theKepler problem
is the book [29] or Chapters 3 and 4 of [22].

In contrast, the symmetries in this article are ‘orbital’ symmetries, acting on the
configuration space of the Kepler problem, R2\0, not its phase space. They are closer
to the symmetries one can extract from Albouy’s ‘projective dynamics’ papers [1, 2].

So how original are our results? As far as we can tell, after consulting with experts
and searching the literature, our results are new. The articles [1, 2, 15] are the nearest
in spirit that we found. ‘Hidden symmetries’ of the Kepler problem, i.e., of its phase
space, have been studied extensively, and symmetries of 2nd- and 3rd-order ODEs
have been studied extensively as well since the mid nineteenth century, but it seems
that the symmetries of the 2nd- and 3rd-order ODEs that arise in the Kepler problem
have not been studied systematically before, which is the present article’s contribution.

But of course, given the subject’s long and rich history, it is still quite possible that
at least some of the theorems announced here have been noted before, in some form
or another. If some of the readers of this article are aware of such work we will be
grateful if they contact us.

3 A Reminder on the Kepler Problem

Here we review briefly some known facts about the Kepler problem that will be used
in the sequel. See also [3, 5, 6, 24].
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Kepler orbits are the unparametrized plane curves traced by the solutions of the
ODE

r̈ = − r
r3

, (4)

where r = r(t) = (x(t), y(t)) ∈ R
2\0 and r := ‖r‖ = √

x2 + y2.
The energy and angular momentum of a solution are

E := 1

2
‖ṙ‖2 − 1

r
, M := x ẏ − yẋ, (5)

respectively, and can be easily shown to remain constant during the motion.
Note that M is twice the sectorial velocity, the rate at which area is swept by the

line segment connecting the origin to r(t). It follows that M = 0 if and only if the
motion is along a line passing through the origin. Our exclusion of ‘collision’ orbits
thus amounts to assuming M �= 0.Note also that although E and M are defined in Eq.
(5) via the time parametrization of the Kepler orbit, they are in fact determined by the
shape of the underlying unparametrized curve (except for the sign of M). See Fig. 1.

A conic in a Euclidean plane is the locus of points with constant ratio of distances
to a fixed point and a fixed line. The fixed point, line and ratio are called a focus,
directrix and eccentricity e (respectively). Conics with e > 1, e = 1, 0 < e < 1 and
e = 0 are hyperbolas, parabolas, non-circular ellipses and circles (respectively).

Identify the xy plane with the plane z = 0 in R
3, (x, y) �→ (x, y, 0). We use the

term ‘projection’ to mean the orthogonal projection R
3 → R

2, (x, y, z) �→ (x, y).

Theorem 7 (a) Every Kepler orbit is the projection of a section of the cone C =
{x2 + y2 = z2} ⊂ R

3 by a plane ax + by + cz = 1, c �= 0. More precisely:
if c > 0 then the orbit is the projection of the intersection of the plane with the
upper cone C+ := C∩{z > 0}; if c < 0 then it is the projection of the intersection
of the plane with the lower cone C− := C ∩ {z < 0}.

(b) The projected section is a conic with a focus at the origin and eccentricity

e =
√

a2 + b2

|c| . (6)

(c) The angular momentum and energy of the projected Kepler orbit are

M = ± 1√|c| , E = a2 + b2 − c2

2|c| . (7)

Remark 3.1 For positive energy orbits (hyperbolas), the plane section has two com-
ponents (branches), one in each of C±, and one needs to pick carefully the correct
branch, as stated in item (a).
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Proof (a) Let r(t) = (x(t), y(t)) be a solution of Eq. (4) with M �= 0. Rewriting
Eqs. (4) and (5) in polar coordinates, we have

r̈ = − 1

r2
+ M2

r3
, E = ṙ2

2
− 1

r
+ M2

2r2
. (8)

From the first equation follows that the inhomogeneous linear ODE

f̈ + f

r(t)3
= M2

r(t)3

has two particular solutions: r(t) and the constant solution M2. Their difference is
thus a solution of the homogeneous equation f̈ + f /r(t)3 = 0. But x(t), y(t) are two
solutions of this equation, linearly independent for M �= 0; hence, there are constants
A, B such that r(t) − M2 = Ax(t) + By(t). Rearranging and renaming the constants
we obtain ax + by + cr = 1, r2 = x2 + y2, as claimed.

The statement about the precise right half cone to pick is best seen by examining
Fig. 2(i) and (ii).

(b) By rotating the secting plane about the z axis and possibly reflecting it about the
xy plane, we can assume a ≥ 0, b = 0, c > 0. If a = 0 then the secting plane
is parallel to the xy plane and the projected conic is a circle (e = 0). Otherwise,
a > 0, the secting plane is ax + cz = 1, its intersection with the xy plane is the
line ax = 1 and the projected conic is ax + cr = 1. The ratio of distances of a
point (x, y) on the projected section to the origin and the intersection line is thus
e = r/|x − 1/a| = ar/|cr | = a/c, a constant, hence the projected section is a conic,
the origin is a focus and the intersection line is the corresponding directrix. The formula
for e follows from this calculation, since rotation of the plane ax + by + cz = 1 about
the z axis and reflecting it about the xy plane does not affect the values of e, |c| and
a2 + b2.

(c) The formula for M follows from the proof of item (a). For E , we again assume
a ≥ 0, b = 0, c > 0. The orbit is then ax + cr = 1 and at the pericenter (the point
nearest the origin) we have x = r = 1/(a + c). Using this in the formula for E in
Eq. (8), with ṙ = 0, M2 = 1/c, we get E = (a2 − c2)/(2c). For a general secting
plane, a2 is replaced with a2 + b2 and c with |c|. ��
Remark 3.2 The clever argument in the above proof of item (a) is due to Lagrange [31].
Another elegant proof, more geometric, is found in [24, §4]. There are many more.
A proof along the lines the subject is usually taught in modern introductory courses
and textbooks, such as [28, §3.5], consists of writing E and M in polar coordinates,
E = (ṙ2+r2θ̇2)/2−1/r , M = r2θ̇ , then using these towrite a differential equation for
ρ := 1/r as a function of θ , E = (M2/2)[(ρ′)2+ρ2]−ρ, or ρ′′+ρ = 1/M2. Solving
this ODE gives r = M2/[1+e cos(θ −θ0)], where e is an integration constant. This is
the equation in polar coordinates of a conic with eccentricity e and focus at the origin,
which proves the first part of item (b). Expanding the cosine in this formula and setting
x = r cos θ, y = r sin θ , one obtains ax + by + cr = 1, with a = (e/M2) cos θ0,
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Fig. 7 a Kepler orbits with fixed angular momentum (same as fixed latum rectum); the heavy curve is a
parabola. b Kepler ellipses with fixed (negative) energy E (same as fixed major axis)

b = (e/M2) sin θ0, c = 1/M2, as claimed in item (a). From all these formulas follow
easily the expressions for e, M and E of Eqs. (6) and (7).

Corollary 3.3 The cone C∗ := {a2 + b2 = c2} ⊂ R
2,1 parametrizes Kepler parabolas

(e = 1), its interior a2+b2 < c2 Kepler ellipses (0 ≤ e < 1) and exterior a2+b2 > c2

Kepler hyperbolas (e > 1). See Fig. 2(iii).

Corollary 3.4 Kepler orbits with angular momentum M �= 0 have fixed latus rectum
2M2 and are the projections of sections of C by non-vertical planes passing through
(0, 0, M2) or (0, 0,−M2). See Fig. 7a.

This is immediate from Eqs. (6) and (7).

Corollary 3.5 Kepler orbits with energy E �= 0 are the projections of sections of C by
planes tangent to the paraboloid of revolution

P :=
{

(x, y, z) ∈ R
3 | z = |E |

2

(

x2 + y2
)

+ 1

2|E |
}

,

inscribed in C and tangent to it along a horizontal circle, dividing P into two com-
ponents: Kepler ellipses with energy −|E | are the projections of sections of C+ by
planes tangent to the lower component P− = P ∩ {z < 1/|E |}; Kepler hyperbolas
with energy |E | are the projections of sections of C− by planes tangent to the upper
component P+ = P ∩ {z > 1/|E |}. See Fig. 5.

Proof P is given in homogeneous coordinates (X : Y : Z : W ) on RP3 by E2(X2 +
Y 2) − 2|E |Z W + W 2 = 0. The dual equation, parametrizing the planes AX + BY +
C Z + DW = 0 tangent to P , is given by inverting the coefficient matrix of the
quadratic equation defining P , and is A2 + B2 − C2 − 2|E |C D = 0, or in affine
coordinates, a2 + b2 − c2 + 2|E |c = 0. At a point p0 = (x0, y0, z0) ∈ P the tangent
plane is ax + by + cz = 1, where (a, b, c) = (|E |x0, |E |y0,−1)/(|E |z0 − 1). If
p0 ∈ P− then z0 < 1/|E | hence c > 0, so by Eq. (7) the energy of the corresponding
orbit is (a2 + b2 − c2)/(2c) = −|E |, as needed. A similar calculation for the case
p0 ∈ P+ completes the proof. ��
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Remark 3.6 The last corollary we learned from [24, p. 145], although our proof is
quite different.

4 The Geometry of the Space of Kepler Orbits

Recall thatR2,1 is the 3-dimensional space with coordinates a, b, c, equipped with the
indefinite quadratic form ‖(a, b, c)‖2 := a2 + b2 − c2 and associated flat Lorentzian
metric ds2 = da2 + db2 − dc2. A line in R

2,1 is spacelike, null or timelike if ds2

restricts on it to a positive, null or negative metric, respectively. A plane in R
2,1 is

elliptic, parabolic 1 or hyperbolic if ds2 restricted to it is of signature (2, 0), (1, 0), or
(1, 1), respectively. The null cone with vertex v ∈ R

2,1 is the set of points v′ ∈ R
2,1

such that ‖v − v′‖2 = 0; equivalently, the union of null lines through v.

4.1 Duality

The equations ax + by + cz = 1, x2 + y2 = z2 define a duality between Kepler’s
xy plane and Minkowski’s space R

2,1: to each point (a, b, c) ∈ R
2,1\0 corresponds a

curve in the xy plane, a Kepler orbit if c �= 0 or a straight line if c = 0, the projection
of the intersection of the plane ax + by + cz = 1 with one of the components of
C = {x2 + y2 = z2} (see Theorem 7(a)): if c > 0 then one projects the intersection
with C+ = C ∩ {z > 0}, if c < 0 the intersection with C− = C ∩ {z < 0} and if c = 0
the intersection with either component. Conversely, to each point (x, y) ∈ R

2\0
corresponds the plane ax + by + cr = 1 in R

2,1, where r = √

x2 + y2. Table 1
summarizes some instances of this duality.

We shall not dwell on all items of this table, as most reflect statements proven
elsewhere in this article or are simple to verify. We sketch here proofs of a few items
and leave the rest for the reader to explore.

Proposition 4.1 (Item 4 of Table 1) The set of Kepler orbits sharing a point corre-
sponds to a parabolic plane in R

2,1. Every parabolic plane in R
2,1 arises in this

way.

Proof A plane ax + by + cz = 1 in R
2,1 is parabolic if and only if it forms an angle

of 45 degrees with a horizontal plane. This angle satisfies tan α = √

x2 + y2/|z| and
the result follows. ��
Remark 4.2 This last proposition is equivalent to Corollary 3.3 above by projective
duality.

Proposition 4.3 (Item 6 of Table 1) The set of Kepler orbits tangent to a given Kepler
orbit at one of its points corresponds to a null line in R

2,1. Every null line is obtained
in this way. See Fig. 8.

1 Some authors use the term ‘isotropic’ instead of ‘parabolic’. For example, Cartan [16]. Elliptic planes
are called also ‘spacelike.’
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Table 1 Kepler–Minkowski duality

Kepler xy-plane Minkowski space R
2,1

1 A Kepler orbit (or a line) A point

2 A Kepler ellipse/parabola/hyperbola A point inside/on/outside a2 + b2 = c2

3 A line A point in the ab plane

4 A point A parabolic plane

5 Kepler orbits tangent to a given Kepler orbit The null cone with a given vertex

6 Kepler orbits tangent at a point A null line

7 Kepler orbits passing through 2 given points A spacelike line

8 Nested Kepler orbits with concurrent
directrices

A timelike line

9 Kepler orbits of fixed angular momentum
±M �= 0

A horizontal plane c �= 0

10 Kepler ellipses with energy E < 0 (projected
sections of C by planes tangent to

2|E |z = E2
(

x2 + y2
)

+ 1, |E |z < 1)

The upper sheet of the hyperboloid of 2
sheets a2 + b2 − (c − |E |)2 = −E2

11 Kepler hyperbolas of energy E > 0
(projected of sections of C by planes

tangent to 2|E |z = E2
(

x2 + y2
)

+ 1,

|E |z > 1)

The lower sheet of the hyperboloid of 2
sheets a2 + b2 − (c − |E |)2 = −E2

12 Kepler ellipses with minor axis B (projected
sections of C by planes tangent to
x2 + y2 − z2 = −B2/4)

The hyperboloid of 2 sheets
a2 + b2 − c2 = −4/B2

13 Kepler hyperbolas with minor axis B:
projected sections of C by planes tangent
to x2 + y2 − z2 = B2/4

The hyperboloid of 1 sheet
a2 + b2 − c2 = 4/B2

14 Central projections of Kepler orbits with
energy ±Ek on a surface of constant
curvature k

The hyperboloid (of 1 or 2 sheets, depending
on k) a2 + b2 − (c − |Ek |)2 = −E2

k − k

Proof Let C be the given Kepler orbit and P ∈ C . Using Kepler’s orbital symmetries
(Theorems 1 and 2) we can assume, without loss of generality, that C is the unit circle
and P = (0, 1) (see Remark 4.5 below, though). A Kepler orbit ax + by + cr = 1 is
tangent to C at P if and only if a = 1, b + c = 0, which is a null line in R

2,1. Every
null line is congruent to this line by an orbital symmetry. ��

Proposition 4.4 (Item 8 of Table 1) The Kepler orbits corresponding to a line in R
2,1

(a ‘pencil’ of Kepler orbits) have concurrent directrices (they all pass through a single
point). The orbits of a timelike pencil are nested (same as disjoint).

Proof The orbits of a Kepler pencil corresponding to a line �∗ ⊂ R
2,1 are obtained by

projecting sections of C by planes passing through a fixed line � ⊂ R
3 (the line dual to

�∗). The directrix of a Kepler orbit is the intersection of the secting plane with the xy
plane. Thus all directrices of Kepler orbits in a pencil pass through a fixed point, the
intersection of �with the xy plane. The line �∗ is spacelike, null or timelike if and only
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Fig. 8 Proposition 4.3. Left: the set of Kepler orbits tangent to a fixed Kepler orbit C (the dark curve) at a
fixed point P ∈ C . Right: the point v ∈ R

2,1
+ corresponds to C , the null cone with vertex v corresponds to

all Kepler orbits tangent C , the parabolic plane π corresponds to all Kepler orbits passing through the point
P ∈ C . The intersection of π with the cone is one of its generators, a null line, corresponding to the Kepler
orbits tangent to C at P . The intersection of the cone with the c = 0 plane is a circle C∗, corresponding to
all lines tangent to C (see Proposition 4.9)

(a) (b) (c)

Fig. 9 Kepler pencils: a spacelike, b null and c timelike

if � intersects C at 2, 1 or 0 points, respectively. These intersections points project to
the intersection points of the orbits of the pencil. Thus the orbits of a timelike pencil
are disjoint. See Fig. 9. ��

Remark 4.5 (Error alert) Strictly speaking, items 5–7 of Table 1, and the last two
propositions with their proof, are incorrect. Can you see why before continuing read-
ing?

The exceptions arise with the hyperbolic orbits. By our definition, they only include
one branch (the ‘attractive branch’, see Fig. 1). For example, there are spacelike pencils
of Kepler hyperbolas which only intersect at one point (the 2nd point of intersection is
on the ‘repelling branch’) or even spacelike pencils of disjoint Kepler hyperbolas (the
2 intersection points are on the repelling branch). The same problem occurs with null
lines: there are null pencils of disjoint Kepler hyperbolas (the tangency point is again
on the repelling branch). The proof of Proposition 4.3 is not correct because applying
an orbital symmetry to the circular case may move the tangency point to a repelling
branch.

Another problem is that some of the statements are true only when considered in
the projective plane. For example, the null line a = c, b = 0 corresponds to all Kepler
parabolas symmetric about the x-axis. Their common tangency point lies on the line
at infinity.
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To fix these problems one needs to separate statements and proofs of some items
of Table 1 into cases. It is not difficult, and can be even quite entertaining, but we
shall not elaborate further on this issue, trusting the reader to make adjustments of the
relevant items in the table accordingly.

Corollary 4.6 Each family of Kepler orbits of fixed minor axis, ellipses or hyperbolas,
is a non-flat 2-parameter family admitting a 3-dimensional group of symmetries. The
elliptic and hyperbolic cases are not orbitally equivalent, although in both cases the
orbital symmetry group is isomorphic to PSL2(R).

Proof The dual surface of such a family is a hyperboloid of either 1 or 2 sheets, the
‘hypersphere’ a2 + b2 − c2 = ±4/B2 (items 12–13 of Table 1). These are the level
surfaces of the Minkowski norm and are thus invariant under the Lorentz group O2,1,
a 3-dimensional subgroup of the full 7-dimensional group of orbital symmetries. This
shows that every such family admits at least a 3-dimensional group of symmetries. To
show that the family is non-flat, and hence its symmetry group is atmost 3-dimensional,
we turn to the same argument in the proof of Theorem 5, explained in the Appendix
(Proposition 5.6).

Note also that in the elliptic case, the said surface (a spacelike hypersphere) is
a translation of the surface corresponding to Kepler orbits of fixed non-zero energy
(items 10-11). Since translations are generated by orbital symmetries (Theorem 2),
the non-flatness follows from Theorem 5.

The elliptic and hyperbolic cases are not orbitally equivalent, even locally, because
the two actions of the symmetry group PSL2(R) are non-equivalent: in the elliptic
case the isotropy is an elliptic subgroup and in the hyperbolic case it is a hyperbolic
subgroup, which are non conjugate 1-parameter subgroups of PSL2(R). ��
The ‘curved’ Kepler problem (Item 14 of Table 1). There is an analogue of the
Kepler problem on surfaces of constant curvature k �= 0 (a sphere in R

3 for k > 0 and
a spacelike ‘hypersphere’ in R

2,1 for k < 0). They are characterized by the property
that their unparametrized orbits centrally project to planar Kepler orbits. See [2] for
more details, where the following proposition is proved.

Proposition 4.7 Central projection maps orbits of the ‘curved’ Kepler problem on a
surface of constant curvature k �= 0 to Kepler orbits in R

2. The energy Ek of an orbit
in the curved space is related to the energy E of its centrally projected orbit by

Ek = E + k

2
M2,

where M is their common angular momentum value.

Corollary 4.8 Central projections of Kepler orbits with energy ±Ek on a surface of
constant curvature k are parametrized by the surface {a2 + b2 − (c − |Ek |)2 =
−E2

k −k} ⊂ R
2,1, where c > 0 represent orbits with negative energy Ek = −|Ek | and

c < 0 orbits of positive energies, Ek = |Ek |. They are the projections to the xy-plane
of sections of C by planes tangent to the surface (E2

k +k)(x2+ y2) = kz2+2|Ek |z −1
in R

3.
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Fig. 10 Proposition 4.9

The proof is immediate from the last proposition and formulas (7). Let us remark
also that Corollary 4.8 gives a pleasant dynamical interpretation of Kepler orbits of
fixedminor axis: they are the central projections of zero energy orbits of an appropriate
curved Kepler problem.

4.2 A Keplerian Version of the Tait–Kneser and 4Vertex Theorems

4.2.1 Point-Line Duality

The equation ax + by = 1 defines a duality between the xy and ab-planes. Namely,
each point (a, b) defines a line in the xy plane and vice versa. Given a curve C in one
of these planes, its dual C∗ is a curve in the other plane, whose points correspond to
the lines tangent to C . For example, the dual of the circle x2 + y2 = R2 is the circle
a2 + b2 = 1/R2. If C is a smooth strictly convex curve, containing the origin in its
interior, so is C∗ and C∗∗ = C . This still works if C does not contain the origin in its
interior, provided we allow for curves in the projective plane, as we do in the sequel.
The tangents to C through the origin then correspond to intersections of C∗ with the
‘line at infinity’.

Proposition 4.9 C is a Kepler orbit if and only if C∗ is a circle. If C is an ellipse then
C∗ contains the origin, if it is a parabola then C∗ passes through the origin and if C
is an hyperbola then the origin lies outside C∗. In the latter case, the two tangents to
C∗ through the origin divide C∗ into two arcs, corresponding to the two branches of
C. The larger arc corresponds to the ‘attractive branch’ of C and the shorter to the
‘repelling branch’. See Fig. 10.

Proof Let v = (a, b, c) ∈ R
2,1
+ be the point corresponding to C . The intersection of

the null cone through v with the ab plane is a circle of radius c centered at (a, b). See
Fig. 8 (right). The points of this circle correspond to the lines tangent to C (a special
case of Proposition 4.3), so the circle is C∗. For a parabola, one of its tangents is the
line at infinity, whose dual is the origin of the ab plane.
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When C is a hyperbola it has two tangents, its asymptotes, whose tangency points
with C are two points on the line at infinity of the xy plane. The two asymptotes
correspond to two points on C∗ and their intersection points with the line at infinity
correspond to the two tangents to C∗ at these points, passing through the origin of the
ab plane. The longer arc of C∗ corresponds to the attractive branch of C because the
latter is nearer the origin then the repelling branch. ��
Remark 4.10 The same warning as in Remark 4.5 applies here, although it is simpler
to fix: if C is a Kepler hyperbola then C∗ is not a circle, but rather a circular arc,
corresponding to the Kepler branch of the ‘full’ hyperbola, as shown in Fig. 10. The
complementary arc of the circle corresponds to the ‘repelling branch’.

4.2.2 Osculating Circles

A plane curve with non-vanishing curvature admits at each of its points an osculating
circle, tangent to the curve at this point to 2nd order (its curvature coincides with that
of the curve at this point). Sometimes the osculating circle is hyperosculating, i.e.,
tangent to order higher than two. This occurs at the critical points of the curvature and
such points are called vertices. For example, a (non-circular) ellipse has 4 vertices,
corresponding to two minima and two maxima of the curvature. The 4-vertex theorem
states that on any convex simple planar closed curve there are at least 4 vertices. A
related theorem is the Tait–Kneser theorem, stating that along any vertex-free curve
segment with non-vanishing curvature the osculating circles are pairwise disjoint and
nested. Both theorems are over 100 years old and there are many variations [19, 23].

Using Proposition 4.9 above, we shall obtain a Keplerian version of these theorems.
To this end, we consider a strictly convex star-shaped closed curve γ , that is γ, γ ′ and
γ ′, γ ′′ are everywhere linearly independent (these are parametrization independent
conditions). These conditions imply that one can define at each point along γ its
osculating Kepler orbit, tangent to the curve to 2nd order. A point where the osculating
Kepler orbit is hyperosculating is a Kepler vertex.

Theorem 8 There are at least 4 Kepler vertices along γ . Along any vertex-free segment
of γ the osculating Kepler orbits are pairwise disjoint and nested. See Fig. 11.

The proof reduces to the observation that point-line duality preserves order of
contact between curves; hence, by Proposition 4.9, it maps the osculating Kepler orbit
of γ to the osculating circle of γ ∗, and the same for hyperosculating Kepler orbits,
so it maps Euclidean vertices to Kepler vertices. It also maps nested Kepler orbits to
nested circles, so the theorem is reduced to the Euclidean version. In a recent article,
we gave a different proof of this theorem [12].

4.3 AMinor Axis Variant of Lambert’s Theorem

Lambert’s Theorem (1761) is a statement about the elapsed time along a Keplerian
arc [4, 42]. Let us recall this theorem. Consider a time parametrized Kepler ellipse,
i.e., a solution r(t) of r̈ = −r/r3, with major axis A. We fix two moments t1 < t2,
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Fig. 11 Kepler–Euclid duality. Left: a curve is drawn in the Kepler plane (a circle centered on the x-axis)
and the nested family of osculating Kepler orbits along its arc in the 1st quadrant, between 2 of its 4 Kepler
vertices (the white dots, intersections of the circle with the coordinate axes). Right: the dual of the left
circle is a Kepler ellipse, with 4 euclidean vertices and osculating circles between two of them, duals of the
osculating ellipses on the left

(a) (b)

Fig. 12 a Lambert’s Theorem. b The eccentric anomaly u

the corresponding points r1 = r(t1), r2 = r(t2), the chord distance r12 = ‖r1 − r2‖,
the distances to the origin ri = ‖ri‖ and the time lapse �t = t2 − t1. See Fig. 12a.

Lambert’s Theorem

�t is a function of r12, r1 + r2 and A.

Clearly, for elliptical orbits the said function is only well defined modulo the period
of the orbit (a function of A). The main thrust of the theorem is that �t does not
depend on the individual values of r1, r2. Thus, one can deform the orbit, keeping the
three quantities r12, r1 + r2, A fixed, into a linear orbit, for which the time �t is easy
to write as an explicit integral.

Our ‘minor axis variant’ of this theorem involves a different well-known
parametrization of Kepler orbits, by the eccentric anomaly u, see Fig. 12b. For sim-
plicity, we shall only deal with Kepler ellipses, although the statement and proof can
be easily modified for parabolic and hyperbolic orbits. Consider a Kepler ellipse with
minor axis B, two values u1 < u2, r1 = r(u1), r2 = r(u2), r12 = ‖r1−r2‖, ri = ‖ri‖
and �u = u2 − u1.

Theorem 9 �u is a function of r12, r1−r2 and B, well defined modulo 2π . Explicitly,

B2 sin2
�u

2
= r212 − (r1 − r2)

2. (9)
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Proof We consider an ellipse E with minor axis B, parametrized by u, as in Fig. 12b.
We lift E to Ẽ ⊂ C+ and ri to r̃i = (ri , ri ) ∈ Ẽ . The right-hand side of Eq. (9) is then
‖r̃1− r̃2‖2 (usingMinkowski’s norm), hence is invariant under the Lorentz groupO2,1.
We claim that the left hand is invariant as well, hence it is enough to check formula
(9) in the circular case, for which it is immediate.

To establish the said invariance, we first note that B is O2,1-invariant by item 12 of
Table 1. The invariance of �u follows from the next lemma.

Lemma 4.11 1. Restricted to C, dx2 + dy2 − dz2 = (rdθ)2.

2. Restricted to E , rdθ = (B/2)du.

Proof The 1st statement is a simple calculation, using x = r cos θ, y = r sin θ and
x2 + y2 = z2. For the 2nd statement, from Fig. 12 we have x = a(cos u − e), y =
b sin u, r = a(1 − e cos u), where a, b are the major and minor semi axes of
E (respectively) and e = √

a2 − b2/a the eccentricity. From the first two equa-
tions follows dx2 + dy2 = (a2(sin u)2 + b2(cos u)2)du2 and from the last follows
dx2 + dy2 = dr2 + r2dθ2 = a2e2(sin u)2du2 + r2dθ2. Equating these two expres-
sions for dx2 + dy2 we obtain b2du2 = r2dθ2, as needed. This completes the proof
of the lemma and also the theorem. ��
Remark 4.12 Formula (9) is an elementary geometric statement about ellipses, so one
expects to find an elementary proof. Indeed, we give such a proof here and invite the
reader to compare it with our proof above. Let a = A/2, b = B/2 (the major and
minor semi-axes), e = √

a2 − b2/a (the eccentricity). Then r j = a(1− e cos u j ) and
r212 = a2(cos u1−cos u2)

2+b2(sin u1−sin u2)
2, fromwhich follows r212−(r1−r2)2 =

b2
[

(cos u1 − cos u2)
2 + (sin u1 − sin u2)

2
] = B2 sin2(�u/2).

4.4 Kepler Fireworks

The following intriguing result is well known.

Proposition 4.13 Consider the family of Kepler ellipses of fixed (negative) energy,
passing through a fixed point. Then there exists a Kepler ellipse, with second focus at
the fixed point, tangent to all ellipses of the family (the ‘envelope’ of the family). See
Fig. 13c.

There are many proofs available. For example, Richard’s proof [40, p. 839], using
only elementary Euclidean geometric, is hard to beat for simplicity and elegance. We
shall prove it following a longer path, but will obtain on the way two variations on this
result, seemingly new. Let us begin.

Proposition 4.14 Consider the family of Hooke (or central) ellipses of fixed area pass-
ing through a fixed point in R

2\0. Then these ellipses are all tangent to a pair of
parallel lines, symmetric about the line passing through the origin and the fixed point.
See Fig. 13a.
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Proof Without loss of generality, let the fixed area be � and the fixed point (1, 0)
(using rotations and dilations about the origin). Any ellipse of area � passing through
(1, 0) can be brought by a ‘shear’ S : (X , Y ) �→ (X + sY , Y ) to an ellipse of the form
X2 + (πY/�)2 = 1, which is clearly tangent to the two lines Y = ±�/π . Since S
preserves these lines the original ellipse is also tangent to these lines. ��

This is our 1st variation on Proposition 4.13 (a rather modest one, admittedly).
Before stating the next variation we use another lemma, possibly of some independent
interest.

Lemma 4.15 The squaring map C → C, z �→ z2, takes Hooke ellipses of fixed area
to Kepler ellipses of fixed minor axis.

Proof Let a Hooke ellipse be (x/a)2 + (y/b)2 = 1 (without loss of generality). Its
area is � = πab and it is parametrized by X = a cos θ, Y = b sin θ. Its square is
parametrizedby x = X2−Y 2 = (a2−b2)/2+(a2+b2) cos 2θ, y = 2XY = ab sin 2θ.

This is a Kepler ellipse with minor axis 2ab = 2�/π. ��
Now for the 2nd variation.

Proposition 4.16 Consider the family of Kepler ellipses with fixed minor axis and
passing through a fixed point in R

2\0. Then there exists a Kepler parabola tangent to
all ellipses of the family (the ‘envelope’ of the family). See Fig. 13b.

Proof By Lemma 4.15, the family of Kepler ellipses with fixed minor axis, passing
through a fixed point, is the image under the squaring map of the family of Hooke
ellipses of fixed area passing through a fixed point. By Proposition 4.14, the envelope
of these Hooke ellipses is a pair of parallel lines, equidistant from the origin. Under the
squaring map, the image of these lines is the envelope of the family of Kepler ellipses.
Following this recipe for the envelope of the Kepler ellipses with minor axis B going
through (x1, 0) we get the Kepler parabola y2 = 4p(x + p), where p = B2/(4x1). ��
Remark 4.17 The last proposition can be also established by passing to the dual state-
ment using Table 1, by considering the parabolic plane in R

2,1 corresponding to the
fixed point, then taking its polar with respect to the quadric corresponding to ellipses
with a fixed minor axis (hyperboloid of 2 sheets). We leave the details of this alternate
proof for the reader to explore.

Nowwe use duality (Table 1) and translation symmetries inR
2,1 (Theorem 2) to derive

Proposition 4.13 from its minor axis variant (Proposition 4.16).

Proof of Proposition 4.13 Kepler ellipses with energy E < 0 passing through (x0, 0)
correspond to the intersection of a2 +b2 − (c + E)2 = −E2 with x0(a + c) = 1. This
is mapped by (a, b, c) �→ (a, b, c+ E) to the intersection of a2+b2−c2 = −E2 with
x0(a + c − E) = 1. The latter are Kepler ellipses with minor axis B = −2/E passing
through (x1, 0), where x1 = x0/(1 + Ex0), with envelope y2 = 4p(x + p), where
p = B2/(4x1) = (1+ Ex0)/(x0E2), corresponding to (−1/(2p), 0, 1/(2p)) ∈ R

2,1.
Translating back, the envelope of the original family is given by (−1/(2p), 0, 1/(2p)−
E) ∈ R

2,1. Using the value of p and a bit of algebra, this is seen to correspond to a
Kepler ellipse with 2nd focus (x0, 0), as needed. ��
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(a)
(b) (c)

Fig. 13 Envelopes of concurrent conics. aHooke’s orbits with fixed area. bKepler’s orbits with fixed minor
axis. c Kepler’s orbits with fixed major axis

(a) (b) (c)

Fig. 14 a Coulomb scattering. b Fireworks envelope. c Water fountain envelope

Remark 4.18 The positive energy analog of Proposition 4.13, i.e., for hyperbolic orbits,
is somewhat disappointing, as the family admits no envelope. There is however a ‘scat-
tering’ version of this proposition, for the repelling inverse square law, see Fig. 14a. A
familiar ‘everyday’ version, for constant force, where all orbits as well as the envelope
are parabolas, can be observed in fireworks displays and water fountains. See Fig. 14b,
c.

5 Proofs of Theorems 1–6

5.1 Proof of Theorem 1

Let RP3 be the 3-dimensional projective space with homogeneous coordinates (X :
Y : Z : W ). We identify R

3 with the affine chart W �= 0, (x, y, z) �→ (x : y : z : 1).
The closure of C = {x2 + y2 = z2} in RP3 is C = {X2 + Y 2 = Z2}, obtained by
adding to C the ‘circle at infinity’ S1∞ = {X2 + Y 2 = Z2, W = 0} = C\C. See Fig. 3.

Let ˜G ⊂ GL4(R) be the subgroup preserving the (degenerate) quadratic form
X2 + Y 2 − Z2, up to scale. Its image G := ˜G/R

∗ in the projective group PGL4(R) =
GL4(R)/R

∗ is the group of projective transformations of RP3 preserving C.
Lemma 5.1 ˜G consists of elements of the form

(

A 0
bt λ

)

, A ∈ CO2,1, b ∈ R
3, λ ∈ R\0. (10)
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Proof g ∈ ˜G if and only if gt Jg = cJ , where J = diag(1, 1,−1, 0) and c ∈ R. By a
simple calculation g has the claimed form. ��
It follows that ˜G is an 8-dimensional group and G = ˜G/R

∗ is 7-dimensional. In the
affine chart R

3 ⊂ RP3 (column vectors), q �→ (q : 1), the action of an element of ˜G
given by Eq. (10) is

q �→ Aq
λ + btq

, q ∈ R
3. (11)

It restricts to a local action on C+ and projects to a local action onR
2\0. By the general

theory of point symmetries of ODEs (see the Appendix), the maximal dimension of
the symmetry group of a 3-parameter family of plane curves is 7, hence this local
G-action on R

2\0 provides the full group of orbital symmetries.
The expressions for the infinitesimal symmetries in Eq. (1) follow from the above by

differentiating the action along 1-parameter subgroups of ˜G. Let X ∈ Lie(˜G) (the Lie
algebra of ˜G). Since we are considering projectivized action, we can assume without
loss of generality that tr(X) = 0. From Eq. (10) follows that such an X has the form

X =

⎛

⎜

⎜

⎝

x1
4 −x2 x3 0
x2

x1
4 x4 0

x3 x4
x1
4 0

x5 x6 x7 − 3x1
4

⎞

⎟

⎟

⎠

, x1, . . . , x7 ∈ R. (12)

The induced vector field on R
2\0 is (x, y) �→ γ ′(0), where γ (t) = π(et X q), q =

(x, y,
√

x2 + y2, 1)t and π(X , Y , Z , W ) = (X/W , Y/W ) . The formulas of Eq. (1)
follow from this recipe by setting xi = 1 and the rest 0 inEquation (12), i = 1, . . . , 7.��

5.2 Proof of Theorem 2

Note first that an element g ∈ ˜G, given by Eq. (10), acts on (R4)∗ (row vectors) by
p �→ pg−1. In the affine chart R

2,1 ⊂ P((R4)∗) (row vectors), p �→ (p : −1), the
action on R

2,1 by an element of ˜G, given by Eq. (10), is

p �→ (λp + bt )A−1, p ∈ R
2,1. (13)

It follows that for X given by Eq. (12) the induced vector field on R
2,1 is

p �→ γ ′(0), where γ (t) = π(pe−t X ), p = (p,−1) and π(A, B, C, D) =
− (A/D, B/D, C/D) . ��

5.3 Proof of Theorem 3

Identify R
2 = C and consider the squaring map B : z �→ z2.

Lemma 5.2 B defines a 2 : 1 cover C\0 → C\0, mapping pairs of parallel symmetric
affine lines into Kepler parabolas.
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Proof Since B is C
∗-equivariant, B(λZ) = λ2B(Z), λ ∈ C

∗, it is enough to consider
the pair x = ±1. Their B-image is the Kepler parabola x = (1 + y/2)2. ��
It follows that the set of Kepler parabolas is a flat 2-parameter family of plane curves.

��

5.4 Proof of Theorem 4

We offer 3 different proofs, with increasing level of abstraction, and a bonus one in
Remark 5.3. Which one is your favorite?

(a) The proposed map, r �→ r/(1 − r/M2), in polar coordinates, is (r , θ) �→ (R, θ),
where R = r/(1 − r/M2), or M2/r = 1 + M2/R. A Kepler orbit with angular
momentum M is given by M2/r = 1+ e cos(θ − θ0) (see Remark 3.2) and is mapped
to M2/R = e cos(θ − θ0), or R cos(θ − θ0) = M2/e. This is the equation of a line
whose distance to the origin is M2/e, making an angle θ0 with the y-axis.

(b) Kepler orbits with angular momentum M are the projections to the xy plane of
sections of C by planes passing through P := (0, 0, M2) (Corollary 3.4). Central
projection from P maps these sections to straight lines in the xy plane.

(c) Kepler orbits with fixed M are parametrized by the horizontal plane {c = 1/M2} ⊂
R
2,1, see Corollary 3.4 above. We know that G acts on R

2,1 as its full group of
Minkowski similarities, so there is an element g ∈ ˜G that translates this plane to the
plane c = 0, parametrizing straight lines in the xy plane. By Eq. (13), we can take
g corresponding to A = id,b = (0, 0,−1/M2). The stated formula follows from
Eq. (11). ��
Remark 5.3 Yet another proof, which shows flatness, without an explicit formula,
consists of writing down a second order linear ODE for the family of Kepler orbits
with fixed M and use the fact that second order linear ODEs are flat [7, p. 44]. The
said ODE is ρ′′(θ) + ρ(θ) = 1/M2, where ρ = 1/r . See the proof of Proposition 5.6
below.

5.5 Proof of Theorem 5

According to the general theory of symmetries of ODEs, flatness of a 2-parameter
family of plane curves is equivalent to the vanishing of certain two differential invari-
ants of an associated second order ODE. In the Appendix we carry out a calculation
showing that one of these invariants is non-vanishing for the family of Kepler orbits
of fixed non-zero energy, thus proving that each such family is non-flat, see Proposi-
tion 5.6. Next, according to another basic result of the theory, the dimension of the
symmetry group of a non-flat 2-parameter family is at most 3. Thus, for each E �= 0,
it is enough to find a 3-dimensional subgroup of G preserving the set of Kepler orbits
with energy E .

As explained in Corollary 3.5, Kepler orbits with energy ±E �= 0 are projections
of sections of C by planes tangent to the inscribed paraboloid of revolution P =
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Fig. 15 The proof of Theorem 5. a In the affine chart Z �= 0, with coordinates x = X/Z , y = Y/Z , w =
W/Z the surface P is the ellipsoid of revolution x2 + y2 + (w − E)2/E2 = 1, inscribed in the vertical
cylinder C = {x2 + y2 = 1}, tangent to the plane w = 0 (the ‘plane at infinity’ in the chart W �= 0).
Compare to Fig. 5, whereP is drawn in the chart W �= 0. b The dual picture whereP∗ parametrizes planes
tangent toP . It is a hyperboloid of revolution of two sheets. The Minkowski metric restricts to a hyperbolic
metric on it, and GE acts as its group of isometries

{2z = |E | (x2 + y2
) + 1/|E |}. Let P be the closure of P in RP3. It is a smooth

convex compact surface, given in homogeneous coordinates by the vanishing of the
quadratic form |E | (X2 + Y 2

) − 2Z W + W 2/|E |, obtained by adding to P the point
(0 : 0 : 1 : 0), the tangency point of P with the plane W = 0 (the white dot in
Fig. 15a). Consider the subgroup ˜GE ⊂ ˜G preserving this quadratic form up to scale.
A short calculation shows that its Lie algebra consists of matrices of the form

X =

⎛

⎜

⎜

⎝

0 −x2 x3 0
x2 0 x4 0
x3 x4 0 0

|E |x3 |E |x4 0 0

⎞

⎟

⎟

⎠

, x2, x3, x4 ∈ R. (14)

The associated vector field in the xy-plane is (x, y) �→ γ ′(0), where γ (t) = π(et X q),
q = (x, y,±√

x2 + y2, 1)t and π(X , Y , Z , W ) = (X/W , Y/W ) . The sign in q is
the opposite sign of E , since for E > 0 (the hyperbolic case) we need to project the
action from C− and for E < 0 from C+. Setting xi = 1 and the rest 0 in Eq. (14),
i = 2, 3, 4, we obtain from this recipe for E < 0 the vector fields

v2 := ∂θ , v3 := r(∂x + Ex∂r ), v4 := r(∂y + Ey∂r ),

as in Eq. (3). For E > 0 we get the vector fields v2,−v3,−v4. In both cases, v2, v3, v4
are infinitesimal generators of the GE -action, as stated.

The isomorphism ˜GE/R
∗ 
 PSL2(R) is best seen in the dual picture, in R

2,1. See
Fig. 15b.

Kepler orbits of energy E �= 0 are parametrized by the surface P∗ = {−a2 − b2 +
(c−|E |)2 = E2} ⊂ R

2,1, the quadric surface dual toP (see Eq. (7) and Fig. 15b). This
is a hyperboloid of revolution of two sheets. The lower sheet P∗+ parametrizes planes
tangent to P+, which correspond to Kepler hyperbolas with energy |E |. Similarly
for the lower sheet. The Lorentzian metric da2 + db2 − dc2 in R

2,1 restricts to an
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hyperbolic metric on each of the sheets, on each of which the identity component of
GE acts as the identity component of its isometry group (in the full GE there is also an
element interchanging the two sheets, we will use it in the proof of the next theorem).

It is also clear from Fig. 15a why the orbital symmetry action onHE for E > 0 is
only local. This is because P+ touches the plane W = 0 (the ‘plane at infinity’ of the
affine chart W = 0, intersecting C at S1∞) at one point, which does not correspond to
any point in Kepler’s xy plane. ��

Remark 5.4 Asmentioned in the Introduction, Theorem 5 can be deduced from known
results on “superintegrable metrics” (although we did not find it stated explicitly).
We sketch the argument. Kepler orbits with fixed energy are the (unparametrized)
geodesics of a well-known metric, the Jacobi–Maupertuis metric, see p. 247 of [6].
This metric is known to be ‘super-integrable’, admitting 4 quadratic integrals, see
§3.1 of [34]. Such metrics admit a 3-dimensional group of “projective symmetries”
(same as our orbital symmetries), see Lemma 2 in §2.2.4 of [14]. Then one can use
a classification of Lie of projective local groups of transformations to deduce that the
said symmetry group is isomorphic to SL2(R), see §2.2.2 and references in footnote
9 on p. 442 of [14]. We are thankful to V. Matveev for patiently pointing out to us this
non-trivial chain of ideas and the relevant references.

5.6 Proof of Theorem 6

As in the case of Theorem 4, there are various proofs available. We will only present
our favorite one.

Consider in Fig. 15b the reflection about the horizontal plane c = |E | passing
through the vertex of the shown cone, (a, b, c) �→ (a, b, 2|E | − c), interchanging the
lower and upper sheets P∗± of P∗. The corresponding element in ˜G is

g =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 −2|E | 1

⎞

⎟

⎟

⎠

.

In Fig. 15a, in the affine chart Z �= 0 with coordinates x = X/Z , y = Y/Z , w =
W/Z , g acts by (x, y, w) �→ (x, y, 2|E |−w), a reflection about the center (0, 0, |E |)
of P (the dark dot), interchanging P±. In Fig. 5, in the affine chart W �= 0, with
coordinates x = X/W , y = Y/W , z = Z/W , g acts by (x, y, z) �→ (x, y,−z)/(1 −
2|E |z), interchanging P±.

To write an explicit orbital embeddingHE → H−E , note first in Fig. 5 that Kepler
hyperbolas are the projections of sections of the lower part C− with planes tangent to
P+, and that Kepler ellipses are the projections of sections of the upper part C+ with
planes tangent to P−. The embedding is thus given by the composition r = (x, y) �→
(r,−r) �→ (r, r)/(1 + 2Er) �→ r/(1 + 2Er), as needed.

We can also map the ‘repelling branches’ of Kepler hyperbolas with energy E into
H−E , but these are the projections of sections of the upper part of C with planes
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tangent to P+, thus the embedding is r = (x, y) �→ (r, r) �→ (r,−r)/(1 − 2Er) �→
r/(1 − 2Er). See Fig. 6. ��
Acknowledgements The authors thank Richard Montgomery, Sergei Tabachnikov, Alain Albouy and
Vladimir Matveev for fruitful correspondence and discussions. GB was supported by CONACYT Grant
A1-S-45886.

Appendix A: Symmetries of ODEs

Thepurpose of this appendix is twofold: first,we fulfill a promisemade in the beginning
of the proof of Theorem 5, showing that the 2-parameter family of Kepler orbits with
fixed non-zero energy is not flat. See Theorem 10 below. Second, we fit the results of
this article into the general context of the theory of symmetries of ODEs.

Lie’s Theory of Symmetries of ODEs

An n-parameter family of plane curves is given, locally, under some mild regu-
larity conditions, by the graphs of solutions y(x) of an nth-order ODE y(n) =
f (x, y, y′, . . . , y(n−1)). Local diffeomorphisms of the xy plane preserving the graphs
of solutions of the ODE are classically called point symmetries of the ODE. Vector
fields in the plane whose flow acts by point symmetries are infinitesimal point sym-
metries. The subject was developed in the nineteenth century, mostly by Sophus Lie
and his students, later on in the twentieth century by É. Cartan and many others, and
is a still an active area of research. A standard modern reference is P. Olver’s book,
Olver’s book [38], see also [13, 20, 39, 44].

On ‘Local Symmetries’

Point symmetries are local not only in the xy plane but also in the jet spaces overR
2 to

which they are naturally prolonged. An nth-order ODE y(n) = f (x, y, y′, . . . , y(n−1))

defines a hypersurface M := {pn = f (x, y, p1, . . . , pn−1)} in the total space J n of
the bundle of nth-order jets of curves in R

2. M is an (n + 1)-dimensional mani-
fold, doubly foliated, with leaves of dimensions n − 1, 1, the sum of whose tangents
span a contact distribution on M . The first foliation is by the fibers of the projection
(x, y, p1, . . . , pn) �→ (x, y) and the second by the nth jets of the solutions to the
ODE. A point symmetry of the ODE is a local diffeomorphism of M preserving both
foliations. It projects to a local diffeomorphism of the xy plane. A good introduction
to this geometric point of view on ODEs, for n = 2, is Arnold’s book [7, Section 1.6].
Of course, our proof is completely different.

Flat Families

An n-parameter family of plane curves is flat if it is locally diffeomorphic to the family
given by y(n) = 0 (graphs of polynomial functions of degree < n). As was shown
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by Lie, a family is flat if and only if its local symmetry group is (n + 4)-dimensional
for n > 2 and 8-dimensional for n = 2, the maximal dimension possible for an
n-parameter family of plane curves (Theorems 6.39 and 6.42 of [38]).

The n = 3 case, i.e., point symmetries of 3rd order ODEs, was further studied in
more depth in 1905 by Wünschmann [47], around 1940 by S.-s Chern [17, 18] and É.
Cartan [16], and later on by others [25–27, 41, 46]. The only result from this theory
that we use, in the proof of Theorem 1, due to Lie, is that the maximum dimension of
the symmetry group of a 3-parameter family of plane curves is 7.

Theorem 1 can thus be interpreted as saying that the 3-parameter family of Kepler
orbits is locally diffeomorphic to the solutions of y′′′ = 0, i.e., vertical parabolas of
the form y = ax2 + bx + c. Let us find such a diffeomorphism. Define a map from
the XY plane to the xy-plane by

(X , Y ) �→ (x, y) =
(

X2 − 1

Y
,
2X

Y

)

. (15)

Proposition 5.5 Equation (15) defines a local diffeomorphism from the XY -plane into
the xy-plane, mapping each vertical parabola Y = AX2+B X+C, A, B, C ∈ R, onto
the Kepler orbit ax + by + cr = 1, where a = (A − C)/2, b = B/2, c = (A + C)/2.

The proof is by a straightforward verification.

Path Geometries, Tresse Classification

The n = 2 case is the best known and is called a path geometry. If a 2-parameter family
is not flat then the maximal possible dimension of the symmetry group drops from 8
to 3. A list of normal forms of 2nd order ODEs admitting a 3-dimensional group of
symmetries, over the complex numbers, was derived by Tresse (a French student of
Lie) in his 1896 PhD dissertation [45]. The list is divided into 4 ‘types’, according to
the symmetry group (all types come with 1 or 2 continuous parameters). Type d), the
type that concerns us, deals with SL2(C) invariant 2nd order ODEs, and is given by
Tresse as y′′ = (a(y′)3 − y′)/(6x), where a is a (complex) parameter.

Tresse classification was extended to the real case [21, 32] but by and large we
think that this list has not been sufficiently explored.

Over the reals, Tresse’s type d) breaks first into two subtypes, according to the two
real forms of SL2(C): SU2 and SL2(R). We are concerned with SL2(R).

Among the SL2(R)-invariant path geometries, there are two ‘exceptional’ cases
(without parameters), corresponding to the two ODEs y′′ = ±(xy′ − y)3. What
distinguishes these two cases from all other items on Tresse list is that these are
the only cases of projective path geometries, i.e., the paths are the (unparametrized)
geodesics of a torsionless affine connection. In fact, in this case the paths are the
geodesics of the well-known Jacobi–Maupertuis metric defined on the Hill region for
any mechanical system with fixed energy.

The case that appears here (constant energy Kepler orbits) corresponds to y′′ =
(xy′ − y)3, but it is not so easy to see the equivalence (we will not pursue it here).
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Apath geometry on a surface S determines a ‘dual’ path geometry on the path space
S∗, parametrized by the points of S: to each point of S is assigned a path in S∗, the set
of paths in S passing through this point. The dual path geometry of a flat path geometry
(straight lines, graphs of solutions to y′′ = 0) is also flat, but a generic non-flat path
geometry is not equivalent to its dual. The flatness of a path geometry, given by a 2nd
order ODE y′′ = f (x, y, y′), is detected by the vanishing of the relative invariants

I1 = f pppp,

I2 =D2 f pp − 4D f py + f p(4 f py − D f pp) − 3 f pp fy + 6 fyy,
(16)

where p = y′ and D = ∂x + p∂y + f ∂p.

The vanishing of I1 simply means that f is at most cubic in y′. This is a diffeomor-
phism invariant property, characterizing projective path geometries. The vanishing of
I2 is equivalent to the projectivity of the dual path geometry. Thus a path geometry is
flat if and only if it is projective and its dual path geometry is projective as well.

Kepler Orbits of Fixed Energy

We can now fill the gap left out in the proof of Theorem 5.

Proposition 5.6 Kepler orbits of fixed energy E �= 0 form a non-flat path geometry.
In fact, I1 = 0 but I2 �= 0. Thus the maximum dimension of the symmetry group of
such a family is 3.

Proof We 1st write down a 2nd order ODE for Kepler orbits of energy E . Using the
equation ax + by + cr = 1 of Theorem 7(a), we get

ρ = a cos θ + b sin θ + c, ρ′ = −a sin θ + b cos θ, ρ′′ = −a cos θ − b sin θ,

where x = r cos θ, y = r sin θ, r = 1/ρ. It follows that

ρ + ρ′′ = c, (ρ′)2 + (ρ′′)2 = a2 + b2.

Using this in 2cE = a2 + b2 − c2 (Eq. (7) with c > 0), we get,

ρ′′ = ρ2 + ρ′2

2(ρ + E)
− ρ.

Using Eq. (16) we get I2 = 9E2/(E + ρ)3, hence I2 �= 0 for E �= 0. ��

Remark 5.7 Incidentally, the formula I2 = 9E2/(E + ρ)3 of the last proof gives
another proof of Theorem 3.
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Central Forces with Flat Orbit Space: TheWünschman Condition

Theorem 1 establishes that Kepler orbits form a flat 3-parameter family of curves, i.e.,
locally diffeomorphic to the family of vertical parabolas, given by y′′′ = 0. Using
the squaring map, z �→ z2, this result extends to Hooke orbits, the family of central
conics, trajectories of a mass under Hooke’s force laws, r̈ = ±r. Are there any other
force laws, whose orbits form a flat family of plane curves?

We do not know the answer in general. But for central force laws, i.e., Newton’s
equations of the form r̈ = f (r)r/r , the answer is negative. To prove it, we show that
in fact the Hooke and Kepler laws are the only central force laws satisfying a condition
weaker than flatness, called the Wünschman condition (1905). Given a 3-parameter
family of plane curves, one defines null cones in the parameter space whose rulings
consist of the curves that are tangent to a fixed line at a fixed point. In the flat case,
such as the space of Kepler orbits, these cones are quadratic and thus define a (flat)
conformal structure on the parameter space. However, for a general family, these cones
may fail to be quadratic. The families for which the null cones are quadratic, and hence
define a conformal Lorentzian metric on the parameter space, are characterized by a
complicated PDE on the ODE that defines this family, studied by Wünschmann [47].
For a modern presentation of this deep result see [37].

Theorem 10 The orbits of the system r̈ = f (r)r/r form a flat 3-parameter family of
plane curves if and only if f (r) is a constant multiple of r or 1/r2. In fact, these force
laws are the only central ones satisfying the Wünschmann condition.

Proof Following the standard procedure outlined above, we first write a 3rd order
ODE whose solutions are the (unparametrized) orbits of the system r̈ = f (r)r/r ,

ρ′′′ = ρ′
[

(ρ′′ + ρ)

(

φ − 2

ρ

)

− 1

]

, (17)

where ρ = 1/r , ρ = ρ(θ), φ = f ′(ρ)/ f (ρ) (see for example [30]). Next, the
Wünschmann condition for ρ′′′ = F(ρ, ρ′, ρ′′) is

Fρ +
(

D − 2

3
Fρ′′

)

K = 0,

where

K = 1

6
DFρ′′ − 1

9
F2

ρ′′ − 1

2
Fρ′, D = ∂θ + ρ′∂ρ + ρ′′∂ρ′ + F ′∂ρ′′ .

See [37, Equation 8]. Applying this condition to the right-hand side of Eq. (17), the
resulting equation is

27ρ3W1 + 18ρρ′′W2 + (ρ′)2W3 = 0, (18)
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where

W1 = ρφ′ + φ,

W2 = 3ρ2φ′ − ρ2φ2 + 4ρφ + 2,

W3 = 9ρ3φ′′ + 36ρ2φ′ − 18ρ3φφ′ + 4ρ3φ3 − 24ρ2φ2 + 12ρφ + 4.

Equation (18) is thus equivalent to the system of three ODEs, W1 = W2 = W3 = 0.
One can then easily check that the only solutions of this system are constant multiples
of ρ2 and 1/ρ. ��

Central Forces and Projective Path Geometries

As mentioned above, in the local classification of path geometries admitting a 3-
dimensional group of symmetries there are only 3 projective cases, where the paths
arise as the unparametrized geodesics of a torsionless affine connection. In general, a
projective path geometry need not be ametric path geometry, i.e., the affine connection
may not be the Levi-Civita connection of a pseudo-Riemannian metric, but in our 3
cases they are metric connections. In fact, all 3 cases arise as the orbits of fixed
energy of conservative mechanical systems, and thus can be realized as geodesics of
the associated Jacobi–Maupertuis metric. Let us list the 3 cases by 2nd-order ODEs
defining them:

I. y′′ = 0.
II. y′′ = (xy′ − y)3.
III. y′′ = −(xy′ − y)3.

(See, e.g., [21], where our type I is item 4 of Theorem 7 and our types II and III are
items 3d+ and 3d− , respectively.)

Type I is the flat path geometry, admitting an 8-dimensional symmetry group, the
projective group PGL3(R). Type II and III are non-flat, each admitting SL2(R) as a
local symmetry group. In both types II and III the SL2(R) action is locally equivalent
to the standard linear action on R

2\0. The dual actions, on the dual path geometries,
are non-equivalent: for the dual of type II SL2(R) acts by isometries of the hyperbolic
plane and in the dual of type III as isometries of pseudo-hyperbolic plane (non-flat
constant curvature Lorentzian metric). Both actions appear naturally as open orbits of
the projectivized adjoint representation of SL2(R).

In Table 2, we place some 2-parameter families of curves arising naturally in planar
mechanical systems with central-force laws, locally realizing the 3 path geometries.
In the 1st two rows we consider central-force power laws, r̈ = f (r)r/r , f (r) =
±rα, where M and E are the (fixed) angular momentum and energy, respectively.
In parentheses is the force law (±rα , with ‘–’ for attractive and ‘+’ for repelling). In
the following two rows Ek is the energy, Mk the angular momentum, for the Kepler
problem in a space of constant curvature k, as in [2].
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Table 2 Projective path geometries and central-force laws

I. y′′ = 0. II. y′′ = (xy′ − y)3 III. y′′ = −(xy′ − y)3

M �= 0, (±1/r2,±1/r3) M �= 0, (−r ) M �= 0, (r )

E = 0, (±rα , α �= −1) E �= 0, (±1/r2, ±r ) –

|Ek | = √−k, k < 0 |Ek | >
√−k, k < 0 |Ek | <

√−k, k < 0

Mk �= 0 Ek , k > 0 –

Some Comments on Table 2

1. ‘Hooke’ orbits, attractive or repelling ( f = ±r ), with fixed angular momentum
M , were placed in the table by considering the squaring map, z �→ z2. They are
thus mapped to Kepler orbits with fixed minor axis. Attractive Hooke orbits ( f =
−r ) are mapped to Kepler ellipses with fixed minor axis (see item 12 of Table 1
and Lemma 4.15), which are equivalent to ellipses of constant energy (see proof of
Corollary 4.6), corresponding to type II path geometry.RepellingHooke orbits ( f = r )
are mapped to Kepler hyperbolas with fixed minor axis (item 13 of Table 1), which is
type III path geometry.

2. Zero energy orbits for all central-force power laws, f = ±rα , α �= −1, can be seen
to give a flat path geometry (type I) using the Jacobi–Maupertuis metric: by making
the change of variable r = ρ2/(α+3) for α �= −3, or r = eρ for α = −3, one shows
that such families are equivalent to geodesics on a right circular cone, so are locally
equivalent to lines in the plane [35, §4]. More generally, for planar motion r̈ = −∇U ,
with potential satisfying � logU = λU for some λ ∈ R, the orbits at energy zero will
also be locally flat.

3. By computing the relative invariants I1, I2 of Eq. (16), it can be shown that orbits
with fixed non-zero energy are non-flat for all central-force power laws. It also shows
that zero energy orbits for f = ±rα are flat if and only if α �= −1. Furthermore, using
additional (relative) invariants [21, §6], one finds that these path geometries admit a
3-dimensional symmetry group only for the Hooke and Kepler laws (α = 1,−2).

4. Using I1, I2, it can be also shown that among all central-force power laws, orbits
at a fixed non-zero angular momentum are flat only for the Kepler and inverse cubic
force laws (α = −2,−3).
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